xref: /openbmc/linux/tools/perf/util/header.c (revision aa0dc6a7)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #ifdef HAVE_LIBBPF_SUPPORT
23 #include <bpf/libbpf.h>
24 #endif
25 #include <perf/cpumap.h>
26 
27 #include "dso.h"
28 #include "evlist.h"
29 #include "evsel.h"
30 #include "util/evsel_fprintf.h"
31 #include "header.h"
32 #include "memswap.h"
33 #include "trace-event.h"
34 #include "session.h"
35 #include "symbol.h"
36 #include "debug.h"
37 #include "cpumap.h"
38 #include "pmu.h"
39 #include "vdso.h"
40 #include "strbuf.h"
41 #include "build-id.h"
42 #include "data.h"
43 #include <api/fs/fs.h>
44 #include "asm/bug.h"
45 #include "tool.h"
46 #include "time-utils.h"
47 #include "units.h"
48 #include "util/util.h" // perf_exe()
49 #include "cputopo.h"
50 #include "bpf-event.h"
51 #include "clockid.h"
52 #include "pmu-hybrid.h"
53 
54 #include <linux/ctype.h>
55 #include <internal/lib.h>
56 
57 /*
58  * magic2 = "PERFILE2"
59  * must be a numerical value to let the endianness
60  * determine the memory layout. That way we are able
61  * to detect endianness when reading the perf.data file
62  * back.
63  *
64  * we check for legacy (PERFFILE) format.
65  */
66 static const char *__perf_magic1 = "PERFFILE";
67 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
68 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
69 
70 #define PERF_MAGIC	__perf_magic2
71 
72 const char perf_version_string[] = PERF_VERSION;
73 
74 struct perf_file_attr {
75 	struct perf_event_attr	attr;
76 	struct perf_file_section	ids;
77 };
78 
79 void perf_header__set_feat(struct perf_header *header, int feat)
80 {
81 	set_bit(feat, header->adds_features);
82 }
83 
84 void perf_header__clear_feat(struct perf_header *header, int feat)
85 {
86 	clear_bit(feat, header->adds_features);
87 }
88 
89 bool perf_header__has_feat(const struct perf_header *header, int feat)
90 {
91 	return test_bit(feat, header->adds_features);
92 }
93 
94 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
95 {
96 	ssize_t ret = writen(ff->fd, buf, size);
97 
98 	if (ret != (ssize_t)size)
99 		return ret < 0 ? (int)ret : -1;
100 	return 0;
101 }
102 
103 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
104 {
105 	/* struct perf_event_header::size is u16 */
106 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
107 	size_t new_size = ff->size;
108 	void *addr;
109 
110 	if (size + ff->offset > max_size)
111 		return -E2BIG;
112 
113 	while (size > (new_size - ff->offset))
114 		new_size <<= 1;
115 	new_size = min(max_size, new_size);
116 
117 	if (ff->size < new_size) {
118 		addr = realloc(ff->buf, new_size);
119 		if (!addr)
120 			return -ENOMEM;
121 		ff->buf = addr;
122 		ff->size = new_size;
123 	}
124 
125 	memcpy(ff->buf + ff->offset, buf, size);
126 	ff->offset += size;
127 
128 	return 0;
129 }
130 
131 /* Return: 0 if succeeded, -ERR if failed. */
132 int do_write(struct feat_fd *ff, const void *buf, size_t size)
133 {
134 	if (!ff->buf)
135 		return __do_write_fd(ff, buf, size);
136 	return __do_write_buf(ff, buf, size);
137 }
138 
139 /* Return: 0 if succeeded, -ERR if failed. */
140 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
141 {
142 	u64 *p = (u64 *) set;
143 	int i, ret;
144 
145 	ret = do_write(ff, &size, sizeof(size));
146 	if (ret < 0)
147 		return ret;
148 
149 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
150 		ret = do_write(ff, p + i, sizeof(*p));
151 		if (ret < 0)
152 			return ret;
153 	}
154 
155 	return 0;
156 }
157 
158 /* Return: 0 if succeeded, -ERR if failed. */
159 int write_padded(struct feat_fd *ff, const void *bf,
160 		 size_t count, size_t count_aligned)
161 {
162 	static const char zero_buf[NAME_ALIGN];
163 	int err = do_write(ff, bf, count);
164 
165 	if (!err)
166 		err = do_write(ff, zero_buf, count_aligned - count);
167 
168 	return err;
169 }
170 
171 #define string_size(str)						\
172 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
173 
174 /* Return: 0 if succeeded, -ERR if failed. */
175 static int do_write_string(struct feat_fd *ff, const char *str)
176 {
177 	u32 len, olen;
178 	int ret;
179 
180 	olen = strlen(str) + 1;
181 	len = PERF_ALIGN(olen, NAME_ALIGN);
182 
183 	/* write len, incl. \0 */
184 	ret = do_write(ff, &len, sizeof(len));
185 	if (ret < 0)
186 		return ret;
187 
188 	return write_padded(ff, str, olen, len);
189 }
190 
191 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
192 {
193 	ssize_t ret = readn(ff->fd, addr, size);
194 
195 	if (ret != size)
196 		return ret < 0 ? (int)ret : -1;
197 	return 0;
198 }
199 
200 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
201 {
202 	if (size > (ssize_t)ff->size - ff->offset)
203 		return -1;
204 
205 	memcpy(addr, ff->buf + ff->offset, size);
206 	ff->offset += size;
207 
208 	return 0;
209 
210 }
211 
212 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
213 {
214 	if (!ff->buf)
215 		return __do_read_fd(ff, addr, size);
216 	return __do_read_buf(ff, addr, size);
217 }
218 
219 static int do_read_u32(struct feat_fd *ff, u32 *addr)
220 {
221 	int ret;
222 
223 	ret = __do_read(ff, addr, sizeof(*addr));
224 	if (ret)
225 		return ret;
226 
227 	if (ff->ph->needs_swap)
228 		*addr = bswap_32(*addr);
229 	return 0;
230 }
231 
232 static int do_read_u64(struct feat_fd *ff, u64 *addr)
233 {
234 	int ret;
235 
236 	ret = __do_read(ff, addr, sizeof(*addr));
237 	if (ret)
238 		return ret;
239 
240 	if (ff->ph->needs_swap)
241 		*addr = bswap_64(*addr);
242 	return 0;
243 }
244 
245 static char *do_read_string(struct feat_fd *ff)
246 {
247 	u32 len;
248 	char *buf;
249 
250 	if (do_read_u32(ff, &len))
251 		return NULL;
252 
253 	buf = malloc(len);
254 	if (!buf)
255 		return NULL;
256 
257 	if (!__do_read(ff, buf, len)) {
258 		/*
259 		 * strings are padded by zeroes
260 		 * thus the actual strlen of buf
261 		 * may be less than len
262 		 */
263 		return buf;
264 	}
265 
266 	free(buf);
267 	return NULL;
268 }
269 
270 /* Return: 0 if succeeded, -ERR if failed. */
271 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
272 {
273 	unsigned long *set;
274 	u64 size, *p;
275 	int i, ret;
276 
277 	ret = do_read_u64(ff, &size);
278 	if (ret)
279 		return ret;
280 
281 	set = bitmap_alloc(size);
282 	if (!set)
283 		return -ENOMEM;
284 
285 	p = (u64 *) set;
286 
287 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
288 		ret = do_read_u64(ff, p + i);
289 		if (ret < 0) {
290 			free(set);
291 			return ret;
292 		}
293 	}
294 
295 	*pset  = set;
296 	*psize = size;
297 	return 0;
298 }
299 
300 static int write_tracing_data(struct feat_fd *ff,
301 			      struct evlist *evlist)
302 {
303 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
304 		return -1;
305 
306 	return read_tracing_data(ff->fd, &evlist->core.entries);
307 }
308 
309 static int write_build_id(struct feat_fd *ff,
310 			  struct evlist *evlist __maybe_unused)
311 {
312 	struct perf_session *session;
313 	int err;
314 
315 	session = container_of(ff->ph, struct perf_session, header);
316 
317 	if (!perf_session__read_build_ids(session, true))
318 		return -1;
319 
320 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
321 		return -1;
322 
323 	err = perf_session__write_buildid_table(session, ff);
324 	if (err < 0) {
325 		pr_debug("failed to write buildid table\n");
326 		return err;
327 	}
328 	perf_session__cache_build_ids(session);
329 
330 	return 0;
331 }
332 
333 static int write_hostname(struct feat_fd *ff,
334 			  struct evlist *evlist __maybe_unused)
335 {
336 	struct utsname uts;
337 	int ret;
338 
339 	ret = uname(&uts);
340 	if (ret < 0)
341 		return -1;
342 
343 	return do_write_string(ff, uts.nodename);
344 }
345 
346 static int write_osrelease(struct feat_fd *ff,
347 			   struct evlist *evlist __maybe_unused)
348 {
349 	struct utsname uts;
350 	int ret;
351 
352 	ret = uname(&uts);
353 	if (ret < 0)
354 		return -1;
355 
356 	return do_write_string(ff, uts.release);
357 }
358 
359 static int write_arch(struct feat_fd *ff,
360 		      struct evlist *evlist __maybe_unused)
361 {
362 	struct utsname uts;
363 	int ret;
364 
365 	ret = uname(&uts);
366 	if (ret < 0)
367 		return -1;
368 
369 	return do_write_string(ff, uts.machine);
370 }
371 
372 static int write_version(struct feat_fd *ff,
373 			 struct evlist *evlist __maybe_unused)
374 {
375 	return do_write_string(ff, perf_version_string);
376 }
377 
378 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
379 {
380 	FILE *file;
381 	char *buf = NULL;
382 	char *s, *p;
383 	const char *search = cpuinfo_proc;
384 	size_t len = 0;
385 	int ret = -1;
386 
387 	if (!search)
388 		return -1;
389 
390 	file = fopen("/proc/cpuinfo", "r");
391 	if (!file)
392 		return -1;
393 
394 	while (getline(&buf, &len, file) > 0) {
395 		ret = strncmp(buf, search, strlen(search));
396 		if (!ret)
397 			break;
398 	}
399 
400 	if (ret) {
401 		ret = -1;
402 		goto done;
403 	}
404 
405 	s = buf;
406 
407 	p = strchr(buf, ':');
408 	if (p && *(p+1) == ' ' && *(p+2))
409 		s = p + 2;
410 	p = strchr(s, '\n');
411 	if (p)
412 		*p = '\0';
413 
414 	/* squash extra space characters (branding string) */
415 	p = s;
416 	while (*p) {
