xref: /openbmc/linux/tools/perf/util/header.c (revision c4a11bf4)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #ifdef HAVE_LIBBPF_SUPPORT
23 #include <bpf/libbpf.h>
24 #endif
25 #include <perf/cpumap.h>
26 
27 #include "dso.h"
28 #include "evlist.h"
29 #include "evsel.h"
30 #include "util/evsel_fprintf.h"
31 #include "header.h"
32 #include "memswap.h"
33 #include "trace-event.h"
34 #include "session.h"
35 #include "symbol.h"
36 #include "debug.h"
37 #include "cpumap.h"
38 #include "pmu.h"
39 #include "vdso.h"
40 #include "strbuf.h"
41 #include "build-id.h"
42 #include "data.h"
43 #include <api/fs/fs.h>
44 #include "asm/bug.h"
45 #include "tool.h"
46 #include "time-utils.h"
47 #include "units.h"
48 #include "util/util.h" // perf_exe()
49 #include "cputopo.h"
50 #include "bpf-event.h"
51 #include "bpf-utils.h"
52 #include "clockid.h"
53 #include "pmu-hybrid.h"
54 
55 #include <linux/ctype.h>
56 #include <internal/lib.h>
57 
58 /*
59  * magic2 = "PERFILE2"
60  * must be a numerical value to let the endianness
61  * determine the memory layout. That way we are able
62  * to detect endianness when reading the perf.data file
63  * back.
64  *
65  * we check for legacy (PERFFILE) format.
66  */
67 static const char *__perf_magic1 = "PERFFILE";
68 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
69 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
70 
71 #define PERF_MAGIC	__perf_magic2
72 
73 const char perf_version_string[] = PERF_VERSION;
74 
75 struct perf_file_attr {
76 	struct perf_event_attr	attr;
77 	struct perf_file_section	ids;
78 };
79 
80 void perf_header__set_feat(struct perf_header *header, int feat)
81 {
82 	set_bit(feat, header->adds_features);
83 }
84 
85 void perf_header__clear_feat(struct perf_header *header, int feat)
86 {
87 	clear_bit(feat, header->adds_features);
88 }
89 
90 bool perf_header__has_feat(const struct perf_header *header, int feat)
91 {
92 	return test_bit(feat, header->adds_features);
93 }
94 
95 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
96 {
97 	ssize_t ret = writen(ff->fd, buf, size);
98 
99 	if (ret != (ssize_t)size)
100 		return ret < 0 ? (int)ret : -1;
101 	return 0;
102 }
103 
104 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
105 {
106 	/* struct perf_event_header::size is u16 */
107 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
108 	size_t new_size = ff->size;
109 	void *addr;
110 
111 	if (size + ff->offset > max_size)
112 		return -E2BIG;
113 
114 	while (size > (new_size - ff->offset))
115 		new_size <<= 1;
116 	new_size = min(max_size, new_size);
117 
118 	if (ff->size < new_size) {
119 		addr = realloc(ff->buf, new_size);
120 		if (!addr)
121 			return -ENOMEM;
122 		ff->buf = addr;
123 		ff->size = new_size;
124 	}
125 
126 	memcpy(ff->buf + ff->offset, buf, size);
127 	ff->offset += size;
128 
129 	return 0;
130 }
131 
132 /* Return: 0 if succeeded, -ERR if failed. */
133 int do_write(struct feat_fd *ff, const void *buf, size_t size)
134 {
135 	if (!ff->buf)
136 		return __do_write_fd(ff, buf, size);
137 	return __do_write_buf(ff, buf, size);
138 }
139 
140 /* Return: 0 if succeeded, -ERR if failed. */
141 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
142 {
143 	u64 *p = (u64 *) set;
144 	int i, ret;
145 
146 	ret = do_write(ff, &size, sizeof(size));
147 	if (ret < 0)
148 		return ret;
149 
150 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
151 		ret = do_write(ff, p + i, sizeof(*p));
152 		if (ret < 0)
153 			return ret;
154 	}
155 
156 	return 0;
157 }
158 
159 /* Return: 0 if succeeded, -ERR if failed. */
160 int write_padded(struct feat_fd *ff, const void *bf,
161 		 size_t count, size_t count_aligned)
162 {
163 	static const char zero_buf[NAME_ALIGN];
164 	int err = do_write(ff, bf, count);
165 
166 	if (!err)
167 		err = do_write(ff, zero_buf, count_aligned - count);
168 
169 	return err;
170 }
171 
172 #define string_size(str)						\
173 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
174 
175 /* Return: 0 if succeeded, -ERR if failed. */
176 static int do_write_string(struct feat_fd *ff, const char *str)
177 {
178 	u32 len, olen;
179 	int ret;
180 
181 	olen = strlen(str) + 1;
182 	len = PERF_ALIGN(olen, NAME_ALIGN);
183 
184 	/* write len, incl. \0 */
185 	ret = do_write(ff, &len, sizeof(len));
186 	if (ret < 0)
187 		return ret;
188 
189 	return write_padded(ff, str, olen, len);
190 }
191 
192 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
193 {
194 	ssize_t ret = readn(ff->fd, addr, size);
195 
196 	if (ret != size)
197 		return ret < 0 ? (int)ret : -1;
198 	return 0;
199 }
200 
201 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
202 {
203 	if (size > (ssize_t)ff->size - ff->offset)
204 		return -1;
205 
206 	memcpy(addr, ff->buf + ff->offset, size);
207 	ff->offset += size;
208 
209 	return 0;
210 
211 }
212 
213 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
214 {
215 	if (!ff->buf)
216 		return __do_read_fd(ff, addr, size);
217 	return __do_read_buf(ff, addr, size);
218 }
219 
220 static int do_read_u32(struct feat_fd *ff, u32 *addr)
221 {
222 	int ret;
223 
224 	ret = __do_read(ff, addr, sizeof(*addr));
225 	if (ret)
226 		return ret;
227 
228 	if (ff->ph->needs_swap)
229 		*addr = bswap_32(*addr);
230 	return 0;
231 }
232 
233 static int do_read_u64(struct feat_fd *ff, u64 *addr)
234 {
235 	int ret;
236 
237 	ret = __do_read(ff, addr, sizeof(*addr));
238 	if (ret)
239 		return ret;
240 
241 	if (ff->ph->needs_swap)
242 		*addr = bswap_64(*addr);
243 	return 0;
244 }
245 
246 static char *do_read_string(struct feat_fd *ff)
247 {
248 	u32 len;
249 	char *buf;
250 
251 	if (do_read_u32(ff, &len))
252 		return NULL;
253 
254 	buf = malloc(len);
255 	if (!buf)
256 		return NULL;
257 
258 	if (!__do_read(ff, buf, len)) {
259 		/*
260 		 * strings are padded by zeroes
261 		 * thus the actual strlen of buf
262 		 * may be less than len
263 		 */
264 		return buf;
265 	}
266 
267 	free(buf);
268 	return NULL;
269 }
270 
271 /* Return: 0 if succeeded, -ERR if failed. */
272 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
273 {
274 	unsigned long *set;
275 	u64 size, *p;
276 	int i, ret;
277 
278 	ret = do_read_u64(ff, &size);
279 	if (ret)
280 		return ret;
281 
282 	set = bitmap_zalloc(size);
283 	if (!set)
284 		return -ENOMEM;
285 
286 	p = (u64 *) set;
287 
288 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
289 		ret = do_read_u64(ff, p + i);
290 		if (ret < 0) {
291 			free(set);
292 			return ret;
293 		}
294 	}
295 
296 	*pset  = set;
297 	*psize = size;
298 	return 0;
299 }
300 
301 static int write_tracing_data(struct feat_fd *ff,
302 			      struct evlist *evlist)
303 {
304 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
305 		return -1;
306 
307 	return read_tracing_data(ff->fd, &evlist->core.entries);
308 }
309 
310 static int write_build_id(struct feat_fd *ff,
311 			  struct evlist *evlist __maybe_unused)
312 {
313 	struct perf_session *session;
314 	int err;
315 
316 	session = container_of(ff->ph, struct perf_session, header);
317 
318 	if (!perf_session__read_build_ids(session, true))
319 		return -1;
320 
321 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
322 		return -1;
323 
324 	err = perf_session__write_buildid_table(session, ff);
325 	if (err < 0) {
326 		pr_debug("failed to write buildid table\n");
327 		return err;
328 	}
329 	perf_session__cache_build_ids(session);
330 
331 	return 0;
332 }
333 
334 static int write_hostname(struct feat_fd *ff,
335 			  struct evlist *evlist __maybe_unused)
336 {
337 	struct utsname uts;
338 	int ret;
339 
340 	ret = uname(&uts);
341 	if (ret < 0)
342 		return -1;
343 
344 	return do_write_string(ff, uts.nodename);
345 }
346 
347 static int write_osrelease(struct feat_fd *ff,
348 			   struct evlist *evlist __maybe_unused)
349 {
350 	struct utsname uts;
351 	int ret;
352 
353 	ret = uname(&uts);
354 	if (ret < 0)
355 		return -1;
356 
357 	return do_write_string(ff, uts.release);
358 }
359 
360 static int write_arch(struct feat_fd *ff,
361 		      struct evlist *evlist __maybe_unused)
362 {
363 	struct utsname uts;
364 	int ret;
365 
366 	ret = uname(&uts);
367 	if (ret < 0)
368 		return -1;
369 
370 	return do_write_string(ff, uts.machine);
371 }
372 
373 static int write_version(struct feat_fd *ff,
374 			 struct evlist *evlist __maybe_unused)
375 {
376 	return do_write_string(ff, perf_version_string);
377 }
378 
379 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
380 {
381 	FILE *file;
382 	char *buf = NULL;
383 	char *s, *p;
384 	const char *search = cpuinfo_proc;
385 	size_t len = 0;
386 	int ret = -1;
387 
388 	if (!search)
389 		return -1;
390 
391 	file = fopen("/proc/cpuinfo", "r");
392 	if (!file)
393 		return -1;
394 
395 	while (getline(&buf, &len, file) > 0) {
396 		ret = strncmp(buf, search, strlen(search));
397 		if (!ret)
398 			break;
399 	}
400 
401 	if (ret) {
402 		ret = -1;
403 		goto done;
404 	}
405 
406 	s = buf;
407 
408 	p = strchr(buf, ':');
409 	if (p && *(p+1) == ' ' && *(p+2))
410 		s = p + 2;
411 	p = strchr(s, '\n');
412 	if (p)
413 		*p = '\0';
414 
415 	/* squash extra space characters (branding string) */
416 	p = s;
417 	while (*p) {
418 		if (isspace(*p)) {
419 			char *r = p + 1;
420 			char *q = skip_spaces(r);
421 			*p = ' ';
422 			if (q != (p+1))
423 				while ((*r++ = *q++));
424 		}
425 		p++;
426 	}
427 	ret = do_write_string(ff, s);
428 done:
429 	free(buf);
430 	fclose(file);
431 	return ret;
432 }
433 
434 static int write_cpudesc(struct feat_fd *ff,
435 		       struct evlist *evlist __maybe_unused)
436 {
437 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
438 #define CPUINFO_PROC	{ "cpu", }
439 #elif defined(__s390__)
440 #define CPUINFO_PROC	{ "vendor_id", }
441 #elif defined(__sh__)
442 #define CPUINFO_PROC	{ "cpu type", }
443 #elif defined(__alpha__) || defined(__mips__)
444 #define CPUINFO_PROC	{ "cpu model", }
445 #elif defined(__arm__)
446 #define CPUINFO_PROC	{ "model name", "Processor", }
447 #elif defined(__arc__)
448 #define CPUINFO_PROC	{ "Processor", }
449 #elif defined(__xtensa__)
450 #define CPUINFO_PROC	{ "core ID", }
451 #else
452 #define CPUINFO_PROC	{ "model name", }
453 #endif
454 	const char *cpuinfo_procs[] = CPUINFO_PROC;
455 #undef CPUINFO_PROC
456 	unsigned int i;
457 
458 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
459 		int ret;
460 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
461 		if (ret >= 0)
462 			return ret;
463 	}
464 	return -1;
465 }
466 
467 
468 static int write_nrcpus(struct feat_fd *ff,
469 			struct evlist *evlist __maybe_unused)
470 {
471 	long nr;
472 	u32 nrc, nra;
473 	int ret;
474 
475 	nrc = cpu__max_present_cpu();
476 
477 	nr = sysconf(_SC_NPROCESSORS_ONLN);
478 	if (nr < 0)
479 		return -1;
480 
481 	nra = (u32)(nr & UINT_MAX);
482 
483 	ret = do_write(ff, &nrc, sizeof(nrc));
484 	if (ret < 0)
485 		return ret;
486 
487 	return do_write(ff, &nra, sizeof(nra));
488 }
489 
490 static int write_event_desc(struct feat_fd *ff,
491 			    struct evlist *evlist)
492 {
493 	struct evsel *evsel;
494 	u32 nre, nri, sz;
495 	int ret;
496 
497 	nre = evlist->core.nr_entries;
498 
499 	/*
500 	 * write number of events
501 	 */
502 	ret = do_write(ff, &nre, sizeof(nre));
503 	if (ret < 0)
504 		return ret;
505 
506 	/*
507 	 * size of perf_event_attr struct
508 	 */
509 	sz = (u32)sizeof(evsel->core.attr);
510 	ret = do_write(ff, &sz, sizeof(sz));
511 	if (ret < 0)
512 		return ret;
513 
514 	evlist__for_each_entry(evlist, evsel) {
515 		ret = do_write(ff, &evsel->core.attr, sz);
516 		if (ret < 0)
517 			return ret;
518 		/*
519 		 * write number of unique id per event
520 		 * there is one id per instance of an event
521 		 *
522 		 * copy into an nri to be independent of the
523 		 * type of ids,
524 		 */
525 		nri = evsel->core.ids;
526 		ret = do_write(ff, &nri, sizeof(nri));
527 		if (ret < 0)
528 			return ret;
529 
530 		/*
531 		 * write event string as passed on cmdline
532 		 */
533 		ret = do_write_string(ff, evsel__name(evsel));
534 		if (ret < 0)
535 			return ret;
536 		/*
537 		 * write unique ids for this event
538 		 */
539 		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
540 		if (ret < 0)
541 			return ret;
542 	}
543 	return 0;
544 }
545 
546 static int write_cmdline(struct feat_fd *ff,
547 			 struct evlist *evlist __maybe_unused)
548 {
549 	char pbuf[MAXPATHLEN], *buf;
550 	int i, ret, n;
551 
552 	/* actual path to perf binary */
553 	buf = perf_exe(pbuf, MAXPATHLEN);
554 
555 	/* account for binary path */
556 	n = perf_env.nr_cmdline + 1;
557 
558 	ret = do_write(ff, &n, sizeof(n));
559 	if (ret < 0)
560 		return ret;
561 
562 	ret = do_write_string(ff, buf);
563 	if (ret < 0)
564 		return ret;
565 
566 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
567 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
568 		if (ret < 0)
569 			return ret;
570 	}
571 	return 0;
572 }
573 
574 
575 static int write_cpu_topology(struct feat_fd *ff,
576 			      struct evlist *evlist __maybe_unused)
577 {
578 	struct cpu_topology *tp;
579 	u32 i;
580 	int ret, j;
581 
582 	tp = cpu_topology__new();
583 	if (!tp)
584 		return -1;
585 
586 	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
587 	if (ret < 0)
588 		goto done;
589 
590 	for (i = 0; i < tp->core_sib; i++) {
591 		ret = do_write_string(ff, tp->core_siblings[i]);
592 		if (ret < 0)
593 			goto done;
594 	}
595 	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
596 	if (ret < 0)
597 		goto done;
598 
599 	for (i = 0; i < tp->thread_sib; i++) {
600 		ret = do_write_string(ff, tp->thread_siblings[i]);
601 		if (ret < 0)
602 			break;
603 	}
604 
605 	ret = perf_env__read_cpu_topology_map(&perf_env);
606 	if (ret < 0)
607 		goto done;
608 
609 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
610 		ret = do_write(ff, &perf_env.cpu[j].core_id,
611 			       sizeof(perf_env.cpu[j].core_id));
612 		if (ret < 0)
613 			return ret;
614 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
615 			       sizeof(perf_env.cpu[j].socket_id));
616 		if (ret < 0)
617 			return ret;
618 	}
619 
620 	if (!tp->die_sib)
621 		goto done;
622 
623 	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
624 	if (ret < 0)
625 		goto done;
626 
627 	for (i = 0; i < tp->die_sib; i++) {
628 		ret = do_write_string(ff, tp->die_siblings[i]);
629 		if (ret < 0)
630 			goto done;
631 	}
632 
633 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
634 		ret = do_write(ff, &perf_env.cpu[j].die_id,
635 			       sizeof(perf_env.cpu[j].die_id));
636 		if (ret < 0)
637 			return ret;
638 	}
639 
640 done:
641 	cpu_topology__delete(tp);
642 	return ret;
643 }
644 
645 
646 
647 static int write_total_mem(struct feat_fd *ff,
648 			   struct evlist *evlist __maybe_unused)
649 {
650 	char *buf = NULL;
651 	FILE *fp;
652 	size_t len = 0;
653 	int ret = -1, n;
654 	uint64_t mem;
655 
656 	fp = fopen("/proc/meminfo", "r");
657 	if (!fp)
658 		return -1;
659 
660 	while (getline(&buf, &len, fp) > 0) {
661 		ret = strncmp(buf, "MemTotal:", 9);
662 		if (!ret)
663 			break;
664 	}
665 	if (!ret) {
666 		n = sscanf(buf, "%*s %"PRIu64, &mem);
667 		if (n == 1)
668 			ret = do_write(ff, &mem, sizeof(mem));
669 	} else
670 		ret = -1;
671 	free(buf);
672 	fclose(fp);
673 	return ret;
674 }
675 
676 static int write_numa_topology(struct feat_fd *ff,
677 			       struct evlist *evlist __maybe_unused)
678 {
679 	struct numa_topology *tp;
680 	int ret = -1;
681 	u32 i;
682 
683 	tp = numa_topology__new();
684 	if (!tp)
685 		return -ENOMEM;
686 
687 	ret = do_write(ff, &tp->nr, sizeof(u32));
688 	if (ret < 0)
689 		goto err;
690 
691 	for (i = 0; i < tp->nr; i++) {
692 		struct numa_topology_node *n = &tp->nodes[i];
693 
694 		ret = do_write(ff, &n->node, sizeof(u32));
695 		if (ret < 0)
696 			goto err;
697 
698 		ret = do_write(ff, &n->mem_total, sizeof(u64));
699 		if (ret)
700 			goto err;
701 
702 		ret = do_write(ff, &n->mem_free, sizeof(u64));
703 		if (ret)
704 			goto err;
705 
706 		ret = do_write_string(ff, n->cpus);
707 		if (ret < 0)
708 			goto err;
709 	}
710 
711 	ret = 0;
712 
713 err:
714 	numa_topology__delete(tp);
715 	return ret;
716 }
717 
718 /*
719  * File format:
720  *
721  * struct pmu_mappings {
722  *	u32	pmu_num;
723  *	struct pmu_map {
724  *		u32	type;
725  *		char	name[];
726  *	}[pmu_num];
727  * };
728  */
729 
730 static int write_pmu_mappings(struct feat_fd *ff,
731 			      struct evlist *evlist __maybe_unused)
732 {
733 	struct perf_pmu *pmu = NULL;
734 	u32 pmu_num = 0;
735 	int ret;
736 
737 	/*
738 	 * Do a first pass to count number of pmu to avoid lseek so this
739 	 * works in pipe mode as well.
