1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <inttypes.h> 4 #include "util.h" 5 #include "string2.h" 6 #include <sys/param.h> 7 #include <sys/types.h> 8 #include <byteswap.h> 9 #include <unistd.h> 10 #include <stdio.h> 11 #include <stdlib.h> 12 #include <linux/compiler.h> 13 #include <linux/list.h> 14 #include <linux/kernel.h> 15 #include <linux/bitops.h> 16 #include <linux/stringify.h> 17 #include <sys/stat.h> 18 #include <sys/utsname.h> 19 #include <linux/time64.h> 20 #include <dirent.h> 21 22 #include "evlist.h" 23 #include "evsel.h" 24 #include "header.h" 25 #include "memswap.h" 26 #include "../perf.h" 27 #include "trace-event.h" 28 #include "session.h" 29 #include "symbol.h" 30 #include "debug.h" 31 #include "cpumap.h" 32 #include "pmu.h" 33 #include "vdso.h" 34 #include "strbuf.h" 35 #include "build-id.h" 36 #include "data.h" 37 #include <api/fs/fs.h> 38 #include "asm/bug.h" 39 #include "tool.h" 40 #include "time-utils.h" 41 #include "units.h" 42 43 #include "sane_ctype.h" 44 45 /* 46 * magic2 = "PERFILE2" 47 * must be a numerical value to let the endianness 48 * determine the memory layout. That way we are able 49 * to detect endianness when reading the perf.data file 50 * back. 51 * 52 * we check for legacy (PERFFILE) format. 53 */ 54 static const char *__perf_magic1 = "PERFFILE"; 55 static const u64 __perf_magic2 = 0x32454c4946524550ULL; 56 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; 57 58 #define PERF_MAGIC __perf_magic2 59 60 const char perf_version_string[] = PERF_VERSION; 61 62 struct perf_file_attr { 63 struct perf_event_attr attr; 64 struct perf_file_section ids; 65 }; 66 67 struct feat_fd { 68 struct perf_header *ph; 69 int fd; 70 void *buf; /* Either buf != NULL or fd >= 0 */ 71 ssize_t offset; 72 size_t size; 73 struct perf_evsel *events; 74 }; 75 76 void perf_header__set_feat(struct perf_header *header, int feat) 77 { 78 set_bit(feat, header->adds_features); 79 } 80 81 void perf_header__clear_feat(struct perf_header *header, int feat) 82 { 83 clear_bit(feat, header->adds_features); 84 } 85 86 bool perf_header__has_feat(const struct perf_header *header, int feat) 87 { 88 return test_bit(feat, header->adds_features); 89 } 90 91 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) 92 { 93 ssize_t ret = writen(ff->fd, buf, size); 94 95 if (ret != (ssize_t)size) 96 return ret < 0 ? (int)ret : -1; 97 return 0; 98 } 99 100 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) 101 { 102 /* struct perf_event_header::size is u16 */ 103 const size_t max_size = 0xffff - sizeof(struct perf_event_header); 104 size_t new_size = ff->size; 105 void *addr; 106 107 if (size + ff->offset > max_size) 108 return -E2BIG; 109 110 while (size > (new_size - ff->offset)) 111 new_size <<= 1; 112 new_size = min(max_size, new_size); 113 114 if (ff->size < new_size) { 115 addr = realloc(ff->buf, new_size); 116 if (!addr) 117 return -ENOMEM; 118 ff->buf = addr; 119 ff->size = new_size; 120 } 121 122 memcpy(ff->buf + ff->offset, buf, size); 123 ff->offset += size; 124 125 return 0; 126 } 127 128 /* Return: 0 if succeded, -ERR if failed. */ 129 int do_write(struct feat_fd *ff, const void *buf, size_t size) 130 { 131 if (!ff->buf) 132 return __do_write_fd(ff, buf, size); 133 return __do_write_buf(ff, buf, size); 134 } 135 136 /* Return: 0 if succeded, -ERR if failed. */ 137 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) 138 { 139 u64 *p = (u64 *) set; 140 int i, ret; 141 142 ret = do_write(ff, &size, sizeof(size)); 143 if (ret < 0) 144 return ret; 145 146 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 147 ret = do_write(ff, p + i, sizeof(*p)); 148 if (ret < 0) 149 return ret; 150 } 151 152 return 0; 153 } 154 155 /* Return: 0 if succeded, -ERR if failed. */ 156 int write_padded(struct feat_fd *ff, const void *bf, 157 size_t count, size_t count_aligned) 158 { 159 static const char zero_buf[NAME_ALIGN]; 160 int err = do_write(ff, bf, count); 161 162 if (!err) 163 err = do_write(ff, zero_buf, count_aligned - count); 164 165 return err; 166 } 167 168 #define string_size(str) \ 169 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) 170 171 /* Return: 0 if succeded, -ERR if failed. */ 172 static int do_write_string(struct feat_fd *ff, const char *str) 173 { 174 u32 len, olen; 175 int ret; 176 177 olen = strlen(str) + 1; 178 len = PERF_ALIGN(olen, NAME_ALIGN); 179 180 /* write len, incl. \0 */ 181 ret = do_write(ff, &len, sizeof(len)); 182 if (ret < 0) 183 return ret; 184 185 return write_padded(ff, str, olen, len); 186 } 187 188 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) 189 { 190 ssize_t ret = readn(ff->fd, addr, size); 191 192 if (ret != size) 193 return ret < 0 ? (int)ret : -1; 194 return 0; 195 } 196 197 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) 198 { 199 if (size > (ssize_t)ff->size - ff->offset) 200 return -1; 201 202 memcpy(addr, ff->buf + ff->offset, size); 203 ff->offset += size; 204 205 return 0; 206 207 } 208 209 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) 210 { 211 if (!ff->buf) 212 return __do_read_fd(ff, addr, size); 213 return __do_read_buf(ff, addr, size); 214 } 215 216 static int do_read_u32(struct feat_fd *ff, u32 *addr) 217 { 218 int ret; 219 220 ret = __do_read(ff, addr, sizeof(*addr)); 221 if (ret) 222 return ret; 223 224 if (ff->ph->needs_swap) 225 *addr = bswap_32(*addr); 226 return 0; 227 } 228 229 static int do_read_u64(struct feat_fd *ff, u64 *addr) 230 { 231 int ret; 232 233 ret = __do_read(ff, addr, sizeof(*addr)); 234 if (ret) 235 return ret; 236 237 if (ff->ph->needs_swap) 238 *addr = bswap_64(*addr); 239 return 0; 240 } 241 242 static char *do_read_string(struct feat_fd *ff) 243 { 244 u32 len; 245 char *buf; 246 247 if (do_read_u32(ff, &len)) 248 return NULL; 249 250 buf = malloc(len); 251 if (!buf) 252 return NULL; 253 254 if (!__do_read(ff, buf, len)) { 255 /* 256 * strings are padded by zeroes 257 * thus the actual strlen of buf 258 * may be less than len 259 */ 260 return buf; 261 } 262 263 free(buf); 264 return NULL; 265 } 266 267 /* Return: 0 if succeded, -ERR if failed. */ 268 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) 269 { 270 unsigned long *set; 271 u64 size, *p; 272 int i, ret; 273 274 ret = do_read_u64(ff, &size); 275 if (ret) 276 return ret; 277 278 set = bitmap_alloc(size); 279 if (!set) 280 return -ENOMEM; 281 282 p = (u64 *) set; 283 284 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 285 ret = do_read_u64(ff, p + i); 286 if (ret < 0) { 287 free(set); 288 return ret; 289 } 290 } 291 292 *pset = set; 293 *psize = size; 294 return 0; 295 } 296 297 static int write_tracing_data(struct feat_fd *ff, 298 struct perf_evlist *evlist) 299 { 300 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 301 return -1; 302 303 return read_tracing_data(ff->fd, &evlist->entries); 304 } 305 306 static int write_build_id(struct feat_fd *ff, 307 struct perf_evlist *evlist __maybe_unused) 308 { 309 struct perf_session *session; 310 int err; 311 312 session = container_of(ff->ph, struct perf_session, header); 313 314 if (!perf_session__read_build_ids(session, true)) 315 return -1; 316 317 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 318 return -1; 319 320 err = perf_session__write_buildid_table(session, ff); 321 if (err < 0) { 322 pr_debug("failed to write buildid table\n"); 323 return err; 324 } 325 perf_session__cache_build_ids(session); 326 327 return 0; 328 } 329 330 static int write_hostname(struct feat_fd *ff, 331 struct perf_evlist *evlist __maybe_unused) 332 { 333 struct utsname uts; 334 int ret; 335 336 ret = uname(&uts); 337 if (ret < 0) 338 return -1; 339 340 return do_write_string(ff, uts.nodename); 341 } 342 343 static int write_osrelease(struct feat_fd *ff, 344 struct perf_evlist *evlist __maybe_unused) 345 { 346 struct utsname uts; 347 int ret; 348 349 ret = uname(&uts); 350 if (ret < 0) 351 return -1; 352 353 return do_write_string(ff, uts.release); 354 } 355 356 static int write_arch(struct feat_fd *ff, 357 struct perf_evlist *evlist __maybe_unused) 358 { 359 struct utsname uts; 360 int ret; 361 362 ret = uname(&uts); 363 if (ret < 0) 364 return -1; 365 366 return do_write_string(ff, uts.machine); 367 } 368 369 static int write_version(struct feat_fd *ff, 370 struct perf_evlist *evlist __maybe_unused) 371 { 372 return do_write_string(ff, perf_version_string); 373 } 374 375 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) 376 { 377 FILE *file; 378 char *buf = NULL; 379 char *s, *p; 380 const char *search = cpuinfo_proc; 381 size_t len = 0; 382 int ret = -1; 383 384 if (!search) 385 return -1; 386 387 file = fopen("/proc/cpuinfo", "r"); 388 if (!file) 389 return -1; 390 391 while (getline(&buf, &len, file) > 0) { 392 ret = strncmp(buf, search, strlen(search)); 393 if (!ret) 394 break; 395 } 396 397 if (ret) { 398 ret = -1; 399 goto done; 400 } 401 402 s = buf; 403 404 p = strchr(buf, ':'); 405 if (p && *(p+1) == ' ' && *(p+2)) 406 s = p + 2; 407 p = strchr(s, '\n'); 408 if (p) 409 *p = '\0'; 410 411 /* squash extra space characters (branding string) */ 412 p = s; 413 while (*p) { 414 if (isspace(*p)) { 415 char *r = p + 1; 416 char *q = r; 417 *p = ' '; 418 while (*q && isspace(*q)) 419 q++; 420 if (q != (p+1)) 421 while ((*r++ = *q++)); 422 } 423 p++; 424 } 425 ret = do_write_string(ff, s); 426 done: 427 free(buf); 428 fclose(file); 429 return ret; 430 } 431 432 static int write_cpudesc(struct feat_fd *ff, 433 struct perf_evlist *evlist __maybe_unused) 434 { 435 const char *cpuinfo_procs[] = CPUINFO_PROC; 436 unsigned int i; 437 438 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { 439 int ret; 440 ret = __write_cpudesc(ff, cpuinfo_procs[i]); 441 if (ret >= 0) 442 return ret; 443 } 444 return -1; 445 } 446 447 448 static int write_nrcpus(struct feat_fd *ff, 449 struct perf_evlist *evlist __maybe_unused) 450 { 451 long nr; 452 u32 nrc, nra; 453 int ret; 454 455 nrc = cpu__max_present_cpu(); 456 457 nr = sysconf(_SC_NPROCESSORS_ONLN); 458 if (nr < 0) 459 return -1; 460 461 nra = (u32)(nr & UINT_MAX); 462 463 ret = do_write(ff, &nrc, sizeof(nrc)); 464 if (ret < 0) 465 return ret; 466 467 return do_write(ff, &nra, sizeof(nra)); 468 } 469 470 static int write_event_desc(struct feat_fd *ff, 471 struct perf_evlist *evlist) 472 { 473 struct perf_evsel *evsel; 474 u32 nre, nri, sz; 475 int ret; 476 477 nre = evlist->nr_entries; 478 479 /* 480 * write number of events 481 */ 482 ret = do_write(ff, &nre, sizeof(nre)); 483 if (ret < 0) 484 return ret; 485 486 /* 487 * size of perf_event_attr struct 488 */ 489 sz = (u32)sizeof(evsel->attr); 490 ret = do_write(ff, &sz, sizeof(sz)); 491 if (ret < 0) 492 return ret; 493 494 evlist__for_each_entry(evlist, evsel) { 495 ret = do_write(ff, &evsel->attr, sz); 496 if (ret < 0) 497 return ret; 498 /* 499 * write number of unique id per event 500 * there is one id per instance of an event 501 * 502 * copy into an nri to be independent of the 503 * type of ids, 504 */ 505 nri = evsel->ids; 506 ret = do_write(ff, &nri, sizeof(nri)); 507 if (ret < 0) 508 return ret; 509 510 /* 511 * write event string as passed on cmdline 512 */ 513 ret = do_write_string(ff, perf_evsel__name(evsel)); 514 if (ret < 0) 515 return ret; 516 /* 517 * write unique ids for this event 518 */ 519 ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64)); 520 if (ret < 0) 521 return ret; 522 } 523 return 0; 524 } 525 526 static int write_cmdline(struct feat_fd *ff, 527 struct perf_evlist *evlist __maybe_unused) 528 { 529 char buf[MAXPATHLEN]; 530 u32 n; 531 int i, ret; 532 533 /* actual path to perf binary */ 534 ret = readlink("/proc/self/exe", buf, sizeof(buf) - 1); 535 if (ret <= 0) 536 return -1; 537 538 /* readlink() does not add null termination */ 539 buf[ret] = '\0'; 540 541 /* account for binary path */ 542 n = perf_env.nr_cmdline + 1; 543 544 ret = do_write(ff, &n, sizeof(n)); 545 if (ret < 0) 546 return ret; 547 548 ret = do_write_string(ff, buf); 549 if (ret < 0) 550 return ret; 551 552 for (i = 0 ; i < perf_env.nr_cmdline; i++) { 553 ret = do_write_string(ff, perf_env.cmdline_argv[i]); 554 if (ret < 0) 555 return ret; 556 } 557 return 0; 558 } 559 560 #define CORE_SIB_FMT \ 561 "/sys/devices/system/cpu/cpu%d/topology/core_siblings_list" 562 #define THRD_SIB_FMT \ 563 "/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list" 564 565 struct cpu_topo { 566 u32 cpu_nr; 567 u32 core_sib; 568 u32 thread_sib; 569 char **core_siblings; 570 char **thread_siblings; 571 }; 572 573 static int build_cpu_topo(struct cpu_topo *tp, int cpu) 574 { 575 FILE *fp; 576 char filename[MAXPATHLEN]; 577 char *buf = NULL, *p; 578 size_t len = 0; 579 ssize_t sret; 580 u32 i = 0; 581 int ret = -1; 582 583 sprintf(filename, CORE_SIB_FMT, cpu); 584 fp = fopen(filename, "r"); 585 if (!fp) 586 goto try_threads; 587 588 sret = getline(&buf, &len, fp); 589 fclose(fp); 590 if (sret <= 0) 591 goto try_threads; 592 593 p = strchr(buf, '\n'); 594 if (p) 595 *p = '\0'; 596 597 for (i = 0; i < tp->core_sib; i++) { 598 if (!strcmp(buf, tp->core_siblings[i])) 599 break; 600 } 601 if (i == tp->core_sib) { 602 tp->core_siblings[i] = buf; 603 tp->core_sib++; 604 buf = NULL; 605 len = 0; 606 } 607 ret = 0; 608 609 try_threads: 610 sprintf(filename, THRD_SIB_FMT, cpu); 611 fp = fopen(filename, "r"); 612 if (!fp) 613 goto done; 614 615 if (getline(&buf, &len, fp) <= 0) 616 goto done; 617 618 p = strchr(buf, '\n'); 619 if (p) 620 *p = '\0'; 621 622 for (i = 0; i < tp->thread_sib; i++) { 623 if (!strcmp(buf, tp->thread_siblings[i])) 624 break; 625 } 626 if (i == tp->thread_sib) { 627 tp->thread_siblings[i] = buf; 628 tp->thread_sib++; 629 buf = NULL; 630 } 631 ret = 0; 632 done: 633 if(fp) 634 fclose(fp); 635 free(buf); 636 return ret; 637 } 638 639 static void free_cpu_topo(struct cpu_topo *tp) 640 { 641 u32 i; 642 643 if (!tp) 644 return; 645 646 for (i = 0 ; i < tp->core_sib; i++) 647 zfree(&tp->core_siblings[i]); 648 649 for (i = 0 ; i < tp->thread_sib; i++) 650 zfree(&tp->thread_siblings[i]); 651 652 free(tp); 653 } 654 655 static struct cpu_topo *build_cpu_topology(void) 656 { 657 struct cpu_topo *tp = NULL; 658 void *addr; 659 u32 nr, i; 660 size_t sz; 661 long ncpus; 662 int ret = -1; 663 struct cpu_map *map; 664 665 ncpus = cpu__max_present_cpu(); 666 667 /* build online CPU map */ 668 map = cpu_map__new(NULL); 669 if (map == NULL) { 670 pr_debug("failed to get system cpumap\n"); 671 return NULL; 672 } 673 674 nr = (u32)(ncpus & UINT_MAX); 675 676 sz = nr * sizeof(char *); 677 addr = calloc(1, sizeof(*tp) + 2 * sz); 678 if (!addr) 679 goto out_free; 680 681 tp = addr; 682 tp->cpu_nr = nr; 683 addr += sizeof(*tp); 684 tp->core_siblings = addr; 685 addr += sz; 686 tp->thread_siblings = addr; 687 688 for (i = 0; i < nr; i++) { 689 if (!cpu_map__has(map, i)) 690 continue; 691 692 ret = build_cpu_topo(tp, i); 693 if (ret < 0) 694 break; 695 } 696 697 out_free: 698 cpu_map__put(map); 699 if (ret) { 700 free_cpu_topo(tp); 701 tp = NULL; 702 } 703 return tp; 704 } 705 706 static int write_cpu_topology(struct feat_fd *ff, 707 struct perf_evlist *evlist __maybe_unused) 708 { 709 struct cpu_topo *tp; 710 u32 i; 711 int ret, j; 712 713 tp = build_cpu_topology(); 714 if (!tp) 715 return -1; 716 717 ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib)); 718 if (ret < 0) 719 goto done; 720 721 for (i = 0; i < tp->core_sib; i++) { 722 ret = do_write_string(ff, tp->core_siblings[i]); 723 if (ret < 0) 724 goto done; 725 } 726 ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib)); 727 if (ret < 0) 728 goto done; 729 730 for (i = 0; i < tp->thread_sib; i++) { 731 ret = do_write_string(ff, tp->thread_siblings[i]); 732 if (ret < 0) 733 break; 734 } 735 736 ret = perf_env__read_cpu_topology_map(&perf_env); 737 if (ret < 0) 738 goto done; 739 740 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 741 ret = do_write(ff, &perf_env.cpu[j].core_id, 742 sizeof(perf_env.cpu[j].core_id)); 743 if (ret < 0) 744 return ret; 745 ret = do_write(ff, &perf_env.cpu[j].socket_id, 746 sizeof(perf_env.cpu[j].socket_id)); 747 if (ret < 0) 748 return ret; 749 } 750 done: 751 free_cpu_topo(tp); 752 return ret; 753 } 754 755 756 757 static int write_total_mem(struct feat_fd *ff, 758 struct perf_evlist *evlist __maybe_unused) 759 { 760 char *buf = NULL; 761 FILE *fp; 762 size_t len = 0; 763 int ret = -1, n; 764 uint64_t mem; 765 766 fp = fopen("/proc/meminfo", "r"); 767 if (!fp) 768 return -1; 769 770 while (getline(&buf, &len, fp) > 0) { 771 ret = strncmp(buf, "MemTotal:", 9); 772 if (!ret) 773 break; 774 } 775 if (!ret) { 776 n = sscanf(buf, "%*s %"PRIu64, &mem); 777 if (n == 1) 778 ret = do_write(ff, &mem, sizeof(mem)); 779 } else 780 ret = -1; 781 free(buf); 782 fclose(fp); 783 return ret; 784 } 785 786 static int write_topo_node(struct feat_fd *ff, int node) 787 { 788 char str[MAXPATHLEN]; 789 char field[32]; 790 char *buf = NULL, *p; 791 size_t len = 0; 792 FILE *fp; 793 u64 mem_total, mem_free, mem; 794 int ret = -1; 795 796 sprintf(str, "/sys/devices/system/node/node%d/meminfo", node); 797 fp = fopen(str, "r"); 798 if (!fp) 799 return -1; 800 801 while (getline(&buf, &len, fp) > 0) { 802 /* skip over invalid lines */ 803 if (!strchr(buf, ':')) 804 continue; 805 if (sscanf(buf, "%*s %*d %31s %"PRIu64, field, &mem) != 2) 806 goto done; 807 if (!strcmp(field, "MemTotal:")) 808 mem_total = mem; 809 if (!strcmp(field, "MemFree:")) 810 mem_free = mem; 811 } 812 813 fclose(fp); 814 fp = NULL; 815 816 ret = do_write(ff, &mem_total, sizeof(u64)); 817 if (ret) 818 goto done; 819 820 ret = do_write(ff, &mem_free, sizeof(u64)); 821 if (ret) 822 goto done; 823 824 ret = -1; 825 sprintf(str, "/sys/devices/system/node/node%d/cpulist", node); 826 827 fp = fopen(str, "r"); 828 if (!fp) 829 goto done; 830 831 if (getline(&buf, &len, fp) <= 0) 832 goto done; 833 834 p = strchr(buf, '\n'); 835 if (p) 836 *p = '\0'; 837 838 ret = do_write_string(ff, buf); 839 done: 840 free(buf); 841 if (fp) 842 fclose(fp); 843 return ret; 844 } 845 846 static int write_numa_topology(struct feat_fd *ff, 847 struct perf_evlist *evlist __maybe_unused) 848 { 849 char *buf = NULL; 850 size_t len = 0; 851 FILE *fp; 852 struct cpu_map *node_map = NULL; 853 char *c; 854 u32 nr, i, j; 855 int ret = -1; 856 857 fp = fopen("/sys/devices/system/node/online", "r"); 858 if (!fp) 859 return -1; 860 861 if (getline(&buf, &len, fp) <= 0) 862 goto done; 863 864 c = strchr(buf, '\n'); 865 if (c) 866 *c = '\0'; 867 868 node_map = cpu_map__new(buf); 869 if (!node_map) 870 goto done; 871 872 nr = (u32)node_map->nr; 873 874 ret = do_write(ff, &nr, sizeof(nr)); 875 if (ret < 0) 876 goto done; 877 878 for (i = 0; i < nr; i++) { 879 j = (u32)node_map->map[i]; 880 ret = do_write(ff, &j, sizeof(j)); 881 if (ret < 0) 882 break; 883 884 ret = write_topo_node(ff, i); 885 if (ret < 0) 886 break; 887 } 888 done: 889 free(buf); 890 fclose(fp); 891 cpu_map__put(node_map); 892 return ret; 893 } 894 895 /* 896 * File format: 897 * 898 * struct pmu_mappings { 899 * u32 pmu_num; 900 * struct pmu_map { 901 * u32 type; 902 * char name[]; 903 * }[pmu_num]; 904 * }; 905 */ 906 907 static int write_pmu_mappings(struct feat_fd *ff, 908 struct perf_evlist *evlist __maybe_unused) 909 { 910 struct perf_pmu *pmu = NULL; 911 u32 pmu_num = 0; 912 int ret; 913 914 /* 915 * Do a first pass to count number of pmu to avoid lseek so this 916 * works in pipe mode as well. 917 */ 918 while ((pmu = perf_pmu__scan(pmu))) { 919 if (!pmu->name) 920 continue; 921 pmu_num++; 922 } 923 924 ret = do_write(ff, &pmu_num, sizeof(pmu_num)); 925 if (ret < 0) 926 return ret; 927 928 while ((pmu = perf_pmu__scan(pmu))) { 929 if (!pmu->name) 930 continue; 931 932 ret = do_write(ff, &pmu->type, sizeof(pmu->type)); 933 if (ret < 0) 934 return ret; 935 936 ret = do_write_string(ff, pmu->name); 937 if (ret < 0) 938 return ret; 939 } 940 941 return 0; 942 } 943 944 /* 945 * File format: 946 * 947 * struct group_descs { 948 * u32 nr_groups; 949 * struct group_desc { 950 * char name[]; 951 * u32 leader_idx; 952 * u32 nr_members; 953 * }[nr_groups]; 954 * }; 955 */ 956 static int write_group_desc(struct feat_fd *ff, 957 struct perf_evlist *evlist) 958 { 959 u32 nr_groups = evlist->nr_groups; 960 struct perf_evsel *evsel; 961 int ret; 962 963 ret = do_write(ff, &nr_groups, sizeof(nr_groups)); 964 if (ret < 0) 965 return ret; 966 967 evlist__for_each_entry(evlist, evsel) { 968 if (perf_evsel__is_group_leader(evsel) && 969 evsel->nr_members > 1) { 970 const char *name = evsel->group_name ?: "{anon_group}"; 971 u32 leader_idx = evsel->idx; 972 u32 nr_members = evsel->nr_members; 973 974 ret = do_write_string(ff, name); 975 if (ret < 0) 976 return ret; 977 978 ret = do_write(ff, &leader_idx, sizeof(leader_idx)); 979 if (ret < 0) 980 return ret; 981 982 ret = do_write(ff, &nr_members, sizeof(nr_members)); 983 if (ret < 0) 984 return ret; 985 } 986 } 987 return 0; 988 } 989 990 /* 991 * Return the CPU id as a raw string. 992 * 993 * Each architecture should provide a more precise id string that 994 * can be use to match the architecture's "mapfile". 995 */ 996 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused) 997 { 998 return NULL; 999 } 1000 1001 /* Return zero when the cpuid from the mapfile.csv matches the 1002 * cpuid string generated on this platform. 1003 * Otherwise return non-zero. 1004 */ 1005 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid) 1006 { 1007 regex_t re; 1008 regmatch_t pmatch[1]; 1009 int match; 1010 1011 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) { 1012 /* Warn unable to generate match particular string. */ 1013 pr_info("Invalid regular expression %s\n", mapcpuid); 1014 return 1; 1015 } 1016 1017 match = !regexec(&re, cpuid, 1, pmatch, 0); 1018 regfree(&re); 1019 if (match) { 1020 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so); 1021 1022 /* Verify the entire string matched. */ 1023 if (match_len == strlen(cpuid)) 1024 return 0; 1025 } 1026 return 1; 1027 } 1028 1029 /* 1030 * default get_cpuid(): nothing gets recorded 1031 * actual implementation must be in arch/$(SRCARCH)/util/header.c 1032 */ 1033 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused) 1034 { 1035 return -1; 1036 } 1037 1038 static int write_cpuid(struct feat_fd *ff, 1039 struct perf_evlist *evlist __maybe_unused) 1040 { 1041 char buffer[64]; 1042 int ret; 1043 1044 ret = get_cpuid(buffer, sizeof(buffer)); 1045 if (!ret) 1046 goto write_it; 1047 1048 return -1; 1049 write_it: 1050 return do_write_string(ff, buffer); 1051 } 1052 1053 static int write_branch_stack(struct feat_fd *ff __maybe_unused, 1054 struct perf_evlist *evlist __maybe_unused) 1055 { 1056 return 0; 1057 } 1058 1059 static int write_auxtrace(struct feat_fd *ff, 1060 struct perf_evlist *evlist __maybe_unused) 1061 { 1062 struct perf_session *session; 1063 int err; 1064 1065 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 1066 return -1; 1067 1068 session = container_of(ff->ph, struct perf_session, header); 1069 1070 err = auxtrace_index__write(ff->fd, &session->auxtrace_index); 1071 if (err < 0) 1072 pr_err("Failed to write auxtrace index\n"); 1073 return err; 1074 } 1075 1076 static int write_clockid(struct feat_fd *ff, 1077 struct perf_evlist *evlist __maybe_unused) 1078 { 1079 return do_write(ff, &ff->ph->env.clockid_res_ns, 1080 sizeof(ff->ph->env.clockid_res_ns)); 1081 } 1082 1083 static int cpu_cache_level__sort(const void *a, const void *b) 1084 { 1085 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; 1086 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; 1087 1088 return cache_a->level - cache_b->level; 1089 } 1090 1091 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) 1092 { 1093 if (a->level != b->level) 1094 return false; 1095 1096 if (a->line_size != b->line_size) 1097 return false; 1098 1099 if (a->sets != b->sets) 1100 return false; 1101 1102 if (a->ways != b->ways) 1103 return false; 1104 1105 if (strcmp(a->type, b->type)) 1106 return false; 1107 1108 if (strcmp(a->size, b->size)) 1109 return false; 1110 1111 if (strcmp(a->map, b->map)) 1112 return false; 1113 1114 return true; 1115 } 1116 1117 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) 1118 { 1119 char path[PATH_MAX], file[PATH_MAX]; 1120 struct stat st; 1121 size_t len; 1122 1123 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); 1124 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); 1125 1126 if (stat(file, &st)) 1127 return 1; 1128 1129 scnprintf(file, PATH_MAX, "%s/level", path); 1130 if (sysfs__read_int(file, (int *) &cache->level)) 1131 return -1; 1132 1133 