xref: /openbmc/linux/tools/perf/util/header.c (revision e3d786a3)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "util.h"
5 #include "string2.h"
6 #include <sys/param.h>
7 #include <sys/types.h>
8 #include <byteswap.h>
9 #include <unistd.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/stringify.h>
17 #include <sys/stat.h>
18 #include <sys/utsname.h>
19 #include <linux/time64.h>
20 #include <dirent.h>
21 
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "header.h"
25 #include "memswap.h"
26 #include "../perf.h"
27 #include "trace-event.h"
28 #include "session.h"
29 #include "symbol.h"
30 #include "debug.h"
31 #include "cpumap.h"
32 #include "pmu.h"
33 #include "vdso.h"
34 #include "strbuf.h"
35 #include "build-id.h"
36 #include "data.h"
37 #include <api/fs/fs.h>
38 #include "asm/bug.h"
39 #include "tool.h"
40 #include "time-utils.h"
41 #include "units.h"
42 
43 #include "sane_ctype.h"
44 
45 /*
46  * magic2 = "PERFILE2"
47  * must be a numerical value to let the endianness
48  * determine the memory layout. That way we are able
49  * to detect endianness when reading the perf.data file
50  * back.
51  *
52  * we check for legacy (PERFFILE) format.
53  */
54 static const char *__perf_magic1 = "PERFFILE";
55 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
56 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
57 
58 #define PERF_MAGIC	__perf_magic2
59 
60 const char perf_version_string[] = PERF_VERSION;
61 
62 struct perf_file_attr {
63 	struct perf_event_attr	attr;
64 	struct perf_file_section	ids;
65 };
66 
67 struct feat_fd {
68 	struct perf_header	*ph;
69 	int			fd;
70 	void			*buf;	/* Either buf != NULL or fd >= 0 */
71 	ssize_t			offset;
72 	size_t			size;
73 	struct perf_evsel	*events;
74 };
75 
76 void perf_header__set_feat(struct perf_header *header, int feat)
77 {
78 	set_bit(feat, header->adds_features);
79 }
80 
81 void perf_header__clear_feat(struct perf_header *header, int feat)
82 {
83 	clear_bit(feat, header->adds_features);
84 }
85 
86 bool perf_header__has_feat(const struct perf_header *header, int feat)
87 {
88 	return test_bit(feat, header->adds_features);
89 }
90 
91 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
92 {
93 	ssize_t ret = writen(ff->fd, buf, size);
94 
95 	if (ret != (ssize_t)size)
96 		return ret < 0 ? (int)ret : -1;
97 	return 0;
98 }
99 
100 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
101 {
102 	/* struct perf_event_header::size is u16 */
103 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
104 	size_t new_size = ff->size;
105 	void *addr;
106 
107 	if (size + ff->offset > max_size)
108 		return -E2BIG;
109 
110 	while (size > (new_size - ff->offset))
111 		new_size <<= 1;
112 	new_size = min(max_size, new_size);
113 
114 	if (ff->size < new_size) {
115 		addr = realloc(ff->buf, new_size);
116 		if (!addr)
117 			return -ENOMEM;
118 		ff->buf = addr;
119 		ff->size = new_size;
120 	}
121 
122 	memcpy(ff->buf + ff->offset, buf, size);
123 	ff->offset += size;
124 
125 	return 0;
126 }
127 
128 /* Return: 0 if succeded, -ERR if failed. */
129 int do_write(struct feat_fd *ff, const void *buf, size_t size)
130 {
131 	if (!ff->buf)
132 		return __do_write_fd(ff, buf, size);
133 	return __do_write_buf(ff, buf, size);
134 }
135 
136 /* Return: 0 if succeded, -ERR if failed. */
137 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
138 {
139 	u64 *p = (u64 *) set;
140 	int i, ret;
141 
142 	ret = do_write(ff, &size, sizeof(size));
143 	if (ret < 0)
144 		return ret;
145 
146 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
147 		ret = do_write(ff, p + i, sizeof(*p));
148 		if (ret < 0)
149 			return ret;
150 	}
151 
152 	return 0;
153 }
154 
155 /* Return: 0 if succeded, -ERR if failed. */
156 int write_padded(struct feat_fd *ff, const void *bf,
157 		 size_t count, size_t count_aligned)
158 {
159 	static const char zero_buf[NAME_ALIGN];
160 	int err = do_write(ff, bf, count);
161 
162 	if (!err)
163 		err = do_write(ff, zero_buf, count_aligned - count);
164 
165 	return err;
166 }
167 
168 #define string_size(str)						\
169 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
170 
171 /* Return: 0 if succeded, -ERR if failed. */
172 static int do_write_string(struct feat_fd *ff, const char *str)
173 {
174 	u32 len, olen;
175 	int ret;
176 
177 	olen = strlen(str) + 1;
178 	len = PERF_ALIGN(olen, NAME_ALIGN);
179 
180 	/* write len, incl. \0 */
181 	ret = do_write(ff, &len, sizeof(len));
182 	if (ret < 0)
183 		return ret;
184 
185 	return write_padded(ff, str, olen, len);
186 }
187 
188 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
189 {
190 	ssize_t ret = readn(ff->fd, addr, size);
191 
192 	if (ret != size)
193 		return ret < 0 ? (int)ret : -1;
194 	return 0;
195 }
196 
197 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
198 {
199 	if (size > (ssize_t)ff->size - ff->offset)
200 		return -1;
201 
202 	memcpy(addr, ff->buf + ff->offset, size);
203 	ff->offset += size;
204 
205 	return 0;
206 
207 }
208 
209 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
210 {
211 	if (!ff->buf)
212 		return __do_read_fd(ff, addr, size);
213 	return __do_read_buf(ff, addr, size);
214 }
215 
216 static int do_read_u32(struct feat_fd *ff, u32 *addr)
217 {
218 	int ret;
219 
220 	ret = __do_read(ff, addr, sizeof(*addr));
221 	if (ret)
222 		return ret;
223 
224 	if (ff->ph->needs_swap)
225 		*addr = bswap_32(*addr);
226 	return 0;
227 }
228 
229 static int do_read_u64(struct feat_fd *ff, u64 *addr)
230 {
231 	int ret;
232 
233 	ret = __do_read(ff, addr, sizeof(*addr));
234 	if (ret)
235 		return ret;
236 
237 	if (ff->ph->needs_swap)
238 		*addr = bswap_64(*addr);
239 	return 0;
240 }
241 
242 static char *do_read_string(struct feat_fd *ff)
243 {
244 	u32 len;
245 	char *buf;
246 
247 	if (do_read_u32(ff, &len))
248 		return NULL;
249 
250 	buf = malloc(len);
251 	if (!buf)
252 		return NULL;
253 
254 	if (!__do_read(ff, buf, len)) {
255 		/*
256 		 * strings are padded by zeroes
257 		 * thus the actual strlen of buf
258 		 * may be less than len
259 		 */
260 		return buf;
261 	}
262 
263 	free(buf);
264 	return NULL;
265 }
266 
267 /* Return: 0 if succeded, -ERR if failed. */
268 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
269 {
270 	unsigned long *set;
271 	u64 size, *p;
272 	int i, ret;
273 
274 	ret = do_read_u64(ff, &size);
275 	if (ret)
276 		return ret;
277 
278 	set = bitmap_alloc(size);
279 	if (!set)
280 		return -ENOMEM;
281 
282 	p = (u64 *) set;
283 
284 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
285 		ret = do_read_u64(ff, p + i);
286 		if (ret < 0) {
287 			free(set);
288 			return ret;
289 		}
290 	}
291 
292 	*pset  = set;
293 	*psize = size;
294 	return 0;
295 }
296 
297 static int write_tracing_data(struct feat_fd *ff,
298 			      struct perf_evlist *evlist)
299 {
300 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
301 		return -1;
302 
303 	return read_tracing_data(ff->fd, &evlist->entries);
304 }
305 
306 static int write_build_id(struct feat_fd *ff,
307 			  struct perf_evlist *evlist __maybe_unused)
308 {
309 	struct perf_session *session;
310 	int err;
311 
312 	session = container_of(ff->ph, struct perf_session, header);
313 
314 	if (!perf_session__read_build_ids(session, true))
315 		return -1;
316 
317 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
318 		return -1;
319 
320 	err = perf_session__write_buildid_table(session, ff);
321 	if (err < 0) {
322 		pr_debug("failed to write buildid table\n");
323 		return err;
324 	}
325 	perf_session__cache_build_ids(session);
326 
327 	return 0;
328 }
329 
330 static int write_hostname(struct feat_fd *ff,
331 			  struct perf_evlist *evlist __maybe_unused)
332 {
333 	struct utsname uts;
334 	int ret;
335 
336 	ret = uname(&uts);
337 	if (ret < 0)
338 		return -1;
339 
340 	return do_write_string(ff, uts.nodename);
341 }
342 
343 static int write_osrelease(struct feat_fd *ff,
344 			   struct perf_evlist *evlist __maybe_unused)
345 {
346 	struct utsname uts;
347 	int ret;
348 
349 	ret = uname(&uts);
350 	if (ret < 0)
351 		return -1;
352 
353 	return do_write_string(ff, uts.release);
354 }
355 
356 static int write_arch(struct feat_fd *ff,
357 		      struct perf_evlist *evlist __maybe_unused)
358 {
359 	struct utsname uts;
360 	int ret;
361 
362 	ret = uname(&uts);
363 	if (ret < 0)
364 		return -1;
365 
366 	return do_write_string(ff, uts.machine);
367 }
368 
369 static int write_version(struct feat_fd *ff,
370 			 struct perf_evlist *evlist __maybe_unused)
371 {
372 	return do_write_string(ff, perf_version_string);
373 }
374 
375 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
376 {
377 	FILE *file;
378 	char *buf = NULL;
379 	char *s, *p;
380 	const char *search = cpuinfo_proc;
381 	size_t len = 0;
382 	int ret = -1;
383 
384 	if (!search)
385 		return -1;
386 
387 	file = fopen("/proc/cpuinfo", "r");
388 	if (!file)
389 		return -1;
390 
391 	while (getline(&buf, &len, file) > 0) {
392 		ret = strncmp(buf, search, strlen(search));
393 		if (!ret)
394 			break;
395 	}
396 
397 	if (ret) {
398 		ret = -1;
399 		goto done;
400 	}
401 
402 	s = buf;
403 
404 	p = strchr(buf, ':');
405 	if (p && *(p+1) == ' ' && *(p+2))
406 		s = p + 2;
407 	p = strchr(s, '\n');
408 	if (p)
409 		*p = '\0';
410 
411 	/* squash extra space characters (branding string) */
412 	p = s;
413 	while (*p) {
414 		if (isspace(*p)) {
415 			char *r = p + 1;
416 			char *q = r;
417 			*p = ' ';
418 			while (*q && isspace(*q))
419 				q++;
420 			if (q != (p+1))
421 				while ((*r++ = *q++));
422 		}
423 		p++;
424 	}
425 	ret = do_write_string(ff, s);
426 done:
427 	free(buf);
428 	fclose(file);
429 	return ret;
430 }
431 
432 static int write_cpudesc(struct feat_fd *ff,
433 		       struct perf_evlist *evlist __maybe_unused)
434 {
435 	const char *cpuinfo_procs[] = CPUINFO_PROC;
436 	unsigned int i;
437 
438 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
439 		int ret;
440 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
441 		if (ret >= 0)
442 			return ret;
443 	}
444 	return -1;
445 }
446 
447 
448 static int write_nrcpus(struct feat_fd *ff,
449 			struct perf_evlist *evlist __maybe_unused)