740 	 */
741 	while ((pmu = perf_pmu__scan(pmu))) {
742 		if (!pmu->name)
743 			continue;
744 		pmu_num++;
745 	}
746 
747 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
748 	if (ret < 0)
749 		return ret;
750 
751 	while ((pmu = perf_pmu__scan(pmu))) {
752 		if (!pmu->name)
753 			continue;
754 
755 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
756 		if (ret < 0)
757 			return ret;
758 
759 		ret = do_write_string(ff, pmu->name);
760 		if (ret < 0)
761 			return ret;
762 	}
763 
764 	return 0;
765 }
766 
767 /*
768  * File format:
769  *
770  * struct group_descs {
771  *	u32	nr_groups;
772  *	struct group_desc {
773  *		char	name[];
774  *		u32	leader_idx;
775  *		u32	nr_members;
776  *	}[nr_groups];
777  * };
778  */
779 static int write_group_desc(struct feat_fd *ff,
780 			    struct evlist *evlist)
781 {
782 	u32 nr_groups = evlist->core.nr_groups;
783 	struct evsel *evsel;
784 	int ret;
785 
786 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
787 	if (ret < 0)
788 		return ret;
789 
790 	evlist__for_each_entry(evlist, evsel) {
791 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
792 			const char *name = evsel->group_name ?: "{anon_group}";
793 			u32 leader_idx = evsel->core.idx;
794 			u32 nr_members = evsel->core.nr_members;
795 
796 			ret = do_write_string(ff, name);
797 			if (ret < 0)
798 				return ret;
799 
800 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
801 			if (ret < 0)
802 				return ret;
803 
804 			ret = do_write(ff, &nr_members, sizeof(nr_members));
805 			if (ret < 0)
806 				return ret;
807 		}
808 	}
809 	return 0;
810 }
811 
812 /*
813  * Return the CPU id as a raw string.
814  *
815  * Each architecture should provide a more precise id string that
816  * can be use to match the architecture's "mapfile".
817  */
818 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
819 {
820 	return NULL;
821 }
822 
823 /* Return zero when the cpuid from the mapfile.csv matches the
824  * cpuid string generated on this platform.
825  * Otherwise return non-zero.
826  */
827 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
828 {
829 	regex_t re;
830 	regmatch_t pmatch[1];
831 	int match;
832 
833 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
834 		/* Warn unable to generate match particular string. */
835 		pr_info("Invalid regular expression %s\n", mapcpuid);
836 		return 1;
837 	}
838 
839 	match = !regexec(&re, cpuid, 1, pmatch, 0);
840 	regfree(&re);
841 	if (match) {
842 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
843 
844 		/* Verify the entire string matched. */
845 		if (match_len == strlen(cpuid))
846 			return 0;
847 	}
848 	return 1;
849 }
850 
851 /*
852  * default get_cpuid(): nothing gets recorded
853  * actual implementation must be in arch/$(SRCARCH)/util/header.c
854  */
855 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
856 {
857 	return ENOSYS; /* Not implemented */
858 }
859 
860 static int write_cpuid(struct feat_fd *ff,
861 		       struct evlist *evlist __maybe_unused)
862 {
863 	char buffer[64];
864 	int ret;
865 
866 	ret = get_cpuid(buffer, sizeof(buffer));
867 	if (ret)
868 		return -1;
869 
870 	return do_write_string(ff, buffer);
871 }
872 
873 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
874 			      struct evlist *evlist __maybe_unused)
875 {
876 	return 0;
877 }
878 
879 static int write_auxtrace(struct feat_fd *ff,
880 			  struct evlist *evlist __maybe_unused)
881 {
882 	struct perf_session *session;
883 	int err;
884 
885 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
886 		return -1;
887 
888 	session = container_of(ff->ph, struct perf_session, header);
889 
890 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
891 	if (err < 0)
892 		pr_err("Failed to write auxtrace index\n");
893 	return err;
894 }
895 
896 static int write_clockid(struct feat_fd *ff,
897 			 struct evlist *evlist __maybe_unused)
898 {
899 	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
900 			sizeof(ff->ph->env.clock.clockid_res_ns));
901 }
902 
903 static int write_clock_data(struct feat_fd *ff,
904 			    struct evlist *evlist __maybe_unused)
905 {
906 	u64 *data64;
907 	u32 data32;
908 	int ret;
909 
910 	/* version */
911 	data32 = 1;
912 
913 	ret = do_write(ff, &data32, sizeof(data32));
914 	if (ret < 0)
915 		return ret;
916 
917 	/* clockid */
918 	data32 = ff->ph->env.clock.clockid;
919 
920 	ret = do_write(ff, &data32, sizeof(data32));
921 	if (ret < 0)
922 		return ret;
923 
924 	/* TOD ref time */
925 	data64 = &ff->ph->env.clock.tod_ns;
926 
927 	ret = do_write(ff, data64, sizeof(*data64));
928 	if (ret < 0)
929 		return ret;
930 
931 	/* clockid ref time */
932 	data64 = &ff->ph->env.clock.clockid_ns;
933 
934 	return do_write(ff, data64, sizeof(*data64));
935 }
936 
937 static int write_hybrid_topology(struct feat_fd *ff,
938 				 struct evlist *evlist __maybe_unused)
939 {
940 	struct hybrid_topology *tp;
941 	int ret;
942 	u32 i;
943 
944 	tp = hybrid_topology__new();
945 	if (!tp)
946 		return -ENOENT;
947 
948 	ret = do_write(ff, &tp->nr, sizeof(u32));
949 	if (ret < 0)
950 		goto err;
951 
952 	for (i = 0; i < tp->nr; i++) {
953 		struct hybrid_topology_node *n = &tp->nodes[i];
954 
955 		ret = do_write_string(ff, n->pmu_name);
956 		if (ret < 0)
957 			goto err;
958 
959 		ret = do_write_string(ff, n->cpus);
960 		if (ret < 0)
961 			goto err;
962 	}
963 
964 	ret = 0;
965 
966 err:
967 	hybrid_topology__delete(tp);
968 	return ret;
969 }
970 
971 static int write_dir_format(struct feat_fd *ff,
972 			    struct evlist *evlist __maybe_unused)
973 {
974 	struct perf_session *session;
975 	struct perf_data *data;
976 
977 	session = container_of(ff->ph, struct perf_session, header);
978 	data = session->data;
979 
980 	if (WARN_ON(!perf_data__is_dir(data)))
981 		return -1;
982 
983 	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
984 }
985 
986 #ifdef HAVE_LIBBPF_SUPPORT
987 static int write_bpf_prog_info(struct feat_fd *ff,
988 			       struct evlist *evlist __maybe_unused)
989 {
990 	struct perf_env *env = &ff->ph->env;
991 	struct rb_root *root;
992 	struct rb_node *next;
993 	int ret;
994 
995 	down_read(&env->bpf_progs.lock);
996 
997 	ret = do_write(ff, &env->bpf_progs.infos_cnt,
998 		       sizeof(env->bpf_progs.infos_cnt));
999 	if (ret < 0)
1000 		goto out;
1001 
1002 	root = &env->bpf_progs.infos;
1003 	next = rb_first(root);
1004 	while (next) {
1005 		struct bpf_prog_info_node *node;
1006 		size_t len;
1007 
1008 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1009 		next = rb_next(&node->rb_node);
1010 		len = sizeof(struct perf_bpil) +
1011 			node->info_linear->data_len;
1012 
1013 		/* before writing to file, translate address to offset */
1014 		bpil_addr_to_offs(node->info_linear);
1015 		ret = do_write(ff, node->info_linear, len);
1016 		/*
1017 		 * translate back to address even when do_write() fails,
1018 		 * so that this function never changes the data.
