1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <inttypes.h> 4 #include "string2.h" 5 #include <sys/param.h> 6 #include <sys/types.h> 7 #include <byteswap.h> 8 #include <unistd.h> 9 #include <stdio.h> 10 #include <stdlib.h> 11 #include <linux/compiler.h> 12 #include <linux/list.h> 13 #include <linux/kernel.h> 14 #include <linux/bitops.h> 15 #include <linux/string.h> 16 #include <linux/stringify.h> 17 #include <linux/zalloc.h> 18 #include <sys/stat.h> 19 #include <sys/utsname.h> 20 #include <linux/time64.h> 21 #include <dirent.h> 22 #include <bpf/libbpf.h> 23 #include <perf/cpumap.h> 24 25 #include "dso.h" 26 #include "evlist.h" 27 #include "evsel.h" 28 #include "util/evsel_fprintf.h" 29 #include "header.h" 30 #include "memswap.h" 31 #include "trace-event.h" 32 #include "session.h" 33 #include "symbol.h" 34 #include "debug.h" 35 #include "cpumap.h" 36 #include "pmu.h" 37 #include "vdso.h" 38 #include "strbuf.h" 39 #include "build-id.h" 40 #include "data.h" 41 #include <api/fs/fs.h> 42 #include "asm/bug.h" 43 #include "tool.h" 44 #include "time-utils.h" 45 #include "units.h" 46 #include "util/util.h" // perf_exe() 47 #include "cputopo.h" 48 #include "bpf-event.h" 49 50 #include <linux/ctype.h> 51 #include <internal/lib.h> 52 53 /* 54 * magic2 = "PERFILE2" 55 * must be a numerical value to let the endianness 56 * determine the memory layout. That way we are able 57 * to detect endianness when reading the perf.data file 58 * back. 59 * 60 * we check for legacy (PERFFILE) format. 61 */ 62 static const char *__perf_magic1 = "PERFFILE"; 63 static const u64 __perf_magic2 = 0x32454c4946524550ULL; 64 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; 65 66 #define PERF_MAGIC __perf_magic2 67 68 const char perf_version_string[] = PERF_VERSION; 69 70 struct perf_file_attr { 71 struct perf_event_attr attr; 72 struct perf_file_section ids; 73 }; 74 75 void perf_header__set_feat(struct perf_header *header, int feat) 76 { 77 set_bit(feat, header->adds_features); 78 } 79 80 void perf_header__clear_feat(struct perf_header *header, int feat) 81 { 82 clear_bit(feat, header->adds_features); 83 } 84 85 bool perf_header__has_feat(const struct perf_header *header, int feat) 86 { 87 return test_bit(feat, header->adds_features); 88 } 89 90 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) 91 { 92 ssize_t ret = writen(ff->fd, buf, size); 93 94 if (ret != (ssize_t)size) 95 return ret < 0 ? (int)ret : -1; 96 return 0; 97 } 98 99 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) 100 { 101 /* struct perf_event_header::size is u16 */ 102 const size_t max_size = 0xffff - sizeof(struct perf_event_header); 103 size_t new_size = ff->size; 104 void *addr; 105 106 if (size + ff->offset > max_size) 107 return -E2BIG; 108 109 while (size > (new_size - ff->offset)) 110 new_size <<= 1; 111 new_size = min(max_size, new_size); 112 113 if (ff->size < new_size) { 114 addr = realloc(ff->buf, new_size); 115 if (!addr) 116 return -ENOMEM; 117 ff->buf = addr; 118 ff->size = new_size; 119 } 120 121 memcpy(ff->buf + ff->offset, buf, size); 122 ff->offset += size; 123 124 return 0; 125 } 126 127 /* Return: 0 if succeded, -ERR if failed. */ 128 int do_write(struct feat_fd *ff, const void *buf, size_t size) 129 { 130 if (!ff->buf) 131 return __do_write_fd(ff, buf, size); 132 return __do_write_buf(ff, buf, size); 133 } 134 135 /* Return: 0 if succeded, -ERR if failed. */ 136 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) 137 { 138 u64 *p = (u64 *) set; 139 int i, ret; 140 141 ret = do_write(ff, &size, sizeof(size)); 142 if (ret < 0) 143 return ret; 144 145 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 146 ret = do_write(ff, p + i, sizeof(*p)); 147 if (ret < 0) 148 return ret; 149 } 150 151 return 0; 152 } 153 154 /* Return: 0 if succeded, -ERR if failed. */ 155 int write_padded(struct feat_fd *ff, const void *bf, 156 size_t count, size_t count_aligned) 157 { 158 static const char zero_buf[NAME_ALIGN]; 159 int err = do_write(ff, bf, count); 160 161 if (!err) 162 err = do_write(ff, zero_buf, count_aligned - count); 163 164 return err; 165 } 166 167 #define string_size(str) \ 168 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) 169 170 /* Return: 0 if succeded, -ERR if failed. */ 171 static int do_write_string(struct feat_fd *ff, const char *str) 172 { 173 u32 len, olen; 174 int ret; 175 176 olen = strlen(str) + 1; 177 len = PERF_ALIGN(olen, NAME_ALIGN); 178 179 /* write len, incl. \0 */ 180 ret = do_write(ff, &len, sizeof(len)); 181 if (ret < 0) 182 return ret; 183 184 return write_padded(ff, str, olen, len); 185 } 186 187 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) 188 { 189 ssize_t ret = readn(ff->fd, addr, size); 190 191 if (ret != size) 192 return ret < 0 ? (int)ret : -1; 193 return 0; 194 } 195 196 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) 197 { 198 if (size > (ssize_t)ff->size - ff->offset) 199 return -1; 200 201 memcpy(addr, ff->buf + ff->offset, size); 202 ff->offset += size; 203 204 return 0; 205 206 } 207 208 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) 209 { 210 if (!ff->buf) 211 return __do_read_fd(ff, addr, size); 212 return __do_read_buf(ff, addr, size); 213 } 214 215 static int do_read_u32(struct feat_fd *ff, u32 *addr) 216 { 217 int ret; 218 219 ret = __do_read(ff, addr, sizeof(*addr)); 220 if (ret) 221 return ret; 222 223 if (ff->ph->needs_swap) 224 *addr = bswap_32(*addr); 225 return 0; 226 } 227 228 static int do_read_u64(struct feat_fd *ff, u64 *addr) 229 { 230 int ret; 231 232 ret = __do_read(ff, addr, sizeof(*addr)); 233 if (ret) 234 return ret; 235 236 if (ff->ph->needs_swap) 237 *addr = bswap_64(*addr); 238 return 0; 239 } 240 241 static char *do_read_string(struct feat_fd *ff) 242 { 243 u32 len; 244 char *buf; 245 246 if (do_read_u32(ff, &len)) 247 return NULL; 248 249 buf = malloc(len); 250 if (!buf) 251 return NULL; 252 253 if (!__do_read(ff, buf, len)) { 254 /* 255 * strings are padded by zeroes 256 * thus the actual strlen of buf 257 * may be less than len 258 */ 259 return buf; 260 } 261 262 free(buf); 263 return NULL; 264 } 265 266 /* Return: 0 if succeded, -ERR if failed. */ 267 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) 268 { 269 unsigned long *set; 270 u64 size, *p; 271 int i, ret; 272 273 ret = do_read_u64(ff, &size); 274 if (ret) 275 return ret; 276 277 set = bitmap_alloc(size); 278 if (!set) 279 return -ENOMEM; 280 281 p = (u64 *) set; 282 283 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 284 ret = do_read_u64(ff, p + i); 285 if (ret < 0) { 286 free(set); 287 return ret; 288 } 289 } 290 291 *pset = set; 292 *psize = size; 293 return 0; 294 } 295 296 static int write_tracing_data(struct feat_fd *ff, 297 struct evlist *evlist) 298 { 299 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 300 return -1; 301 302 return read_tracing_data(ff->fd, &evlist->core.entries); 303 } 304 305 static int write_build_id(struct feat_fd *ff, 306 struct evlist *evlist __maybe_unused) 307 { 308 struct perf_session *session; 309 int err; 310 311 session = container_of(ff->ph, struct perf_session, header); 312 313 if (!perf_session__read_build_ids(session, true)) 314 return -1; 315 316 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 317 return -1; 318 319 err = perf_session__write_buildid_table(session, ff); 320 if (err < 0) { 321 pr_debug("failed to write buildid table\n"); 322 return err; 323 } 324 perf_session__cache_build_ids(session); 325 326 return 0; 327 } 328 329 static int write_hostname(struct feat_fd *ff, 330 struct evlist *evlist __maybe_unused) 331 { 332 struct utsname uts; 333 int ret; 334 335 ret = uname(&uts); 336 if (ret < 0) 337 return -1; 338 339 return do_write_string(ff, uts.nodename); 340 } 341 342 static int write_osrelease(struct feat_fd *ff, 343 struct evlist *evlist __maybe_unused) 344 { 345 struct utsname uts; 346 int ret; 347 348 ret = uname(&uts); 349 if (ret < 0) 350 return -1; 351 352 return do_write_string(ff, uts.release); 353 } 354 355 static int write_arch(struct feat_fd *ff, 356 struct evlist *evlist __maybe_unused) 357 { 358 struct utsname uts; 359 int ret; 360 361 ret = uname(&uts); 362 if (ret < 0) 363 return -1; 364 365 return do_write_string(ff, uts.machine); 366 } 367 368 static int write_version(struct feat_fd *ff, 369 struct evlist *evlist __maybe_unused) 370 { 371 return do_write_string(ff, perf_version_string); 372 } 373 374 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) 375 { 376 FILE *file; 377 char *buf = NULL; 378 char *s, *p; 379 const char *search = cpuinfo_proc; 380 size_t len = 0; 381 int ret = -1; 382 383 if (!search) 384 return -1; 385 386 file = fopen("/proc/cpuinfo", "r"); 387 if (!file) 388 return -1; 389 390 while (getline(&buf, &len, file) > 0) { 391 ret = strncmp(buf, search, strlen(search)); 392 if (!ret) 393 break; 394 } 395 396 if (ret) { 397 ret = -1; 398 goto done; 399 } 400 401 s = buf; 402 403 p = strchr(buf, ':'); 404 if (p && *(p+1) == ' ' && *(p+2)) 405 s = p + 2; 406 p = strchr(s, '\n'); 407 if (p) 408 *p = '\0'; 409 410 /* squash extra space characters (branding string) */ 411 p = s; 412 while (*p) { 413 if (isspace(*p)) { 414 char *r = p + 1; 415 char *q = skip_spaces(r); 416 *p = ' '; 417 if (q != (p+1)) 418 while ((*r++ = *q++)); 419 } 420 p++; 421 } 422 ret = do_write_string(ff, s); 423 done: 424 free(buf); 425 fclose(file); 426 return ret; 427 } 428 429 static int write_cpudesc(struct feat_fd *ff, 430 struct evlist *evlist __maybe_unused) 431 { 432 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__) 433 #define CPUINFO_PROC { "cpu", } 434 #elif defined(__s390__) 435 #define CPUINFO_PROC { "vendor_id", } 436 #elif defined(__sh__) 437 #define CPUINFO_PROC { "cpu type", } 438 #elif defined(__alpha__) || defined(__mips__) 439 #define CPUINFO_PROC { "cpu model", } 440 #elif defined(__arm__) 441 #define CPUINFO_PROC { "model name", "Processor", } 442 #elif defined(__arc__) 443 #define CPUINFO_PROC { "Processor", } 444 #elif defined(__xtensa__) 445 #define CPUINFO_PROC { "core ID", } 446 #else 447 #define CPUINFO_PROC { "model name", } 448 #endif 449 const char *cpuinfo_procs[] = CPUINFO_PROC; 450 #undef CPUINFO_PROC 451 unsigned int i; 452 453 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { 454 int ret; 455 ret = __write_cpudesc(ff, cpuinfo_procs[i]); 456 if (ret >= 0) 457 return ret; 458 } 459 return -1; 460 } 461 462 463 static int write_nrcpus(struct feat_fd *ff, 464 struct evlist *evlist __maybe_unused) 465 { 466 long nr; 467 u32 nrc, nra; 468 int ret; 469 470 nrc = cpu__max_present_cpu(); 471 472 nr = sysconf(_SC_NPROCESSORS_ONLN); 473 if (nr < 0) 474 return -1; 475 476 nra = (u32)(nr & UINT_MAX); 477 478 ret = do_write(ff, &nrc, sizeof(nrc)); 479 if (ret < 0) 480 return ret; 481 482 return do_write(ff, &nra, sizeof(nra)); 483 } 484 485 static int write_event_desc(struct feat_fd *ff, 486 struct evlist *evlist) 487 { 488 struct evsel *evsel; 489 u32 nre, nri, sz; 490 int ret; 491 492 nre = evlist->core.nr_entries; 493 494 /* 495 * write number of events 496 */ 497 ret = do_write(ff, &nre, sizeof(nre)); 498 if (ret < 0) 499 return ret; 500 501 /* 502 * size of perf_event_attr struct 503 */ 504 sz = (u32)sizeof(evsel->core.attr); 505 ret = do_write(ff, &sz, sizeof(sz)); 506 if (ret < 0) 507 return ret; 508 509 evlist__for_each_entry(evlist, evsel) { 510 ret = do_write(ff, &evsel->core.attr, sz); 511 if (ret < 0) 512 return ret; 513 /* 514 * write number of unique id per event 515 * there is one id per instance of an event 516 * 517 * copy into an nri to be independent of the 518 * type of ids, 519 */ 520 nri = evsel->core.ids; 521 ret = do_write(ff, &nri, sizeof(nri)); 522 if (ret < 0) 523 return ret; 524 525 /* 526 * write event string as passed on cmdline 527 */ 528 ret = do_write_string(ff, perf_evsel__name(evsel)); 529 if (ret < 0) 530 return ret; 531 /* 532 * write unique ids for this event 533 */ 534 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 535 if (ret < 0) 536 return ret; 537 } 538 return 0; 539 } 540 541 static int write_cmdline(struct feat_fd *ff, 542 struct evlist *evlist __maybe_unused) 543 { 544 char pbuf[MAXPATHLEN], *buf; 545 int i, ret, n; 546 547 /* actual path to perf binary */ 548 buf = perf_exe(pbuf, MAXPATHLEN); 549 550 /* account for binary path */ 551 n = perf_env.nr_cmdline + 1; 552 553 ret = do_write(ff, &n, sizeof(n)); 554 if (ret < 0) 555 return ret; 556 557 ret = do_write_string(ff, buf); 558 if (ret < 0) 559 return ret; 560 561 for (i = 0 ; i < perf_env.nr_cmdline; i++) { 562 ret = do_write_string(ff, perf_env.cmdline_argv[i]); 563 if (ret < 0) 564 return ret; 565 } 566 return 0; 567 } 568 569 570 static int write_cpu_topology(struct feat_fd *ff, 571 struct evlist *evlist __maybe_unused) 572 { 573 struct cpu_topology *tp; 574 u32 i; 575 int ret, j; 576 577 tp = cpu_topology__new(); 578 if (!tp) 579 return -1; 580 581 ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib)); 582 if (ret < 0) 583 goto done; 584 585 for (i = 0; i < tp->core_sib; i++) { 586 ret = do_write_string(ff, tp->core_siblings[i]); 587 if (ret < 0) 588 goto done; 589 } 590 ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib)); 591 if (ret < 0) 592 goto done; 593 594 for (i = 0; i < tp->thread_sib; i++) { 595 ret = do_write_string(ff, tp->thread_siblings[i]); 596 if (ret < 0) 597 break; 598 } 599 600 ret = perf_env__read_cpu_topology_map(&perf_env); 601 if (ret < 0) 602 goto done; 603 604 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 605 ret = do_write(ff, &perf_env.cpu[j].core_id, 606 sizeof(perf_env.cpu[j].core_id)); 607 if (ret < 0) 608 return ret; 609 ret = do_write(ff, &perf_env.cpu[j].socket_id, 610 sizeof(perf_env.cpu[j].socket_id)); 611 if (ret < 0) 612 return ret; 613 } 614 615 if (!tp->die_sib) 616 goto done; 617 618 ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib)); 619 if (ret < 0) 620 goto done; 621 622 for (i = 0; i < tp->die_sib; i++) { 623 ret = do_write_string(ff, tp->die_siblings[i]); 624 if (ret < 0) 625 goto done; 626 } 627 628 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 629 ret = do_write(ff, &perf_env.cpu[j].die_id, 630 sizeof(perf_env.cpu[j].die_id)); 631 if (ret < 0) 632 return ret; 633 } 634 635 done: 636 cpu_topology__delete(tp); 637 return ret; 638 } 639 640 641 642 static int write_total_mem(struct feat_fd *ff, 643 struct evlist *evlist __maybe_unused) 644 { 645 char *buf = NULL; 646 FILE *fp; 647 size_t len = 0; 648 int ret = -1, n; 649 uint64_t mem; 650 651 fp = fopen("/proc/meminfo", "r"); 652 if (!fp) 653 return -1; 654 655 while (getline(&buf, &len, fp) > 0) { 656 ret = strncmp(buf, "MemTotal:", 9); 657 if (!ret) 658 break; 659 } 660 if (!ret) { 661 n = sscanf(buf, "%*s %"PRIu64, &mem); 662 if (n == 1) 663 ret = do_write(ff, &mem, sizeof(mem)); 664 } else 665 ret = -1; 666 free(buf); 667 fclose(fp); 668 return ret; 669 } 670 671 static int write_numa_topology(struct feat_fd *ff, 672 struct evlist *evlist __maybe_unused) 673 { 674 struct numa_topology *tp; 675 int ret = -1; 676 u32 i; 677 678 tp = numa_topology__new(); 679 if (!tp) 680 return -ENOMEM; 681 682 ret = do_write(ff, &tp->nr, sizeof(u32)); 683 if (ret < 0) 684 goto err; 685 686 for (i = 0; i < tp->nr; i++) { 687 struct numa_topology_node *n = &tp->nodes[i]; 688 689 ret = do_write(ff, &n->node, sizeof(u32)); 690 if (ret < 0) 691 goto err; 692 693 ret = do_write(ff, &n->mem_total, sizeof(u64)); 694 if (ret) 695 goto err; 696 697 ret = do_write(ff, &n->mem_free, sizeof(u64)); 698 if (ret) 699 goto err; 700 701 ret = do_write_string(ff, n->cpus); 702 if (ret < 0) 703 goto err; 704 } 705 706 ret = 0; 707 708 err: 709 numa_topology__delete(tp); 710 return ret; 711 } 712 713 /* 714 * File format: 715 * 716 * struct pmu_mappings { 717 * u32 pmu_num; 718 * struct pmu_map { 719 * u32 type; 720 * char name[]; 721 * }[pmu_num]; 722 * }; 723 */ 724 725 static int write_pmu_mappings(struct feat_fd *ff, 726 struct evlist *evlist __maybe_unused) 727 { 728 struct perf_pmu *pmu = NULL; 729 u32 pmu_num = 0; 730 int ret; 731 732 /* 733 * Do a first pass to count number of pmu to avoid lseek so this 734 * works in pipe mode as well. 735 */ 736 while ((pmu = perf_pmu__scan(pmu))) { 737 if (!pmu->name) 738 continue; 739 pmu_num++; 740 } 741 742 ret = do_write(ff, &pmu_num, sizeof(pmu_num)); 743 if (ret < 0) 744 return ret; 745 746 while ((pmu = perf_pmu__scan(pmu))) { 747 if (!pmu->name) 748 continue; 749 750 ret = do_write(ff, &pmu->type, sizeof(pmu->type)); 751 if (ret < 0) 752 return ret; 753 754 ret = do_write_string(ff, pmu->name); 755 if (ret < 0) 756 return ret; 757 } 758 759 return 0; 760 } 761 762 /* 763 * File format: 764 * 765 * struct group_descs { 766 * u32 nr_groups; 767 * struct group_desc { 768 * char name[]; 769 * u32 leader_idx; 770 * u32 nr_members; 771 * }[nr_groups]; 772 * }; 773 */ 774 static int write_group_desc(struct feat_fd *ff, 775 struct evlist *evlist) 776 { 777 u32 nr_groups = evlist->nr_groups; 778 struct evsel *evsel; 779 int ret; 780 781 ret = do_write(ff, &nr_groups, sizeof(nr_groups)); 782 if (ret < 0) 783 return ret; 784 785 evlist__for_each_entry(evlist, evsel) { 786 if (perf_evsel__is_group_leader(evsel) && 787 evsel->core.nr_members > 1) { 788 const char *name = evsel->group_name ?: "{anon_group}"; 789 u32 leader_idx = evsel->idx; 790 u32 nr_members = evsel->core.nr_members; 791 792 ret = do_write_string(ff, name); 793 if (ret < 0) 794 return ret; 795 796 ret = do_write(ff, &leader_idx, sizeof(leader_idx)); 797 if (ret < 0) 798 return ret; 799 800 ret = do_write(ff, &nr_members, sizeof(nr_members)); 801 if (ret < 0) 802 return ret; 803 } 804 } 805 return 0; 806 } 807 808 /* 809 * Return the CPU id as a raw string. 810 * 811 * Each architecture should provide a more precise id string that 812 * can be use to match the architecture's "mapfile". 813 */ 814 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused) 815 { 816 return NULL; 817 } 818 819 /* Return zero when the cpuid from the mapfile.csv matches the 820 * cpuid string generated on this platform. 821 * Otherwise return non-zero. 822 */ 823 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid) 824 { 825 regex_t re; 826 regmatch_t pmatch[1]; 827 int match; 828 829 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) { 830 /* Warn unable to generate match particular string. */ 831 pr_info("Invalid regular expression %s\n", mapcpuid); 832 return 1; 833 } 834 835 match = !regexec(&re, cpuid, 1, pmatch, 0); 836 regfree(&re); 837 if (match) { 838 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so); 839 840 /* Verify the entire string matched. */ 841 if (match_len == strlen(cpuid)) 842 return 0; 843 } 844 return 1; 845 } 846 847 /* 848 * default get_cpuid(): nothing gets recorded 849 * actual implementation must be in arch/$(SRCARCH)/util/header.c 850 */ 851 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused) 852 { 853 return ENOSYS; /* Not implemented */ 854 } 855 856 static int write_cpuid(struct feat_fd *ff, 857 struct evlist *evlist __maybe_unused) 858 { 859 char buffer[64]; 860 int ret; 861 862 ret = get_cpuid(buffer, sizeof(buffer)); 863 if (ret) 864 return -1; 865 866 return do_write_string(ff, buffer); 867 } 868 869 static int write_branch_stack(struct feat_fd *ff __maybe_unused, 870 struct evlist *evlist __maybe_unused) 871 { 872 return 0; 873 } 874 875 static int write_auxtrace(struct feat_fd *ff, 876 struct evlist *evlist __maybe_unused) 877 { 878 struct perf_session *session; 879 int err; 880 881 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 882 return -1; 883 884 session = container_of(ff->ph, struct perf_session, header); 885 886 err = auxtrace_index__write(ff->fd, &session->auxtrace_index); 887 if (err < 0) 888 pr_err("Failed to write auxtrace index\n"); 889 return err; 890 } 891 892 static int write_clockid(struct feat_fd *ff, 893 struct evlist *evlist __maybe_unused) 894 { 895 return do_write(ff, &ff->ph->env.clockid_res_ns, 896 sizeof(ff->ph->env.clockid_res_ns)); 897 } 898 899 static int write_dir_format(struct feat_fd *ff, 900 struct evlist *evlist __maybe_unused) 901 { 902 struct perf_session *session; 903 struct perf_data *data; 904 905 session = container_of(ff->ph, struct perf_session, header); 906 data = session->data; 907 908 if (WARN_ON(!perf_data__is_dir(data))) 909 return -1; 910 911 return do_write(ff, &data->dir.version, sizeof(data->dir.version)); 912 } 913 914 #ifdef HAVE_LIBBPF_SUPPORT 915 static int write_bpf_prog_info(struct feat_fd *ff, 916 struct evlist *evlist __maybe_unused) 917 { 918 struct perf_env *env = &ff->ph->env; 919 struct rb_root *root; 920 struct rb_node *next; 921 int ret; 922 923 down_read(&env->bpf_progs.lock); 924 925 ret = do_write(ff, &env->bpf_progs.infos_cnt, 926 sizeof(env->bpf_progs.infos_cnt)); 927 if (ret < 0) 928 goto out; 929 930 root = &env->bpf_progs.infos; 931 next = rb_first(root); 932 while (next) { 933 struct bpf_prog_info_node *node; 934 size_t len; 935 936 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 937 next = rb_next(&node->rb_node); 938 len = sizeof(struct bpf_prog_info_linear) + 939 node->info_linear->data_len; 940 941 /* before writing to file, translate address to offset */ 942 bpf_program__bpil_addr_to_offs(node->info_linear); 943 ret = do_write(ff, node->info_linear, len); 944 /* 945 * translate back to address even when do_write() fails, 946 * so that this function never changes the data. 947 */ 948 bpf_program__bpil_offs_to_addr(node->info_linear); 949 if (ret < 0) 950 goto out; 951 } 952 out: 953 up_read(&env->bpf_progs.lock); 954 return ret; 955 } 956 #else // HAVE_LIBBPF_SUPPORT 957 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused, 958 struct evlist *evlist __maybe_unused) 959 { 960 return 0; 961 } 962 #endif // HAVE_LIBBPF_SUPPORT 963 964 static int write_bpf_btf(struct feat_fd *ff, 965 struct evlist *evlist __maybe_unused) 966 { 967 struct perf_env *env = &ff->ph->env; 968 struct rb_root *root; 969 struct rb_node *next; 970 int ret; 971 972 down_read(&env->bpf_progs.lock); 973 974 ret = do_write(ff, &env->bpf_progs.btfs_cnt, 975 sizeof(env->bpf_progs.btfs_cnt)); 976 977 if (ret < 0) 978 goto out; 979 980 root = &env->bpf_progs.btfs; 981 next = rb_first(root); 982 while (next) { 983 struct btf_node *node; 984 985 node = rb_entry(next, struct btf_node, rb_node); 986 next = rb_next(&node->rb_node); 987 ret = do_write(ff, &node->id, 988 sizeof(u32) * 2 + node->data_size); 989 if (ret < 0) 990 goto out; 991 } 992 out: 993 up_read(&env->bpf_progs.lock); 994 return ret; 995 } 996 997 static int cpu_cache_level__sort(const void *a, const void *b) 998 { 999 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; 1000 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; 1001 1002 return cache_a->level - cache_b->level; 1003 } 1004 1005 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) 1006 { 1007 if (a->level != b->level) 1008 return false; 1009 1010 if (a->line_size != b->line_size) 1011 return false; 1012 1013 if (a->sets != b->sets) 1014 return false; 1015 1016 if (a->ways != b->ways) 1017 return false; 1018 1019 if (strcmp(a->type, b->type)) 1020 return false; 1021 1022 if (strcmp(a->size, b->size)) 1023 return false; 1024 1025 if (strcmp(a->map, b->map)) 1026 return false; 1027 1028 return true; 1029 } 1030 1031 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) 1032 { 1033 char path[PATH_MAX], file[PATH_MAX]; 1034 struct stat st; 1035 size_t len; 1036 1037 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); 1038 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); 1039 1040 if (stat(file, &st)) 1041 return 1; 1042 1043 scnprintf(file, PATH_MAX, "%s/level", path); 1044 if (sysfs__read_int(file, (int *) &cache->level)) 1045 return -1; 1046 1047 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); 1048 if (sysfs__read_int(file, (int *) &cache->line_size)) 1049 return -1; 1050 1051 scnprintf(file, PATH_MAX, "%s/number_of_sets", path); 1052 if (sysfs__read_int(file, (int *) &cache->sets)) 1053 return -1; 1054 1055 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); 1056 if (sysfs__read_int(file, (int *) &cache->ways)) 1057 return -1; 1058 1059 scnprintf(file, PATH_MAX, "%s/type", path); 1060 if (sysfs__read_str(file, &cache->type, &len)) 1061 return -1; 1062 1063 cache->type[len] = 0; 1064 cache->type = strim(cache->type); 1065 1066 scnprintf(file, PATH_MAX, "%s/size", path); 1067 if (sysfs__read_str(file, &cache->size, &len)) { 1068 zfree(&cache->type); 1069 return -1; 1070 } 1071 1072 cache->size[len] = 0; 1073 cache->size = strim(cache->size); 1074 1075 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); 1076 if (sysfs__read_str(file, &cache->map, &len)) { 1077 zfree(&cache->size); 1078 zfree(&cache->type); 1079 return -1; 1080 } 1081 1082 cache->map[len] = 0; 1083 cache->map = strim(cache->map); 1084 return 0; 1085 } 1086 1087 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) 1088 { 1089 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); 1090 } 1091 1092 #define MAX_CACHE_LVL 4 1093 1094 static int build_caches(struct cpu_cache_level caches[], u32 *cntp) 1095 { 1096 u32 i, cnt = 0; 1097 u32 nr, cpu; 1098 u16 level; 1099 1100 nr = cpu__max_cpu(); 1101 1102 for (cpu = 0; cpu < nr; cpu++) { 1103 for (level = 0; level < MAX_CACHE_LVL; level++) { 1104 struct cpu_cache_level c; 1105 int err; 1106 1107 err = cpu_cache_level__read(&c, cpu, level); 1108 if (err < 0) 1109 return err; 1110 1111 if (err == 1) 1112 break; 1113 1114 for (i = 0; i < cnt; i++) { 1115 if (cpu_cache_level__cmp(&c, &caches[i])) 1116 break; 1117 } 1118 1119 if (i == cnt) 1120 caches[cnt++] = c; 1121 else 1122 cpu_cache_level__free(&c); 1123 } 1124 } 1125 *cntp = cnt; 1126 return 0; 1127 } 1128 1129 static int write_cache(struct feat_fd *ff, 1130 struct evlist *evlist __maybe_unused) 1131 { 1132 u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL; 1133 struct cpu_cache_level caches[max_caches]; 1134 u32 cnt = 0, i, version = 1; 1135 int ret; 1136 1137 ret = build_caches(caches, &cnt); 1138 if (ret) 1139 goto out; 1140 1141 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); 1142 1143 ret = do_write(ff, &version, sizeof(u32)); 1144 if (ret < 0) 1145 goto out; 1146 1147 ret = do_write(ff, &cnt, sizeof(u32)); 1148 if (ret < 0) 1149 goto out; 1150 1151 for (i = 0; i < cnt; i++) { 1152 struct cpu_cache_level *c = &caches[i]; 1153 1154 #define _W(v) \ 1155 ret = do_write(ff, &c->v, sizeof(u32)); \ 1156 if (ret < 0) \ 1157 goto out; 1158 1159 _W(level) 1160 _W(line_size) 1161 _W(sets) 1162 _W(ways) 1163 #undef _W 1164 1165 #define _W(v) \ 1166 ret = do_write_string(ff, (const char *) c->v); \ 1167 if (ret < 0) \ 1168 goto out; 1169 1170 _W(type) 1171 _W(size) 1172 _W(map) 1173 #undef _W 1174 } 1175 1176 out: 1177 for (i = 0; i < cnt; i++) 1178 cpu_cache_level__free(&caches[i]); 1179 return ret; 1180 } 1181 1182 static int write_stat(struct feat_fd *ff __maybe_unused, 1183 struct evlist *evlist __maybe_unused) 1184 { 1185 return 0; 1186 } 1187 1188 static int write_sample_time(struct feat_fd *ff, 1189 struct evlist *evlist) 1190 { 1191 int ret; 1192 1193 ret = do_write(ff, &evlist->first_sample_time, 1194 sizeof(evlist->first_sample_time)); 1195 if (ret < 0) 1196 return ret; 1197 1198 return do_write(ff, &evlist->last_sample_time, 1199 sizeof(evlist->last_sample_time)); 1200 } 1201 1202 1203 static int memory_node__read(struct memory_node *n, unsigned long idx) 1204 { 1205 unsigned int phys, size = 0; 1206 char path[PATH_MAX]; 1207 struct dirent *ent; 1208 DIR *dir; 1209 1210 #define for_each_memory(mem, dir) \ 1211 while ((ent = readdir(dir))) \ 1212 if (strcmp(ent->d_name, ".") && \ 1213 strcmp(ent->d_name, "..") && \ 1214 sscanf(ent->d_name, "memory%u", &mem) == 1) 1215 1216 scnprintf(path, PATH_MAX, 1217 "%s/devices/system/node/node%lu", 1218 sysfs__mountpoint(), idx); 1219 1220 dir = opendir(path); 1221 if (!dir) { 1222 pr_warning("failed: cant' open memory sysfs data\n"); 1223 return -1; 1224 } 1225 1226 for_each_memory(phys, dir) { 1227 size = max(phys, size); 1228 } 1229 1230 size++; 1231 1232 n->set = bitmap_alloc(size); 1233 if (!n->set) { 1234 closedir(dir); 1235 return -ENOMEM; 1236 } 1237 1238 n->node = idx; 1239 n->size = size; 1240 1241 rewinddir(dir); 1242 1243 for_each_memory(phys, dir) { 1244 set_bit(phys, n->set); 1245 } 1246 1247 closedir(dir); 1248 return 0; 1249 } 1250 1251 static int memory_node__sort(const void *a, const void *b) 1252 { 1253 const struct memory_node *na = a; 1254 const struct memory_node *nb = b; 1255 1256 return na->node - nb->node; 1257 } 1258 1259 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp) 1260 { 1261 char path[PATH_MAX]; 1262 struct dirent *ent; 1263 DIR *dir; 1264 u64 cnt = 0; 1265 int ret = 0; 1266 1267 scnprintf(path, PATH_MAX, "%s/devices/system/node/", 1268 sysfs__mountpoint()); 1269 1270 dir = opendir(path); 1271 if (!dir) { 1272 pr_debug2("%s: could't read %s, does this arch have topology information?\n", 1273 __func__, path); 1274 return -1; 1275 } 1276 1277 while (!ret && (ent = readdir(dir))) { 1278 unsigned int idx; 1279 int r; 1280 1281 if (!strcmp(ent->d_name, ".") || 1282 !strcmp(ent->d_name, "..")) 1283 continue; 1284 1285 r = sscanf(ent->d_name, "node%u", &idx); 1286 if (r != 1) 1287 continue; 1288 1289 if (WARN_ONCE(cnt >= size, 1290 "failed to write MEM_TOPOLOGY, way too many nodes\n")) { 1291 closedir(dir); 1292 return -1; 1293 } 1294 1295 ret = memory_node__read(&nodes[cnt++], idx); 1296 } 1297 1298 *cntp = cnt; 1299 closedir(dir); 1300 1301 if (!ret) 1302 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); 1303 1304 return ret; 1305 } 1306 1307 #define MAX_MEMORY_NODES 2000 1308 1309 /* 1310 * The MEM_TOPOLOGY holds physical memory map for every 1311 * node in system. The format of data is as follows: 1312 * 1313 * 0 - version | for future changes 1314 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes 1315 * 16 - count | number of nodes 1316 * 1317 * For each node we store map of physical indexes for 1318 * each node: 1319 * 1320 * 32 - node id | node index 1321 * 40 - size | size of bitmap 1322 * 48 - bitmap | bitmap of memory indexes that belongs to node 1323 */ 1324 static int write_mem_topology(struct feat_fd *ff __maybe_unused, 1325 struct evlist *evlist __maybe_unused) 1326 { 1327 static struct memory_node nodes[MAX_MEMORY_NODES]; 1328 u64 bsize, version = 1, i, nr; 1329 int ret; 1330 1331 ret = sysfs__read_xll("devices/system/memory/block_size_bytes", 1332 (unsigned long long *) &bsize); 1333 if (ret) 1334 return ret; 1335 1336 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr); 1337 if (ret) 1338 return ret; 1339 1340 ret = do_write(ff, &version, sizeof(version)); 1341 if (ret < 0) 1342 goto out; 1343 1344 ret = do_write(ff, &bsize, sizeof(bsize)); 1345 if (ret < 0) 1346 goto out; 1347 1348 ret = do_write(ff, &nr, sizeof(nr)); 1349 if (ret < 0) 1350 goto out; 1351 1352 for (i = 0; i < nr; i++) { 1353 struct memory_node *n = &nodes[i]; 1354 1355 #define _W(v) \ 1356 ret = do_write(ff, &n->v, sizeof(n->v)); \ 1357 if (ret < 0) \ 1358 goto out; 1359 1360 _W(node) 1361 _W(size) 1362 1363 #undef _W 1364 1365 ret = do_write_bitmap(ff, n->set, n->size); 1366 if (ret < 0) 1367 goto out; 1368 } 1369 1370 out: 1371 return ret; 1372 } 1373 1374 static int write_compressed(struct feat_fd *ff __maybe_unused, 1375 struct evlist *evlist __maybe_unused) 1376 { 1377 int ret; 1378 1379 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver)); 1380 if (ret) 1381 return ret; 1382 1383 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type)); 1384 if (ret) 1385 return ret; 1386 1387 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level)); 1388 if (ret) 1389 return ret; 1390 1391 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio)); 1392 if (ret) 1393 return ret; 1394 1395 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len)); 1396 } 1397 1398 static void print_hostname(struct feat_fd *ff, FILE *fp) 1399 { 1400 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); 1401 } 1402 1403 static void print_osrelease(struct feat_fd *ff, FILE *fp) 1404 { 1405 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); 1406 } 1407 1408 static void print_arch(struct feat_fd *ff, FILE *fp) 1409 { 1410 fprintf(fp, "# arch : %s\n", ff->ph->env.arch); 1411 } 1412 1413 static void print_cpudesc(struct feat_fd *ff, FILE *fp) 1414 { 1415 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); 1416 } 1417 1418 static void print_nrcpus(struct feat_fd *ff, FILE *fp) 1419 { 1420 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); 1421 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); 1422 } 1423 1424 static void print_version(struct feat_fd *ff, FILE *fp) 1425 { 1426 fprintf(fp, "# perf version : %s\n", ff->ph->env.version); 1427 } 1428 1429 static void print_cmdline(struct feat_fd *ff, FILE *fp) 1430 { 1431 int nr, i; 1432 1433 nr = ff->ph->env.nr_cmdline; 1434 1435 fprintf(fp, "# cmdline : "); 1436 1437 for (i = 0; i < nr; i++) { 1438 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); 1439 if (!argv_i) { 1440 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); 1441 } else { 1442 char *mem = argv_i; 1443 do { 1444 char *quote = strchr(argv_i, '\''); 1445 if (!quote) 1446 break; 1447 *quote++ = '\0'; 1448 fprintf(fp, "%s\\\'", argv_i); 1449 argv_i = quote; 1450 } while (1); 1451 fprintf(fp, "%s ", argv_i); 1452 free(mem); 1453 } 1454 } 1455 fputc('\n', fp); 1456 } 1457 1458 static void print_cpu_topology(struct feat_fd *ff, FILE *fp) 1459 { 1460 struct perf_header *ph = ff->ph; 1461 int cpu_nr = ph->env.nr_cpus_avail; 1462 int nr, i; 1463 char *str; 1464 1465 nr = ph->env.nr_sibling_cores; 1466 str = ph->env.sibling_cores; 1467 1468 for (i = 0; i < nr; i++) { 1469 fprintf(fp, "# sibling sockets : %s\n", str); 1470 str += strlen(str) + 1; 1471 } 1472 1473 if (ph->env.nr_sibling_dies) { 1474 nr = ph->env.nr_sibling_dies; 1475 str = ph->env.sibling_dies; 1476 1477 for (i = 0; i < nr; i++) { 1478 fprintf(fp, "# sibling dies : %s\n", str); 1479 str += strlen(str) + 1; 1480 } 1481 } 1482 1483 nr = ph->env.nr_sibling_threads; 1484 str = ph->env.sibling_threads; 1485 1486 for (i = 0; i < nr; i++) { 1487 fprintf(fp, "# sibling threads : %s\n", str); 1488 str += strlen(str) + 1; 1489 } 1490 1491 if (ph->env.nr_sibling_dies) { 1492 if (ph->env.cpu != NULL) { 1493 for (i = 0; i < cpu_nr; i++) 1494 fprintf(fp, "# CPU %d: Core ID %d, " 1495 "Die ID %d, Socket ID %d\n", 1496 i, ph->env.cpu[i].core_id, 1497 ph->env.cpu[i].die_id, 1498 ph->env.cpu[i].socket_id); 1499 } else 1500 fprintf(fp, "# Core ID, Die ID and Socket ID " 1501 "information is not available\n"); 1502 } else { 1503 if (ph->env.cpu != NULL) { 1504 for (i = 0; i < cpu_nr; i++) 1505 fprintf(fp, "# CPU %d: Core ID %d, " 1506 "Socket ID %d\n", 1507 i, ph->env.cpu[i].core_id, 1508 ph->env.cpu[i].socket_id); 1509 } else 1510 fprintf(fp, "# Core ID and Socket ID " 1511 "information is not available\n"); 1512 } 1513 } 1514 1515 static void print_clockid(struct feat_fd *ff, FILE *fp) 1516 { 1517 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", 1518 ff->ph->env.clockid_res_ns * 1000); 1519 } 1520 1521 static void print_dir_format(struct feat_fd *ff, FILE *fp) 1522 { 1523 struct perf_session *session; 1524 struct perf_data *data; 1525 1526 session = container_of(ff->ph, struct perf_session, header); 1527 data = session->data; 1528 1529 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version); 1530 } 1531 1532 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp) 1533 { 1534 struct perf_env *env = &ff->ph->env; 1535 struct rb_root *root; 1536 struct rb_node *next; 1537 1538 down_read(&env->bpf_progs.lock); 1539 1540 root = &env->bpf_progs.infos; 1541 next = rb_first(root); 1542 1543 while (next) { 1544 struct bpf_prog_info_node *node; 1545 1546 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1547 next = rb_next(&node->rb_node); 1548 1549 bpf_event__print_bpf_prog_info(&node->info_linear->info, 1550 env, fp); 1551 } 1552 1553 up_read(&env->bpf_progs.lock); 1554 } 1555 1556 static void print_bpf_btf(struct feat_fd *ff, FILE *fp) 1557 { 1558 struct perf_env *env = &ff->ph->env; 1559 struct rb_root *root; 1560 struct rb_node *next; 1561 1562 down_read(&env->bpf_progs.lock); 1563 1564 root = &env->bpf_progs.btfs; 1565 next = rb_first(root); 1566 1567 while (next) { 1568 struct btf_node *node; 1569 1570 node = rb_entry(next, struct btf_node, rb_node); 1571 next = rb_next(&node->rb_node); 1572 fprintf(fp, "# btf info of id %u\n", node->id); 1573 } 1574 1575 up_read(&env->bpf_progs.lock); 1576 } 1577 1578 static void free_event_desc(struct evsel *events) 1579 { 1580 struct evsel *evsel; 1581 1582 if (!events) 1583 return; 1584 1585 for (evsel = events; evsel->core.attr.size; evsel++) { 1586 zfree(&evsel->name); 1587 zfree(&evsel->core.id); 1588 } 1589 1590 free(events); 1591 } 1592 1593 static bool perf_attr_check(struct perf_event_attr *attr) 1594 { 1595 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) { 1596 pr_warning("Reserved bits are set unexpectedly. " 1597 "Please update perf tool.