1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <inttypes.h> 4 #include "string2.h" 5 #include <sys/param.h> 6 #include <sys/types.h> 7 #include <byteswap.h> 8 #include <unistd.h> 9 #include <stdio.h> 10 #include <stdlib.h> 11 #include <linux/compiler.h> 12 #include <linux/list.h> 13 #include <linux/kernel.h> 14 #include <linux/bitops.h> 15 #include <linux/string.h> 16 #include <linux/stringify.h> 17 #include <linux/zalloc.h> 18 #include <sys/stat.h> 19 #include <sys/utsname.h> 20 #include <linux/time64.h> 21 #include <dirent.h> 22 #ifdef HAVE_LIBBPF_SUPPORT 23 #include <bpf/libbpf.h> 24 #endif 25 #include <perf/cpumap.h> 26 27 #include "dso.h" 28 #include "evlist.h" 29 #include "evsel.h" 30 #include "util/evsel_fprintf.h" 31 #include "header.h" 32 #include "memswap.h" 33 #include "trace-event.h" 34 #include "session.h" 35 #include "symbol.h" 36 #include "debug.h" 37 #include "cpumap.h" 38 #include "pmu.h" 39 #include "vdso.h" 40 #include "strbuf.h" 41 #include "build-id.h" 42 #include "data.h" 43 #include <api/fs/fs.h> 44 #include "asm/bug.h" 45 #include "tool.h" 46 #include "time-utils.h" 47 #include "units.h" 48 #include "util/util.h" // perf_exe() 49 #include "cputopo.h" 50 #include "bpf-event.h" 51 #include "bpf-utils.h" 52 #include "clockid.h" 53 #include "pmu-hybrid.h" 54 55 #include <linux/ctype.h> 56 #include <internal/lib.h> 57 58 /* 59 * magic2 = "PERFILE2" 60 * must be a numerical value to let the endianness 61 * determine the memory layout. That way we are able 62 * to detect endianness when reading the perf.data file 63 * back. 64 * 65 * we check for legacy (PERFFILE) format. 66 */ 67 static const char *__perf_magic1 = "PERFFILE"; 68 static const u64 __perf_magic2 = 0x32454c4946524550ULL; 69 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; 70 71 #define PERF_MAGIC __perf_magic2 72 73 const char perf_version_string[] = PERF_VERSION; 74 75 struct perf_file_attr { 76 struct perf_event_attr attr; 77 struct perf_file_section ids; 78 }; 79 80 void perf_header__set_feat(struct perf_header *header, int feat) 81 { 82 set_bit(feat, header->adds_features); 83 } 84 85 void perf_header__clear_feat(struct perf_header *header, int feat) 86 { 87 clear_bit(feat, header->adds_features); 88 } 89 90 bool perf_header__has_feat(const struct perf_header *header, int feat) 91 { 92 return test_bit(feat, header->adds_features); 93 } 94 95 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) 96 { 97 ssize_t ret = writen(ff->fd, buf, size); 98 99 if (ret != (ssize_t)size) 100 return ret < 0 ? (int)ret : -1; 101 return 0; 102 } 103 104 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) 105 { 106 /* struct perf_event_header::size is u16 */ 107 const size_t max_size = 0xffff - sizeof(struct perf_event_header); 108 size_t new_size = ff->size; 109 void *addr; 110 111 if (size + ff->offset > max_size) 112 return -E2BIG; 113 114 while (size > (new_size - ff->offset)) 115 new_size <<= 1; 116 new_size = min(max_size, new_size); 117 118 if (ff->size < new_size) { 119 addr = realloc(ff->buf, new_size); 120 if (!addr) 121 return -ENOMEM; 122 ff->buf = addr; 123 ff->size = new_size; 124 } 125 126 memcpy(ff->buf + ff->offset, buf, size); 127 ff->offset += size; 128 129 return 0; 130 } 131 132 /* Return: 0 if succeeded, -ERR if failed. */ 133 int do_write(struct feat_fd *ff, const void *buf, size_t size) 134 { 135 if (!ff->buf) 136 return __do_write_fd(ff, buf, size); 137 return __do_write_buf(ff, buf, size); 138 } 139 140 /* Return: 0 if succeeded, -ERR if failed. */ 141 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) 142 { 143 u64 *p = (u64 *) set; 144 int i, ret; 145 146 ret = do_write(ff, &size, sizeof(size)); 147 if (ret < 0) 148 return ret; 149 150 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 151 ret = do_write(ff, p + i, sizeof(*p)); 152 if (ret < 0) 153 return ret; 154 } 155 156 return 0; 157 } 158 159 /* Return: 0 if succeeded, -ERR if failed. */ 160 int write_padded(struct feat_fd *ff, const void *bf, 161 size_t count, size_t count_aligned) 162 { 163 static const char zero_buf[NAME_ALIGN]; 164 int err = do_write(ff, bf, count); 165 166 if (!err) 167 err = do_write(ff, zero_buf, count_aligned - count); 168 169 return err; 170 } 171 172 #define string_size(str) \ 173 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) 174 175 /* Return: 0 if succeeded, -ERR if failed. */ 176 static int do_write_string(struct feat_fd *ff, const char *str) 177 { 178 u32 len, olen; 179 int ret; 180 181 olen = strlen(str) + 1; 182 len = PERF_ALIGN(olen, NAME_ALIGN); 183 184 /* write len, incl. \0 */ 185 ret = do_write(ff, &len, sizeof(len)); 186 if (ret < 0) 187 return ret; 188 189 return write_padded(ff, str, olen, len); 190 } 191 192 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) 193 { 194 ssize_t ret = readn(ff->fd, addr, size); 195 196 if (ret != size) 197 return ret < 0 ? (int)ret : -1; 198 return 0; 199 } 200 201 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) 202 { 203 if (size > (ssize_t)ff->size - ff->offset) 204 return -1; 205 206 memcpy(addr, ff->buf + ff->offset, size); 207 ff->offset += size; 208 209 return 0; 210 211 } 212 213 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) 214 { 215 if (!ff->buf) 216 return __do_read_fd(ff, addr, size); 217 return __do_read_buf(ff, addr, size); 218 } 219 220 static int do_read_u32(struct feat_fd *ff, u32 *addr) 221 { 222 int ret; 223 224 ret = __do_read(ff, addr, sizeof(*addr)); 225 if (ret) 226 return ret; 227 228 if (ff->ph->needs_swap) 229 *addr = bswap_32(*addr); 230 return 0; 231 } 232 233 static int do_read_u64(struct feat_fd *ff, u64 *addr) 234 { 235 int ret; 236 237 ret = __do_read(ff, addr, sizeof(*addr)); 238 if (ret) 239 return ret; 240 241 if (ff->ph->needs_swap) 242 *addr = bswap_64(*addr); 243 return 0; 244 } 245 246 static char *do_read_string(struct feat_fd *ff) 247 { 248 u32 len; 249 char *buf; 250 251 if (do_read_u32(ff, &len)) 252 return NULL; 253 254 buf = malloc(len); 255 if (!buf) 256 return NULL; 257 258 if (!__do_read(ff, buf, len)) { 259 /* 260 * strings are padded by zeroes 261 * thus the actual strlen of buf 262 * may be less than len 263 */ 264 return buf; 265 } 266 267 free(buf); 268 return NULL; 269 } 270 271 /* Return: 0 if succeeded, -ERR if failed. */ 272 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) 273 { 274 unsigned long *set; 275 u64 size, *p; 276 int i, ret; 277 278 ret = do_read_u64(ff, &size); 279 if (ret) 280 return ret; 281 282 set = bitmap_zalloc(size); 283 if (!set) 284 return -ENOMEM; 285 286 p = (u64 *) set; 287 288 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 289 ret = do_read_u64(ff, p + i); 290 if (ret < 0) { 291 free(set); 292 return ret; 293 } 294 } 295 296 *pset = set; 297 *psize = size; 298 return 0; 299 } 300 301 static int write_tracing_data(struct feat_fd *ff, 302 struct evlist *evlist) 303 { 304 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 305 return -1; 306 307 return read_tracing_data(ff->fd, &evlist->core.entries); 308 } 309 310 static int write_build_id(struct feat_fd *ff, 311 struct evlist *evlist __maybe_unused) 312 { 313 struct perf_session *session; 314 int err; 315 316 session = container_of(ff->ph, struct perf_session, header); 317 318 if (!perf_session__read_build_ids(session, true)) 319 return -1; 320 321 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 322 return -1; 323 324 err = perf_session__write_buildid_table(session, ff); 325 if (err < 0) { 326 pr_debug("failed to write buildid table\n"); 327 return err; 328 } 329 perf_session__cache_build_ids(session); 330 331 return 0; 332 } 333 334 static int write_hostname(struct feat_fd *ff, 335 struct evlist *evlist __maybe_unused) 336 { 337 struct utsname uts; 338 int ret; 339 340 ret = uname(&uts); 341 if (ret < 0) 342 return -1; 343 344 return do_write_string(ff, uts.nodename); 345 } 346 347 static int write_osrelease(struct feat_fd *ff, 348 struct evlist *evlist __maybe_unused) 349 { 350 struct utsname uts; 351 int ret; 352 353 ret = uname(&uts); 354 if (ret < 0) 355 return -1; 356 357 return do_write_string(ff, uts.release); 358 } 359 360 static int write_arch(struct feat_fd *ff, 361 struct evlist *evlist __maybe_unused) 362 { 363 struct utsname uts; 364 int ret; 365 366 ret = uname(&uts); 367 if (ret < 0) 368 return -1; 369 370 return do_write_string(ff, uts.machine); 371 } 372 373 static int write_version(struct feat_fd *ff, 374 struct evlist *evlist __maybe_unused) 375 { 376 return do_write_string(ff, perf_version_string); 377 } 378 379 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) 380 { 381 FILE *file; 382 char *buf = NULL; 383 char *s, *p; 384 const char *search = cpuinfo_proc; 385 size_t len = 0; 386 int ret = -1; 387 388 if (!search) 389 return -1; 390 391 file = fopen("/proc/cpuinfo", "r"); 392 if (!file) 393 return -1; 394 395 while (getline(&buf, &len, file) > 0) { 396 ret = strncmp(buf, search, strlen(search)); 397 if (!ret) 398 break; 399 } 400 401 if (ret) { 402 ret = -1; 403 goto done; 404 } 405 406 s = buf; 407 408 p = strchr(buf, ':'); 409 if (p && *(p+1) == ' ' && *(p+2)) 410 s = p + 2; 411 p = strchr(s, '\n'); 412 if (p) 413 *p = '\0'; 414 415 /* squash extra space characters (branding string) */ 416 p = s; 417 while (*p) { 418 if (isspace(*p)) { 419 char *r = p + 1; 420 char *q = skip_spaces(r); 421 *p = ' '; 422 if (q != (p+1)) 423 while ((*r++ = *q++)); 424 } 425 p++; 426 } 427 ret = do_write_string(ff, s); 428 done: 429 free(buf); 430 fclose(file); 431 return ret; 432 } 433 434 static int write_cpudesc(struct feat_fd *ff, 435 struct evlist *evlist __maybe_unused) 436 { 437 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__) 438 #define CPUINFO_PROC { "cpu", } 439 #elif defined(__s390__) 440 #define CPUINFO_PROC { "vendor_id", } 441 #elif defined(__sh__) 442 #define CPUINFO_PROC { "cpu type", } 443 #elif defined(__alpha__) || defined(__mips__) 444 #define CPUINFO_PROC { "cpu model", } 445 #elif defined(__arm__) 446 #define CPUINFO_PROC { "model name", "Processor", } 447 #elif defined(__arc__) 448 #define CPUINFO_PROC { "Processor", } 449 #elif defined(__xtensa__) 450 #define CPUINFO_PROC { "core ID", } 451 #else 452 #define CPUINFO_PROC { "model name", } 453 #endif 454 const char *cpuinfo_procs[] = CPUINFO_PROC; 455 #undef CPUINFO_PROC 456 unsigned int i; 457 458 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { 459 int ret; 460 ret = __write_cpudesc(ff, cpuinfo_procs[i]); 461 if (ret >= 0) 462 return ret; 463 } 464 return -1; 465 } 466 467 468 static int write_nrcpus(struct feat_fd *ff, 469 struct evlist *evlist __maybe_unused) 470 { 471 long nr; 472 u32 nrc, nra; 473 int ret; 474 475 nrc = cpu__max_present_cpu(); 476 477 nr = sysconf(_SC_NPROCESSORS_ONLN); 478 if (nr < 0) 479 return -1; 480 481 nra = (u32)(nr & UINT_MAX); 482 483 ret = do_write(ff, &nrc, sizeof(nrc)); 484 if (ret < 0) 485 return ret; 486 487 return do_write(ff, &nra, sizeof(nra)); 488 } 489 490 static int write_event_desc(struct feat_fd *ff, 491 struct evlist *evlist) 492 { 493 struct evsel *evsel; 494 u32 nre, nri, sz; 495 int ret; 496 497 nre = evlist->core.nr_entries; 498 499 /* 500 * write number of events 501 */ 502 ret = do_write(ff, &nre, sizeof(nre)); 503 if (ret < 0) 504 return ret; 505 506 /* 507 * size of perf_event_attr struct 508 */ 509 sz = (u32)sizeof(evsel->core.attr); 510 ret = do_write(ff, &sz, sizeof(sz)); 511 if (ret < 0) 512 return ret; 513 514 evlist__for_each_entry(evlist, evsel) { 515 ret = do_write(ff, &evsel->core.attr, sz); 516 if (ret < 0) 517 return ret; 518 /* 519 * write number of unique id per event 520 * there is one id per instance of an event 521 * 522 * copy into an nri to be independent of the 523 * type of ids, 524 */ 525 nri = evsel->core.ids; 526 ret = do_write(ff, &nri, sizeof(nri)); 527 if (ret < 0) 528 return ret; 529 530 /* 531 * write event string as passed on cmdline 532 */ 533 ret = do_write_string(ff, evsel__name(evsel)); 534 if (ret < 0) 535 return ret; 536 /* 537 * write unique ids for this event 538 */ 539 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 540 if (ret < 0) 541 return ret; 542 } 543 return 0; 544 } 545 546 static int write_cmdline(struct feat_fd *ff, 547 struct evlist *evlist __maybe_unused) 548 { 549 char pbuf[MAXPATHLEN], *buf; 550 int i, ret, n; 551 552 /* actual path to perf binary */ 553 buf = perf_exe(pbuf, MAXPATHLEN); 554 555 /* account for binary path */ 556 n = perf_env.nr_cmdline + 1; 557 558 ret = do_write(ff, &n, sizeof(n)); 559 if (ret < 0) 560 return ret; 561 562 ret = do_write_string(ff, buf); 563 if (ret < 0) 564 return ret; 565 566 for (i = 0 ; i < perf_env.nr_cmdline; i++) { 567 ret = do_write_string(ff, perf_env.cmdline_argv[i]); 568 if (ret < 0) 569 return ret; 570 } 571 return 0; 572 } 573 574 575 static int write_cpu_topology(struct feat_fd *ff, 576 struct evlist *evlist __maybe_unused) 577 { 578 struct cpu_topology *tp; 579 u32 i; 580 int ret, j; 581 582 tp = cpu_topology__new(); 583 if (!tp) 584 return -1; 585 586 ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib)); 587 if (ret < 0) 588 goto done; 589 590 for (i = 0; i < tp->core_sib; i++) { 591 ret = do_write_string(ff, tp->core_siblings[i]); 592 if (ret < 0) 593 goto done; 594 } 595 ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib)); 596 if (ret < 0) 597 goto done; 598 599 for (i = 0; i < tp->thread_sib; i++) { 600 ret = do_write_string(ff, tp->thread_siblings[i]); 601 if (ret < 0) 602 break; 603 } 604 605 ret = perf_env__read_cpu_topology_map(&perf_env); 606 if (ret < 0) 607 goto done; 608 609 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 610 ret = do_write(ff, &perf_env.cpu[j].core_id, 611 sizeof(perf_env.cpu[j].core_id)); 612 if (ret < 0) 613 return ret; 614 ret = do_write(ff, &perf_env.cpu[j].socket_id, 615 sizeof(perf_env.cpu[j].socket_id)); 616 if (ret < 0) 617 return ret; 618 } 619 620 if (!tp->die_sib) 621 goto done; 622 623 ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib)); 624 if (ret < 0) 625 goto done; 626 627 for (i = 0; i < tp->die_sib; i++) { 628 ret = do_write_string(ff, tp->die_siblings[i]); 629 if (ret < 0) 630 goto done; 631 } 632 633 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 634 ret = do_write(ff, &perf_env.cpu[j].die_id, 635 sizeof(perf_env.cpu[j].die_id)); 636 if (ret < 0) 637 return ret; 638 } 639 640 done: 641 cpu_topology__delete(tp); 642 return ret; 643 } 644 645 646 647 static int write_total_mem(struct feat_fd *ff, 648 struct evlist *evlist __maybe_unused) 649 { 650 char *buf = NULL; 651 FILE *fp; 652 size_t len = 0; 653 int ret = -1, n; 654 uint64_t mem; 655 656 fp = fopen("/proc/meminfo", "r"); 657 if (!fp) 658 return -1; 659 660 while (getline(&buf, &len, fp) > 0) { 661 ret = strncmp(buf, "MemTotal:", 9); 662 if (!ret) 663 break; 664 } 665 if (!ret) { 666 n = sscanf(buf, "%*s %"PRIu64, &mem); 667 if (n == 1) 668 ret = do_write(ff, &mem, sizeof(mem)); 669 } else 670 ret = -1; 671 free(buf); 672 fclose(fp); 673 return ret; 674 } 675 676 static int write_numa_topology(struct feat_fd *ff, 677 struct evlist *evlist __maybe_unused) 678 { 679 struct numa_topology *tp; 680 int ret = -1; 681 u32 i; 682 683 tp = numa_topology__new(); 684 if (!tp) 685 return -ENOMEM; 686 687 ret = do_write(ff, &tp->nr, sizeof(u32)); 688 if (ret < 0) 689 goto err; 690 691 for (i = 0; i < tp->nr; i++) { 692 struct numa_topology_node *n = &tp->nodes[i]; 693 694 ret = do_write(ff, &n->node, sizeof(u32)); 695 if (ret < 0) 696 goto err; 697 698 ret = do_write(ff, &n->mem_total, sizeof(u64)); 699 if (ret) 700 goto err; 701 702 ret = do_write(ff, &n->mem_free, sizeof(u64)); 703 if (ret) 704 goto err; 705 706 ret = do_write_string(ff, n->cpus); 707 if (ret < 0) 708 goto err; 709 } 710 711 ret = 0; 712 713 err: 714 numa_topology__delete(tp); 715 return ret; 716 } 717 718 /* 719 * File format: 720 * 721 * struct pmu_mappings { 722 * u32 pmu_num; 723 * struct pmu_map { 724 * u32 type; 725 * char name[]; 726 * }[pmu_num]; 727 * }; 728 */ 729 730 static int write_pmu_mappings(struct feat_fd *ff, 731 struct evlist *evlist __maybe_unused) 732 { 733 struct perf_pmu *pmu = NULL; 734 u32 pmu_num = 0; 735 int ret; 736 737 /* 738 * Do a first pass to count number of pmu to avoid lseek so this 739 * works in pipe mode as well. 740 */ 741 while ((pmu = perf_pmu__scan(pmu))) { 742 if (!pmu->name) 743 continue; 744 pmu_num++; 745 } 746 747 ret = do_write(ff, &pmu_num, sizeof(pmu_num)); 748 if (ret < 0) 749 return ret; 750 751 while ((pmu = perf_pmu__scan(pmu))) { 752 if (!pmu->name) 753 continue; 754 755 ret = do_write(ff, &pmu->type, sizeof(pmu->type)); 756 if (ret < 0) 757 return ret; 758 759 ret = do_write_string(ff, pmu->name); 760 if (ret < 0) 761 return ret; 762 } 763 764 return 0; 765 } 766 767 /* 768 * File format: 769 * 770 * struct group_descs { 771 * u32 nr_groups; 772 * struct group_desc { 773 * char name[]; 774 * u32 leader_idx; 775 * u32 nr_members; 776 * }[nr_groups]; 777 * }; 778 */ 779 static int write_group_desc(struct feat_fd *ff, 780 struct evlist *evlist) 781 { 782 u32 nr_groups = evlist->core.nr_groups; 783 struct evsel *evsel; 784 int ret; 785 786 ret = do_write(ff, &nr_groups, sizeof(nr_groups)); 787 if (ret < 0) 788 return ret; 789 790 evlist__for_each_entry(evlist, evsel) { 791 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 792 const char *name = evsel->group_name ?: "{anon_group}"; 793 u32 leader_idx = evsel->core.idx; 794 u32 nr_members = evsel->core.nr_members; 795 796 ret = do_write_string(ff, name); 797 if (ret < 0) 798 return ret; 799 800 ret = do_write(ff, &leader_idx, sizeof(leader_idx)); 801 if (ret < 0) 802 return ret; 803 804 ret = do_write(ff, &nr_members, sizeof(nr_members)); 805 if (ret < 0) 806 return ret; 807 } 808 } 809 return 0; 810 } 811 812 /* 813 * Return the CPU id as a raw string. 814 * 815 * Each architecture should provide a more precise id string that 816 * can be use to match the architecture's "mapfile". 817 */ 818 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused) 819 { 820 return NULL; 821 } 822 823 /* Return zero when the cpuid from the mapfile.csv matches the 824 * cpuid string generated on this platform. 825 * Otherwise return non-zero. 826 */ 827 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid) 828 { 829 regex_t re; 830 regmatch_t pmatch[1]; 831 int match; 832 833 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) { 834 /* Warn unable to generate match particular string. */ 835 pr_info("Invalid regular expression %s\n", mapcpuid); 836 return 1; 837 } 838 839 match = !regexec(&re, cpuid, 1, pmatch, 0); 840 regfree(&re); 841 if (match) { 842 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so); 843 844 /* Verify the entire string matched. */ 845 if (match_len == strlen(cpuid)) 846 return 0; 847 } 848 return 1; 849 } 850 851 /* 852 * default get_cpuid(): nothing gets recorded 853 * actual implementation must be in arch/$(SRCARCH)/util/header.c 854 */ 855 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused) 856 { 857 return ENOSYS; /* Not implemented */ 858 } 859 860 static int write_cpuid(struct feat_fd *ff, 861 struct evlist *evlist __maybe_unused) 862 { 863 char buffer[64]; 864 int ret; 865 866 ret = get_cpuid(buffer, sizeof(buffer)); 867 if (ret) 868 return -1; 869 870 return do_write_string(ff, buffer); 871 } 872 873 static int write_branch_stack(struct feat_fd *ff __maybe_unused, 874 struct evlist *evlist __maybe_unused) 875 { 876 return 0; 877 } 878 879 static int write_auxtrace(struct feat_fd *ff, 880 struct evlist *evlist __maybe_unused) 881 { 882 struct perf_session *session; 883 int err; 884 885 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 886 return -1; 887 888 session = container_of(ff->ph, struct perf_session, header); 889 890 err = auxtrace_index__write(ff->fd, &session->auxtrace_index); 891 if (err < 0) 892 pr_err("Failed to write auxtrace index\n"); 893 return err; 894 } 895 896 static int write_clockid(struct feat_fd *ff, 897 struct evlist *evlist __maybe_unused) 898 { 899 return do_write(ff, &ff->ph->env.clock.clockid_res_ns, 900 sizeof(ff->ph->env.clock.clockid_res_ns)); 901 } 902 903 static int write_clock_data(struct feat_fd *ff, 904 struct evlist *evlist __maybe_unused) 905 { 906 u64 *data64; 907 u32 data32; 908 int ret; 909 910 /* version */ 911 data32 = 1; 912 913 ret = do_write(ff, &data32, sizeof(data32)); 914 if (ret < 0) 915 return ret; 916 917 /* clockid */ 918 data32 = ff->ph->env.clock.clockid; 919 920 ret = do_write(ff, &data32, sizeof(data32)); 921 if (ret < 0) 922 return ret; 923 924 /* TOD ref time */ 925 data64 = &ff->ph->env.clock.tod_ns; 926 927 ret = do_write(ff, data64, sizeof(*data64)); 928 if (ret < 0) 929 return ret; 930 931 /* clockid ref time */ 932 data64 = &ff->ph->env.clock.clockid_ns; 933 934 return do_write(ff, data64, sizeof(*data64)); 935 } 936 937 static int write_hybrid_topology(struct feat_fd *ff, 938 struct evlist *evlist __maybe_unused) 939 { 940 struct hybrid_topology *tp; 941 int ret; 942 u32 i; 943 944 tp = hybrid_topology__new(); 945 if (!tp) 946 return -ENOENT; 947 948 ret = do_write(ff, &tp->nr, sizeof(u32)); 949 if (ret < 0) 950 goto err; 951 952 for (i = 0; i < tp->nr; i++) { 953 struct hybrid_topology_node *n = &tp->nodes[i]; 954 955 ret = do_write_string(ff, n->pmu_name); 956 if (ret < 0) 957 goto err; 958 959 ret = do_write_string(ff, n->cpus); 960 if (ret < 0) 961 goto err; 962 } 963 964 ret = 0; 965 966 err: 967 hybrid_topology__delete(tp); 968 return ret; 969 } 970 971 static int write_dir_format(struct feat_fd *ff, 972 struct evlist *evlist __maybe_unused) 973 { 974 struct perf_session *session; 975 struct perf_data *data; 976 977 session = container_of(ff->ph, struct perf_session, header); 978 data = session->data; 979 980 if (WARN_ON(!perf_data__is_dir(data))) 981 return -1; 982 983 return do_write(ff, &data->dir.version, sizeof(data->dir.version)); 984 } 985 986 #ifdef HAVE_LIBBPF_SUPPORT 987 static int write_bpf_prog_info(struct feat_fd *ff, 988 struct evlist *evlist __maybe_unused) 989 { 990 struct perf_env *env = &ff->ph->env; 991 struct rb_root *root; 992 struct rb_node *next; 993 int ret; 994 995 down_read(&env->bpf_progs.lock); 996 997 ret = do_write(ff, &env->bpf_progs.infos_cnt, 998 sizeof(env->bpf_progs.infos_cnt)); 999 if (ret < 0) 1000 goto out; 1001 1002 root = &env->bpf_progs.infos; 1003 next = rb_first(root); 1004 while (next) { 1005 struct bpf_prog_info_node *node; 1006 size_t len; 1007 1008 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1009 next = rb_next(&node->rb_node); 1010 len = sizeof(struct perf_bpil) + 1011 node->info_linear->data_len; 1012 1013 /* before writing to file, translate address to offset */ 1014 bpil_addr_to_offs(node->info_linear); 1015 ret = do_write(ff, node->info_linear, len); 1016 /* 1017 * translate back to address even when do_write() fails, 1018 * so that this function never changes the data. 1019 */ 1020 bpil_offs_to_addr(node->info_linear); 1021 if (ret < 0) 1022 goto out; 1023 } 1024 out: 1025 up_read(&env->bpf_progs.lock); 1026 return ret; 1027 } 1028 1029 static int write_bpf_btf(struct feat_fd *ff, 1030 struct evlist *evlist __maybe_unused) 1031 { 1032 struct perf_env *env = &ff->ph->env; 1033 struct rb_root *root; 1034 struct rb_node *next; 1035 int ret; 1036 1037 down_read(&env->bpf_progs.lock); 1038 1039 ret = do_write(ff, &env->bpf_progs.btfs_cnt, 1040 sizeof(env->bpf_progs.btfs_cnt)); 1041 1042 if (ret < 0) 1043 goto out; 1044 1045 root = &env->bpf_progs.btfs; 1046 next = rb_first(root); 1047 while (next) { 1048 struct btf_node *node; 1049 1050 node = rb_entry(next, struct btf_node, rb_node); 1051 next = rb_next(&node->rb_node); 1052 ret = do_write(ff, &node->id, 1053 sizeof(u32) * 2 + node->data_size); 1054 if (ret < 0) 1055 goto out; 1056 } 1057 out: 1058 up_read(&env->bpf_progs.lock); 1059 return ret; 1060 } 1061 #endif // HAVE_LIBBPF_SUPPORT 1062 1063 static int cpu_cache_level__sort(const void *a, const void *b) 1064 { 1065 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; 1066 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; 1067 1068 return cache_a->level - cache_b->level; 1069 } 1070 1071 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) 1072 { 1073 if (a->level != b->level) 1074 return false; 1075 1076 if (a->line_size != b->line_size) 1077 return false; 1078 1079 if (a->sets != b->sets) 1080 return false; 1081 1082 if (a->ways != b->ways) 1083 return false; 1084 1085 if (strcmp(a->type, b->type)) 1086 return false; 1087 1088 if (strcmp(a->size, b->size)) 1089 return false; 1090 1091 if (strcmp(a->map, b->map)) 1092 return false; 1093 1094 return true; 1095 } 1096 1097 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) 1098 { 1099 char path[PATH_MAX], file[PATH_MAX]; 1100 struct stat st; 1101 size_t len; 1102 1103 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); 1104 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); 1105 1106 if (stat(file, &st)) 1107 return 1; 1108 1109 scnprintf(file, PATH_MAX, "%s/level", path); 1110 if (sysfs__read_int(file, (int *) &cache->level)) 1111 return -1; 1112 1113 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); 1114 if (sysfs__read_int(file, (int *) &cache->line_size)) 1115 return -1; 1116 1117 scnprintf(file, PATH_MAX, "%s/number_of_sets", path); 1118 if (sysfs__read_int(file, (int *) &cache->sets)) 1119 return -1; 1120 1121 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); 1122 if (sysfs__read_int(file, (int *) &cache->ways)) 1123 return -1; 1124 1125 scnprintf(file, PATH_MAX, "%s/type", path); 1126 if (sysfs__read_str(file, &cache->type, &len)) 1127 return -1; 1128 1129 cache->type[len] = 0; 1130 cache->type = strim(cache->type); 1131 1132 scnprintf(file, PATH_MAX, "%s/size", path); 1133 if (sysfs__read_str(file, &cache->size, &len)) { 1134 zfree(&cache->type); 1135 return -1; 1136 } 1137 1138 cache->size[len] = 0; 1139 cache->size = strim(cache->size); 1140 1141 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); 1142 if (sysfs__read_str(file, &cache->map, &len)) { 1143 zfree(&cache->size); 1144 zfree(&cache->type); 1145 return -1; 1146 } 1147 1148 cache->map[len] = 0; 1149 cache->map = strim(cache->map); 1150 return 0; 1151 } 1152 1153 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) 1154 { 1155 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); 1156 } 1157 1158 #define MAX_CACHE_LVL 4 1159 1160 static int build_caches(struct cpu_cache_level caches[], u32 *cntp) 1161 { 1162 u32 i, cnt = 0; 1163 u32 nr, cpu; 1164 u16 level; 1165 1166 nr = cpu__max_cpu(); 1167 1168 for (cpu = 0; cpu < nr; cpu++) { 1169 for (level = 0; level < MAX_CACHE_LVL; level++) { 1170 struct cpu_cache_level c; 1171 int err; 1172 1173 err = cpu_cache_level__read(&c, cpu, level); 1174 if (err < 0) 1175 return err; 1176 1177 if (err == 1) 1178 break; 1179 1180 for (i = 0; i < cnt; i++) { 1181 if (cpu_cache_level__cmp(&c, &caches[i])) 1182 break; 1183 } 1184 1185 if (i == cnt) 1186 caches[cnt++] = c; 1187 else 