1019 		 */
1020 		bpil_offs_to_addr(node->info_linear);
1021 		if (ret < 0)
1022 			goto out;
1023 	}
1024 out:
1025 	up_read(&env->bpf_progs.lock);
1026 	return ret;
1027 }
1028 
1029 static int write_bpf_btf(struct feat_fd *ff,
1030 			 struct evlist *evlist __maybe_unused)
1031 {
1032 	struct perf_env *env = &ff->ph->env;
1033 	struct rb_root *root;
1034 	struct rb_node *next;
1035 	int ret;
1036 
1037 	down_read(&env->bpf_progs.lock);
1038 
1039 	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1040 		       sizeof(env->bpf_progs.btfs_cnt));
1041 
1042 	if (ret < 0)
1043 		goto out;
1044 
1045 	root = &env->bpf_progs.btfs;
1046 	next = rb_first(root);
1047 	while (next) {
1048 		struct btf_node *node;
1049 
1050 		node = rb_entry(next, struct btf_node, rb_node);
1051 		next = rb_next(&node->rb_node);
1052 		ret = do_write(ff, &node->id,
1053 			       sizeof(u32) * 2 + node->data_size);
1054 		if (ret < 0)
1055 			goto out;
1056 	}
1057 out:
1058 	up_read(&env->bpf_progs.lock);
1059 	return ret;
1060 }
1061 #endif // HAVE_LIBBPF_SUPPORT
1062 
1063 static int cpu_cache_level__sort(const void *a, const void *b)
1064 {
1065 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1066 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1067 
1068 	return cache_a->level - cache_b->level;
1069 }
1070 
1071 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1072 {
1073 	if (a->level != b->level)
1074 		return false;
1075 
1076 	if (a->line_size != b->line_size)
1077 		return false;
1078 
1079 	if (a->sets != b->sets)
1080 		return false;
1081 
1082 	if (a->ways != b->ways)
1083 		return false;
1084 
1085 	if (strcmp(a->type, b->type))
1086 		return false;
1087 
1088 	if (strcmp(a->size, b->size))
1089 		return false;
1090 
1091 	if (strcmp(a->map, b->map))
1092 		return false;
1093 
1094 	return true;
1095 }
1096 
1097 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1098 {
1099 	char path[PATH_MAX], file[PATH_MAX];
1100 	struct stat st;
1101 	size_t len;
1102 
1103 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1104 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1105 
1106 	if (stat(file, &st))
1107 		return 1;
1108 
1109 	scnprintf(file, PATH_MAX, "%s/level", path);
1110 	if (sysfs__read_int(file, (int *) &cache->level))
1111 		return -1;
1112 
1113 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1114 	if (sysfs__read_int(file, (int *) &cache->line_size))
1115 		return -1;
1116 
1117 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1118 	if (sysfs__read_int(file, (int *) &cache->sets))
1119 		return -1;
1120 
1121 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1122 	if (sysfs__read_int(file, (int *) &cache->ways))
1123 		return -1;
1124 
1125 	scnprintf(file, PATH_MAX, "%s/type", path);
1126 	if (sysfs__read_str(file, &cache->type, &len))
1127 		return -1;
1128 
1129 	cache->type[len] = 0;
1130 	cache->type = strim(cache->type);
1131 
1132 	scnprintf(file, PATH_MAX, "%s/size", path);
1133 	if (sysfs__read_str(file, &cache->size, &len)) {
1134 		zfree(&cache->type);
1135 		return -1;
1136 	}
1137 
1138 	cache->size[len] = 0;
1139 	cache->size = strim(cache->size);
1140 
1141 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1142 	if (sysfs__read_str(file, &cache->map, &len)) {
1143 		zfree(&cache->size);
1144 		zfree(&cache->type);
1145 		return -1;
1146 	}
1147 
1148 	cache->map[len] = 0;
1149 	cache->map = strim(cache->map);
1150 	return 0;
1151 }
1152 
1153 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1154 {
1155 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1156 }
1157 
1158 #define MAX_CACHE_LVL 4
1159 
1160 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1161 {
1162 	u32 i, cnt = 0;
1163 	u32 nr, cpu;
1164 	u16 level;
1165 
1166 	nr = cpu__max_cpu();
1167 
1168 	for (cpu = 0; cpu < nr; cpu++) {
1169 		for (level = 0; level < MAX_CACHE_LVL; level++) {
1170 			struct cpu_cache_level c;
1171 			int err;
1172 
1173 			err = cpu_cache_level__read(&c, cpu, level);
1174 			if (err < 0)
1175 				return err;
1176 
1177 			if (err == 1)
1178 				break;
1179 
1180 			for (i = 0; i < cnt; i++) {
1181 				if (cpu_cache_level__cmp(&c, &caches[i]))
1182 					break;
1183 			}
1184 
1185 			if (i == cnt)
1186 				caches[cnt++] = c;
1187 			else
1188 				cpu_cache_level__free(&c);
1189 		}
1190 	}
1191 	*cntp = cnt;
1192 	return 0;
1193 }
1194 
1195 static int write_cache(struct feat_fd *ff,
1196 		       struct evlist *evlist __maybe_unused)
1197 {
1198 	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1199 	struct cpu_cache_level caches[max_caches];
1200 	u32 cnt = 0, i, version = 1;
1201 	int ret;
1202 
1203 	ret = build_caches(caches, &cnt);
1204 	if (ret)
1205 		goto out;
1206 
1207 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1208 
1209 	ret = do_write(ff, &version, sizeof(u32));
1210 	if (ret < 0)
1211 		goto out;
1212 
1213 	ret = do_write(ff, &cnt, sizeof(u32));
1214 	if (ret < 0)
1215 		goto out;
1216 
1217 	for (i = 0; i < cnt; i++) {
1218 		struct cpu_cache_level *c = &caches[i];
1219 
1220 		#define _W(v)					\
1221 			ret = do_write(ff, &c->v, sizeof(u32));	\
1222 			if (ret < 0)				\
1223 				goto out;
1224 
1225 		_W(level)
1226 		_W(line_size)
1227 		_W(sets)
1228 		_W(ways)
1229 		#undef _W
1230 
1231 		#define _W(v)						\
1232 			ret = do_write_string(ff, (const char *) c->v);	\
1233 			if (ret < 0)					\
1234 				goto out;
1235 
1236 		_W(type)
1237 		_W(size)
1238 		_W(map)
1239 		#undef _W
1240 	}
1241 
1242 out:
1243 	for (i = 0; i < cnt; i++)
1244 		cpu_cache_level__free(&caches[i]);
1245 	return ret;
1246 }
1247 
1248 static int write_stat(struct feat_fd *ff __maybe_unused,
1249 		      struct evlist *evlist __maybe_unused)
1250 {
1251 	return 0;
1252 }
1253 
1254 static int write_sample_time(struct feat_fd *ff,
1255 			     struct evlist *evlist)
1256 {
1257 	int ret;
1258 
1259 	ret = do_write(ff, &evlist->first_sample_time,
1260 		       sizeof(evlist->first_sample_time));
1261 	if (ret < 0)
1262 		return ret;
1263 
1264 	return do_write(ff, &evlist->last_sample_time,
1265 			sizeof(evlist->last_sample_time));
1266 }
1267 
1268 
1269 static int memory_node__read(struct memory_node *n, unsigned long idx)
1270 {
1271 	unsigned int phys, size = 0;
1272 	char path[PATH_MAX];
1273 	struct dirent *ent;
1274 	DIR *dir;
1275 
1276 #define for_each_memory(mem, dir)					\
1277 	while ((ent = readdir(dir)))					\
1278 		if (strcmp(ent->d_name, ".") &&				\
1279 		    strcmp(ent->d_name, "..") &&			\
1280 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1281 
1282 	scnprintf(path, PATH_MAX,
1283 		  "%s/devices/system/node/node%lu",
1284 		  sysfs__mountpoint(), idx);
1285 
1286 	dir = opendir(path);
1287 	if (!dir) {
1288 		pr_warning("failed: can't open memory sysfs data\n");
1289 		return -1;
1290 	}
1291 
1292 	for_each_memory(phys, dir) {
1293 		size = max(phys, size);
1294 	}
1295 
1296 	size++;
1297 
1298 	n->set = bitmap_zalloc(size);
1299 	if (!n->set) {
1300 		closedir(dir);
1301 		return -ENOMEM;
1302 	}
1303 
1304 	n->node = idx;
1305 	n->size = size;
1306 
1307 	rewinddir(dir);
1308 
1309 	for_each_memory(phys, dir) {
1310 		set_bit(phys, n->set);
1311 	}
1312 
1313 	closedir(dir);
1314 	return 0;
1315 }
1316 
1317 static int memory_node__sort(const void *a, const void *b)
1318 {
1319 	const struct memory_node *na = a;
1320 	const struct memory_node *nb = b;
1321 
1322 	return na->node - nb->node;
1323 }
1324 
1325 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1326 {
1327 	char path[PATH_MAX];
1328 	struct dirent *ent;
1329 	DIR *dir;
1330 	u64 cnt = 0;
1331 	int ret = 0;
1332 
1333 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1334 		  sysfs__mountpoint());
1335 
1336 	dir = opendir(path);
1337 	if (!dir) {
1338 		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1339 			  __func__, path);
1340 		return -1;
1341 	}
1342 
1343 	while (!ret && (ent = readdir(dir))) {
1344 		unsigned int idx;
1345 		int r;
1346 
1347 		if (!strcmp(ent->d_name, ".") ||
1348 		    !strcmp(ent->d_name, ".."))
1349 			continue;
1350 
1351 		r = sscanf(ent->d_name, "node%u", &idx);
1352 		if (r != 1)
1353 			continue;
1354 
1355 		if (WARN_ONCE(cnt >= size,
1356 			"failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1357 			closedir(dir);
1358 			return -1;
1359 		}
1360 
1361 		ret = memory_node__read(&nodes[cnt++], idx);
1362 	}
1363 
1364 	*cntp = cnt;
1365 	closedir(dir);
1366 
1367 	if (!ret)
1368 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1369 
1370 	return ret;
1371 }
1372 
1373 #define MAX_MEMORY_NODES 2000
1374 
1375 /*
1376  * The MEM_TOPOLOGY holds physical memory map for every
1377  * node in system. The format of data is as follows:
1378  *
1379  *  0 - version          | for future changes
1380  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1381  * 16 - count            | number of nodes
1382  *
1383  * For each node we store map of physical indexes for
1384  * each node:
1385  *
1386  * 32 - node id          | node index
1387  * 40 - size             | size of bitmap
1388  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1389  */
1390 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1391 			      struct evlist *evlist __maybe_unused)
1392 {
1393 	static struct memory_node nodes[MAX_MEMORY_NODES];
1394 	u64 bsize, version = 1, i, nr;
1395 	int ret;
1396 
1397 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1398 			      (unsigned long long *) &bsize);
1399 	if (ret)
1400 		return ret;
1401 
1402 	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1403 	if (ret)
1404 		return ret;
1405 
1406 	ret = do_write(ff, &version, sizeof(version));
1407 	if (ret < 0)
1408 		goto out;
1409 
1410 	ret = do_write(ff, &bsize, sizeof(bsize));
1411 	if (ret < 0)
1412 		goto out;
1413 
1414 	ret = do_write(ff, &nr, sizeof(nr));
1415 	if (ret < 0)
1416 		goto out;
1417 
1418 	for (i = 0; i < nr; i++) {
1419 		struct memory_node *n = &nodes[i];
1420 
1421 		#define _W(v)						\
1422 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1423 			if (ret < 0)					\
1424 				goto out;
1425 
1426 		_W(node)
1427 		_W(size)
1428 
1429 		#undef _W
1430 
1431 		ret = do_write_bitmap(ff, n->set, n->size);
1432 		if (ret < 0)
1433 			goto out;
1434 	}
1435 
1436 out:
1437 	return ret;
1438 }
1439 
1440 static int write_compressed(struct feat_fd *ff __maybe_unused,
1441 			    struct evlist *evlist __maybe_unused)
1442 {
1443 	int ret;
1444 
1445 	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1446 	if (ret)
1447 		return ret;
1448 
1449 	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1450 	if (ret)
1451 		return ret;
1452 
1453 	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1454 	if (ret)
1455 		return ret;
1456 
1457 	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1458 	if (ret)
1459 		return ret;
1460 
1461 	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1462 }
1463 
1464 static int write_per_cpu_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1465 				  bool write_pmu)
1466 {
1467 	struct perf_pmu_caps *caps = NULL;
1468 	int nr_caps;
1469 	int ret;
1470 
1471 	nr_caps = perf_pmu__caps_parse(pmu);
1472 	if (nr_caps < 0)
1473 		return nr_caps;
1474 
1475 	ret = do_write(ff, &nr_caps, sizeof(nr_caps));
1476 	if (ret < 0)
1477 		return ret;
1478 
1479 	list_for_each_entry(caps, &pmu->caps, list) {
1480 		ret = do_write_string(ff, caps->name);
1481 		if (ret < 0)
1482 			return ret;
1483 
1484 		ret = do_write_string(ff, caps->value);
1485 		if (ret < 0)
1486 			return ret;
1487 	}
1488 
1489 	if (write_pmu) {
1490 		ret = do_write_string(ff, pmu->name);
1491 		if (ret < 0)
1492 			return ret;
1493 	}
1494 
1495 	return ret;
1496 }
1497 
1498 static int write_cpu_pmu_caps(struct feat_fd *ff,
1499 			      struct evlist *evlist __maybe_unused)
1500 {
1501 	struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1502 
1503 	if (!cpu_pmu)
1504 		return -ENOENT;
1505 
1506 	return write_per_cpu_pmu_caps(ff, cpu_pmu, false);
1507 }
1508 
1509 static int write_hybrid_cpu_pmu_caps(struct feat_fd *ff,
1510 				     struct evlist *evlist __maybe_unused)
1511 {
1512 	struct perf_pmu *pmu;
1513 	u32 nr_pmu = perf_pmu__hybrid_pmu_num();
1514 	int ret;
1515 
1516 	if (nr_pmu == 0)
1517 		return -ENOENT;
1518 
1519 	ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1520 	if (ret < 0)
1521 		return ret;
1522 
1523 	perf_pmu__for_each_hybrid_pmu(pmu) {
1524 		ret = write_per_cpu_pmu_caps(ff, pmu, true);
1525 		if (ret < 0)
1526 			return ret;
1527 	}
1528 
1529 	return 0;
1530 }
1531 
1532 static void print_hostname(struct feat_fd *ff, FILE *fp)
1533 {
1534 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1535 }
1536 
1537 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1538 {
1539 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1540 }
1541 
1542 static void print_arch(struct feat_fd *ff, FILE *fp)
1543 {
1544 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1545 }
1546 
1547 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1548 {
1549 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1550 }
1551 
1552 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1553 {
1554 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1555 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1556 }
1557 
1558 static void print_version(struct feat_fd *ff, FILE *fp)
1559 {
1560 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1561 }
1562 
1563 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1564 {
1565 	int nr, i;
1566 
1567 	nr = ff->ph->env.nr_cmdline;
1568 
1569 	fprintf(fp, "# cmdline : ");
1570 
1571 	for (i = 0; i < nr; i++) {
1572 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1573 		if (!argv_i) {
1574 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1575 		} else {
1576 			char *mem = argv_i;
1577 			do {
1578 				char *quote = strchr(argv_i, '\'');
1579 				if (!quote)
1580 					break;
1581 				*quote++ = '\0';
1582 				fprintf(fp, "%s\\\'", argv_i);
1583 				argv_i = quote;
1584 			} while (1);
1585 			fprintf(fp, "%s ", argv_i);
1586 			free(mem);
1587 		}
1588 	}
1589 	fputc('\n', fp);
1590 }
1591 
1592 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1593 {
1594 	struct perf_header *ph = ff->ph;
1595 	int cpu_nr = ph->env.nr_cpus_avail;
1596 	int nr, i;
1597 	char *str;
1598 
1599 	nr = ph->env.nr_sibling_cores;
1600 	str = ph->env.sibling_cores;
1601 
1602 	for (i = 0; i < nr; i++) {
1603 		fprintf(fp, "# sibling sockets : %s\n", str);
1604 		str += strlen(str) + 1;
1605 	}
1606 
1607 	if (ph->env.nr_sibling_dies) {
1608 		nr = ph->env.nr_sibling_dies;
1609 		str = ph->env.sibling_dies;
1610 
1611 		for (i = 0; i < nr; i++) {
1612 			fprintf(fp, "# sibling dies    : %s\n", str);
1613 			str += strlen(str) + 1;
1614 		}
1615 	}
1616 
1617 	nr = ph->env.nr_sibling_threads;
1618 	str = ph->env.sibling_threads;
1619 
1620 	for (i = 0; i < nr; i++) {
1621 		fprintf(fp, "# sibling threads : %s\n", str);
1622 		str += strlen(str) + 1;
1623 	}
1624 
1625 	if (ph->env.nr_sibling_dies) {
1626 		if (ph->env.cpu != NULL) {
1627 			for (i = 0; i < cpu_nr; i++)
1628 				fprintf(fp, "# CPU %d: Core ID %d, "
1629 					    "Die ID %d, Socket ID %d\n",
1630 					    i, ph->env.cpu[i].core_id,
1631 					    ph->env.cpu[i].die_id,
1632 					    ph->env.cpu[i].socket_id);
1633 		} else
1634 			fprintf(fp, "# Core ID, Die ID and Socket ID "
1635 				    "information is not available\n");
1636 	} else {
1637 		if (ph->env.cpu != NULL) {
1638 			for (i = 0; i < cpu_nr; i++)
1639 				fprintf(fp, "# CPU %d: Core ID %d, "
1640 					    "Socket ID %d\n",
1641 					    i, ph->env.cpu[i].core_id,
1642 					    ph->env.cpu[i].socket_id);
1643 		} else
1644 			fprintf(fp, "# Core ID and Socket ID "
1645 				    "information is not available\n");
1646 	}
1647 }
1648 
1649 static void print_clockid(struct feat_fd *ff, FILE *fp)
1650 {
1651 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1652 		ff->ph->env.clock.clockid_res_ns * 1000);
1653 }
1654 
1655 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1656 {
1657 	struct timespec clockid_ns;
1658 	char tstr[64], date[64];
1659 	struct timeval tod_ns;
1660 	clockid_t clockid;
1661 	struct tm ltime;
1662 	u64 ref;
1663 
1664 	if (!ff->ph->env.clock.enabled) {
1665 		fprintf(fp, "# reference time disabled\n");
1666 		return;
1667 	}
1668 
1669 	/* Compute TOD time. */
1670 	ref = ff->ph->env.clock.tod_ns;
1671 	tod_ns.tv_sec = ref / NSEC_PER_SEC;
1672 	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1673 	tod_ns.tv_usec = ref / NSEC_PER_USEC;
1674 
1675 	/* Compute clockid time. */
1676 	ref = ff->ph->env.clock.clockid_ns;
1677 	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1678 	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1679 	clockid_ns.tv_nsec = ref;
1680 
1681 	clockid = ff->ph->env.clock.clockid;
1682 
1683 	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1684 		snprintf(tstr, sizeof(tstr), "<error>");
1685 	else {
1686 		strftime(date, sizeof(date), "%F %T", &ltime);
1687 		scnprintf(tstr, sizeof(tstr), "%s.%06d",
1688 			  date, (int) tod_ns.tv_usec);
1689 	}
1690 
1691 	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1692 	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1693 		    tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1694 		    (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1695 		    clockid_name(clockid));
1696 }
1697 
1698 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1699 {
1700 	int i;
1701 	struct hybrid_node *n;
1702 
1703 	fprintf(fp, "# hybrid cpu system:\n");
1704 	for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1705 		n = &ff->ph->env.hybrid_nodes[i];
1706 		fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1707 	}
1708 }
1709 
1710 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1711 {
1712 	struct perf_session *session;
1713 	struct perf_data *data;
1714 
1715 	session = container_of(ff->ph, struct perf_session, header);
1716 	data = session->data;
1717 
1718 	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1719 }
1720 
1721 #ifdef HAVE_LIBBPF_SUPPORT
1722 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1723 {
1724 	struct perf_env *env = &ff->ph->env;
1725 	struct rb_root *root;
1726 	struct rb_node *next;
1727 
1728 	down_read(&env->bpf_progs.lock);
1729 
1730 	root = &env->bpf_progs.infos;
1731 	next = rb_first(root);
1732 
1733 	while (next) {
1734 		struct bpf_prog_info_node *node;
1735 
1736 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1737 		next = rb_next(&node->rb_node);
1738 
1739 		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1740 					       env, fp);
1741 	}
1742 
1743 	up_read(&env->bpf_progs.lock);
1744 }
1745 
1746 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1747 {
1748 	struct perf_env *env = &ff->ph->env;
1749 	struct rb_root *root;
1750 	struct rb_node *next;
1751 
1752 	down_read(&env->bpf_progs.lock);
1753 
1754 	root = &env->bpf_progs.btfs;
1755 	next = rb_first(root);
1756 
1757 	while (next) {
1758 		struct btf_node *node;
1759 
1760 		node = rb_entry(next, struct btf_node, rb_node);
1761 		next = rb_next(&node->rb_node);
1762 		fprintf(fp, "# btf info of id %u\n", node->id);
1763 	}
1764 
1765 	up_read(&env->bpf_progs.lock);
1766 }
1767 #endif // HAVE_LIBBPF_SUPPORT
1768 
1769 static void free_event_desc(struct evsel *events)
1770 {
1771 	struct evsel *evsel;
1772 
1773 	if (!events)
1774 		return;
1775 
1776 	for (evsel = events; evsel->core.attr.size; evsel++) {
1777 		zfree(&evsel->name);
1778 		zfree(&evsel->core.id);
1779 	}
1780 
1781 	free(events);
1782 }
1783 
1784 static bool perf_attr_check(struct perf_event_attr *attr)
1785 {
1786 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1787 		pr_warning("Reserved bits are set unexpectedly. "
1788 			   "Please update perf tool.\n");
1789 		return false;
1790 	}
1791 
1792 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1793 		pr_warning("Unknown sample type (0x%llx) is detected. "
1794 			   "Please update perf tool.\n",
1795 			   attr->sample_type);
1796 		return false;
1797 	}
1798 
1799 	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1800 		pr_warning("Unknown read format (0x%llx) is detected. "
1801 			   "Please update perf tool.\n",
1802 			   attr->read_format);
1803 		return false;
1804 	}
1805 
1806 	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1807 	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1808 		pr_warning("Unknown branch sample type (0x%llx) is detected. "
1809 			   "Please update perf tool.\n",
1810 			   attr->branch_sample_type);
1811 
1812 		return false;
1813 	}
1814 
1815 	return true;
1816 }
1817 
1818 static struct evsel *read_event_desc(struct feat_fd *ff)
1819 {
1820 	struct evsel *evsel, *events = NULL;
1821 	u64 *id;
1822 	void *buf = NULL;
1823 	u32 nre, sz, nr, i, j;
1824 	size_t msz;
1825 
1826 	/* number of events */
1827 	if (do_read_u32(ff, &nre))
1828 		goto error;
1829 
1830 	if (do_read_u32(ff, &sz))
1831 		goto error;
1832 
1833 	/* buffer to hold on file attr struct */
1834 	buf = malloc(sz);
1835 	if (!buf)
1836 		goto error;
1837 
1838 	/* the last event terminates with evsel->core.attr.size == 0: */
1839 	events = calloc(nre + 1, sizeof(*events));
1840 	if (!events)
1841 		goto error;
1842 
1843 	msz = sizeof(evsel->core.attr);
1844 	if (sz < msz)
1845 		msz = sz;
1846 
1847 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1848 		evsel->core.idx = i;
1849 
1850 		/*
1851 		 * must read entire on-file attr struct to
1852 		 * sync up with layout.