450 {
451 	long nr;
452 	u32 nrc, nra;
453 	int ret;
454 
455 	nrc = cpu__max_present_cpu();
456 
457 	nr = sysconf(_SC_NPROCESSORS_ONLN);
458 	if (nr < 0)
459 		return -1;
460 
461 	nra = (u32)(nr & UINT_MAX);
462 
463 	ret = do_write(ff, &nrc, sizeof(nrc));
464 	if (ret < 0)
465 		return ret;
466 
467 	return do_write(ff, &nra, sizeof(nra));
468 }
469 
470 static int write_event_desc(struct feat_fd *ff,
471 			    struct perf_evlist *evlist)
472 {
473 	struct perf_evsel *evsel;
474 	u32 nre, nri, sz;
475 	int ret;
476 
477 	nre = evlist->nr_entries;
478 
479 	/*
480 	 * write number of events
481 	 */
482 	ret = do_write(ff, &nre, sizeof(nre));
483 	if (ret < 0)
484 		return ret;
485 
486 	/*
487 	 * size of perf_event_attr struct
488 	 */
489 	sz = (u32)sizeof(evsel->attr);
490 	ret = do_write(ff, &sz, sizeof(sz));
491 	if (ret < 0)
492 		return ret;
493 
494 	evlist__for_each_entry(evlist, evsel) {
495 		ret = do_write(ff, &evsel->attr, sz);
496 		if (ret < 0)
497 			return ret;
498 		/*
499 		 * write number of unique id per event
500 		 * there is one id per instance of an event
501 		 *
502 		 * copy into an nri to be independent of the
503 		 * type of ids,
504 		 */
505 		nri = evsel->ids;
506 		ret = do_write(ff, &nri, sizeof(nri));
507 		if (ret < 0)
508 			return ret;
509 
510 		/*
511 		 * write event string as passed on cmdline
512 		 */
513 		ret = do_write_string(ff, perf_evsel__name(evsel));
514 		if (ret < 0)
515 			return ret;
516 		/*
517 		 * write unique ids for this event
518 		 */
519 		ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
520 		if (ret < 0)
521 			return ret;
522 	}
523 	return 0;
524 }
525 
526 static int write_cmdline(struct feat_fd *ff,
527 			 struct perf_evlist *evlist __maybe_unused)
528 {
529 	char buf[MAXPATHLEN];
530 	u32 n;
531 	int i, ret;
532 
533 	/* actual path to perf binary */
534 	ret = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
535 	if (ret <= 0)
536 		return -1;
537 
538 	/* readlink() does not add null termination */
539 	buf[ret] = '\0';
540 
541 	/* account for binary path */
542 	n = perf_env.nr_cmdline + 1;
543 
544 	ret = do_write(ff, &n, sizeof(n));
545 	if (ret < 0)
546 		return ret;
547 
548 	ret = do_write_string(ff, buf);
549 	if (ret < 0)
550 		return ret;
551 
552 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
553 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
554 		if (ret < 0)
555 			return ret;
556 	}
557 	return 0;
558 }
559 
560 #define CORE_SIB_FMT \
561 	"/sys/devices/system/cpu/cpu%d/topology/core_siblings_list"
562 #define THRD_SIB_FMT \
563 	"/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list"
564 
565 struct cpu_topo {
566 	u32 cpu_nr;
567 	u32 core_sib;
568 	u32 thread_sib;
569 	char **core_siblings;
570 	char **thread_siblings;
571 };
572 
573 static int build_cpu_topo(struct cpu_topo *tp, int cpu)
574 {
575 	FILE *fp;
576 	char filename[MAXPATHLEN];
577 	char *buf = NULL, *p;
578 	size_t len = 0;
579 	ssize_t sret;
580 	u32 i = 0;
581 	int ret = -1;
582 
583 	sprintf(filename, CORE_SIB_FMT, cpu);
584 	fp = fopen(filename, "r");
585 	if (!fp)
586 		goto try_threads;
587 
588 	sret = getline(&buf, &len, fp);
589 	fclose(fp);
590 	if (sret <= 0)
591 		goto try_threads;
592 
593 	p = strchr(buf, '\n');
594 	if (p)
595 		*p = '\0';
596 
597 	for (i = 0; i < tp->core_sib; i++) {
598 		if (!strcmp(buf, tp->core_siblings[i]))
599 			break;
600 	}
601 	if (i == tp->core_sib) {
602 		tp->core_siblings[i] = buf;
603 		tp->core_sib++;
604 		buf = NULL;
605 		len = 0;
606 	}
607 	ret = 0;
608 
609 try_threads:
610 	sprintf(filename, THRD_SIB_FMT, cpu);
611 	fp = fopen(filename, "r");
612 	if (!fp)
613 		goto done;
614 
615 	if (getline(&buf, &len, fp) <= 0)
616 		goto done;
617 
618 	p = strchr(buf, '\n');
619 	if (p)
620 		*p = '\0';
621 
622 	for (i = 0; i < tp->thread_sib; i++) {
623 		if (!strcmp(buf, tp->thread_siblings[i]))
624 			break;
625 	}
626 	if (i == tp->thread_sib) {
627 		tp->thread_siblings[i] = buf;
628 		tp->thread_sib++;
629 		buf = NULL;
630 	}
631 	ret = 0;
632 done:
633 	if(fp)
634 		fclose(fp);
635 	free(buf);
636 	return ret;
637 }
638 
639 static void free_cpu_topo(struct cpu_topo *tp)
640 {
641 	u32 i;
642 
643 	if (!tp)
644 		return;
645 
646 	for (i = 0 ; i < tp->core_sib; i++)
647 		zfree(&tp->core_siblings[i]);
648 
649 	for (i = 0 ; i < tp->thread_sib; i++)
650 		zfree(&tp->thread_siblings[i]);
651 
652 	free(tp);
653 }
654 
655 static struct cpu_topo *build_cpu_topology(void)
656 {
657 	struct cpu_topo *tp = NULL;
658 	void *addr;
659 	u32 nr, i;
660 	size_t sz;
661 	long ncpus;
662 	int ret = -1;
663 	struct cpu_map *map;
664 
665 	ncpus = cpu__max_present_cpu();
666 
667 	/* build online CPU map */
668 	map = cpu_map__new(NULL);
669 	if (map == NULL) {
670 		pr_debug("failed to get system cpumap\n");
671 		return NULL;
672 	}
673 
674 	nr = (u32)(ncpus & UINT_MAX);
675 
676 	sz = nr * sizeof(char *);
677 	addr = calloc(1, sizeof(*tp) + 2 * sz);
678 	if (!addr)
679 		goto out_free;
680 
681 	tp = addr;
682 	tp->cpu_nr = nr;
683 	addr += sizeof(*tp);
684 	tp->core_siblings = addr;
685 	addr += sz;
686 	tp->thread_siblings = addr;
687 
688 	for (i = 0; i < nr; i++) {
689 		if (!cpu_map__has(map, i))
690 			continue;
691 
692 		ret = build_cpu_topo(tp, i);
693 		if (ret < 0)
694 			break;
695 	}
696 
697 out_free:
698 	cpu_map__put(map);
699 	if (ret) {
700 		free_cpu_topo(tp);
701 		tp = NULL;
702 	}
703 	return tp;
704 }
705 
706 static int write_cpu_topology(struct feat_fd *ff,
707 			      struct perf_evlist *evlist __maybe_unused)
708 {
709 	struct cpu_topo *tp;
710 	u32 i;
711 	int ret, j;
712 
713 	tp = build_cpu_topology();
714 	if (!tp)
715 		return -1;
716 
717 	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
718 	if (ret < 0)
719 		goto done;
720 
721 	for (i = 0; i < tp->core_sib; i++) {
722 		ret = do_write_string(ff, tp->core_siblings[i]);
723 		if (ret < 0)
724 			goto done;
725 	}
726 	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
727 	if (ret < 0)
728 		goto done;
729 
730 	for (i = 0; i < tp->thread_sib; i++) {
731 		ret = do_write_string(ff, tp->thread_siblings[i]);
732 		if (ret < 0)
733 			break;
734 	}
735 
736 	ret = perf_env__read_cpu_topology_map(&perf_env);
737 	if (ret < 0)
738 		goto done;
739 
740 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
741 		ret = do_write(ff, &perf_env.cpu[j].core_id,
742 			       sizeof(perf_env.cpu[j].core_id));
743 		if (ret < 0)
744 			return ret;
745 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
746 			       sizeof(perf_env.cpu[j].socket_id));
747 		if (ret < 0)
748 			return ret;
749 	}
750 done:
751 	free_cpu_topo(tp);
752 	return ret;
753 }
754 
755 
756 
757 static int write_total_mem(struct feat_fd *ff,
758 			   struct perf_evlist *evlist __maybe_unused)
759 {
760 	char *buf = NULL;
761 	FILE *fp;
762 	size_t len = 0;
763 	int ret = -1, n;
764 	uint64_t mem;
765 
766 	fp = fopen("/proc/meminfo", "r");
767 	if (!fp)
768 		return -1;
769 
770 	while (getline(&buf, &len, fp) > 0) {
771 		ret = strncmp(buf, "MemTotal:", 9);
772 		if (!ret)
773 			break;
774 	}
775 	if (!ret) {
776 		n = sscanf(buf, "%*s %"PRIu64, &mem);
777 		if (n == 1)
778 			ret = do_write(ff, &mem, sizeof(mem));
779 	} else
780 		ret = -1;
781 	free(buf);
782 	fclose(fp);
783 	return ret;
784 }
785 
786 static int write_topo_node(struct feat_fd *ff, int node)
787 {
788 	char str[MAXPATHLEN];
789 	char field[32];
790 	char *buf = NULL, *p;
791 	size_t len = 0;
792 	FILE *fp;
793 	u64 mem_total, mem_free, mem;
794 	int ret = -1;
795 
796 	sprintf(str, "/sys/devices/system/node/node%d/meminfo", node);
797 	fp = fopen(str, "r");
798 	if (!fp)
799 		return -1;
800 
801 	while (getline(&buf, &len, fp) > 0) {
802 		/* skip over invalid lines */
803 		if (!strchr(buf, ':'))
804 			continue;
805 		if (sscanf(buf, "%*s %*d %31s %"PRIu64, field, &mem) != 2)
806 			goto done;
807 		if (!strcmp(field, "MemTotal:"))
808 			mem_total = mem;
809 		if (!strcmp(field, "MemFree:"))
810 			mem_free = mem;
811 	}
812 
813 	fclose(fp);
814 	fp = NULL;
815 
816 	ret = do_write(ff, &mem_total, sizeof(u64));
817 	if (ret)
818 		goto done;
819 
820 	ret = do_write(ff, &mem_free, sizeof(u64));
821 	if (ret)
822 		goto done;
823 
824 	ret = -1;
825 	sprintf(str, "/sys/devices/system/node/node%d/cpulist", node);
826 
827 	fp = fopen(str, "r");
828 	if (!fp)
829 		goto done;
830 
831 	if (getline(&buf, &len, fp) <= 0)
832 		goto done;
833 
834 	p = strchr(buf, '\n');
835 	if (p)
836 		*p = '\0';
837 
838 	ret = do_write_string(ff, buf);
839 done:
840 	free(buf);
841 	if (fp)
842 		fclose(fp);
843 	return ret;
844 }
845 
846 static int write_numa_topology(struct feat_fd *ff,
847 			       struct perf_evlist *evlist __maybe_unused)
848 {
849 	char *buf = NULL;
850 	size_t len = 0;
851 	FILE *fp;
852 	struct cpu_map *node_map = NULL;
853 	char *c;
854 	u32 nr, i, j;
855 	int ret = -1;
856 
857 	fp = fopen("/sys/devices/system/node/online", "r");
858 	if (!fp)
859 		return -1;
860 
861 	if (getline(&buf, &len, fp) <= 0)
862 		goto done;
863 
864 	c = strchr(buf, '\n');
865 	if (c)
866 		*c = '\0';
867 
868 	node_map = cpu_map__new(buf);
869 	if (!node_map)
870 		goto done;
871 
872 	nr = (u32)node_map->nr;
873 
874 	ret = do_write(ff, &nr, sizeof(nr));
875 	if (ret < 0)
876 		goto done;
877 
878 	for (i = 0; i < nr; i++) {
879 		j = (u32)node_map->map[i];
880 		ret = do_write(ff, &j, sizeof(j));
881 		if (ret < 0)
882 			break;
883 
884 		ret = write_topo_node(ff, i);
885 		if (ret < 0)
886 			break;
887 	}
888 done:
889 	free(buf);
890 	fclose(fp);
891 	cpu_map__put(node_map);
892 	return ret;
893 }
894 
895 /*
896  * File format:
897  *
898  * struct pmu_mappings {
899  *	u32	pmu_num;
900  *	struct pmu_map {
901  *		u32	type;
902  *		char	name[];
903  *	}[pmu_num];
904  * };
905  */
906 
907 static int write_pmu_mappings(struct feat_fd *ff,
908 			      struct perf_evlist *evlist __maybe_unused)
909 {
910 	struct perf_pmu *pmu = NULL;
911 	u32 pmu_num = 0;
912 	int ret;
913 
914 	/*
915 	 * Do a first pass to count number of pmu to avoid lseek so this
916 	 * works in pipe mode as well.