417 		if (isspace(*p)) {
418 			char *r = p + 1;
419 			char *q = skip_spaces(r);
420 			*p = ' ';
421 			if (q != (p+1))
422 				while ((*r++ = *q++));
423 		}
424 		p++;
425 	}
426 	ret = do_write_string(ff, s);
427 done:
428 	free(buf);
429 	fclose(file);
430 	return ret;
431 }
432 
433 static int write_cpudesc(struct feat_fd *ff,
434 		       struct evlist *evlist __maybe_unused)
435 {
436 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
437 #define CPUINFO_PROC	{ "cpu", }
438 #elif defined(__s390__)
439 #define CPUINFO_PROC	{ "vendor_id", }
440 #elif defined(__sh__)
441 #define CPUINFO_PROC	{ "cpu type", }
442 #elif defined(__alpha__) || defined(__mips__)
443 #define CPUINFO_PROC	{ "cpu model", }
444 #elif defined(__arm__)
445 #define CPUINFO_PROC	{ "model name", "Processor", }
446 #elif defined(__arc__)
447 #define CPUINFO_PROC	{ "Processor", }
448 #elif defined(__xtensa__)
449 #define CPUINFO_PROC	{ "core ID", }
450 #else
451 #define CPUINFO_PROC	{ "model name", }
452 #endif
453 	const char *cpuinfo_procs[] = CPUINFO_PROC;
454 #undef CPUINFO_PROC
455 	unsigned int i;
456 
457 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
458 		int ret;
459 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
460 		if (ret >= 0)
461 			return ret;
462 	}
463 	return -1;
464 }
465 
466 
467 static int write_nrcpus(struct feat_fd *ff,
468 			struct evlist *evlist __maybe_unused)
469 {
470 	long nr;
471 	u32 nrc, nra;
472 	int ret;
473 
474 	nrc = cpu__max_present_cpu();
475 
476 	nr = sysconf(_SC_NPROCESSORS_ONLN);
477 	if (nr < 0)
478 		return -1;
479 
480 	nra = (u32)(nr & UINT_MAX);
481 
482 	ret = do_write(ff, &nrc, sizeof(nrc));
483 	if (ret < 0)
484 		return ret;
485 
486 	return do_write(ff, &nra, sizeof(nra));
487 }
488 
489 static int write_event_desc(struct feat_fd *ff,
490 			    struct evlist *evlist)
491 {
492 	struct evsel *evsel;
493 	u32 nre, nri, sz;
494 	int ret;
495 
496 	nre = evlist->core.nr_entries;
497 
498 	/*
499 	 * write number of events
500 	 */
501 	ret = do_write(ff, &nre, sizeof(nre));
502 	if (ret < 0)
503 		return ret;
504 
505 	/*
506 	 * size of perf_event_attr struct
507 	 */
508 	sz = (u32)sizeof(evsel->core.attr);
509 	ret = do_write(ff, &sz, sizeof(sz));
510 	if (ret < 0)
511 		return ret;
512 
513 	evlist__for_each_entry(evlist, evsel) {
514 		ret = do_write(ff, &evsel->core.attr, sz);
515 		if (ret < 0)
516 			return ret;
517 		/*
518 		 * write number of unique id per event
519 		 * there is one id per instance of an event
520 		 *
521 		 * copy into an nri to be independent of the
522 		 * type of ids,
523 		 */
524 		nri = evsel->core.ids;
525 		ret = do_write(ff, &nri, sizeof(nri));
526 		if (ret < 0)
527 			return ret;
528 
529 		/*
530 		 * write event string as passed on cmdline
531 		 */
532 		ret = do_write_string(ff, evsel__name(evsel));
533 		if (ret < 0)
534 			return ret;
535 		/*
536 		 * write unique ids for this event
537 		 */
538 		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
539 		if (ret < 0)
540 			return ret;
541 	}
542 	return 0;
543 }
544 
545 static int write_cmdline(struct feat_fd *ff,
546 			 struct evlist *evlist __maybe_unused)
547 {
548 	char pbuf[MAXPATHLEN], *buf;
549 	int i, ret, n;
550 
551 	/* actual path to perf binary */
552 	buf = perf_exe(pbuf, MAXPATHLEN);
553 
554 	/* account for binary path */
555 	n = perf_env.nr_cmdline + 1;
556 
557 	ret = do_write(ff, &n, sizeof(n));
558 	if (ret < 0)
559 		return ret;
560 
561 	ret = do_write_string(ff, buf);
562 	if (ret < 0)
563 		return ret;
564 
565 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
566 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
567 		if (ret < 0)
568 			return ret;
569 	}
570 	return 0;
571 }
572 
573 
574 static int write_cpu_topology(struct feat_fd *ff,
575 			      struct evlist *evlist __maybe_unused)
576 {
577 	struct cpu_topology *tp;
578 	u32 i;
579 	int ret, j;
580 
581 	tp = cpu_topology__new();
582 	if (!tp)
583 		return -1;
584 
585 	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
586 	if (ret < 0)
587 		goto done;
588 
589 	for (i = 0; i < tp->core_sib; i++) {
590 		ret = do_write_string(ff, tp->core_siblings[i]);
591 		if (ret < 0)
592 			goto done;
593 	}
594 	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
595 	if (ret < 0)
596 		goto done;
597 
598 	for (i = 0; i < tp->thread_sib; i++) {
599 		ret = do_write_string(ff, tp->thread_siblings[i]);
600 		if (ret < 0)
601 			break;
602 	}
603 
604 	ret = perf_env__read_cpu_topology_map(&perf_env);
605 	if (ret < 0)
606 		goto done;
607 
608 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
609 		ret = do_write(ff, &perf_env.cpu[j].core_id,
610 			       sizeof(perf_env.cpu[j].core_id));
611 		if (ret < 0)
612 			return ret;
613 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
614 			       sizeof(perf_env.cpu[j].socket_id));
615 		if (ret < 0)
616 			return ret;
617 	}
618 
619 	if (!tp->die_sib)
620 		goto done;
621 
622 	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
623 	if (ret < 0)
624 		goto done;
625 
626 	for (i = 0; i < tp->die_sib; i++) {
627 		ret = do_write_string(ff, tp->die_siblings[i]);
628 		if (ret < 0)
629 			goto done;
630 	}
631 
632 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
633 		ret = do_write(ff, &perf_env.cpu[j].die_id,
634 			       sizeof(perf_env.cpu[j].die_id));
635 		if (ret < 0)
636 			return ret;
637 	}
638 
639 done:
640 	cpu_topology__delete(tp);
641 	return ret;
642 }
643 
644 
645 
646 static int write_total_mem(struct feat_fd *ff,
647 			   struct evlist *evlist __maybe_unused)
648 {
649 	char *buf = NULL;
650 	FILE *fp;
651 	size_t len = 0;
652 	int ret = -1, n;
653 	uint64_t mem;
654 
655 	fp = fopen("/proc/meminfo", "r");
656 	if (!fp)
657 		return -1;
658 
659 	while (getline(&buf, &len, fp) > 0) {
660 		ret = strncmp(buf, "MemTotal:", 9);
661 		if (!ret)
662 			break;
663 	}
664 	if (!ret) {
665 		n = sscanf(buf, "%*s %"PRIu64, &mem);
666 		if (n == 1)
667 			ret = do_write(ff, &mem, sizeof(mem));
668 	} else
669 		ret = -1;
670 	free(buf);
671 	fclose(fp);
672 	return ret;
673 }
674 
675 static int write_numa_topology(struct feat_fd *ff,
676 			       struct evlist *evlist __maybe_unused)
677 {
678 	struct numa_topology *tp;
679 	int ret = -1;
680 	u32 i;
681 
682 	tp = numa_topology__new();
683 	if (!tp)
684 		return -ENOMEM;
685 
686 	ret = do_write(ff, &tp->nr, sizeof(u32));
687 	if (ret < 0)
688 		goto err;
689 
690 	for (i = 0; i < tp->nr; i++) {
691 		struct numa_topology_node *n = &tp->nodes[i];
692 
693 		ret = do_write(ff, &n->node, sizeof(u32));
694 		if (ret < 0)
695 			goto err;
696 
697 		ret = do_write(ff, &n->mem_total, sizeof(u64));
698 		if (ret)
699 			goto err;
700 
701 		ret = do_write(ff, &n->mem_free, sizeof(u64));
702 		if (ret)
703 			goto err;
704 
705 		ret = do_write_string(ff, n->cpus);
706 		if (ret < 0)
707 			goto err;
708 	}
709 
710 	ret = 0;
711 
712 err:
713 	numa_topology__delete(tp);
714 	return ret;
715 }
716 
717 /*
718  * File format:
719  *
720  * struct pmu_mappings {
721  *	u32	pmu_num;
722  *	struct pmu_map {
723  *		u32	type;
724  *		char	name[];
725  *	}[pmu_num];
726  * };
727  */
728 
729 static int write_pmu_mappings(struct feat_fd *ff,
730 			      struct evlist *evlist __maybe_unused)
731 {
732 	struct perf_pmu *pmu = NULL;
733 	u32 pmu_num = 0;
734 	int ret;
735 
736 	/*
737 	 * Do a first pass to count number of pmu to avoid lseek so this
738 	 * works in pipe mode as well.
739 	 */
740 	while ((pmu = perf_pmu__scan(pmu))) {
741 		if (!pmu->name)
742 			continue;
743 		pmu_num++;
744 	}
745 
746 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
747 	if (ret < 0)
748 		return ret;
749 
750 	while ((pmu = perf_pmu__scan(pmu))) {
751 		if (!pmu->name)
752 			continue;
753 
754 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
755 		if (ret < 0)
756 			return ret;
757 
758 		ret = do_write_string(ff, pmu->name);
759 		if (ret < 0)
760 			return ret;
761 	}
762 
763 	return 0;
764 }
765 
766 /*
767  * File format:
768  *
769  * struct group_descs {
770  *	u32	nr_groups;
771  *	struct group_desc {
772  *		char	name[];
773  *		u32	leader_idx;
774  *		u32	nr_members;
775  *	}[nr_groups];
776  * };
777  */
778 static int write_group_desc(struct feat_fd *ff,
779 			    struct evlist *evlist)
780 {
781 	u32 nr_groups = evlist->core.nr_groups;
782 	struct evsel *evsel;
783 	int ret;
784 
785 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
786 	if (ret < 0)
787 		return ret;
788 
789 	evlist__for_each_entry(evlist, evsel) {
790 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
791 			const char *name = evsel->group_name ?: "{anon_group}";
792 			u32 leader_idx = evsel->core.idx;
793 			u32 nr_members = evsel->core.nr_members;
794 
795 			ret = do_write_string(ff, name);
796 			if (ret < 0)
797 				return ret;
798 
799 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
800 			if (ret < 0)
801 				return ret;
802 
803 			ret = do_write(ff, &nr_members, sizeof(nr_members));
804 			if (ret < 0)
805 				return ret;
806 		}
807 	}
808 	return 0;
809 }
810 
811 /*
812  * Return the CPU id as a raw string.