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); 1134 if (sysfs__read_int(file, (int *) &cache->line_size)) 1135 return -1; 1136 1137 scnprintf(file, PATH_MAX, "%s/number_of_sets", path); 1138 if (sysfs__read_int(file, (int *) &cache->sets)) 1139 return -1; 1140 1141 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); 1142 if (sysfs__read_int(file, (int *) &cache->ways)) 1143 return -1; 1144 1145 scnprintf(file, PATH_MAX, "%s/type", path); 1146 if (sysfs__read_str(file, &cache->type, &len)) 1147 return -1; 1148 1149 cache->type[len] = 0; 1150 cache->type = rtrim(cache->type); 1151 1152 scnprintf(file, PATH_MAX, "%s/size", path); 1153 if (sysfs__read_str(file, &cache->size, &len)) { 1154 free(cache->type); 1155 return -1; 1156 } 1157 1158 cache->size[len] = 0; 1159 cache->size = rtrim(cache->size); 1160 1161 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); 1162 if (sysfs__read_str(file, &cache->map, &len)) { 1163 free(cache->map); 1164 free(cache->type); 1165 return -1; 1166 } 1167 1168 cache->map[len] = 0; 1169 cache->map = rtrim(cache->map); 1170 return 0; 1171 } 1172 1173 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) 1174 { 1175 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); 1176 } 1177 1178 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp) 1179 { 1180 u32 i, cnt = 0; 1181 long ncpus; 1182 u32 nr, cpu; 1183 u16 level; 1184 1185 ncpus = sysconf(_SC_NPROCESSORS_CONF); 1186 if (ncpus < 0) 1187 return -1; 1188 1189 nr = (u32)(ncpus & UINT_MAX); 1190 1191 for (cpu = 0; cpu < nr; cpu++) { 1192 for (level = 0; level < 10; level++) { 1193 struct cpu_cache_level c; 1194 int err; 1195 1196 err = cpu_cache_level__read(&c, cpu, level); 1197 if (err < 0) 1198 return err; 1199 1200 if (err == 1) 1201 break; 1202 1203 for (i = 0; i < cnt; i++) { 1204 if (cpu_cache_level__cmp(&c, &caches[i])) 1205 break; 1206 } 1207 1208 if (i == cnt) 1209 caches[cnt++] = c; 1210 else 1211 cpu_cache_level__free(&c); 1212 1213 if (WARN_ONCE(cnt == size, "way too many cpu caches..")) 1214 goto out; 1215 } 1216 } 1217 out: 1218 *cntp = cnt; 1219 return 0; 1220 } 1221 1222 #define MAX_CACHES 2000 1223 1224 static int write_cache(struct feat_fd *ff, 1225 struct perf_evlist *evlist __maybe_unused) 1226 { 1227 struct cpu_cache_level caches[MAX_CACHES]; 1228 u32 cnt = 0, i, version = 1; 1229 int ret; 1230 1231 ret = build_caches(caches, MAX_CACHES, &cnt); 1232 if (ret) 1233 goto out; 1234 1235 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); 1236 1237 ret = do_write(ff, &version, sizeof(u32)); 1238 if (ret < 0) 1239 goto out; 1240 1241 ret = do_write(ff, &cnt, sizeof(u32)); 1242 if (ret < 0) 1243 goto out; 1244 1245 for (i = 0; i < cnt; i++) { 1246 struct cpu_cache_level *c = &caches[i]; 1247 1248 #define _W(v) \ 1249 ret = do_write(ff, &c->v, sizeof(u32)); \ 1250 if (ret < 0) \ 1251 goto out; 1252 1253 _W(level) 1254 _W(line_size) 1255 _W(sets) 1256 _W(ways) 1257 #undef _W 1258 1259 #define _W(v) \ 1260 ret = do_write_string(ff, (const char *) c->v); \ 1261 if (ret < 0) \ 1262 goto out; 1263 1264 _W(type) 1265 _W(size) 1266 _W(map) 1267 #undef _W 1268 } 1269 1270 out: 1271 for (i = 0; i < cnt; i++) 1272 cpu_cache_level__free(&caches[i]); 1273 return ret; 1274 } 1275 1276 static int write_stat(struct feat_fd *ff __maybe_unused, 1277 struct perf_evlist *evlist __maybe_unused) 1278 { 1279 return 0; 1280 } 1281 1282 static int write_sample_time(struct feat_fd *ff, 1283 struct perf_evlist *evlist) 1284 { 1285 int ret; 1286 1287 ret = do_write(ff, &evlist->first_sample_time, 1288 sizeof(evlist->first_sample_time)); 1289 if (ret < 0) 1290 return ret; 1291 1292 return do_write(ff, &evlist->last_sample_time, 1293 sizeof(evlist->last_sample_time)); 1294 } 1295 1296 1297 static int memory_node__read(struct memory_node *n, unsigned long idx) 1298 { 1299 unsigned int phys, size = 0; 1300 char path[PATH_MAX]; 1301 struct dirent *ent; 1302 DIR *dir; 1303 1304 #define for_each_memory(mem, dir) \ 1305 while ((ent = readdir(dir))) \ 1306 if (strcmp(ent->d_name, ".") && \ 1307 strcmp(ent->d_name, "..") && \ 1308 sscanf(ent->d_name, "memory%u", &mem) == 1) 1309 1310 scnprintf(path, PATH_MAX, 1311 "%s/devices/system/node/node%lu", 1312 sysfs__mountpoint(), idx); 1313 1314 dir = opendir(path); 1315 if (!dir) { 1316 pr_warning("failed: cant' open memory sysfs data\n"); 1317 return -1; 1318 } 1319 1320 for_each_memory(phys, dir) { 1321 size = max(phys, size); 1322 } 1323 1324 size++; 1325 1326 n->set = bitmap_alloc(size); 1327 if (!n->set) { 1328 closedir(dir); 1329 return -ENOMEM; 1330 } 1331 1332 n->node = idx; 1333 n->size = size; 1334 1335 rewinddir(dir); 1336 1337 for_each_memory(phys, dir) { 1338 set_bit(phys, n->set); 1339 } 1340 1341 closedir(dir); 1342 return 0; 1343 } 1344 1345 static int memory_node__sort(const void *a, const void *b) 1346 { 1347 const struct memory_node *na = a; 1348 const struct memory_node *nb = b; 1349 1350 return na->node - nb->node; 1351 } 1352 1353 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp) 1354 { 1355 char path[PATH_MAX]; 1356 struct dirent *ent; 1357 DIR *dir; 1358 u64 cnt = 0; 1359 int ret = 0; 1360 1361 scnprintf(path, PATH_MAX, "%s/devices/system/node/", 1362 sysfs__mountpoint()); 1363 1364 dir = opendir(path); 1365 if (!dir) { 1366 pr_debug2("%s: could't read %s, does this arch have topology information?\n", 1367 __func__, path); 1368 return -1; 1369 } 1370 1371 while (!ret && (ent = readdir(dir))) { 1372 unsigned int idx; 1373 int r; 1374 1375 if (!strcmp(ent->d_name, ".") || 1376 !strcmp(ent->d_name, "..")) 1377 continue; 1378 1379 r = sscanf(ent->d_name, "node%u", &idx); 1380 if (r != 1) 1381 continue; 1382 1383 if (WARN_ONCE(cnt >= size, 1384 "failed to write MEM_TOPOLOGY, way too many nodes\n")) 1385 return -1; 1386 1387 ret = memory_node__read(&nodes[cnt++], idx); 1388 } 1389 1390 *cntp = cnt; 1391 closedir(dir); 1392 1393 if (!ret) 1394 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); 1395 1396 return ret; 1397 } 1398 1399 #define MAX_MEMORY_NODES 2000 1400 1401 /* 1402 * The MEM_TOPOLOGY holds physical memory map for every 1403 * node in system. The format of data is as follows: 1404 * 1405 * 0 - version | for future changes 1406 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes 1407 * 16 - count | number of nodes 1408 * 1409 * For each node we store map of physical indexes for 1410 * each node: 1411 * 1412 * 32 - node id | node index 1413 * 40 - size | size of bitmap 1414 * 48 - bitmap | bitmap of memory indexes that belongs to node 1415 */ 1416 static int write_mem_topology(struct feat_fd *ff __maybe_unused, 1417 struct perf_evlist *evlist __maybe_unused) 1418 { 1419 static struct memory_node nodes[MAX_MEMORY_NODES]; 1420 u64 bsize, version = 1, i, nr; 1421 int ret; 1422 1423 ret = sysfs__read_xll("devices/system/memory/block_size_bytes", 1424 (unsigned long long *) &bsize); 1425 if (ret) 1426 return ret; 1427 1428 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr); 1429 if (ret) 1430 return ret; 1431 1432 ret = do_write(ff, &version, sizeof(version)); 1433 if (ret < 0) 1434 goto out; 1435 1436 ret = do_write(ff, &bsize, sizeof(bsize)); 1437 if (ret < 0) 1438 goto out; 1439 1440 ret = do_write(ff, &nr, sizeof(nr)); 1441 if (ret < 0) 1442 goto out; 1443 1444 for (i = 0; i < nr; i++) { 1445 struct memory_node *n = &nodes[i]; 1446 1447 #define _W(v) \ 1448 ret = do_write(ff, &n->v, sizeof(n->v)); \ 1449 if (ret < 0) \ 1450 goto out; 1451 1452 _W(node) 1453 _W(size) 1454 1455 #undef _W 1456 1457 ret = do_write_bitmap(ff, n->set, n->size); 1458 if (ret < 0) 1459 goto out; 1460 } 1461 1462 out: 1463 return ret; 1464 } 1465 1466 static void print_hostname(struct feat_fd *ff, FILE *fp) 1467 { 1468 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); 1469 } 1470 1471 static void print_osrelease(struct feat_fd *ff, FILE *fp) 1472 { 1473 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); 1474 } 1475 1476 static void print_arch(struct feat_fd *ff, FILE *fp) 1477 { 1478 fprintf(fp, "# arch : %s\n", ff->ph->env.arch); 1479 } 1480 1481 static void print_cpudesc(struct feat_fd *ff, FILE *fp) 1482 { 1483 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); 1484 } 1485 1486 static void print_nrcpus(struct feat_fd *ff, FILE *fp) 1487 { 1488 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); 1489 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); 1490 } 1491 1492 static void print_version(struct feat_fd *ff, FILE *fp) 1493 { 1494 fprintf(fp, "# perf version : %s\n", ff->ph->env.version); 1495 } 1496 1497 static void print_cmdline(struct feat_fd *ff, FILE *fp) 1498 { 1499 int nr, i; 1500 1501 nr = ff->ph->env.nr_cmdline; 1502 1503 fprintf(fp, "# cmdline : "); 1504 1505 for (i = 0; i < nr; i++) { 1506 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); 1507 if (!argv_i) { 1508 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); 1509 } else { 1510 char *mem = argv_i; 1511 do { 1512 char *quote = strchr(argv_i, '\''); 1513 if (!quote) 1514 break; 1515 *quote++ = '\0'; 1516 fprintf(fp, "%s\\\'", argv_i); 1517 argv_i = quote; 1518 } while (1); 1519 fprintf(fp, "%s ", argv_i); 1520 free(mem); 1521 } 1522 } 1523 fputc('\n', fp); 1524 } 1525 1526 static void print_cpu_topology(struct feat_fd *ff, FILE *fp) 1527 { 1528 struct perf_header *ph = ff->ph; 1529 int cpu_nr = ph->env.nr_cpus_avail; 1530 int nr, i; 1531 char *str; 1532 1533 nr = ph->env.nr_sibling_cores; 1534 str = ph->env.sibling_cores; 1535 1536 for (i = 0; i < nr; i++) { 1537 fprintf(fp, "# sibling cores : %s\n", str); 1538 str += strlen(str) + 1; 1539 } 1540 1541 nr = ph->env.nr_sibling_threads; 1542 str = ph->env.sibling_threads; 1543 1544 for (i = 0; i < nr; i++) { 1545 fprintf(fp, "# sibling threads : %s\n", str); 1546 str += strlen(str) + 1; 1547 } 1548 1549 if (ph->env.cpu != NULL) { 1550 for (i = 0; i < cpu_nr; i++) 1551 fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i, 1552 ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id); 1553 } else 1554 fprintf(fp, "# Core ID and Socket ID information is not available\n"); 1555 } 1556 1557 static void print_clockid(struct feat_fd *ff, FILE *fp) 1558 { 1559 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", 1560 ff->ph->env.clockid_res_ns * 1000); 1561 } 1562 1563 static void free_event_desc(struct perf_evsel *events) 1564 { 1565 struct perf_evsel *evsel; 1566 1567 if (!events) 1568 return; 1569 1570 for (evsel = events; evsel->attr.size; evsel++) { 1571 zfree(&evsel->name); 1572 zfree(&evsel->id); 1573 } 1574 1575 free(events); 1576 } 1577 1578 static struct perf_evsel *read_event_desc(struct feat_fd *ff) 1579 { 1580 struct perf_evsel *evsel, *events = NULL; 1581 u64 *id; 1582 void *buf = NULL; 1583 u32 nre, sz, nr, i, j; 1584 size_t msz; 1585 1586 /* number of events */ 1587 if (do_read_u32(ff, &nre)) 1588 goto error; 1589 1590 if (do_read_u32(ff, &sz)) 1591 goto error; 1592 1593 /* buffer to hold on file attr struct */ 1594 buf = malloc(sz); 1595 if (!buf) 1596 goto error; 1597 1598 /* the last event terminates with evsel->attr.size == 0: */ 1599 events = calloc(nre + 1, sizeof(*events)); 1600 if (!events) 1601 goto error; 1602 1603 msz = sizeof(evsel->attr); 1604 if (sz < msz) 1605 msz = sz; 1606 1607 for (i = 0, evsel = events; i < nre; evsel++, i++) { 1608 evsel->idx = i; 1609 1610 /* 1611 * must read entire on-file attr struct to 1612 * sync up with layout. 