1188 cpu_cache_level__free(&c); 1189 } 1190 } 1191 *cntp = cnt; 1192 return 0; 1193 } 1194 1195 static int write_cache(struct feat_fd *ff, 1196 struct evlist *evlist __maybe_unused) 1197 { 1198 u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL; 1199 struct cpu_cache_level caches[max_caches]; 1200 u32 cnt = 0, i, version = 1; 1201 int ret; 1202 1203 ret = build_caches(caches, &cnt); 1204 if (ret) 1205 goto out; 1206 1207 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); 1208 1209 ret = do_write(ff, &version, sizeof(u32)); 1210 if (ret < 0) 1211 goto out; 1212 1213 ret = do_write(ff, &cnt, sizeof(u32)); 1214 if (ret < 0) 1215 goto out; 1216 1217 for (i = 0; i < cnt; i++) { 1218 struct cpu_cache_level *c = &caches[i]; 1219 1220 #define _W(v) \ 1221 ret = do_write(ff, &c->v, sizeof(u32)); \ 1222 if (ret < 0) \ 1223 goto out; 1224 1225 _W(level) 1226 _W(line_size) 1227 _W(sets) 1228 _W(ways) 1229 #undef _W 1230 1231 #define _W(v) \ 1232 ret = do_write_string(ff, (const char *) c->v); \ 1233 if (ret < 0) \ 1234 goto out; 1235 1236 _W(type) 1237 _W(size) 1238 _W(map) 1239 #undef _W 1240 } 1241 1242 out: 1243 for (i = 0; i < cnt; i++) 1244 cpu_cache_level__free(&caches[i]); 1245 return ret; 1246 } 1247 1248 static int write_stat(struct feat_fd *ff __maybe_unused, 1249 struct evlist *evlist __maybe_unused) 1250 { 1251 return 0; 1252 } 1253 1254 static int write_sample_time(struct feat_fd *ff, 1255 struct evlist *evlist) 1256 { 1257 int ret; 1258 1259 ret = do_write(ff, &evlist->first_sample_time, 1260 sizeof(evlist->first_sample_time)); 1261 if (ret < 0) 1262 return ret; 1263 1264 return do_write(ff, &evlist->last_sample_time, 1265 sizeof(evlist->last_sample_time)); 1266 } 1267 1268 1269 static int memory_node__read(struct memory_node *n, unsigned long idx) 1270 { 1271 unsigned int phys, size = 0; 1272 char path[PATH_MAX]; 1273 struct dirent *ent; 1274 DIR *dir; 1275 1276 #define for_each_memory(mem, dir) \ 1277 while ((ent = readdir(dir))) \ 1278 if (strcmp(ent->d_name, ".") && \ 1279 strcmp(ent->d_name, "..") && \ 1280 sscanf(ent->d_name, "memory%u", &mem) == 1) 1281 1282 scnprintf(path, PATH_MAX, 1283 "%s/devices/system/node/node%lu", 1284 sysfs__mountpoint(), idx); 1285 1286 dir = opendir(path); 1287 if (!dir) { 1288 pr_warning("failed: can't open memory sysfs data\n"); 1289 return -1; 1290 } 1291 1292 for_each_memory(phys, dir) { 1293 size = max(phys, size); 1294 } 1295 1296 size++; 1297 1298 n->set = bitmap_zalloc(size); 1299 if (!n->set) { 1300 closedir(dir); 1301 return -ENOMEM; 1302 } 1303 1304 n->node = idx; 1305 n->size = size; 1306 1307 rewinddir(dir); 1308 1309 for_each_memory(phys, dir) { 1310 set_bit(phys, n->set); 1311 } 1312 1313 closedir(dir); 1314 return 0; 1315 } 1316 1317 static int memory_node__sort(const void *a, const void *b) 1318 { 1319 const struct memory_node *na = a; 1320 const struct memory_node *nb = b; 1321 1322 return na->node - nb->node; 1323 } 1324 1325 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp) 1326 { 1327 char path[PATH_MAX]; 1328 struct dirent *ent; 1329 DIR *dir; 1330 u64 cnt = 0; 1331 int ret = 0; 1332 1333 scnprintf(path, PATH_MAX, "%s/devices/system/node/", 1334 sysfs__mountpoint()); 1335 1336 dir = opendir(path); 1337 if (!dir) { 1338 pr_debug2("%s: could't read %s, does this arch have topology information?\n", 1339 __func__, path); 1340 return -1; 1341 } 1342 1343 while (!ret && (ent = readdir(dir))) { 1344 unsigned int idx; 1345 int r; 1346 1347 if (!strcmp(ent->d_name, ".") || 1348 !strcmp(ent->d_name, "..")) 1349 continue; 1350 1351 r = sscanf(ent->d_name, "node%u", &idx); 1352 if (r != 1) 1353 continue; 1354 1355 if (WARN_ONCE(cnt >= size, 1356 "failed to write MEM_TOPOLOGY, way too many nodes\n")) { 1357 closedir(dir); 1358 return -1; 1359 } 1360 1361 ret = memory_node__read(&nodes[cnt++], idx); 1362 } 1363 1364 *cntp = cnt; 1365 closedir(dir); 1366 1367 if (!ret) 1368 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); 1369 1370 return ret; 1371 } 1372 1373 #define MAX_MEMORY_NODES 2000 1374 1375 /* 1376 * The MEM_TOPOLOGY holds physical memory map for every 1377 * node in system. The format of data is as follows: 1378 * 1379 * 0 - version | for future changes 1380 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes 1381 * 16 - count | number of nodes 1382 * 1383 * For each node we store map of physical indexes for 1384 * each node: 1385 * 1386 * 32 - node id | node index 1387 * 40 - size | size of bitmap 1388 * 48 - bitmap | bitmap of memory indexes that belongs to node 1389 */ 1390 static int write_mem_topology(struct feat_fd *ff __maybe_unused, 1391 struct evlist *evlist __maybe_unused) 1392 { 1393 static struct memory_node nodes[MAX_MEMORY_NODES]; 1394 u64 bsize, version = 1, i, nr; 1395 int ret; 1396 1397 ret = sysfs__read_xll("devices/system/memory/block_size_bytes", 1398 (unsigned long long *) &bsize); 1399 if (ret) 1400 return ret; 1401 1402 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr); 1403 if (ret) 1404 return ret; 1405 1406 ret = do_write(ff, &version, sizeof(version)); 1407 if (ret < 0) 1408 goto out; 1409 1410 ret = do_write(ff, &bsize, sizeof(bsize)); 1411 if (ret < 0) 1412 goto out; 1413 1414 ret = do_write(ff, &nr, sizeof(nr)); 1415 if (ret < 0) 1416 goto out; 1417 1418 for (i = 0; i < nr; i++) { 1419 struct memory_node *n = &nodes[i]; 1420 1421 #define _W(v) \ 1422 ret = do_write(ff, &n->v, sizeof(n->v)); \ 1423 if (ret < 0) \ 1424 goto out; 1425 1426 _W(node) 1427 _W(size) 1428 1429 #undef _W 1430 1431 ret = do_write_bitmap(ff, n->set, n->size); 1432 if (ret < 0) 1433 goto out; 1434 } 1435 1436 out: 1437 return ret; 1438 } 1439 1440 static int write_compressed(struct feat_fd *ff __maybe_unused, 1441 struct evlist *evlist __maybe_unused) 1442 { 1443 int ret; 1444 1445 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver)); 1446 if (ret) 1447 return ret; 1448 1449 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type)); 1450 if (ret) 1451 return ret; 1452 1453 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level)); 1454 if (ret) 1455 return ret; 1456 1457 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio)); 1458 if (ret) 1459 return ret; 1460 1461 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len)); 1462 } 1463 1464 static int write_per_cpu_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu, 1465 bool write_pmu) 1466 { 1467 struct perf_pmu_caps *caps = NULL; 1468 int nr_caps; 1469 int ret; 1470 1471 nr_caps = perf_pmu__caps_parse(pmu); 1472 if (nr_caps < 0) 1473 return nr_caps; 1474 1475 ret = do_write(ff, &nr_caps, sizeof(nr_caps)); 1476 if (ret < 0) 1477 return ret; 1478 1479 list_for_each_entry(caps, &pmu->caps, list) { 1480 ret = do_write_string(ff, caps->name); 1481 if (ret < 0) 1482 return ret; 1483 1484 ret = do_write_string(ff, caps->value); 1485 if (ret < 0) 1486 return ret; 1487 } 1488 1489 if (write_pmu) { 1490 ret = do_write_string(ff, pmu->name); 1491 if (ret < 0) 1492 return ret; 1493 } 1494 1495 return ret; 1496 } 1497 1498 static int write_cpu_pmu_caps(struct feat_fd *ff, 1499 struct evlist *evlist __maybe_unused) 1500 { 1501 struct perf_pmu *cpu_pmu = perf_pmu__find("cpu"); 1502 1503 if (!cpu_pmu) 1504 return -ENOENT; 1505 1506 return write_per_cpu_pmu_caps(ff, cpu_pmu, false); 1507 } 1508 1509 static int write_hybrid_cpu_pmu_caps(struct feat_fd *ff, 1510 struct evlist *evlist __maybe_unused) 1511 { 1512 struct perf_pmu *pmu; 1513 u32 nr_pmu = perf_pmu__hybrid_pmu_num(); 1514 int ret; 1515 1516 if (nr_pmu == 0) 1517 return -ENOENT; 1518 1519 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu)); 1520 if (ret < 0) 1521 return ret; 1522 1523 perf_pmu__for_each_hybrid_pmu(pmu) { 1524 ret = write_per_cpu_pmu_caps(ff, pmu, true); 1525 if (ret < 0) 1526 return ret; 1527 } 1528 1529 return 0; 1530 } 1531 1532 static void print_hostname(struct feat_fd *ff, FILE *fp) 1533 { 1534 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); 1535 } 1536 1537 static void print_osrelease(struct feat_fd *ff, FILE *fp) 1538 { 1539 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); 1540 } 1541 1542 static void print_arch(struct feat_fd *ff, FILE *fp) 1543 { 1544 fprintf(fp, "# arch : %s\n", ff->ph->env.arch); 1545 } 1546 1547 static void print_cpudesc(struct feat_fd *ff, FILE *fp) 1548 { 1549 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); 1550 } 1551 1552 static void print_nrcpus(struct feat_fd *ff, FILE *fp) 1553 { 1554 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); 1555 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); 1556 } 1557 1558 static void print_version(struct feat_fd *ff, FILE *fp) 1559 { 1560 fprintf(fp, "# perf version : %s\n", ff->ph->env.version); 1561 } 1562 1563 static void print_cmdline(struct feat_fd *ff, FILE *fp) 1564 { 1565 int nr, i; 1566 1567 nr = ff->ph->env.nr_cmdline; 1568 1569 fprintf(fp, "# cmdline : "); 1570 1571 for (i = 0; i < nr; i++) { 1572 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); 1573 if (!argv_i) { 1574 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); 1575 } else { 1576 char *mem = argv_i; 1577 do { 1578 char *quote = strchr(argv_i, '\''); 1579 if (!quote) 1580 break; 1581 *quote++ = '\0'; 1582 fprintf(fp, "%s\\\'", argv_i); 1583 argv_i = quote; 1584 } while (1); 1585 fprintf(fp, "%s ", argv_i); 1586 free(mem); 1587 } 1588 } 1589 fputc('\n', fp); 1590 } 1591 1592 static void print_cpu_topology(struct feat_fd *ff, FILE *fp) 1593 { 1594 struct perf_header *ph = ff->ph; 1595 int cpu_nr = ph->env.nr_cpus_avail; 1596 int nr, i; 1597 char *str; 1598 1599 nr = ph->env.nr_sibling_cores; 1600 str = ph->env.sibling_cores; 1601 1602 for (i = 0; i < nr; i++) { 1603 fprintf(fp, "# sibling sockets : %s\n", str); 1604 str += strlen(str) + 1; 1605 } 1606 1607 if (ph->env.nr_sibling_dies) { 1608 nr = ph->env.nr_sibling_dies; 1609 str = ph->env.sibling_dies; 1610 1611 for (i = 0; i < nr; i++) { 1612 fprintf(fp, "# sibling dies : %s\n", str); 1613 str += strlen(str) + 1; 1614 } 1615 } 1616 1617 nr = ph->env.nr_sibling_threads; 1618 str = ph->env.sibling_threads; 1619 1620 for (i = 0; i < nr; i++) { 1621 fprintf(fp, "# sibling threads : %s\n", str); 1622 str += strlen(str) + 1; 1623 } 1624 1625 if (ph->env.nr_sibling_dies) { 1626 if (ph->env.cpu != NULL) { 1627 for (i = 0; i < cpu_nr; i++) 1628 fprintf(fp, "# CPU %d: Core ID %d, " 1629 "Die ID %d, Socket ID %d\n", 1630 i, ph->env.cpu[i].core_id, 1631 ph->env.cpu[i].die_id, 1632 ph->env.cpu[i].socket_id); 1633 } else 1634 fprintf(fp, "# Core ID, Die ID and Socket ID " 1635 "information is not available\n"); 1636 } else { 1637 if (ph->env.cpu != NULL) { 1638 for (i = 0; i < cpu_nr; i++) 1639 fprintf(fp, "# CPU %d: Core ID %d, " 1640 "Socket ID %d\n", 1641 i, ph->env.cpu[i].core_id, 1642 ph->env.cpu[i].socket_id); 1643 } else 1644 fprintf(fp, "# Core ID and Socket ID " 1645 "information is not available\n"); 1646 } 1647 } 1648 1649 static void print_clockid(struct feat_fd *ff, FILE *fp) 1650 { 1651 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", 1652 ff->ph->env.clock.clockid_res_ns * 1000); 1653 } 1654 1655 static void print_clock_data(struct feat_fd *ff, FILE *fp) 1656 { 1657 struct timespec clockid_ns; 1658 char tstr[64], date[64]; 1659 struct timeval tod_ns; 1660 clockid_t clockid; 1661 struct tm ltime; 1662 u64 ref; 1663 1664 if (!ff->ph->env.clock.enabled) { 1665 fprintf(fp, "# reference time disabled\n"); 1666 return; 1667 } 1668 1669 /* Compute TOD time. */ 1670 ref = ff->ph->env.clock.tod_ns; 1671 tod_ns.tv_sec = ref / NSEC_PER_SEC; 1672 ref -= tod_ns.tv_sec * NSEC_PER_SEC; 1673 tod_ns.tv_usec = ref / NSEC_PER_USEC; 1674 1675 /* Compute clockid time. */ 1676 ref = ff->ph->env.clock.clockid_ns; 1677 clockid_ns.tv_sec = ref / NSEC_PER_SEC; 1678 ref -= clockid_ns.tv_sec * NSEC_PER_SEC; 1679 clockid_ns.tv_nsec = ref; 1680 1681 clockid = ff->ph->env.clock.clockid; 1682 1683 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL) 1684 snprintf(tstr, sizeof(tstr), "<error>"); 1685 else { 1686 strftime(date, sizeof(date), "%F %T", <ime); 1687 scnprintf(tstr, sizeof(tstr), "%s.%06d", 1688 date, (int) tod_ns.tv_usec); 1689 } 1690 1691 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid); 1692 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n", 1693 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec, 1694 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec, 1695 clockid_name(clockid)); 1696 } 1697 1698 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp) 1699 { 1700 int i; 1701 struct hybrid_node *n; 1702 1703 fprintf(fp, "# hybrid cpu system:\n"); 1704 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) { 1705 n = &ff->ph->env.hybrid_nodes[i]; 1706 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus); 1707 } 1708 } 1709 1710 static void print_dir_format(struct feat_fd *ff, FILE *fp) 1711 { 1712 struct perf_session *session; 1713 struct perf_data *data; 1714 1715 session = container_of(ff->ph, struct perf_session, header); 1716 data = session->data; 1717 1718 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version); 1719 } 1720 1721 #ifdef HAVE_LIBBPF_SUPPORT 1722 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp) 1723 { 1724 struct perf_env *env = &ff->ph->env; 1725 struct rb_root *root; 1726 struct rb_node *next; 1727 1728 down_read(&env->bpf_progs.lock); 1729 1730 root = &env->bpf_progs.infos; 1731 next = rb_first(root); 1732 1733 while (next) { 1734 struct bpf_prog_info_node *node; 1735 1736 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1737 next = rb_next(&node->rb_node); 1738 1739 bpf_event__print_bpf_prog_info(&node->info_linear->info, 1740 env, fp); 1741 } 1742 1743 up_read(&env->bpf_progs.lock); 1744 } 1745 1746 static void print_bpf_btf(struct feat_fd *ff, FILE *fp) 1747 { 1748 struct perf_env *env = &ff->ph->env; 1749 struct rb_root *root; 1750 struct rb_node *next; 1751 1752 down_read(&env->bpf_progs.lock); 1753 1754 root = &env->bpf_progs.btfs; 1755 next = rb_first(root); 1756 1757 while (next) { 1758 struct btf_node *node; 1759 1760 node = rb_entry(next, struct btf_node, rb_node); 1761 next = rb_next(&node->rb_node); 1762 fprintf(fp, "# btf info of id %u\n", node->id); 1763 } 1764 1765 up_read(&env->bpf_progs.lock); 1766 } 1767 #endif // HAVE_LIBBPF_SUPPORT 1768 1769 static void free_event_desc(struct evsel *events) 1770 { 1771 struct evsel *evsel; 1772 1773 if (!events) 1774 return; 1775 1776 for (evsel = events; evsel->core.attr.size; evsel++) { 1777 zfree(&evsel->name); 1778 zfree(&evsel->core.id); 1779 } 1780 1781 free(events); 1782 } 1783 1784 static bool perf_attr_check(struct perf_event_attr *attr) 1785 { 1786 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) { 1787 pr_warning("Reserved bits are set unexpectedly. " 1788 "Please update perf tool.