813  *
814  * Each architecture should provide a more precise id string that
815  * can be use to match the architecture's "mapfile".
816  */
817 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
818 {
819 	return NULL;
820 }
821 
822 /* Return zero when the cpuid from the mapfile.csv matches the
823  * cpuid string generated on this platform.
824  * Otherwise return non-zero.
825  */
826 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
827 {
828 	regex_t re;
829 	regmatch_t pmatch[1];
830 	int match;
831 
832 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
833 		/* Warn unable to generate match particular string. */
834 		pr_info("Invalid regular expression %s\n", mapcpuid);
835 		return 1;
836 	}
837 
838 	match = !regexec(&re, cpuid, 1, pmatch, 0);
839 	regfree(&re);
840 	if (match) {
841 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
842 
843 		/* Verify the entire string matched. */
844 		if (match_len == strlen(cpuid))
845 			return 0;
846 	}
847 	return 1;
848 }
849 
850 /*
851  * default get_cpuid(): nothing gets recorded
852  * actual implementation must be in arch/$(SRCARCH)/util/header.c
853  */
854 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
855 {
856 	return ENOSYS; /* Not implemented */
857 }
858 
859 static int write_cpuid(struct feat_fd *ff,
860 		       struct evlist *evlist __maybe_unused)
861 {
862 	char buffer[64];
863 	int ret;
864 
865 	ret = get_cpuid(buffer, sizeof(buffer));
866 	if (ret)
867 		return -1;
868 
869 	return do_write_string(ff, buffer);
870 }
871 
872 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
873 			      struct evlist *evlist __maybe_unused)
874 {
875 	return 0;
876 }
877 
878 static int write_auxtrace(struct feat_fd *ff,
879 			  struct evlist *evlist __maybe_unused)
880 {
881 	struct perf_session *session;
882 	int err;
883 
884 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
885 		return -1;
886 
887 	session = container_of(ff->ph, struct perf_session, header);
888 
889 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
890 	if (err < 0)
891 		pr_err("Failed to write auxtrace index\n");
892 	return err;
893 }
894 
895 static int write_clockid(struct feat_fd *ff,
896 			 struct evlist *evlist __maybe_unused)
897 {
898 	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
899 			sizeof(ff->ph->env.clock.clockid_res_ns));
900 }
901 
902 static int write_clock_data(struct feat_fd *ff,
903 			    struct evlist *evlist __maybe_unused)
904 {
905 	u64 *data64;
906 	u32 data32;
907 	int ret;
908 
909 	/* version */
910 	data32 = 1;
911 
912 	ret = do_write(ff, &data32, sizeof(data32));
913 	if (ret < 0)
914 		return ret;
915 
916 	/* clockid */
917 	data32 = ff->ph->env.clock.clockid;
918 
919 	ret = do_write(ff, &data32, sizeof(data32));
920 	if (ret < 0)
921 		return ret;
922 
923 	/* TOD ref time */
924 	data64 = &ff->ph->env.clock.tod_ns;
925 
926 	ret = do_write(ff, data64, sizeof(*data64));
927 	if (ret < 0)
928 		return ret;
929 
930 	/* clockid ref time */
931 	data64 = &ff->ph->env.clock.clockid_ns;
932 
933 	return do_write(ff, data64, sizeof(*data64));
934 }
935 
936 static int write_hybrid_topology(struct feat_fd *ff,
937 				 struct evlist *evlist __maybe_unused)
938 {
939 	struct hybrid_topology *tp;
940 	int ret;
941 	u32 i;
942 
943 	tp = hybrid_topology__new();
944 	if (!tp)
945 		return -ENOENT;
946 
947 	ret = do_write(ff, &tp->nr, sizeof(u32));
948 	if (ret < 0)
949 		goto err;
950 
951 	for (i = 0; i < tp->nr; i++) {
952 		struct hybrid_topology_node *n = &tp->nodes[i];
953 
954 		ret = do_write_string(ff, n->pmu_name);
955 		if (ret < 0)
956 			goto err;
957 
958 		ret = do_write_string(ff, n->cpus);
959 		if (ret < 0)
960 			goto err;
961 	}
962 
963 	ret = 0;
964 
965 err:
966 	hybrid_topology__delete(tp);
967 	return ret;
968 }
969 
970 static int write_dir_format(struct feat_fd *ff,
971 			    struct evlist *evlist __maybe_unused)
972 {
973 	struct perf_session *session;
974 	struct perf_data *data;
975 
976 	session = container_of(ff->ph, struct perf_session, header);
977 	data = session->data;
978 
979 	if (WARN_ON(!perf_data__is_dir(data)))
980 		return -1;
981 
982 	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
983 }
984 
985 #ifdef HAVE_LIBBPF_SUPPORT
986 static int write_bpf_prog_info(struct feat_fd *ff,
987 			       struct evlist *evlist __maybe_unused)
988 {
989 	struct perf_env *env = &ff->ph->env;
990 	struct rb_root *root;
991 	struct rb_node *next;
992 	int ret;
993 
994 	down_read(&env->bpf_progs.lock);
995 
996 	ret = do_write(ff, &env->bpf_progs.infos_cnt,
997 		       sizeof(env->bpf_progs.infos_cnt));
998 	if (ret < 0)
999 		goto out;
1000 
1001 	root = &env->bpf_progs.infos;
1002 	next = rb_first(root);
1003 	while (next) {
1004 		struct bpf_prog_info_node *node;
1005 		size_t len;
1006 
1007 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1008 		next = rb_next(&node->rb_node);
1009 		len = sizeof(struct bpf_prog_info_linear) +
1010 			node->info_linear->data_len;
1011 
1012 		/* before writing to file, translate address to offset */
1013 		bpf_program__bpil_addr_to_offs(node->info_linear);
1014 		ret = do_write(ff, node->info_linear, len);
1015 		/*
1016 		 * translate back to address even when do_write() fails,
1017 		 * so that this function never changes the data.
1018 		 */
1019 		bpf_program__bpil_offs_to_addr(node->info_linear);
1020 		if (ret < 0)
1021 			goto out;
1022 	}
1023 out:
1024 	up_read(&env->bpf_progs.lock);
1025 	return ret;
1026 }
1027 
1028 static int write_bpf_btf(struct feat_fd *ff,
1029 			 struct evlist *evlist __maybe_unused)
1030 {
1031 	struct perf_env *env = &ff->ph->env;
1032 	struct rb_root *root;
1033 	struct rb_node *next;
1034 	int ret;
1035 
1036 	down_read(&env->bpf_progs.lock);
1037 
1038 	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1039 		       sizeof(env->bpf_progs.btfs_cnt));
1040 
1041 	if (ret < 0)
1042 		goto out;
1043 
1044 	root = &env->bpf_progs.btfs;
1045 	next = rb_first(root);
1046 	while (next) {
1047 		struct btf_node *node;
1048 
1049 		node = rb_entry(next, struct btf_node, rb_node);
1050 		next = rb_next(&node->rb_node);
1051 		ret = do_write(ff, &node->id,
1052 			       sizeof(u32) * 2 + node->data_size);
1053 		if (ret < 0)
1054 			goto out;
1055 	}
1056 out:
1057 	up_read(&env->bpf_progs.lock);
1058 	return ret;
1059 }
1060 #endif // HAVE_LIBBPF_SUPPORT
1061 
1062 static int cpu_cache_level__sort(const void *a, const void *b)
1063 {
1064 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1065 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1066 
1067 	return cache_a->level - cache_b->level;
1068 }
1069 
1070 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1071 {
1072 	if (a->level != b->level)
1073 		return false;
1074 
1075 	if (a->line_size != b->line_size)
1076 		return false;
1077 
1078 	if (a->sets != b->sets)
1079 		return false;
1080 
1081 	if (a->ways != b->ways)
1082 		return false;
1083 
1084 	if (strcmp(a->type, b->type))
1085 		return false;
1086 
1087 	if (strcmp(a->size, b->size))
1088 		return false;
1089 
1090 	if (strcmp(a->map, b->map))
1091 		return false;
1092 
1093 	return true;
1094 }
1095 
1096 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1097 {
1098 	char path[PATH_MAX], file[PATH_MAX];
1099 	struct stat st;
1100 	size_t len;
1101 
1102 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1103 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1104 
1105 	if (stat(file, &st))
1106 		return 1;
1107 
1108 	scnprintf(file, PATH_MAX, "%s/level", path);
1109 	if (sysfs__read_int(file, (int *) &cache->level))
1110 		return -1;
1111 
1112 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1113 	if (sysfs__read_int(file, (int *) &cache->line_size))
1114 		return -1;
1115 
1116 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1117 	if (sysfs__read_int(file, (int *) &cache->sets))
1118 		return -1;
1119 
1120 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1121 	if (sysfs__read_int(file, (int *) &cache->ways))
1122 		return -1;
1123 
1124 	scnprintf(file, PATH_MAX, "%s/type", path);
1125 	if (sysfs__read_str(file, &cache->type, &len))
1126 		return -1;
1127 
1128 	cache->type[len] = 0;
1129 	cache->type = strim(cache->type);
1130 
1131 	scnprintf(file, PATH_MAX, "%s/size", path);
1132 	if (sysfs__read_str(file, &cache->size, &len)) {
1133 		zfree(&cache->type);
1134 		return -1;
1135 	}
1136 
1137 	cache->size[len] = 0;
1138 	cache->size = strim(cache->size);
1139 
1140 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1141 	if (sysfs__read_str(file, &cache->map, &len)) {
1142 		zfree(&cache->size);
1143 		zfree(&cache->type);
1144 		return -1;
1145 	}
1146 
1147 	cache->map[len] = 0;
1148 	cache->map = strim(cache->map);
1149 	return 0;
1150 }
1151 
1152 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1153 {
1154 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1155 }
1156 
1157 #define MAX_CACHE_LVL 4
1158 