1613 */ 1614 if (__do_read(ff, buf, sz)) 1615 goto error; 1616 1617 if (ff->ph->needs_swap) 1618 perf_event__attr_swap(buf); 1619 1620 memcpy(&evsel->attr, buf, msz); 1621 1622 if (do_read_u32(ff, &nr)) 1623 goto error; 1624 1625 if (ff->ph->needs_swap) 1626 evsel->needs_swap = true; 1627 1628 evsel->name = do_read_string(ff); 1629 if (!evsel->name) 1630 goto error; 1631 1632 if (!nr) 1633 continue; 1634 1635 id = calloc(nr, sizeof(*id)); 1636 if (!id) 1637 goto error; 1638 evsel->ids = nr; 1639 evsel->id = id; 1640 1641 for (j = 0 ; j < nr; j++) { 1642 if (do_read_u64(ff, id)) 1643 goto error; 1644 id++; 1645 } 1646 } 1647 out: 1648 free(buf); 1649 return events; 1650 error: 1651 free_event_desc(events); 1652 events = NULL; 1653 goto out; 1654 } 1655 1656 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, 1657 void *priv __maybe_unused) 1658 { 1659 return fprintf(fp, ", %s = %s", name, val); 1660 } 1661 1662 static void print_event_desc(struct feat_fd *ff, FILE *fp) 1663 { 1664 struct perf_evsel *evsel, *events; 1665 u32 j; 1666 u64 *id; 1667 1668 if (ff->events) 1669 events = ff->events; 1670 else 1671 events = read_event_desc(ff); 1672 1673 if (!events) { 1674 fprintf(fp, "# event desc: not available or unable to read\n"); 1675 return; 1676 } 1677 1678 for (evsel = events; evsel->attr.size; evsel++) { 1679 fprintf(fp, "# event : name = %s, ", evsel->name); 1680 1681 if (evsel->ids) { 1682 fprintf(fp, ", id = {"); 1683 for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) { 1684 if (j) 1685 fputc(',', fp); 1686 fprintf(fp, " %"PRIu64, *id); 1687 } 1688 fprintf(fp, " }"); 1689 } 1690 1691 perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL); 1692 1693 fputc('\n', fp); 1694 } 1695 1696 free_event_desc(events); 1697 ff->events = NULL; 1698 } 1699 1700 static void print_total_mem(struct feat_fd *ff, FILE *fp) 1701 { 1702 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); 1703 } 1704 1705 static void print_numa_topology(struct feat_fd *ff, FILE *fp) 1706 { 1707 int i; 1708 struct numa_node *n; 1709 1710 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { 1711 n = &ff->ph->env.numa_nodes[i]; 1712 1713 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," 1714 " free = %"PRIu64" kB\n", 1715 n->node, n->mem_total, n->mem_free); 1716 1717 fprintf(fp, "# node%u cpu list : ", n->node); 1718 cpu_map__fprintf(n->map, fp); 1719 } 1720 } 1721 1722 static void print_cpuid(struct feat_fd *ff, FILE *fp) 1723 { 1724 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); 1725 } 1726 1727 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) 1728 { 1729 fprintf(fp, "# contains samples with branch stack\n"); 1730 } 1731 1732 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) 1733 { 1734 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); 1735 } 1736 1737 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) 1738 { 1739 fprintf(fp, "# contains stat data\n"); 1740 } 1741 1742 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) 1743 { 1744 int i; 1745 1746 fprintf(fp, "# CPU cache info:\n"); 1747 for (i = 0; i < ff->ph->env.caches_cnt; i++) { 1748 fprintf(fp, "# "); 1749 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); 1750 } 1751 } 1752 1753 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) 1754 { 1755 const char *delimiter = "# pmu mappings: "; 1756 char *str, *tmp; 1757 u32 pmu_num; 1758 u32 type; 1759 1760 pmu_num = ff->ph->env.nr_pmu_mappings; 1761 if (!pmu_num) { 1762 fprintf(fp, "# pmu mappings: not available\n"); 1763 return; 1764 } 1765 1766 str = ff->ph->env.pmu_mappings; 1767 1768 while (pmu_num) { 1769 type = strtoul(str, &tmp, 0); 1770 if (*tmp != ':') 1771 goto error; 1772 1773 str = tmp + 1; 1774 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); 1775 1776 delimiter = ", "; 1777 str += strlen(str) + 1; 1778 pmu_num--; 1779 } 1780 1781 fprintf(fp, "\n"); 1782 1783 if (!pmu_num) 1784 return; 1785 error: 1786 fprintf(fp, "# pmu mappings: unable to read\n"); 1787 } 1788 1789 static void print_group_desc(struct feat_fd *ff, FILE *fp) 1790 { 1791 struct perf_session *session; 1792 struct perf_evsel *evsel; 1793 u32 nr = 0; 1794 1795 session = container_of(ff->ph, struct perf_session, header); 1796 1797 evlist__for_each_entry(session->evlist, evsel) { 1798 if (perf_evsel__is_group_leader(evsel) && 1799 evsel->nr_members > 1) { 1800 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", 1801 perf_evsel__name(evsel)); 1802 1803 nr = evsel->nr_members - 1; 1804 } else if (nr) { 1805 fprintf(fp, ",%s", perf_evsel__name(evsel)); 1806 1807 if (--nr == 0) 1808 fprintf(fp, "}\n"); 1809 } 1810 } 1811 } 1812 1813 static void print_sample_time(struct feat_fd *ff, FILE *fp) 1814 { 1815 struct perf_session *session; 1816 char time_buf[32]; 1817 double d; 1818 1819 session = container_of(ff->ph, struct perf_session, header); 1820 1821 timestamp__scnprintf_usec(session->evlist->first_sample_time, 1822 time_buf, sizeof(time_buf)); 1823 fprintf(fp, "# time of first sample : %s\n", time_buf); 1824 1825 timestamp__scnprintf_usec(session->evlist->last_sample_time, 1826 time_buf, sizeof(time_buf)); 1827 fprintf(fp, "# time of last sample : %s\n", time_buf); 1828 1829 d = (double)(session->evlist->last_sample_time - 1830 session->evlist->first_sample_time) / NSEC_PER_MSEC; 1831 1832 fprintf(fp, "# sample duration : %10.3f ms\n", d); 1833 } 1834 1835 static void memory_node__fprintf(struct memory_node *n, 1836 unsigned long long bsize, FILE *fp) 1837 { 1838 char buf_map[100], buf_size[50]; 1839 unsigned long long size; 1840 1841 size = bsize * bitmap_weight(n->set, n->size); 1842 unit_number__scnprintf(buf_size, 50, size); 1843 1844 bitmap_scnprintf(n->set, n->size, buf_map, 100); 1845 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); 1846 } 1847 1848 static void print_mem_topology(struct feat_fd *ff, FILE *fp) 1849 { 1850 struct memory_node *nodes; 1851 int i, nr; 1852 1853 nodes = ff->ph->env.memory_nodes; 1854 nr = ff->ph->env.nr_memory_nodes; 1855 1856 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", 1857 nr, ff->ph->env.memory_bsize); 1858 1859 for (i = 0; i < nr; i++) { 1860 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp); 1861 } 1862 } 1863 1864 static int __event_process_build_id(struct build_id_event *bev, 1865 char *filename, 1866 struct perf_session *session) 1867 { 1868 int err = -1; 1869 struct machine *machine; 1870 u16 cpumode; 1871 struct dso *dso; 1872 enum dso_kernel_type dso_type; 1873 1874 machine = perf_session__findnew_machine(session, bev->pid); 1875 if (!machine) 1876 goto out; 1877 1878 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1879 1880 switch (cpumode) { 1881 case PERF_RECORD_MISC_KERNEL: 1882 dso_type = DSO_TYPE_KERNEL; 1883 break; 1884 case PERF_RECORD_MISC_GUEST_KERNEL: 1885 dso_type = DSO_TYPE_GUEST_KERNEL; 1886 break; 1887 case PERF_RECORD_MISC_USER: 1888 case PERF_RECORD_MISC_GUEST_USER: 1889 dso_type = DSO_TYPE_USER; 1890 break; 1891 default: 1892 goto out; 1893 } 1894 1895 dso = machine__findnew_dso(machine, filename); 1896 if (dso != NULL) { 1897 char sbuild_id[SBUILD_ID_SIZE]; 1898 1899 dso__set_build_id(dso, &bev->build_id); 1900 1901 if (dso_type != DSO_TYPE_USER) { 1902 struct kmod_path m = { .name = NULL, }; 1903 1904 if (!kmod_path__parse_name(&m, filename) && m.kmod) 1905 dso__set_module_info(dso, &m, machine); 1906 else 1907 dso->kernel = dso_type; 1908 1909 free(m.name); 1910 } 1911 1912 build_id__sprintf(dso->build_id, sizeof(dso->build_id), 1913 sbuild_id); 1914 pr_debug("build id event received for %s: %s\n", 1915 dso->long_name, sbuild_id); 1916 dso__put(dso); 1917 } 1918 1919 err = 0; 1920 out: 1921 return err; 1922 } 1923 1924 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, 1925 int input, u64 offset, u64 size) 1926 { 1927 struct perf_session *session = container_of(header, struct perf_session, header); 1928 struct { 1929 struct perf_event_header header; 1930 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; 1931 char filename[0]; 1932 } old_bev; 1933 struct build_id_event bev; 1934 char filename[PATH_MAX]; 1935 u64 limit = offset + size; 1936 1937 while (offset < limit) { 1938 ssize_t len; 1939 1940 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) 1941 return -1; 1942 1943 if (header->needs_swap) 1944 perf_event_header__bswap(&old_bev.header); 1945 1946 len = old_bev.header.size - sizeof(old_bev); 1947 if (readn(input, filename, len) != len) 1948 return -1; 1949 1950 bev.header = old_bev.header; 1951 1952 /* 1953 * As the pid is the missing value, we need to fill 1954 * it properly. The header.misc value give us nice hint. 1955 */ 1956 bev.pid = HOST_KERNEL_ID; 1957 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || 1958 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) 1959 bev.pid = DEFAULT_GUEST_KERNEL_ID; 1960 1961 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); 1962 __event_process_build_id(&bev, filename, session); 1963 1964 offset += bev.header.size; 1965 } 1966 1967 return 0; 1968 } 1969 1970 static int perf_header__read_build_ids(struct perf_header *header, 1971 int input, u64 offset, u64 size) 1972 { 1973 struct perf_session *session = container_of(header, struct perf_session, header); 1974 struct build_id_event bev; 1975 char filename[PATH_MAX]; 1976 u64 limit = offset + size, orig_offset = offset; 1977 int err = -1; 1978 1979 while (offset < limit) { 1980 ssize_t len; 1981 1982 if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) 1983 goto out; 1984 1985 if (header->needs_swap) 1986 perf_event_header__bswap(&bev.header); 1987 1988 len = bev.header.size - sizeof(bev); 1989 if (readn(input, filename, len) != len) 1990 goto out; 1991 /* 1992 * The a1645ce1 changeset: 1993 * 1994 * "perf: 'perf kvm' tool for monitoring guest performance from host" 1995 * 1996 * Added a field to struct build_id_event that broke the file 1997 * format. 1998 * 1999 * Since the kernel build-id is the first entry, process the 2000 * table using the old format if the well known 2001 * '[kernel.kallsyms]' string for the kernel build-id has the 2002 * first 4 characters chopped off (where the pid_t sits). 2003 */ 2004 if (memcmp(filename, "nel.kallsyms]", 13) == 0) { 2005 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) 2006 return -1; 2007 return perf_header__read_build_ids_abi_quirk(header, input, offset, size); 2008 } 2009 2010 __event_process_build_id(&bev, filename, session); 2011 2012 offset += bev.header.size; 2013 } 2014 err = 0; 2015 out: 2016 return err; 2017 } 2018 2019 /* Macro for features that simply need to read and store a string. */ 2020 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ 2021 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ 2022 {\ 2023 ff->ph->env.__feat_env = do_read_string(ff); \ 2024 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ 2025 } 2026 2027 FEAT_PROCESS_STR_FUN(hostname, hostname); 2028 FEAT_PROCESS_STR_FUN(osrelease, os_release); 2029 FEAT_PROCESS_STR_FUN(version, version); 2030 FEAT_PROCESS_STR_FUN(arch, arch); 2031 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); 2032 FEAT_PROCESS_STR_FUN(cpuid, cpuid); 2033 2034 static int process_tracing_data(struct feat_fd *ff, void *data) 2035 { 2036 ssize_t ret = trace_report(ff->fd, data, false); 2037 2038 return ret < 0 ? -1 : 0; 2039 } 2040 2041 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) 2042 { 2043 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) 2044 pr_debug("Failed to read buildids, continuing...