1853 		 */
1854 		if (__do_read(ff, buf, sz))
1855 			goto error;
1856 
1857 		if (ff->ph->needs_swap)
1858 			perf_event__attr_swap(buf);
1859 
1860 		memcpy(&evsel->core.attr, buf, msz);
1861 
1862 		if (!perf_attr_check(&evsel->core.attr))
1863 			goto error;
1864 
1865 		if (do_read_u32(ff, &nr))
1866 			goto error;
1867 
1868 		if (ff->ph->needs_swap)
1869 			evsel->needs_swap = true;
1870 
1871 		evsel->name = do_read_string(ff);
1872 		if (!evsel->name)
1873 			goto error;
1874 
1875 		if (!nr)
1876 			continue;
1877 
1878 		id = calloc(nr, sizeof(*id));
1879 		if (!id)
1880 			goto error;
1881 		evsel->core.ids = nr;
1882 		evsel->core.id = id;
1883 
1884 		for (j = 0 ; j < nr; j++) {
1885 			if (do_read_u64(ff, id))
1886 				goto error;
1887 			id++;
1888 		}
1889 	}
1890 out:
1891 	free(buf);
1892 	return events;
1893 error:
1894 	free_event_desc(events);
1895 	events = NULL;
1896 	goto out;
1897 }
1898 
1899 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1900 				void *priv __maybe_unused)
1901 {
1902 	return fprintf(fp, ", %s = %s", name, val);
1903 }
1904 
1905 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1906 {
1907 	struct evsel *evsel, *events;
1908 	u32 j;
1909 	u64 *id;
1910 
1911 	if (ff->events)
1912 		events = ff->events;
1913 	else
1914 		events = read_event_desc(ff);
1915 
1916 	if (!events) {
1917 		fprintf(fp, "# event desc: not available or unable to read\n");
1918 		return;
1919 	}
1920 
1921 	for (evsel = events; evsel->core.attr.size; evsel++) {
1922 		fprintf(fp, "# event : name = %s, ", evsel->name);
1923 
1924 		if (evsel->core.ids) {
1925 			fprintf(fp, ", id = {");
1926 			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1927 				if (j)
1928 					fputc(',', fp);
1929 				fprintf(fp, " %"PRIu64, *id);
1930 			}
1931 			fprintf(fp, " }");
1932 		}
1933 
1934 		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1935 
1936 		fputc('\n', fp);
1937 	}
1938 
1939 	free_event_desc(events);
1940 	ff->events = NULL;
1941 }
1942 
1943 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1944 {
1945 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1946 }
1947 
1948 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1949 {
1950 	int i;
1951 	struct numa_node *n;
1952 
1953 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1954 		n = &ff->ph->env.numa_nodes[i];
1955 
1956 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1957 			    " free = %"PRIu64" kB\n",
1958 			n->node, n->mem_total, n->mem_free);
1959 
1960 		fprintf(fp, "# node%u cpu list : ", n->node);
1961 		cpu_map__fprintf(n->map, fp);
1962 	}
1963 }
1964 
1965 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1966 {
1967 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1968 }
1969 
1970 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1971 {
1972 	fprintf(fp, "# contains samples with branch stack\n");
1973 }
1974 
1975 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1976 {
1977 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1978 }
1979 
1980 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1981 {
1982 	fprintf(fp, "# contains stat data\n");
1983 }
1984 
1985 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1986 {
1987 	int i;
1988 
1989 	fprintf(fp, "# CPU cache info:\n");
1990 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1991 		fprintf(fp, "#  ");
1992 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1993 	}
1994 }
1995 
1996 static void print_compressed(struct feat_fd *ff, FILE *fp)
1997 {
1998 	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1999 		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2000 		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2001 }
2002 
2003 static void print_per_cpu_pmu_caps(FILE *fp, int nr_caps, char *cpu_pmu_caps,
2004 				   char *pmu_name)
2005 {
2006 	const char *delimiter;
2007 	char *str, buf[128];
2008 
2009 	if (!nr_caps) {
2010 		if (!pmu_name)
2011 			fprintf(fp, "# cpu pmu capabilities: not available\n");
2012 		else
2013 			fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2014 		return;
2015 	}
2016 
2017 	if (!pmu_name)
2018 		scnprintf(buf, sizeof(buf), "# cpu pmu capabilities: ");
2019 	else
2020 		scnprintf(buf, sizeof(buf), "# %s pmu capabilities: ", pmu_name);
2021 
2022 	delimiter = buf;
2023 
2024 	str = cpu_pmu_caps;
2025 	while (nr_caps--) {
2026 		fprintf(fp, "%s%s", delimiter, str);
2027 		delimiter = ", ";
2028 		str += strlen(str) + 1;
2029 	}
2030 
2031 	fprintf(fp, "\n");
2032 }
2033 
2034 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2035 {
2036 	print_per_cpu_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2037 			       ff->ph->env.cpu_pmu_caps, NULL);
2038 }
2039 
2040 static void print_hybrid_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2041 {
2042 	struct hybrid_cpc_node *n;
2043 
2044 	for (int i = 0; i < ff->ph->env.nr_hybrid_cpc_nodes; i++) {
2045 		n = &ff->ph->env.hybrid_cpc_nodes[i];
2046 		print_per_cpu_pmu_caps(fp, n->nr_cpu_pmu_caps,
2047 				       n->cpu_pmu_caps,
2048 				       n->pmu_name);
2049 	}
2050 }
2051 
2052 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2053 {
2054 	const char *delimiter = "# pmu mappings: ";
2055 	char *str, *tmp;
2056 	u32 pmu_num;
2057 	u32 type;
2058 
2059 	pmu_num = ff->ph->env.nr_pmu_mappings;
2060 	if (!pmu_num) {
2061 		fprintf(fp, "# pmu mappings: not available\n");
2062 		return;
2063 	}
2064 
2065 	str = ff->ph->env.pmu_mappings;
2066 
2067 	while (pmu_num) {
2068 		type = strtoul(str, &tmp, 0);
2069 		if (*tmp != ':')
2070 			goto error;
2071 
2072 		str = tmp + 1;
2073 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2074 
2075 		delimiter = ", ";
2076 		str += strlen(str) + 1;
2077 		pmu_num--;
2078 	}
2079 
2080 	fprintf(fp, "\n");
2081 
2082 	if (!pmu_num)
2083 		return;
2084 error:
2085 	fprintf(fp, "# pmu mappings: unable to read\n");
2086 }
2087 
2088 static void print_group_desc(struct feat_fd *ff, FILE *fp)
2089 {
2090 	struct perf_session *session;
2091 	struct evsel *evsel;
2092 	u32 nr = 0;
2093 
2094 	session = container_of(ff->ph, struct perf_session, header);
2095 
2096 	evlist__for_each_entry(session->evlist, evsel) {
2097 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2098 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2099 
2100 			nr = evsel->core.nr_members - 1;
2101 		} else if (nr) {
2102 			fprintf(fp, ",%s", evsel__name(evsel));
2103 
2104 			if (--nr == 0)
2105 				fprintf(fp, "}\n");
2106 		}
2107 	}
2108 }
2109 
2110 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2111 {
2112 	struct perf_session *session;
2113 	char time_buf[32];
2114 	double d;
2115 
2116 	session = container_of(ff->ph, struct perf_session, header);
2117 
2118 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
2119 				  time_buf, sizeof(time_buf));
2120 	fprintf(fp, "# time of first sample : %s\n", time_buf);
2121 
2122 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
2123 				  time_buf, sizeof(time_buf));
2124 	fprintf(fp, "# time of last sample : %s\n", time_buf);
2125 
2126 	d = (double)(session->evlist->last_sample_time -
2127 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
2128 
2129 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
2130 }
2131 
2132 static void memory_node__fprintf(struct memory_node *n,
2133 				 unsigned long long bsize, FILE *fp)
2134 {
2135 	char buf_map[100], buf_size[50];
2136 	unsigned long long size;
2137 
2138 	size = bsize * bitmap_weight(n->set, n->size);
2139 	unit_number__scnprintf(buf_size, 50, size);
2140 
2141 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
2142 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2143 }
2144 
2145 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2146 {
2147 	struct memory_node *nodes;
2148 	int i, nr;
2149 
2150 	nodes = ff->ph->env.memory_nodes;
2151 	nr    = ff->ph->env.nr_memory_nodes;
2152 
2153 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2154 		nr, ff->ph->env.memory_bsize);
2155 
2156 	for (i = 0; i < nr; i++) {
2157 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2158 	}
2159 }
2160 
2161 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2162 				    char *filename,
2163 				    struct perf_session *session)
2164 {
2165 	int err = -1;
2166 	struct machine *machine;
2167 	u16 cpumode;
2168 	struct dso *dso;
2169 	enum dso_space_type dso_space;
2170 
2171 	machine = perf_session__findnew_machine(session, bev->pid);
2172 	if (!machine)
2173 		goto out;
2174 
2175 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2176 
2177 	switch (cpumode) {
2178 	case PERF_RECORD_MISC_KERNEL:
2179 		dso_space = DSO_SPACE__KERNEL;
2180 		break;
2181 	case PERF_RECORD_MISC_GUEST_KERNEL:
2182 		dso_space = DSO_SPACE__KERNEL_GUEST;
2183 		break;
2184 	case PERF_RECORD_MISC_USER:
2185 	case PERF_RECORD_MISC_GUEST_USER:
2186 		dso_space = DSO_SPACE__USER;
2187 		break;
2188 	default:
2189 		goto out;
2190 	}
2191 
2192 	dso = machine__findnew_dso(machine, filename);
2193 	if (dso != NULL) {
2194 		char sbuild_id[SBUILD_ID_SIZE];
2195 		struct build_id bid;
2196 		size_t size = BUILD_ID_SIZE;
2197 
2198 		if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2199 			size = bev->size;
2200 
2201 		build_id__init(&bid, bev->data, size);
2202 		dso__set_build_id(dso, &bid);
2203 
2204 		if (dso_space != DSO_SPACE__USER) {
2205 			struct kmod_path m = { .name = NULL, };
2206 
2207 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2208 				dso__set_module_info(dso, &m, machine);
2209 
2210 			dso->kernel = dso_space;
2211 			free(m.name);
2212 		}
2213 
2214 		build_id__sprintf(&dso->bid, sbuild_id);
2215 		pr_debug("build id event received for %s: %s [%zu]\n",
2216 			 dso->long_name, sbuild_id, size);
2217 		dso__put(dso);
2218 	}
2219 
2220 	err = 0;
2221 out:
2222 	return err;
2223 }
2224 
2225 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2226 						 int input, u64 offset, u64 size)
2227 {
2228 	struct perf_session *session = container_of(header, struct perf_session, header);
2229 	struct {
2230 		struct perf_event_header   header;
2231 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2232 		char			   filename[0];
2233 	} old_bev;
2234 	struct perf_record_header_build_id bev;
2235 	char filename[PATH_MAX];
2236 	u64 limit = offset + size;
2237 
2238 	while (offset < limit) {
2239 		ssize_t len;
2240 
2241 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2242 			return -1;
2243 
2244 		if (header->needs_swap)
2245 			perf_event_header__bswap(&old_bev.header);
2246 
2247 		len = old_bev.header.size - sizeof(old_bev);
2248 		if (readn(input, filename, len) != len)
2249 			return -1;
2250 
2251 		bev.header = old_bev.header;
2252 
2253 		/*
2254 		 * As the pid is the missing value, we need to fill
2255 		 * it properly. The header.misc value give us nice hint.