1159 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1160 {
1161 	u32 i, cnt = 0;
1162 	u32 nr, cpu;
1163 	u16 level;
1164 
1165 	nr = cpu__max_cpu();
1166 
1167 	for (cpu = 0; cpu < nr; cpu++) {
1168 		for (level = 0; level < MAX_CACHE_LVL; level++) {
1169 			struct cpu_cache_level c;
1170 			int err;
1171 
1172 			err = cpu_cache_level__read(&c, cpu, level);
1173 			if (err < 0)
1174 				return err;
1175 
1176 			if (err == 1)
1177 				break;
1178 
1179 			for (i = 0; i < cnt; i++) {
1180 				if (cpu_cache_level__cmp(&c, &caches[i]))
1181 					break;
1182 			}
1183 
1184 			if (i == cnt)
1185 				caches[cnt++] = c;
1186 			else
1187 				cpu_cache_level__free(&c);
1188 		}
1189 	}
1190 	*cntp = cnt;
1191 	return 0;
1192 }
1193 
1194 static int write_cache(struct feat_fd *ff,
1195 		       struct evlist *evlist __maybe_unused)
1196 {
1197 	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1198 	struct cpu_cache_level caches[max_caches];
1199 	u32 cnt = 0, i, version = 1;
1200 	int ret;
1201 
1202 	ret = build_caches(caches, &cnt);
1203 	if (ret)
1204 		goto out;
1205 
1206 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1207 
1208 	ret = do_write(ff, &version, sizeof(u32));
1209 	if (ret < 0)
1210 		goto out;
1211 
1212 	ret = do_write(ff, &cnt, sizeof(u32));
1213 	if (ret < 0)
1214 		goto out;
1215 
1216 	for (i = 0; i < cnt; i++) {
1217 		struct cpu_cache_level *c = &caches[i];
1218 
1219 		#define _W(v)					\
1220 			ret = do_write(ff, &c->v, sizeof(u32));	\
1221 			if (ret < 0)				\
1222 				goto out;
1223 
1224 		_W(level)
1225 		_W(line_size)
1226 		_W(sets)
1227 		_W(ways)
1228 		#undef _W
1229 
1230 		#define _W(v)						\
1231 			ret = do_write_string(ff, (const char *) c->v);	\
1232 			if (ret < 0)					\
1233 				goto out;
1234 
1235 		_W(type)
1236 		_W(size)
1237 		_W(map)
1238 		#undef _W
1239 	}
1240 
1241 out:
1242 	for (i = 0; i < cnt; i++)
1243 		cpu_cache_level__free(&caches[i]);
1244 	return ret;
1245 }
1246 
1247 static int write_stat(struct feat_fd *ff __maybe_unused,
1248 		      struct evlist *evlist __maybe_unused)
1249 {
1250 	return 0;
1251 }
1252 
1253 static int write_sample_time(struct feat_fd *ff,
1254 			     struct evlist *evlist)
1255 {
1256 	int ret;
1257 
1258 	ret = do_write(ff, &evlist->first_sample_time,
1259 		       sizeof(evlist->first_sample_time));
1260 	if (ret < 0)
1261 		return ret;
1262 
1263 	return do_write(ff, &evlist->last_sample_time,
1264 			sizeof(evlist->last_sample_time));
1265 }
1266 
1267 
1268 static int memory_node__read(struct memory_node *n, unsigned long idx)
1269 {
1270 	unsigned int phys, size = 0;
1271 	char path[PATH_MAX];
1272 	struct dirent *ent;
1273 	DIR *dir;
1274 
1275 #define for_each_memory(mem, dir)					\
1276 	while ((ent = readdir(dir)))					\
1277 		if (strcmp(ent->d_name, ".") &&				\
1278 		    strcmp(ent->d_name, "..") &&			\
1279 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1280 
1281 	scnprintf(path, PATH_MAX,
1282 		  "%s/devices/system/node/node%lu",
1283 		  sysfs__mountpoint(), idx);
1284 
1285 	dir = opendir(path);
1286 	if (!dir) {
1287 		pr_warning("failed: cant' open memory sysfs data\n");
1288 		return -1;
1289 	}
1290 
1291 	for_each_memory(phys, dir) {
1292 		size = max(phys, size);
1293 	}
1294 
1295 	size++;
1296 
1297 	n->set = bitmap_alloc(size);
1298 	if (!n->set) {
1299 		closedir(dir);
1300 		return -ENOMEM;
1301 	}
1302 
1303 	n->node = idx;
1304 	n->size = size;
1305 
1306 	rewinddir(dir);
1307 
1308 	for_each_memory(phys, dir) {
1309 		set_bit(phys, n->set);
1310 	}
1311 
1312 	closedir(dir);
1313 	return 0;
1314 }
1315 
1316 static int memory_node__sort(const void *a, const void *b)
1317 {
1318 	const struct memory_node *na = a;
1319 	const struct memory_node *nb = b;
1320 
1321 	return na->node - nb->node;
1322 }
1323 
1324 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1325 {
1326 	char path[PATH_MAX];
1327 	struct dirent *ent;
1328 	DIR *dir;
1329 	u64 cnt = 0;
1330 	int ret = 0;
1331 
1332 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1333 		  sysfs__mountpoint());
1334 
1335 	dir = opendir(path);
1336 	if (!dir) {
1337 		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1338 			  __func__, path);
1339 		return -1;
1340 	}
1341 
1342 	while (!ret && (ent = readdir(dir))) {
1343 		unsigned int idx;
1344 		int r;
1345 
1346 		if (!strcmp(ent->d_name, ".") ||
1347 		    !strcmp(ent->d_name, ".."))
1348 			continue;
1349 
1350 		r = sscanf(ent->d_name, "node%u", &idx);
1351 		if (r != 1)
1352 			continue;
1353 
1354 		if (WARN_ONCE(cnt >= size,
1355 			"failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1356 			closedir(dir);
1357 			return -1;
1358 		}
1359 
1360 		ret = memory_node__read(&nodes[cnt++], idx);
1361 	}
1362 
1363 	*cntp = cnt;
1364 	closedir(dir);
1365 
1366 	if (!ret)
1367 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1368 
1369 	return ret;
1370 }
1371 
1372 #define MAX_MEMORY_NODES 2000
1373 
1374 /*
1375  * The MEM_TOPOLOGY holds physical memory map for every
1376  * node in system. The format of data is as follows:
1377  *
1378  *  0 - version          | for future changes
1379  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1380  * 16 - count            | number of nodes
1381  *
1382  * For each node we store map of physical indexes for
1383  * each node:
1384  *
1385  * 32 - node id          | node index
1386  * 40 - size             | size of bitmap
1387  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1388  */
1389 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1390 			      struct evlist *evlist __maybe_unused)
1391 {
1392 	static struct memory_node nodes[MAX_MEMORY_NODES];
1393 	u64 bsize, version = 1, i, nr;
1394 	int ret;
1395 
1396 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1397 			      (unsigned long long *) &bsize);
1398 	if (ret)
1399 		return ret;
1400 
1401 	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1402 	if (ret)
1403 		return ret;
1404 
1405 	ret = do_write(ff, &version, sizeof(version));
1406 	if (ret < 0)
1407 		goto out;
1408 
1409 	ret = do_write(ff, &bsize, sizeof(bsize));
1410 	if (ret < 0)
1411 		goto out;
1412 
1413 	ret = do_write(ff, &nr, sizeof(nr));
1414 	if (ret < 0)
1415 		goto out;
1416 
1417 	for (i = 0; i < nr; i++) {
1418 		struct memory_node *n = &nodes[i];
1419 
1420 		#define _W(v)						\
1421 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1422 			if (ret < 0)					\
1423 				goto out;
1424 
1425 		_W(node)
1426 		_W(size)
1427 
1428 		#undef _W
1429 
1430 		ret = do_write_bitmap(ff, n->set, n->size);
1431 		if (ret < 0)
1432 			goto out;
1433 	}
1434 
1435 out:
1436 	return ret;
1437 }
1438 
1439 static int write_compressed(struct feat_fd *ff __maybe_unused,
1440 			    struct evlist *evlist __maybe_unused)
1441 {
1442 	int ret;
1443 
1444 	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1445 	if (ret)
1446 		return ret;
1447 
1448 	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1449 	if (ret)
1450 		return ret;
1451 
1452 	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1453 	if (ret)
1454 		return ret;
1455 
1456 	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1457 	if (ret)
1458 		return ret;
1459 
1460 	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1461 }
1462 
1463 static int write_per_cpu_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1464 				  bool write_pmu)
1465 {
1466 	struct perf_pmu_caps *caps = NULL;
1467 	int nr_caps;
1468 	int ret;
1469 
1470 	nr_caps = perf_pmu__caps_parse(pmu);
1471 	if (nr_caps < 0)
1472 		return nr_caps;
1473 
1474 	ret = do_write(ff, &nr_caps, sizeof(nr_caps));
1475 	if (ret < 0)
1476 		return ret;
1477 
1478 	list_for_each_entry(caps, &pmu->caps, list) {
1479 		ret = do_write_string(ff, caps->name);
1480 		if (ret < 0)
1481 			return ret;
1482 
1483 		ret = do_write_string(ff, caps->value);
1484 		if (ret < 0)
1485 			return ret;
1486 	}
1487 
1488 	if (write_pmu) {
1489 		ret = do_write_string(ff, pmu->name);
1490 		if (ret < 0)
1491 			return ret;
1492 	}
1493 
1494 	return ret;
1495 }
1496 
1497 static int write_cpu_pmu_caps(struct feat_fd *ff,
1498 			      struct evlist *evlist __maybe_unused)
1499 {
1500 	struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1501 
1502 	if (!cpu_pmu)
1503 		return -ENOENT;
1504 
1505 	return write_per_cpu_pmu_caps(ff, cpu_pmu, false);
1506 }
1507 
1508 static int write_hybrid_cpu_pmu_caps(struct feat_fd *ff,
1509 				     struct evlist *evlist __maybe_unused)
1510 {
1511 	struct perf_pmu *pmu;
1512 	u32 nr_pmu = perf_pmu__hybrid_pmu_num();
1513 	int ret;
1514 
1515 	if (nr_pmu == 0)
1516 		return -ENOENT;
1517 
1518 	ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1519 	if (ret < 0)
1520 		return ret;
1521 
1522 	perf_pmu__for_each_hybrid_pmu(pmu) {
1523 		ret = write_per_cpu_pmu_caps(ff, pmu, true);
1524 		if (ret < 0)
1525 			return ret;
1526 	}
1527 
1528 	return 0;
1529 }
1530 
1531 static void print_hostname(struct feat_fd *ff, FILE *fp)