917 	 */
918 	while ((pmu = perf_pmu__scan(pmu))) {
919 		if (!pmu->name)
920 			continue;
921 		pmu_num++;
922 	}
923 
924 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
925 	if (ret < 0)
926 		return ret;
927 
928 	while ((pmu = perf_pmu__scan(pmu))) {
929 		if (!pmu->name)
930 			continue;
931 
932 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
933 		if (ret < 0)
934 			return ret;
935 
936 		ret = do_write_string(ff, pmu->name);
937 		if (ret < 0)
938 			return ret;
939 	}
940 
941 	return 0;
942 }
943 
944 /*
945  * File format:
946  *
947  * struct group_descs {
948  *	u32	nr_groups;
949  *	struct group_desc {
950  *		char	name[];
951  *		u32	leader_idx;
952  *		u32	nr_members;
953  *	}[nr_groups];
954  * };
955  */
956 static int write_group_desc(struct feat_fd *ff,
957 			    struct perf_evlist *evlist)
958 {
959 	u32 nr_groups = evlist->nr_groups;
960 	struct perf_evsel *evsel;
961 	int ret;
962 
963 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
964 	if (ret < 0)
965 		return ret;
966 
967 	evlist__for_each_entry(evlist, evsel) {
968 		if (perf_evsel__is_group_leader(evsel) &&
969 		    evsel->nr_members > 1) {
970 			const char *name = evsel->group_name ?: "{anon_group}";
971 			u32 leader_idx = evsel->idx;
972 			u32 nr_members = evsel->nr_members;
973 
974 			ret = do_write_string(ff, name);
975 			if (ret < 0)
976 				return ret;
977 
978 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
979 			if (ret < 0)
980 				return ret;
981 
982 			ret = do_write(ff, &nr_members, sizeof(nr_members));
983 			if (ret < 0)
984 				return ret;
985 		}
986 	}
987 	return 0;
988 }
989 
990 /*
991  * default get_cpuid(): nothing gets recorded
992  * actual implementation must be in arch/$(SRCARCH)/util/header.c
993  */
994 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
995 {
996 	return -1;
997 }
998 
999 static int write_cpuid(struct feat_fd *ff,
1000 		       struct perf_evlist *evlist __maybe_unused)
1001 {
1002 	char buffer[64];
1003 	int ret;
1004 
1005 	ret = get_cpuid(buffer, sizeof(buffer));
1006 	if (!ret)
1007 		goto write_it;
1008 
1009 	return -1;
1010 write_it:
1011 	return do_write_string(ff, buffer);
1012 }
1013 
1014 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
1015 			      struct perf_evlist *evlist __maybe_unused)
1016 {
1017 	return 0;
1018 }
1019 
1020 static int write_auxtrace(struct feat_fd *ff,
1021 			  struct perf_evlist *evlist __maybe_unused)
1022 {
1023 	struct perf_session *session;
1024 	int err;
1025 
1026 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
1027 		return -1;
1028 
1029 	session = container_of(ff->ph, struct perf_session, header);
1030 
1031 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
1032 	if (err < 0)
1033 		pr_err("Failed to write auxtrace index\n");
1034 	return err;
1035 }
1036 
1037 static int write_clockid(struct feat_fd *ff,
1038 			 struct perf_evlist *evlist __maybe_unused)
1039 {
1040 	return do_write(ff, &ff->ph->env.clockid_res_ns,
1041 			sizeof(ff->ph->env.clockid_res_ns));
1042 }
1043 
1044 static int cpu_cache_level__sort(const void *a, const void *b)
1045 {
1046 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1047 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1048 
1049 	return cache_a->level - cache_b->level;
1050 }
1051 
1052 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1053 {
1054 	if (a->level != b->level)
1055 		return false;
1056 
1057 	if (a->line_size != b->line_size)
1058 		return false;
1059 
1060 	if (a->sets != b->sets)
1061 		return false;
1062 
1063 	if (a->ways != b->ways)
1064 		return false;
1065 
1066 	if (strcmp(a->type, b->type))
1067 		return false;
1068 
1069 	if (strcmp(a->size, b->size))
1070 		return false;
1071 
1072 	if (strcmp(a->map, b->map))
1073 		return false;
1074 
1075 	return true;
1076 }
1077 
1078 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1079 {
1080 	char path[PATH_MAX], file[PATH_MAX];
1081 	struct stat st;
1082 	size_t len;
1083 
1084 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1085 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1086 
1087 	if (stat(file, &st))
1088 		return 1;
1089 
1090 	scnprintf(file, PATH_MAX, "%s/level", path);
1091 	if (sysfs__read_int(file, (int *) &cache->level))
1092 		return -1;
1093 
1094 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1095 	if (sysfs__read_int(file, (int *) &cache->line_size))
1096 		return -1;
1097 
1098 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1099 	if (sysfs__read_int(file, (int *) &cache->sets))
1100 		return -1;
1101 
1102 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1103 	if (sysfs__read_int(file, (int *) &cache->ways))
1104 		return -1;
1105 
1106 	scnprintf(file, PATH_MAX, "%s/type", path);
1107 	if (sysfs__read_str(file, &cache->type, &len))
1108 		return -1;
1109 
1110 	cache->type[len] = 0;
1111 	cache->type = rtrim(cache->type);
1112 
1113 	scnprintf(file, PATH_MAX, "%s/size", path);
1114 	if (sysfs__read_str(file, &cache->size, &len)) {
1115 		free(cache->type);
1116 		return -1;
1117 	}
1118 
1119 	cache->size[len] = 0;
1120 	cache->size = rtrim(cache->size);
1121 
1122 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1123 	if (sysfs__read_str(file, &cache->map, &len)) {
1124 		free(cache->map);
1125 		free(cache->type);
1126 		return -1;
1127 	}
1128 
1129 	cache->map[len] = 0;
1130 	cache->map = rtrim(cache->map);
1131 	return 0;
1132 }
1133 
1134 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1135 {
1136 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1137 }
1138 
1139 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1140 {
1141 	u32 i, cnt = 0;
1142 	long ncpus;
1143 	u32 nr, cpu;
1144 	u16 level;
1145 
1146 	ncpus = sysconf(_SC_NPROCESSORS_CONF);
1147 	if (ncpus < 0)
1148 		return -1;
1149 
1150 	nr = (u32)(ncpus & UINT_MAX);
1151 
1152 	for (cpu = 0; cpu < nr; cpu++) {
1153 		for (level = 0; level < 10; level++) {
1154 			struct cpu_cache_level c;
1155 			int err;
1156 
1157 			err = cpu_cache_level__read(&c, cpu, level);
1158 			if (err < 0)
1159 				return err;
1160 
1161 			if (err == 1)
1162 				break;
1163 
1164 			for (i = 0; i < cnt; i++) {
1165 				if (cpu_cache_level__cmp(&c, &caches[i]))
1166 					break;
1167 			}
1168 
1169 			if (i == cnt)
1170 				caches[cnt++] = c;
1171 			else
1172 				cpu_cache_level__free(&c);
1173 
1174 			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1175 				goto out;
1176 		}
1177 	}
1178  out:
1179 	*cntp = cnt;
1180 	return 0;
1181 }
1182 
1183 #define MAX_CACHES 2000
1184 
1185 static int write_cache(struct feat_fd *ff,
1186 		       struct perf_evlist *evlist __maybe_unused)
1187 {
1188 	struct cpu_cache_level caches[MAX_CACHES];
1189 	u32 cnt = 0, i, version = 1;
1190 	int ret;
1191 
1192 	ret = build_caches(caches, MAX_CACHES, &cnt);
1193 	if (ret)
1194 		goto out;
1195 
1196 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1197 
1198 	ret = do_write(ff, &version, sizeof(u32));
1199 	if (ret < 0)
1200 		goto out;
1201 
1202 	ret = do_write(ff, &cnt, sizeof(u32));
1203 	if (ret < 0)
1204 		goto out;
1205 
1206 	for (i = 0; i < cnt; i++) {
1207 		struct cpu_cache_level *c = &caches[i];
1208 
1209 		#define _W(v)					\
1210 			ret = do_write(ff, &c->v, sizeof(u32));	\
1211 			if (ret < 0)				\
1212 				goto out;
1213 
1214 		_W(level)
1215 		_W(line_size)
1216 		_W(sets)
1217 		_W(ways)
1218 		#undef _W
1219 
1220 		#define _W(v)						\
1221 			ret = do_write_string(ff, (const char *) c->v);	\
1222 			if (ret < 0)					\
1223 				goto out;
1224 
1225 		_W(type)
1226 		_W(size)
1227 		_W(map)
1228 		#undef _W
1229 	}
1230 
1231 out:
1232 	for (i = 0; i < cnt; i++)
1233 		cpu_cache_level__free(&caches[i]);
1234 	return ret;
1235 }
1236 
1237 static int write_stat(struct feat_fd *ff __maybe_unused,
1238 		      struct perf_evlist *evlist __maybe_unused)
1239 {
1240 	return 0;
1241 }
1242 
1243 static int write_sample_time(struct feat_fd *ff,
1244 			     struct perf_evlist *evlist)
1245 {
1246 	int ret;
1247 
1248 	ret = do_write(ff, &evlist->first_sample_time,
1249 		       sizeof(evlist->first_sample_time));
1250 	if (ret < 0)
1251 		return ret;
1252 
1253 	return do_write(ff, &evlist->last_sample_time,
1254 			sizeof(evlist->last_sample_time));
1255 }
1256 
1257 
1258 static int memory_node__read(struct memory_node *n, unsigned long idx)
1259 {
1260 	unsigned int phys, size = 0;
1261 	char path[PATH_MAX];
1262 	struct dirent *ent;
1263 	DIR *dir;
1264 
1265 #define for_each_memory(mem, dir)					\
1266 	while ((ent = readdir(dir)))					\
1267 		if (strcmp(ent->d_name, ".") &&				\
1268 		    strcmp(ent->d_name, "..") &&			\
1269 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1270 
1271 	scnprintf(path, PATH_MAX,
1272 		  "%s/devices/system/node/node%lu",
1273 		  sysfs__mountpoint(), idx);
1274 
1275 	dir = opendir(path);
1276 	if (!dir) {
1277 		pr_warning("failed: cant' open memory sysfs data\n");
1278 		return -1;
1279 	}
1280 
1281 	for_each_memory(phys, dir) {
1282 		size = max(phys, size);
1283 	}
1284 
1285 	size++;
1286 
1287 	n->set = bitmap_alloc(size);
1288 	if (!n->set) {
1289 		closedir(dir);
1290 		return -ENOMEM;
1291 	}
1292 
1293 	n->node = idx;
1294 	n->size = size;
1295 
1296 	rewinddir(dir);
1297 
1298 	for_each_memory(phys, dir) {
1299 		set_bit(phys, n->set);
1300 	}
1301 
1302 	closedir(dir);
1303 	return 0;
1304 }
1305 
1306 static int memory_node__sort(const void *a, const void *b)
1307 {
1308 	const struct memory_node *na = a;
1309 	const struct memory_node *nb = b;
1310 
1311 	return na->node - nb->node;
1312 }
1313 
1314 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1315 {
1316 	char path[PATH_MAX];
1317 	struct dirent *ent;
1318 	DIR *dir;
1319 	u64 cnt = 0;
1320 	int ret = 0;
1321 
1322 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1323 		  sysfs__mountpoint());
1324 
1325 	dir = opendir(path);
1326 	if (!dir) {
1327 		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1328 			  __func__, path);
1329 		return -1;
1330 	}
1331 
1332 	while (!ret && (ent = readdir(dir))) {
1333 		unsigned int idx;
1334 		int r;
1335 
1336 		if (!strcmp(ent->d_name, ".") ||
1337 		    !strcmp(ent->d_name, ".."))
1338 			continue;
1339 
1340 		r = sscanf(ent->d_name, "node%u", &idx);
1341 		if (r != 1)
1342 			continue;
1343 
1344 		if (WARN_ONCE(cnt >= size,
1345 			      "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1346 			return -1;
1347 
1348 		ret = memory_node__read(&nodes[cnt++], idx);
1349 	}
1350 
1351 	*cntp = cnt;
1352 	closedir(dir);
1353 
1354 	if (!ret)
1355 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1356 
1357 	return ret;
1358 }
1359 
1360 #define MAX_MEMORY_NODES 2000
1361 
1362 /*
1363  * The MEM_TOPOLOGY holds physical memory map for every
1364  * node in system. The format of data is as follows:
1365  *
1366  *  0 - version          | for future changes
1367  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1368  * 16 - count            | number of nodes
1369  *
1370  * For each node we store map of physical indexes for
1371  * each node:
1372  *
1373  * 32 - node id          | node index
1374  * 40 - size             | size of bitmap
1375  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1376  */
1377 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1378 			      struct perf_evlist *evlist __maybe_unused)
1379 {
1380 	static struct memory_node nodes[MAX_MEMORY_NODES];
1381 	u64 bsize, version = 1, i, nr;
1382 	int ret;
1383 
1384 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1385 			      (unsigned long long *) &bsize);
1386 	if (ret)
1387 		return ret;
1388 
1389 	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1390 	if (ret)
1391 		return ret;
1392 
1393 	ret = do_write(ff, &version, sizeof(version));
1394 	if (ret < 0)
1395 		goto out;
1396 
1397 	ret = do_write(ff, &bsize, sizeof(bsize));
1398 	if (ret < 0)
1399 		goto out;
1400 
1401 	ret = do_write(ff, &nr, sizeof(nr));
1402 	if (ret < 0)
1403 		goto out;
1404 
1405 	for (i = 0; i < nr; i++) {
1406 		struct memory_node *n = &nodes[i];
1407 
1408 		#define _W(v)						\
1409 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1410 			if (ret < 0)					\
1411 				goto out;
1412 
1413 		_W(node)
1414 		_W(size)
1415 
1416 		#undef _W
1417 
1418 		ret = do_write_bitmap(ff, n->set, n->size);
1419 		if (ret < 0)
1420 			goto out;
1421 	}
1422 
1423 out:
1424 	return ret;
1425 }
1426 
1427 static void print_hostname(struct feat_fd *ff, FILE *fp)
1428 {
1429 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1430 }
1431 
1432 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1433 {
1434 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1435 }
1436 
1437 static void print_arch(struct feat_fd *ff, FILE *fp)
1438 {
1439 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1440 }
1441 
1442 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1443 {
1444 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1445 }
1446 
1447 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1448 {
1449 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1450 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1451 }
1452 
1453 static void print_version(struct feat_fd *ff, FILE *fp)
1454 {
1455 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1456 }
1457 
1458 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1459 {
1460 	int nr, i;
1461 
1462 	nr = ff->ph->env.nr_cmdline;
1463 
1464 	fprintf(fp, "# cmdline : ");
1465 
1466 	for (i = 0; i < nr; i++) {
1467 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1468 		if (!argv_i) {
1469 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1470 		} else {
1471 			char *mem = argv_i;
1472 			do {
1473 				char *quote = strchr(argv_i, '\'');
1474 				if (!quote)
1475 					break;
1476 				*quote++ = '\0';
1477 				fprintf(fp, "%s\\\'", argv_i);
1478 				argv_i = quote;
1479 			} while (1);
1480 			fprintf(fp, "%s ", argv_i);
1481 			free(mem);
1482 		}
1483 	}
1484 	fputc('\n', fp);
1485 }
1486 
1487 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1488 {
1489 	struct perf_header *ph = ff->ph;
1490 	int cpu_nr = ph->env.nr_cpus_avail;
1491 	int nr, i;
1492 	char *str;
1493 
1494 	nr = ph->env.nr_sibling_cores;
1495 	str = ph->env.sibling_cores;
1496 
1497 	for (i = 0; i < nr; i++) {
1498 		fprintf(fp, "# sibling cores   : %s\n", str);
1499 		str += strlen(str) + 1;
1500 	}
1501 
1502 	nr = ph->env.nr_sibling_threads;
1503 	str = ph->env.sibling_threads;
1504 
1505 	for (i = 0; i < nr; i++) {
1506 		fprintf(fp, "# sibling threads : %s\n", str);
1507 		str += strlen(str) + 1;
1508 	}
1509 
1510 	if (ph->env.cpu != NULL) {
1511 		for (i = 0; i < cpu_nr; i++)
1512 			fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i,
1513 				ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id);
1514 	} else
1515 		fprintf(fp, "# Core ID and Socket ID information is not available\n");
1516 }
1517 
1518 static void print_clockid(struct feat_fd *ff, FILE *fp)
1519 {
1520 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1521 		ff->ph->env.clockid_res_ns * 1000);
1522 }
1523 
1524 static void free_event_desc(struct perf_evsel *events)
1525 {
1526 	struct perf_evsel *evsel;
1527 
1528 	if (!events)
1529 		return;
1530 
1531 	for (evsel = events; evsel->attr.size; evsel++) {
1532 		zfree(&evsel->name);
1533 		zfree(&evsel->id);
1534 	}
1535 
1536 	free(events);
1537 }
1538 
1539 static struct perf_evsel *read_event_desc(struct feat_fd *ff)
1540 {
1541 	struct perf_evsel *evsel, *events = NULL;
1542 	u64 *id;
1543 	void *buf = NULL;
1544 	u32 nre, sz, nr, i, j;
1545 	size_t msz;
1546 
1547 	/* number of events */
1548 	if (do_read_u32(ff, &nre))
1549 		goto error;
1550 
1551 	if (do_read_u32(ff, &sz))
1552 		goto error;
1553 
1554 	/* buffer to hold on file attr struct */
1555 	buf = malloc(sz);
1556 	if (!buf)
1557 		goto error;
1558 
1559 	/* the last event terminates with evsel->attr.size == 0: */
1560 	events = calloc(nre + 1, sizeof(*events));
1561 	if (!events)
1562 		goto error;
1563 
1564 	msz = sizeof(evsel->attr);
1565 	if (sz < msz)
1566 		msz = sz;
1567 
1568 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1569 		evsel->idx = i;
1570 
1571 		/*
1572 		 * must read entire on-file attr struct to
1573 		 * sync up with layout.