\n"); 2045 return 0; 2046 } 2047 2048 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) 2049 { 2050 int ret; 2051 u32 nr_cpus_avail, nr_cpus_online; 2052 2053 ret = do_read_u32(ff, &nr_cpus_avail); 2054 if (ret) 2055 return ret; 2056 2057 ret = do_read_u32(ff, &nr_cpus_online); 2058 if (ret) 2059 return ret; 2060 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail; 2061 ff->ph->env.nr_cpus_online = (int)nr_cpus_online; 2062 return 0; 2063 } 2064 2065 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) 2066 { 2067 u64 total_mem; 2068 int ret; 2069 2070 ret = do_read_u64(ff, &total_mem); 2071 if (ret) 2072 return -1; 2073 ff->ph->env.total_mem = (unsigned long long)total_mem; 2074 return 0; 2075 } 2076 2077 static struct perf_evsel * 2078 perf_evlist__find_by_index(struct perf_evlist *evlist, int idx) 2079 { 2080 struct perf_evsel *evsel; 2081 2082 evlist__for_each_entry(evlist, evsel) { 2083 if (evsel->idx == idx) 2084 return evsel; 2085 } 2086 2087 return NULL; 2088 } 2089 2090 static void 2091 perf_evlist__set_event_name(struct perf_evlist *evlist, 2092 struct perf_evsel *event) 2093 { 2094 struct perf_evsel *evsel; 2095 2096 if (!event->name) 2097 return; 2098 2099 evsel = perf_evlist__find_by_index(evlist, event->idx); 2100 if (!evsel) 2101 return; 2102 2103 if (evsel->name) 2104 return; 2105 2106 evsel->name = strdup(event->name); 2107 } 2108 2109 static int 2110 process_event_desc(struct feat_fd *ff, void *data __maybe_unused) 2111 { 2112 struct perf_session *session; 2113 struct perf_evsel *evsel, *events = read_event_desc(ff); 2114 2115 if (!events) 2116 return 0; 2117 2118 session = container_of(ff->ph, struct perf_session, header); 2119 2120 if (session->data->is_pipe) { 2121 /* Save events for reading later by print_event_desc, 2122 * since they can't be read again in pipe mode. */ 2123 ff->events = events; 2124 } 2125 2126 for (evsel = events; evsel->attr.size; evsel++) 2127 perf_evlist__set_event_name(session->evlist, evsel); 2128 2129 if (!session->data->is_pipe) 2130 free_event_desc(events); 2131 2132 return 0; 2133 } 2134 2135 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) 2136 { 2137 char *str, *cmdline = NULL, **argv = NULL; 2138 u32 nr, i, len = 0; 2139 2140 if (do_read_u32(ff, &nr)) 2141 return -1; 2142 2143 ff->ph->env.nr_cmdline = nr; 2144 2145 cmdline = zalloc(ff->size + nr + 1); 2146 if (!cmdline) 2147 return -1; 2148 2149 argv = zalloc(sizeof(char *) * (nr + 1)); 2150 if (!argv) 2151 goto error; 2152 2153 for (i = 0; i < nr; i++) { 2154 str = do_read_string(ff); 2155 if (!str) 2156 goto error; 2157 2158 argv[i] = cmdline + len; 2159 memcpy(argv[i], str, strlen(str) + 1); 2160 len += strlen(str) + 1; 2161 free(str); 2162 } 2163 ff->ph->env.cmdline = cmdline; 2164 ff->ph->env.cmdline_argv = (const char **) argv; 2165 return 0; 2166 2167 error: 2168 free(argv); 2169 free(cmdline); 2170 return -1; 2171 } 2172 2173 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) 2174 { 2175 u32 nr, i; 2176 char *str; 2177 struct strbuf sb; 2178 int cpu_nr = ff->ph->env.nr_cpus_avail; 2179 u64 size = 0; 2180 struct perf_header *ph = ff->ph; 2181 bool do_core_id_test = true; 2182 2183 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu)); 2184 if (!ph->env.cpu) 2185 return -1; 2186 2187 if (do_read_u32(ff, &nr)) 2188 goto free_cpu; 2189 2190 ph->env.nr_sibling_cores = nr; 2191 size += sizeof(u32); 2192 if (strbuf_init(&sb, 128) < 0) 2193 goto free_cpu; 2194 2195 for (i = 0; i < nr; i++) { 2196 str = do_read_string(ff); 2197 if (!str) 2198 goto error; 2199 2200 /* include a NULL character at the end */ 2201 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2202 goto error; 2203 size += string_size(str); 2204 free(str); 2205 } 2206 ph->env.sibling_cores = strbuf_detach(&sb, NULL); 2207 2208 if (do_read_u32(ff, &nr)) 2209 return -1; 2210 2211 ph->env.nr_sibling_threads = nr; 2212 size += sizeof(u32); 2213 2214 for (i = 0; i < nr; i++) { 2215 str = do_read_string(ff); 2216 if (!str) 2217 goto error; 2218 2219 /* include a NULL character at the end */ 2220 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2221 goto error; 2222 size += string_size(str); 2223 free(str); 2224 } 2225 ph->env.sibling_threads = strbuf_detach(&sb, NULL); 2226 2227 /* 2228 * The header may be from old perf, 2229 * which doesn't include core id and socket id information. 2230 */ 2231 if (ff->size <= size) { 2232 zfree(&ph->env.cpu); 2233 return 0; 2234 } 2235 2236 /* On s390 the socket_id number is not related to the numbers of cpus. 2237 * The socket_id number might be higher than the numbers of cpus. 2238 * This depends on the configuration. 2239 */ 2240 if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4)) 2241 do_core_id_test = false; 2242 2243 for (i = 0; i < (u32)cpu_nr; i++) { 2244 if (do_read_u32(ff, &nr)) 2245 goto free_cpu; 2246 2247 ph->env.cpu[i].core_id = nr; 2248 2249 if (do_read_u32(ff, &nr)) 2250 goto free_cpu; 2251 2252 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) { 2253 pr_debug("socket_id number is too big." 2254 "You may need to upgrade the perf tool.\n"); 2255 goto free_cpu; 2256 } 2257 2258 ph->env.cpu[i].socket_id = nr; 2259 } 2260 2261 return 0; 2262 2263 error: 2264 strbuf_release(&sb); 2265 free_cpu: 2266 zfree(&ph->env.cpu); 2267 return -1; 2268 } 2269 2270 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) 2271 { 2272 struct numa_node *nodes, *n; 2273 u32 nr, i; 2274 char *str; 2275 2276 /* nr nodes */ 2277 if (do_read_u32(ff, &nr)) 2278 return -1; 2279 2280 nodes = zalloc(sizeof(*nodes) * nr); 2281 if (!nodes) 2282 return -ENOMEM; 2283 2284 for (i = 0; i < nr; i++) { 2285 n = &nodes[i]; 2286 2287 /* node number */ 2288 if (do_read_u32(ff, &n->node)) 2289 goto error; 2290 2291 if (do_read_u64(ff, &n->mem_total)) 2292 goto error; 2293 2294 if (do_read_u64(ff, &n->mem_free)) 2295 goto error; 2296 2297 str = do_read_string(ff); 2298 if (!str) 2299 goto error; 2300 2301 n->map = cpu_map__new(str); 2302 if (!n->map) 2303 goto error; 2304 2305 free(str); 2306 } 2307 ff->ph->env.nr_numa_nodes = nr; 2308 ff->ph->env.numa_nodes = nodes; 2309 return 0; 2310 2311 error: 2312 free(nodes); 2313 return -1; 2314 } 2315 2316 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) 2317 { 2318 char *name; 2319 u32 pmu_num; 2320 u32 type; 2321 struct strbuf sb; 2322 2323 if (do_read_u32(ff, &pmu_num)) 2324 return -1; 2325 2326 if (!pmu_num) { 2327 pr_debug("pmu mappings not available\n"); 2328 return 0; 2329 } 2330 2331 ff->ph->env.nr_pmu_mappings = pmu_num; 2332 if (strbuf_init(&sb, 128) < 0) 2333 return -1; 2334 2335 while (pmu_num) { 2336 if (do_read_u32(ff, &type)) 2337 goto error; 2338 2339 name = do_read_string(ff); 2340 if (!name) 2341 goto error; 2342 2343 if (strbuf_addf(&sb, "%u:%s", type, name) < 0) 2344 goto error; 2345 /* include a NULL character at the end */ 2346 if (strbuf_add(&sb, "", 1) < 0) 2347 goto error; 2348 2349 if (!strcmp(name, "msr")) 2350 ff->ph->env.msr_pmu_type = type; 2351 2352 free(name); 2353 pmu_num--; 2354 } 2355 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL); 2356 return 0; 2357 2358 error: 2359 strbuf_release(&sb); 2360 return -1; 2361 } 2362 2363 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) 2364 { 2365 size_t ret = -1; 2366 u32 i, nr, nr_groups; 2367 struct perf_session *session; 2368 struct perf_evsel *evsel, *leader = NULL; 2369 struct group_desc { 2370 char *name; 2371 u32 leader_idx; 2372 u32 nr_members; 2373 } *desc; 2374 2375 if (do_read_u32(ff, &nr_groups)) 2376 return -1; 2377 2378 ff->ph->env.nr_groups = nr_groups; 2379 if (!nr_groups) { 2380 pr_debug("group desc not available\n"); 2381 return 0; 2382 } 2383 2384 desc = calloc(nr_groups, sizeof(*desc)); 2385 if (!desc) 2386 return -1; 2387 2388 for (i = 0; i < nr_groups; i++) { 2389 desc[i].name = do_read_string(ff); 2390 if (!desc[i].name) 2391 goto out_free; 2392 2393 if (do_read_u32(ff, &desc[i].leader_idx)) 2394 goto out_free; 2395 2396 if (do_read_u32(ff, &desc[i].nr_members)) 2397 goto out_free; 2398 } 2399 2400 /* 2401 * Rebuild group relationship based on the group_desc 2402 */ 2403 session = container_of(ff->ph, struct perf_session, header); 2404 session->evlist->nr_groups = nr_groups; 2405 2406 i = nr = 0; 2407 evlist__for_each_entry(session->evlist, evsel) { 2408 if (evsel->idx == (int) desc[i].leader_idx) { 2409 evsel->leader = evsel; 2410 /* {anon_group} is a dummy name */ 2411 if (strcmp(desc[i].name, "{anon_group}")) { 2412 evsel->group_name = desc[i].name; 2413 desc[i].name = NULL; 2414 } 2415 evsel->nr_members = desc[i].nr_members; 2416 2417 if (i >= nr_groups || nr > 0) { 2418 pr_debug("invalid group desc\n"); 2419 goto out_free; 2420 } 2421 2422 leader = evsel; 2423 nr = evsel->nr_members - 1; 2424 i++; 2425 } else if (nr) { 2426 /* This is a group member */ 2427 evsel->leader = leader; 2428 2429 nr--; 2430 } 2431 } 2432 2433 if (i != nr_groups || nr != 0) { 2434 pr_debug("invalid group desc\n"); 2435 goto out_free; 2436 } 2437 2438 ret = 0; 2439 out_free: 2440 for (i = 0; i < nr_groups; i++) 2441 zfree(&desc[i].name); 2442 free(desc); 2443 2444 return ret; 2445 } 2446 2447 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) 2448 { 2449 struct perf_session *session; 2450 int err; 2451 2452 session = container_of(ff->ph, struct perf_session, header); 2453 2454 err = auxtrace_index__process(ff->fd, ff->size, session, 2455 ff->ph->needs_swap); 2456 if (err < 0) 2457 pr_err("Failed to process auxtrace index\n"); 2458 return err; 2459 } 2460 2461 static int process_cache(struct feat_fd *ff, void *data __maybe_unused) 2462 { 2463 struct cpu_cache_level *caches; 2464 u32 cnt, i, version; 2465 2466 if (do_read_u32(ff, &version)) 2467 return -1; 2468 2469 if (version != 1) 2470 return -1; 2471 2472 if (do_read_u32(ff, &cnt)) 2473 return -1; 2474 2475 caches = zalloc(sizeof(*caches) * cnt); 2476 if (!caches) 2477 return -1; 2478 2479 for (i = 0; i < cnt; i++) { 2480 struct cpu_cache_level c; 2481 2482 #define _R(v) \ 2483 if (do_read_u32(ff, &c.v))\ 2484 goto out_free_caches; \ 2485 2486 _R(level) 2487 _R(line_size) 2488 _R(sets) 2489 _R(ways) 2490 #undef _R 2491 2492 #define _R(v) \ 2493 c.v = do_read_string(ff); \ 2494 if (!c.v) \ 2495 goto out_free_caches; 2496 2497 _R(type) 2498 _R(size) 2499 _R(map) 2500 #undef _R 2501 2502 caches[i] = c; 2503 } 2504 2505 ff->ph->env.caches = caches; 2506 ff->ph->env.caches_cnt = cnt; 2507 return 0; 2508 out_free_caches: 2509 free(caches); 2510 return -1; 2511 } 2512 2513 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) 2514 { 2515 struct perf_session *session; 2516 u64 first_sample_time, last_sample_time; 2517 int ret; 2518 2519 session = container_of(ff->ph, struct perf_session, header); 2520 2521 ret = do_read_u64(ff, &first_sample_time); 2522 if (ret) 2523 return -1; 2524 2525 ret = do_read_u64(ff, &last_sample_time); 2526 if (ret) 2527 return -1; 2528 2529 session->evlist->first_sample_time = first_sample_time; 2530 session->evlist->last_sample_time = last_sample_time; 2531 return 0; 2532 } 2533 2534 static int process_mem_topology(struct feat_fd *ff, 2535 void *data __maybe_unused) 2536 { 2537 struct memory_node *nodes; 2538 u64 version, i, nr, bsize; 2539 int ret = -1; 2540 2541 if (do_read_u64(ff, &version)) 2542 return -1; 2543 2544 if (version != 1) 2545 return -1; 2546 2547 if (do_read_u64(ff, &bsize)) 2548 return -1; 2549 2550 if (do_read_u64(ff, &nr)) 2551 return -1; 2552 2553 nodes = zalloc(sizeof(*nodes) * nr); 2554 if (!nodes) 2555 return -1; 2556 2557 for (i = 0; i < nr; i++) { 2558 struct memory_node n; 2559 2560 #define _R(v) \ 2561 if (do_read_u64(ff, &n.v)) \ 2562 goto out; \ 2563 2564 _R(node) 2565 _R(size) 2566 2567 #undef _R 2568 2569 if (do_read_bitmap(ff, &n.set, &n.size)) 2570 goto out; 2571 2572 nodes[i] = n; 2573 } 2574 2575 ff->ph->env.memory_bsize = bsize; 2576 ff->ph->env.memory_nodes = nodes; 2577 ff->ph->env.nr_memory_nodes = nr; 2578 ret = 0; 2579 2580 out: 2581 if (ret) 2582 free(nodes); 2583 return ret; 2584 } 2585 2586 static int process_clockid(struct feat_fd *ff, 2587 void *data __maybe_unused) 2588 { 2589 if (do_read_u64(ff, &ff->ph->env.clockid_res_ns)) 2590 return -1; 2591 2592 return 0; 2593 } 2594 2595 struct feature_ops { 2596 int (*write)(struct feat_fd *ff, struct perf_evlist *evlist); 2597 void (*print)(struct feat_fd *ff, FILE *fp); 2598 int (*process)(struct feat_fd *ff, void *data); 2599 const char *name; 2600 bool full_only; 2601 bool synthesize; 2602 }; 2603 2604 #define FEAT_OPR(n, func, __full_only) \ 2605 [HEADER_##n] = { \ 2606 .name = __stringify(n), \ 2607 .write = write_##func, \ 2608 .print = print_##func, \ 2609 .full_only = __full_only, \ 2610 .process = process_##func, \ 2611 .synthesize = true \ 2612 } 2613 2614 #define FEAT_OPN(n, func, __full_only) \ 2615 [HEADER_##n] = { \ 2616 .name = __stringify(n), \ 2617 .write = write_##func, \ 2618 .print = print_##func, \ 2619 .full_only = __full_only, \ 2620 .process = process_##func \ 2621 } 2622 2623 /* feature_ops not implemented: */ 2624 #define print_tracing_data NULL 2625 #define print_build_id NULL 2626 2627 #define process_branch_stack NULL 2628 #define process_stat NULL 2629 2630 2631 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = { 2632 FEAT_OPN(TRACING_DATA, tracing_data, false), 2633 FEAT_OPN(BUILD_ID, build_id, false), 2634 FEAT_OPR(HOSTNAME, hostname, false), 2635 FEAT_OPR(OSRELEASE, osrelease, false), 2636 FEAT_OPR(VERSION, version, false), 2637 FEAT_OPR(ARCH, arch, false), 2638 FEAT_OPR(NRCPUS, nrcpus, false), 2639 FEAT_OPR(CPUDESC, cpudesc, false), 2640 FEAT_OPR(CPUID, cpuid, false), 2641 FEAT_OPR(TOTAL_MEM, total_mem, false), 2642 FEAT_OPR(EVENT_DESC, event_desc, false), 2643 FEAT_OPR(CMDLINE, cmdline, false), 2644 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), 2645 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), 2646 FEAT_OPN(BRANCH_STACK, branch_stack, false), 2647 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), 2648 FEAT_OPR(GROUP_DESC, group_desc, false), 2649 FEAT_OPN(AUXTRACE, auxtrace, false), 2650 FEAT_OPN(STAT, stat, false), 2651 FEAT_OPN(CACHE, cache, true), 2652 FEAT_OPR(SAMPLE_TIME, sample_time, false), 2653 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), 2654 FEAT_OPR(CLOCKID, clockid, false) 2655 }; 2656 2657 struct header_print_data { 2658 FILE *fp; 2659 bool full; /* extended list of headers */ 2660 }; 2661 2662 static int perf_file_section__fprintf_info(struct perf_file_section *section, 2663 struct perf_header *ph, 2664 int feat, int fd, void *data) 2665 { 2666 struct header_print_data *hd = data; 2667 struct feat_fd ff; 2668 2669 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 2670 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 2671 "%d, continuing...