1532 {
1533 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1534 }
1535 
1536 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1537 {
1538 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1539 }
1540 
1541 static void print_arch(struct feat_fd *ff, FILE *fp)
1542 {
1543 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1544 }
1545 
1546 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1547 {
1548 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1549 }
1550 
1551 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1552 {
1553 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1554 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1555 }
1556 
1557 static void print_version(struct feat_fd *ff, FILE *fp)
1558 {
1559 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1560 }
1561 
1562 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1563 {
1564 	int nr, i;
1565 
1566 	nr = ff->ph->env.nr_cmdline;
1567 
1568 	fprintf(fp, "# cmdline : ");
1569 
1570 	for (i = 0; i < nr; i++) {
1571 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1572 		if (!argv_i) {
1573 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1574 		} else {
1575 			char *mem = argv_i;
1576 			do {
1577 				char *quote = strchr(argv_i, '\'');
1578 				if (!quote)
1579 					break;
1580 				*quote++ = '\0';
1581 				fprintf(fp, "%s\\\'", argv_i);
1582 				argv_i = quote;
1583 			} while (1);
1584 			fprintf(fp, "%s ", argv_i);
1585 			free(mem);
1586 		}
1587 	}
1588 	fputc('\n', fp);
1589 }
1590 
1591 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1592 {
1593 	struct perf_header *ph = ff->ph;
1594 	int cpu_nr = ph->env.nr_cpus_avail;
1595 	int nr, i;
1596 	char *str;
1597 
1598 	nr = ph->env.nr_sibling_cores;
1599 	str = ph->env.sibling_cores;
1600 
1601 	for (i = 0; i < nr; i++) {
1602 		fprintf(fp, "# sibling sockets : %s\n", str);
1603 		str += strlen(str) + 1;
1604 	}
1605 
1606 	if (ph->env.nr_sibling_dies) {
1607 		nr = ph->env.nr_sibling_dies;
1608 		str = ph->env.sibling_dies;
1609 
1610 		for (i = 0; i < nr; i++) {
1611 			fprintf(fp, "# sibling dies    : %s\n", str);
1612 			str += strlen(str) + 1;
1613 		}
1614 	}
1615 
1616 	nr = ph->env.nr_sibling_threads;
1617 	str = ph->env.sibling_threads;
1618 
1619 	for (i = 0; i < nr; i++) {
1620 		fprintf(fp, "# sibling threads : %s\n", str);
1621 		str += strlen(str) + 1;
1622 	}
1623 
1624 	if (ph->env.nr_sibling_dies) {
1625 		if (ph->env.cpu != NULL) {
1626 			for (i = 0; i < cpu_nr; i++)
1627 				fprintf(fp, "# CPU %d: Core ID %d, "
1628 					    "Die ID %d, Socket ID %d\n",
1629 					    i, ph->env.cpu[i].core_id,
1630 					    ph->env.cpu[i].die_id,
1631 					    ph->env.cpu[i].socket_id);
1632 		} else
1633 			fprintf(fp, "# Core ID, Die ID and Socket ID "
1634 				    "information is not available\n");
1635 	} else {
1636 		if (ph->env.cpu != NULL) {
1637 			for (i = 0; i < cpu_nr; i++)
1638 				fprintf(fp, "# CPU %d: Core ID %d, "
1639 					    "Socket ID %d\n",
1640 					    i, ph->env.cpu[i].core_id,
1641 					    ph->env.cpu[i].socket_id);
1642 		} else
1643 			fprintf(fp, "# Core ID and Socket ID "
1644 				    "information is not available\n");
1645 	}
1646 }
1647 
1648 static void print_clockid(struct feat_fd *ff, FILE *fp)
1649 {
1650 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1651 		ff->ph->env.clock.clockid_res_ns * 1000);
1652 }
1653 
1654 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1655 {
1656 	struct timespec clockid_ns;
1657 	char tstr[64], date[64];
1658 	struct timeval tod_ns;
1659 	clockid_t clockid;
1660 	struct tm ltime;
1661 	u64 ref;
1662 
1663 	if (!ff->ph->env.clock.enabled) {
1664 		fprintf(fp, "# reference time disabled\n");
1665 		return;
1666 	}
1667 
1668 	/* Compute TOD time. */
1669 	ref = ff->ph->env.clock.tod_ns;
1670 	tod_ns.tv_sec = ref / NSEC_PER_SEC;
1671 	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1672 	tod_ns.tv_usec = ref / NSEC_PER_USEC;
1673 
1674 	/* Compute clockid time. */
1675 	ref = ff->ph->env.clock.clockid_ns;
1676 	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1677 	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1678 	clockid_ns.tv_nsec = ref;
1679 
1680 	clockid = ff->ph->env.clock.clockid;
1681 
1682 	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1683 		snprintf(tstr, sizeof(tstr), "<error>");
1684 	else {
1685 		strftime(date, sizeof(date), "%F %T", &ltime);
1686 		scnprintf(tstr, sizeof(tstr), "%s.%06d",
1687 			  date, (int) tod_ns.tv_usec);
1688 	}
1689 
1690 	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1691 	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1692 		    tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1693 		    (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1694 		    clockid_name(clockid));
1695 }
1696 
1697 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1698 {
1699 	int i;
1700 	struct hybrid_node *n;
1701 
1702 	fprintf(fp, "# hybrid cpu system:\n");
1703 	for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1704 		n = &ff->ph->env.hybrid_nodes[i];
1705 		fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1706 	}
1707 }
1708 
1709 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1710 {
1711 	struct perf_session *session;
1712 	struct perf_data *data;
1713 
1714 	session = container_of(ff->ph, struct perf_session, header);
1715 	data = session->data;
1716 
1717 	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1718 }
1719 
1720 #ifdef HAVE_LIBBPF_SUPPORT
1721 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1722 {
1723 	struct perf_env *env = &ff->ph->env;
1724 	struct rb_root *root;
1725 	struct rb_node *next;
1726 
1727 	down_read(&env->bpf_progs.lock);
1728 
1729 	root = &env->bpf_progs.infos;
1730 	next = rb_first(root);
1731 
1732 	while (next) {
1733 		struct bpf_prog_info_node *node;
1734 
1735 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1736 		next = rb_next(&node->rb_node);
1737 
1738 		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1739 					       env, fp);
1740 	}
1741 
1742 	up_read(&env->bpf_progs.lock);
1743 }
1744 
1745 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1746 {
1747 	struct perf_env *env = &ff->ph->env;
1748 	struct rb_root *root;
1749 	struct rb_node *next;
1750 
1751 	down_read(&env->bpf_progs.lock);
1752 
1753 	root = &env->bpf_progs.btfs;
1754 	next = rb_first(root);
1755 
1756 	while (next) {
1757 		struct btf_node *node;
1758 
1759 		node = rb_entry(next, struct btf_node, rb_node);
1760 		next = rb_next(&node->rb_node);
1761 		fprintf(fp, "# btf info of id %u\n", node->id);
1762 	}
1763 
1764 	up_read(&env->bpf_progs.lock);
1765 }
1766 #endif // HAVE_LIBBPF_SUPPORT
1767 
1768 static void free_event_desc(struct evsel *events)
1769 {
1770 	struct evsel *evsel;
1771 
1772 	if (!events)
1773 		return;
1774 
1775 	for (evsel = events; evsel->core.attr.size; evsel++) {
1776 		zfree(&evsel->name);
1777 		zfree(&evsel->core.id);
1778 	}
1779 
1780 	free(events);
1781 }
1782 
1783 static bool perf_attr_check(struct perf_event_attr *attr)
1784 {
1785 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1786 		pr_warning("Reserved bits are set unexpectedly. "
1787 			   "Please update perf tool.\n");
1788 		return false;
1789 	}
1790 
1791 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1792 		pr_warning("Unknown sample type (0x%llx) is detected. "
1793 			   "Please update perf tool.\n",
1794 			   attr->sample_type);
1795 		return false;
1796 	}
1797 
1798 	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1799 		pr_warning("Unknown read format (0x%llx) is detected. "
1800 			   "Please update perf tool.\n",
1801 			   attr->read_format);
1802 		return false;
1803 	}
1804 
1805 	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1806 	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1807 		pr_warning("Unknown branch sample type (0x%llx) is detected. "
1808 			   "Please update perf tool.\n",
1809 			   attr->branch_sample_type);
1810 
1811 		return false;
1812 	}
1813 
1814 	return true;
1815 }
1816 
1817 static struct evsel *read_event_desc(struct feat_fd *ff)
1818 {
1819 	struct evsel *evsel, *events = NULL;
1820 	u64 *id;
1821 	void *buf = NULL;
1822 	u32 nre, sz, nr, i, j;
1823 	size_t msz;
1824 
1825 	/* number of events */
1826 	if (do_read_u32(ff, &nre))
1827 		goto error;
1828 
1829 	if (do_read_u32(ff, &sz))
1830 		goto error;
1831 
1832 	/* buffer to hold on file attr struct */
1833 	buf = malloc(sz);
1834 	if (!buf)
1835 		goto error;
1836 
1837 	/* the last event terminates with evsel->core.attr.size == 0: */
1838 	events = calloc(nre + 1, sizeof(*events));
1839 	if (!events)
1840 		goto error;
1841 
1842 	msz = sizeof(evsel->core.attr);
1843 	if (sz < msz)
1844 		msz = sz;
1845 
1846 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1847 		evsel->core.idx = i;
1848 
1849 		/*
1850 		 * must read entire on-file attr struct to
1851 		 * sync up with layout.