\n"); 1789 return false; 1790 } 1791 1792 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) { 1793 pr_warning("Unknown sample type (0x%llx) is detected. " 1794 "Please update perf tool.\n", 1795 attr->sample_type); 1796 return false; 1797 } 1798 1799 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) { 1800 pr_warning("Unknown read format (0x%llx) is detected. " 1801 "Please update perf tool.\n", 1802 attr->read_format); 1803 return false; 1804 } 1805 1806 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) && 1807 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) { 1808 pr_warning("Unknown branch sample type (0x%llx) is detected. " 1809 "Please update perf tool.\n", 1810 attr->branch_sample_type); 1811 1812 return false; 1813 } 1814 1815 return true; 1816 } 1817 1818 static struct evsel *read_event_desc(struct feat_fd *ff) 1819 { 1820 struct evsel *evsel, *events = NULL; 1821 u64 *id; 1822 void *buf = NULL; 1823 u32 nre, sz, nr, i, j; 1824 size_t msz; 1825 1826 /* number of events */ 1827 if (do_read_u32(ff, &nre)) 1828 goto error; 1829 1830 if (do_read_u32(ff, &sz)) 1831 goto error; 1832 1833 /* buffer to hold on file attr struct */ 1834 buf = malloc(sz); 1835 if (!buf) 1836 goto error; 1837 1838 /* the last event terminates with evsel->core.attr.size == 0: */ 1839 events = calloc(nre + 1, sizeof(*events)); 1840 if (!events) 1841 goto error; 1842 1843 msz = sizeof(evsel->core.attr); 1844 if (sz < msz) 1845 msz = sz; 1846 1847 for (i = 0, evsel = events; i < nre; evsel++, i++) { 1848 evsel->core.idx = i; 1849 1850 /* 1851 * must read entire on-file attr struct to 1852 * sync up with layout. 1853 */ 1854 if (__do_read(ff, buf, sz)) 1855 goto error; 1856 1857 if (ff->ph->needs_swap) 1858 perf_event__attr_swap(buf); 1859 1860 memcpy(&evsel->core.attr, buf, msz); 1861 1862 if (!perf_attr_check(&evsel->core.attr)) 1863 goto error; 1864 1865 if (do_read_u32(ff, &nr)) 1866 goto error; 1867 1868 if (ff->ph->needs_swap) 1869 evsel->needs_swap = true; 1870 1871 evsel->name = do_read_string(ff); 1872 if (!evsel->name) 1873 goto error; 1874 1875 if (!nr) 1876 continue; 1877 1878 id = calloc(nr, sizeof(*id)); 1879 if (!id) 1880 goto error; 1881 evsel->core.ids = nr; 1882 evsel->core.id = id; 1883 1884 for (j = 0 ; j < nr; j++) { 1885 if (do_read_u64(ff, id)) 1886 goto error; 1887 id++; 1888 } 1889 } 1890 out: 1891 free(buf); 1892 return events; 1893 error: 1894 free_event_desc(events); 1895 events = NULL; 1896 goto out; 1897 } 1898 1899 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, 1900 void *priv __maybe_unused) 1901 { 1902 return fprintf(fp, ", %s = %s", name, val); 1903 } 1904 1905 static void print_event_desc(struct feat_fd *ff, FILE *fp) 1906 { 1907 struct evsel *evsel, *events; 1908 u32 j; 1909 u64 *id; 1910 1911 if (ff->events) 1912 events = ff->events; 1913 else 1914 events = read_event_desc(ff); 1915 1916 if (!events) { 1917 fprintf(fp, "# event desc: not available or unable to read\n"); 1918 return; 1919 } 1920 1921 for (evsel = events; evsel->core.attr.size; evsel++) { 1922 fprintf(fp, "# event : name = %s, ", evsel->name); 1923 1924 if (evsel->core.ids) { 1925 fprintf(fp, ", id = {"); 1926 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) { 1927 if (j) 1928 fputc(',', fp); 1929 fprintf(fp, " %"PRIu64, *id); 1930 } 1931 fprintf(fp, " }"); 1932 } 1933 1934 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL); 1935 1936 fputc('\n', fp); 1937 } 1938 1939 free_event_desc(events); 1940 ff->events = NULL; 1941 } 1942 1943 static void print_total_mem(struct feat_fd *ff, FILE *fp) 1944 { 1945 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); 1946 } 1947 1948 static void print_numa_topology(struct feat_fd *ff, FILE *fp) 1949 { 1950 int i; 1951 struct numa_node *n; 1952 1953 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { 1954 n = &ff->ph->env.numa_nodes[i]; 1955 1956 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," 1957 " free = %"PRIu64" kB\n", 1958 n->node, n->mem_total, n->mem_free); 1959 1960 fprintf(fp, "# node%u cpu list : ", n->node); 1961 cpu_map__fprintf(n->map, fp); 1962 } 1963 } 1964 1965 static void print_cpuid(struct feat_fd *ff, FILE *fp) 1966 { 1967 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); 1968 } 1969 1970 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) 1971 { 1972 fprintf(fp, "# contains samples with branch stack\n"); 1973 } 1974 1975 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) 1976 { 1977 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); 1978 } 1979 1980 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) 1981 { 1982 fprintf(fp, "# contains stat data\n"); 1983 } 1984 1985 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) 1986 { 1987 int i; 1988 1989 fprintf(fp, "# CPU cache info:\n"); 1990 for (i = 0; i < ff->ph->env.caches_cnt; i++) { 1991 fprintf(fp, "# "); 1992 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); 1993 } 1994 } 1995 1996 static void print_compressed(struct feat_fd *ff, FILE *fp) 1997 { 1998 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n", 1999 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown", 2000 ff->ph->env.comp_level, ff->ph->env.comp_ratio); 2001 } 2002 2003 static void print_per_cpu_pmu_caps(FILE *fp, int nr_caps, char *cpu_pmu_caps, 2004 char *pmu_name) 2005 { 2006 const char *delimiter; 2007 char *str, buf[128]; 2008 2009 if (!nr_caps) { 2010 if (!pmu_name) 2011 fprintf(fp, "# cpu pmu capabilities: not available\n"); 2012 else 2013 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name); 2014 return; 2015 } 2016 2017 if (!pmu_name) 2018 scnprintf(buf, sizeof(buf), "# cpu pmu capabilities: "); 2019 else 2020 scnprintf(buf, sizeof(buf), "# %s pmu capabilities: ", pmu_name); 2021 2022 delimiter = buf; 2023 2024 str = cpu_pmu_caps; 2025 while (nr_caps--) { 2026 fprintf(fp, "%s%s", delimiter, str); 2027 delimiter = ", "; 2028 str += strlen(str) + 1; 2029 } 2030 2031 fprintf(fp, "\n"); 2032 } 2033 2034 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp) 2035 { 2036 print_per_cpu_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps, 2037 ff->ph->env.cpu_pmu_caps, NULL); 2038 } 2039 2040 static void print_hybrid_cpu_pmu_caps(struct feat_fd *ff, FILE *fp) 2041 { 2042 struct hybrid_cpc_node *n; 2043 2044 for (int i = 0; i < ff->ph->env.nr_hybrid_cpc_nodes; i++) { 2045 n = &ff->ph->env.hybrid_cpc_nodes[i]; 2046 print_per_cpu_pmu_caps(fp, n->nr_cpu_pmu_caps, 2047 n->cpu_pmu_caps, 2048 n->pmu_name); 2049 } 2050 } 2051 2052 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) 2053 { 2054 const char *delimiter = "# pmu mappings: "; 2055 char *str, *tmp; 2056 u32 pmu_num; 2057 u32 type; 2058 2059 pmu_num = ff->ph->env.nr_pmu_mappings; 2060 if (!pmu_num) { 2061 fprintf(fp, "# pmu mappings: not available\n"); 2062 return; 2063 } 2064 2065 str = ff->ph->env.pmu_mappings; 2066 2067 while (pmu_num) { 2068 type = strtoul(str, &tmp, 0); 2069 if (*tmp != ':') 2070 goto error; 2071 2072 str = tmp + 1; 2073 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); 2074 2075 delimiter = ", "; 2076 str += strlen(str) + 1; 2077 pmu_num--; 2078 } 2079 2080 fprintf(fp, "\n"); 2081 2082 if (!pmu_num) 2083 return; 2084 error: 2085 fprintf(fp, "# pmu mappings: unable to read\n"); 2086 } 2087 2088 static void print_group_desc(struct feat_fd *ff, FILE *fp) 2089 { 2090 struct perf_session *session; 2091 struct evsel *evsel; 2092 u32 nr = 0; 2093 2094 session = container_of(ff->ph, struct perf_session, header); 2095 2096 evlist__for_each_entry(session->evlist, evsel) { 2097 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 2098 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel)); 2099 2100 nr = evsel->core.nr_members - 1; 2101 } else if (nr) { 2102 fprintf(fp, ",%s", evsel__name(evsel)); 2103 2104 if (--nr == 0) 2105 fprintf(fp, "}\n"); 2106 } 2107 } 2108 } 2109 2110 static void print_sample_time(struct feat_fd *ff, FILE *fp) 2111 { 2112 struct perf_session *session; 2113 char time_buf[32]; 2114 double d; 2115 2116 session = container_of(ff->ph, struct perf_session, header); 2117 2118 timestamp__scnprintf_usec(session->evlist->first_sample_time, 2119 time_buf, sizeof(time_buf)); 2120 fprintf(fp, "# time of first sample : %s\n", time_buf); 2121 2122 timestamp__scnprintf_usec(session->evlist->last_sample_time, 2123 time_buf, sizeof(time_buf)); 2124 fprintf(fp, "# time of last sample : %s\n", time_buf); 2125 2126 d = (double)(session->evlist->last_sample_time - 2127 session->evlist->first_sample_time) / NSEC_PER_MSEC; 2128 2129 fprintf(fp, "# sample duration : %10.3f ms\n", d); 2130 } 2131 2132 static void memory_node__fprintf(struct memory_node *n, 2133 unsigned long long bsize, FILE *fp) 2134 { 2135 char buf_map[100], buf_size[50]; 2136 unsigned long long size; 2137 2138 size = bsize * bitmap_weight(n->set, n->size); 2139 unit_number__scnprintf(buf_size, 50, size); 2140 2141 bitmap_scnprintf(n->set, n->size, buf_map, 100); 2142 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); 2143 } 2144 2145 static void print_mem_topology(struct feat_fd *ff, FILE *fp) 2146 { 2147 struct memory_node *nodes; 2148 int i, nr; 2149 2150 nodes = ff->ph->env.memory_nodes; 2151 nr = ff->ph->env.nr_memory_nodes; 2152 2153 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", 2154 nr, ff->ph->env.memory_bsize); 2155 2156 for (i = 0; i < nr; i++) { 2157 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp); 2158 } 2159 } 2160 2161 static int __event_process_build_id(struct perf_record_header_build_id *bev, 2162 char *filename, 2163 struct perf_session *session) 2164 { 2165 int err = -1; 2166 struct machine *machine; 2167 u16 cpumode; 2168 struct dso *dso; 2169 enum dso_space_type dso_space; 2170 2171 machine = perf_session__findnew_machine(session, bev->pid); 2172 if (!machine) 2173 goto out; 2174 2175 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2176 2177 switch (cpumode) { 2178 case PERF_RECORD_MISC_KERNEL: 2179 dso_space = DSO_SPACE__KERNEL; 2180 break; 2181 case PERF_RECORD_MISC_GUEST_KERNEL: 2182 dso_space = DSO_SPACE__KERNEL_GUEST; 2183 break; 2184 case PERF_RECORD_MISC_USER: 2185 case PERF_RECORD_MISC_GUEST_USER: 2186 dso_space = DSO_SPACE__USER; 2187 break; 2188 default: 2189 goto out; 2190 } 2191 2192 dso = machine__findnew_dso(machine, filename); 2193 if (dso != NULL) { 2194 char sbuild_id[SBUILD_ID_SIZE]; 2195 struct build_id bid; 2196 size_t size = BUILD_ID_SIZE; 2197 2198 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE) 2199 size = bev->size; 2200 2201 build_id__init(&bid, bev->data, size); 2202 dso__set_build_id(dso, &bid); 2203 2204 if (dso_space != DSO_SPACE__USER) { 2205 struct kmod_path m = { .name = NULL, }; 2206 2207 if (!kmod_path__parse_name(&m, filename) && m.kmod) 2208 dso__set_module_info(dso, &m, machine); 2209 2210 dso->kernel = dso_space; 2211 free(m.name); 2212 } 2213 2214 build_id__sprintf(&dso->bid, sbuild_id); 2215 pr_debug("build id event received for %s: %s [%zu]\n", 2216 dso->long_name, sbuild_id, size); 2217 dso__put(dso); 2218 } 2219 2220 err = 0; 2221 out: 2222 return err; 2223 } 2224 2225 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, 2226 int input, u64 offset, u64 size) 2227 { 2228 struct perf_session *session = container_of(header, struct perf_session, header); 2229 struct { 2230 struct perf_event_header header; 2231 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; 2232 char filename[0]; 2233 } old_bev; 2234 struct perf_record_header_build_id bev; 2235 char filename[PATH_MAX]; 2236 u64 limit = offset + size; 2237 2238 while (offset < limit) { 2239 ssize_t len; 2240 2241 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) 2242 return -1; 2243 2244 if (header->needs_swap) 2245 perf_event_header__bswap(&old_bev.header); 2246 2247 len = old_bev.header.size - sizeof(old_bev); 2248 if (readn(input, filename, len) != len) 2249 return -1; 2250 2251 bev.header = old_bev.header; 2252 2253 /* 2254 * As the pid is the missing value, we need to fill 2255 * it properly. The header.misc value give us nice hint. 2256 */ 2257 bev.pid = HOST_KERNEL_ID; 2258 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || 2259 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) 2260 bev.pid = DEFAULT_GUEST_KERNEL_ID; 2261 2262 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); 2263 __event_process_build_id(&bev, filename, session); 2264 2265 offset += bev.header.size; 2266 } 2267 2268 return 0; 2269 } 2270 2271 static int perf_header__read_build_ids(struct perf_header *header, 2272 int input, u64 offset, u64 size) 2273 { 2274 struct perf_session *session = container_of(header, struct perf_session, header); 2275 struct perf_record_header_build_id bev; 2276 char filename[PATH_MAX]; 2277 u64 limit = offset + size, orig_offset = offset; 2278 int err = -1; 2279 2280 while (offset < limit) { 2281 ssize_t len; 2282 2283 if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) 2284 goto out; 2285 2286 if (header->needs_swap) 2287 perf_event_header__bswap(&bev.header); 2288 2289 len = bev.header.size - sizeof(bev); 2290 if (readn(input, filename, len) != len) 2291 goto out; 2292 /* 2293 * The a1645ce1 changeset: 2294 * 2295 * "perf: 'perf kvm' tool for monitoring guest performance from host" 2296 * 2297 * Added a field to struct perf_record_header_build_id that broke the file 2298 * format. 