1574 		 */
1575 		if (__do_read(ff, buf, sz))
1576 			goto error;
1577 
1578 		if (ff->ph->needs_swap)
1579 			perf_event__attr_swap(buf);
1580 
1581 		memcpy(&evsel->attr, buf, msz);
1582 
1583 		if (do_read_u32(ff, &nr))
1584 			goto error;
1585 
1586 		if (ff->ph->needs_swap)
1587 			evsel->needs_swap = true;
1588 
1589 		evsel->name = do_read_string(ff);
1590 		if (!evsel->name)
1591 			goto error;
1592 
1593 		if (!nr)
1594 			continue;
1595 
1596 		id = calloc(nr, sizeof(*id));
1597 		if (!id)
1598 			goto error;
1599 		evsel->ids = nr;
1600 		evsel->id = id;
1601 
1602 		for (j = 0 ; j < nr; j++) {
1603 			if (do_read_u64(ff, id))
1604 				goto error;
1605 			id++;
1606 		}
1607 	}
1608 out:
1609 	free(buf);
1610 	return events;
1611 error:
1612 	free_event_desc(events);
1613 	events = NULL;
1614 	goto out;
1615 }
1616 
1617 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1618 				void *priv __maybe_unused)
1619 {
1620 	return fprintf(fp, ", %s = %s", name, val);
1621 }
1622 
1623 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1624 {
1625 	struct perf_evsel *evsel, *events;
1626 	u32 j;
1627 	u64 *id;
1628 
1629 	if (ff->events)
1630 		events = ff->events;
1631 	else
1632 		events = read_event_desc(ff);
1633 
1634 	if (!events) {
1635 		fprintf(fp, "# event desc: not available or unable to read\n");
1636 		return;
1637 	}
1638 
1639 	for (evsel = events; evsel->attr.size; evsel++) {
1640 		fprintf(fp, "# event : name = %s, ", evsel->name);
1641 
1642 		if (evsel->ids) {
1643 			fprintf(fp, ", id = {");
1644 			for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1645 				if (j)
1646 					fputc(',', fp);
1647 				fprintf(fp, " %"PRIu64, *id);
1648 			}
1649 			fprintf(fp, " }");
1650 		}
1651 
1652 		perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1653 
1654 		fputc('\n', fp);
1655 	}
1656 
1657 	free_event_desc(events);
1658 	ff->events = NULL;
1659 }
1660 
1661 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1662 {
1663 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1664 }
1665 
1666 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1667 {
1668 	int i;
1669 	struct numa_node *n;
1670 
1671 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1672 		n = &ff->ph->env.numa_nodes[i];
1673 
1674 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1675 			    " free = %"PRIu64" kB\n",
1676 			n->node, n->mem_total, n->mem_free);
1677 
1678 		fprintf(fp, "# node%u cpu list : ", n->node);
1679 		cpu_map__fprintf(n->map, fp);
1680 	}
1681 }
1682 
1683 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1684 {
1685 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1686 }
1687 
1688 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1689 {
1690 	fprintf(fp, "# contains samples with branch stack\n");
1691 }
1692 
1693 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1694 {
1695 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1696 }
1697 
1698 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1699 {
1700 	fprintf(fp, "# contains stat data\n");
1701 }
1702 
1703 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1704 {
1705 	int i;
1706 
1707 	fprintf(fp, "# CPU cache info:\n");
1708 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1709 		fprintf(fp, "#  ");
1710 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1711 	}
1712 }
1713 
1714 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1715 {
1716 	const char *delimiter = "# pmu mappings: ";
1717 	char *str, *tmp;
1718 	u32 pmu_num;
1719 	u32 type;
1720 
1721 	pmu_num = ff->ph->env.nr_pmu_mappings;
1722 	if (!pmu_num) {
1723 		fprintf(fp, "# pmu mappings: not available\n");
1724 		return;
1725 	}
1726 
1727 	str = ff->ph->env.pmu_mappings;
1728 
1729 	while (pmu_num) {
1730 		type = strtoul(str, &tmp, 0);
1731 		if (*tmp != ':')
1732 			goto error;
1733 
1734 		str = tmp + 1;
1735 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1736 
1737 		delimiter = ", ";
1738 		str += strlen(str) + 1;
1739 		pmu_num--;
1740 	}
1741 
1742 	fprintf(fp, "\n");
1743 
1744 	if (!pmu_num)
1745 		return;
1746 error:
1747 	fprintf(fp, "# pmu mappings: unable to read\n");
1748 }
1749 
1750 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1751 {
1752 	struct perf_session *session;
1753 	struct perf_evsel *evsel;
1754 	u32 nr = 0;
1755 
1756 	session = container_of(ff->ph, struct perf_session, header);
1757 
1758 	evlist__for_each_entry(session->evlist, evsel) {
1759 		if (perf_evsel__is_group_leader(evsel) &&
1760 		    evsel->nr_members > 1) {
1761 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1762 				perf_evsel__name(evsel));
1763 
1764 			nr = evsel->nr_members - 1;
1765 		} else if (nr) {
1766 			fprintf(fp, ",%s", perf_evsel__name(evsel));
1767 
1768 			if (--nr == 0)
1769 				fprintf(fp, "}\n");
1770 		}
1771 	}
1772 }
1773 
1774 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1775 {
1776 	struct perf_session *session;
1777 	char time_buf[32];
1778 	double d;
1779 
1780 	session = container_of(ff->ph, struct perf_session, header);
1781 
1782 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
1783 				  time_buf, sizeof(time_buf));
1784 	fprintf(fp, "# time of first sample : %s\n", time_buf);
1785 
1786 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
1787 				  time_buf, sizeof(time_buf));
1788 	fprintf(fp, "# time of last sample : %s\n", time_buf);
1789 
1790 	d = (double)(session->evlist->last_sample_time -
1791 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
1792 
1793 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
1794 }
1795 
1796 static void memory_node__fprintf(struct memory_node *n,
1797 				 unsigned long long bsize, FILE *fp)
1798 {
1799 	char buf_map[100], buf_size[50];
1800 	unsigned long long size;
1801 
1802 	size = bsize * bitmap_weight(n->set, n->size);
1803 	unit_number__scnprintf(buf_size, 50, size);
1804 
1805 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
1806 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1807 }
1808 
1809 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1810 {
1811 	struct memory_node *nodes;
1812 	int i, nr;
1813 
1814 	nodes = ff->ph->env.memory_nodes;
1815 	nr    = ff->ph->env.nr_memory_nodes;
1816 
1817 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1818 		nr, ff->ph->env.memory_bsize);
1819 
1820 	for (i = 0; i < nr; i++) {
1821 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1822 	}
1823 }
1824 
1825 static int __event_process_build_id(struct build_id_event *bev,
1826 				    char *filename,
1827 				    struct perf_session *session)
1828 {
1829 	int err = -1;
1830 	struct machine *machine;
1831 	u16 cpumode;
1832 	struct dso *dso;
1833 	enum dso_kernel_type dso_type;
1834 
1835 	machine = perf_session__findnew_machine(session, bev->pid);
1836 	if (!machine)
1837 		goto out;
1838 
1839 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1840 
1841 	switch (cpumode) {
1842 	case PERF_RECORD_MISC_KERNEL:
1843 		dso_type = DSO_TYPE_KERNEL;
1844 		break;
1845 	case PERF_RECORD_MISC_GUEST_KERNEL:
1846 		dso_type = DSO_TYPE_GUEST_KERNEL;
1847 		break;
1848 	case PERF_RECORD_MISC_USER:
1849 	case PERF_RECORD_MISC_GUEST_USER:
1850 		dso_type = DSO_TYPE_USER;
1851 		break;
1852 	default:
1853 		goto out;
1854 	}
1855 
1856 	dso = machine__findnew_dso(machine, filename);
1857 	if (dso != NULL) {
1858 		char sbuild_id[SBUILD_ID_SIZE];
1859 
1860 		dso__set_build_id(dso, &bev->build_id);
1861 
1862 		if (dso_type != DSO_TYPE_USER) {
1863 			struct kmod_path m = { .name = NULL, };
1864 
1865 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1866 				dso__set_module_info(dso, &m, machine);
1867 			else
1868 				dso->kernel = dso_type;
1869 
1870 			free(m.name);
1871 		}
1872 
1873 		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1874 				  sbuild_id);
1875 		pr_debug("build id event received for %s: %s\n",
1876 			 dso->long_name, sbuild_id);
1877 		dso__put(dso);
1878 	}
1879 
1880 	err = 0;
1881 out:
1882 	return err;
1883 }
1884 
1885 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1886 						 int input, u64 offset, u64 size)
1887 {
1888 	struct perf_session *session = container_of(header, struct perf_session, header);
1889 	struct {
1890 		struct perf_event_header   header;
1891 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1892 		char			   filename[0];
1893 	} old_bev;
1894 	struct build_id_event bev;
1895 	char filename[PATH_MAX];
1896 	u64 limit = offset + size;
1897 
1898 	while (offset < limit) {
1899 		ssize_t len;
1900 
1901 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1902 			return -1;
1903 
1904 		if (header->needs_swap)
1905 			perf_event_header__bswap(&old_bev.header);
1906 
1907 		len = old_bev.header.size - sizeof(old_bev);
1908 		if (readn(input, filename, len) != len)
1909 			return -1;
1910 
1911 		bev.header = old_bev.header;
1912 
1913 		/*
1914 		 * As the pid is the missing value, we need to fill
1915 		 * it properly. The header.misc value give us nice hint.
1916 		 */
1917 		bev.pid	= HOST_KERNEL_ID;
1918 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1919 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1920 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
1921 
1922 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1923 		__event_process_build_id(&bev, filename, session);
1924 
1925 		offset += bev.header.size;
1926 	}
1927 
1928 	return 0;
1929 }
1930 
1931 static int perf_header__read_build_ids(struct perf_header *header,
1932 				       int input, u64 offset, u64 size)
1933 {
1934 	struct perf_session *session = container_of(header, struct perf_session, header);
1935 	struct build_id_event bev;
1936 	char filename[PATH_MAX];
1937 	u64 limit = offset + size, orig_offset = offset;
1938 	int err = -1;
1939 
1940 	while (offset < limit) {
1941 		ssize_t len;
1942 
1943 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1944 			goto out;
1945 
1946 		if (header->needs_swap)
1947 			perf_event_header__bswap(&bev.header);
1948 
1949 		len = bev.header.size - sizeof(bev);
1950 		if (readn(input, filename, len) != len)
1951 			goto out;
1952 		/*
1953 		 * The a1645ce1 changeset:
1954 		 *
1955 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
1956 		 *
1957 		 * Added a field to struct build_id_event that broke the file
1958 		 * format.
1959 		 *
1960 		 * Since the kernel build-id is the first entry, process the
1961 		 * table using the old format if the well known
1962 		 * '[kernel.kallsyms]' string for the kernel build-id has the
1963 		 * first 4 characters chopped off (where the pid_t sits).
1964 		 */
1965 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
1966 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
1967 				return -1;
1968 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
1969 		}
1970 
1971 		__event_process_build_id(&bev, filename, session);
1972 
1973 		offset += bev.header.size;
1974 	}
1975 	err = 0;
1976 out:
1977 	return err;
1978 }
1979 
1980 /* Macro for features that simply need to read and store a string. */
1981 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
1982 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
1983 {\
1984 	ff->ph->env.__feat_env = do_read_string(ff); \
1985 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
1986 }
1987 
1988 FEAT_PROCESS_STR_FUN(hostname, hostname);
1989 FEAT_PROCESS_STR_FUN(osrelease, os_release);
1990 FEAT_PROCESS_STR_FUN(version, version);
1991 FEAT_PROCESS_STR_FUN(arch, arch);
1992 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
1993 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
1994 
1995 static int process_tracing_data(struct feat_fd *ff, void *data)
1996 {
1997 	ssize_t ret = trace_report(ff->fd, data, false);
1998 
1999 	return ret < 0 ? -1 : 0;
2000 }
2001 
2002 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2003 {
2004 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2005 		pr_debug("Failed to read buildids, continuing...\n");
2006 	return 0;
2007 }
2008 
2009 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2010 {
2011 	int ret;
2012 	u32 nr_cpus_avail, nr_cpus_online;
2013 
2014 	ret = do_read_u32(ff, &nr_cpus_avail);
2015 	if (ret)
2016 		return ret;
2017 
2018 	ret = do_read_u32(ff, &nr_cpus_online);
2019 	if (ret)
2020 		return ret;
2021 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2022 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2023 	return 0;
2024 }
2025 
2026 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2027 {
2028 	u64 total_mem;
2029 	int ret;
2030 
2031 	ret = do_read_u64(ff, &total_mem);
2032 	if (ret)
2033 		return -1;
2034 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2035 	return 0;
2036 }
2037 
2038 static struct perf_evsel *
2039 perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
2040 {
2041 	struct perf_evsel *evsel;
2042 
2043 	evlist__for_each_entry(evlist, evsel) {
2044 		if (evsel->idx == idx)
2045 			return evsel;
2046 	}
2047 
2048 	return NULL;
2049 }
2050 
2051 static void
2052 perf_evlist__set_event_name(struct perf_evlist *evlist,
2053 			    struct perf_evsel *event)
2054 {
2055 	struct perf_evsel *evsel;
2056 
2057 	if (!event->name)
2058 		return;
2059 
2060 	evsel = perf_evlist__find_by_index(evlist, event->idx);
2061 	if (!evsel)
2062 		return;
2063 
2064 	if (evsel->name)
2065 		return;
2066 
2067 	evsel->name = strdup(event->name);
2068 }
2069 
2070 static int
2071 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2072 {
2073 	struct perf_session *session;
2074 	struct perf_evsel *evsel, *events = read_event_desc(ff);
2075 
2076 	if (!events)
2077 		return 0;
2078 
2079 	session = container_of(ff->ph, struct perf_session, header);
2080 
2081 	if (session->data->is_pipe) {
2082 		/* Save events for reading later by print_event_desc,
2083 		 * since they can't be read again in pipe mode. */
2084 		ff->events = events;
2085 	}
2086 
2087 	for (evsel = events; evsel->attr.size; evsel++)
2088 		perf_evlist__set_event_name(session->evlist, evsel);
2089 
2090 	if (!session->data->is_pipe)
2091 		free_event_desc(events);
2092 
2093 	return 0;
2094 }
2095 
2096 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2097 {
2098 	char *str, *cmdline = NULL, **argv = NULL;
2099 	u32 nr, i, len = 0;
2100 
2101 	if (do_read_u32(ff, &nr))
2102 		return -1;
2103 
2104 	ff->ph->env.nr_cmdline = nr;
2105 
2106 	cmdline = zalloc(ff->size + nr + 1);
2107 	if (!cmdline)
2108 		return -1;
2109 
2110 	argv = zalloc(sizeof(char *) * (nr + 1));
2111 	if (!argv)
2112 		goto error;
2113 
2114 	for (i = 0; i < nr; i++) {
2115 		str = do_read_string(ff);
2116 		if (!str)
2117 			goto error;
2118 
2119 		argv[i] = cmdline + len;
2120 		memcpy(argv[i], str, strlen(str) + 1);
2121 		len += strlen(str) + 1;
2122 		free(str);
2123 	}
2124 	ff->ph->env.cmdline = cmdline;
2125 	ff->ph->env.cmdline_argv = (const char **) argv;
2126 	return 0;
2127 
2128 error:
2129 	free(argv);
2130 	free(cmdline);
2131 	return -1;
2132 }
2133 
2134 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2135 {
2136 	u32 nr, i;
2137 	char *str;
2138 	struct strbuf sb;
2139 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2140 	u64 size = 0;
2141 	struct perf_header *ph = ff->ph;
2142 	bool do_core_id_test = true;
2143 
2144 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2145 	if (!ph->env.cpu)
2146 		return -1;
2147 
2148 	if (do_read_u32(ff, &nr))
2149 		goto free_cpu;
2150 
2151 	ph->env.nr_sibling_cores = nr;
2152 	size += sizeof(u32);
2153 	if (strbuf_init(&sb, 128) < 0)
2154 		goto free_cpu;
2155 
2156 	for (i = 0; i < nr; i++) {
2157 		str = do_read_string(ff);
2158 		if (!str)
2159 			goto error;
2160 
2161 		/* include a NULL character at the end */
2162 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2163 			goto error;
2164 		size += string_size(str);
2165 		free(str);
2166 	}
2167 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2168 
2169 	if (do_read_u32(ff, &nr))
2170 		return -1;
2171 
2172 	ph->env.nr_sibling_threads = nr;
2173 	size += sizeof(u32);
2174 
2175 	for (i = 0; i < nr; i++) {
2176 		str = do_read_string(ff);
2177 		if (!str)
2178 			goto error;
2179 
2180 		/* include a NULL character at the end */
2181 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2182 			goto error;
2183 		size += string_size(str);
2184 		free(str);
2185 	}
2186 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2187 
2188 	/*
2189 	 * The header may be from old perf,
2190 	 * which doesn't include core id and socket id information.