1852 		 */
1853 		if (__do_read(ff, buf, sz))
1854 			goto error;
1855 
1856 		if (ff->ph->needs_swap)
1857 			perf_event__attr_swap(buf);
1858 
1859 		memcpy(&evsel->core.attr, buf, msz);
1860 
1861 		if (!perf_attr_check(&evsel->core.attr))
1862 			goto error;
1863 
1864 		if (do_read_u32(ff, &nr))
1865 			goto error;
1866 
1867 		if (ff->ph->needs_swap)
1868 			evsel->needs_swap = true;
1869 
1870 		evsel->name = do_read_string(ff);
1871 		if (!evsel->name)
1872 			goto error;
1873 
1874 		if (!nr)
1875 			continue;
1876 
1877 		id = calloc(nr, sizeof(*id));
1878 		if (!id)
1879 			goto error;
1880 		evsel->core.ids = nr;
1881 		evsel->core.id = id;
1882 
1883 		for (j = 0 ; j < nr; j++) {
1884 			if (do_read_u64(ff, id))
1885 				goto error;
1886 			id++;
1887 		}
1888 	}
1889 out:
1890 	free(buf);
1891 	return events;
1892 error:
1893 	free_event_desc(events);
1894 	events = NULL;
1895 	goto out;
1896 }
1897 
1898 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1899 				void *priv __maybe_unused)
1900 {
1901 	return fprintf(fp, ", %s = %s", name, val);
1902 }
1903 
1904 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1905 {
1906 	struct evsel *evsel, *events;
1907 	u32 j;
1908 	u64 *id;
1909 
1910 	if (ff->events)
1911 		events = ff->events;
1912 	else
1913 		events = read_event_desc(ff);
1914 
1915 	if (!events) {
1916 		fprintf(fp, "# event desc: not available or unable to read\n");
1917 		return;
1918 	}
1919 
1920 	for (evsel = events; evsel->core.attr.size; evsel++) {
1921 		fprintf(fp, "# event : name = %s, ", evsel->name);
1922 
1923 		if (evsel->core.ids) {
1924 			fprintf(fp, ", id = {");
1925 			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1926 				if (j)
1927 					fputc(',', fp);
1928 				fprintf(fp, " %"PRIu64, *id);
1929 			}
1930 			fprintf(fp, " }");
1931 		}
1932 
1933 		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1934 
1935 		fputc('\n', fp);
1936 	}
1937 
1938 	free_event_desc(events);
1939 	ff->events = NULL;
1940 }
1941 
1942 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1943 {
1944 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1945 }
1946 
1947 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1948 {
1949 	int i;
1950 	struct numa_node *n;
1951 
1952 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1953 		n = &ff->ph->env.numa_nodes[i];
1954 
1955 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1956 			    " free = %"PRIu64" kB\n",
1957 			n->node, n->mem_total, n->mem_free);
1958 
1959 		fprintf(fp, "# node%u cpu list : ", n->node);
1960 		cpu_map__fprintf(n->map, fp);
1961 	}
1962 }
1963 
1964 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1965 {
1966 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1967 }
1968 
1969 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1970 {
1971 	fprintf(fp, "# contains samples with branch stack\n");
1972 }
1973 
1974 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1975 {
1976 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1977 }
1978 
1979 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1980 {
1981 	fprintf(fp, "# contains stat data\n");
1982 }
1983 
1984 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1985 {
1986 	int i;
1987 
1988 	fprintf(fp, "# CPU cache info:\n");
1989 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1990 		fprintf(fp, "#  ");
1991 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1992 	}
1993 }
1994 
1995 static void print_compressed(struct feat_fd *ff, FILE *fp)
1996 {
1997 	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1998 		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1999 		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2000 }
2001 
2002 static void print_per_cpu_pmu_caps(FILE *fp, int nr_caps, char *cpu_pmu_caps,
2003 				   char *pmu_name)
2004 {
2005 	const char *delimiter;
2006 	char *str, buf[128];
2007 
2008 	if (!nr_caps) {
2009 		if (!pmu_name)
2010 			fprintf(fp, "# cpu pmu capabilities: not available\n");
2011 		else
2012 			fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2013 		return;
2014 	}
2015 
2016 	if (!pmu_name)
2017 		scnprintf(buf, sizeof(buf), "# cpu pmu capabilities: ");
2018 	else
2019 		scnprintf(buf, sizeof(buf), "# %s pmu capabilities: ", pmu_name);
2020 
2021 	delimiter = buf;
2022 
2023 	str = cpu_pmu_caps;
2024 	while (nr_caps--) {
2025 		fprintf(fp, "%s%s", delimiter, str);
2026 		delimiter = ", ";
2027 		str += strlen(str) + 1;
2028 	}
2029 
2030 	fprintf(fp, "\n");
2031 }
2032 
2033 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2034 {
2035 	print_per_cpu_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2036 			       ff->ph->env.cpu_pmu_caps, NULL);
2037 }
2038 
2039 static void print_hybrid_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2040 {
2041 	struct hybrid_cpc_node *n;
2042 
2043 	for (int i = 0; i < ff->ph->env.nr_hybrid_cpc_nodes; i++) {
2044 		n = &ff->ph->env.hybrid_cpc_nodes[i];
2045 		print_per_cpu_pmu_caps(fp, n->nr_cpu_pmu_caps,
2046 				       n->cpu_pmu_caps,
2047 				       n->pmu_name);
2048 	}
2049 }
2050 
2051 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2052 {
2053 	const char *delimiter = "# pmu mappings: ";
2054 	char *str, *tmp;
2055 	u32 pmu_num;
2056 	u32 type;
2057 
2058 	pmu_num = ff->ph->env.nr_pmu_mappings;
2059 	if (!pmu_num) {
2060 		fprintf(fp, "# pmu mappings: not available\n");
2061 		return;
2062 	}
2063 
2064 	str = ff->ph->env.pmu_mappings;
2065 
2066 	while (pmu_num) {
2067 		type = strtoul(str, &tmp, 0);
2068 		if (*tmp != ':')
2069 			goto error;
2070 
2071 		str = tmp + 1;
2072 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2073 
2074 		delimiter = ", ";
2075 		str += strlen(str) + 1;
2076 		pmu_num--;
2077 	}
2078 
2079 	fprintf(fp, "\n");
2080 
2081 	if (!pmu_num)
2082 		return;
2083 error:
2084 	fprintf(fp, "# pmu mappings: unable to read\n");
2085 }
2086 
2087 static void print_group_desc(struct feat_fd *ff, FILE *fp)
2088 {
2089 	struct perf_session *session;
2090 	struct evsel *evsel;
2091 	u32 nr = 0;
2092 
2093 	session = container_of(ff->ph, struct perf_session, header);
2094 
2095 	evlist__for_each_entry(session->evlist, evsel) {
2096 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2097 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2098 
2099 			nr = evsel->core.nr_members - 1;
2100 		} else if (nr) {
2101 			fprintf(fp, ",%s", evsel__name(evsel));
2102 
2103 			if (--nr == 0)
2104 				fprintf(fp, "}\n");
2105 		}
2106 	}
2107 }
2108 
2109 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2110 {
2111 	struct perf_session *session;
2112 	char time_buf[32];
2113 	double d;
2114 
2115 	session = container_of(ff->ph, struct perf_session, header);
2116 
2117 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
2118 				  time_buf, sizeof(time_buf));
2119 	fprintf(fp, "# time of first sample : %s\n", time_buf);
2120 
2121 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
2122 				  time_buf, sizeof(time_buf));
2123 	fprintf(fp, "# time of last sample : %s\n", time_buf);
2124 
2125 	d = (double)(session->evlist->last_sample_time -
2126 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
2127 
2128 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
2129 }
2130 
2131 static void memory_node__fprintf(struct memory_node *n,
2132 				 unsigned long long bsize, FILE *fp)
2133 {
2134 	char buf_map[100], buf_size[50];
2135 	unsigned long long size;
2136 
2137 	size = bsize * bitmap_weight(n->set, n->size);
2138 	unit_number__scnprintf(buf_size, 50, size);
2139 
2140 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
2141 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2142 }
2143 
2144 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2145 {
2146 	struct memory_node *nodes;
2147 	int i, nr;
2148 
2149 	nodes = ff->ph->env.memory_nodes;
2150 	nr    = ff->ph->env.nr_memory_nodes;
2151 
2152 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2153 		nr, ff->ph->env.memory_bsize);
2154 
2155 	for (i = 0; i < nr; i++) {
2156 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2157 	}
2158 }
2159 
2160 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2161 				    char *filename,
2162 				    struct perf_session *session)
2163 {
2164 	int err = -1;
2165 	struct machine *machine;
2166 	u16 cpumode;
2167 	struct dso *dso;
2168 	enum dso_space_type dso_space;
2169 
2170 	machine = perf_session__findnew_machine(session, bev->pid);
2171 	if (!machine)
2172 		goto out;
2173 
2174 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2175 
2176 	switch (cpumode) {
2177 	case PERF_RECORD_MISC_KERNEL:
2178 		dso_space = DSO_SPACE__KERNEL;
2179 		break;
2180 	case PERF_RECORD_MISC_GUEST_KERNEL:
2181 		dso_space = DSO_SPACE__KERNEL_GUEST;
2182 		break;
2183 	case PERF_RECORD_MISC_USER:
2184 	case PERF_RECORD_MISC_GUEST_USER:
2185 		dso_space = DSO_SPACE__USER;
2186 		break;
2187 	default:
2188 		goto out;
2189 	}
2190 
2191 	dso = machine__findnew_dso(machine, filename);
2192 	if (dso != NULL) {
2193 		char sbuild_id[SBUILD_ID_SIZE];
2194 		struct build_id bid;
2195 		size_t size = BUILD_ID_SIZE;
2196 
2197 		if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2198 			size = bev->size;
2199 
2200 		build_id__init(&bid, bev->data, size);
2201 		dso__set_build_id(dso, &bid);
2202 
2203 		if (dso_space != DSO_SPACE__USER) {
2204 			struct kmod_path m = { .name = NULL, };
2205 
2206 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2207 				dso__set_module_info(dso, &m, machine);
2208 
2209 			dso->kernel = dso_space;
2210 			free(m.name);
2211 		}
2212 
2213 		build_id__sprintf(&dso->bid, sbuild_id);
2214 		pr_debug("build id event received for %s: %s [%zu]\n",
2215 			 dso->long_name, sbuild_id, size);
2216 		dso__put(dso);
2217 	}
2218 
2219 	err = 0;
2220 out:
2221 	return err;
2222 }
2223 
2224 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2225 						 int input, u64 offset, u64 size)
2226 {
2227 	struct perf_session *session = container_of(header, struct perf_session, header);
2228 	struct {
2229 		struct perf_event_header   header;
2230 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2231 		char			   filename[0];
2232 	} old_bev;
2233 	struct perf_record_header_build_id bev;
2234 	char filename[PATH_MAX];
2235 	u64 limit = offset + size;
2236 
2237 	while (offset < limit) {
2238 		ssize_t len;
2239 
2240 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2241 			return -1;
2242 
2243 		if (header->needs_swap)
2244 			perf_event_header__bswap(&old_bev.header);
2245 
2246 		len = old_bev.header.size - sizeof(old_bev);
2247 		if (readn(input, filename, len) != len)
2248 			return -1;
2249 
2250 		bev.header = old_bev.header;
2251 
2252 		/*
2253 		 * As the pid is the missing value, we need to fill
2254 		 * it properly. The header.misc value give us nice hint.