2299 * 2300 * Since the kernel build-id is the first entry, process the 2301 * table using the old format if the well known 2302 * '[kernel.kallsyms]' string for the kernel build-id has the 2303 * first 4 characters chopped off (where the pid_t sits). 2304 */ 2305 if (memcmp(filename, "nel.kallsyms]", 13) == 0) { 2306 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) 2307 return -1; 2308 return perf_header__read_build_ids_abi_quirk(header, input, offset, size); 2309 } 2310 2311 __event_process_build_id(&bev, filename, session); 2312 2313 offset += bev.header.size; 2314 } 2315 err = 0; 2316 out: 2317 return err; 2318 } 2319 2320 /* Macro for features that simply need to read and store a string. */ 2321 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ 2322 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ 2323 {\ 2324 ff->ph->env.__feat_env = do_read_string(ff); \ 2325 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ 2326 } 2327 2328 FEAT_PROCESS_STR_FUN(hostname, hostname); 2329 FEAT_PROCESS_STR_FUN(osrelease, os_release); 2330 FEAT_PROCESS_STR_FUN(version, version); 2331 FEAT_PROCESS_STR_FUN(arch, arch); 2332 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); 2333 FEAT_PROCESS_STR_FUN(cpuid, cpuid); 2334 2335 static int process_tracing_data(struct feat_fd *ff, void *data) 2336 { 2337 ssize_t ret = trace_report(ff->fd, data, false); 2338 2339 return ret < 0 ? -1 : 0; 2340 } 2341 2342 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) 2343 { 2344 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) 2345 pr_debug("Failed to read buildids, continuing...\n"); 2346 return 0; 2347 } 2348 2349 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) 2350 { 2351 int ret; 2352 u32 nr_cpus_avail, nr_cpus_online; 2353 2354 ret = do_read_u32(ff, &nr_cpus_avail); 2355 if (ret) 2356 return ret; 2357 2358 ret = do_read_u32(ff, &nr_cpus_online); 2359 if (ret) 2360 return ret; 2361 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail; 2362 ff->ph->env.nr_cpus_online = (int)nr_cpus_online; 2363 return 0; 2364 } 2365 2366 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) 2367 { 2368 u64 total_mem; 2369 int ret; 2370 2371 ret = do_read_u64(ff, &total_mem); 2372 if (ret) 2373 return -1; 2374 ff->ph->env.total_mem = (unsigned long long)total_mem; 2375 return 0; 2376 } 2377 2378 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx) 2379 { 2380 struct evsel *evsel; 2381 2382 evlist__for_each_entry(evlist, evsel) { 2383 if (evsel->core.idx == idx) 2384 return evsel; 2385 } 2386 2387 return NULL; 2388 } 2389 2390 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event) 2391 { 2392 struct evsel *evsel; 2393 2394 if (!event->name) 2395 return; 2396 2397 evsel = evlist__find_by_index(evlist, event->core.idx); 2398 if (!evsel) 2399 return; 2400 2401 if (evsel->name) 2402 return; 2403 2404 evsel->name = strdup(event->name); 2405 } 2406 2407 static int 2408 process_event_desc(struct feat_fd *ff, void *data __maybe_unused) 2409 { 2410 struct perf_session *session; 2411 struct evsel *evsel, *events = read_event_desc(ff); 2412 2413 if (!events) 2414 return 0; 2415 2416 session = container_of(ff->ph, struct perf_session, header); 2417 2418 if (session->data->is_pipe) { 2419 /* Save events for reading later by print_event_desc, 2420 * since they can't be read again in pipe mode. */ 2421 ff->events = events; 2422 } 2423 2424 for (evsel = events; evsel->core.attr.size; evsel++) 2425 evlist__set_event_name(session->evlist, evsel); 2426 2427 if (!session->data->is_pipe) 2428 free_event_desc(events); 2429 2430 return 0; 2431 } 2432 2433 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) 2434 { 2435 char *str, *cmdline = NULL, **argv = NULL; 2436 u32 nr, i, len = 0; 2437 2438 if (do_read_u32(ff, &nr)) 2439 return -1; 2440 2441 ff->ph->env.nr_cmdline = nr; 2442 2443 cmdline = zalloc(ff->size + nr + 1); 2444 if (!cmdline) 2445 return -1; 2446 2447 argv = zalloc(sizeof(char *) * (nr + 1)); 2448 if (!argv) 2449 goto error; 2450 2451 for (i = 0; i < nr; i++) { 2452 str = do_read_string(ff); 2453 if (!str) 2454 goto error; 2455 2456 argv[i] = cmdline + len; 2457 memcpy(argv[i], str, strlen(str) + 1); 2458 len += strlen(str) + 1; 2459 free(str); 2460 } 2461 ff->ph->env.cmdline = cmdline; 2462 ff->ph->env.cmdline_argv = (const char **) argv; 2463 return 0; 2464 2465 error: 2466 free(argv); 2467 free(cmdline); 2468 return -1; 2469 } 2470 2471 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) 2472 { 2473 u32 nr, i; 2474 char *str; 2475 struct strbuf sb; 2476 int cpu_nr = ff->ph->env.nr_cpus_avail; 2477 u64 size = 0; 2478 struct perf_header *ph = ff->ph; 2479 bool do_core_id_test = true; 2480 2481 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu)); 2482 if (!ph->env.cpu) 2483 return -1; 2484 2485 if (do_read_u32(ff, &nr)) 2486 goto free_cpu; 2487 2488 ph->env.nr_sibling_cores = nr; 2489 size += sizeof(u32); 2490 if (strbuf_init(&sb, 128) < 0) 2491 goto free_cpu; 2492 2493 for (i = 0; i < nr; i++) { 2494 str = do_read_string(ff); 2495 if (!str) 2496 goto error; 2497 2498 /* include a NULL character at the end */ 2499 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2500 goto error; 2501 size += string_size(str); 2502 free(str); 2503 } 2504 ph->env.sibling_cores = strbuf_detach(&sb, NULL); 2505 2506 if (do_read_u32(ff, &nr)) 2507 return -1; 2508 2509 ph->env.nr_sibling_threads = nr; 2510 size += sizeof(u32); 2511 2512 for (i = 0; i < nr; i++) { 2513 str = do_read_string(ff); 2514 if (!str) 2515 goto error; 2516 2517 /* include a NULL character at the end */ 2518 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2519 goto error; 2520 size += string_size(str); 2521 free(str); 2522 } 2523 ph->env.sibling_threads = strbuf_detach(&sb, NULL); 2524 2525 /* 2526 * The header may be from old perf, 2527 * which doesn't include core id and socket id information. 2528 */ 2529 if (ff->size <= size) { 2530 zfree(&ph->env.cpu); 2531 return 0; 2532 } 2533 2534 /* On s390 the socket_id number is not related to the numbers of cpus. 2535 * The socket_id number might be higher than the numbers of cpus. 2536 * This depends on the configuration. 2537 * AArch64 is the same. 2538 */ 2539 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4) 2540 || !strncmp(ph->env.arch, "aarch64", 7))) 2541 do_core_id_test = false; 2542 2543 for (i = 0; i < (u32)cpu_nr; i++) { 2544 if (do_read_u32(ff, &nr)) 2545 goto free_cpu; 2546 2547 ph->env.cpu[i].core_id = nr; 2548 size += sizeof(u32); 2549 2550 if (do_read_u32(ff, &nr)) 2551 goto free_cpu; 2552 2553 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) { 2554 pr_debug("socket_id number is too big." 2555 "You may need to upgrade the perf tool.\n"); 2556 goto free_cpu; 2557 } 2558 2559 ph->env.cpu[i].socket_id = nr; 2560 size += sizeof(u32); 2561 } 2562 2563 /* 2564 * The header may be from old perf, 2565 * which doesn't include die information. 2566 */ 2567 if (ff->size <= size) 2568 return 0; 2569 2570 if (do_read_u32(ff, &nr)) 2571 return -1; 2572 2573 ph->env.nr_sibling_dies = nr; 2574 size += sizeof(u32); 2575 2576 for (i = 0; i < nr; i++) { 2577 str = do_read_string(ff); 2578 if (!str) 2579 goto error; 2580 2581 /* include a NULL character at the end */ 2582 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2583 goto error; 2584 size += string_size(str); 2585 free(str); 2586 } 2587 ph->env.sibling_dies = strbuf_detach(&sb, NULL); 2588 2589 for (i = 0; i < (u32)cpu_nr; i++) { 2590 if (do_read_u32(ff, &nr)) 2591 goto free_cpu; 2592 2593 ph->env.cpu[i].die_id = nr; 2594 } 2595 2596 return 0; 2597 2598 error: 2599 strbuf_release(&sb); 2600 free_cpu: 2601 zfree(&ph->env.cpu); 2602 return -1; 2603 } 2604 2605 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) 2606 { 2607 struct numa_node *nodes, *n; 2608 u32 nr, i; 2609 char *str; 2610 2611 /* nr nodes */ 2612 if (do_read_u32(ff, &nr)) 2613 return -1; 2614 2615 nodes = zalloc(sizeof(*nodes) * nr); 2616 if (!nodes) 2617 return -ENOMEM; 2618 2619 for (i = 0; i < nr; i++) { 2620 n = &nodes[i]; 2621 2622 /* node number */ 2623 if (do_read_u32(ff, &n->node)) 2624 goto error; 2625 2626 if (do_read_u64(ff, &n->mem_total)) 2627 goto error; 2628 2629 if (do_read_u64(ff, &n->mem_free)) 2630 goto error; 2631 2632 str = do_read_string(ff); 2633 if (!str) 2634 goto error; 2635 2636 n->map = perf_cpu_map__new(str); 2637 if (!n->map) 2638 goto error; 2639 2640 free(str); 2641 } 2642 ff->ph->env.nr_numa_nodes = nr; 2643 ff->ph->env.numa_nodes = nodes; 2644 return 0; 2645 2646 error: 2647 free(nodes); 2648 return -1; 2649 } 2650 2651 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) 2652 { 2653 char *name; 2654 u32 pmu_num; 2655 u32 type; 2656 struct strbuf sb; 2657 2658 if (do_read_u32(ff, &pmu_num)) 2659 return -1; 2660 2661 if (!pmu_num) { 2662 pr_debug("pmu mappings not available\n"); 2663 return 0; 2664 } 2665 2666 ff->ph->env.nr_pmu_mappings = pmu_num; 2667 if (strbuf_init(&sb, 128) < 0) 2668 return -1; 2669 2670 while (pmu_num) { 2671 if (do_read_u32(ff, &type)) 2672 goto error; 2673 2674 name = do_read_string(ff); 2675 if (!name) 2676 goto error; 2677 2678 if (strbuf_addf(&sb, "%u:%s", type, name) < 0) 2679 goto error; 2680 /* include a NULL character at the end */ 2681 if (strbuf_add(&sb, "", 1) < 0) 2682 goto error; 2683 2684 if (!strcmp(name, "msr")) 2685 ff->ph->env.msr_pmu_type = type; 2686 2687 free(name); 2688 pmu_num--; 2689 } 2690 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL); 2691 return 0; 2692 2693 error: 2694 strbuf_release(&sb); 2695 return -1; 2696 } 2697 2698 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) 2699 { 2700 size_t ret = -1; 2701 u32 i, nr, nr_groups; 2702 struct perf_session *session; 2703 struct evsel *evsel, *leader = NULL; 2704 struct group_desc { 2705 char *name; 2706 u32 leader_idx; 2707 u32 nr_members; 2708 } *desc; 2709 2710 if (do_read_u32(ff, &nr_groups)) 2711 return -1; 2712 2713 ff->ph->env.nr_groups = nr_groups; 2714 if (!nr_groups) { 2715 pr_debug("group desc not available\n"); 2716 return 0; 2717 } 2718 2719 desc = calloc(nr_groups, sizeof(*desc)); 2720 if (!desc) 2721 return -1; 2722 2723 for (i = 0; i < nr_groups; i++) { 2724 desc[i].name = do_read_string(ff); 2725 if (!desc[i].name) 2726 goto out_free; 2727 2728 if (do_read_u32(ff, &desc[i].leader_idx)) 2729 goto out_free; 2730 2731 if (do_read_u32(ff, &desc[i].nr_members)) 2732 goto out_free; 2733 } 2734 2735 /* 2736 * Rebuild group relationship based on the group_desc 2737 */ 2738 session = container_of(ff->ph, struct perf_session, header); 2739 session->evlist->core.nr_groups = nr_groups; 2740 2741 i = nr = 0; 2742 evlist__for_each_entry(session->evlist, evsel) { 2743 if (evsel->core.idx == (int) desc[i].leader_idx) { 2744 evsel__set_leader(evsel, evsel); 2745 /* {anon_group} is a dummy name */ 2746 if (strcmp(desc[i].name, "{anon_group}")) { 2747 evsel->group_name = desc[i].name; 2748 desc[i].name = NULL; 2749 } 2750 evsel->core.nr_members = desc[i].nr_members; 2751 2752 if (i >= nr_groups || nr > 0) { 2753 pr_debug("invalid group desc\n"); 2754 goto out_free; 2755 } 2756 2757 leader = evsel; 2758 nr = evsel->core.nr_members - 1; 2759 i++; 2760 } else if (nr) { 2761 /* This is a group member */ 2762 evsel__set_leader(evsel, leader); 2763 2764 nr--; 2765 } 2766 } 2767 2768 if (i != nr_groups || nr != 0) { 2769 pr_debug("invalid group desc\n"); 2770 goto out_free; 2771 } 2772 2773 ret = 0; 2774 out_free: 2775 for (i = 0; i < nr_groups; i++) 2776 zfree(&desc[i].name); 2777 free(desc); 2778 2779 return ret; 2780 } 2781 2782 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) 2783 { 2784 struct perf_session *session; 2785 int err; 2786 2787 session = container_of(ff->ph, struct perf_session, header); 2788 2789 err = auxtrace_index__process(ff->fd, ff->size, session, 2790 ff->ph->needs_swap); 2791 if (err < 0) 2792 pr_err("Failed to process auxtrace index\n"); 2793 return err; 2794 } 2795 2796 static int process_cache(struct feat_fd *ff, void *data __maybe_unused) 2797 { 2798 struct cpu_cache_level *caches; 2799 u32 cnt, i, version; 2800 2801 if (do_read_u32(ff, &version)) 2802 return -1; 2803 2804 if (version != 1) 2805 return -1; 2806 2807 if (do_read_u32(ff, &cnt)) 2808 return -1; 2809 2810 caches = zalloc(sizeof(*caches) * cnt); 2811 if (!caches) 2812 return -1; 2813 2814 for (i = 0; i < cnt; i++) { 