\n", section->offset, feat); 2672 return 0; 2673 } 2674 if (feat >= HEADER_LAST_FEATURE) { 2675 pr_warning("unknown feature %d\n", feat); 2676 return 0; 2677 } 2678 if (!feat_ops[feat].print) 2679 return 0; 2680 2681 ff = (struct feat_fd) { 2682 .fd = fd, 2683 .ph = ph, 2684 }; 2685 2686 if (!feat_ops[feat].full_only || hd->full) 2687 feat_ops[feat].print(&ff, hd->fp); 2688 else 2689 fprintf(hd->fp, "# %s info available, use -I to display\n", 2690 feat_ops[feat].name); 2691 2692 return 0; 2693 } 2694 2695 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) 2696 { 2697 struct header_print_data hd; 2698 struct perf_header *header = &session->header; 2699 int fd = perf_data__fd(session->data); 2700 struct stat st; 2701 time_t stctime; 2702 int ret, bit; 2703 2704 hd.fp = fp; 2705 hd.full = full; 2706 2707 ret = fstat(fd, &st); 2708 if (ret == -1) 2709 return -1; 2710 2711 stctime = st.st_ctime; 2712 fprintf(fp, "# captured on : %s", ctime(&stctime)); 2713 2714 fprintf(fp, "# header version : %u\n", header->version); 2715 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); 2716 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); 2717 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); 2718 2719 perf_header__process_sections(header, fd, &hd, 2720 perf_file_section__fprintf_info); 2721 2722 if (session->data->is_pipe) 2723 return 0; 2724 2725 fprintf(fp, "# missing features: "); 2726 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { 2727 if (bit) 2728 fprintf(fp, "%s ", feat_ops[bit].name); 2729 } 2730 2731 fprintf(fp, "\n"); 2732 return 0; 2733 } 2734 2735 static int do_write_feat(struct feat_fd *ff, int type, 2736 struct perf_file_section **p, 2737 struct perf_evlist *evlist) 2738 { 2739 int err; 2740 int ret = 0; 2741 2742 if (perf_header__has_feat(ff->ph, type)) { 2743 if (!feat_ops[type].write) 2744 return -1; 2745 2746 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 2747 return -1; 2748 2749 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); 2750 2751 err = feat_ops[type].write(ff, evlist); 2752 if (err < 0) { 2753 pr_debug("failed to write feature %s\n", feat_ops[type].name); 2754 2755 /* undo anything written */ 2756 lseek(ff->fd, (*p)->offset, SEEK_SET); 2757 2758 return -1; 2759 } 2760 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; 2761 (*p)++; 2762 } 2763 return ret; 2764 } 2765 2766 static int perf_header__adds_write(struct perf_header *header, 2767 struct perf_evlist *evlist, int fd) 2768 { 2769 int nr_sections; 2770 struct feat_fd ff; 2771 struct perf_file_section *feat_sec, *p; 2772 int sec_size; 2773 u64 sec_start; 2774 int feat; 2775 int err; 2776 2777 ff = (struct feat_fd){ 2778 .fd = fd, 2779 .ph = header, 2780 }; 2781 2782 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 2783 if (!nr_sections) 2784 return 0; 2785 2786 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); 2787 if (feat_sec == NULL) 2788 return -ENOMEM; 2789 2790 sec_size = sizeof(*feat_sec) * nr_sections; 2791 2792 sec_start = header->feat_offset; 2793 lseek(fd, sec_start + sec_size, SEEK_SET); 2794 2795 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 2796 if (do_write_feat(&ff, feat, &p, evlist)) 2797 perf_header__clear_feat(header, feat); 2798 } 2799 2800 lseek(fd, sec_start, SEEK_SET); 2801 /* 2802 * may write more than needed due to dropped feature, but 2803 * this is okay, reader will skip the missing entries 2804 */ 2805 err = do_write(&ff, feat_sec, sec_size); 2806 if (err < 0) 2807 pr_debug("failed to write feature section\n"); 2808 free(feat_sec); 2809 return err; 2810 } 2811 2812 int perf_header__write_pipe(int fd) 2813 { 2814 struct perf_pipe_file_header f_header; 2815 struct feat_fd ff; 2816 int err; 2817 2818 ff = (struct feat_fd){ .fd = fd }; 2819 2820 f_header = (struct perf_pipe_file_header){ 2821 .magic = PERF_MAGIC, 2822 .size = sizeof(f_header), 2823 }; 2824 2825 err = do_write(&ff, &f_header, sizeof(f_header)); 2826 if (err < 0) { 2827 pr_debug("failed to write perf pipe header\n"); 2828 return err; 2829 } 2830 2831 return 0; 2832 } 2833 2834 int perf_session__write_header(struct perf_session *session, 2835 struct perf_evlist *evlist, 2836 int fd, bool at_exit) 2837 { 2838 struct perf_file_header f_header; 2839 struct perf_file_attr f_attr; 2840 struct perf_header *header = &session->header; 2841 struct perf_evsel *evsel; 2842 struct feat_fd ff; 2843 u64 attr_offset; 2844 int err; 2845 2846 ff = (struct feat_fd){ .fd = fd}; 2847 lseek(fd, sizeof(f_header), SEEK_SET); 2848 2849 evlist__for_each_entry(session->evlist, evsel) { 2850 evsel->id_offset = lseek(fd, 0, SEEK_CUR); 2851 err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64)); 2852 if (err < 0) { 2853 pr_debug("failed to write perf header\n"); 2854 return err; 2855 } 2856 } 2857 2858 attr_offset = lseek(ff.fd, 0, SEEK_CUR); 2859 2860 evlist__for_each_entry(evlist, evsel) { 2861 f_attr = (struct perf_file_attr){ 2862 .attr = evsel->attr, 2863 .ids = { 2864 .offset = evsel->id_offset, 2865 .size = evsel->ids * sizeof(u64), 2866 } 2867 }; 2868 err = do_write(&ff, &f_attr, sizeof(f_attr)); 2869 if (err < 0) { 2870 pr_debug("failed to write perf header attribute\n"); 2871 return err; 2872 } 2873 } 2874 2875 if (!header->data_offset) 2876 header->data_offset = lseek(fd, 0, SEEK_CUR); 2877 header->feat_offset = header->data_offset + header->data_size; 2878 2879 if (at_exit) { 2880 err = perf_header__adds_write(header, evlist, fd); 2881 if (err < 0) 2882 return err; 2883 } 2884 2885 f_header = (struct perf_file_header){ 2886 .magic = PERF_MAGIC, 2887 .size = sizeof(f_header), 2888 .attr_size = sizeof(f_attr), 2889 .attrs = { 2890 .offset = attr_offset, 2891 .size = evlist->nr_entries * sizeof(f_attr), 2892 }, 2893 .data = { 2894 .offset = header->data_offset, 2895 .size = header->data_size, 2896 }, 2897 /* event_types is ignored, store zeros */ 2898 }; 2899 2900 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); 2901 2902 lseek(fd, 0, SEEK_SET); 2903 err = do_write(&ff, &f_header, sizeof(f_header)); 2904 if (err < 0) { 2905 pr_debug("failed to write perf header\n"); 2906 return err; 2907 } 2908 lseek(fd, header->data_offset + header->data_size, SEEK_SET); 2909 2910 return 0; 2911 } 2912 2913 static int perf_header__getbuffer64(struct perf_header *header, 2914 int fd, void *buf, size_t size) 2915 { 2916 if (readn(fd, buf, size) <= 0) 2917 return -1; 2918 2919 if (header->needs_swap) 2920 mem_bswap_64(buf, size); 2921 2922 return 0; 2923 } 2924 2925 int perf_header__process_sections(struct perf_header *header, int fd, 2926 void *data, 2927 int (*process)(struct perf_file_section *section, 2928 struct perf_header *ph, 2929 int feat, int fd, void *data)) 2930 { 2931 struct perf_file_section *feat_sec, *sec; 2932 int nr_sections; 2933 int sec_size; 2934 int feat; 2935 int err; 2936 2937 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 2938 if (!nr_sections) 2939 return 0; 2940 2941 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); 2942 if (!feat_sec) 2943 return -1; 2944 2945 sec_size = sizeof(*feat_sec) * nr_sections; 2946 2947 lseek(fd, header->feat_offset, SEEK_SET); 2948 2949 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); 2950 if (err < 0) 2951 goto out_free; 2952 2953 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { 2954 err = process(sec++, header, feat, fd, data); 2955 if (err < 0) 2956 goto out_free; 2957 } 2958 err = 0; 2959 out_free: 2960 free(feat_sec); 2961 return err; 2962 } 2963 2964 static const int attr_file_abi_sizes[] = { 2965 [0] = PERF_ATTR_SIZE_VER0, 2966 [1] = PERF_ATTR_SIZE_VER1, 2967 [2] = PERF_ATTR_SIZE_VER2, 2968 [3] = PERF_ATTR_SIZE_VER3, 2969 [4] = PERF_ATTR_SIZE_VER4, 2970 0, 2971 }; 2972 2973 /* 2974 * In the legacy file format, the magic number is not used to encode endianness. 2975 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based 2976 * on ABI revisions, we need to try all combinations for all endianness to 2977 * detect the endianness. 2978 */ 2979 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) 2980 { 2981 uint64_t ref_size, attr_size; 2982 int i; 2983 2984 for (i = 0 ; attr_file_abi_sizes[i]; i++) { 2985 ref_size = attr_file_abi_sizes[i] 2986 + sizeof(struct perf_file_section); 2987 if (hdr_sz != ref_size) { 2988 attr_size = bswap_64(hdr_sz); 2989 if (attr_size != ref_size) 2990 continue; 2991 2992 ph->needs_swap = true; 2993 } 2994 pr_debug("ABI%d perf.data file detected, need_swap=%d\n", 2995 i, 2996 ph->needs_swap); 2997 return 0; 2998 } 2999 /* could not determine endianness */ 3000 return -1; 3001 } 3002 3003 #define PERF_PIPE_HDR_VER0 16 3004 3005 static const size_t attr_pipe_abi_sizes[] = { 3006 [0] = PERF_PIPE_HDR_VER0, 3007 0, 3008 }; 3009 3010 /* 3011 * In the legacy pipe format, there is an implicit assumption that endiannesss 3012 * between host recording the samples, and host parsing the samples is the 3013 * same. This is not always the case given that the pipe output may always be 3014 * redirected into a file and analyzed on a different machine with possibly a 3015 * different endianness and perf_event ABI revsions in the perf tool itself. 3016 */ 3017 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) 3018 { 3019 u64 attr_size; 3020 int i; 3021 3022 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { 3023 if (hdr_sz != attr_pipe_abi_sizes[i]) { 3024 attr_size = bswap_64(hdr_sz); 3025 if (attr_size != hdr_sz) 3026 continue; 3027 3028 ph->needs_swap = true; 3029 } 3030 pr_debug("Pipe ABI%d perf.data file detected\n", i); 3031 return 0; 3032 } 3033 return -1; 3034 } 3035 3036 bool is_perf_magic(u64 magic) 3037 { 3038 if (!memcmp(&magic, __perf_magic1, sizeof(magic)) 3039 || magic == __perf_magic2 3040 || magic == __perf_magic2_sw) 3041 return true; 3042 3043 return false; 3044 } 3045 3046 static int check_magic_endian(u64 magic, uint64_t hdr_sz, 3047 bool is_pipe, struct perf_header *ph) 3048 { 3049 int ret; 3050 3051 /* check for legacy format */ 3052 ret = memcmp(&magic, __perf_magic1, sizeof(magic)); 3053 if (ret == 0) { 3054 ph->version = PERF_HEADER_VERSION_1; 3055 pr_debug("legacy perf.data format\n"); 3056 if (is_pipe) 3057 return try_all_pipe_abis(hdr_sz, ph); 3058 3059 return try_all_file_abis(hdr_sz, ph); 3060 } 3061 /* 3062 * the new magic number serves two purposes: 3063 * - unique number to identify actual perf.data files 3064 * - encode endianness of file 3065 */ 3066 ph->version = PERF_HEADER_VERSION_2; 3067 3068 /* check magic number with one endianness */ 3069 if (magic == __perf_magic2) 3070 return 0; 3071 3072 /* check magic number with opposite endianness */ 3073 if (magic != __perf_magic2_sw) 3074 return -1; 3075 3076 ph->needs_swap = true; 3077 3078 return 0; 3079 } 3080 3081 int perf_file_header__read(struct perf_file_header *header, 3082 struct perf_header *ph, int fd) 3083 { 3084 ssize_t ret; 3085 3086 lseek(fd, 0, SEEK_SET); 3087 3088 ret = readn(fd, header, sizeof(*header)); 3089 if (ret <= 0) 3090 return -1; 3091 3092 if (check_magic_endian(header->magic, 3093 header->attr_size, false, ph) < 0) { 3094 pr_debug("magic/endian check failed\n"); 3095 return -1; 3096 } 3097 3098 if (ph->needs_swap) { 3099 mem_bswap_64(header, offsetof(struct perf_file_header, 3100 adds_features)); 3101 } 3102 3103 if (header->size != sizeof(*header)) { 3104 /* Support the previous format */ 3105 if (header->size == offsetof(typeof(*header), adds_features)) 3106 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3107 else 3108 return -1; 3109 } else if (ph->needs_swap) { 3110 /* 3111 * feature bitmap is declared as an array of unsigned longs -- 3112 * not good since its size can differ between the host that 3113 * generated the data file and the host analyzing the file. 3114 * 3115 * We need to handle endianness, but we don't know the size of 3116 * the unsigned long where the file was generated. Take a best 3117 * guess at determining it: try 64-bit swap first (ie., file 3118 * created on a 64-bit host), and check if the hostname feature 3119 * bit is set (this feature bit is forced on as of fbe96f2). 