2191 	 */
2192 	if (ff->size <= size) {
2193 		zfree(&ph->env.cpu);
2194 		return 0;
2195 	}
2196 
2197 	/* On s390 the socket_id number is not related to the numbers of cpus.
2198 	 * The socket_id number might be higher than the numbers of cpus.
2199 	 * This depends on the configuration.
2200 	 */
2201 	if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4))
2202 		do_core_id_test = false;
2203 
2204 	for (i = 0; i < (u32)cpu_nr; i++) {
2205 		if (do_read_u32(ff, &nr))
2206 			goto free_cpu;
2207 
2208 		ph->env.cpu[i].core_id = nr;
2209 
2210 		if (do_read_u32(ff, &nr))
2211 			goto free_cpu;
2212 
2213 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2214 			pr_debug("socket_id number is too big."
2215 				 "You may need to upgrade the perf tool.\n");
2216 			goto free_cpu;
2217 		}
2218 
2219 		ph->env.cpu[i].socket_id = nr;
2220 	}
2221 
2222 	return 0;
2223 
2224 error:
2225 	strbuf_release(&sb);
2226 free_cpu:
2227 	zfree(&ph->env.cpu);
2228 	return -1;
2229 }
2230 
2231 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2232 {
2233 	struct numa_node *nodes, *n;
2234 	u32 nr, i;
2235 	char *str;
2236 
2237 	/* nr nodes */
2238 	if (do_read_u32(ff, &nr))
2239 		return -1;
2240 
2241 	nodes = zalloc(sizeof(*nodes) * nr);
2242 	if (!nodes)
2243 		return -ENOMEM;
2244 
2245 	for (i = 0; i < nr; i++) {
2246 		n = &nodes[i];
2247 
2248 		/* node number */
2249 		if (do_read_u32(ff, &n->node))
2250 			goto error;
2251 
2252 		if (do_read_u64(ff, &n->mem_total))
2253 			goto error;
2254 
2255 		if (do_read_u64(ff, &n->mem_free))
2256 			goto error;
2257 
2258 		str = do_read_string(ff);
2259 		if (!str)
2260 			goto error;
2261 
2262 		n->map = cpu_map__new(str);
2263 		if (!n->map)
2264 			goto error;
2265 
2266 		free(str);
2267 	}
2268 	ff->ph->env.nr_numa_nodes = nr;
2269 	ff->ph->env.numa_nodes = nodes;
2270 	return 0;
2271 
2272 error:
2273 	free(nodes);
2274 	return -1;
2275 }
2276 
2277 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2278 {
2279 	char *name;
2280 	u32 pmu_num;
2281 	u32 type;
2282 	struct strbuf sb;
2283 
2284 	if (do_read_u32(ff, &pmu_num))
2285 		return -1;
2286 
2287 	if (!pmu_num) {
2288 		pr_debug("pmu mappings not available\n");
2289 		return 0;
2290 	}
2291 
2292 	ff->ph->env.nr_pmu_mappings = pmu_num;
2293 	if (strbuf_init(&sb, 128) < 0)
2294 		return -1;
2295 
2296 	while (pmu_num) {
2297 		if (do_read_u32(ff, &type))
2298 			goto error;
2299 
2300 		name = do_read_string(ff);
2301 		if (!name)
2302 			goto error;
2303 
2304 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2305 			goto error;
2306 		/* include a NULL character at the end */
2307 		if (strbuf_add(&sb, "", 1) < 0)
2308 			goto error;
2309 
2310 		if (!strcmp(name, "msr"))
2311 			ff->ph->env.msr_pmu_type = type;
2312 
2313 		free(name);
2314 		pmu_num--;
2315 	}
2316 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2317 	return 0;
2318 
2319 error:
2320 	strbuf_release(&sb);
2321 	return -1;
2322 }
2323 
2324 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2325 {
2326 	size_t ret = -1;
2327 	u32 i, nr, nr_groups;
2328 	struct perf_session *session;
2329 	struct perf_evsel *evsel, *leader = NULL;
2330 	struct group_desc {
2331 		char *name;
2332 		u32 leader_idx;
2333 		u32 nr_members;
2334 	} *desc;
2335 
2336 	if (do_read_u32(ff, &nr_groups))
2337 		return -1;
2338 
2339 	ff->ph->env.nr_groups = nr_groups;
2340 	if (!nr_groups) {
2341 		pr_debug("group desc not available\n");
2342 		return 0;
2343 	}
2344 
2345 	desc = calloc(nr_groups, sizeof(*desc));
2346 	if (!desc)
2347 		return -1;
2348 
2349 	for (i = 0; i < nr_groups; i++) {
2350 		desc[i].name = do_read_string(ff);
2351 		if (!desc[i].name)
2352 			goto out_free;
2353 
2354 		if (do_read_u32(ff, &desc[i].leader_idx))
2355 			goto out_free;
2356 
2357 		if (do_read_u32(ff, &desc[i].nr_members))
2358 			goto out_free;
2359 	}
2360 
2361 	/*
2362 	 * Rebuild group relationship based on the group_desc
2363 	 */
2364 	session = container_of(ff->ph, struct perf_session, header);
2365 	session->evlist->nr_groups = nr_groups;
2366 
2367 	i = nr = 0;
2368 	evlist__for_each_entry(session->evlist, evsel) {
2369 		if (evsel->idx == (int) desc[i].leader_idx) {
2370 			evsel->leader = evsel;
2371 			/* {anon_group} is a dummy name */
2372 			if (strcmp(desc[i].name, "{anon_group}")) {
2373 				evsel->group_name = desc[i].name;
2374 				desc[i].name = NULL;
2375 			}
2376 			evsel->nr_members = desc[i].nr_members;
2377 
2378 			if (i >= nr_groups || nr > 0) {
2379 				pr_debug("invalid group desc\n");
2380 				goto out_free;
2381 			}
2382 
2383 			leader = evsel;
2384 			nr = evsel->nr_members - 1;
2385 			i++;
2386 		} else if (nr) {
2387 			/* This is a group member */
2388 			evsel->leader = leader;
2389 
2390 			nr--;
2391 		}
2392 	}
2393 
2394 	if (i != nr_groups || nr != 0) {
2395 		pr_debug("invalid group desc\n");
2396 		goto out_free;
2397 	}
2398 
2399 	ret = 0;
2400 out_free:
2401 	for (i = 0; i < nr_groups; i++)
2402 		zfree(&desc[i].name);
2403 	free(desc);
2404 
2405 	return ret;
2406 }
2407 
2408 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2409 {
2410 	struct perf_session *session;
2411 	int err;
2412 
2413 	session = container_of(ff->ph, struct perf_session, header);
2414 
2415 	err = auxtrace_index__process(ff->fd, ff->size, session,
2416 				      ff->ph->needs_swap);
2417 	if (err < 0)
2418 		pr_err("Failed to process auxtrace index\n");
2419 	return err;
2420 }
2421 
2422 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2423 {
2424 	struct cpu_cache_level *caches;
2425 	u32 cnt, i, version;
2426 
2427 	if (do_read_u32(ff, &version))
2428 		return -1;
2429 
2430 	if (version != 1)
2431 		return -1;
2432 
2433 	if (do_read_u32(ff, &cnt))
2434 		return -1;
2435 
2436 	caches = zalloc(sizeof(*caches) * cnt);
2437 	if (!caches)
2438 		return -1;
2439 
2440 	for (i = 0; i < cnt; i++) {
2441 		struct cpu_cache_level c;
2442 
2443 		#define _R(v)						\
2444 			if (do_read_u32(ff, &c.v))\
2445 				goto out_free_caches;			\
2446 
2447 		_R(level)
2448 		_R(line_size)
2449 		_R(sets)
2450 		_R(ways)
2451 		#undef _R
2452 
2453 		#define _R(v)					\
2454 			c.v = do_read_string(ff);		\
2455 			if (!c.v)				\
2456 				goto out_free_caches;
2457 
2458 		_R(type)
2459 		_R(size)
2460 		_R(map)
2461 		#undef _R
2462 
2463 		caches[i] = c;
2464 	}
2465 
2466 	ff->ph->env.caches = caches;
2467 	ff->ph->env.caches_cnt = cnt;
2468 	return 0;
2469 out_free_caches:
2470 	free(caches);
2471 	return -1;
2472 }
2473 
2474 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2475 {
2476 	struct perf_session *session;
2477 	u64 first_sample_time, last_sample_time;
2478 	int ret;
2479 
2480 	session = container_of(ff->ph, struct perf_session, header);
2481 
2482 	ret = do_read_u64(ff, &first_sample_time);
2483 	if (ret)
2484 		return -1;
2485 
2486 	ret = do_read_u64(ff, &last_sample_time);
2487 	if (ret)
2488 		return -1;
2489 
2490 	session->evlist->first_sample_time = first_sample_time;
2491 	session->evlist->last_sample_time = last_sample_time;
2492 	return 0;
2493 }
2494 
2495 static int process_mem_topology(struct feat_fd *ff,
2496 				void *data __maybe_unused)
2497 {
2498 	struct memory_node *nodes;
2499 	u64 version, i, nr, bsize;
2500 	int ret = -1;
2501 
2502 	if (do_read_u64(ff, &version))
2503 		return -1;
2504 
2505 	if (version != 1)
2506 		return -1;
2507 
2508 	if (do_read_u64(ff, &bsize))
2509 		return -1;
2510 
2511 	if (do_read_u64(ff, &nr))
2512 		return -1;
2513 
2514 	nodes = zalloc(sizeof(*nodes) * nr);
2515 	if (!nodes)
2516 		return -1;
2517 
2518 	for (i = 0; i < nr; i++) {
2519 		struct memory_node n;
2520 
2521 		#define _R(v)				\
2522 			if (do_read_u64(ff, &n.v))	\
2523 				goto out;		\
2524 
2525 		_R(node)
2526 		_R(size)
2527 
2528 		#undef _R
2529 
2530 		if (do_read_bitmap(ff, &n.set, &n.size))
2531 			goto out;
2532 
2533 		nodes[i] = n;
2534 	}
2535 
2536 	ff->ph->env.memory_bsize    = bsize;
2537 	ff->ph->env.memory_nodes    = nodes;
2538 	ff->ph->env.nr_memory_nodes = nr;
2539 	ret = 0;
2540 
2541 out:
2542 	if (ret)
2543 		free(nodes);
2544 	return ret;
2545 }
2546 
2547 static int process_clockid(struct feat_fd *ff,
2548 			   void *data __maybe_unused)
2549 {
2550 	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2551 		return -1;
2552 
2553 	return 0;
2554 }
2555 
2556 struct feature_ops {
2557 	int (*write)(struct feat_fd *ff, struct perf_evlist *evlist);
2558 	void (*print)(struct feat_fd *ff, FILE *fp);
2559 	int (*process)(struct feat_fd *ff, void *data);
2560 	const char *name;
2561 	bool full_only;
2562 	bool synthesize;
2563 };
2564 
2565 #define FEAT_OPR(n, func, __full_only) \
2566 	[HEADER_##n] = {					\
2567 		.name	    = __stringify(n),			\
2568 		.write	    = write_##func,			\
2569 		.print	    = print_##func,			\
2570 		.full_only  = __full_only,			\
2571 		.process    = process_##func,			\
2572 		.synthesize = true				\
2573 	}
2574 
2575 #define FEAT_OPN(n, func, __full_only) \
2576 	[HEADER_##n] = {					\
2577 		.name	    = __stringify(n),			\
2578 		.write	    = write_##func,			\
2579 		.print	    = print_##func,			\
2580 		.full_only  = __full_only,			\
2581 		.process    = process_##func			\
2582 	}
2583 
2584 /* feature_ops not implemented: */
2585 #define print_tracing_data	NULL
2586 #define print_build_id		NULL
2587 
2588 #define process_branch_stack	NULL
2589 #define process_stat		NULL
2590 
2591 
2592 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2593 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
2594 	FEAT_OPN(BUILD_ID,	build_id,	false),
2595 	FEAT_OPR(HOSTNAME,	hostname,	false),
2596 	FEAT_OPR(OSRELEASE,	osrelease,	false),
2597 	FEAT_OPR(VERSION,	version,	false),
2598 	FEAT_OPR(ARCH,		arch,		false),
2599 	FEAT_OPR(NRCPUS,	nrcpus,		false),
2600 	FEAT_OPR(CPUDESC,	cpudesc,	false),
2601 	FEAT_OPR(CPUID,		cpuid,		false),
2602 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
2603 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
2604 	FEAT_OPR(CMDLINE,	cmdline,	false),
2605 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
2606 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
2607 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
2608 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2609 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2610 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
2611 	FEAT_OPN(STAT,		stat,		false),
2612 	FEAT_OPN(CACHE,		cache,		true),
2613 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2614 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2615 	FEAT_OPR(CLOCKID,       clockid,        false)
2616 };
2617 
2618 struct header_print_data {
2619 	FILE *fp;
2620 	bool full; /* extended list of headers */
2621 };
2622 
2623 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2624 					   struct perf_header *ph,
2625 					   int feat, int fd, void *data)
2626 {
2627 	struct header_print_data *hd = data;
2628 	struct feat_fd ff;
2629 
2630 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2631 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2632 				"%d, continuing...\n", section->offset, feat);
2633 		return 0;
2634 	}
2635 	if (feat >= HEADER_LAST_FEATURE) {
2636 		pr_warning("unknown feature %d\n", feat);
2637 		return 0;
2638 	}
2639 	if (!feat_ops[feat].print)
2640 		return 0;
2641 
2642 	ff = (struct  feat_fd) {
2643 		.fd = fd,
2644 		.ph = ph,
2645 	};
2646 
2647 	if (!feat_ops[feat].full_only || hd->full)
2648 		feat_ops[feat].print(&ff, hd->fp);
2649 	else
2650 		fprintf(hd->fp, "# %s info available, use -I to display\n",
2651 			feat_ops[feat].name);
2652 
2653 	return 0;
2654 }
2655 
2656 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2657 {