2256 		 */
2257 		bev.pid	= HOST_KERNEL_ID;
2258 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2259 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2260 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
2261 
2262 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2263 		__event_process_build_id(&bev, filename, session);
2264 
2265 		offset += bev.header.size;
2266 	}
2267 
2268 	return 0;
2269 }
2270 
2271 static int perf_header__read_build_ids(struct perf_header *header,
2272 				       int input, u64 offset, u64 size)
2273 {
2274 	struct perf_session *session = container_of(header, struct perf_session, header);
2275 	struct perf_record_header_build_id bev;
2276 	char filename[PATH_MAX];
2277 	u64 limit = offset + size, orig_offset = offset;
2278 	int err = -1;
2279 
2280 	while (offset < limit) {
2281 		ssize_t len;
2282 
2283 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2284 			goto out;
2285 
2286 		if (header->needs_swap)
2287 			perf_event_header__bswap(&bev.header);
2288 
2289 		len = bev.header.size - sizeof(bev);
2290 		if (readn(input, filename, len) != len)
2291 			goto out;
2292 		/*
2293 		 * The a1645ce1 changeset:
2294 		 *
2295 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2296 		 *
2297 		 * Added a field to struct perf_record_header_build_id that broke the file
2298 		 * format.
2299 		 *
2300 		 * Since the kernel build-id is the first entry, process the
2301 		 * table using the old format if the well known
2302 		 * '[kernel.kallsyms]' string for the kernel build-id has the
2303 		 * first 4 characters chopped off (where the pid_t sits).
2304 		 */
2305 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2306 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2307 				return -1;
2308 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2309 		}
2310 
2311 		__event_process_build_id(&bev, filename, session);
2312 
2313 		offset += bev.header.size;
2314 	}
2315 	err = 0;
2316 out:
2317 	return err;
2318 }
2319 
2320 /* Macro for features that simply need to read and store a string. */
2321 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2322 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2323 {\
2324 	ff->ph->env.__feat_env = do_read_string(ff); \
2325 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2326 }
2327 
2328 FEAT_PROCESS_STR_FUN(hostname, hostname);
2329 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2330 FEAT_PROCESS_STR_FUN(version, version);
2331 FEAT_PROCESS_STR_FUN(arch, arch);
2332 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2333 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2334 
2335 static int process_tracing_data(struct feat_fd *ff, void *data)
2336 {
2337 	ssize_t ret = trace_report(ff->fd, data, false);
2338 
2339 	return ret < 0 ? -1 : 0;
2340 }
2341 
2342 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2343 {
2344 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2345 		pr_debug("Failed to read buildids, continuing...\n");
2346 	return 0;
2347 }
2348 
2349 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2350 {
2351 	int ret;
2352 	u32 nr_cpus_avail, nr_cpus_online;
2353 
2354 	ret = do_read_u32(ff, &nr_cpus_avail);
2355 	if (ret)
2356 		return ret;
2357 
2358 	ret = do_read_u32(ff, &nr_cpus_online);
2359 	if (ret)
2360 		return ret;
2361 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2362 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2363 	return 0;
2364 }
2365 
2366 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2367 {
2368 	u64 total_mem;
2369 	int ret;
2370 
2371 	ret = do_read_u64(ff, &total_mem);
2372 	if (ret)
2373 		return -1;
2374 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2375 	return 0;
2376 }
2377 
2378 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2379 {
2380 	struct evsel *evsel;
2381 
2382 	evlist__for_each_entry(evlist, evsel) {
2383 		if (evsel->core.idx == idx)
2384 			return evsel;
2385 	}
2386 
2387 	return NULL;
2388 }
2389 
2390 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2391 {
2392 	struct evsel *evsel;
2393 
2394 	if (!event->name)
2395 		return;
2396 
2397 	evsel = evlist__find_by_index(evlist, event->core.idx);
2398 	if (!evsel)
2399 		return;
2400 
2401 	if (evsel->name)
2402 		return;
2403 
2404 	evsel->name = strdup(event->name);
2405 }
2406 
2407 static int
2408 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2409 {
2410 	struct perf_session *session;
2411 	struct evsel *evsel, *events = read_event_desc(ff);
2412 
2413 	if (!events)
2414 		return 0;
2415 
2416 	session = container_of(ff->ph, struct perf_session, header);
2417 
2418 	if (session->data->is_pipe) {
2419 		/* Save events for reading later by print_event_desc,
2420 		 * since they can't be read again in pipe mode. */
2421 		ff->events = events;
2422 	}
2423 
2424 	for (evsel = events; evsel->core.attr.size; evsel++)
2425 		evlist__set_event_name(session->evlist, evsel);
2426 
2427 	if (!session->data->is_pipe)
2428 		free_event_desc(events);
2429 
2430 	return 0;
2431 }
2432 
2433 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2434 {
2435 	char *str, *cmdline = NULL, **argv = NULL;
2436 	u32 nr, i, len = 0;
2437 
2438 	if (do_read_u32(ff, &nr))
2439 		return -1;
2440 
2441 	ff->ph->env.nr_cmdline = nr;
2442 
2443 	cmdline = zalloc(ff->size + nr + 1);
2444 	if (!cmdline)
2445 		return -1;
2446 
2447 	argv = zalloc(sizeof(char *) * (nr + 1));
2448 	if (!argv)
2449 		goto error;
2450 
2451 	for (i = 0; i < nr; i++) {
2452 		str = do_read_string(ff);
2453 		if (!str)
2454 			goto error;
2455 
2456 		argv[i] = cmdline + len;
2457 		memcpy(argv[i], str, strlen(str) + 1);
2458 		len += strlen(str) + 1;
2459 		free(str);
2460 	}
2461 	ff->ph->env.cmdline = cmdline;
2462 	ff->ph->env.cmdline_argv = (const char **) argv;
2463 	return 0;
2464 
2465 error:
2466 	free(argv);
2467 	free(cmdline);
2468 	return -1;
2469 }
2470 
2471 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2472 {
2473 	u32 nr, i;
2474 	char *str;
2475 	struct strbuf sb;
2476 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2477 	u64 size = 0;
2478 	struct perf_header *ph = ff->ph;
2479 	bool do_core_id_test = true;
2480 
2481 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2482 	if (!ph->env.cpu)
2483 		return -1;
2484 
2485 	if (do_read_u32(ff, &nr))
2486 		goto free_cpu;
2487 
2488 	ph->env.nr_sibling_cores = nr;
2489 	size += sizeof(u32);
2490 	if (strbuf_init(&sb, 128) < 0)
2491 		goto free_cpu;
2492 
2493 	for (i = 0; i < nr; i++) {
2494 		str = do_read_string(ff);
2495 		if (!str)
2496 			goto error;
2497 
2498 		/* include a NULL character at the end */
2499 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2500 			goto error;
2501 		size += string_size(str);
2502 		free(str);
2503 	}
2504 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2505 
2506 	if (do_read_u32(ff, &nr))
2507 		return -1;
2508 
2509 	ph->env.nr_sibling_threads = nr;
2510 	size += sizeof(u32);
2511 
2512 	for (i = 0; i < nr; i++) {
2513 		str = do_read_string(ff);
2514 		if (!str)
2515 			goto error;
2516 
2517 		/* include a NULL character at the end */
2518 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2519 			goto error;
2520 		size += string_size(str);
2521 		free(str);
2522 	}
2523 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2524 
2525 	/*
2526 	 * The header may be from old perf,
2527 	 * which doesn't include core id and socket id information.
2528 	 */
2529 	if (ff->size <= size) {
2530 		zfree(&ph->env.cpu);
2531 		return 0;
2532 	}
2533 
2534 	/* On s390 the socket_id number is not related to the numbers of cpus.
2535 	 * The socket_id number might be higher than the numbers of cpus.
2536 	 * This depends on the configuration.
2537 	 * AArch64 is the same.
2538 	 */
2539 	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2540 			  || !strncmp(ph->env.arch, "aarch64", 7)))
2541 		do_core_id_test = false;
2542 
2543 	for (i = 0; i < (u32)cpu_nr; i++) {
2544 		if (do_read_u32(ff, &nr))
2545 			goto free_cpu;
2546 
2547 		ph->env.cpu[i].core_id = nr;
2548 		size += sizeof(u32);
2549 
2550 		if (do_read_u32(ff, &nr))
2551 			goto free_cpu;
2552 
2553 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2554 			pr_debug("socket_id number is too big."
2555 				 "You may need to upgrade the perf tool.\n");
2556 			goto free_cpu;
2557 		}
2558 
2559 		ph->env.cpu[i].socket_id = nr;
2560 		size += sizeof(u32);
2561 	}
2562 
2563 	/*
2564 	 * The header may be from old perf,
2565 	 * which doesn't include die information.
2566 	 */
2567 	if (ff->size <= size)
2568 		return 0;
2569 
2570 	if (do_read_u32(ff, &nr))
2571 		return -1;
2572 
2573 	ph->env.nr_sibling_dies = nr;
2574 	size += sizeof(u32);
2575 
2576 	for (i = 0; i < nr; i++) {
2577 		str = do_read_string(ff);
2578 		if (!str)
2579 			goto error;
2580 
2581 		/* include a NULL character at the end */
2582 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2583 			goto error;
2584 		size += string_size(str);
2585 		free(str);
2586 	}
2587 	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2588 
2589 	for (i = 0; i < (u32)cpu_nr; i++) {
2590 		if (do_read_u32(ff, &nr))
2591 			goto free_cpu;
2592 
2593 		ph->env.cpu[i].die_id = nr;
2594 	}
2595 
2596 	return 0;
2597 
2598 error:
2599 	strbuf_release(&sb);
2600 free_cpu:
2601 	zfree(&ph->env.cpu);
2602 	return -1;
2603 }
2604 
2605 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2606 {
2607 	struct numa_node *nodes, *n;
2608 	u32 nr, i;
2609 	char *str;
2610 
2611 	/* nr nodes */
2612 	if (do_read_u32(ff, &nr))
2613 		return -1;
2614 
2615 	nodes = zalloc(sizeof(*nodes) * nr);
2616 	if (!nodes)
2617 		return -ENOMEM;
2618 
2619 	for (i = 0; i < nr; i++) {
2620 		n = &nodes[i];
2621 
2622 		/* node number */
2623 		if (do_read_u32(ff, &n->node))
2624 			goto error;
2625 
2626 		if (do_read_u64(ff, &n->mem_total))
2627 			goto error;
2628 
2629 		if (do_read_u64(ff, &n->mem_free))
2630 			goto error;
2631 
2632 		str = do_read_string(ff);
2633 		if (!str)
2634 			goto error;
2635 
2636 		n->map = perf_cpu_map__new(str);
2637 		if (!n->map)
2638 			goto error;
2639 
2640 		free(str);
2641 	}
2642 	ff->ph->env.nr_numa_nodes = nr;
2643 	ff->ph->env.numa_nodes = nodes;
2644 	return 0;
2645 
2646 error:
2647 	free(nodes);
2648 	return -1;
2649 }
2650 
2651 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2652 {
2653 	char *name;
2654 	u32 pmu_num;
2655 	u32 type;
2656 	struct strbuf sb;
2657 
2658 	if (do_read_u32(ff, &pmu_num))
2659 		return -1;
2660 
2661 	if (!pmu_num) {
2662 		pr_debug("pmu mappings not available\n");
2663 		return 0;
2664 	}
2665 
2666 	ff->ph->env.nr_pmu_mappings = pmu_num;
2667 	if (strbuf_init(&sb, 128) < 0)
2668 		return -1;
2669 
2670 	while (pmu_num) {
2671 		if (do_read_u32(ff, &type))
2672 			goto error;
2673 
2674 		name = do_read_string(ff);
2675 		if (!name)
2676 			goto error;
2677 
2678 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2679 			goto error;
2680 		/* include a NULL character at the end */
2681 		if (strbuf_add(&sb, "", 1) < 0)
2682 			goto error;
2683 
2684 		if (!strcmp(name, "msr"))
2685 			ff->ph->env.msr_pmu_type = type;
2686 
2687 		free(name);
2688 		pmu_num--;
2689 	}
2690 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2691 	return 0;
2692 
2693 error:
2694 	strbuf_release(&sb);
2695 	return -1;
2696 }
2697 
2698 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2699 {
2700 	size_t ret = -1;
2701 	u32 i, nr, nr_groups;
2702 	struct perf_session *session;
2703 	struct evsel *evsel, *leader = NULL;
2704 	struct group_desc {
2705 		char *name;
2706 		u32 leader_idx;
2707 		u32 nr_members;
2708 	} *desc;
2709 
2710 	if (do_read_u32(ff, &nr_groups))
2711 		return -1;
2712 
2713 	ff->ph->env.nr_groups = nr_groups;
2714 	if (!nr_groups) {
2715 		pr_debug("group desc not available\n");
2716 		return 0;
2717 	}
2718 
2719 	desc = calloc(nr_groups, sizeof(*desc));
2720 	if (!desc)
2721 		return -1;
2722 
2723 	for (i = 0; i < nr_groups; i++) {
2724 		desc[i].name = do_read_string(ff);
2725 		if (!desc[i].name)
2726 			goto out_free;
2727 
2728 		if (do_read_u32(ff, &desc[i].leader_idx))
2729 			goto out_free;
2730 
2731 		if (do_read_u32(ff, &desc[i].nr_members))
2732 			goto out_free;
2733 	}
2734 
2735 	/*
2736 	 * Rebuild group relationship based on the group_desc
2737 	 */
2738 	session = container_of(ff->ph, struct perf_session, header);
2739 	session->evlist->core.nr_groups = nr_groups;
2740 
2741 	i = nr = 0;
2742 	evlist__for_each_entry(session->evlist, evsel) {
2743 		if (evsel->core.idx == (int) desc[i].leader_idx) {
2744 			evsel__set_leader(evsel, evsel);
2745 			/* {anon_group} is a dummy name */
2746 			if (strcmp(desc[i].name, "{anon_group}")) {
2747 				evsel->group_name = desc[i].name;
2748 				desc[i].name = NULL;
2749 			}
2750 			evsel->core.nr_members = desc[i].nr_members;
2751 
2752 			if (i >= nr_groups || nr > 0) {
2753 				pr_debug("invalid group desc\n");
2754 				goto out_free;
2755 			}
2756 
2757 			leader = evsel;
2758 			nr = evsel->core.nr_members - 1;
2759 			i++;
2760 		} else if (nr) {
2761 			/* This is a group member */
2762 			evsel__set_leader(evsel, leader);
2763 
2764 			nr--;
2765 		}
2766 	}
2767 
2768 	if (i != nr_groups || nr != 0) {
2769 		pr_debug("invalid group desc\n");
2770 		goto out_free;
2771 	}
2772 
2773 	ret = 0;
2774 out_free:
2775 	for (i = 0; i < nr_groups; i++)
2776 		zfree(&desc[i].name);
2777 	free(desc);
2778 
2779 	return ret;
2780 }
2781 
2782 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2783 {
2784 	struct perf_session *session;
2785 	int err;
2786 
2787 	session = container_of(ff->ph, struct perf_session, header);
2788 
2789 	err = auxtrace_index__process(ff->fd, ff->size, session,
2790 				      ff->ph->needs_swap);
2791 	if (err < 0)