\n"); 1598 return false; 1599 } 1600 1601 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) { 1602 pr_warning("Unknown sample type (0x%llx) is detected. " 1603 "Please update perf tool.\n", 1604 attr->sample_type); 1605 return false; 1606 } 1607 1608 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) { 1609 pr_warning("Unknown read format (0x%llx) is detected. " 1610 "Please update perf tool.\n", 1611 attr->read_format); 1612 return false; 1613 } 1614 1615 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) && 1616 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) { 1617 pr_warning("Unknown branch sample type (0x%llx) is detected. " 1618 "Please update perf tool.\n", 1619 attr->branch_sample_type); 1620 1621 return false; 1622 } 1623 1624 return true; 1625 } 1626 1627 static struct evsel *read_event_desc(struct feat_fd *ff) 1628 { 1629 struct evsel *evsel, *events = NULL; 1630 u64 *id; 1631 void *buf = NULL; 1632 u32 nre, sz, nr, i, j; 1633 size_t msz; 1634 1635 /* number of events */ 1636 if (do_read_u32(ff, &nre)) 1637 goto error; 1638 1639 if (do_read_u32(ff, &sz)) 1640 goto error; 1641 1642 /* buffer to hold on file attr struct */ 1643 buf = malloc(sz); 1644 if (!buf) 1645 goto error; 1646 1647 /* the last event terminates with evsel->core.attr.size == 0: */ 1648 events = calloc(nre + 1, sizeof(*events)); 1649 if (!events) 1650 goto error; 1651 1652 msz = sizeof(evsel->core.attr); 1653 if (sz < msz) 1654 msz = sz; 1655 1656 for (i = 0, evsel = events; i < nre; evsel++, i++) { 1657 evsel->idx = i; 1658 1659 /* 1660 * must read entire on-file attr struct to 1661 * sync up with layout. 1662 */ 1663 if (__do_read(ff, buf, sz)) 1664 goto error; 1665 1666 if (ff->ph->needs_swap) 1667 perf_event__attr_swap(buf); 1668 1669 memcpy(&evsel->core.attr, buf, msz); 1670 1671 if (!perf_attr_check(&evsel->core.attr)) 1672 goto error; 1673 1674 if (do_read_u32(ff, &nr)) 1675 goto error; 1676 1677 if (ff->ph->needs_swap) 1678 evsel->needs_swap = true; 1679 1680 evsel->name = do_read_string(ff); 1681 if (!evsel->name) 1682 goto error; 1683 1684 if (!nr) 1685 continue; 1686 1687 id = calloc(nr, sizeof(*id)); 1688 if (!id) 1689 goto error; 1690 evsel->core.ids = nr; 1691 evsel->core.id = id; 1692 1693 for (j = 0 ; j < nr; j++) { 1694 if (do_read_u64(ff, id)) 1695 goto error; 1696 id++; 1697 } 1698 } 1699 out: 1700 free(buf); 1701 return events; 1702 error: 1703 free_event_desc(events); 1704 events = NULL; 1705 goto out; 1706 } 1707 1708 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, 1709 void *priv __maybe_unused) 1710 { 1711 return fprintf(fp, ", %s = %s", name, val); 1712 } 1713 1714 static void print_event_desc(struct feat_fd *ff, FILE *fp) 1715 { 1716 struct evsel *evsel, *events; 1717 u32 j; 1718 u64 *id; 1719 1720 if (ff->events) 1721 events = ff->events; 1722 else 1723 events = read_event_desc(ff); 1724 1725 if (!events) { 1726 fprintf(fp, "# event desc: not available or unable to read\n"); 1727 return; 1728 } 1729 1730 for (evsel = events; evsel->core.attr.size; evsel++) { 1731 fprintf(fp, "# event : name = %s, ", evsel->name); 1732 1733 if (evsel->core.ids) { 1734 fprintf(fp, ", id = {"); 1735 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) { 1736 if (j) 1737 fputc(',', fp); 1738 fprintf(fp, " %"PRIu64, *id); 1739 } 1740 fprintf(fp, " }"); 1741 } 1742 1743 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL); 1744 1745 fputc('\n', fp); 1746 } 1747 1748 free_event_desc(events); 1749 ff->events = NULL; 1750 } 1751 1752 static void print_total_mem(struct feat_fd *ff, FILE *fp) 1753 { 1754 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); 1755 } 1756 1757 static void print_numa_topology(struct feat_fd *ff, FILE *fp) 1758 { 1759 int i; 1760 struct numa_node *n; 1761 1762 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { 1763 n = &ff->ph->env.numa_nodes[i]; 1764 1765 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," 1766 " free = %"PRIu64" kB\n", 1767 n->node, n->mem_total, n->mem_free); 1768 1769 fprintf(fp, "# node%u cpu list : ", n->node); 1770 cpu_map__fprintf(n->map, fp); 1771 } 1772 } 1773 1774 static void print_cpuid(struct feat_fd *ff, FILE *fp) 1775 { 1776 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); 1777 } 1778 1779 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) 1780 { 1781 fprintf(fp, "# contains samples with branch stack\n"); 1782 } 1783 1784 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) 1785 { 1786 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); 1787 } 1788 1789 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) 1790 { 1791 fprintf(fp, "# contains stat data\n"); 1792 } 1793 1794 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) 1795 { 1796 int i; 1797 1798 fprintf(fp, "# CPU cache info:\n"); 1799 for (i = 0; i < ff->ph->env.caches_cnt; i++) { 1800 fprintf(fp, "# "); 1801 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); 1802 } 1803 } 1804 1805 static void print_compressed(struct feat_fd *ff, FILE *fp) 1806 { 1807 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n", 1808 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown", 1809 ff->ph->env.comp_level, ff->ph->env.comp_ratio); 1810 } 1811 1812 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) 1813 { 1814 const char *delimiter = "# pmu mappings: "; 1815 char *str, *tmp; 1816 u32 pmu_num; 1817 u32 type; 1818 1819 pmu_num = ff->ph->env.nr_pmu_mappings; 1820 if (!pmu_num) { 1821 fprintf(fp, "# pmu mappings: not available\n"); 1822 return; 1823 } 1824 1825 str = ff->ph->env.pmu_mappings; 1826 1827 while (pmu_num) { 1828 type = strtoul(str, &tmp, 0); 1829 if (*tmp != ':') 1830 goto error; 1831 1832 str = tmp + 1; 1833 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); 1834 1835 delimiter = ", "; 1836 str += strlen(str) + 1; 1837 pmu_num--; 1838 } 1839 1840 fprintf(fp, "\n"); 1841 1842 if (!pmu_num) 1843 return; 1844 error: 1845 fprintf(fp, "# pmu mappings: unable to read\n"); 1846 } 1847 1848 static void print_group_desc(struct feat_fd *ff, FILE *fp) 1849 { 1850 struct perf_session *session; 1851 struct evsel *evsel; 1852 u32 nr = 0; 1853 1854 session = container_of(ff->ph, struct perf_session, header); 1855 1856 evlist__for_each_entry(session->evlist, evsel) { 1857 if (perf_evsel__is_group_leader(evsel) && 1858 evsel->core.nr_members > 1) { 1859 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", 1860 perf_evsel__name(evsel)); 1861 1862 nr = evsel->core.nr_members - 1; 1863 } else if (nr) { 1864 fprintf(fp, ",%s", perf_evsel__name(evsel)); 1865 1866 if (--nr == 0) 1867 fprintf(fp, "}\n"); 1868 } 1869 } 1870 } 1871 1872 static void print_sample_time(struct feat_fd *ff, FILE *fp) 1873 { 1874 struct perf_session *session; 1875 char time_buf[32]; 1876 double d; 1877 1878 session = container_of(ff->ph, struct perf_session, header); 1879 1880 timestamp__scnprintf_usec(session->evlist->first_sample_time, 1881 time_buf, sizeof(time_buf)); 1882 fprintf(fp, "# time of first sample : %s\n", time_buf); 1883 1884 timestamp__scnprintf_usec(session->evlist->last_sample_time, 1885 time_buf, sizeof(time_buf)); 1886 fprintf(fp, "# time of last sample : %s\n", time_buf); 1887 1888 d = (double)(session->evlist->last_sample_time - 1889 session->evlist->first_sample_time) / NSEC_PER_MSEC; 1890 1891 fprintf(fp, "# sample duration : %10.3f ms\n", d); 1892 } 1893 1894 static void memory_node__fprintf(struct memory_node *n, 1895 unsigned long long bsize, FILE *fp) 1896 { 1897 char buf_map[100], buf_size[50]; 1898 unsigned long long size; 1899 1900 size = bsize * bitmap_weight(n->set, n->size); 1901 unit_number__scnprintf(buf_size, 50, size); 1902 1903 bitmap_scnprintf(n->set, n->size, buf_map, 100); 1904 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); 1905 } 1906 1907 static void print_mem_topology(struct feat_fd *ff, FILE *fp) 1908 { 1909 struct memory_node *nodes; 1910 int i, nr; 1911 1912 nodes = ff->ph->env.memory_nodes; 1913 nr = ff->ph->env.nr_memory_nodes; 1914 1915 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", 1916 nr, ff->ph->env.memory_bsize); 1917 1918 for (i = 0; i < nr; i++) { 1919 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp); 1920 } 1921 } 1922 1923 static int __event_process_build_id(struct perf_record_header_build_id *bev, 1924 char *filename, 1925 struct perf_session *session) 1926 { 1927 int err = -1; 1928 struct machine *machine; 1929 u16 cpumode; 1930 struct dso *dso; 1931 enum dso_kernel_type dso_type; 1932 1933 machine = perf_session__findnew_machine(session, bev->pid); 1934 if (!machine) 1935 goto out; 1936 1937 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1938 1939 switch (cpumode) { 1940 case PERF_RECORD_MISC_KERNEL: 1941 dso_type = DSO_TYPE_KERNEL; 1942 break; 1943 case PERF_RECORD_MISC_GUEST_KERNEL: 1944 dso_type = DSO_TYPE_GUEST_KERNEL; 1945 break; 1946 case PERF_RECORD_MISC_USER: 1947 case PERF_RECORD_MISC_GUEST_USER: 1948 dso_type = DSO_TYPE_USER; 1949 break; 1950 default: 1951 goto out; 1952 } 1953 1954 dso = machine__findnew_dso(machine, filename); 1955 if (dso != NULL) { 1956 char sbuild_id[SBUILD_ID_SIZE]; 1957 1958 dso__set_build_id(dso, &bev->build_id); 1959 1960 if (dso_type != DSO_TYPE_USER) { 1961 struct kmod_path m = { .name = NULL, }; 1962 1963 if (!kmod_path__parse_name(&m, filename) && m.kmod) 1964 dso__set_module_info(dso, &m, machine); 1965 else 1966 dso->kernel = dso_type; 1967 1968 free(m.name); 1969 } 1970 1971 build_id__sprintf(dso->build_id, sizeof(dso->build_id), 1972 sbuild_id); 1973 pr_debug("build id event received for %s: %s\n", 1974 dso->long_name, sbuild_id); 1975 dso__put(dso); 1976 } 1977 1978 err = 0; 1979 out: 1980 return err; 1981 } 1982 1983 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, 1984 int input, u64 offset, u64 size) 1985 { 1986 struct perf_session *session = container_of(header, struct perf_session, header); 1987 struct { 1988 struct perf_event_header header; 1989 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; 1990 char filename[0]; 1991 } old_bev; 1992 struct perf_record_header_build_id bev; 1993 char filename[PATH_MAX]; 1994 u64 limit = offset + size; 1995 1996 while (offset < limit) { 1997 ssize_t len; 1998 1999 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) 2000 return -1; 2001 2002 if (header->needs_swap) 2003 perf_event_header__bswap(&old_bev.header); 2004 2005 len = old_bev.header.size - sizeof(old_bev); 2006 if (readn(input, filename, len) != len) 2007 return -1; 2008 2009 bev.header = old_bev.header; 2010 2011 /* 2012 * As the pid is the missing value, we need to fill 2013 * it properly. The header.misc value give us nice hint. 2014 */ 2015 bev.pid = HOST_KERNEL_ID; 2016 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || 2017 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) 2018 bev.pid = DEFAULT_GUEST_KERNEL_ID; 2019 2020 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); 2021 __event_process_build_id(&bev, filename, session); 2022 2023 offset += bev.header.size; 2024 } 2025 2026 return 0; 2027 } 2028 2029 static int perf_header__read_build_ids(struct perf_header *header, 2030 int input, u64 offset, u64 size) 2031 { 2032 struct perf_session *session = container_of(header, struct perf_session, header); 2033 struct perf_record_header_build_id bev; 2034 char filename[PATH_MAX]; 2035 u64 limit = offset + size, orig_offset = offset; 2036 int err = -1; 2037 2038 while (offset < limit) { 2039 ssize_t len; 2040 2041 if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) 2042 goto out; 2043 2044 if (header->needs_swap) 2045 perf_event_header__bswap(&bev.header); 2046 2047 len = bev.header.size - sizeof(bev); 2048 if (readn(input, filename, len) != len) 2049 goto out; 2050 /* 2051 * The a1645ce1 changeset: 2052 * 2053 * "perf: 'perf kvm' tool for monitoring guest performance from host" 2054 * 2055 * Added a field to struct perf_record_header_build_id that broke the file 2056 * format. 