2255 		 */
2256 		bev.pid	= HOST_KERNEL_ID;
2257 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2258 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2259 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
2260 
2261 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2262 		__event_process_build_id(&bev, filename, session);
2263 
2264 		offset += bev.header.size;
2265 	}
2266 
2267 	return 0;
2268 }
2269 
2270 static int perf_header__read_build_ids(struct perf_header *header,
2271 				       int input, u64 offset, u64 size)
2272 {
2273 	struct perf_session *session = container_of(header, struct perf_session, header);
2274 	struct perf_record_header_build_id bev;
2275 	char filename[PATH_MAX];
2276 	u64 limit = offset + size, orig_offset = offset;
2277 	int err = -1;
2278 
2279 	while (offset < limit) {
2280 		ssize_t len;
2281 
2282 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2283 			goto out;
2284 
2285 		if (header->needs_swap)
2286 			perf_event_header__bswap(&bev.header);
2287 
2288 		len = bev.header.size - sizeof(bev);
2289 		if (readn(input, filename, len) != len)
2290 			goto out;
2291 		/*
2292 		 * The a1645ce1 changeset:
2293 		 *
2294 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2295 		 *
2296 		 * Added a field to struct perf_record_header_build_id that broke the file
2297 		 * format.
2298 		 *
2299 		 * Since the kernel build-id is the first entry, process the
2300 		 * table using the old format if the well known
2301 		 * '[kernel.kallsyms]' string for the kernel build-id has the
2302 		 * first 4 characters chopped off (where the pid_t sits).
2303 		 */
2304 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2305 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2306 				return -1;
2307 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2308 		}
2309 
2310 		__event_process_build_id(&bev, filename, session);
2311 
2312 		offset += bev.header.size;
2313 	}
2314 	err = 0;
2315 out:
2316 	return err;
2317 }
2318 
2319 /* Macro for features that simply need to read and store a string. */
2320 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2321 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2322 {\
2323 	ff->ph->env.__feat_env = do_read_string(ff); \
2324 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2325 }
2326 
2327 FEAT_PROCESS_STR_FUN(hostname, hostname);
2328 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2329 FEAT_PROCESS_STR_FUN(version, version);
2330 FEAT_PROCESS_STR_FUN(arch, arch);
2331 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2332 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2333 
2334 static int process_tracing_data(struct feat_fd *ff, void *data)
2335 {
2336 	ssize_t ret = trace_report(ff->fd, data, false);
2337 
2338 	return ret < 0 ? -1 : 0;
2339 }
2340 
2341 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2342 {
2343 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2344 		pr_debug("Failed to read buildids, continuing...\n");
2345 	return 0;
2346 }
2347 
2348 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2349 {
2350 	int ret;
2351 	u32 nr_cpus_avail, nr_cpus_online;
2352 
2353 	ret = do_read_u32(ff, &nr_cpus_avail);
2354 	if (ret)
2355 		return ret;
2356 
2357 	ret = do_read_u32(ff, &nr_cpus_online);
2358 	if (ret)
2359 		return ret;
2360 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2361 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2362 	return 0;
2363 }
2364 
2365 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2366 {
2367 	u64 total_mem;
2368 	int ret;
2369 
2370 	ret = do_read_u64(ff, &total_mem);
2371 	if (ret)
2372 		return -1;
2373 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2374 	return 0;
2375 }
2376 
2377 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2378 {
2379 	struct evsel *evsel;
2380 
2381 	evlist__for_each_entry(evlist, evsel) {
2382 		if (evsel->core.idx == idx)
2383 			return evsel;
2384 	}
2385 
2386 	return NULL;
2387 }
2388 
2389 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2390 {
2391 	struct evsel *evsel;
2392 
2393 	if (!event->name)
2394 		return;
2395 
2396 	evsel = evlist__find_by_index(evlist, event->core.idx);
2397 	if (!evsel)
2398 		return;
2399 
2400 	if (evsel->name)
2401 		return;
2402 
2403 	evsel->name = strdup(event->name);
2404 }
2405 
2406 static int
2407 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2408 {
2409 	struct perf_session *session;
2410 	struct evsel *evsel, *events = read_event_desc(ff);
2411 
2412 	if (!events)
2413 		return 0;
2414 
2415 	session = container_of(ff->ph, struct perf_session, header);
2416 
2417 	if (session->data->is_pipe) {
2418 		/* Save events for reading later by print_event_desc,
2419 		 * since they can't be read again in pipe mode. */
2420 		ff->events = events;
2421 	}
2422 
2423 	for (evsel = events; evsel->core.attr.size; evsel++)
2424 		evlist__set_event_name(session->evlist, evsel);
2425 
2426 	if (!session->data->is_pipe)
2427 		free_event_desc(events);
2428 
2429 	return 0;
2430 }
2431 
2432 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2433 {
2434 	char *str, *cmdline = NULL, **argv = NULL;
2435 	u32 nr, i, len = 0;
2436 
2437 	if (do_read_u32(ff, &nr))
2438 		return -1;
2439 
2440 	ff->ph->env.nr_cmdline = nr;
2441 
2442 	cmdline = zalloc(ff->size + nr + 1);
2443 	if (!cmdline)
2444 		return -1;
2445 
2446 	argv = zalloc(sizeof(char *) * (nr + 1));
2447 	if (!argv)
2448 		goto error;
2449 
2450 	for (i = 0; i < nr; i++) {
2451 		str = do_read_string(ff);
2452 		if (!str)
2453 			goto error;
2454 
2455 		argv[i] = cmdline + len;
2456 		memcpy(argv[i], str, strlen(str) + 1);
2457 		len += strlen(str) + 1;
2458 		free(str);
2459 	}
2460 	ff->ph->env.cmdline = cmdline;
2461 	ff->ph->env.cmdline_argv = (const char **) argv;
2462 	return 0;
2463 
2464 error:
2465 	free(argv);
2466 	free(cmdline);
2467 	return -1;
2468 }
2469 
2470 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2471 {
2472 	u32 nr, i;
2473 	char *str;
2474 	struct strbuf sb;
2475 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2476 	u64 size = 0;
2477 	struct perf_header *ph = ff->ph;
2478 	bool do_core_id_test = true;
2479 
2480 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2481 	if (!ph->env.cpu)
2482 		return -1;
2483 
2484 	if (do_read_u32(ff, &nr))
2485 		goto free_cpu;
2486 
2487 	ph->env.nr_sibling_cores = nr;
2488 	size += sizeof(u32);
2489 	if (strbuf_init(&sb, 128) < 0)
2490 		goto free_cpu;
2491 
2492 	for (i = 0; i < nr; i++) {
2493 		str = do_read_string(ff);
2494 		if (!str)
2495 			goto error;
2496 
2497 		/* include a NULL character at the end */
2498 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2499 			goto error;
2500 		size += string_size(str);
2501 		free(str);
2502 	}
2503 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2504 
2505 	if (do_read_u32(ff, &nr))
2506 		return -1;
2507 
2508 	ph->env.nr_sibling_threads = nr;
2509 	size += sizeof(u32);
2510 
2511 	for (i = 0; i < nr; i++) {
2512 		str = do_read_string(ff);
2513 		if (!str)
2514 			goto error;
2515 
2516 		/* include a NULL character at the end */
2517 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2518 			goto error;
2519 		size += string_size(str);
2520 		free(str);
2521 	}
2522 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2523 
2524 	/*
2525 	 * The header may be from old perf,
2526 	 * which doesn't include core id and socket id information.
2527 	 */
2528 	if (ff->size <= size) {
2529 		zfree(&ph->env.cpu);
2530 		return 0;
2531 	}
2532 
2533 	/* On s390 the socket_id number is not related to the numbers of cpus.
2534 	 * The socket_id number might be higher than the numbers of cpus.
2535 	 * This depends on the configuration.
2536 	 * AArch64 is the same.
2537 	 */
2538 	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2539 			  || !strncmp(ph->env.arch, "aarch64", 7)))
2540 		do_core_id_test = false;
2541 
2542 	for (i = 0; i < (u32)cpu_nr; i++) {
2543 		if (do_read_u32(ff, &nr))
2544 			goto free_cpu;
2545 
2546 		ph->env.cpu[i].core_id = nr;
2547 		size += sizeof(u32);
2548 
2549 		if (do_read_u32(ff, &nr))
2550 			goto free_cpu;
2551 
2552 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2553 			pr_debug("socket_id number is too big."
2554 				 "You may need to upgrade the perf tool.\n");
2555 			goto free_cpu;
2556 		}
2557 
2558 		ph->env.cpu[i].socket_id = nr;
2559 		size += sizeof(u32);
2560 	}
2561 
2562 	/*
2563 	 * The header may be from old perf,
2564 	 * which doesn't include die information.