2792 		pr_err("Failed to process auxtrace index\n");
2793 	return err;
2794 }
2795 
2796 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2797 {
2798 	struct cpu_cache_level *caches;
2799 	u32 cnt, i, version;
2800 
2801 	if (do_read_u32(ff, &version))
2802 		return -1;
2803 
2804 	if (version != 1)
2805 		return -1;
2806 
2807 	if (do_read_u32(ff, &cnt))
2808 		return -1;
2809 
2810 	caches = zalloc(sizeof(*caches) * cnt);
2811 	if (!caches)
2812 		return -1;
2813 
2814 	for (i = 0; i < cnt; i++) {
2815 		struct cpu_cache_level c;
2816 
2817 		#define _R(v)						\
2818 			if (do_read_u32(ff, &c.v))\
2819 				goto out_free_caches;			\
2820 
2821 		_R(level)
2822 		_R(line_size)
2823 		_R(sets)
2824 		_R(ways)
2825 		#undef _R
2826 
2827 		#define _R(v)					\
2828 			c.v = do_read_string(ff);		\
2829 			if (!c.v)				\
2830 				goto out_free_caches;
2831 
2832 		_R(type)
2833 		_R(size)
2834 		_R(map)
2835 		#undef _R
2836 
2837 		caches[i] = c;
2838 	}
2839 
2840 	ff->ph->env.caches = caches;
2841 	ff->ph->env.caches_cnt = cnt;
2842 	return 0;
2843 out_free_caches:
2844 	free(caches);
2845 	return -1;
2846 }
2847 
2848 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2849 {
2850 	struct perf_session *session;
2851 	u64 first_sample_time, last_sample_time;
2852 	int ret;
2853 
2854 	session = container_of(ff->ph, struct perf_session, header);
2855 
2856 	ret = do_read_u64(ff, &first_sample_time);
2857 	if (ret)
2858 		return -1;
2859 
2860 	ret = do_read_u64(ff, &last_sample_time);
2861 	if (ret)
2862 		return -1;
2863 
2864 	session->evlist->first_sample_time = first_sample_time;
2865 	session->evlist->last_sample_time = last_sample_time;
2866 	return 0;
2867 }
2868 
2869 static int process_mem_topology(struct feat_fd *ff,
2870 				void *data __maybe_unused)
2871 {
2872 	struct memory_node *nodes;
2873 	u64 version, i, nr, bsize;
2874 	int ret = -1;
2875 
2876 	if (do_read_u64(ff, &version))
2877 		return -1;
2878 
2879 	if (version != 1)
2880 		return -1;
2881 
2882 	if (do_read_u64(ff, &bsize))
2883 		return -1;
2884 
2885 	if (do_read_u64(ff, &nr))
2886 		return -1;
2887 
2888 	nodes = zalloc(sizeof(*nodes) * nr);
2889 	if (!nodes)
2890 		return -1;
2891 
2892 	for (i = 0; i < nr; i++) {
2893 		struct memory_node n;
2894 
2895 		#define _R(v)				\
2896 			if (do_read_u64(ff, &n.v))	\
2897 				goto out;		\
2898 
2899 		_R(node)
2900 		_R(size)
2901 
2902 		#undef _R
2903 
2904 		if (do_read_bitmap(ff, &n.set, &n.size))
2905 			goto out;
2906 
2907 		nodes[i] = n;
2908 	}
2909 
2910 	ff->ph->env.memory_bsize    = bsize;
2911 	ff->ph->env.memory_nodes    = nodes;
2912 	ff->ph->env.nr_memory_nodes = nr;
2913 	ret = 0;
2914 
2915 out:
2916 	if (ret)
2917 		free(nodes);
2918 	return ret;
2919 }
2920 
2921 static int process_clockid(struct feat_fd *ff,
2922 			   void *data __maybe_unused)
2923 {
2924 	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2925 		return -1;
2926 
2927 	return 0;
2928 }
2929 
2930 static int process_clock_data(struct feat_fd *ff,
2931 			      void *_data __maybe_unused)
2932 {
2933 	u32 data32;
2934 	u64 data64;
2935 
2936 	/* version */
2937 	if (do_read_u32(ff, &data32))
2938 		return -1;
2939 
2940 	if (data32 != 1)
2941 		return -1;
2942 
2943 	/* clockid */
2944 	if (do_read_u32(ff, &data32))
2945 		return -1;
2946 
2947 	ff->ph->env.clock.clockid = data32;
2948 
2949 	/* TOD ref time */
2950 	if (do_read_u64(ff, &data64))
2951 		return -1;
2952 
2953 	ff->ph->env.clock.tod_ns = data64;
2954 
2955 	/* clockid ref time */
2956 	if (do_read_u64(ff, &data64))
2957 		return -1;
2958 
2959 	ff->ph->env.clock.clockid_ns = data64;
2960 	ff->ph->env.clock.enabled = true;
2961 	return 0;
2962 }
2963 
2964 static int process_hybrid_topology(struct feat_fd *ff,
2965 				   void *data __maybe_unused)
2966 {
2967 	struct hybrid_node *nodes, *n;
2968 	u32 nr, i;
2969 
2970 	/* nr nodes */
2971 	if (do_read_u32(ff, &nr))
2972 		return -1;
2973 
2974 	nodes = zalloc(sizeof(*nodes) * nr);
2975 	if (!nodes)
2976 		return -ENOMEM;
2977 
2978 	for (i = 0; i < nr; i++) {
2979 		n = &nodes[i];
2980 
2981 		n->pmu_name = do_read_string(ff);
2982 		if (!n->pmu_name)
2983 			goto error;
2984 
2985 		n->cpus = do_read_string(ff);
2986 		if (!n->cpus)
2987 			goto error;
2988 	}
2989 
2990 	ff->ph->env.nr_hybrid_nodes = nr;
2991 	ff->ph->env.hybrid_nodes = nodes;
2992 	return 0;
2993 
2994 error:
2995 	for (i = 0; i < nr; i++) {
2996 		free(nodes[i].pmu_name);
2997 		free(nodes[i].cpus);
2998 	}
2999 
3000 	free(nodes);
3001 	return -1;
3002 }
3003 
3004 static int process_dir_format(struct feat_fd *ff,
3005 			      void *_data __maybe_unused)
3006 {
3007 	struct perf_session *session;
3008 	struct perf_data *data;
3009 
3010 	session = container_of(ff->ph, struct perf_session, header);
3011 	data = session->data;
3012 
3013 	if (WARN_ON(!perf_data__is_dir(data)))
3014 		return -1;
3015 
3016 	return do_read_u64(ff, &data->dir.version);
3017 }
3018 
3019 #ifdef HAVE_LIBBPF_SUPPORT
3020 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3021 {
3022 	struct bpf_prog_info_node *info_node;
3023 	struct perf_env *env = &ff->ph->env;
3024 	struct perf_bpil *info_linear;
3025 	u32 count, i;
3026 	int err = -1;
3027 
3028 	if (ff->ph->needs_swap) {
3029 		pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3030 		return 0;
3031 	}
3032 
3033 	if (do_read_u32(ff, &count))
3034 		return -1;
3035 
3036 	down_write(&env->bpf_progs.lock);
3037 
3038 	for (i = 0; i < count; ++i) {
3039 		u32 info_len, data_len;
3040 
3041 		info_linear = NULL;
3042 		info_node = NULL;
3043 		if (do_read_u32(ff, &info_len))
3044 			goto out;
3045 		if (do_read_u32(ff, &data_len))
3046 			goto out;
3047 
3048 		if (info_len > sizeof(struct bpf_prog_info)) {
3049 			pr_warning("detected invalid bpf_prog_info\n");
3050 			goto out;
3051 		}
3052 
3053 		info_linear = malloc(sizeof(struct perf_bpil) +
3054 				     data_len);
3055 		if (!info_linear)
3056 			goto out;
3057 		info_linear->info_len = sizeof(struct bpf_prog_info);
3058 		info_linear->data_len = data_len;
3059 		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3060 			goto out;
3061 		if (__do_read(ff, &info_linear->info, info_len))
3062 			goto out;
3063 		if (info_len < sizeof(struct bpf_prog_info))
3064 			memset(((void *)(&info_linear->info)) + info_len, 0,
3065 			       sizeof(struct bpf_prog_info) - info_len);
3066 
3067 		if (__do_read(ff, info_linear->data, data_len))
3068 			goto out;
3069 
3070 		info_node = malloc(sizeof(struct bpf_prog_info_node));
3071 		if (!info_node)
3072 			goto out;
3073 
3074 		/* after reading from file, translate offset to address */
3075 		bpil_offs_to_addr(info_linear);
3076 		info_node->info_linear = info_linear;
3077 		perf_env__insert_bpf_prog_info(env, info_node);
3078 	}
3079 
3080 	up_write(&env->bpf_progs.lock);
3081 	return 0;
3082 out:
3083 	free(info_linear);
3084 	free(info_node);
3085 	up_write(&env->bpf_progs.lock);
3086 	return err;
3087 }
3088 
3089 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3090 {
3091 	struct perf_env *env = &ff->ph->env;
3092 	struct btf_node *node = NULL;
3093 	u32 count, i;
3094 	int err = -1;
3095 
3096 	if (ff->ph->needs_swap) {
3097 		pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3098 		return 0;
3099 	}
3100 
3101 	if (do_read_u32(ff, &count))
3102 		return -1;
3103 
3104 	down_write(&env->bpf_progs.lock);
3105 
3106 	for (i = 0; i < count; ++i) {
3107 		u32 id, data_size;
3108 
3109 		if (do_read_u32(ff, &id))
3110 			goto out;
3111 		if (do_read_u32(ff, &data_size))
3112 			goto out;
3113 
3114 		node = malloc(sizeof(struct btf_node) + data_size);
3115 		if (!node)
3116 			goto out;
3117 
3118 		node->id = id;
3119 		node->data_size = data_size;
3120 
3121 		if (__do_read(ff, node->data, data_size))
3122 			goto out;
3123 
3124 		perf_env__insert_btf(env, node);
3125 		node = NULL;
3126 	}
3127 
3128 	err = 0;
3129 out:
3130 	up_write(&env->bpf_progs.lock);
3131 	free(node);
3132 	return err;
3133 }
3134 #endif // HAVE_LIBBPF_SUPPORT
3135 
3136 static int process_compressed(struct feat_fd *ff,
3137 			      void *data __maybe_unused)
3138 {
3139 	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3140 		return -1;
3141 
3142 	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3143 		return -1;
3144 
3145 	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3146 		return -1;
3147 
3148 	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3149 		return -1;
3150 
3151 	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3152 		return -1;
3153 
3154 	return 0;
3155 }
3156 
3157 static int process_per_cpu_pmu_caps(struct feat_fd *ff, int *nr_cpu_pmu_caps,
3158 				    char **cpu_pmu_caps,
3159 				    unsigned int *max_branches)
3160 {
3161 	char *name, *value;
3162 	struct strbuf sb;
3163 	u32 nr_caps;
3164 
3165 	if (do_read_u32(ff, &nr_caps))
3166 		return -1;
3167 
3168 	if (!nr_caps) {
3169 		pr_debug("cpu pmu capabilities not available\n");
3170 		return 0;
3171 	}
3172 
3173 	*nr_cpu_pmu_caps = nr_caps;
3174 
3175 	if (strbuf_init(&sb, 128) < 0)
3176 		return -1;
3177 
3178 	while (nr_caps--) {
3179 		name = do_read_string(ff);
3180 		if (!name)
3181 			goto error;
3182 
3183 		value = do_read_string(ff);
3184 		if (!value)
3185 			goto free_name;
3186 
3187 		if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
3188 			goto free_value;
3189 
3190 		/* include a NULL character at the end */
3191 		if (strbuf_add(&sb, "", 1) < 0)
3192 			goto free_value;
3193 
3194 		if (!strcmp(name, "branches"))
3195 			*max_branches = atoi(value);
3196 
3197 		free(value);
3198 		free(name);
3199 	}
3200 	*cpu_pmu_caps = strbuf_detach(&sb, NULL);
3201 	return 0;
3202 
3203 free_value:
3204 	free(value);
3205 free_name:
3206 	free(name);
3207 error:
3208 	strbuf_release(&sb);
3209 	return -1;
3210 }
3211 
3212 static int process_cpu_pmu_caps(struct feat_fd *ff,
3213 				void *data __maybe_unused)
3214 {
3215 	return process_per_cpu_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3216 					&ff->ph->env.cpu_pmu_caps,
3217 					&ff->ph->env.max_branches);
3218 }
3219 
3220 static int process_hybrid_cpu_pmu_caps(struct feat_fd *ff,
3221 				       void *data __maybe_unused)
3222 {
3223 	struct hybrid_cpc_node *nodes;
3224 	u32 nr_pmu, i;
3225 	int ret;
3226 
3227 	if (do_read_u32(ff, &nr_pmu))
3228 		return -1;
3229 
3230 	if (!nr_pmu) {
3231 		pr_debug("hybrid cpu pmu capabilities not available\n");
3232 		return 0;
3233 	}
3234 
3235 	nodes = zalloc(sizeof(*nodes) * nr_pmu);
3236 	if (!nodes)
3237 		return -ENOMEM;
3238 
3239 	for (i = 0; i < nr_pmu; i++) {
3240 		struct hybrid_cpc_node *n = &nodes[i];
3241 
3242 		ret = process_per_cpu_pmu_caps(ff, &n->nr_cpu_pmu_caps,
3243 					       &n->cpu_pmu_caps,
3244 					       &n->max_branches);
3245 		if (ret)
3246 			goto err;
3247 
3248 		n->pmu_name = do_read_string(ff);
3249 		if (!n->pmu_name) {
3250 			ret = -1;
3251 			goto err;
3252 		}
3253 	}
3254 
3255 	ff->ph->env.nr_hybrid_cpc_nodes = nr_pmu;
3256 	ff->ph->env.hybrid_cpc_nodes = nodes;
3257 	return 0;
3258 
3259 err:
3260 	for (i = 0; i < nr_pmu; i++) {
3261 		free(nodes[i].cpu_pmu_caps);
3262 		free(nodes[i].pmu_name);
3263 	}
3264 
3265 	free(nodes);
3266 	return ret;
3267 }
3268 
3269 #define FEAT_OPR(n, func, __full_only) \
3270 	[HEADER_##n] = {					\
3271 		.name	    = __stringify(n),			\
3272 		.write	    = write_##func,			\
3273 		.print	    = print_##func,			\
3274 		.full_only  = __full_only,			\
3275 		.process    = process_##func,			\
3276 		.synthesize = true				\
3277 	}
3278 
3279 #define FEAT_OPN(n, func, __full_only) \
3280 	[HEADER_##n] = {					\
3281 		.name	    = __stringify(n),			\
3282 		.write	    = write_##func,			\
3283 		.print	    = print_##func,			\
3284 		.full_only  = __full_only,			\
3285 		.process    = process_##func			\
3286 	}
3287 
3288 /* feature_ops not implemented: */
3289 #define print_tracing_data	NULL
3290 #define print_build_id		NULL
3291 
3292 #define process_branch_stack	NULL
3293 #define process_stat		NULL
3294 
3295 // Only used in util/synthetic-events.c
3296 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3297 
3298 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3299 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
3300 	FEAT_OPN(BUILD_ID,	build_id,	false),
3301 	FEAT_OPR(HOSTNAME,	hostname,	false),
3302 	FEAT_OPR(OSRELEASE,	osrelease,	false),
3303 	FEAT_OPR(VERSION,	version,	false),
3304 	FEAT_OPR(ARCH,		arch,		false),
3305 	FEAT_OPR(NRCPUS,	nrcpus,		false),
3306 	FEAT_OPR(CPUDESC,	cpudesc,	false),
3307 	FEAT_OPR(CPUID,		cpuid,		false),
3308 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
3309 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
3310 	FEAT_OPR(CMDLINE,	cmdline,	false),
3311 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
3312 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
3313 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
3314 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3315 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3316 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
3317 	FEAT_OPN(STAT,		stat,		false),
3318 	FEAT_OPN(CACHE,		cache,		true),
3319 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3320 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3321 	FEAT_OPR(CLOCKID,	clockid,	false),
3322 	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3323 #ifdef HAVE_LIBBPF_SUPPORT
3324 	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3325 	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3326 #endif
3327 	FEAT_OPR(COMPRESSED,	compressed,	false),
3328 	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3329 	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3330 	FEAT_OPN(HYBRID_TOPOLOGY,	hybrid_topology,	true),