3120 * If the bit is not, undo the 64-bit swap and try a 32-bit 3121 * swap. If the hostname bit is still not set (e.g., older data 3122 * file), punt and fallback to the original behavior -- 3123 * clearing all feature bits and setting buildid. 3124 */ 3125 mem_bswap_64(&header->adds_features, 3126 BITS_TO_U64(HEADER_FEAT_BITS)); 3127 3128 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3129 /* unswap as u64 */ 3130 mem_bswap_64(&header->adds_features, 3131 BITS_TO_U64(HEADER_FEAT_BITS)); 3132 3133 /* unswap as u32 */ 3134 mem_bswap_32(&header->adds_features, 3135 BITS_TO_U32(HEADER_FEAT_BITS)); 3136 } 3137 3138 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3139 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3140 set_bit(HEADER_BUILD_ID, header->adds_features); 3141 } 3142 } 3143 3144 memcpy(&ph->adds_features, &header->adds_features, 3145 sizeof(ph->adds_features)); 3146 3147 ph->data_offset = header->data.offset; 3148 ph->data_size = header->data.size; 3149 ph->feat_offset = header->data.offset + header->data.size; 3150 return 0; 3151 } 3152 3153 static int perf_file_section__process(struct perf_file_section *section, 3154 struct perf_header *ph, 3155 int feat, int fd, void *data) 3156 { 3157 struct feat_fd fdd = { 3158 .fd = fd, 3159 .ph = ph, 3160 .size = section->size, 3161 .offset = section->offset, 3162 }; 3163 3164 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3165 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3166 "%d, continuing...\n", section->offset, feat); 3167 return 0; 3168 } 3169 3170 if (feat >= HEADER_LAST_FEATURE) { 3171 pr_debug("unknown feature %d, continuing...\n", feat); 3172 return 0; 3173 } 3174 3175 if (!feat_ops[feat].process) 3176 return 0; 3177 3178 return feat_ops[feat].process(&fdd, data); 3179 } 3180 3181 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, 3182 struct perf_header *ph, int fd, 3183 bool repipe) 3184 { 3185 struct feat_fd ff = { 3186 .fd = STDOUT_FILENO, 3187 .ph = ph, 3188 }; 3189 ssize_t ret; 3190 3191 ret = readn(fd, header, sizeof(*header)); 3192 if (ret <= 0) 3193 return -1; 3194 3195 if (check_magic_endian(header->magic, header->size, true, ph) < 0) { 3196 pr_debug("endian/magic failed\n"); 3197 return -1; 3198 } 3199 3200 if (ph->needs_swap) 3201 header->size = bswap_64(header->size); 3202 3203 if (repipe && do_write(&ff, header, sizeof(*header)) < 0) 3204 return -1; 3205 3206 return 0; 3207 } 3208 3209 static int perf_header__read_pipe(struct perf_session *session) 3210 { 3211 struct perf_header *header = &session->header; 3212 struct perf_pipe_file_header f_header; 3213 3214 if (perf_file_header__read_pipe(&f_header, header, 3215 perf_data__fd(session->data), 3216 session->repipe) < 0) { 3217 pr_debug("incompatible file format\n"); 3218 return -EINVAL; 3219 } 3220 3221 return 0; 3222 } 3223 3224 static int read_attr(int fd, struct perf_header *ph, 3225 struct perf_file_attr *f_attr) 3226 { 3227 struct perf_event_attr *attr = &f_attr->attr; 3228 size_t sz, left; 3229 size_t our_sz = sizeof(f_attr->attr); 3230 ssize_t ret; 3231 3232 memset(f_attr, 0, sizeof(*f_attr)); 3233 3234 /* read minimal guaranteed structure */ 3235 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); 3236 if (ret <= 0) { 3237 pr_debug("cannot read %d bytes of header attr\n", 3238 PERF_ATTR_SIZE_VER0); 3239 return -1; 3240 } 3241 3242 /* on file perf_event_attr size */ 3243 sz = attr->size; 3244 3245 if (ph->needs_swap) 3246 sz = bswap_32(sz); 3247 3248 if (sz == 0) { 3249 /* assume ABI0 */ 3250 sz = PERF_ATTR_SIZE_VER0; 3251 } else if (sz > our_sz) { 3252 pr_debug("file uses a more recent and unsupported ABI" 3253 " (%zu bytes extra)\n", sz - our_sz); 3254 return -1; 3255 } 3256 /* what we have not yet read and that we know about */ 3257 left = sz - PERF_ATTR_SIZE_VER0; 3258 if (left) { 3259 void *ptr = attr; 3260 ptr += PERF_ATTR_SIZE_VER0; 3261 3262 ret = readn(fd, ptr, left); 3263 } 3264 /* read perf_file_section, ids are read in caller */ 3265 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); 3266 3267 return ret <= 0 ? -1 : 0; 3268 } 3269 3270 static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel, 3271 struct tep_handle *pevent) 3272 { 3273 struct tep_event *event; 3274 char bf[128]; 3275 3276 /* already prepared */ 3277 if (evsel->tp_format) 3278 return 0; 3279 3280 if (pevent == NULL) { 3281 pr_debug("broken or missing trace data\n"); 3282 return -1; 3283 } 3284 3285 event = tep_find_event(pevent, evsel->attr.config); 3286 if (event == NULL) { 3287 pr_debug("cannot find event format for %d\n", (int)evsel->attr.config); 3288 return -1; 3289 } 3290 3291 if (!evsel->name) { 3292 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); 3293 evsel->name = strdup(bf); 3294 if (evsel->name == NULL) 3295 return -1; 3296 } 3297 3298 evsel->tp_format = event; 3299 return 0; 3300 } 3301 3302 static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist, 3303 struct tep_handle *pevent) 3304 { 3305 struct perf_evsel *pos; 3306 3307 evlist__for_each_entry(evlist, pos) { 3308 if (pos->attr.type == PERF_TYPE_TRACEPOINT && 3309 perf_evsel__prepare_tracepoint_event(pos, pevent)) 3310 return -1; 3311 } 3312 3313 return 0; 3314 } 3315 3316 int perf_session__read_header(struct perf_session *session) 3317 { 3318 struct perf_data *data = session->data; 3319 struct perf_header *header = &session->header; 3320 struct perf_file_header f_header; 3321 struct perf_file_attr f_attr; 3322 u64 f_id; 3323 int nr_attrs, nr_ids, i, j; 3324 int fd = perf_data__fd(data); 3325 3326 session->evlist = perf_evlist__new(); 3327 if (session->evlist == NULL) 3328 return -ENOMEM; 3329 3330 session->evlist->env = &header->env; 3331 session->machines.host.env = &header->env; 3332 if (perf_data__is_pipe(data)) 3333 return perf_header__read_pipe(session); 3334 3335 if (perf_file_header__read(&f_header, header, fd) < 0) 3336 return -EINVAL; 3337 3338 /* 3339 * Sanity check that perf.data was written cleanly; data size is 3340 * initialized to 0 and updated only if the on_exit function is run. 3341 * If data size is still 0 then the file contains only partial 3342 * information. Just warn user and process it as much as it can. 3343 */ 3344 if (f_header.data.size == 0) { 3345 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" 3346 "Was the 'perf record' command properly terminated?\n", 3347 data->file.path); 3348 } 3349 3350 nr_attrs = f_header.attrs.size / f_header.attr_size; 3351 lseek(fd, f_header.attrs.offset, SEEK_SET); 3352 3353 for (i = 0; i < nr_attrs; i++) { 3354 struct perf_evsel *evsel; 3355 off_t tmp; 3356 3357 if (read_attr(fd, header, &f_attr) < 0) 3358 goto out_errno; 3359 3360 if (header->needs_swap) { 3361 f_attr.ids.size = bswap_64(f_attr.ids.size); 3362 f_attr.ids.offset = bswap_64(f_attr.ids.offset); 3363 perf_event__attr_swap(&f_attr.attr); 3364 } 3365 3366 tmp = lseek(fd, 0, SEEK_CUR); 3367 evsel = perf_evsel__new(&f_attr.attr); 3368 3369 if (evsel == NULL) 3370 goto out_delete_evlist; 3371 3372 evsel->needs_swap = header->needs_swap; 3373 /* 3374 * Do it before so that if perf_evsel__alloc_id fails, this 3375 * entry gets purged too at perf_evlist__delete(). 3376 */ 3377 perf_evlist__add(session->evlist, evsel); 3378 3379 nr_ids = f_attr.ids.size / sizeof(u64); 3380 /* 3381 * We don't have the cpu and thread maps on the header, so 3382 * for allocating the perf_sample_id table we fake 1 cpu and 3383 * hattr->ids threads. 3384 */ 3385 if (perf_evsel__alloc_id(evsel, 1, nr_ids)) 3386 goto out_delete_evlist; 3387 3388 lseek(fd, f_attr.ids.offset, SEEK_SET); 3389 3390 for (j = 0; j < nr_ids; j++) { 3391 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) 3392 goto out_errno; 3393 3394 perf_evlist__id_add(session->evlist, evsel, 0, j, f_id); 3395 } 3396 3397 lseek(fd, tmp, SEEK_SET); 3398 } 3399 3400 perf_header__process_sections(header, fd, &session->tevent, 3401 perf_file_section__process); 3402 3403 if (perf_evlist__prepare_tracepoint_events(session->evlist, 3404 session->tevent.pevent)) 3405 goto out_delete_evlist; 3406 3407 return 0; 3408 out_errno: 3409 return -errno; 3410 3411 out_delete_evlist: 3412 perf_evlist__delete(session->evlist); 3413 session->evlist = NULL; 3414 return -ENOMEM; 3415 } 3416 3417 int perf_event__synthesize_attr(struct perf_tool *tool, 3418 struct perf_event_attr *attr, u32 ids, u64 *id, 3419 perf_event__handler_t process) 3420 { 3421 union perf_event *ev; 3422 size_t size; 3423 int err; 3424 3425 size = sizeof(struct perf_event_attr); 3426 size = PERF_ALIGN(size, sizeof(u64)); 3427 size += sizeof(struct perf_event_header); 3428 size += ids * sizeof(u64); 3429 3430 ev = malloc(size); 3431 3432 if (ev == NULL) 3433 return -ENOMEM; 3434 3435 ev->attr.attr = *attr; 3436 memcpy(ev->attr.id, id, ids * sizeof(u64)); 3437 3438 ev->attr.header.type = PERF_RECORD_HEADER_ATTR; 3439 ev->attr.header.size = (u16)size; 3440 3441 if (ev->attr.header.size == size) 3442 err = process(tool, ev, NULL, NULL); 3443 else 3444 err = -E2BIG; 3445 3446 free(ev); 3447 3448 return err; 3449 } 3450 3451 int perf_event__synthesize_features(struct perf_tool *tool, 3452 struct perf_session *session, 3453 struct perf_evlist *evlist, 3454 perf_event__handler_t process) 3455 { 3456 struct perf_header *header = &session->header; 3457 struct feat_fd ff; 3458 struct feature_event *fe; 3459 size_t sz, sz_hdr; 3460 int feat, ret; 3461 3462 sz_hdr = sizeof(fe->header); 3463 sz = sizeof(union perf_event); 3464 /* get a nice alignment */ 3465 sz = PERF_ALIGN(sz, page_size); 3466 3467 memset(&ff, 0, sizeof(ff)); 3468 3469 ff.buf = malloc(sz); 3470 if (!ff.buf) 3471 return -ENOMEM; 3472 3473 ff.size = sz - sz_hdr; 3474 3475 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3476 if (!feat_ops[feat].synthesize) { 3477 pr_debug("No record header feature for header :%d\n", feat); 3478 continue; 3479 } 3480 3481 ff.offset = sizeof(*fe); 3482 3483 ret = feat_ops[feat].write(&ff, evlist); 3484 if (ret || ff.offset <= (ssize_t)sizeof(*fe)) { 3485 pr_debug("Error writing feature\n"); 3486 continue; 3487 } 3488 /* ff.buf may have changed due to realloc in do_write() */ 3489 fe = ff.buf; 3490 memset(fe, 0, sizeof(*fe)); 3491 3492 fe->feat_id = feat; 3493 fe->header.type = PERF_RECORD_HEADER_FEATURE; 3494 fe->header.size = ff.offset; 3495 3496 ret = process(tool, ff.buf, NULL, NULL); 3497 if (ret) { 3498 free(ff.buf); 3499 return ret; 3500 } 3501 } 3502 3503 /* Send HEADER_LAST_FEATURE mark. */ 3504 fe = ff.buf; 3505 fe->feat_id = HEADER_LAST_FEATURE; 3506 fe->header.type = PERF_RECORD_HEADER_FEATURE; 3507 fe->header.size = sizeof(*fe); 3508 3509 ret = process(tool, ff.buf, NULL, NULL); 3510 3511 free(ff.buf); 3512 return ret; 3513 } 3514 3515 int perf_event__process_feature(struct perf_session *session, 3516 union perf_event *event) 3517 { 3518 struct perf_tool *tool = session->tool; 3519 struct feat_fd ff = { .fd = 0 }; 3520 struct feature_event *fe = (struct feature_event *)event; 3521 int type = fe->header.type; 3522 u64 feat = fe->feat_id; 3523 3524 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { 3525 pr_warning("invalid record type %d in pipe-mode\n", type); 3526 return 0; 3527 } 3528 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { 3529 pr_warning("invalid record type %d in pipe-mode\n", type); 3530 return -1; 3531 } 3532 3533 if (!feat_ops[feat].process) 3534 return 0; 3535 3536 ff.buf = (void *)fe->data; 3537 ff.size = event->header.size - sizeof(event->header); 3538 ff.ph = &session->header; 3539 3540 if (feat_ops[feat].process(&ff, NULL)) 3541 return -1; 3542 3543 if (!feat_ops[feat].print || !tool->show_feat_hdr) 3544 return 0; 3545 3546 if (!feat_ops[feat].full_only || 