2815 struct cpu_cache_level c; 2816 2817 #define _R(v) \ 2818 if (do_read_u32(ff, &c.v))\ 2819 goto out_free_caches; \ 2820 2821 _R(level) 2822 _R(line_size) 2823 _R(sets) 2824 _R(ways) 2825 #undef _R 2826 2827 #define _R(v) \ 2828 c.v = do_read_string(ff); \ 2829 if (!c.v) \ 2830 goto out_free_caches; 2831 2832 _R(type) 2833 _R(size) 2834 _R(map) 2835 #undef _R 2836 2837 caches[i] = c; 2838 } 2839 2840 ff->ph->env.caches = caches; 2841 ff->ph->env.caches_cnt = cnt; 2842 return 0; 2843 out_free_caches: 2844 free(caches); 2845 return -1; 2846 } 2847 2848 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) 2849 { 2850 struct perf_session *session; 2851 u64 first_sample_time, last_sample_time; 2852 int ret; 2853 2854 session = container_of(ff->ph, struct perf_session, header); 2855 2856 ret = do_read_u64(ff, &first_sample_time); 2857 if (ret) 2858 return -1; 2859 2860 ret = do_read_u64(ff, &last_sample_time); 2861 if (ret) 2862 return -1; 2863 2864 session->evlist->first_sample_time = first_sample_time; 2865 session->evlist->last_sample_time = last_sample_time; 2866 return 0; 2867 } 2868 2869 static int process_mem_topology(struct feat_fd *ff, 2870 void *data __maybe_unused) 2871 { 2872 struct memory_node *nodes; 2873 u64 version, i, nr, bsize; 2874 int ret = -1; 2875 2876 if (do_read_u64(ff, &version)) 2877 return -1; 2878 2879 if (version != 1) 2880 return -1; 2881 2882 if (do_read_u64(ff, &bsize)) 2883 return -1; 2884 2885 if (do_read_u64(ff, &nr)) 2886 return -1; 2887 2888 nodes = zalloc(sizeof(*nodes) * nr); 2889 if (!nodes) 2890 return -1; 2891 2892 for (i = 0; i < nr; i++) { 2893 struct memory_node n; 2894 2895 #define _R(v) \ 2896 if (do_read_u64(ff, &n.v)) \ 2897 goto out; \ 2898 2899 _R(node) 2900 _R(size) 2901 2902 #undef _R 2903 2904 if (do_read_bitmap(ff, &n.set, &n.size)) 2905 goto out; 2906 2907 nodes[i] = n; 2908 } 2909 2910 ff->ph->env.memory_bsize = bsize; 2911 ff->ph->env.memory_nodes = nodes; 2912 ff->ph->env.nr_memory_nodes = nr; 2913 ret = 0; 2914 2915 out: 2916 if (ret) 2917 free(nodes); 2918 return ret; 2919 } 2920 2921 static int process_clockid(struct feat_fd *ff, 2922 void *data __maybe_unused) 2923 { 2924 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns)) 2925 return -1; 2926 2927 return 0; 2928 } 2929 2930 static int process_clock_data(struct feat_fd *ff, 2931 void *_data __maybe_unused) 2932 { 2933 u32 data32; 2934 u64 data64; 2935 2936 /* version */ 2937 if (do_read_u32(ff, &data32)) 2938 return -1; 2939 2940 if (data32 != 1) 2941 return -1; 2942 2943 /* clockid */ 2944 if (do_read_u32(ff, &data32)) 2945 return -1; 2946 2947 ff->ph->env.clock.clockid = data32; 2948 2949 /* TOD ref time */ 2950 if (do_read_u64(ff, &data64)) 2951 return -1; 2952 2953 ff->ph->env.clock.tod_ns = data64; 2954 2955 /* clockid ref time */ 2956 if (do_read_u64(ff, &data64)) 2957 return -1; 2958 2959 ff->ph->env.clock.clockid_ns = data64; 2960 ff->ph->env.clock.enabled = true; 2961 return 0; 2962 } 2963 2964 static int process_hybrid_topology(struct feat_fd *ff, 2965 void *data __maybe_unused) 2966 { 2967 struct hybrid_node *nodes, *n; 2968 u32 nr, i; 2969 2970 /* nr nodes */ 2971 if (do_read_u32(ff, &nr)) 2972 return -1; 2973 2974 nodes = zalloc(sizeof(*nodes) * nr); 2975 if (!nodes) 2976 return -ENOMEM; 2977 2978 for (i = 0; i < nr; i++) { 2979 n = &nodes[i]; 2980 2981 n->pmu_name = do_read_string(ff); 2982 if (!n->pmu_name) 2983 goto error; 2984 2985 n->cpus = do_read_string(ff); 2986 if (!n->cpus) 2987 goto error; 2988 } 2989 2990 ff->ph->env.nr_hybrid_nodes = nr; 2991 ff->ph->env.hybrid_nodes = nodes; 2992 return 0; 2993 2994 error: 2995 for (i = 0; i < nr; i++) { 2996 free(nodes[i].pmu_name); 2997 free(nodes[i].cpus); 2998 } 2999 3000 free(nodes); 3001 return -1; 3002 } 3003 3004 static int process_dir_format(struct feat_fd *ff, 3005 void *_data __maybe_unused) 3006 { 3007 struct perf_session *session; 3008 struct perf_data *data; 3009 3010 session = container_of(ff->ph, struct perf_session, header); 3011 data = session->data; 3012 3013 if (WARN_ON(!perf_data__is_dir(data))) 3014 return -1; 3015 3016 return do_read_u64(ff, &data->dir.version); 3017 } 3018 3019 #ifdef HAVE_LIBBPF_SUPPORT 3020 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused) 3021 { 3022 struct bpf_prog_info_node *info_node; 3023 struct perf_env *env = &ff->ph->env; 3024 struct perf_bpil *info_linear; 3025 u32 count, i; 3026 int err = -1; 3027 3028 if (ff->ph->needs_swap) { 3029 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n"); 3030 return 0; 3031 } 3032 3033 if (do_read_u32(ff, &count)) 3034 return -1; 3035 3036 down_write(&env->bpf_progs.lock); 3037 3038 for (i = 0; i < count; ++i) { 3039 u32 info_len, data_len; 3040 3041 info_linear = NULL; 3042 info_node = NULL; 3043 if (do_read_u32(ff, &info_len)) 3044 goto out; 3045 if (do_read_u32(ff, &data_len)) 3046 goto out; 3047 3048 if (info_len > sizeof(struct bpf_prog_info)) { 3049 pr_warning("detected invalid bpf_prog_info\n"); 3050 goto out; 3051 } 3052 3053 info_linear = malloc(sizeof(struct perf_bpil) + 3054 data_len); 3055 if (!info_linear) 3056 goto out; 3057 info_linear->info_len = sizeof(struct bpf_prog_info); 3058 info_linear->data_len = data_len; 3059 if (do_read_u64(ff, (u64 *)(&info_linear->arrays))) 3060 goto out; 3061 if (__do_read(ff, &info_linear->info, info_len)) 3062 goto out; 3063 if (info_len < sizeof(struct bpf_prog_info)) 3064 memset(((void *)(&info_linear->info)) + info_len, 0, 3065 sizeof(struct bpf_prog_info) - info_len); 3066 3067 if (__do_read(ff, info_linear->data, data_len)) 3068 goto out; 3069 3070 info_node = malloc(sizeof(struct bpf_prog_info_node)); 3071 if (!info_node) 3072 goto out; 3073 3074 /* after reading from file, translate offset to address */ 3075 bpil_offs_to_addr(info_linear); 3076 info_node->info_linear = info_linear; 3077 perf_env__insert_bpf_prog_info(env, info_node); 3078 } 3079 3080 up_write(&env->bpf_progs.lock); 3081 return 0; 3082 out: 3083 free(info_linear); 3084 free(info_node); 3085 up_write(&env->bpf_progs.lock); 3086 return err; 3087 } 3088 3089 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused) 3090 { 3091 struct perf_env *env = &ff->ph->env; 3092 struct btf_node *node = NULL; 3093 u32 count, i; 3094 int err = -1; 3095 3096 if (ff->ph->needs_swap) { 3097 pr_warning("interpreting btf from systems with endianness is not yet supported\n"); 3098 return 0; 3099 } 3100 3101 if (do_read_u32(ff, &count)) 3102 return -1; 3103 3104 down_write(&env->bpf_progs.lock); 3105 3106 for (i = 0; i < count; ++i) { 3107 u32 id, data_size; 3108 3109 if (do_read_u32(ff, &id)) 3110 goto out; 3111 if (do_read_u32(ff, &data_size)) 3112 goto out; 3113 3114 node = malloc(sizeof(struct btf_node) + data_size); 3115 if (!node) 3116 goto out; 3117 3118 node->id = id; 3119 node->data_size = data_size; 3120 3121 if (__do_read(ff, node->data, data_size)) 3122 goto out; 3123 3124 perf_env__insert_btf(env, node); 3125 node = NULL; 3126 } 3127 3128 err = 0; 3129 out: 3130 up_write(&env->bpf_progs.lock); 3131 free(node); 3132 return err; 3133 } 3134 #endif // HAVE_LIBBPF_SUPPORT 3135 3136 static int process_compressed(struct feat_fd *ff, 3137 void *data __maybe_unused) 3138 { 3139 if (do_read_u32(ff, &(ff->ph->env.comp_ver))) 3140 return -1; 3141 3142 if (do_read_u32(ff, &(ff->ph->env.comp_type))) 3143 return -1; 3144 3145 if (do_read_u32(ff, &(ff->ph->env.comp_level))) 3146 return -1; 3147 3148 if (do_read_u32(ff, &(ff->ph->env.comp_ratio))) 3149 return -1; 3150 3151 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len))) 3152 return -1; 3153 3154 return 0; 3155 } 3156 3157 static int process_per_cpu_pmu_caps(struct feat_fd *ff, int *nr_cpu_pmu_caps, 3158 char **cpu_pmu_caps, 3159 unsigned int *max_branches) 3160 { 3161 char *name, *value; 3162 struct strbuf sb; 3163 u32 nr_caps; 3164 3165 if (do_read_u32(ff, &nr_caps)) 3166 return -1; 3167 3168 if (!nr_caps) { 3169 pr_debug("cpu pmu capabilities not available\n"); 3170 return 0; 3171 } 3172 3173 *nr_cpu_pmu_caps = nr_caps; 3174 3175 if (strbuf_init(&sb, 128) < 0) 3176 return -1; 3177 3178 while (nr_caps--) { 3179 name = do_read_string(ff); 3180 if (!name) 3181 goto error; 3182 3183 value = do_read_string(ff); 3184 if (!value) 3185 goto free_name; 3186 3187 if (strbuf_addf(&sb, "%s=%s", name, value) < 0) 3188 goto free_value; 3189 3190 /* include a NULL character at the end */ 3191 if (strbuf_add(&sb, "", 1) < 0) 3192 goto free_value; 3193 3194 if (!strcmp(name, "branches")) 3195 *max_branches = atoi(value); 3196 3197 free(value); 3198 free(name); 3199 } 3200 *cpu_pmu_caps = strbuf_detach(&sb, NULL); 3201 return 0; 3202 3203 free_value: 3204 free(value); 3205 free_name: 3206 free(name); 3207 error: 3208 strbuf_release(&sb); 3209 return -1; 3210 } 3211 3212 static int process_cpu_pmu_caps(struct feat_fd *ff, 3213 void *data __maybe_unused) 3214 { 3215 return process_per_cpu_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps, 3216 &ff->ph->env.cpu_pmu_caps, 3217 &ff->ph->env.max_branches); 3218 } 3219 3220 static int process_hybrid_cpu_pmu_caps(struct feat_fd *ff, 3221 void *data __maybe_unused) 3222 { 3223 struct hybrid_cpc_node *nodes; 3224 u32 nr_pmu, i; 3225 int ret; 3226 3227 if (do_read_u32(ff, &nr_pmu)) 3228 return -1; 3229 3230 if (!nr_pmu) { 3231 pr_debug("hybrid cpu pmu capabilities not available\n"); 3232 return 0; 3233 } 3234 3235 nodes = zalloc(sizeof(*nodes) * nr_pmu); 3236 if (!nodes) 3237 return -ENOMEM; 3238 3239 for (i = 0; i < nr_pmu; i++) { 3240 struct hybrid_cpc_node *n = &nodes[i]; 3241 3242 ret = process_per_cpu_pmu_caps(ff, &n->nr_cpu_pmu_caps, 3243 &n->cpu_pmu_caps, 3244 &n->max_branches); 3245 if (ret) 3246 goto err; 3247 3248 n->pmu_name = do_read_string(ff); 3249 if (!n->pmu_name) { 3250 ret = -1; 3251 goto err; 3252 } 3253 } 3254 3255 ff->ph->env.nr_hybrid_cpc_nodes = nr_pmu; 3256 ff->ph->env.hybrid_cpc_nodes = nodes; 3257 return 0; 3258 3259 err: 3260 for (i = 0; i < nr_pmu; i++) { 3261 free(nodes[i].cpu_pmu_caps); 3262 free(nodes[i].pmu_name); 3263 } 3264 3265 free(nodes); 3266 return ret; 3267 } 3268 3269 #define FEAT_OPR(n, func, __full_only) \ 3270 [HEADER_##n] = { \ 3271 .name = __stringify(n), \ 3272 .write = write_##func, \ 3273 .print = print_##func, \ 3274 .full_only = __full_only, \ 3275 .process = process_##func, \ 3276 .synthesize = true \ 3277 } 3278 3279 #define FEAT_OPN(n, func, __full_only) \ 3280 [HEADER_##n] = { \ 3281 .name = __stringify(n), \ 3282 .write = write_##func, \ 3283 .print = print_##func, \ 3284 .full_only = __full_only, \ 3285 .process = process_##func \ 3286 } 3287 3288 /* feature_ops not implemented: */ 3289 #define print_tracing_data NULL 3290 #define print_build_id NULL 3291 3292 #define process_branch_stack NULL 3293 #define process_stat NULL 3294 3295 // Only used in util/synthetic-events.c 3296 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE]; 3297 3298 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = { 3299 FEAT_OPN(TRACING_DATA, tracing_data, false), 3300 FEAT_OPN(BUILD_ID, build_id, false), 3301 FEAT_OPR(HOSTNAME, hostname, false), 3302 FEAT_OPR(OSRELEASE, osrelease, false), 3303 FEAT_OPR(VERSION, version, false), 3304 FEAT_OPR(ARCH, arch, false), 3305 FEAT_OPR(NRCPUS, nrcpus, false), 3306 FEAT_OPR(CPUDESC, cpudesc, false), 3307 FEAT_OPR(CPUID, cpuid, false), 3308 FEAT_OPR(TOTAL_MEM, total_mem, false), 3309 FEAT_OPR(EVENT_DESC, event_desc, false), 3310 FEAT_OPR(CMDLINE, cmdline, false), 3311 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), 3312 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), 3313 FEAT_OPN(BRANCH_STACK, branch_stack, false), 3314 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), 3315 FEAT_OPR(GROUP_DESC, group_desc, false), 3316 FEAT_OPN(AUXTRACE, auxtrace, false), 3317 FEAT_OPN(STAT, stat, false), 3318 FEAT_OPN(CACHE, cache, true), 3319 FEAT_OPR(SAMPLE_TIME, sample_time, false), 3320 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), 3321 FEAT_OPR(CLOCKID, clockid, false), 3322 FEAT_OPN(DIR_FORMAT, dir_format, false), 3323 #ifdef HAVE_LIBBPF_SUPPORT 3324 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false), 3325 FEAT_OPR(BPF_BTF, bpf_btf, false), 3326 #endif 3327 FEAT_OPR(COMPRESSED, compressed, false), 3328 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false), 3329 FEAT_OPR(CLOCK_DATA, clock_data, false), 3330 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true), 3331 FEAT_OPR(HYBRID_CPU_PMU_CAPS, hybrid_cpu_pmu_caps, false), 3332 }; 3333 3334 struct header_print_data { 3335 FILE *fp; 3336 bool full; /* extended list of headers */ 3337 }; 3338 3339 static int perf_file_section__fprintf_info(struct perf_file_section *section, 3340 struct perf_header *ph, 3341 int feat, int fd, void *data) 3342 { 3343 struct header_print_data *hd = data; 3344 struct feat_fd ff; 3345 3346 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3347 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3348 "%d, continuing...