3331 	FEAT_OPR(HYBRID_CPU_PMU_CAPS,	hybrid_cpu_pmu_caps,	false),
3332 };
3333 
3334 struct header_print_data {
3335 	FILE *fp;
3336 	bool full; /* extended list of headers */
3337 };
3338 
3339 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3340 					   struct perf_header *ph,
3341 					   int feat, int fd, void *data)
3342 {
3343 	struct header_print_data *hd = data;
3344 	struct feat_fd ff;
3345 
3346 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3347 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3348 				"%d, continuing...\n", section->offset, feat);
3349 		return 0;
3350 	}
3351 	if (feat >= HEADER_LAST_FEATURE) {
3352 		pr_warning("unknown feature %d\n", feat);
3353 		return 0;
3354 	}
3355 	if (!feat_ops[feat].print)
3356 		return 0;
3357 
3358 	ff = (struct  feat_fd) {
3359 		.fd = fd,
3360 		.ph = ph,
3361 	};
3362 
3363 	if (!feat_ops[feat].full_only || hd->full)
3364 		feat_ops[feat].print(&ff, hd->fp);
3365 	else
3366 		fprintf(hd->fp, "# %s info available, use -I to display\n",
3367 			feat_ops[feat].name);
3368 
3369 	return 0;
3370 }
3371 
3372 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3373 {
3374 	struct header_print_data hd;
3375 	struct perf_header *header = &session->header;
3376 	int fd = perf_data__fd(session->data);
3377 	struct stat st;
3378 	time_t stctime;
3379 	int ret, bit;
3380 
3381 	hd.fp = fp;
3382 	hd.full = full;
3383 
3384 	ret = fstat(fd, &st);
3385 	if (ret == -1)
3386 		return -1;
3387 
3388 	stctime = st.st_mtime;
3389 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3390 
3391 	fprintf(fp, "# header version : %u\n", header->version);
3392 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3393 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3394 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3395 
3396 	perf_header__process_sections(header, fd, &hd,
3397 				      perf_file_section__fprintf_info);
3398 
3399 	if (session->data->is_pipe)
3400 		return 0;
3401 
3402 	fprintf(fp, "# missing features: ");
3403 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3404 		if (bit)
3405 			fprintf(fp, "%s ", feat_ops[bit].name);
3406 	}
3407 
3408 	fprintf(fp, "\n");
3409 	return 0;
3410 }
3411 
3412 static int do_write_feat(struct feat_fd *ff, int type,
3413 			 struct perf_file_section **p,
3414 			 struct evlist *evlist)
3415 {
3416 	int err;
3417 	int ret = 0;
3418 
3419 	if (perf_header__has_feat(ff->ph, type)) {
3420 		if (!feat_ops[type].write)
3421 			return -1;
3422 
3423 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3424 			return -1;
3425 
3426 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3427 
3428 		err = feat_ops[type].write(ff, evlist);
3429 		if (err < 0) {
3430 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3431 
3432 			/* undo anything written */
3433 			lseek(ff->fd, (*p)->offset, SEEK_SET);
3434 
3435 			return -1;
3436 		}
3437 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3438 		(*p)++;
3439 	}
3440 	return ret;
3441 }
3442 
3443 static int perf_header__adds_write(struct perf_header *header,
3444 				   struct evlist *evlist, int fd)
3445 {
3446 	int nr_sections;
3447 	struct feat_fd ff;
3448 	struct perf_file_section *feat_sec, *p;
3449 	int sec_size;
3450 	u64 sec_start;
3451 	int feat;
3452 	int err;
3453 
3454 	ff = (struct feat_fd){
3455 		.fd  = fd,
3456 		.ph = header,
3457 	};
3458 
3459 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3460 	if (!nr_sections)
3461 		return 0;
3462 
3463 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3464 	if (feat_sec == NULL)
3465 		return -ENOMEM;
3466 
3467 	sec_size = sizeof(*feat_sec) * nr_sections;
3468 
3469 	sec_start = header->feat_offset;
3470 	lseek(fd, sec_start + sec_size, SEEK_SET);
3471 
3472 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3473 		if (do_write_feat(&ff, feat, &p, evlist))
3474 			perf_header__clear_feat(header, feat);
3475 	}
3476 
3477 	lseek(fd, sec_start, SEEK_SET);
3478 	/*
3479 	 * may write more than needed due to dropped feature, but
3480 	 * this is okay, reader will skip the missing entries
3481 	 */
3482 	err = do_write(&ff, feat_sec, sec_size);
3483 	if (err < 0)
3484 		pr_debug("failed to write feature section\n");
3485 	free(feat_sec);
3486 	return err;
3487 }
3488 
3489 int perf_header__write_pipe(int fd)
3490 {
3491 	struct perf_pipe_file_header f_header;
3492 	struct feat_fd ff;
3493 	int err;
3494 
3495 	ff = (struct feat_fd){ .fd = fd };
3496 
3497 	f_header = (struct perf_pipe_file_header){
3498 		.magic	   = PERF_MAGIC,
3499 		.size	   = sizeof(f_header),
3500 	};
3501 
3502 	err = do_write(&ff, &f_header, sizeof(f_header));
3503 	if (err < 0) {
3504 		pr_debug("failed to write perf pipe header\n");
3505 		return err;
3506 	}
3507 
3508 	return 0;
3509 }
3510 
3511 int perf_session__write_header(struct perf_session *session,
3512 			       struct evlist *evlist,
3513 			       int fd, bool at_exit)
3514 {
3515 	struct perf_file_header f_header;
3516 	struct perf_file_attr   f_attr;
3517 	struct perf_header *header = &session->header;
3518 	struct evsel *evsel;
3519 	struct feat_fd ff;
3520 	u64 attr_offset;
3521 	int err;
3522 
3523 	ff = (struct feat_fd){ .fd = fd};
3524 	lseek(fd, sizeof(f_header), SEEK_SET);
3525 
3526 	evlist__for_each_entry(session->evlist, evsel) {
3527 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3528 		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3529 		if (err < 0) {
3530 			pr_debug("failed to write perf header\n");
3531 			return err;
3532 		}
3533 	}
3534 
3535 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3536 
3537 	evlist__for_each_entry(evlist, evsel) {
3538 		if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3539 			/*
3540 			 * We are likely in "perf inject" and have read
3541 			 * from an older file. Update attr size so that
3542 			 * reader gets the right offset to the ids.
3543 			 */
3544 			evsel->core.attr.size = sizeof(evsel->core.attr);
3545 		}
3546 		f_attr = (struct perf_file_attr){
3547 			.attr = evsel->core.attr,
3548 			.ids  = {
3549 				.offset = evsel->id_offset,
3550 				.size   = evsel->core.ids * sizeof(u64),
3551 			}
3552 		};
3553 		err = do_write(&ff, &f_attr, sizeof(f_attr));
3554 		if (err < 0) {
3555 			pr_debug("failed to write perf header attribute\n");
3556 			return err;
3557 		}
3558 	}
3559 
3560 	if (!header->data_offset)
3561 		header->data_offset = lseek(fd, 0, SEEK_CUR);
3562 	header->feat_offset = header->data_offset + header->data_size;
3563 
3564 	if (at_exit) {
3565 		err = perf_header__adds_write(header, evlist, fd);
3566 		if (err < 0)
3567 			return err;
3568 	}
3569 
3570 	f_header = (struct perf_file_header){
3571 		.magic	   = PERF_MAGIC,
3572 		.size	   = sizeof(f_header),
3573 		.attr_size = sizeof(f_attr),
3574 		.attrs = {
3575 			.offset = attr_offset,
3576 			.size   = evlist->core.nr_entries * sizeof(f_attr),
3577 		},
3578 		.data = {
3579 			.offset = header->data_offset,
3580 			.size	= header->data_size,
3581 		},
3582 		/* event_types is ignored, store zeros */
3583 	};
3584 
3585 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3586 
3587 	lseek(fd, 0, SEEK_SET);
3588 	err = do_write(&ff, &f_header, sizeof(f_header));
3589 	if (err < 0) {
3590 		pr_debug("failed to write perf header\n");
3591 		return err;
3592 	}
3593 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3594 
3595 	return 0;
3596 }
3597 
3598 static int perf_header__getbuffer64(struct perf_header *header,
3599 				    int fd, void *buf, size_t size)
3600 {
3601 	if (readn(fd, buf, size) <= 0)
3602 		return -1;
3603 
3604 	if (header->needs_swap)
3605 		mem_bswap_64(buf, size);
3606 
3607 	return 0;
3608 }
3609 
3610 int perf_header__process_sections(struct perf_header *header, int fd,
3611 				  void *data,
3612 				  int (*process)(struct perf_file_section *section,
3613 						 struct perf_header *ph,
3614 						 int feat, int fd, void *data))
3615 {
3616 	struct perf_file_section *feat_sec, *sec;
3617 	int nr_sections;
3618 	int sec_size;
3619 	int feat;
3620 	int err;
3621 
3622 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3623 	if (!nr_sections)
3624 		return 0;
3625 
3626 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3627 	if (!feat_sec)
3628 		return -1;
3629 
3630 	sec_size = sizeof(*feat_sec) * nr_sections;
3631 
3632 	lseek(fd, header->feat_offset, SEEK_SET);
3633 
3634 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3635 	if (err < 0)
3636 		goto out_free;
3637 
3638 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3639 		err = process(sec++, header, feat, fd, data);
3640 		if (err < 0)
3641 			goto out_free;
3642 	}
3643 	err = 0;
3644 out_free:
3645 	free(feat_sec);
3646 	return err;
3647 }
3648 
3649 static const int attr_file_abi_sizes[] = {
3650 	[0] = PERF_ATTR_SIZE_VER0,
3651 	[1] = PERF_ATTR_SIZE_VER1,
3652 	[2] = PERF_ATTR_SIZE_VER2,
3653 	[3] = PERF_ATTR_SIZE_VER3,
3654 	[4] = PERF_ATTR_SIZE_VER4,
3655 	0,
3656 };
3657 
3658 /*
3659  * In the legacy file format, the magic number is not used to encode endianness.
3660  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3661  * on ABI revisions, we need to try all combinations for all endianness to
3662  * detect the endianness.
3663  */
3664 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3665 {
3666 	uint64_t ref_size, attr_size;
3667 	int i;
3668 
3669 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3670 		ref_size = attr_file_abi_sizes[i]
3671 			 + sizeof(struct perf_file_section);
3672 		if (hdr_sz != ref_size) {
3673 			attr_size = bswap_64(hdr_sz);
3674 			if (attr_size != ref_size)
3675 				continue;
3676 
3677 			ph->needs_swap = true;
3678 		}
3679 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3680 			 i,
3681 			 ph->needs_swap);
3682 		return 0;
3683 	}
3684 	/* could not determine endianness */
3685 	return -1;
3686 }
3687 
3688 #define PERF_PIPE_HDR_VER0	16
3689 
3690 static const size_t attr_pipe_abi_sizes[] = {
3691 	[0] = PERF_PIPE_HDR_VER0,
3692 	0,
3693 };
3694 
3695 /*
3696  * In the legacy pipe format, there is an implicit assumption that endianness
3697  * between host recording the samples, and host parsing the samples is the
3698  * same. This is not always the case given that the pipe output may always be
3699  * redirected into a file and analyzed on a different machine with possibly a
3700  * different endianness and perf_event ABI revisions in the perf tool itself.
3701  */
3702 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3703 {
3704 	u64 attr_size;
3705 	int i;
3706 
3707 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3708 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3709 			attr_size = bswap_64(hdr_sz);
3710 			if (attr_size != hdr_sz)
3711 				continue;
3712 
3713 			ph->needs_swap = true;
3714 		}
3715 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3716 		return 0;
3717 	}
3718 	return -1;
3719 }
3720 
3721 bool is_perf_magic(u64 magic)
3722 {
3723 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3724 		|| magic == __perf_magic2
3725 		|| magic == __perf_magic2_sw)
3726 		return true;
3727 
3728 	return false;
3729 }
3730 
3731 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3732 			      bool is_pipe, struct perf_header *ph)
3733 {
3734 	int ret;
3735 
3736 	/* check for legacy format */
3737 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3738 	if (ret == 0) {
3739 		ph->version = PERF_HEADER_VERSION_1;
3740 		pr_debug("legacy perf.data format\n");
3741 		if (is_pipe)
3742 			return try_all_pipe_abis(hdr_sz, ph);
3743 
3744 		return try_all_file_abis(hdr_sz, ph);
3745 	}
3746 	/*
3747 	 * the new magic number serves two purposes:
3748 	 * - unique number to identify actual perf.data files
3749 	 * - encode endianness of file
3750 	 */
3751 	ph->version = PERF_HEADER_VERSION_2;
3752 
3753 	/* check magic number with one endianness */
3754 	if (magic == __perf_magic2)
3755 		return 0;
3756 
3757 	/* check magic number with opposite endianness */
3758 	if (magic != __perf_magic2_sw)
3759 		return -1;
3760 
3761 	ph->needs_swap = true;
3762 
3763 	return 0;
3764 }
3765 
3766 int perf_file_header__read(struct perf_file_header *header,
3767 			   struct perf_header *ph, int fd)
3768 {
3769 	ssize_t ret;
3770 
3771 	lseek(fd, 0, SEEK_SET);
3772 
3773 	ret = readn(fd, header, sizeof(*header));
3774 	if (ret <= 0)
3775 		return -1;
3776 
3777 	if (check_magic_endian(header->magic,
3778 			       header->attr_size, false, ph) < 0) {
3779 		pr_debug("magic/endian check failed\n");
3780 		return -1;
3781 	}
3782 
3783 	if (ph->needs_swap) {
3784 		mem_bswap_64(header, offsetof(struct perf_file_header,
3785 			     adds_features));
3786 	}
3787 
3788 	if (header->size != sizeof(*header)) {
3789 		/* Support the previous format */
3790 		if (header->size == offsetof(typeof(*header), adds_features))
3791 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3792 		else
3793 			return -1;
3794 	} else if (ph->needs_swap) {
3795 		/*
3796 		 * feature bitmap is declared as an array of unsigned longs --
3797 		 * not good since its size can differ between the host that
3798 		 * generated the data file and the host analyzing the file.
3799 		 *
3800 		 * We need to handle endianness, but we don't know the size of
3801 		 * the unsigned long where the file was generated. Take a best
3802 		 * guess at determining it: try 64-bit swap first (ie., file
3803 		 * created on a 64-bit host), and check if the hostname feature
3804 		 * bit is set (this feature bit is forced on as of fbe96f2).
3805 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3806 		 * swap. If the hostname bit is still not set (e.g., older data
3807 		 * file), punt and fallback to the original behavior --
3808 		 * clearing all feature bits and setting buildid.