2658 	struct header_print_data hd;
2659 	struct perf_header *header = &session->header;
2660 	int fd = perf_data__fd(session->data);
2661 	struct stat st;
2662 	int ret, bit;
2663 
2664 	hd.fp = fp;
2665 	hd.full = full;
2666 
2667 	ret = fstat(fd, &st);
2668 	if (ret == -1)
2669 		return -1;
2670 
2671 	fprintf(fp, "# captured on    : %s", ctime(&st.st_ctime));
2672 
2673 	fprintf(fp, "# header version : %u\n", header->version);
2674 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2675 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2676 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2677 
2678 	perf_header__process_sections(header, fd, &hd,
2679 				      perf_file_section__fprintf_info);
2680 
2681 	if (session->data->is_pipe)
2682 		return 0;
2683 
2684 	fprintf(fp, "# missing features: ");
2685 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2686 		if (bit)
2687 			fprintf(fp, "%s ", feat_ops[bit].name);
2688 	}
2689 
2690 	fprintf(fp, "\n");
2691 	return 0;
2692 }
2693 
2694 static int do_write_feat(struct feat_fd *ff, int type,
2695 			 struct perf_file_section **p,
2696 			 struct perf_evlist *evlist)
2697 {
2698 	int err;
2699 	int ret = 0;
2700 
2701 	if (perf_header__has_feat(ff->ph, type)) {
2702 		if (!feat_ops[type].write)
2703 			return -1;
2704 
2705 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2706 			return -1;
2707 
2708 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2709 
2710 		err = feat_ops[type].write(ff, evlist);
2711 		if (err < 0) {
2712 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2713 
2714 			/* undo anything written */
2715 			lseek(ff->fd, (*p)->offset, SEEK_SET);
2716 
2717 			return -1;
2718 		}
2719 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2720 		(*p)++;
2721 	}
2722 	return ret;
2723 }
2724 
2725 static int perf_header__adds_write(struct perf_header *header,
2726 				   struct perf_evlist *evlist, int fd)
2727 {
2728 	int nr_sections;
2729 	struct feat_fd ff;
2730 	struct perf_file_section *feat_sec, *p;
2731 	int sec_size;
2732 	u64 sec_start;
2733 	int feat;
2734 	int err;
2735 
2736 	ff = (struct feat_fd){
2737 		.fd  = fd,
2738 		.ph = header,
2739 	};
2740 
2741 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2742 	if (!nr_sections)
2743 		return 0;
2744 
2745 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2746 	if (feat_sec == NULL)
2747 		return -ENOMEM;
2748 
2749 	sec_size = sizeof(*feat_sec) * nr_sections;
2750 
2751 	sec_start = header->feat_offset;
2752 	lseek(fd, sec_start + sec_size, SEEK_SET);
2753 
2754 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
2755 		if (do_write_feat(&ff, feat, &p, evlist))
2756 			perf_header__clear_feat(header, feat);
2757 	}
2758 
2759 	lseek(fd, sec_start, SEEK_SET);
2760 	/*
2761 	 * may write more than needed due to dropped feature, but
2762 	 * this is okay, reader will skip the mising entries
2763 	 */
2764 	err = do_write(&ff, feat_sec, sec_size);
2765 	if (err < 0)
2766 		pr_debug("failed to write feature section\n");
2767 	free(feat_sec);
2768 	return err;
2769 }
2770 
2771 int perf_header__write_pipe(int fd)
2772 {
2773 	struct perf_pipe_file_header f_header;
2774 	struct feat_fd ff;
2775 	int err;
2776 
2777 	ff = (struct feat_fd){ .fd = fd };
2778 
2779 	f_header = (struct perf_pipe_file_header){
2780 		.magic	   = PERF_MAGIC,
2781 		.size	   = sizeof(f_header),
2782 	};
2783 
2784 	err = do_write(&ff, &f_header, sizeof(f_header));
2785 	if (err < 0) {
2786 		pr_debug("failed to write perf pipe header\n");
2787 		return err;
2788 	}
2789 
2790 	return 0;
2791 }
2792 
2793 int perf_session__write_header(struct perf_session *session,
2794 			       struct perf_evlist *evlist,
2795 			       int fd, bool at_exit)
2796 {
2797 	struct perf_file_header f_header;
2798 	struct perf_file_attr   f_attr;
2799 	struct perf_header *header = &session->header;
2800 	struct perf_evsel *evsel;
2801 	struct feat_fd ff;
2802 	u64 attr_offset;
2803 	int err;
2804 
2805 	ff = (struct feat_fd){ .fd = fd};
2806 	lseek(fd, sizeof(f_header), SEEK_SET);
2807 
2808 	evlist__for_each_entry(session->evlist, evsel) {
2809 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
2810 		err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
2811 		if (err < 0) {
2812 			pr_debug("failed to write perf header\n");
2813 			return err;
2814 		}
2815 	}
2816 
2817 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
2818 
2819 	evlist__for_each_entry(evlist, evsel) {
2820 		f_attr = (struct perf_file_attr){
2821 			.attr = evsel->attr,
2822 			.ids  = {
2823 				.offset = evsel->id_offset,
2824 				.size   = evsel->ids * sizeof(u64),
2825 			}
2826 		};
2827 		err = do_write(&ff, &f_attr, sizeof(f_attr));
2828 		if (err < 0) {
2829 			pr_debug("failed to write perf header attribute\n");
2830 			return err;
2831 		}
2832 	}
2833 
2834 	if (!header->data_offset)
2835 		header->data_offset = lseek(fd, 0, SEEK_CUR);
2836 	header->feat_offset = header->data_offset + header->data_size;
2837 
2838 	if (at_exit) {
2839 		err = perf_header__adds_write(header, evlist, fd);
2840 		if (err < 0)
2841 			return err;
2842 	}
2843 
2844 	f_header = (struct perf_file_header){
2845 		.magic	   = PERF_MAGIC,
2846 		.size	   = sizeof(f_header),
2847 		.attr_size = sizeof(f_attr),
2848 		.attrs = {
2849 			.offset = attr_offset,
2850 			.size   = evlist->nr_entries * sizeof(f_attr),
2851 		},
2852 		.data = {
2853 			.offset = header->data_offset,
2854 			.size	= header->data_size,
2855 		},
2856 		/* event_types is ignored, store zeros */
2857 	};
2858 
2859 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
2860 
2861 	lseek(fd, 0, SEEK_SET);
2862 	err = do_write(&ff, &f_header, sizeof(f_header));
2863 	if (err < 0) {
2864 		pr_debug("failed to write perf header\n");
2865 		return err;
2866 	}
2867 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
2868 
2869 	return 0;
2870 }
2871 
2872 static int perf_header__getbuffer64(struct perf_header *header,
2873 				    int fd, void *buf, size_t size)
2874 {
2875 	if (readn(fd, buf, size) <= 0)
2876 		return -1;
2877 
2878 	if (header->needs_swap)
2879 		mem_bswap_64(buf, size);
2880 
2881 	return 0;
2882 }
2883 
2884 int perf_header__process_sections(struct perf_header *header, int fd,
2885 				  void *data,
2886 				  int (*process)(struct perf_file_section *section,
2887 						 struct perf_header *ph,
2888 						 int feat, int fd, void *data))
2889 {
2890 	struct perf_file_section *feat_sec, *sec;
2891 	int nr_sections;
2892 	int sec_size;
2893 	int feat;
2894 	int err;
2895 
2896 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2897 	if (!nr_sections)
2898 		return 0;
2899 
2900 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
2901 	if (!feat_sec)
2902 		return -1;
2903 
2904 	sec_size = sizeof(*feat_sec) * nr_sections;
2905 
2906 	lseek(fd, header->feat_offset, SEEK_SET);
2907 
2908 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
2909 	if (err < 0)
2910 		goto out_free;
2911 
2912 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
2913 		err = process(sec++, header, feat, fd, data);
2914 		if (err < 0)
2915 			goto out_free;
2916 	}
2917 	err = 0;
2918 out_free:
2919 	free(feat_sec);
2920 	return err;
2921 }
2922 
2923 static const int attr_file_abi_sizes[] = {
2924 	[0] = PERF_ATTR_SIZE_VER0,
2925 	[1] = PERF_ATTR_SIZE_VER1,
2926 	[2] = PERF_ATTR_SIZE_VER2,
2927 	[3] = PERF_ATTR_SIZE_VER3,
2928 	[4] = PERF_ATTR_SIZE_VER4,
2929 	0,
2930 };
2931 
2932 /*
2933  * In the legacy file format, the magic number is not used to encode endianness.
2934  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
2935  * on ABI revisions, we need to try all combinations for all endianness to
2936  * detect the endianness.
2937  */
2938 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
2939 {
2940 	uint64_t ref_size, attr_size;
2941 	int i;
2942 
2943 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
2944 		ref_size = attr_file_abi_sizes[i]
2945 			 + sizeof(struct perf_file_section);
2946 		if (hdr_sz != ref_size) {
2947 			attr_size = bswap_64(hdr_sz);
2948 			if (attr_size != ref_size)
2949 				continue;
2950 
2951 			ph->needs_swap = true;
2952 		}
2953 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
2954 			 i,
2955 			 ph->needs_swap);
2956 		return 0;
2957 	}
2958 	/* could not determine endianness */
2959 	return -1;
2960 }
2961 
2962 #define PERF_PIPE_HDR_VER0	16
2963 
2964 static const size_t attr_pipe_abi_sizes[] = {
2965 	[0] = PERF_PIPE_HDR_VER0,
2966 	0,
2967 };
2968 
2969 /*
2970  * In the legacy pipe format, there is an implicit assumption that endiannesss
2971  * between host recording the samples, and host parsing the samples is the
2972  * same. This is not always the case given that the pipe output may always be
2973  * redirected into a file and analyzed on a different machine with possibly a
2974  * different endianness and perf_event ABI revsions in the perf tool itself.
2975  */
2976 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
2977 {
2978 	u64 attr_size;
2979 	int i;
2980 
2981 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
2982 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
2983 			attr_size = bswap_64(hdr_sz);
2984 			if (attr_size != hdr_sz)
2985 				continue;
2986 
2987 			ph->needs_swap = true;
2988 		}
2989 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
2990 		return 0;
2991 	}
2992 	return -1;
2993 }
2994 
2995 bool is_perf_magic(u64 magic)
2996 {
2997 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
2998 		|| magic == __perf_magic2
2999 		|| magic == __perf_magic2_sw)
3000 		return true;
3001 
3002 	return false;
3003 }
3004 
3005 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3006 			      bool is_pipe, struct perf_header *ph)
3007 {
3008 	int ret;
3009 
3010 	/* check for legacy format */
3011 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3012 	if (ret == 0) {
3013 		ph->version = PERF_HEADER_VERSION_1;
3014 		pr_debug("legacy perf.data format\n");
3015 		if (is_pipe)
3016 			return try_all_pipe_abis(hdr_sz, ph);
3017 
3018 		return try_all_file_abis(hdr_sz, ph);
3019 	}
3020 	/*
3021 	 * the new magic number serves two purposes:
3022 	 * - unique number to identify actual perf.data files
3023 	 * - encode endianness of file
3024 	 */
3025 	ph->version = PERF_HEADER_VERSION_2;
3026 
3027 	/* check magic number with one endianness */
3028 	if (magic == __perf_magic2)
3029 		return 0;
3030 
3031 	/* check magic number with opposite endianness */
3032 	if (magic != __perf_magic2_sw)
3033 		return -1;
3034 
3035 	ph->needs_swap = true;
3036 
3037 	return 0;
3038 }
3039 
3040 int perf_file_header__read(struct perf_file_header *header,
3041 			   struct perf_header *ph, int fd)
3042 {
3043 	ssize_t ret;
3044 
3045 	lseek(fd, 0, SEEK_SET);
3046 
3047 	ret = readn(fd, header, sizeof(*header));
3048 	if (ret <= 0)
3049 		return -1;
3050 
3051 	if (check_magic_endian(header->magic,
3052 			       header->attr_size, false, ph) < 0) {
3053 		pr_debug("magic/endian check failed\n");
3054 		return -1;
3055 	}
3056 
3057 	if (ph->needs_swap) {
3058 		mem_bswap_64(header, offsetof(struct perf_file_header,
3059 			     adds_features));
3060 	}
3061 
3062 	if (header->size != sizeof(*header)) {
3063 		/* Support the previous format */
3064 		if (header->size == offsetof(typeof(*header), adds_features))
3065 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3066 		else
3067 			return -1;
3068 	} else if (ph->needs_swap) {
3069 		/*
3070 		 * feature bitmap is declared as an array of unsigned longs --
3071 		 * not good since its size can differ between the host that
3072 		 * generated the data file and the host analyzing the file.