\n", section->offset, feat); 3349 return 0; 3350 } 3351 if (feat >= HEADER_LAST_FEATURE) { 3352 pr_warning("unknown feature %d\n", feat); 3353 return 0; 3354 } 3355 if (!feat_ops[feat].print) 3356 return 0; 3357 3358 ff = (struct feat_fd) { 3359 .fd = fd, 3360 .ph = ph, 3361 }; 3362 3363 if (!feat_ops[feat].full_only || hd->full) 3364 feat_ops[feat].print(&ff, hd->fp); 3365 else 3366 fprintf(hd->fp, "# %s info available, use -I to display\n", 3367 feat_ops[feat].name); 3368 3369 return 0; 3370 } 3371 3372 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) 3373 { 3374 struct header_print_data hd; 3375 struct perf_header *header = &session->header; 3376 int fd = perf_data__fd(session->data); 3377 struct stat st; 3378 time_t stctime; 3379 int ret, bit; 3380 3381 hd.fp = fp; 3382 hd.full = full; 3383 3384 ret = fstat(fd, &st); 3385 if (ret == -1) 3386 return -1; 3387 3388 stctime = st.st_mtime; 3389 fprintf(fp, "# captured on : %s", ctime(&stctime)); 3390 3391 fprintf(fp, "# header version : %u\n", header->version); 3392 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); 3393 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); 3394 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); 3395 3396 perf_header__process_sections(header, fd, &hd, 3397 perf_file_section__fprintf_info); 3398 3399 if (session->data->is_pipe) 3400 return 0; 3401 3402 fprintf(fp, "# missing features: "); 3403 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { 3404 if (bit) 3405 fprintf(fp, "%s ", feat_ops[bit].name); 3406 } 3407 3408 fprintf(fp, "\n"); 3409 return 0; 3410 } 3411 3412 static int do_write_feat(struct feat_fd *ff, int type, 3413 struct perf_file_section **p, 3414 struct evlist *evlist) 3415 { 3416 int err; 3417 int ret = 0; 3418 3419 if (perf_header__has_feat(ff->ph, type)) { 3420 if (!feat_ops[type].write) 3421 return -1; 3422 3423 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 3424 return -1; 3425 3426 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); 3427 3428 err = feat_ops[type].write(ff, evlist); 3429 if (err < 0) { 3430 pr_debug("failed to write feature %s\n", feat_ops[type].name); 3431 3432 /* undo anything written */ 3433 lseek(ff->fd, (*p)->offset, SEEK_SET); 3434 3435 return -1; 3436 } 3437 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; 3438 (*p)++; 3439 } 3440 return ret; 3441 } 3442 3443 static int perf_header__adds_write(struct perf_header *header, 3444 struct evlist *evlist, int fd) 3445 { 3446 int nr_sections; 3447 struct feat_fd ff; 3448 struct perf_file_section *feat_sec, *p; 3449 int sec_size; 3450 u64 sec_start; 3451 int feat; 3452 int err; 3453 3454 ff = (struct feat_fd){ 3455 .fd = fd, 3456 .ph = header, 3457 }; 3458 3459 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3460 if (!nr_sections) 3461 return 0; 3462 3463 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); 3464 if (feat_sec == NULL) 3465 return -ENOMEM; 3466 3467 sec_size = sizeof(*feat_sec) * nr_sections; 3468 3469 sec_start = header->feat_offset; 3470 lseek(fd, sec_start + sec_size, SEEK_SET); 3471 3472 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3473 if (do_write_feat(&ff, feat, &p, evlist)) 3474 perf_header__clear_feat(header, feat); 3475 } 3476 3477 lseek(fd, sec_start, SEEK_SET); 3478 /* 3479 * may write more than needed due to dropped feature, but 3480 * this is okay, reader will skip the missing entries 3481 */ 3482 err = do_write(&ff, feat_sec, sec_size); 3483 if (err < 0) 3484 pr_debug("failed to write feature section\n"); 3485 free(feat_sec); 3486 return err; 3487 } 3488 3489 int perf_header__write_pipe(int fd) 3490 { 3491 struct perf_pipe_file_header f_header; 3492 struct feat_fd ff; 3493 int err; 3494 3495 ff = (struct feat_fd){ .fd = fd }; 3496 3497 f_header = (struct perf_pipe_file_header){ 3498 .magic = PERF_MAGIC, 3499 .size = sizeof(f_header), 3500 }; 3501 3502 err = do_write(&ff, &f_header, sizeof(f_header)); 3503 if (err < 0) { 3504 pr_debug("failed to write perf pipe header\n"); 3505 return err; 3506 } 3507 3508 return 0; 3509 } 3510 3511 int perf_session__write_header(struct perf_session *session, 3512 struct evlist *evlist, 3513 int fd, bool at_exit) 3514 { 3515 struct perf_file_header f_header; 3516 struct perf_file_attr f_attr; 3517 struct perf_header *header = &session->header; 3518 struct evsel *evsel; 3519 struct feat_fd ff; 3520 u64 attr_offset; 3521 int err; 3522 3523 ff = (struct feat_fd){ .fd = fd}; 3524 lseek(fd, sizeof(f_header), SEEK_SET); 3525 3526 evlist__for_each_entry(session->evlist, evsel) { 3527 evsel->id_offset = lseek(fd, 0, SEEK_CUR); 3528 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 3529 if (err < 0) { 3530 pr_debug("failed to write perf header\n"); 3531 return err; 3532 } 3533 } 3534 3535 attr_offset = lseek(ff.fd, 0, SEEK_CUR); 3536 3537 evlist__for_each_entry(evlist, evsel) { 3538 if (evsel->core.attr.size < sizeof(evsel->core.attr)) { 3539 /* 3540 * We are likely in "perf inject" and have read 3541 * from an older file. Update attr size so that 3542 * reader gets the right offset to the ids. 3543 */ 3544 evsel->core.attr.size = sizeof(evsel->core.attr); 3545 } 3546 f_attr = (struct perf_file_attr){ 3547 .attr = evsel->core.attr, 3548 .ids = { 3549 .offset = evsel->id_offset, 3550 .size = evsel->core.ids * sizeof(u64), 3551 } 3552 }; 3553 err = do_write(&ff, &f_attr, sizeof(f_attr)); 3554 if (err < 0) { 3555 pr_debug("failed to write perf header attribute\n"); 3556 return err; 3557 } 3558 } 3559 3560 if (!header->data_offset) 3561 header->data_offset = lseek(fd, 0, SEEK_CUR); 3562 header->feat_offset = header->data_offset + header->data_size; 3563 3564 if (at_exit) { 3565 err = perf_header__adds_write(header, evlist, fd); 3566 if (err < 0) 3567 return err; 3568 } 3569 3570 f_header = (struct perf_file_header){ 3571 .magic = PERF_MAGIC, 3572 .size = sizeof(f_header), 3573 .attr_size = sizeof(f_attr), 3574 .attrs = { 3575 .offset = attr_offset, 3576 .size = evlist->core.nr_entries * sizeof(f_attr), 3577 }, 3578 .data = { 3579 .offset = header->data_offset, 3580 .size = header->data_size, 3581 }, 3582 /* event_types is ignored, store zeros */ 3583 }; 3584 3585 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); 3586 3587 lseek(fd, 0, SEEK_SET); 3588 err = do_write(&ff, &f_header, sizeof(f_header)); 3589 if (err < 0) { 3590 pr_debug("failed to write perf header\n"); 3591 return err; 3592 } 3593 lseek(fd, header->data_offset + header->data_size, SEEK_SET); 3594 3595 return 0; 3596 } 3597 3598 static int perf_header__getbuffer64(struct perf_header *header, 3599 int fd, void *buf, size_t size) 3600 { 3601 if (readn(fd, buf, size) <= 0) 3602 return -1; 3603 3604 if (header->needs_swap) 3605 mem_bswap_64(buf, size); 3606 3607 return 0; 3608 } 3609 3610 int perf_header__process_sections(struct perf_header *header, int fd, 3611 void *data, 3612 int (*process)(struct perf_file_section *section, 3613 struct perf_header *ph, 3614 int feat, int fd, void *data)) 3615 { 3616 struct perf_file_section *feat_sec, *sec; 3617 int nr_sections; 3618 int sec_size; 3619 int feat; 3620 int err; 3621 3622 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3623 if (!nr_sections) 3624 return 0; 3625 3626 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); 3627 if (!feat_sec) 3628 return -1; 3629 3630 sec_size = sizeof(*feat_sec) * nr_sections; 3631 3632 lseek(fd, header->feat_offset, SEEK_SET); 3633 3634 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); 3635 if (err < 0) 3636 goto out_free; 3637 3638 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { 3639 err = process(sec++, header, feat, fd, data); 3640 if (err < 0) 3641 goto out_free; 3642 } 3643 err = 0; 3644 out_free: 3645 free(feat_sec); 3646 return err; 3647 } 3648 3649 static const int attr_file_abi_sizes[] = { 3650 [0] = PERF_ATTR_SIZE_VER0, 3651 [1] = PERF_ATTR_SIZE_VER1, 3652 [2] = PERF_ATTR_SIZE_VER2, 3653 [3] = PERF_ATTR_SIZE_VER3, 3654 [4] = PERF_ATTR_SIZE_VER4, 3655 0, 3656 }; 3657 3658 /* 3659 * In the legacy file format, the magic number is not used to encode endianness. 3660 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based 3661 * on ABI revisions, we need to try all combinations for all endianness to 3662 * detect the endianness. 3663 */ 3664 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) 3665 { 3666 uint64_t ref_size, attr_size; 3667 int i; 3668 3669 for (i = 0 ; attr_file_abi_sizes[i]; i++) { 3670 ref_size = attr_file_abi_sizes[i] 3671 + sizeof(struct perf_file_section); 3672 if (hdr_sz != ref_size) { 3673 attr_size = bswap_64(hdr_sz); 3674 if (attr_size != ref_size) 3675 continue; 3676 3677 ph->needs_swap = true; 3678 } 3679 pr_debug("ABI%d perf.data file detected, need_swap=%d\n", 3680 i, 3681 ph->needs_swap); 3682 return 0; 3683 } 3684 /* could not determine endianness */ 3685 return -1; 3686 } 3687 3688 #define PERF_PIPE_HDR_VER0 16 3689 3690 static const size_t attr_pipe_abi_sizes[] = { 3691 [0] = PERF_PIPE_HDR_VER0, 3692 0, 3693 }; 3694 3695 /* 3696 * In the legacy pipe format, there is an implicit assumption that endianness 3697 * between host recording the samples, and host parsing the samples is the 3698 * same. This is not always the case given that the pipe output may always be 3699 * redirected into a file and analyzed on a different machine with possibly a 3700 * different endianness and perf_event ABI revisions in the perf tool itself. 3701 */ 3702 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) 3703 { 3704 u64 attr_size; 3705 int i; 3706 3707 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { 3708 if (hdr_sz != attr_pipe_abi_sizes[i]) { 3709 attr_size = bswap_64(hdr_sz); 3710 if (attr_size != hdr_sz) 3711 continue; 3712 3713 ph->needs_swap = true; 3714 } 3715 pr_debug("Pipe ABI%d perf.data file detected\n", i); 3716 return 0; 3717 } 3718 return -1; 3719 } 3720 3721 bool is_perf_magic(u64 magic) 3722 { 3723 if (!memcmp(&magic, __perf_magic1, sizeof(magic)) 3724 || magic == __perf_magic2 3725 || magic == __perf_magic2_sw) 3726 return true; 3727 3728 return false; 3729 } 3730 3731 static int check_magic_endian(u64 magic, uint64_t hdr_sz, 3732 bool is_pipe, struct perf_header *ph) 3733 { 3734 int ret; 3735 3736 /* check for legacy format */ 3737 ret = memcmp(&magic, __perf_magic1, sizeof(magic)); 3738 if (ret == 0) { 3739 ph->version = PERF_HEADER_VERSION_1; 3740 pr_debug("legacy perf.data format\n"); 3741 if (is_pipe) 3742 return try_all_pipe_abis(hdr_sz, ph); 3743 3744 return try_all_file_abis(hdr_sz, ph); 3745 } 3746 /* 3747 * the new magic number serves two purposes: 3748 * - unique number to identify actual perf.data files 3749 * - encode endianness of file 3750 */ 3751 ph->version = PERF_HEADER_VERSION_2; 3752 3753 /* check magic number with one endianness */ 3754 if (magic == __perf_magic2) 3755 return 0; 3756 3757 /* check magic number with opposite endianness */ 3758 if (magic != __perf_magic2_sw) 3759 return -1; 3760 3761 ph->needs_swap = true; 3762 3763 return 0; 3764 } 3765 3766 int perf_file_header__read(struct perf_file_header *header, 3767 struct perf_header *ph, int fd) 3768 { 3769 ssize_t ret; 3770 3771 lseek(fd, 0, SEEK_SET); 3772 3773 ret = readn(fd, header, sizeof(*header)); 3774 if (ret <= 0) 3775 return -1; 3776 3777 if (check_magic_endian(header->magic, 3778 header->attr_size, false, ph) < 0) { 3779 pr_debug("magic/endian check failed\n"); 3780 return -1; 3781 } 3782 3783 if (ph->needs_swap) { 3784 mem_bswap_64(header, offsetof(struct perf_file_header, 3785 adds_features)); 3786 } 3787 3788 if (header->size != sizeof(*header)) { 3789 /* Support the previous format */ 3790 if (header->size == offsetof(typeof(*header), adds_features)) 3791 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3792 else 3793 return -1; 3794 } else if (ph->needs_swap) { 3795 /* 3796 * feature bitmap is declared as an array of unsigned longs -- 3797 * not good since its size can differ between the host that 3798 * generated the data file and the host analyzing the file. 3799 * 3800 * We need to handle endianness, but we don't know the size of 3801 * the unsigned long where the file was generated. Take a best 3802 * guess at determining it: try 64-bit swap first (ie., file 3803 * created on a 64-bit host), and check if the hostname feature 3804 * bit is set (this feature bit is forced on as of fbe96f2). 3805 * If the bit is not, undo the 64-bit swap and try a 32-bit 3806 * swap. If the hostname bit is still not set (e.g., older data 3807 * file), punt and fallback to the original behavior -- 3808 * clearing all feature bits and setting buildid. 3809 */ 3810 mem_bswap_64(&header->adds_features, 3811 BITS_TO_U64(HEADER_FEAT_BITS)); 3812 3813 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3814 /* unswap as u64 */ 3815 mem_bswap_64(&header->adds_features, 3816 BITS_TO_U64(HEADER_FEAT_BITS)); 3817 3818 /* unswap as u32 */ 3819 mem_bswap_32(&header->adds_features, 3820 BITS_TO_U32(HEADER_FEAT_BITS)); 3821 } 3822 3823 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3824 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3825 set_bit(HEADER_BUILD_ID, header->adds_features); 3826 } 3827 } 3828 3829 memcpy(&ph->adds_features, &header->adds_features, 3830 sizeof(ph->adds_features)); 3831 3832 ph->data_offset = header->data.offset; 3833 ph->data_size = header->data.size; 3834 ph->feat_offset = header->data.offset + header->data.size; 3835 return 0; 3836 } 3837 3838 static int perf_file_section__process(struct perf_file_section *section, 3839 struct perf_header *ph, 3840 int feat, int fd, void *data) 3841 { 3842 struct feat_fd fdd = { 3843 .fd = fd, 3844 .ph = ph, 3845 .size = section->size, 3846 .offset = section->offset, 3847 }; 3848 3849 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3850 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3851 "%d, continuing...\n", section->offset, feat); 3852 return 0; 3853 } 3854 3855 if (feat >= HEADER_LAST_FEATURE) { 3856 pr_debug("unknown feature %d, continuing...