3809 		 */
3810 		mem_bswap_64(&header->adds_features,
3811 			    BITS_TO_U64(HEADER_FEAT_BITS));
3812 
3813 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3814 			/* unswap as u64 */
3815 			mem_bswap_64(&header->adds_features,
3816 				    BITS_TO_U64(HEADER_FEAT_BITS));
3817 
3818 			/* unswap as u32 */
3819 			mem_bswap_32(&header->adds_features,
3820 				    BITS_TO_U32(HEADER_FEAT_BITS));
3821 		}
3822 
3823 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3824 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3825 			set_bit(HEADER_BUILD_ID, header->adds_features);
3826 		}
3827 	}
3828 
3829 	memcpy(&ph->adds_features, &header->adds_features,
3830 	       sizeof(ph->adds_features));
3831 
3832 	ph->data_offset  = header->data.offset;
3833 	ph->data_size	 = header->data.size;
3834 	ph->feat_offset  = header->data.offset + header->data.size;
3835 	return 0;
3836 }
3837 
3838 static int perf_file_section__process(struct perf_file_section *section,
3839 				      struct perf_header *ph,
3840 				      int feat, int fd, void *data)
3841 {
3842 	struct feat_fd fdd = {
3843 		.fd	= fd,
3844 		.ph	= ph,
3845 		.size	= section->size,
3846 		.offset	= section->offset,
3847 	};
3848 
3849 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3850 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3851 			  "%d, continuing...\n", section->offset, feat);
3852 		return 0;
3853 	}
3854 
3855 	if (feat >= HEADER_LAST_FEATURE) {
3856 		pr_debug("unknown feature %d, continuing...\n", feat);
3857 		return 0;
3858 	}
3859 
3860 	if (!feat_ops[feat].process)
3861 		return 0;
3862 
3863 	return feat_ops[feat].process(&fdd, data);
3864 }
3865 
3866 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3867 				       struct perf_header *ph,
3868 				       struct perf_data* data,
3869 				       bool repipe, int repipe_fd)
3870 {
3871 	struct feat_fd ff = {
3872 		.fd = repipe_fd,
3873 		.ph = ph,
3874 	};
3875 	ssize_t ret;
3876 
3877 	ret = perf_data__read(data, header, sizeof(*header));
3878 	if (ret <= 0)
3879 		return -1;
3880 
3881 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3882 		pr_debug("endian/magic failed\n");
3883 		return -1;
3884 	}
3885 
3886 	if (ph->needs_swap)
3887 		header->size = bswap_64(header->size);
3888 
3889 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3890 		return -1;
3891 
3892 	return 0;
3893 }
3894 
3895 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd)
3896 {
3897 	struct perf_header *header = &session->header;
3898 	struct perf_pipe_file_header f_header;
3899 
3900 	if (perf_file_header__read_pipe(&f_header, header, session->data,
3901 					session->repipe, repipe_fd) < 0) {
3902 		pr_debug("incompatible file format\n");
3903 		return -EINVAL;
3904 	}
3905 
3906 	return f_header.size == sizeof(f_header) ? 0 : -1;
3907 }
3908 
3909 static int read_attr(int fd, struct perf_header *ph,
3910 		     struct perf_file_attr *f_attr)
3911 {
3912 	struct perf_event_attr *attr = &f_attr->attr;
3913 	size_t sz, left;
3914 	size_t our_sz = sizeof(f_attr->attr);
3915 	ssize_t ret;
3916 
3917 	memset(f_attr, 0, sizeof(*f_attr));
3918 
3919 	/* read minimal guaranteed structure */
3920 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3921 	if (ret <= 0) {
3922 		pr_debug("cannot read %d bytes of header attr\n",
3923 			 PERF_ATTR_SIZE_VER0);
3924 		return -1;
3925 	}
3926 
3927 	/* on file perf_event_attr size */
3928 	sz = attr->size;
3929 
3930 	if (ph->needs_swap)
3931 		sz = bswap_32(sz);
3932 
3933 	if (sz == 0) {
3934 		/* assume ABI0 */
3935 		sz =  PERF_ATTR_SIZE_VER0;
3936 	} else if (sz > our_sz) {
3937 		pr_debug("file uses a more recent and unsupported ABI"
3938 			 " (%zu bytes extra)\n", sz - our_sz);
3939 		return -1;
3940 	}
3941 	/* what we have not yet read and that we know about */
3942 	left = sz - PERF_ATTR_SIZE_VER0;
3943 	if (left) {
3944 		void *ptr = attr;
3945 		ptr += PERF_ATTR_SIZE_VER0;
3946 
3947 		ret = readn(fd, ptr, left);
3948 	}
3949 	/* read perf_file_section, ids are read in caller */
3950 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3951 
3952 	return ret <= 0 ? -1 : 0;
3953 }
3954 
3955 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
3956 {
3957 	struct tep_event *event;
3958 	char bf[128];
3959 
3960 	/* already prepared */
3961 	if (evsel->tp_format)
3962 		return 0;
3963 
3964 	if (pevent == NULL) {
3965 		pr_debug("broken or missing trace data\n");
3966 		return -1;
3967 	}
3968 
3969 	event = tep_find_event(pevent, evsel->core.attr.config);
3970 	if (event == NULL) {
3971 		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3972 		return -1;
3973 	}
3974 
3975 	if (!evsel->name) {
3976 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3977 		evsel->name = strdup(bf);
3978 		if (evsel->name == NULL)
3979 			return -1;
3980 	}
3981 
3982 	evsel->tp_format = event;
3983 	return 0;
3984 }
3985 
3986 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
3987 {
3988 	struct evsel *pos;
3989 
3990 	evlist__for_each_entry(evlist, pos) {
3991 		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3992 		    evsel__prepare_tracepoint_event(pos, pevent))
3993 			return -1;
3994 	}
3995 
3996 	return 0;
3997 }
3998 
3999 int perf_session__read_header(struct perf_session *session, int repipe_fd)
4000 {
4001 	struct perf_data *data = session->data;
4002 	struct perf_header *header = &session->header;
4003 	struct perf_file_header	f_header;
4004 	struct perf_file_attr	f_attr;
4005 	u64			f_id;
4006 	int nr_attrs, nr_ids, i, j, err;
4007 	int fd = perf_data__fd(data);
4008 
4009 	session->evlist = evlist__new();
4010 	if (session->evlist == NULL)
4011 		return -ENOMEM;
4012 
4013 	session->evlist->env = &header->env;
4014 	session->machines.host.env = &header->env;
4015 
4016 	/*
4017 	 * We can read 'pipe' data event from regular file,
4018 	 * check for the pipe header regardless of source.
4019 	 */
4020 	err = perf_header__read_pipe(session, repipe_fd);
4021 	if (!err || perf_data__is_pipe(data)) {
4022 		data->is_pipe = true;
4023 		return err;
4024 	}
4025 
4026 	if (perf_file_header__read(&f_header, header, fd) < 0)
4027 		return -EINVAL;
4028 
4029 	if (header->needs_swap && data->in_place_update) {
4030 		pr_err("In-place update not supported when byte-swapping is required\n");
4031 		return -EINVAL;
4032 	}
4033 
4034 	/*
4035 	 * Sanity check that perf.data was written cleanly; data size is
4036 	 * initialized to 0 and updated only if the on_exit function is run.
4037 	 * If data size is still 0 then the file contains only partial
4038 	 * information.  Just warn user and process it as much as it can.
4039 	 */
4040 	if (f_header.data.size == 0) {
4041 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4042 			   "Was the 'perf record' command properly terminated?\n",
4043 			   data->file.path);
4044 	}
4045 
4046 	if (f_header.attr_size == 0) {
4047 		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4048 		       "Was the 'perf record' command properly terminated?\n",
4049 		       data->file.path);
4050 		return -EINVAL;
4051 	}
4052 
4053 	nr_attrs = f_header.attrs.size / f_header.attr_size;
4054 	lseek(fd, f_header.attrs.offset, SEEK_SET);
4055 
4056 	for (i = 0; i < nr_attrs; i++) {
4057 		struct evsel *evsel;
4058 		off_t tmp;
4059 
4060 		if (read_attr(fd, header, &f_attr) < 0)
4061 			goto out_errno;
4062 
4063 		if (header->needs_swap) {
4064 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
4065 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4066 			perf_event__attr_swap(&f_attr.attr);
4067 		}
4068 
4069 		tmp = lseek(fd, 0, SEEK_CUR);
4070 		evsel = evsel__new(&f_attr.attr);
4071 
4072 		if (evsel == NULL)
4073 			goto out_delete_evlist;
4074 
4075 		evsel->needs_swap = header->needs_swap;
4076 		/*
4077 		 * Do it before so that if perf_evsel__alloc_id fails, this
4078 		 * entry gets purged too at evlist__delete().
4079 		 */
4080 		evlist__add(session->evlist, evsel);
4081 
4082 		nr_ids = f_attr.ids.size / sizeof(u64);
4083 		/*
4084 		 * We don't have the cpu and thread maps on the header, so
4085 		 * for allocating the perf_sample_id table we fake 1 cpu and
4086 		 * hattr->ids threads.
4087 		 */
4088 		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4089 			goto out_delete_evlist;
4090 
4091 		lseek(fd, f_attr.ids.offset, SEEK_SET);
4092 
4093 		for (j = 0; j < nr_ids; j++) {
4094 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4095 				goto out_errno;
4096 
4097 			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4098 		}
4099 
4100 		lseek(fd, tmp, SEEK_SET);
4101 	}
4102 
4103 	perf_header__process_sections(header, fd, &session->tevent,
4104 				      perf_file_section__process);
4105 
4106 	if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4107 		goto out_delete_evlist;
4108 
4109 	return 0;
4110 out_errno:
4111 	return -errno;
4112 
4113 out_delete_evlist:
4114 	evlist__delete(session->evlist);
4115 	session->evlist = NULL;
4116 	return -ENOMEM;
4117 }
4118 
4119 int perf_event__process_feature(struct perf_session *session,
4120 				union perf_event *event)
4121 {
4122 	struct perf_tool *tool = session->tool;
4123 	struct feat_fd ff = { .fd = 0 };
4124 	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4125 	int type = fe->header.type;
4126 	u64 feat = fe->feat_id;
4127 
4128 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4129 		pr_warning("invalid record type %d in pipe-mode\n", type);
4130 		return 0;
4131 	}
4132 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4133 		pr_warning("invalid record type %d in pipe-mode\n", type);
4134 		return -1;
4135 	}
4136 
4137 	if (!feat_ops[feat].process)
4138 		return 0;
4139 
4140 	ff.buf  = (void *)fe->data;
4141 	ff.size = event->header.size - sizeof(*fe);
4142 	ff.ph = &session->header;
4143 
4144 	if (feat_ops[feat].process(&ff, NULL))
4145 		return -1;
4146 
4147 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
4148 		return 0;
4149 
4150 	if (!feat_ops[feat].full_only ||
4151 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4152 		feat_ops[feat].print(&ff, stdout);
4153 	} else {
4154 		fprintf(stdout, "# %s info available, use -I to display\n",
4155 			feat_ops[feat].name);
4156 	}
4157 
4158 	return 0;
4159 }
4160 
4161 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4162 {
4163 	struct perf_record_event_update *ev = &event->event_update;
4164 	struct perf_record_event_update_scale *ev_scale;
4165 	struct perf_record_event_update_cpus *ev_cpus;
4166 	struct perf_cpu_map *map;
4167 	size_t ret;
4168 
4169 	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
4170 
4171 	switch (ev->type) {
4172 	case PERF_EVENT_UPDATE__SCALE:
4173 		ev_scale = (struct perf_record_event_update_scale *)ev->data;
4174 		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
4175 		break;
4176 	case PERF_EVENT_UPDATE__UNIT:
4177 		ret += fprintf(fp, "... unit:  %s\n", ev->data);
4178 		break;
4179 	case PERF_EVENT_UPDATE__NAME:
4180 		ret += fprintf(fp, "... name:  %s\n", ev->data);
4181 		break;
4182 	case PERF_EVENT_UPDATE__CPUS:
4183 		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4184 		ret += fprintf(fp, "... ");
4185 
4186 		map = cpu_map__new_data(&ev_cpus->cpus);
4187 		if (map)
4188 			ret += cpu_map__fprintf(map, fp);
4189 		else
4190 			ret += fprintf(fp, "failed to get cpus\n");
4191 		break;
4192 	default:
4193 		ret += fprintf(fp, "... unknown type\n");
4194 		break;
4195 	}
4196 
4197 	return ret;
4198 }
4199 
4200 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4201 			     union perf_event *event,
4202 			     struct evlist **pevlist)
4203 {
4204 	u32 i, ids, n_ids;
4205 	struct evsel *evsel;
4206 	struct evlist *evlist = *pevlist;
4207 
4208 	if (evlist == NULL) {
4209 		*pevlist = evlist = evlist__new();
4210 		if (evlist == NULL)
4211 			return -ENOMEM;
4212 	}
4213 
4214 	evsel = evsel__new(&event->attr.attr);
4215 	if (evsel == NULL)
4216 		return -ENOMEM;
4217 
4218 	evlist__add(evlist, evsel);
4219 
4220 	ids = event->header.size;
4221 	ids -= (void *)&event->attr.id - (void *)event;
4222 	n_ids = ids / sizeof(u64);
4223 	/*
4224 	 * We don't have the cpu and thread maps on the header, so
4225 	 * for allocating the perf_sample_id table we fake 1 cpu and
4226 	 * hattr->ids threads.
4227 	 */
4228 	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4229 		return -ENOMEM;
4230 
4231 	for (i = 0; i < n_ids; i++) {
4232 		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4233 	}
4234 
4235 	return 0;
4236 }
4237 
4238 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4239 				     union perf_event *event,
4240 				     struct evlist **pevlist)
4241 {
4242 	struct perf_record_event_update *ev = &event->event_update;
4243 	struct perf_record_event_update_scale *ev_scale;
4244 	struct perf_record_event_update_cpus *ev_cpus;
4245 	struct evlist *evlist;
4246 	struct evsel *evsel;
4247 	struct perf_cpu_map *map;
4248 
4249 	if (!pevlist || *pevlist == NULL)
4250 		return -EINVAL;
4251 
4252 	evlist = *pevlist;
4253 
4254 	evsel = evlist__id2evsel(evlist, ev->id);
4255 	if (evsel == NULL)
4256 		return -EINVAL;
4257 
4258 	switch (ev->type) {
4259 	case PERF_EVENT_UPDATE__UNIT:
4260 		evsel->unit = strdup(ev->data);
4261 		break;
4262 	case PERF_EVENT_UPDATE__NAME:
4263 		evsel->name = strdup(ev->data);
4264 		break;
4265 	case PERF_EVENT_UPDATE__SCALE:
4266 		ev_scale = (struct perf_record_event_update_scale *)ev->data;
4267 		evsel->scale = ev_scale->scale;
4268 		break;
4269 	case PERF_EVENT_UPDATE__CPUS:
4270 		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4271 
4272 		map = cpu_map__new_data(&ev_cpus->cpus);
4273 		if (map)
4274 			evsel->core.own_cpus = map;
4275 		else
4276 			pr_err("failed to get event_update cpus\n");
4277 	default:
4278 		break;
4279 	}
4280 
4281 	return 0;
4282 }
4283 
4284 int perf_event__process_tracing_data(struct perf_session *session,
4285 				     union perf_event *event)
4286 {
4287 	ssize_t size_read, padding, size = event->tracing_data.size;
4288 	int fd = perf_data__fd(session->data);
4289 	char buf[BUFSIZ];
4290 
4291 	/*
4292 	 * The pipe fd is already in proper place and in any case
4293 	 * we can't move it, and we'd screw the case where we read
4294 	 * 'pipe' data from regular file. The trace_report reads
4295 	 * data from 'fd' so we need to set it directly behind the
4296 	 * event, where the tracing data starts.
4297 	 */
4298 	if (!perf_data__is_pipe(session->data)) {
4299 		off_t offset = lseek(fd, 0, SEEK_CUR);
4300 
4301 		/* setup for reading amidst mmap */
4302 		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4303 		      SEEK_SET);
4304 	}
4305 
4306 	size_read = trace_report(fd, &session->tevent,
4307 				 session->repipe);
4308 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4309 
4310 	if (readn(fd, buf, padding) < 0) {
4311 		pr_err("%s: reading input file", __func__);
4312 		return -1;
4313 	}
4314 	if (session->repipe) {
4315 		int retw = write(STDOUT_FILENO, buf, padding);
4316 		if (retw <= 0 || retw != padding) {
4317 			pr_err("%s: repiping tracing data padding", __func__);
4318 			return -1;
4319 		}
4320 	}
4321 
4322 	if (size_read + padding != size) {
4323 		pr_err("%s: tracing data size mismatch", __func__);
4324 		return -1;
4325 	}
4326 
4327 	evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4328 
4329 	return size_read + padding;
4330 }
4331 
4332 int perf_event__process_build_id(struct perf_session *session,
4333 				 union perf_event *event)
4334 {
4335 	__event_process_build_id(&event->build_id,
4336 				 event->build_id.filename,
4337 				 session);
4338 	return 0;
4339 }
4340