3073 		 *
3074 		 * We need to handle endianness, but we don't know the size of
3075 		 * the unsigned long where the file was generated. Take a best
3076 		 * guess at determining it: try 64-bit swap first (ie., file
3077 		 * created on a 64-bit host), and check if the hostname feature
3078 		 * bit is set (this feature bit is forced on as of fbe96f2).
3079 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3080 		 * swap. If the hostname bit is still not set (e.g., older data
3081 		 * file), punt and fallback to the original behavior --
3082 		 * clearing all feature bits and setting buildid.
3083 		 */
3084 		mem_bswap_64(&header->adds_features,
3085 			    BITS_TO_U64(HEADER_FEAT_BITS));
3086 
3087 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3088 			/* unswap as u64 */
3089 			mem_bswap_64(&header->adds_features,
3090 				    BITS_TO_U64(HEADER_FEAT_BITS));
3091 
3092 			/* unswap as u32 */
3093 			mem_bswap_32(&header->adds_features,
3094 				    BITS_TO_U32(HEADER_FEAT_BITS));
3095 		}
3096 
3097 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3098 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3099 			set_bit(HEADER_BUILD_ID, header->adds_features);
3100 		}
3101 	}
3102 
3103 	memcpy(&ph->adds_features, &header->adds_features,
3104 	       sizeof(ph->adds_features));
3105 
3106 	ph->data_offset  = header->data.offset;
3107 	ph->data_size	 = header->data.size;
3108 	ph->feat_offset  = header->data.offset + header->data.size;
3109 	return 0;
3110 }
3111 
3112 static int perf_file_section__process(struct perf_file_section *section,
3113 				      struct perf_header *ph,
3114 				      int feat, int fd, void *data)
3115 {
3116 	struct feat_fd fdd = {
3117 		.fd	= fd,
3118 		.ph	= ph,
3119 		.size	= section->size,
3120 		.offset	= section->offset,
3121 	};
3122 
3123 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3124 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3125 			  "%d, continuing...\n", section->offset, feat);
3126 		return 0;
3127 	}
3128 
3129 	if (feat >= HEADER_LAST_FEATURE) {
3130 		pr_debug("unknown feature %d, continuing...\n", feat);
3131 		return 0;
3132 	}
3133 
3134 	if (!feat_ops[feat].process)
3135 		return 0;
3136 
3137 	return feat_ops[feat].process(&fdd, data);
3138 }
3139 
3140 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3141 				       struct perf_header *ph, int fd,
3142 				       bool repipe)
3143 {
3144 	struct feat_fd ff = {
3145 		.fd = STDOUT_FILENO,
3146 		.ph = ph,
3147 	};
3148 	ssize_t ret;
3149 
3150 	ret = readn(fd, header, sizeof(*header));
3151 	if (ret <= 0)
3152 		return -1;
3153 
3154 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3155 		pr_debug("endian/magic failed\n");
3156 		return -1;
3157 	}
3158 
3159 	if (ph->needs_swap)
3160 		header->size = bswap_64(header->size);
3161 
3162 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3163 		return -1;
3164 
3165 	return 0;
3166 }
3167 
3168 static int perf_header__read_pipe(struct perf_session *session)
3169 {
3170 	struct perf_header *header = &session->header;
3171 	struct perf_pipe_file_header f_header;
3172 
3173 	if (perf_file_header__read_pipe(&f_header, header,
3174 					perf_data__fd(session->data),
3175 					session->repipe) < 0) {
3176 		pr_debug("incompatible file format\n");
3177 		return -EINVAL;
3178 	}
3179 
3180 	return 0;
3181 }
3182 
3183 static int read_attr(int fd, struct perf_header *ph,
3184 		     struct perf_file_attr *f_attr)
3185 {
3186 	struct perf_event_attr *attr = &f_attr->attr;
3187 	size_t sz, left;
3188 	size_t our_sz = sizeof(f_attr->attr);
3189 	ssize_t ret;
3190 
3191 	memset(f_attr, 0, sizeof(*f_attr));
3192 
3193 	/* read minimal guaranteed structure */
3194 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3195 	if (ret <= 0) {
3196 		pr_debug("cannot read %d bytes of header attr\n",
3197 			 PERF_ATTR_SIZE_VER0);
3198 		return -1;
3199 	}
3200 
3201 	/* on file perf_event_attr size */
3202 	sz = attr->size;
3203 
3204 	if (ph->needs_swap)
3205 		sz = bswap_32(sz);
3206 
3207 	if (sz == 0) {
3208 		/* assume ABI0 */
3209 		sz =  PERF_ATTR_SIZE_VER0;
3210 	} else if (sz > our_sz) {
3211 		pr_debug("file uses a more recent and unsupported ABI"
3212 			 " (%zu bytes extra)\n", sz - our_sz);
3213 		return -1;
3214 	}
3215 	/* what we have not yet read and that we know about */
3216 	left = sz - PERF_ATTR_SIZE_VER0;
3217 	if (left) {
3218 		void *ptr = attr;
3219 		ptr += PERF_ATTR_SIZE_VER0;
3220 
3221 		ret = readn(fd, ptr, left);
3222 	}
3223 	/* read perf_file_section, ids are read in caller */
3224 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3225 
3226 	return ret <= 0 ? -1 : 0;
3227 }
3228 
3229 static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
3230 						struct tep_handle *pevent)
3231 {
3232 	struct tep_event_format *event;
3233 	char bf[128];
3234 
3235 	/* already prepared */
3236 	if (evsel->tp_format)
3237 		return 0;
3238 
3239 	if (pevent == NULL) {
3240 		pr_debug("broken or missing trace data\n");
3241 		return -1;
3242 	}
3243 
3244 	event = tep_find_event(pevent, evsel->attr.config);
3245 	if (event == NULL) {
3246 		pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3247 		return -1;
3248 	}
3249 
3250 	if (!evsel->name) {
3251 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3252 		evsel->name = strdup(bf);
3253 		if (evsel->name == NULL)
3254 			return -1;
3255 	}
3256 
3257 	evsel->tp_format = event;
3258 	return 0;
3259 }
3260 
3261 static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
3262 						  struct tep_handle *pevent)
3263 {
3264 	struct perf_evsel *pos;
3265 
3266 	evlist__for_each_entry(evlist, pos) {
3267 		if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
3268 		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3269 			return -1;
3270 	}
3271 
3272 	return 0;
3273 }
3274 
3275 int perf_session__read_header(struct perf_session *session)
3276 {
3277 	struct perf_data *data = session->data;
3278 	struct perf_header *header = &session->header;
3279 	struct perf_file_header	f_header;
3280 	struct perf_file_attr	f_attr;
3281 	u64			f_id;
3282 	int nr_attrs, nr_ids, i, j;
3283 	int fd = perf_data__fd(data);
3284 
3285 	session->evlist = perf_evlist__new();
3286 	if (session->evlist == NULL)
3287 		return -ENOMEM;
3288 
3289 	session->evlist->env = &header->env;
3290 	session->machines.host.env = &header->env;
3291 	if (perf_data__is_pipe(data))
3292 		return perf_header__read_pipe(session);
3293 
3294 	if (perf_file_header__read(&f_header, header, fd) < 0)
3295 		return -EINVAL;
3296 
3297 	/*
3298 	 * Sanity check that perf.data was written cleanly; data size is
3299 	 * initialized to 0 and updated only if the on_exit function is run.
3300 	 * If data size is still 0 then the file contains only partial
3301 	 * information.  Just warn user and process it as much as it can.
3302 	 */
3303 	if (f_header.data.size == 0) {
3304 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3305 			   "Was the 'perf record' command properly terminated?\n",
3306 			   data->file.path);
3307 	}
3308 
3309 	nr_attrs = f_header.attrs.size / f_header.attr_size;
3310 	lseek(fd, f_header.attrs.offset, SEEK_SET);
3311 
3312 	for (i = 0; i < nr_attrs; i++) {
3313 		struct perf_evsel *evsel;
3314 		off_t tmp;
3315 
3316 		if (read_attr(fd, header, &f_attr) < 0)
3317 			goto out_errno;
3318 
3319 		if (header->needs_swap) {
3320 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3321 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3322 			perf_event__attr_swap(&f_attr.attr);
3323 		}
3324 
3325 		tmp = lseek(fd, 0, SEEK_CUR);
3326 		evsel = perf_evsel__new(&f_attr.attr);
3327 
3328 		if (evsel == NULL)
3329 			goto out_delete_evlist;
3330 
3331 		evsel->needs_swap = header->needs_swap;
3332 		/*
3333 		 * Do it before so that if perf_evsel__alloc_id fails, this
3334 		 * entry gets purged too at perf_evlist__delete().
3335 		 */
3336 		perf_evlist__add(session->evlist, evsel);
3337 
3338 		nr_ids = f_attr.ids.size / sizeof(u64);
3339 		/*
3340 		 * We don't have the cpu and thread maps on the header, so
3341 		 * for allocating the perf_sample_id table we fake 1 cpu and
3342 		 * hattr->ids threads.
3343 		 */
3344 		if (perf_evsel__alloc_id(evsel, 1, nr_ids))
3345 			goto out_delete_evlist;
3346 
3347 		lseek(fd, f_attr.ids.offset, SEEK_SET);
3348 
3349 		for (j = 0; j < nr_ids; j++) {
3350 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3351 				goto out_errno;
3352 
3353 			perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3354 		}
3355 
3356 		lseek(fd, tmp, SEEK_SET);
3357 	}
3358 
3359 	perf_header__process_sections(header, fd, &session->tevent,
3360 				      perf_file_section__process);
3361 
3362 	if (perf_evlist__prepare_tracepoint_events(session->evlist,
3363 						   session->tevent.pevent))
3364 		goto out_delete_evlist;
3365 
3366 	return 0;
3367 out_errno:
3368 	return -errno;
3369 
3370 out_delete_evlist:
3371 	perf_evlist__delete(session->evlist);
3372 	session->evlist = NULL;
3373 	return -ENOMEM;
3374 }
3375 
3376 int perf_event__synthesize_attr(struct perf_tool *tool,
3377 				struct perf_event_attr *attr, u32 ids, u64 *id,
3378 				perf_event__handler_t process)
3379 {
3380 	union perf_event *ev;
3381 	size_t size;
3382 	int err;
3383 
3384 	size = sizeof(struct perf_event_attr);
3385 	size = PERF_ALIGN(size, sizeof(u64));
3386 	size += sizeof(struct perf_event_header);
3387 	size += ids * sizeof(u64);
3388 
3389 	ev = malloc(size);
3390 
3391 	if (ev == NULL)
3392 		return -ENOMEM;
3393 
3394 	ev->attr.attr = *attr;
3395 	memcpy(ev->attr.id, id, ids * sizeof(u64));
3396 
3397 	ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3398 	ev->attr.header.size = (u16)size;
3399 
3400 	if (ev->attr.header.size == size)
3401 		err = process(tool, ev, NULL, NULL);
3402 	else
3403 		err = -E2BIG;
3404 
3405 	free(ev);
3406 
3407 	return err;
3408 }
3409 
3410 int perf_event__synthesize_features(struct perf_tool *tool,
3411 				    struct perf_session *session,
3412 				    struct perf_evlist *evlist,
3413 				    perf_event__handler_t process)
3414 {
3415 	struct perf_header *header = &session->header;
3416 	struct feat_fd ff;
3417 	struct feature_event *fe;
3418 	size_t sz, sz_hdr;
3419 	int feat, ret;
3420 
3421 	sz_hdr = sizeof(fe->header);
3422 	sz = sizeof(union perf_event);
3423 	/* get a nice alignment */
3424 	sz = PERF_ALIGN(sz, page_size);
3425 
3426 	memset(&ff, 0, sizeof(ff));
3427 
3428 	ff.buf = malloc(sz);
3429 	if (!ff.buf)
3430 		return -ENOMEM;
3431 
3432 	ff.size = sz - sz_hdr;
3433 
3434 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3435 		if (!feat_ops[feat].synthesize) {
3436 			pr_debug("No record header feature for header :%d\n", feat);
3437 			continue;
3438 		}
3439 
3440 		ff.offset = sizeof(*fe);
3441 
3442 		ret = feat_ops[feat].write(&ff, evlist);
3443 		if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
3444 			pr_debug("Error writing feature\n");
3445 			continue;
3446 		}
3447 		/* ff.buf may have changed due to realloc in do_write() */
3448 		fe = ff.buf;
3449 		memset(fe, 0, sizeof(*fe));
3450 
3451 		fe->feat_id = feat;
3452 		fe->header.type = PERF_RECORD_HEADER_FEATURE;
3453 		fe->header.size = ff.offset;
3454 
3455 		ret = process(tool, ff.buf, NULL, NULL);
3456 		if (ret) {
3457 			free(ff.buf);
3458 			return ret;
3459 		}
3460 	}
3461 
3462 	/* Send HEADER_LAST_FEATURE mark. */
3463 	fe = ff.buf;
3464 	fe->feat_id     = HEADER_LAST_FEATURE;
3465 	fe->header.type = PERF_RECORD_HEADER_FEATURE;
3466 	fe->header.size = sizeof(*fe);
3467 
3468 	ret = process(tool, ff.buf, NULL, NULL);
3469 
3470 	free(ff.buf);
3471 	return ret;
3472 }
3473 
3474 int perf_event__process_feature(struct perf_session *session,
3475 				union perf_event *event)
3476 {
3477 	struct perf_tool *tool = session->tool;
3478 	struct feat_fd ff = { .fd = 0 };
3479 	struct feature_event *fe = (struct feature_event *)event;
3480 	int type = fe->header.type;
3481 	u64 feat = fe->feat_id;
3482 
3483 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3484 		pr_warning("invalid record type %d in pipe-mode\n", type);
3485 		return 0;
3486 	}
3487 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3488 		pr_warning("invalid record type %d in pipe-mode\n", type);
3489 		return -1;
3490 	}
3491 
3492 	if (!feat_ops[feat].process)
3493 		return 0;
3494 
3495 	ff.buf  = (void *)fe->data;
3496 	ff.size = event->header.size - sizeof(event->header);
3497 	ff.ph = &session->header;
3498 
3499 	if (feat_ops[feat].process(&ff, NULL))
3500 		return -1;
3501 
3502 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3503 		return 0;
3504 
3505 	if (!feat_ops[feat].full_only ||
3506 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3507 		feat_ops[feat].print(&ff, stdout);