2057 * 2058 * Since the kernel build-id is the first entry, process the 2059 * table using the old format if the well known 2060 * '[kernel.kallsyms]' string for the kernel build-id has the 2061 * first 4 characters chopped off (where the pid_t sits). 2062 */ 2063 if (memcmp(filename, "nel.kallsyms]", 13) == 0) { 2064 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) 2065 return -1; 2066 return perf_header__read_build_ids_abi_quirk(header, input, offset, size); 2067 } 2068 2069 __event_process_build_id(&bev, filename, session); 2070 2071 offset += bev.header.size; 2072 } 2073 err = 0; 2074 out: 2075 return err; 2076 } 2077 2078 /* Macro for features that simply need to read and store a string. */ 2079 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ 2080 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ 2081 {\ 2082 ff->ph->env.__feat_env = do_read_string(ff); \ 2083 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ 2084 } 2085 2086 FEAT_PROCESS_STR_FUN(hostname, hostname); 2087 FEAT_PROCESS_STR_FUN(osrelease, os_release); 2088 FEAT_PROCESS_STR_FUN(version, version); 2089 FEAT_PROCESS_STR_FUN(arch, arch); 2090 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); 2091 FEAT_PROCESS_STR_FUN(cpuid, cpuid); 2092 2093 static int process_tracing_data(struct feat_fd *ff, void *data) 2094 { 2095 ssize_t ret = trace_report(ff->fd, data, false); 2096 2097 return ret < 0 ? -1 : 0; 2098 } 2099 2100 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) 2101 { 2102 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) 2103 pr_debug("Failed to read buildids, continuing...\n"); 2104 return 0; 2105 } 2106 2107 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) 2108 { 2109 int ret; 2110 u32 nr_cpus_avail, nr_cpus_online; 2111 2112 ret = do_read_u32(ff, &nr_cpus_avail); 2113 if (ret) 2114 return ret; 2115 2116 ret = do_read_u32(ff, &nr_cpus_online); 2117 if (ret) 2118 return ret; 2119 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail; 2120 ff->ph->env.nr_cpus_online = (int)nr_cpus_online; 2121 return 0; 2122 } 2123 2124 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) 2125 { 2126 u64 total_mem; 2127 int ret; 2128 2129 ret = do_read_u64(ff, &total_mem); 2130 if (ret) 2131 return -1; 2132 ff->ph->env.total_mem = (unsigned long long)total_mem; 2133 return 0; 2134 } 2135 2136 static struct evsel * 2137 perf_evlist__find_by_index(struct evlist *evlist, int idx) 2138 { 2139 struct evsel *evsel; 2140 2141 evlist__for_each_entry(evlist, evsel) { 2142 if (evsel->idx == idx) 2143 return evsel; 2144 } 2145 2146 return NULL; 2147 } 2148 2149 static void 2150 perf_evlist__set_event_name(struct evlist *evlist, 2151 struct evsel *event) 2152 { 2153 struct evsel *evsel; 2154 2155 if (!event->name) 2156 return; 2157 2158 evsel = perf_evlist__find_by_index(evlist, event->idx); 2159 if (!evsel) 2160 return; 2161 2162 if (evsel->name) 2163 return; 2164 2165 evsel->name = strdup(event->name); 2166 } 2167 2168 static int 2169 process_event_desc(struct feat_fd *ff, void *data __maybe_unused) 2170 { 2171 struct perf_session *session; 2172 struct evsel *evsel, *events = read_event_desc(ff); 2173 2174 if (!events) 2175 return 0; 2176 2177 session = container_of(ff->ph, struct perf_session, header); 2178 2179 if (session->data->is_pipe) { 2180 /* Save events for reading later by print_event_desc, 2181 * since they can't be read again in pipe mode. */ 2182 ff->events = events; 2183 } 2184 2185 for (evsel = events; evsel->core.attr.size; evsel++) 2186 perf_evlist__set_event_name(session->evlist, evsel); 2187 2188 if (!session->data->is_pipe) 2189 free_event_desc(events); 2190 2191 return 0; 2192 } 2193 2194 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) 2195 { 2196 char *str, *cmdline = NULL, **argv = NULL; 2197 u32 nr, i, len = 0; 2198 2199 if (do_read_u32(ff, &nr)) 2200 return -1; 2201 2202 ff->ph->env.nr_cmdline = nr; 2203 2204 cmdline = zalloc(ff->size + nr + 1); 2205 if (!cmdline) 2206 return -1; 2207 2208 argv = zalloc(sizeof(char *) * (nr + 1)); 2209 if (!argv) 2210 goto error; 2211 2212 for (i = 0; i < nr; i++) { 2213 str = do_read_string(ff); 2214 if (!str) 2215 goto error; 2216 2217 argv[i] = cmdline + len; 2218 memcpy(argv[i], str, strlen(str) + 1); 2219 len += strlen(str) + 1; 2220 free(str); 2221 } 2222 ff->ph->env.cmdline = cmdline; 2223 ff->ph->env.cmdline_argv = (const char **) argv; 2224 return 0; 2225 2226 error: 2227 free(argv); 2228 free(cmdline); 2229 return -1; 2230 } 2231 2232 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) 2233 { 2234 u32 nr, i; 2235 char *str; 2236 struct strbuf sb; 2237 int cpu_nr = ff->ph->env.nr_cpus_avail; 2238 u64 size = 0; 2239 struct perf_header *ph = ff->ph; 2240 bool do_core_id_test = true; 2241 2242 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu)); 2243 if (!ph->env.cpu) 2244 return -1; 2245 2246 if (do_read_u32(ff, &nr)) 2247 goto free_cpu; 2248 2249 ph->env.nr_sibling_cores = nr; 2250 size += sizeof(u32); 2251 if (strbuf_init(&sb, 128) < 0) 2252 goto free_cpu; 2253 2254 for (i = 0; i < nr; i++) { 2255 str = do_read_string(ff); 2256 if (!str) 2257 goto error; 2258 2259 /* include a NULL character at the end */ 2260 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2261 goto error; 2262 size += string_size(str); 2263 free(str); 2264 } 2265 ph->env.sibling_cores = strbuf_detach(&sb, NULL); 2266 2267 if (do_read_u32(ff, &nr)) 2268 return -1; 2269 2270 ph->env.nr_sibling_threads = nr; 2271 size += sizeof(u32); 2272 2273 for (i = 0; i < nr; i++) { 2274 str = do_read_string(ff); 2275 if (!str) 2276 goto error; 2277 2278 /* include a NULL character at the end */ 2279 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2280 goto error; 2281 size += string_size(str); 2282 free(str); 2283 } 2284 ph->env.sibling_threads = strbuf_detach(&sb, NULL); 2285 2286 /* 2287 * The header may be from old perf, 2288 * which doesn't include core id and socket id information. 2289 */ 2290 if (ff->size <= size) { 2291 zfree(&ph->env.cpu); 2292 return 0; 2293 } 2294 2295 /* On s390 the socket_id number is not related to the numbers of cpus. 2296 * The socket_id number might be higher than the numbers of cpus. 2297 * This depends on the configuration. 2298 * AArch64 is the same. 2299 */ 2300 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4) 2301 || !strncmp(ph->env.arch, "aarch64", 7))) 2302 do_core_id_test = false; 2303 2304 for (i = 0; i < (u32)cpu_nr; i++) { 2305 if (do_read_u32(ff, &nr)) 2306 goto free_cpu; 2307 2308 ph->env.cpu[i].core_id = nr; 2309 size += sizeof(u32); 2310 2311 if (do_read_u32(ff, &nr)) 2312 goto free_cpu; 2313 2314 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) { 2315 pr_debug("socket_id number is too big." 2316 "You may need to upgrade the perf tool.\n"); 2317 goto free_cpu; 2318 } 2319 2320 ph->env.cpu[i].socket_id = nr; 2321 size += sizeof(u32); 2322 } 2323 2324 /* 2325 * The header may be from old perf, 2326 * which doesn't include die information. 2327 */ 2328 if (ff->size <= size) 2329 return 0; 2330 2331 if (do_read_u32(ff, &nr)) 2332 return -1; 2333 2334 ph->env.nr_sibling_dies = nr; 2335 size += sizeof(u32); 2336 2337 for (i = 0; i < nr; i++) { 2338 str = do_read_string(ff); 2339 if (!str) 2340 goto error; 2341 2342 /* include a NULL character at the end */ 2343 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2344 goto error; 2345 size += string_size(str); 2346 free(str); 2347 } 2348 ph->env.sibling_dies = strbuf_detach(&sb, NULL); 2349 2350 for (i = 0; i < (u32)cpu_nr; i++) { 2351 if (do_read_u32(ff, &nr)) 2352 goto free_cpu; 2353 2354 ph->env.cpu[i].die_id = nr; 2355 } 2356 2357 return 0; 2358 2359 error: 2360 strbuf_release(&sb); 2361 free_cpu: 2362 zfree(&ph->env.cpu); 2363 return -1; 2364 } 2365 2366 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) 2367 { 2368 struct numa_node *nodes, *n; 2369 u32 nr, i; 2370 char *str; 2371 2372 /* nr nodes */ 2373 if (do_read_u32(ff, &nr)) 2374 return -1; 2375 2376 nodes = zalloc(sizeof(*nodes) * nr); 2377 if (!nodes) 2378 return -ENOMEM; 2379 2380 for (i = 0; i < nr; i++) { 2381 n = &nodes[i]; 2382 2383 /* node number */ 2384 if (do_read_u32(ff, &n->node)) 2385 goto error; 2386 2387 if (do_read_u64(ff, &n->mem_total)) 2388 goto error; 2389 2390 if (do_read_u64(ff, &n->mem_free)) 2391 goto error; 2392 2393 str = do_read_string(ff); 2394 if (!str) 2395 goto error; 2396 2397 n->map = perf_cpu_map__new(str); 2398 if (!n->map) 2399 goto error; 2400 2401 free(str); 2402 } 2403 ff->ph->env.nr_numa_nodes = nr; 2404 ff->ph->env.numa_nodes = nodes; 2405 return 0; 2406 2407 error: 2408 free(nodes); 2409 return -1; 2410 } 2411 2412 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) 2413 { 2414 char *name; 2415 u32 pmu_num; 2416 u32 type; 2417 struct strbuf sb; 2418 2419 if (do_read_u32(ff, &pmu_num)) 2420 return -1; 2421 2422 if (!pmu_num) { 2423 pr_debug("pmu mappings not available\n"); 2424 return 0; 2425 } 2426 2427 ff->ph->env.nr_pmu_mappings = pmu_num; 2428 if (strbuf_init(&sb, 128) < 0) 2429 return -1; 2430 2431 while (pmu_num) { 2432 if (do_read_u32(ff, &type)) 2433 goto error; 2434 2435 name = do_read_string(ff); 2436 if (!name) 2437 goto error; 2438 2439 if (strbuf_addf(&sb, "%u:%s", type, name) < 0) 2440 goto error; 2441 /* include a NULL character at the end */ 2442 if (strbuf_add(&sb, "", 1) < 0) 2443 goto error; 2444 2445 if (!strcmp(name, "msr")) 2446 ff->ph->env.msr_pmu_type = type; 2447 2448 free(name); 2449 pmu_num--; 2450 } 2451 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL); 2452 return 0; 2453 2454 error: 2455 strbuf_release(&sb); 2456 return -1; 2457 } 2458 2459 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) 2460 { 2461 size_t ret = -1; 2462 u32 i, nr, nr_groups; 2463 struct perf_session *session; 2464 struct evsel *evsel, *leader = NULL; 2465 struct group_desc { 2466 char *name; 2467 u32 leader_idx; 2468 u32 nr_members; 2469 } *desc; 2470 2471 if (do_read_u32(ff, &nr_groups)) 2472 return -1; 2473 2474 ff->ph->env.nr_groups = nr_groups; 2475 if (!nr_groups) { 2476 pr_debug("group desc not available\n"); 2477 return 0; 2478 } 2479 2480 desc = calloc(nr_groups, sizeof(*desc)); 2481 if (!desc) 2482 return -1; 2483 2484 for (i = 0; i < nr_groups; i++) { 2485 desc[i].name = do_read_string(ff); 2486 if (!desc[i].name) 2487 goto out_free; 2488 2489 if (do_read_u32(ff, &desc[i].leader_idx)) 2490 goto out_free; 2491 2492 if (do_read_u32(ff, &desc[i].nr_members)) 2493 goto out_free; 2494 } 2495 2496 /* 2497 * Rebuild group relationship based on the group_desc 2498 */ 2499 session = container_of(ff->ph, struct perf_session, header); 2500 session->evlist->nr_groups = nr_groups; 2501 2502 i = nr = 0; 2503 evlist__for_each_entry(session->evlist, evsel) { 2504 if (evsel->idx == (int) desc[i].leader_idx) { 2505 evsel->leader = evsel; 2506 /* {anon_group} is a dummy name */ 2507 if (strcmp(desc[i].name, "{anon_group}")) { 2508 evsel->group_name = desc[i].name; 2509 desc[i].name = NULL; 2510 } 2511 evsel->core.nr_members = desc[i].nr_members; 2512 2513 if (i >= nr_groups || nr > 0) { 2514 pr_debug("invalid group desc\n"); 2515 goto out_free; 2516 } 2517 2518 leader = evsel; 2519 nr = evsel->core.nr_members - 1; 2520 i++; 2521 } else if (nr) { 2522 /* This is a group member */ 2523 evsel->leader = leader; 2524 2525 nr--; 2526 } 2527 } 2528 2529 if (i != nr_groups || nr != 0) { 2530 pr_debug("invalid group desc\n"); 2531 goto out_free; 2532 } 2533 2534 ret = 0; 2535 out_free: 2536 for (i = 0; i < nr_groups; i++) 2537 zfree(&desc[i].name); 2538 free(desc); 2539 2540 return ret; 2541 } 2542 2543 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) 2544 { 2545 struct perf_session *session; 2546 int err; 2547 2548 session = container_of(ff->ph, struct perf_session, header); 2549 2550 err = auxtrace_index__process(ff->fd, ff->size, session, 2551 ff->ph->needs_swap); 2552 if (err < 0) 2553 pr_err("Failed to process auxtrace index\n"); 2554 return err; 2555 } 2556 2557 static int process_cache(struct feat_fd *ff, void *data __maybe_unused) 2558 { 2559 struct cpu_cache_level *caches; 2560 u32 cnt, i, version; 2561 2562 if (do_read_u32(ff, &version)) 2563 return -1; 2564 2565 if (version != 1) 2566 return -1; 2567 2568 if (do_read_u32(ff, &cnt)) 2569 return -1; 2570 2571 caches = zalloc(sizeof(*caches) * cnt); 2572 if (!caches) 2573 return -1; 2574 2575 for (i = 0; i < cnt; i++) { 2576 struct cpu_cache_level c; 2577 2578 #define _R(v) \ 2579 if (do_read_u32(ff, &c.v))\ 2580 goto out_free_caches; \ 2581 2582 _R(level) 2583 _R(line_size) 2584 _R(sets) 2585 _R(ways) 2586 #undef _R 2587 2588 #define _R(v) \ 2589 c.v = do_read_string(ff); \ 2590 if (!c.v) \ 2591 goto out_free_caches; 2592 2593 _R(type) 2594 _R(size) 2595 _R(map) 2596 #undef _R 2597 2598 caches[i] = c; 2599 } 2600 2601 ff->ph->env.caches = caches; 2602 ff->ph->env.caches_cnt = cnt; 2603 return 0; 2604 out_free_caches: 2605 free(caches); 2606 return -1; 2607 } 2608 2609 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) 2610 { 2611 struct perf_session *session; 2612 u64 first_sample_time, last_sample_time; 2613 int ret; 2614 2615 session = container_of(ff->ph, struct perf_session, header); 2616 2617 ret = do_read_u64(ff, &first_sample_time); 2618 if (ret) 2619 return -1; 2620 2621 ret = do_read_u64(ff, &last_sample_time); 2622 if (ret) 2623 return -1; 2624 2625 session->evlist->first_sample_time = first_sample_time; 2626 session->evlist->last_sample_time = last_sample_time; 2627 return 0; 2628 } 2629 2630 static int process_mem_topology(struct feat_fd *ff, 2631 void *data __maybe_unused) 2632 { 2633 struct memory_node *nodes; 2634 u64 version, i, nr, bsize; 2635 int ret = -1; 2636 2637 if (do_read_u64(ff, &version)) 2638 return -1; 2639 2640 if (version != 1) 2641 return -1; 2642 2643 if (do_read_u64(ff, &bsize)) 2644 return -1; 2645 2646 if (do_read_u64(ff, &nr)) 2647 return -1; 2648 2649 nodes = zalloc(sizeof(*nodes) * nr); 2650 if (!nodes) 2651 return -1; 2652 2653 for (i = 0; i < nr; i++) { 2654 struct memory_node n; 2655 2656 #define _R(v) \ 2657 if (do_read_u64(ff, &n.v)) \ 2658 goto out; \ 2659 2660 _R(node) 2661 _R(size) 2662 2663 #undef _R 2664 2665 if (do_read_bitmap(ff, &n.set, &n.size)) 2666 goto out; 2667 2668 nodes[i] = n; 2669 } 2670 2671 ff->ph->env.memory_bsize = bsize; 2672 ff->ph->env.memory_nodes = nodes; 2673 ff->ph->env.nr_memory_nodes = nr; 2674 ret = 0; 2675 2676 out: 2677 if (ret) 2678 free(nodes); 2679 return ret; 2680 } 2681 2682 static int process_clockid(struct feat_fd *ff, 2683 void *data __maybe_unused) 2684 { 2685 if (do_read_u64(ff, &ff->ph->env.clockid_res_ns)) 2686 return -1; 2687 2688 return 0; 2689 } 2690 2691 static int process_dir_format(struct feat_fd *ff, 2692 void *_data __maybe_unused) 2693 { 2694 struct perf_session *session; 2695 struct perf_data *data; 2696 2697 session = container_of(ff->ph, struct perf_session, header); 2698 data = session->data; 2699 2700 if (WARN_ON(!perf_data__is_dir(data))) 2701 return -1; 2702 2703 return do_read_u64(ff, &data->dir.version); 2704 } 2705 2706 #ifdef HAVE_LIBBPF_SUPPORT 2707 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused) 2708 { 2709 struct bpf_prog_info_linear *info_linear; 2710 struct bpf_prog_info_node *info_node; 2711 struct perf_env *env = &ff->ph->env; 2712 u32 count, i; 2713 int err = -1; 2714 2715 if (ff->ph->needs_swap) { 2716 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n"); 2717 return 0; 2718 } 2719 2720 if (do_read_u32(ff, &count)) 2721 return -1; 2722 2723 down_write(&env->bpf_progs.lock); 2724 2725 for (i = 0; i < count; ++i) { 2726 u32 info_len, data_len; 2727 2728 info_linear = NULL; 2729 info_node = NULL; 2730 if (do_read_u32(ff, &info_len)) 2731 goto out; 2732 if (do_read_u32(ff, &data_len)) 2733 goto out; 2734 2735 if (info_len > sizeof(struct bpf_prog_info)) { 2736 pr_warning("detected invalid bpf_prog_info\n"); 2737 goto out; 2738 } 2739 2740 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + 2741 data_len); 2742 if (!info_linear) 2743 goto out; 2744 info_linear->info_len = sizeof(struct bpf_prog_info); 2745 info_linear->data_len = data_len; 2746 if (do_read_u64(ff, (u64 *)(&info_linear->arrays))) 2747 goto out; 2748 if (__do_read(ff, &info_linear->info, info_len)) 2749 goto out; 2750 if (info_len < sizeof(struct bpf_prog_info)) 2751 memset(((void *)(&info_linear->info)) + info_len, 0, 2752 sizeof(struct bpf_prog_info) - info_len); 2753 2754 if (__do_read(ff, info_linear->data, data_len)) 2755 goto out; 2756 2757 info_node = malloc(sizeof(struct bpf_prog_info_node)); 2758 if (!info_node) 2759 goto out; 2760 2761 /* after reading from file, translate offset to address */ 2762 bpf_program__bpil_offs_to_addr(info_linear); 2763 info_node->info_linear = info_linear; 2764 perf_env__insert_bpf_prog_info(env, info_node); 2765 } 2766 2767 up_write(&env->bpf_progs.lock); 2768 return 0; 2769 out: 2770 free(info_linear); 2771 free(info_node); 2772 up_write(&env->bpf_progs.lock); 2773 return err; 2774 } 2775 #else // HAVE_LIBBPF_SUPPORT 2776 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused) 2777 { 2778 return 0; 2779 } 2780 #endif // HAVE_LIBBPF_SUPPORT 2781 2782 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused) 2783 { 2784 struct perf_env *env = &ff->ph->env; 2785 struct btf_node *node = NULL; 2786 u32 count, i; 2787 int err = -1; 2788 2789 if (ff->ph->needs_swap) { 2790 pr_warning("interpreting btf from systems with endianity is not yet supported\n"); 2791 return 0; 2792 } 2793 2794 if (do_read_u32(ff, &count)) 2795 return -1; 2796 2797 down_write(&env->bpf_progs.lock); 2798 2799 for (i = 0; i < count; ++i) { 2800 u32 id, data_size; 2801 2802 if (do_read_u32(ff, &id)) 2803 goto out; 2804 if (do_read_u32(ff, &data_size)) 2805 goto out; 2806 2807 node = malloc(sizeof(struct btf_node) + data_size); 2808 if (!node) 2809 goto out; 2810 2811 node->id = id; 2812 node->data_size = data_size; 2813 2814 if (__do_read(ff, node->data, data_size)) 2815 goto out; 2816 2817 perf_env__insert_btf(env, node); 2818 node = NULL; 2819 } 2820 2821 err = 0; 2822 out: 2823 up_write(&env->bpf_progs.lock); 2824 free(node); 2825 return err; 2826 } 2827 2828 static int process_compressed(struct feat_fd *ff, 2829 void *data __maybe_unused) 2830 { 2831 if (do_read_u32(ff, &(ff->ph->env.comp_ver))) 2832 return -1; 2833 2834 if (do_read_u32(ff, &(ff->ph->env.comp_type))) 2835 return -1; 2836 2837 if (do_read_u32(ff, &(ff->ph->env.comp_level))) 2838 return -1; 2839 2840 if (do_read_u32(ff, &(ff->ph->env.comp_ratio))) 2841 return -1; 2842 2843 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len))) 2844 return -1; 2845 2846 return 0; 2847 } 2848 2849 #define FEAT_OPR(n, func, __full_only) \ 2850 [HEADER_##n] = { \ 2851 .name = __stringify(n), \ 2852 .write = write_##func, \ 2853 .print = print_##func, \ 2854 .full_only = __full_only, \ 2855 .process = process_##func, \ 2856 .synthesize = true \ 2857 } 2858 2859 #define FEAT_OPN(n, func, __full_only) \ 2860 [HEADER_##n] = { \ 2861 .name = __stringify(n), \ 2862 .write = write_##func, \ 2863 .print = print_##func, \ 2864 .full_only = __full_only, \ 2865 .process = process_##func \ 2866 } 2867 2868 /* feature_ops not implemented: */ 2869 #define print_tracing_data NULL 2870 #define print_build_id NULL 2871 2872 #define process_branch_stack NULL 2873 #define process_stat NULL 2874 2875 // Only used in util/synthetic-events.c 2876 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE]; 2877 2878 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = { 2879 FEAT_OPN(TRACING_DATA, tracing_data, false), 2880 FEAT_OPN(BUILD_ID, build_id, false), 2881 FEAT_OPR(HOSTNAME, hostname, false), 2882 FEAT_OPR(OSRELEASE, osrelease, false), 2883 FEAT_OPR(VERSION, version, false), 2884 FEAT_OPR(ARCH, arch, false), 2885 FEAT_OPR(NRCPUS, nrcpus, false), 2886 FEAT_OPR(CPUDESC, cpudesc, false), 2887 FEAT_OPR(CPUID, cpuid, false), 2888 FEAT_OPR(TOTAL_MEM, total_mem, false), 2889 FEAT_OPR(EVENT_DESC, event_desc, false), 2890 FEAT_OPR(CMDLINE, cmdline, false), 2891 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), 2892 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), 2893 FEAT_OPN(BRANCH_STACK, branch_stack, false), 2894 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), 2895 FEAT_OPR(GROUP_DESC, group_desc, false), 2896 FEAT_OPN(AUXTRACE, auxtrace, false), 2897 FEAT_OPN(STAT, stat, false), 2898 FEAT_OPN(CACHE, cache, true), 2899 FEAT_OPR(SAMPLE_TIME, sample_time, false), 2900 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), 2901 FEAT_OPR(CLOCKID, clockid, false), 2902 FEAT_OPN(DIR_FORMAT, dir_format, false), 2903 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false), 2904 FEAT_OPR(BPF_BTF, bpf_btf, false), 2905 FEAT_OPR(COMPRESSED, compressed, false), 2906 }; 2907 2908 struct header_print_data { 2909 FILE *fp; 2910 bool full; /* extended list of headers */ 2911 }; 2912 2913 static int perf_file_section__fprintf_info(struct perf_file_section *section, 2914 struct perf_header *ph, 2915 int feat, int fd, void *data) 2916 { 2917 struct header_print_data *hd = data; 2918 struct feat_fd ff; 2919 2920 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 2921 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 2922 "%d, continuing...\n", section->offset, feat); 2923 return 0; 2924 } 2925 if (feat >= HEADER_LAST_FEATURE) { 2926 pr_warning("unknown feature %d\n", feat); 2927 return 0; 2928 } 2929 if (!feat_ops[feat].print) 2930 return 0; 2931 2932 ff = (struct feat_fd) { 2933 .fd = fd, 2934 .ph = ph, 2935 }; 2936 2937 if (!feat_ops[feat].full_only || hd->full) 2938 feat_ops[feat].print(&ff, hd->fp); 2939 else 2940 fprintf(hd->fp, "# %s info available, use -I to display\n", 2941 feat_ops[feat].name); 2942 2943 return 0; 2944 } 2945 2946 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) 2947 { 2948 struct header_print_data hd; 2949 struct perf_header *header = &session->header; 2950 int fd = perf_data__fd(session->data); 2951 struct stat st; 2952 time_t stctime; 2953 int ret, bit; 2954 2955 hd.fp = fp; 2956 hd.full = full; 2957 2958 ret = fstat(fd, &st); 2959 if (ret == -1) 2960 return -1; 2961 2962 stctime = st.st_mtime; 2963 fprintf(fp, "# captured on : %s", ctime(&stctime)); 2964 2965 fprintf(fp, "# header version : %u\n", header->version); 2966 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); 2967 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); 2968 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); 2969 2970 perf_header__process_sections(header, fd, &hd, 2971 perf_file_section__fprintf_info); 2972 2973 if (session->data->is_pipe) 2974 return 0; 2975 2976 fprintf(fp, "# missing features: "); 2977 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { 2978 if (bit) 2979 fprintf(fp, "%s ", feat_ops[bit].name); 2980 } 2981 2982 fprintf(fp, "\n"); 2983 return 0; 2984 } 2985 2986 static int do_write_feat(struct feat_fd *ff, int type, 2987 struct perf_file_section **p, 2988 struct evlist *evlist) 2989 { 2990 int err; 2991 int ret = 0; 2992 2993 if (perf_header__has_feat(ff->ph, type)) { 2994 if (!feat_ops[type].write) 2995 return -1; 2996 2997 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 2998 return -1; 2999 3000 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); 3001 3002 err = feat_ops[type].write(ff, evlist); 3003 if (err < 0) { 3004 pr_debug("failed to write feature %s\n", feat_ops[type].name); 3005 3006 /* undo anything written */ 3007 lseek(ff->fd, (*p)->offset, SEEK_SET); 3008 3009 return -1; 3010 } 3011 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; 3012 (*p)++; 3013 } 3014 return ret; 3015 } 3016 3017 static int perf_header__adds_write(struct perf_header *header, 3018 struct evlist *evlist, int fd) 3019 { 3020 int nr_sections; 3021 struct feat_fd ff; 3022 struct perf_file_section *feat_sec, *p; 3023 int sec_size; 3024 u64 sec_start; 3025 int feat; 3026 int err; 3027 3028 ff = (struct feat_fd){ 3029 .fd = fd, 3030 .ph = header, 3031 }; 3032 3033 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3034 if (!nr_sections) 3035 return 0; 3036 3037 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); 3038 if (feat_sec == NULL) 3039 return -ENOMEM; 3040 3041 sec_size = sizeof(*feat_sec) * nr_sections; 3042 3043 sec_start = header->feat_offset; 3044 lseek(fd, sec_start + sec_size, SEEK_SET); 3045 3046 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3047 if (do_write_feat(&ff, feat, &p, evlist)) 3048 perf_header__clear_feat(header, feat); 3049 } 3050 3051 lseek(fd, sec_start, SEEK_SET); 3052 /* 3053 * may write more than needed due to dropped feature, but 3054 * this is okay, reader will skip the missing entries 3055 */ 3056 err = do_write(&ff, feat_sec, sec_size); 3057 if (err < 0) 3058 pr_debug("failed to write feature section\n"); 3059 free(feat_sec); 3060 return err; 3061 } 3062 3063 int perf_header__write_pipe(int fd) 3064 { 3065 struct perf_pipe_file_header f_header; 3066 struct feat_fd ff; 3067 int err; 3068 3069 ff = (struct feat_fd){ .fd = fd }; 3070 3071 f_header = (struct perf_pipe_file_header){ 3072 .magic = PERF_MAGIC, 3073 .size = sizeof(f_header), 3074 }; 3075 3076 err = do_write(&ff, &f_header, sizeof(f_header)); 3077 if (err < 0) { 3078 pr_debug("failed to write perf pipe header\n"); 3079 return err; 3080 } 3081 3082 return 0; 3083 } 3084 3085 int perf_session__write_header(struct perf_session *session, 3086 struct evlist *evlist, 3087 int fd, bool at_exit) 3088 { 3089 struct perf_file_header f_header; 3090 struct perf_file_attr f_attr; 3091 struct perf_header *header = &session->header; 3092 struct evsel *evsel; 3093 struct feat_fd ff; 3094 u64 attr_offset; 3095 int err; 3096 3097 ff = (struct feat_fd){ .fd = fd}; 3098 lseek(fd, sizeof(f_header), SEEK_SET); 3099 3100 evlist__for_each_entry(session->evlist, evsel) { 3101 evsel->id_offset = lseek(fd, 0, SEEK_CUR); 3102 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 3103 if (err < 0) { 3104 pr_debug("failed to write perf header\n"); 3105 return err; 3106 } 3107 } 3108 3109 attr_offset = lseek(ff.fd, 0, SEEK_CUR); 3110 3111 evlist__for_each_entry(evlist, evsel) { 3112 f_attr = (struct perf_file_attr){ 3113 .attr = evsel->core.attr, 3114 .ids = { 3115 .offset = evsel->id_offset, 3116 .size = evsel->core.ids * sizeof(u64), 3117 } 3118 }; 3119 err = do_write(&ff, &f_attr, sizeof(f_attr)); 3120 if (err < 0) { 3121 pr_debug("failed to write perf header attribute\n"); 3122 return err; 3123 } 3124 } 3125 3126 if (!header->data_offset) 3127 header->data_offset = lseek(fd, 0, SEEK_CUR); 3128 header->feat_offset = header->data_offset + header->data_size; 3129 3130 if (at_exit) { 3131 err = perf_header__adds_write(header, evlist, fd); 3132 if (err < 0) 3133 return err; 3134 } 3135 3136 f_header = (struct perf_file_header){ 3137 .magic = PERF_MAGIC, 3138 .size = sizeof(f_header), 3139 .attr_size = sizeof(f_attr), 3140 .attrs = { 3141 .offset = attr_offset, 3142 .size = evlist->core.nr_entries * sizeof(f_attr), 3143 }, 3144 .data = { 3145 .offset = header->data_offset, 3146 .size = header->data_size, 3147 }, 3148 /* event_types is ignored, store zeros */ 3149 }; 3150 3151 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); 3152 3153 lseek(fd, 0, SEEK_SET); 3154 err = do_write(&ff, &f_header, sizeof(f_header)); 3155 if (err < 0) { 3156 pr_debug("failed to write perf header\n"); 3157 return err; 3158 } 3159 lseek(fd, header->data_offset + header->data_size, SEEK_SET); 3160 3161 return 0; 3162 } 3163 3164 static int perf_header__getbuffer64(struct perf_header *header, 3165 int fd, void *buf, size_t size) 3166 { 3167 if (readn(fd, buf, size) <= 0) 3168 return -1; 3169 3170 if (header->needs_swap) 3171 mem_bswap_64(buf, size); 3172 3173 return 0; 3174 } 3175 3176 int perf_header__process_sections(struct perf_header *header, int fd, 3177 void *data, 3178 int (*process)(struct perf_file_section *section, 3179 struct perf_header *ph, 3180 int feat, int fd, void *data)) 3181 { 3182 struct perf_file_section *feat_sec, *sec; 3183 int nr_sections; 3184 int sec_size; 3185 int feat; 3186 int err; 3187 3188 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3189 if (!nr_sections) 3190 return 0; 3191 3192 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); 3193 if (!feat_sec) 3194 return -1; 3195 3196 sec_size = sizeof(*feat_sec) * nr_sections; 3197 3198 lseek(fd, header->feat_offset, SEEK_SET); 3199 3200 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); 3201 if (err < 0) 3202 goto out_free; 3203 3204 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { 3205 err = process(sec++, header, feat, fd, data); 3206 if (err < 0) 3207 goto out_free; 3208 } 3209 err = 0; 3210 out_free: 3211 free(feat_sec); 3212 return err; 3213 } 3214 3215 static const int attr_file_abi_sizes[] = { 3216 [0] = PERF_ATTR_SIZE_VER0, 3217 [1] = PERF_ATTR_SIZE_VER1, 3218 [2] = PERF_ATTR_SIZE_VER2, 3219 [3] = PERF_ATTR_SIZE_VER3, 3220 [4] = PERF_ATTR_SIZE_VER4, 3221 0, 3222 }; 3223 3224 /* 3225 * In the legacy file format, the magic number is not used to encode endianness. 3226 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based 3227 * on ABI revisions, we need to try all combinations for all endianness to 3228 * detect the endianness. 3229 */ 3230 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) 3231 { 3232 uint64_t ref_size, attr_size; 3233 int i; 3234 3235 for (i = 0 ; attr_file_abi_sizes[i]; i++) { 3236 ref_size = attr_file_abi_sizes[i] 3237 + sizeof(struct perf_file_section); 3238 if (hdr_sz != ref_size) { 3239 attr_size = bswap_64(hdr_sz); 3240 if (attr_size != ref_size) 3241 continue; 3242 3243 ph->needs_swap = true; 3244 } 3245 pr_debug("ABI%d perf.data file detected, need_swap=%d\n", 3246 i, 3247 ph->needs_swap); 3248 return 0; 3249 } 3250 /* could not determine endianness */ 3251 return -1; 3252 } 3253 3254 #define PERF_PIPE_HDR_VER0 16 3255 3256 static const size_t attr_pipe_abi_sizes[] = { 3257 [0] = PERF_PIPE_HDR_VER0, 3258 0, 3259 }; 3260 3261 /* 3262 * In the legacy pipe format, there is an implicit assumption that endiannesss 3263 * between host recording the samples, and host parsing the samples is the 3264 * same. This is not always the case given that the pipe output may always be 3265 * redirected into a file and analyzed on a different machine with possibly a 3266 * different endianness and perf_event ABI revsions in the perf tool itself. 3267 */ 3268 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) 3269 { 3270 u64 attr_size; 3271 int i; 3272 3273 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { 3274 if (hdr_sz != attr_pipe_abi_sizes[i]) { 3275 attr_size = bswap_64(hdr_sz); 3276 if (attr_size != hdr_sz) 3277 continue; 3278 3279 ph->needs_swap = true; 3280 } 3281 pr_debug("Pipe ABI%d perf.data file detected\n", i); 3282 return 0; 3283 } 3284 return -1; 3285 } 3286 3287 bool is_perf_magic(u64 magic) 3288 { 3289 if (!memcmp(&magic, __perf_magic1, sizeof(magic)) 3290 || magic == __perf_magic2 3291 || magic == __perf_magic2_sw) 3292 return true; 3293 3294 return false; 3295 } 3296 3297 static int check_magic_endian(u64 magic, uint64_t hdr_sz, 3298 bool is_pipe, struct perf_header *ph) 3299 { 3300 int ret; 3301 3302 /* check for legacy format */ 3303 ret = memcmp(&magic, __perf_magic1, sizeof(magic)); 3304 if (ret == 0) { 3305 ph->version = PERF_HEADER_VERSION_1; 3306 pr_debug("legacy perf.data format\n"); 3307 if (is_pipe) 3308 return try_all_pipe_abis(hdr_sz, ph); 3309 3310 return try_all_file_abis(hdr_sz, ph); 3311 } 3312 /* 3313 * the new magic number serves two purposes: 3314 * - unique number to identify actual perf.data files 3315 * - encode endianness of file 3316 */ 3317 ph->version = PERF_HEADER_VERSION_2; 3318 3319 /* check magic number with one endianness */ 3320 if (magic == __perf_magic2) 3321 return 0; 3322 3323 /* check magic number with opposite endianness */ 3324 if (magic != __perf_magic2_sw) 3325 return -1; 3326 3327 ph->needs_swap = true; 3328 3329 return 0; 3330 } 3331 3332 int perf_file_header__read(struct perf_file_header *header, 3333 struct perf_header *ph, int fd) 3334 { 3335 ssize_t ret; 3336 3337 lseek(fd, 0, SEEK_SET); 3338 3339 ret = readn(fd, header, sizeof(*header)); 3340 if (ret <= 0) 3341 return -1; 3342 3343 if (check_magic_endian(header->magic, 3344 header->attr_size, false, ph) < 0) { 3345 pr_debug("magic/endian check failed\n"); 3346 return -1; 3347 } 3348 3349 if (ph->needs_swap) { 3350 mem_bswap_64(header, offsetof(struct perf_file_header, 3351 adds_features)); 3352 } 3353 3354 if (header->size != sizeof(*header)) { 3355 /* Support the previous format */ 3356 if (header->size == offsetof(typeof(*header), adds_features)) 3357 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3358 else 3359 return -1; 3360 } else if (ph->needs_swap) { 3361 /* 3362 * feature bitmap is declared as an array of unsigned longs -- 3363 * not good since its size can differ between the host that 3364 * generated the data file and the host analyzing the file. 3365 * 3366 * We need to handle endianness, but we don't know the size of 3367 * the unsigned long where the file was generated. Take a best 3368 * guess at determining it: try 64-bit swap first (ie., file 3369 * created on a 64-bit host), and check if the hostname feature 3370 * bit is set (this feature bit is forced on as of fbe96f2). 3371 * If the bit is not, undo the 64-bit swap and try a 32-bit 3372 * swap. If the hostname bit is still not set (e.g., older data 3373 * file), punt and fallback to the original behavior -- 3374 * clearing all feature bits and setting buildid. 3375 */ 3376 mem_bswap_64(&header->adds_features, 3377 BITS_TO_U64(HEADER_FEAT_BITS)); 3378 3379 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3380 /* unswap as u64 */ 3381 mem_bswap_64(&header->adds_features, 3382 BITS_TO_U64(HEADER_FEAT_BITS)); 3383 3384 /* unswap as u32 */ 3385 mem_bswap_32(&header->adds_features, 3386 BITS_TO_U32(HEADER_FEAT_BITS)); 3387 } 3388 3389 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3390 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3391 set_bit(HEADER_BUILD_ID, header->adds_features); 3392 } 3393 } 3394 3395 memcpy(&ph->adds_features, &header->adds_features, 3396 sizeof(ph->adds_features)); 3397 3398 ph->data_offset = header->data.offset; 3399 ph->data_size = header->data.size; 3400 ph->feat_offset = header->data.offset + header->data.size; 3401 return 0; 3402 } 3403 3404 static int perf_file_section__process(struct perf_file_section *section, 3405 struct perf_header *ph, 3406 int feat, int fd, void *data) 3407 { 3408 struct feat_fd fdd = { 3409 .fd = fd, 3410 .ph = ph, 3411 .size = section->size, 3412 .offset = section->offset, 3413 }; 3414 3415 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3416 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3417 "%d, continuing...\n", section->offset, feat); 3418 return 0; 3419 } 3420 3421 if (feat >= HEADER_LAST_FEATURE) { 3422 pr_debug("unknown feature %d, continuing...