\n", feat); 3857 return 0; 3858 } 3859 3860 if (!feat_ops[feat].process) 3861 return 0; 3862 3863 return feat_ops[feat].process(&fdd, data); 3864 } 3865 3866 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, 3867 struct perf_header *ph, 3868 struct perf_data* data, 3869 bool repipe, int repipe_fd) 3870 { 3871 struct feat_fd ff = { 3872 .fd = repipe_fd, 3873 .ph = ph, 3874 }; 3875 ssize_t ret; 3876 3877 ret = perf_data__read(data, header, sizeof(*header)); 3878 if (ret <= 0) 3879 return -1; 3880 3881 if (check_magic_endian(header->magic, header->size, true, ph) < 0) { 3882 pr_debug("endian/magic failed\n"); 3883 return -1; 3884 } 3885 3886 if (ph->needs_swap) 3887 header->size = bswap_64(header->size); 3888 3889 if (repipe && do_write(&ff, header, sizeof(*header)) < 0) 3890 return -1; 3891 3892 return 0; 3893 } 3894 3895 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd) 3896 { 3897 struct perf_header *header = &session->header; 3898 struct perf_pipe_file_header f_header; 3899 3900 if (perf_file_header__read_pipe(&f_header, header, session->data, 3901 session->repipe, repipe_fd) < 0) { 3902 pr_debug("incompatible file format\n"); 3903 return -EINVAL; 3904 } 3905 3906 return f_header.size == sizeof(f_header) ? 0 : -1; 3907 } 3908 3909 static int read_attr(int fd, struct perf_header *ph, 3910 struct perf_file_attr *f_attr) 3911 { 3912 struct perf_event_attr *attr = &f_attr->attr; 3913 size_t sz, left; 3914 size_t our_sz = sizeof(f_attr->attr); 3915 ssize_t ret; 3916 3917 memset(f_attr, 0, sizeof(*f_attr)); 3918 3919 /* read minimal guaranteed structure */ 3920 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); 3921 if (ret <= 0) { 3922 pr_debug("cannot read %d bytes of header attr\n", 3923 PERF_ATTR_SIZE_VER0); 3924 return -1; 3925 } 3926 3927 /* on file perf_event_attr size */ 3928 sz = attr->size; 3929 3930 if (ph->needs_swap) 3931 sz = bswap_32(sz); 3932 3933 if (sz == 0) { 3934 /* assume ABI0 */ 3935 sz = PERF_ATTR_SIZE_VER0; 3936 } else if (sz > our_sz) { 3937 pr_debug("file uses a more recent and unsupported ABI" 3938 " (%zu bytes extra)\n", sz - our_sz); 3939 return -1; 3940 } 3941 /* what we have not yet read and that we know about */ 3942 left = sz - PERF_ATTR_SIZE_VER0; 3943 if (left) { 3944 void *ptr = attr; 3945 ptr += PERF_ATTR_SIZE_VER0; 3946 3947 ret = readn(fd, ptr, left); 3948 } 3949 /* read perf_file_section, ids are read in caller */ 3950 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); 3951 3952 return ret <= 0 ? -1 : 0; 3953 } 3954 3955 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent) 3956 { 3957 struct tep_event *event; 3958 char bf[128]; 3959 3960 /* already prepared */ 3961 if (evsel->tp_format) 3962 return 0; 3963 3964 if (pevent == NULL) { 3965 pr_debug("broken or missing trace data\n"); 3966 return -1; 3967 } 3968 3969 event = tep_find_event(pevent, evsel->core.attr.config); 3970 if (event == NULL) { 3971 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config); 3972 return -1; 3973 } 3974 3975 if (!evsel->name) { 3976 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); 3977 evsel->name = strdup(bf); 3978 if (evsel->name == NULL) 3979 return -1; 3980 } 3981 3982 evsel->tp_format = event; 3983 return 0; 3984 } 3985 3986 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent) 3987 { 3988 struct evsel *pos; 3989 3990 evlist__for_each_entry(evlist, pos) { 3991 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT && 3992 evsel__prepare_tracepoint_event(pos, pevent)) 3993 return -1; 3994 } 3995 3996 return 0; 3997 } 3998 3999 int perf_session__read_header(struct perf_session *session, int repipe_fd) 4000 { 4001 struct perf_data *data = session->data; 4002 struct perf_header *header = &session->header; 4003 struct perf_file_header f_header; 4004 struct perf_file_attr f_attr; 4005 u64 f_id; 4006 int nr_attrs, nr_ids, i, j, err; 4007 int fd = perf_data__fd(data); 4008 4009 session->evlist = evlist__new(); 4010 if (session->evlist == NULL) 4011 return -ENOMEM; 4012 4013 session->evlist->env = &header->env; 4014 session->machines.host.env = &header->env; 4015 4016 /* 4017 * We can read 'pipe' data event from regular file, 4018 * check for the pipe header regardless of source. 4019 */ 4020 err = perf_header__read_pipe(session, repipe_fd); 4021 if (!err || perf_data__is_pipe(data)) { 4022 data->is_pipe = true; 4023 return err; 4024 } 4025 4026 if (perf_file_header__read(&f_header, header, fd) < 0) 4027 return -EINVAL; 4028 4029 if (header->needs_swap && data->in_place_update) { 4030 pr_err("In-place update not supported when byte-swapping is required\n"); 4031 return -EINVAL; 4032 } 4033 4034 /* 4035 * Sanity check that perf.data was written cleanly; data size is 4036 * initialized to 0 and updated only if the on_exit function is run. 4037 * If data size is still 0 then the file contains only partial 4038 * information. Just warn user and process it as much as it can. 4039 */ 4040 if (f_header.data.size == 0) { 4041 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" 4042 "Was the 'perf record' command properly terminated?\n", 4043 data->file.path); 4044 } 4045 4046 if (f_header.attr_size == 0) { 4047 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n" 4048 "Was the 'perf record' command properly terminated?\n", 4049 data->file.path); 4050 return -EINVAL; 4051 } 4052 4053 nr_attrs = f_header.attrs.size / f_header.attr_size; 4054 lseek(fd, f_header.attrs.offset, SEEK_SET); 4055 4056 for (i = 0; i < nr_attrs; i++) { 4057 struct evsel *evsel; 4058 off_t tmp; 4059 4060 if (read_attr(fd, header, &f_attr) < 0) 4061 goto out_errno; 4062 4063 if (header->needs_swap) { 4064 f_attr.ids.size = bswap_64(f_attr.ids.size); 4065 f_attr.ids.offset = bswap_64(f_attr.ids.offset); 4066 perf_event__attr_swap(&f_attr.attr); 4067 } 4068 4069 tmp = lseek(fd, 0, SEEK_CUR); 4070 evsel = evsel__new(&f_attr.attr); 4071 4072 if (evsel == NULL) 4073 goto out_delete_evlist; 4074 4075 evsel->needs_swap = header->needs_swap; 4076 /* 4077 * Do it before so that if perf_evsel__alloc_id fails, this 4078 * entry gets purged too at evlist__delete(). 4079 */ 4080 evlist__add(session->evlist, evsel); 4081 4082 nr_ids = f_attr.ids.size / sizeof(u64); 4083 /* 4084 * We don't have the cpu and thread maps on the header, so 4085 * for allocating the perf_sample_id table we fake 1 cpu and 4086 * hattr->ids threads. 4087 */ 4088 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids)) 4089 goto out_delete_evlist; 4090 4091 lseek(fd, f_attr.ids.offset, SEEK_SET); 4092 4093 for (j = 0; j < nr_ids; j++) { 4094 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) 4095 goto out_errno; 4096 4097 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id); 4098 } 4099 4100 lseek(fd, tmp, SEEK_SET); 4101 } 4102 4103 perf_header__process_sections(header, fd, &session->tevent, 4104 perf_file_section__process); 4105 4106 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent)) 4107 goto out_delete_evlist; 4108 4109 return 0; 4110 out_errno: 4111 return -errno; 4112 4113 out_delete_evlist: 4114 evlist__delete(session->evlist); 4115 session->evlist = NULL; 4116 return -ENOMEM; 4117 } 4118 4119 int perf_event__process_feature(struct perf_session *session, 4120 union perf_event *event) 4121 { 4122 struct perf_tool *tool = session->tool; 4123 struct feat_fd ff = { .fd = 0 }; 4124 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event; 4125 int type = fe->header.type; 4126 u64 feat = fe->feat_id; 4127 4128 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { 4129 pr_warning("invalid record type %d in pipe-mode\n", type); 4130 return 0; 4131 } 4132 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { 4133 pr_warning("invalid record type %d in pipe-mode\n", type); 4134 return -1; 4135 } 4136 4137 if (!feat_ops[feat].process) 4138 return 0; 4139 4140 ff.buf = (void *)fe->data; 4141 ff.size = event->header.size - sizeof(*fe); 4142 ff.ph = &session->header; 4143 4144 if (feat_ops[feat].process(&ff, NULL)) 4145 return -1; 4146 4147 if (!feat_ops[feat].print || !tool->show_feat_hdr) 4148 return 0; 4149 4150 if (!feat_ops[feat].full_only || 4151 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { 4152 feat_ops[feat].print(&ff, stdout); 4153 } else { 4154 fprintf(stdout, "# %s info available, use -I to display\n", 4155 feat_ops[feat].name); 4156 } 4157 4158 return 0; 4159 } 4160 4161 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) 4162 { 4163 struct perf_record_event_update *ev = &event->event_update; 4164 struct perf_record_event_update_scale *ev_scale; 4165 struct perf_record_event_update_cpus *ev_cpus; 4166 struct perf_cpu_map *map; 4167 size_t ret; 4168 4169 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id); 4170 4171 switch (ev->type) { 4172 case PERF_EVENT_UPDATE__SCALE: 4173 ev_scale = (struct perf_record_event_update_scale *)ev->data; 4174 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale); 4175 break; 4176 case PERF_EVENT_UPDATE__UNIT: 4177 ret += fprintf(fp, "... unit: %s\n", ev->data); 4178 break; 4179 case PERF_EVENT_UPDATE__NAME: 4180 ret += fprintf(fp, "... name: %s\n", ev->data); 4181 break; 4182 case PERF_EVENT_UPDATE__CPUS: 4183 ev_cpus = (struct perf_record_event_update_cpus *)ev->data; 4184 ret += fprintf(fp, "... "); 4185 4186 map = cpu_map__new_data(&ev_cpus->cpus); 4187 if (map) 4188 ret += cpu_map__fprintf(map, fp); 4189 else 4190 ret += fprintf(fp, "failed to get cpus\n"); 4191 break; 4192 default: 4193 ret += fprintf(fp, "... unknown type\n"); 4194 break; 4195 } 4196 4197 return ret; 4198 } 4199 4200 int perf_event__process_attr(struct perf_tool *tool __maybe_unused, 4201 union perf_event *event, 4202 struct evlist **pevlist) 4203 { 4204 u32 i, ids, n_ids; 4205 struct evsel *evsel; 4206 struct evlist *evlist = *pevlist; 4207 4208 if (evlist == NULL) { 4209 *pevlist = evlist = evlist__new(); 4210 if (evlist == NULL) 4211 return -ENOMEM; 4212 } 4213 4214 evsel = evsel__new(&event->attr.attr); 4215 if (evsel == NULL) 4216 return -ENOMEM; 4217 4218 evlist__add(evlist, evsel); 4219 4220 ids = event->header.size; 4221 ids -= (void *)&event->attr.id - (void *)event; 4222 n_ids = ids / sizeof(u64); 4223 /* 4224 * We don't have the cpu and thread maps on the header, so 4225 * for allocating the perf_sample_id table we fake 1 cpu and 4226 * hattr->ids threads. 4227 */ 4228 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids)) 4229 return -ENOMEM; 4230 4231 for (i = 0; i < n_ids; i++) { 4232 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]); 4233 } 4234 4235 return 0; 4236 } 4237 4238 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused, 4239 union perf_event *event, 4240 struct evlist **pevlist) 4241 { 4242 struct perf_record_event_update *ev = &event->event_update; 4243 struct perf_record_event_update_scale *ev_scale; 4244 struct perf_record_event_update_cpus *ev_cpus; 4245 struct evlist *evlist; 4246 struct evsel *evsel; 4247 struct perf_cpu_map *map; 4248 4249 if (!pevlist || *pevlist == NULL) 4250 return -EINVAL; 4251 4252 evlist = *pevlist; 4253 4254 evsel = evlist__id2evsel(evlist, ev->id); 4255 if (evsel == NULL) 4256 return -EINVAL; 4257 4258 switch (ev->type) { 4259 case PERF_EVENT_UPDATE__UNIT: 4260 evsel->unit = strdup(ev->data); 4261 break; 4262 case PERF_EVENT_UPDATE__NAME: 4263 evsel->name = strdup(ev->data); 4264 break; 4265 case PERF_EVENT_UPDATE__SCALE: 4266 ev_scale = (struct perf_record_event_update_scale *)ev->data; 4267 evsel->scale = ev_scale->scale; 4268 break; 4269 case PERF_EVENT_UPDATE__CPUS: 4270 ev_cpus = (struct perf_record_event_update_cpus *)ev->data; 4271 4272 map = cpu_map__new_data(&ev_cpus->cpus); 4273 if (map) 4274 evsel->core.own_cpus = map; 4275 else 4276 pr_err("failed to get event_update cpus\n"); 4277 default: 4278 break; 4279 } 4280 4281 return 0; 4282 } 4283 4284 int perf_event__process_tracing_data(struct perf_session *session, 4285 union perf_event *event) 4286 { 4287 ssize_t size_read, padding, size = event->tracing_data.size; 4288 int fd = perf_data__fd(session->data); 4289 char buf[BUFSIZ]; 4290 4291 /* 4292 * The pipe fd is already in proper place and in any case 4293 * we can't move it, and we'd screw the case where we read 4294 * 'pipe' data from regular file. The trace_report reads 4295 * data from 'fd' so we need to set it directly behind the 4296 * event, where the tracing data starts. 4297 */ 4298 if (!perf_data__is_pipe(session->data)) { 4299 off_t offset = lseek(fd, 0, SEEK_CUR); 4300 4301 /* setup for reading amidst mmap */ 4302 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data), 4303 SEEK_SET); 4304 } 4305 4306 size_read = trace_report(fd, &session->tevent, 4307 session->repipe); 4308 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; 4309 4310 if (readn(fd, buf, padding) < 0) { 4311 pr_err("%s: reading input file", __func__); 4312 return -1; 4313 } 4314 if (session->repipe) { 4315 int retw = write(STDOUT_FILENO, buf, padding); 4316 if (retw <= 0 || retw != padding) { 4317 pr_err("%s: repiping tracing data padding", __func__); 4318 return -1; 4319 } 4320 } 4321 4322 if (size_read + padding != size) { 4323 pr_err("%s: tracing data size mismatch", __func__); 4324 return -1; 4325 } 4326 4327 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent); 4328 4329 return size_read + padding; 4330 } 4331 4332 int perf_event__process_build_id(struct perf_session *session, 4333 union perf_event *event) 4334 { 4335 __event_process_build_id(&event->build_id, 4336 event->build_id.filename, 4337 session); 4338 return 0; 4339 } 4340