3547 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { 3548 feat_ops[feat].print(&ff, stdout); 3549 } else { 3550 fprintf(stdout, "# %s info available, use -I to display\n", 3551 feat_ops[feat].name); 3552 } 3553 3554 return 0; 3555 } 3556 3557 static struct event_update_event * 3558 event_update_event__new(size_t size, u64 type, u64 id) 3559 { 3560 struct event_update_event *ev; 3561 3562 size += sizeof(*ev); 3563 size = PERF_ALIGN(size, sizeof(u64)); 3564 3565 ev = zalloc(size); 3566 if (ev) { 3567 ev->header.type = PERF_RECORD_EVENT_UPDATE; 3568 ev->header.size = (u16)size; 3569 ev->type = type; 3570 ev->id = id; 3571 } 3572 return ev; 3573 } 3574 3575 int 3576 perf_event__synthesize_event_update_unit(struct perf_tool *tool, 3577 struct perf_evsel *evsel, 3578 perf_event__handler_t process) 3579 { 3580 struct event_update_event *ev; 3581 size_t size = strlen(evsel->unit); 3582 int err; 3583 3584 ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]); 3585 if (ev == NULL) 3586 return -ENOMEM; 3587 3588 strlcpy(ev->data, evsel->unit, size + 1); 3589 err = process(tool, (union perf_event *)ev, NULL, NULL); 3590 free(ev); 3591 return err; 3592 } 3593 3594 int 3595 perf_event__synthesize_event_update_scale(struct perf_tool *tool, 3596 struct perf_evsel *evsel, 3597 perf_event__handler_t process) 3598 { 3599 struct event_update_event *ev; 3600 struct event_update_event_scale *ev_data; 3601 int err; 3602 3603 ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]); 3604 if (ev == NULL) 3605 return -ENOMEM; 3606 3607 ev_data = (struct event_update_event_scale *) ev->data; 3608 ev_data->scale = evsel->scale; 3609 err = process(tool, (union perf_event*) ev, NULL, NULL); 3610 free(ev); 3611 return err; 3612 } 3613 3614 int 3615 perf_event__synthesize_event_update_name(struct perf_tool *tool, 3616 struct perf_evsel *evsel, 3617 perf_event__handler_t process) 3618 { 3619 struct event_update_event *ev; 3620 size_t len = strlen(evsel->name); 3621 int err; 3622 3623 ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]); 3624 if (ev == NULL) 3625 return -ENOMEM; 3626 3627 strlcpy(ev->data, evsel->name, len + 1); 3628 err = process(tool, (union perf_event*) ev, NULL, NULL); 3629 free(ev); 3630 return err; 3631 } 3632 3633 int 3634 perf_event__synthesize_event_update_cpus(struct perf_tool *tool, 3635 struct perf_evsel *evsel, 3636 perf_event__handler_t process) 3637 { 3638 size_t size = sizeof(struct event_update_event); 3639 struct event_update_event *ev; 3640 int max, err; 3641 u16 type; 3642 3643 if (!evsel->own_cpus) 3644 return 0; 3645 3646 ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max); 3647 if (!ev) 3648 return -ENOMEM; 3649 3650 ev->header.type = PERF_RECORD_EVENT_UPDATE; 3651 ev->header.size = (u16)size; 3652 ev->type = PERF_EVENT_UPDATE__CPUS; 3653 ev->id = evsel->id[0]; 3654 3655 cpu_map_data__synthesize((struct cpu_map_data *) ev->data, 3656 evsel->own_cpus, 3657 type, max); 3658 3659 err = process(tool, (union perf_event*) ev, NULL, NULL); 3660 free(ev); 3661 return err; 3662 } 3663 3664 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) 3665 { 3666 struct event_update_event *ev = &event->event_update; 3667 struct event_update_event_scale *ev_scale; 3668 struct event_update_event_cpus *ev_cpus; 3669 struct cpu_map *map; 3670 size_t ret; 3671 3672 ret = fprintf(fp, "\n... id: %" PRIu64 "\n", ev->id); 3673 3674 switch (ev->type) { 3675 case PERF_EVENT_UPDATE__SCALE: 3676 ev_scale = (struct event_update_event_scale *) ev->data; 3677 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale); 3678 break; 3679 case PERF_EVENT_UPDATE__UNIT: 3680 ret += fprintf(fp, "... unit: %s\n", ev->data); 3681 break; 3682 case PERF_EVENT_UPDATE__NAME: 3683 ret += fprintf(fp, "... name: %s\n", ev->data); 3684 break; 3685 case PERF_EVENT_UPDATE__CPUS: 3686 ev_cpus = (struct event_update_event_cpus *) ev->data; 3687 ret += fprintf(fp, "... "); 3688 3689 map = cpu_map__new_data(&ev_cpus->cpus); 3690 if (map) 3691 ret += cpu_map__fprintf(map, fp); 3692 else 3693 ret += fprintf(fp, "failed to get cpus\n"); 3694 break; 3695 default: 3696 ret += fprintf(fp, "... unknown type\n"); 3697 break; 3698 } 3699 3700 return ret; 3701 } 3702 3703 int perf_event__synthesize_attrs(struct perf_tool *tool, 3704 struct perf_evlist *evlist, 3705 perf_event__handler_t process) 3706 { 3707 struct perf_evsel *evsel; 3708 int err = 0; 3709 3710 evlist__for_each_entry(evlist, evsel) { 3711 err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids, 3712 evsel->id, process); 3713 if (err) { 3714 pr_debug("failed to create perf header attribute\n"); 3715 return err; 3716 } 3717 } 3718 3719 return err; 3720 } 3721 3722 static bool has_unit(struct perf_evsel *counter) 3723 { 3724 return counter->unit && *counter->unit; 3725 } 3726 3727 static bool has_scale(struct perf_evsel *counter) 3728 { 3729 return counter->scale != 1; 3730 } 3731 3732 int perf_event__synthesize_extra_attr(struct perf_tool *tool, 3733 struct perf_evlist *evsel_list, 3734 perf_event__handler_t process, 3735 bool is_pipe) 3736 { 3737 struct perf_evsel *counter; 3738 int err; 3739 3740 /* 3741 * Synthesize other events stuff not carried within 3742 * attr event - unit, scale, name 3743 */ 3744 evlist__for_each_entry(evsel_list, counter) { 3745 if (!counter->supported) 3746 continue; 3747 3748 /* 3749 * Synthesize unit and scale only if it's defined. 3750 */ 3751 if (has_unit(counter)) { 3752 err = perf_event__synthesize_event_update_unit(tool, counter, process); 3753 if (err < 0) { 3754 pr_err("Couldn't synthesize evsel unit.\n"); 3755 return err; 3756 } 3757 } 3758 3759 if (has_scale(counter)) { 3760 err = perf_event__synthesize_event_update_scale(tool, counter, process); 3761 if (err < 0) { 3762 pr_err("Couldn't synthesize evsel counter.\n"); 3763 return err; 3764 } 3765 } 3766 3767 if (counter->own_cpus) { 3768 err = perf_event__synthesize_event_update_cpus(tool, counter, process); 3769 if (err < 0) { 3770 pr_err("Couldn't synthesize evsel cpus.\n"); 3771 return err; 3772 } 3773 } 3774 3775 /* 3776 * Name is needed only for pipe output, 3777 * perf.data carries event names. 3778 */ 3779 if (is_pipe) { 3780 err = perf_event__synthesize_event_update_name(tool, counter, process); 3781 if (err < 0) { 3782 pr_err("Couldn't synthesize evsel name.\n"); 3783 return err; 3784 } 3785 } 3786 } 3787 return 0; 3788 } 3789 3790 int perf_event__process_attr(struct perf_tool *tool __maybe_unused, 3791 union perf_event *event, 3792 struct perf_evlist **pevlist) 3793 { 3794 u32 i, ids, n_ids; 3795 struct perf_evsel *evsel; 3796 struct perf_evlist *evlist = *pevlist; 3797 3798 if (evlist == NULL) { 3799 *pevlist = evlist = perf_evlist__new(); 3800 if (evlist == NULL) 3801 return -ENOMEM; 3802 } 3803 3804 evsel = perf_evsel__new(&event->attr.attr); 3805 if (evsel == NULL) 3806 return -ENOMEM; 3807 3808 perf_evlist__add(evlist, evsel); 3809 3810 ids = event->header.size; 3811 ids -= (void *)&event->attr.id - (void *)event; 3812 n_ids = ids / sizeof(u64); 3813 /* 3814 * We don't have the cpu and thread maps on the header, so 3815 * for allocating the perf_sample_id table we fake 1 cpu and 3816 * hattr->ids threads. 3817 */ 3818 if (perf_evsel__alloc_id(evsel, 1, n_ids)) 3819 return -ENOMEM; 3820 3821 for (i = 0; i < n_ids; i++) { 3822 perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]); 3823 } 3824 3825 return 0; 3826 } 3827 3828 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused, 3829 union perf_event *event, 3830 struct perf_evlist **pevlist) 3831 { 3832 struct event_update_event *ev = &event->event_update; 3833 struct event_update_event_scale *ev_scale; 3834 struct event_update_event_cpus *ev_cpus; 3835 struct perf_evlist *evlist; 3836 struct perf_evsel *evsel; 3837 struct cpu_map *map; 3838 3839 if (!pevlist || *pevlist == NULL) 3840 return -EINVAL; 3841 3842 evlist = *pevlist; 3843 3844 evsel = perf_evlist__id2evsel(evlist, ev->id); 3845 if (evsel == NULL) 3846 return -EINVAL; 3847 3848 switch (ev->type) { 3849 case PERF_EVENT_UPDATE__UNIT: 3850 evsel->unit = strdup(ev->data); 3851 break; 3852 case PERF_EVENT_UPDATE__NAME: 3853 evsel->name = strdup(ev->data); 3854 break; 3855 case PERF_EVENT_UPDATE__SCALE: 3856 ev_scale = (struct event_update_event_scale *) ev->data; 3857 evsel->scale = ev_scale->scale; 3858 break; 3859 case PERF_EVENT_UPDATE__CPUS: 3860 ev_cpus = (struct event_update_event_cpus *) ev->data; 3861 3862 map = cpu_map__new_data(&ev_cpus->cpus); 3863 if (map) 3864 evsel->own_cpus = map; 3865 else 3866 pr_err("failed to get event_update cpus\n"); 3867 default: 3868 break; 3869 } 3870 3871 return 0; 3872 } 3873 3874 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd, 3875 struct perf_evlist *evlist, 3876 perf_event__handler_t process) 3877 { 3878 union perf_event ev; 3879 struct tracing_data *tdata; 3880 ssize_t size = 0, aligned_size = 0, padding; 3881 struct feat_fd ff; 3882 int err __maybe_unused = 0; 3883 3884 /* 3885 * We are going to store the size of the data followed 3886 * by the data contents. Since the fd descriptor is a pipe, 3887 * we cannot seek back to store the size of the data once 3888 * we know it. Instead we: 3889 * 3890 * - write the tracing data to the temp file 3891 * - get/write the data size to pipe 3892 * - write the tracing data from the temp file 3893 * to the pipe 3894 */ 3895 tdata = tracing_data_get(&evlist->entries, fd, true); 3896 if (!tdata) 3897 return -1; 3898 3899 memset(&ev, 0, sizeof(ev)); 3900 3901 ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA; 3902 size = tdata->size; 3903 aligned_size = PERF_ALIGN(size, sizeof(u64)); 3904 padding = aligned_size - size; 3905 ev.tracing_data.header.size = sizeof(ev.tracing_data); 3906 ev.tracing_data.size = aligned_size; 3907 3908 process(tool, &ev, NULL, NULL); 3909 3910 /* 3911 * The put function will copy all the tracing data 3912 * stored in temp file to the pipe. 3913 */ 3914 tracing_data_put(tdata); 3915 3916 ff = (struct feat_fd){ .fd = fd }; 3917 if (write_padded(&ff, NULL, 0, padding)) 3918 return -1; 3919 3920 return aligned_size; 3921 } 3922 3923 int perf_event__process_tracing_data(struct perf_session *session, 3924 union perf_event *event) 3925 { 3926 ssize_t size_read, padding, size = event->tracing_data.size; 3927 int fd = perf_data__fd(session->data); 3928 off_t offset = lseek(fd, 0, SEEK_CUR); 3929 char buf[BUFSIZ]; 3930 3931 /* setup for reading amidst mmap */ 3932 lseek(fd, offset + sizeof(struct tracing_data_event), 3933 SEEK_SET); 3934 3935 size_read = trace_report(fd, &session->tevent, 3936 session->repipe); 3937 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; 3938 3939 if (readn(fd, buf, padding) < 0) { 3940 pr_err("%s: reading input file", __func__); 3941 return -1; 3942 } 3943 if (session->repipe) { 3944 int retw = write(STDOUT_FILENO, buf, padding); 3945 if (retw <= 0 || retw != padding) { 3946 pr_err("%s: repiping tracing data padding", __func__); 3947 return -1; 3948 } 3949 } 3950 3951 if (size_read + padding != size) { 3952 pr_err("%s: tracing data size mismatch", __func__); 3953 return -1; 3954 } 3955 3956 perf_evlist__prepare_tracepoint_events(session->evlist, 3957 session->tevent.pevent); 3958 3959 return size_read + padding; 3960 } 3961 3962 int perf_event__synthesize_build_id(struct perf_tool *tool, 3963 struct dso *pos, u16 misc, 3964 perf_event__handler_t process, 3965 struct machine *machine) 3966 { 3967 union perf_event ev; 3968 size_t len; 3969 int err = 0; 3970 3971 if (!pos->hit) 3972 return err; 3973 3974 memset(&ev, 0, sizeof(ev)); 3975 3976 len = pos->long_name_len + 1; 3977 len = PERF_ALIGN(len, NAME_ALIGN); 3978 memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id)); 3979 ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID; 3980 ev.build_id.header.misc = misc; 3981 ev.build_id.pid = machine->pid; 3982 ev.build_id.header.size = sizeof(ev.build_id) + len; 3983 memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len); 3984 3985 err = process(tool, &ev, NULL, machine); 3986 3987 return err; 3988 } 3989 3990 int perf_event__process_build_id(struct perf_session *session, 3991 union perf_event *event) 3992 { 3993 __event_process_build_id(&event->build_id, 3994 event->build_id.filename, 3995 session); 3996 return 0; 3997 } 3998