3508 	} else {
3509 		fprintf(stdout, "# %s info available, use -I to display\n",
3510 			feat_ops[feat].name);
3511 	}
3512 
3513 	return 0;
3514 }
3515 
3516 static struct event_update_event *
3517 event_update_event__new(size_t size, u64 type, u64 id)
3518 {
3519 	struct event_update_event *ev;
3520 
3521 	size += sizeof(*ev);
3522 	size  = PERF_ALIGN(size, sizeof(u64));
3523 
3524 	ev = zalloc(size);
3525 	if (ev) {
3526 		ev->header.type = PERF_RECORD_EVENT_UPDATE;
3527 		ev->header.size = (u16)size;
3528 		ev->type = type;
3529 		ev->id = id;
3530 	}
3531 	return ev;
3532 }
3533 
3534 int
3535 perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3536 					 struct perf_evsel *evsel,
3537 					 perf_event__handler_t process)
3538 {
3539 	struct event_update_event *ev;
3540 	size_t size = strlen(evsel->unit);
3541 	int err;
3542 
3543 	ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3544 	if (ev == NULL)
3545 		return -ENOMEM;
3546 
3547 	strncpy(ev->data, evsel->unit, size);
3548 	err = process(tool, (union perf_event *)ev, NULL, NULL);
3549 	free(ev);
3550 	return err;
3551 }
3552 
3553 int
3554 perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3555 					  struct perf_evsel *evsel,
3556 					  perf_event__handler_t process)
3557 {
3558 	struct event_update_event *ev;
3559 	struct event_update_event_scale *ev_data;
3560 	int err;
3561 
3562 	ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3563 	if (ev == NULL)
3564 		return -ENOMEM;
3565 
3566 	ev_data = (struct event_update_event_scale *) ev->data;
3567 	ev_data->scale = evsel->scale;
3568 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3569 	free(ev);
3570 	return err;
3571 }
3572 
3573 int
3574 perf_event__synthesize_event_update_name(struct perf_tool *tool,
3575 					 struct perf_evsel *evsel,
3576 					 perf_event__handler_t process)
3577 {
3578 	struct event_update_event *ev;
3579 	size_t len = strlen(evsel->name);
3580 	int err;
3581 
3582 	ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3583 	if (ev == NULL)
3584 		return -ENOMEM;
3585 
3586 	strncpy(ev->data, evsel->name, len);
3587 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3588 	free(ev);
3589 	return err;
3590 }
3591 
3592 int
3593 perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3594 					struct perf_evsel *evsel,
3595 					perf_event__handler_t process)
3596 {
3597 	size_t size = sizeof(struct event_update_event);
3598 	struct event_update_event *ev;
3599 	int max, err;
3600 	u16 type;
3601 
3602 	if (!evsel->own_cpus)
3603 		return 0;
3604 
3605 	ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
3606 	if (!ev)
3607 		return -ENOMEM;
3608 
3609 	ev->header.type = PERF_RECORD_EVENT_UPDATE;
3610 	ev->header.size = (u16)size;
3611 	ev->type = PERF_EVENT_UPDATE__CPUS;
3612 	ev->id   = evsel->id[0];
3613 
3614 	cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3615 				 evsel->own_cpus,
3616 				 type, max);
3617 
3618 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3619 	free(ev);
3620 	return err;
3621 }
3622 
3623 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3624 {
3625 	struct event_update_event *ev = &event->event_update;
3626 	struct event_update_event_scale *ev_scale;
3627 	struct event_update_event_cpus *ev_cpus;
3628 	struct cpu_map *map;
3629 	size_t ret;
3630 
3631 	ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);
3632 
3633 	switch (ev->type) {
3634 	case PERF_EVENT_UPDATE__SCALE:
3635 		ev_scale = (struct event_update_event_scale *) ev->data;
3636 		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3637 		break;
3638 	case PERF_EVENT_UPDATE__UNIT:
3639 		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3640 		break;
3641 	case PERF_EVENT_UPDATE__NAME:
3642 		ret += fprintf(fp, "... name:  %s\n", ev->data);
3643 		break;
3644 	case PERF_EVENT_UPDATE__CPUS:
3645 		ev_cpus = (struct event_update_event_cpus *) ev->data;
3646 		ret += fprintf(fp, "... ");
3647 
3648 		map = cpu_map__new_data(&ev_cpus->cpus);
3649 		if (map)
3650 			ret += cpu_map__fprintf(map, fp);
3651 		else
3652 			ret += fprintf(fp, "failed to get cpus\n");
3653 		break;
3654 	default:
3655 		ret += fprintf(fp, "... unknown type\n");
3656 		break;
3657 	}
3658 
3659 	return ret;
3660 }
3661 
3662 int perf_event__synthesize_attrs(struct perf_tool *tool,
3663 				 struct perf_evlist *evlist,
3664 				 perf_event__handler_t process)
3665 {
3666 	struct perf_evsel *evsel;
3667 	int err = 0;
3668 
3669 	evlist__for_each_entry(evlist, evsel) {
3670 		err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
3671 						  evsel->id, process);
3672 		if (err) {
3673 			pr_debug("failed to create perf header attribute\n");
3674 			return err;
3675 		}
3676 	}
3677 
3678 	return err;
3679 }
3680 
3681 static bool has_unit(struct perf_evsel *counter)
3682 {
3683 	return counter->unit && *counter->unit;
3684 }
3685 
3686 static bool has_scale(struct perf_evsel *counter)
3687 {
3688 	return counter->scale != 1;
3689 }
3690 
3691 int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3692 				      struct perf_evlist *evsel_list,
3693 				      perf_event__handler_t process,
3694 				      bool is_pipe)
3695 {
3696 	struct perf_evsel *counter;
3697 	int err;
3698 
3699 	/*
3700 	 * Synthesize other events stuff not carried within
3701 	 * attr event - unit, scale, name
3702 	 */
3703 	evlist__for_each_entry(evsel_list, counter) {
3704 		if (!counter->supported)
3705 			continue;
3706 
3707 		/*
3708 		 * Synthesize unit and scale only if it's defined.
3709 		 */
3710 		if (has_unit(counter)) {
3711 			err = perf_event__synthesize_event_update_unit(tool, counter, process);
3712 			if (err < 0) {
3713 				pr_err("Couldn't synthesize evsel unit.\n");
3714 				return err;
3715 			}
3716 		}
3717 
3718 		if (has_scale(counter)) {
3719 			err = perf_event__synthesize_event_update_scale(tool, counter, process);
3720 			if (err < 0) {
3721 				pr_err("Couldn't synthesize evsel counter.\n");
3722 				return err;
3723 			}
3724 		}
3725 
3726 		if (counter->own_cpus) {
3727 			err = perf_event__synthesize_event_update_cpus(tool, counter, process);
3728 			if (err < 0) {
3729 				pr_err("Couldn't synthesize evsel cpus.\n");
3730 				return err;
3731 			}
3732 		}
3733 
3734 		/*
3735 		 * Name is needed only for pipe output,
3736 		 * perf.data carries event names.
3737 		 */
3738 		if (is_pipe) {
3739 			err = perf_event__synthesize_event_update_name(tool, counter, process);
3740 			if (err < 0) {
3741 				pr_err("Couldn't synthesize evsel name.\n");
3742 				return err;
3743 			}
3744 		}
3745 	}
3746 	return 0;
3747 }
3748 
3749 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3750 			     union perf_event *event,
3751 			     struct perf_evlist **pevlist)
3752 {
3753 	u32 i, ids, n_ids;
3754 	struct perf_evsel *evsel;
3755 	struct perf_evlist *evlist = *pevlist;
3756 
3757 	if (evlist == NULL) {
3758 		*pevlist = evlist = perf_evlist__new();
3759 		if (evlist == NULL)
3760 			return -ENOMEM;
3761 	}
3762 
3763 	evsel = perf_evsel__new(&event->attr.attr);
3764 	if (evsel == NULL)
3765 		return -ENOMEM;
3766 
3767 	perf_evlist__add(evlist, evsel);
3768 
3769 	ids = event->header.size;
3770 	ids -= (void *)&event->attr.id - (void *)event;
3771 	n_ids = ids / sizeof(u64);
3772 	/*
3773 	 * We don't have the cpu and thread maps on the header, so
3774 	 * for allocating the perf_sample_id table we fake 1 cpu and
3775 	 * hattr->ids threads.
3776 	 */
3777 	if (perf_evsel__alloc_id(evsel, 1, n_ids))
3778 		return -ENOMEM;
3779 
3780 	for (i = 0; i < n_ids; i++) {
3781 		perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
3782 	}
3783 
3784 	return 0;
3785 }
3786 
3787 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3788 				     union perf_event *event,
3789 				     struct perf_evlist **pevlist)
3790 {
3791 	struct event_update_event *ev = &event->event_update;
3792 	struct event_update_event_scale *ev_scale;
3793 	struct event_update_event_cpus *ev_cpus;
3794 	struct perf_evlist *evlist;
3795 	struct perf_evsel *evsel;
3796 	struct cpu_map *map;
3797 
3798 	if (!pevlist || *pevlist == NULL)
3799 		return -EINVAL;
3800 
3801 	evlist = *pevlist;
3802 
3803 	evsel = perf_evlist__id2evsel(evlist, ev->id);
3804 	if (evsel == NULL)
3805 		return -EINVAL;
3806 
3807 	switch (ev->type) {
3808 	case PERF_EVENT_UPDATE__UNIT:
3809 		evsel->unit = strdup(ev->data);
3810 		break;
3811 	case PERF_EVENT_UPDATE__NAME:
3812 		evsel->name = strdup(ev->data);
3813 		break;
3814 	case PERF_EVENT_UPDATE__SCALE:
3815 		ev_scale = (struct event_update_event_scale *) ev->data;
3816 		evsel->scale = ev_scale->scale;
3817 		break;
3818 	case PERF_EVENT_UPDATE__CPUS:
3819 		ev_cpus = (struct event_update_event_cpus *) ev->data;
3820 
3821 		map = cpu_map__new_data(&ev_cpus->cpus);
3822 		if (map)
3823 			evsel->own_cpus = map;
3824 		else
3825 			pr_err("failed to get event_update cpus\n");
3826 	default:
3827 		break;
3828 	}
3829 
3830 	return 0;
3831 }
3832 
3833 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
3834 					struct perf_evlist *evlist,
3835 					perf_event__handler_t process)
3836 {
3837 	union perf_event ev;
3838 	struct tracing_data *tdata;
3839 	ssize_t size = 0, aligned_size = 0, padding;
3840 	struct feat_fd ff;
3841 	int err __maybe_unused = 0;
3842 
3843 	/*
3844 	 * We are going to store the size of the data followed
3845 	 * by the data contents. Since the fd descriptor is a pipe,
3846 	 * we cannot seek back to store the size of the data once
3847 	 * we know it. Instead we:
3848 	 *
3849 	 * - write the tracing data to the temp file
3850 	 * - get/write the data size to pipe
3851 	 * - write the tracing data from the temp file
3852 	 *   to the pipe
3853 	 */
3854 	tdata = tracing_data_get(&evlist->entries, fd, true);
3855 	if (!tdata)
3856 		return -1;
3857 
3858 	memset(&ev, 0, sizeof(ev));
3859 
3860 	ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
3861 	size = tdata->size;
3862 	aligned_size = PERF_ALIGN(size, sizeof(u64));
3863 	padding = aligned_size - size;
3864 	ev.tracing_data.header.size = sizeof(ev.tracing_data);
3865 	ev.tracing_data.size = aligned_size;
3866 
3867 	process(tool, &ev, NULL, NULL);
3868 
3869 	/*
3870 	 * The put function will copy all the tracing data
3871 	 * stored in temp file to the pipe.
3872 	 */
3873 	tracing_data_put(tdata);
3874 
3875 	ff = (struct feat_fd){ .fd = fd };
3876 	if (write_padded(&ff, NULL, 0, padding))
3877 		return -1;
3878 
3879 	return aligned_size;
3880 }
3881 
3882 int perf_event__process_tracing_data(struct perf_session *session,
3883 				     union perf_event *event)
3884 {
3885 	ssize_t size_read, padding, size = event->tracing_data.size;
3886 	int fd = perf_data__fd(session->data);
3887 	off_t offset = lseek(fd, 0, SEEK_CUR);
3888 	char buf[BUFSIZ];
3889 
3890 	/* setup for reading amidst mmap */
3891 	lseek(fd, offset + sizeof(struct tracing_data_event),
3892 	      SEEK_SET);
3893 
3894 	size_read = trace_report(fd, &session->tevent,
3895 				 session->repipe);
3896 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3897 
3898 	if (readn(fd, buf, padding) < 0) {
3899 		pr_err("%s: reading input file", __func__);
3900 		return -1;
3901 	}
3902 	if (session->repipe) {
3903 		int retw = write(STDOUT_FILENO, buf, padding);
3904 		if (retw <= 0 || retw != padding) {
3905 			pr_err("%s: repiping tracing data padding", __func__);
3906 			return -1;
3907 		}
3908 	}
3909 
3910 	if (size_read + padding != size) {
3911 		pr_err("%s: tracing data size mismatch", __func__);
3912 		return -1;
3913 	}
3914 
3915 	perf_evlist__prepare_tracepoint_events(session->evlist,
3916 					       session->tevent.pevent);
3917 
3918 	return size_read + padding;
3919 }
3920 
3921 int perf_event__synthesize_build_id(struct perf_tool *tool,
3922 				    struct dso *pos, u16 misc,
3923 				    perf_event__handler_t process,
3924 				    struct machine *machine)
3925 {
3926 	union perf_event ev;
3927 	size_t len;
3928 	int err = 0;
3929 
3930 	if (!pos->hit)
3931 		return err;
3932 
3933 	memset(&ev, 0, sizeof(ev));
3934 
3935 	len = pos->long_name_len + 1;
3936 	len = PERF_ALIGN(len, NAME_ALIGN);
3937 	memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
3938 	ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
3939 	ev.build_id.header.misc = misc;
3940 	ev.build_id.pid = machine->pid;
3941 	ev.build_id.header.size = sizeof(ev.build_id) + len;
3942 	memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
3943 
3944 	err = process(tool, &ev, NULL, machine);
3945 
3946 	return err;
3947 }
3948 
3949 int perf_event__process_build_id(struct perf_session *session,
3950 				 union perf_event *event)
3951 {
3952 	__event_process_build_id(&event->build_id,
3953 				 event->build_id.filename,
3954 				 session);
3955 	return 0;
3956 }
3957