\n", feat); 3423 return 0; 3424 } 3425 3426 if (!feat_ops[feat].process) 3427 return 0; 3428 3429 return feat_ops[feat].process(&fdd, data); 3430 } 3431 3432 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, 3433 struct perf_header *ph, int fd, 3434 bool repipe) 3435 { 3436 struct feat_fd ff = { 3437 .fd = STDOUT_FILENO, 3438 .ph = ph, 3439 }; 3440 ssize_t ret; 3441 3442 ret = readn(fd, header, sizeof(*header)); 3443 if (ret <= 0) 3444 return -1; 3445 3446 if (check_magic_endian(header->magic, header->size, true, ph) < 0) { 3447 pr_debug("endian/magic failed\n"); 3448 return -1; 3449 } 3450 3451 if (ph->needs_swap) 3452 header->size = bswap_64(header->size); 3453 3454 if (repipe && do_write(&ff, header, sizeof(*header)) < 0) 3455 return -1; 3456 3457 return 0; 3458 } 3459 3460 static int perf_header__read_pipe(struct perf_session *session) 3461 { 3462 struct perf_header *header = &session->header; 3463 struct perf_pipe_file_header f_header; 3464 3465 if (perf_file_header__read_pipe(&f_header, header, 3466 perf_data__fd(session->data), 3467 session->repipe) < 0) { 3468 pr_debug("incompatible file format\n"); 3469 return -EINVAL; 3470 } 3471 3472 return 0; 3473 } 3474 3475 static int read_attr(int fd, struct perf_header *ph, 3476 struct perf_file_attr *f_attr) 3477 { 3478 struct perf_event_attr *attr = &f_attr->attr; 3479 size_t sz, left; 3480 size_t our_sz = sizeof(f_attr->attr); 3481 ssize_t ret; 3482 3483 memset(f_attr, 0, sizeof(*f_attr)); 3484 3485 /* read minimal guaranteed structure */ 3486 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); 3487 if (ret <= 0) { 3488 pr_debug("cannot read %d bytes of header attr\n", 3489 PERF_ATTR_SIZE_VER0); 3490 return -1; 3491 } 3492 3493 /* on file perf_event_attr size */ 3494 sz = attr->size; 3495 3496 if (ph->needs_swap) 3497 sz = bswap_32(sz); 3498 3499 if (sz == 0) { 3500 /* assume ABI0 */ 3501 sz = PERF_ATTR_SIZE_VER0; 3502 } else if (sz > our_sz) { 3503 pr_debug("file uses a more recent and unsupported ABI" 3504 " (%zu bytes extra)\n", sz - our_sz); 3505 return -1; 3506 } 3507 /* what we have not yet read and that we know about */ 3508 left = sz - PERF_ATTR_SIZE_VER0; 3509 if (left) { 3510 void *ptr = attr; 3511 ptr += PERF_ATTR_SIZE_VER0; 3512 3513 ret = readn(fd, ptr, left); 3514 } 3515 /* read perf_file_section, ids are read in caller */ 3516 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); 3517 3518 return ret <= 0 ? -1 : 0; 3519 } 3520 3521 static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel, 3522 struct tep_handle *pevent) 3523 { 3524 struct tep_event *event; 3525 char bf[128]; 3526 3527 /* already prepared */ 3528 if (evsel->tp_format) 3529 return 0; 3530 3531 if (pevent == NULL) { 3532 pr_debug("broken or missing trace data\n"); 3533 return -1; 3534 } 3535 3536 event = tep_find_event(pevent, evsel->core.attr.config); 3537 if (event == NULL) { 3538 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config); 3539 return -1; 3540 } 3541 3542 if (!evsel->name) { 3543 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); 3544 evsel->name = strdup(bf); 3545 if (evsel->name == NULL) 3546 return -1; 3547 } 3548 3549 evsel->tp_format = event; 3550 return 0; 3551 } 3552 3553 static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist, 3554 struct tep_handle *pevent) 3555 { 3556 struct evsel *pos; 3557 3558 evlist__for_each_entry(evlist, pos) { 3559 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT && 3560 perf_evsel__prepare_tracepoint_event(pos, pevent)) 3561 return -1; 3562 } 3563 3564 return 0; 3565 } 3566 3567 int perf_session__read_header(struct perf_session *session) 3568 { 3569 struct perf_data *data = session->data; 3570 struct perf_header *header = &session->header; 3571 struct perf_file_header f_header; 3572 struct perf_file_attr f_attr; 3573 u64 f_id; 3574 int nr_attrs, nr_ids, i, j; 3575 int fd = perf_data__fd(data); 3576 3577 session->evlist = evlist__new(); 3578 if (session->evlist == NULL) 3579 return -ENOMEM; 3580 3581 session->evlist->env = &header->env; 3582 session->machines.host.env = &header->env; 3583 if (perf_data__is_pipe(data)) 3584 return perf_header__read_pipe(session); 3585 3586 if (perf_file_header__read(&f_header, header, fd) < 0) 3587 return -EINVAL; 3588 3589 /* 3590 * Sanity check that perf.data was written cleanly; data size is 3591 * initialized to 0 and updated only if the on_exit function is run. 3592 * If data size is still 0 then the file contains only partial 3593 * information. Just warn user and process it as much as it can. 3594 */ 3595 if (f_header.data.size == 0) { 3596 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" 3597 "Was the 'perf record' command properly terminated?\n", 3598 data->file.path); 3599 } 3600 3601 if (f_header.attr_size == 0) { 3602 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n" 3603 "Was the 'perf record' command properly terminated?\n", 3604 data->file.path); 3605 return -EINVAL; 3606 } 3607 3608 nr_attrs = f_header.attrs.size / f_header.attr_size; 3609 lseek(fd, f_header.attrs.offset, SEEK_SET); 3610 3611 for (i = 0; i < nr_attrs; i++) { 3612 struct evsel *evsel; 3613 off_t tmp; 3614 3615 if (read_attr(fd, header, &f_attr) < 0) 3616 goto out_errno; 3617 3618 if (header->needs_swap) { 3619 f_attr.ids.size = bswap_64(f_attr.ids.size); 3620 f_attr.ids.offset = bswap_64(f_attr.ids.offset); 3621 perf_event__attr_swap(&f_attr.attr); 3622 } 3623 3624 tmp = lseek(fd, 0, SEEK_CUR); 3625 evsel = evsel__new(&f_attr.attr); 3626 3627 if (evsel == NULL) 3628 goto out_delete_evlist; 3629 3630 evsel->needs_swap = header->needs_swap; 3631 /* 3632 * Do it before so that if perf_evsel__alloc_id fails, this 3633 * entry gets purged too at evlist__delete(). 3634 */ 3635 evlist__add(session->evlist, evsel); 3636 3637 nr_ids = f_attr.ids.size / sizeof(u64); 3638 /* 3639 * We don't have the cpu and thread maps on the header, so 3640 * for allocating the perf_sample_id table we fake 1 cpu and 3641 * hattr->ids threads. 3642 */ 3643 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids)) 3644 goto out_delete_evlist; 3645 3646 lseek(fd, f_attr.ids.offset, SEEK_SET); 3647 3648 for (j = 0; j < nr_ids; j++) { 3649 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) 3650 goto out_errno; 3651 3652 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id); 3653 } 3654 3655 lseek(fd, tmp, SEEK_SET); 3656 } 3657 3658 perf_header__process_sections(header, fd, &session->tevent, 3659 perf_file_section__process); 3660 3661 if (perf_evlist__prepare_tracepoint_events(session->evlist, 3662 session->tevent.pevent)) 3663 goto out_delete_evlist; 3664 3665 return 0; 3666 out_errno: 3667 return -errno; 3668 3669 out_delete_evlist: 3670 evlist__delete(session->evlist); 3671 session->evlist = NULL; 3672 return -ENOMEM; 3673 } 3674 3675 int perf_event__process_feature(struct perf_session *session, 3676 union perf_event *event) 3677 { 3678 struct perf_tool *tool = session->tool; 3679 struct feat_fd ff = { .fd = 0 }; 3680 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event; 3681 int type = fe->header.type; 3682 u64 feat = fe->feat_id; 3683 3684 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { 3685 pr_warning("invalid record type %d in pipe-mode\n", type); 3686 return 0; 3687 } 3688 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { 3689 pr_warning("invalid record type %d in pipe-mode\n", type); 3690 return -1; 3691 } 3692 3693 if (!feat_ops[feat].process) 3694 return 0; 3695 3696 ff.buf = (void *)fe->data; 3697 ff.size = event->header.size - sizeof(*fe); 3698 ff.ph = &session->header; 3699 3700 if (feat_ops[feat].process(&ff, NULL)) 3701 return -1; 3702 3703 if (!feat_ops[feat].print || !tool->show_feat_hdr) 3704 return 0; 3705 3706 if (!feat_ops[feat].full_only || 3707 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { 3708 feat_ops[feat].print(&ff, stdout); 3709 } else { 3710 fprintf(stdout, "# %s info available, use -I to display\n", 3711 feat_ops[feat].name); 3712 } 3713 3714 return 0; 3715 } 3716 3717 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) 3718 { 3719 struct perf_record_event_update *ev = &event->event_update; 3720 struct perf_record_event_update_scale *ev_scale; 3721 struct perf_record_event_update_cpus *ev_cpus; 3722 struct perf_cpu_map *map; 3723 size_t ret; 3724 3725 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id); 3726 3727 switch (ev->type) { 3728 case PERF_EVENT_UPDATE__SCALE: 3729 ev_scale = (struct perf_record_event_update_scale *)ev->data; 3730 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale); 3731 break; 3732 case PERF_EVENT_UPDATE__UNIT: 3733 ret += fprintf(fp, "... unit: %s\n", ev->data); 3734 break; 3735 case PERF_EVENT_UPDATE__NAME: 3736 ret += fprintf(fp, "... name: %s\n", ev->data); 3737 break; 3738 case PERF_EVENT_UPDATE__CPUS: 3739 ev_cpus = (struct perf_record_event_update_cpus *)ev->data; 3740 ret += fprintf(fp, "... "); 3741 3742 map = cpu_map__new_data(&ev_cpus->cpus); 3743 if (map) 3744 ret += cpu_map__fprintf(map, fp); 3745 else 3746 ret += fprintf(fp, "failed to get cpus\n"); 3747 break; 3748 default: 3749 ret += fprintf(fp, "... unknown type\n"); 3750 break; 3751 } 3752 3753 return ret; 3754 } 3755 3756 int perf_event__process_attr(struct perf_tool *tool __maybe_unused, 3757 union perf_event *event, 3758 struct evlist **pevlist) 3759 { 3760 u32 i, ids, n_ids; 3761 struct evsel *evsel; 3762 struct evlist *evlist = *pevlist; 3763 3764 if (evlist == NULL) { 3765 *pevlist = evlist = evlist__new(); 3766 if (evlist == NULL) 3767 return -ENOMEM; 3768 } 3769 3770 evsel = evsel__new(&event->attr.attr); 3771 if (evsel == NULL) 3772 return -ENOMEM; 3773 3774 evlist__add(evlist, evsel); 3775 3776 ids = event->header.size; 3777 ids -= (void *)&event->attr.id - (void *)event; 3778 n_ids = ids / sizeof(u64); 3779 /* 3780 * We don't have the cpu and thread maps on the header, so 3781 * for allocating the perf_sample_id table we fake 1 cpu and 3782 * hattr->ids threads. 3783 */ 3784 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids)) 3785 return -ENOMEM; 3786 3787 for (i = 0; i < n_ids; i++) { 3788 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]); 3789 } 3790 3791 return 0; 3792 } 3793 3794 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused, 3795 union perf_event *event, 3796 struct evlist **pevlist) 3797 { 3798 struct perf_record_event_update *ev = &event->event_update; 3799 struct perf_record_event_update_scale *ev_scale; 3800 struct perf_record_event_update_cpus *ev_cpus; 3801 struct evlist *evlist; 3802 struct evsel *evsel; 3803 struct perf_cpu_map *map; 3804 3805 if (!pevlist || *pevlist == NULL) 3806 return -EINVAL; 3807 3808 evlist = *pevlist; 3809 3810 evsel = perf_evlist__id2evsel(evlist, ev->id); 3811 if (evsel == NULL) 3812 return -EINVAL; 3813 3814 switch (ev->type) { 3815 case PERF_EVENT_UPDATE__UNIT: 3816 evsel->unit = strdup(ev->data); 3817 break; 3818 case PERF_EVENT_UPDATE__NAME: 3819 evsel->name = strdup(ev->data); 3820 break; 3821 case PERF_EVENT_UPDATE__SCALE: 3822 ev_scale = (struct perf_record_event_update_scale *)ev->data; 3823 evsel->scale = ev_scale->scale; 3824 break; 3825 case PERF_EVENT_UPDATE__CPUS: 3826 ev_cpus = (struct perf_record_event_update_cpus *)ev->data; 3827 3828 map = cpu_map__new_data(&ev_cpus->cpus); 3829 if (map) 3830 evsel->core.own_cpus = map; 3831 else 3832 pr_err("failed to get event_update cpus\n"); 3833 default: 3834 break; 3835 } 3836 3837 return 0; 3838 } 3839 3840 int perf_event__process_tracing_data(struct perf_session *session, 3841 union perf_event *event) 3842 { 3843 ssize_t size_read, padding, size = event->tracing_data.size; 3844 int fd = perf_data__fd(session->data); 3845 off_t offset = lseek(fd, 0, SEEK_CUR); 3846 char buf[BUFSIZ]; 3847 3848 /* setup for reading amidst mmap */ 3849 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data), 3850 SEEK_SET); 3851 3852 size_read = trace_report(fd, &session->tevent, 3853 session->repipe); 3854 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; 3855 3856 if (readn(fd, buf, padding) < 0) { 3857 pr_err("%s: reading input file", __func__); 3858 return -1; 3859 } 3860 if (session->repipe) { 3861 int retw = write(STDOUT_FILENO, buf, padding); 3862 if (retw <= 0 || retw != padding) { 3863 pr_err("%s: repiping tracing data padding", __func__); 3864 return -1; 3865 } 3866 } 3867 3868 if (size_read + padding != size) { 3869 pr_err("%s: tracing data size mismatch", __func__); 3870 return -1; 3871 } 3872 3873 perf_evlist__prepare_tracepoint_events(session->evlist, 3874 session->tevent.pevent); 3875 3876 return size_read + padding; 3877 } 3878 3879 int perf_event__process_build_id(struct perf_session *session, 3880 union perf_event *event) 3881 { 3882 __event_process_build_id(&event->build_id, 3883 event->build_id.filename, 3884 session); 3885 return 0; 3886 } 3887