2565 	 */
2566 	if (ff->size <= size)
2567 		return 0;
2568 
2569 	if (do_read_u32(ff, &nr))
2570 		return -1;
2571 
2572 	ph->env.nr_sibling_dies = nr;
2573 	size += sizeof(u32);
2574 
2575 	for (i = 0; i < nr; i++) {
2576 		str = do_read_string(ff);
2577 		if (!str)
2578 			goto error;
2579 
2580 		/* include a NULL character at the end */
2581 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2582 			goto error;
2583 		size += string_size(str);
2584 		free(str);
2585 	}
2586 	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2587 
2588 	for (i = 0; i < (u32)cpu_nr; i++) {
2589 		if (do_read_u32(ff, &nr))
2590 			goto free_cpu;
2591 
2592 		ph->env.cpu[i].die_id = nr;
2593 	}
2594 
2595 	return 0;
2596 
2597 error:
2598 	strbuf_release(&sb);
2599 free_cpu:
2600 	zfree(&ph->env.cpu);
2601 	return -1;
2602 }
2603 
2604 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2605 {
2606 	struct numa_node *nodes, *n;
2607 	u32 nr, i;
2608 	char *str;
2609 
2610 	/* nr nodes */
2611 	if (do_read_u32(ff, &nr))
2612 		return -1;
2613 
2614 	nodes = zalloc(sizeof(*nodes) * nr);
2615 	if (!nodes)
2616 		return -ENOMEM;
2617 
2618 	for (i = 0; i < nr; i++) {
2619 		n = &nodes[i];
2620 
2621 		/* node number */
2622 		if (do_read_u32(ff, &n->node))
2623 			goto error;
2624 
2625 		if (do_read_u64(ff, &n->mem_total))
2626 			goto error;
2627 
2628 		if (do_read_u64(ff, &n->mem_free))
2629 			goto error;
2630 
2631 		str = do_read_string(ff);
2632 		if (!str)
2633 			goto error;
2634 
2635 		n->map = perf_cpu_map__new(str);
2636 		if (!n->map)
2637 			goto error;
2638 
2639 		free(str);
2640 	}
2641 	ff->ph->env.nr_numa_nodes = nr;
2642 	ff->ph->env.numa_nodes = nodes;
2643 	return 0;
2644 
2645 error:
2646 	free(nodes);
2647 	return -1;
2648 }
2649 
2650 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2651 {
2652 	char *name;
2653 	u32 pmu_num;
2654 	u32 type;
2655 	struct strbuf sb;
2656 
2657 	if (do_read_u32(ff, &pmu_num))
2658 		return -1;
2659 
2660 	if (!pmu_num) {
2661 		pr_debug("pmu mappings not available\n");
2662 		return 0;
2663 	}
2664 
2665 	ff->ph->env.nr_pmu_mappings = pmu_num;
2666 	if (strbuf_init(&sb, 128) < 0)
2667 		return -1;
2668 
2669 	while (pmu_num) {
2670 		if (do_read_u32(ff, &type))
2671 			goto error;
2672 
2673 		name = do_read_string(ff);
2674 		if (!name)
2675 			goto error;
2676 
2677 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2678 			goto error;
2679 		/* include a NULL character at the end */
2680 		if (strbuf_add(&sb, "", 1) < 0)
2681 			goto error;
2682 
2683 		if (!strcmp(name, "msr"))
2684 			ff->ph->env.msr_pmu_type = type;
2685 
2686 		free(name);
2687 		pmu_num--;
2688 	}
2689 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2690 	return 0;
2691 
2692 error:
2693 	strbuf_release(&sb);
2694 	return -1;
2695 }
2696 
2697 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2698 {
2699 	size_t ret = -1;
2700 	u32 i, nr, nr_groups;
2701 	struct perf_session *session;
2702 	struct evsel *evsel, *leader = NULL;
2703 	struct group_desc {
2704 		char *name;
2705 		u32 leader_idx;
2706 		u32 nr_members;
2707 	} *desc;
2708 
2709 	if (do_read_u32(ff, &nr_groups))
2710 		return -1;
2711 
2712 	ff->ph->env.nr_groups = nr_groups;
2713 	if (!nr_groups) {
2714 		pr_debug("group desc not available\n");
2715 		return 0;
2716 	}
2717 
2718 	desc = calloc(nr_groups, sizeof(*desc));
2719 	if (!desc)
2720 		return -1;
2721 
2722 	for (i = 0; i < nr_groups; i++) {
2723 		desc[i].name = do_read_string(ff);
2724 		if (!desc[i].name)
2725 			goto out_free;
2726 
2727 		if (do_read_u32(ff, &desc[i].leader_idx))
2728 			goto out_free;
2729 
2730 		if (do_read_u32(ff, &desc[i].nr_members))
2731 			goto out_free;
2732 	}
2733 
2734 	/*
2735 	 * Rebuild group relationship based on the group_desc
2736 	 */
2737 	session = container_of(ff->ph, struct perf_session, header);
2738 	session->evlist->core.nr_groups = nr_groups;
2739 
2740 	i = nr = 0;
2741 	evlist__for_each_entry(session->evlist, evsel) {
2742 		if (evsel->core.idx == (int) desc[i].leader_idx) {
2743 			evsel__set_leader(evsel, evsel);
2744 			/* {anon_group} is a dummy name */
2745 			if (strcmp(desc[i].name, "{anon_group}")) {
2746 				evsel->group_name = desc[i].name;
2747 				desc[i].name = NULL;
2748 			}
2749 			evsel->core.nr_members = desc[i].nr_members;
2750 
2751 			if (i >= nr_groups || nr > 0) {
2752 				pr_debug("invalid group desc\n");
2753 				goto out_free;
2754 			}
2755 
2756 			leader = evsel;
2757 			nr = evsel->core.nr_members - 1;
2758 			i++;
2759 		} else if (nr) {
2760 			/* This is a group member */
2761 			evsel__set_leader(evsel, leader);
2762 
2763 			nr--;
2764 		}
2765 	}
2766 
2767 	if (i != nr_groups || nr != 0) {
2768 		pr_debug("invalid group desc\n");
2769 		goto out_free;
2770 	}
2771 
2772 	ret = 0;
2773 out_free:
2774 	for (i = 0; i < nr_groups; i++)
2775 		zfree(&desc[i].name);
2776 	free(desc);
2777 
2778 	return ret;
2779 }
2780 
2781 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2782 {
2783 	struct perf_session *session;
2784 	int err;
2785 
2786 	session = container_of(ff->ph, struct perf_session, header);
2787 
2788 	err = auxtrace_index__process(ff->fd, ff->size, session,
2789 				      ff->ph->needs_swap);
2790 	if (err < 0)
2791 		pr_err("Failed to process auxtrace index\n");
2792 	return err;
2793 }
2794 
2795 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2796 {
2797 	struct cpu_cache_level *caches;
2798 	u32 cnt, i, version;
2799 
2800 	if (do_read_u32(ff, &version))
2801 		return -1;
2802 
2803 	if (version != 1)
2804 		return -1;
2805 
2806 	if (do_read_u32(ff, &cnt))
2807 		return -1;
2808 
2809 	caches = zalloc(sizeof(*caches) * cnt);
2810 	if (!caches)
2811 		return -1;
2812 
2813 	for (i = 0; i < cnt; i++) {
2814 		struct cpu_cache_level c;
2815 
2816 		#define _R(v)						\
2817 			if (do_read_u32(ff, &c.v))\
2818 				goto out_free_caches;			\
2819 
2820 		_R(level)
2821 		_R(line_size)
2822 		_R(sets)
2823 		_R(ways)
2824 		#undef _R
2825 
2826 		#define _R(v)					\
2827 			c.v = do_read_string(ff);		\
2828 			if (!c.v)				\
2829 				goto out_free_caches;
2830 
2831 		_R(type)
2832 		_R(size)
2833 		_R(map)
2834 		#undef _R
2835 
2836 		caches[i] = c;
2837 	}
2838 
2839 	ff->ph->env.caches = caches;
2840 	ff->ph->env.caches_cnt = cnt;
2841 	return 0;
2842 out_free_caches:
2843 	free(caches);
2844 	return -1;
2845 }
2846 
2847 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2848 {
2849 	struct perf_session *session;
2850 	u64 first_sample_time, last_sample_time;
2851 	int ret;
2852 
2853 	session = container_of(ff->ph, struct perf_session, header);
2854 
2855 	ret = do_read_u64(ff, &first_sample_time);
2856 	if (ret)
2857 		return -1;
2858 
2859 	ret = do_read_u64(ff, &last_sample_time);
2860 	if (ret)
2861 		return -1;
2862 
2863 	session->evlist->first_sample_time = first_sample_time;
2864 	session->evlist->last_sample_time = last_sample_time;
2865 	return 0;
2866 }
2867 
2868 static int process_mem_topology(struct feat_fd *ff,
2869 				void *data __maybe_unused)
2870 {
2871 	struct memory_node *nodes;
2872 	u64 version, i, nr, bsize;
2873 	int ret = -1;
2874 
2875 	if (do_read_u64(ff, &version))
2876 		return -1;
2877 
2878 	if (version != 1)
2879 		return -1;
2880 
2881 	if (do_read_u64(ff, &bsize))
2882 		return -1;
2883 
2884 	if (do_read_u64(ff, &nr))
2885 		return -1;
2886 
2887 	nodes = zalloc(sizeof(*nodes) * nr);
2888 	if (!nodes)
2889 		return -1;
2890 
2891 	for (i = 0; i < nr; i++) {
2892 		struct memory_node n;
2893 
2894 		#define _R(v)				\
2895 			if (do_read_u64(ff, &n.v))	\
2896 				goto out;		\
2897 
2898 		_R(node)
2899 		_R(size)
2900 
2901 		#undef _R
2902 
2903 		if (do_read_bitmap(ff, &n.set, &n.size))
2904 			goto out;
2905 
2906 		nodes[i] = n;
2907 	}
2908 
2909 	ff->ph->env.memory_bsize    = bsize;
2910 	ff->ph->env.memory_nodes    = nodes;
2911 	ff->ph->env.nr_memory_nodes = nr;
2912 	ret = 0;
2913 
2914 out:
2915 	if (ret)
2916 		free(nodes);
2917 	return ret;
2918 }
2919 
2920 static int process_clockid(struct feat_fd *ff,
2921 			   void *data __maybe_unused)
2922 {
2923 	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2924 		return -1;
2925 
2926 	return 0;
2927 }
2928 
2929 static int process_clock_data(struct feat_fd *ff,
2930 			      void *_data __maybe_unused)
2931 {
2932 	u32 data32;
2933 	u64 data64;
2934 
2935 	/* version */
2936 	if (do_read_u32(ff, &data32))
2937 		return -1;
2938 
2939 	if (data32 != 1)
2940 		return -1;
2941 
2942 	/* clockid */
2943 	if (do_read_u32(ff, &data32))
2944 		return -1;
2945 
2946 	ff->ph->env.clock.clockid = data32;
2947 
2948 	/* TOD ref time */
2949 	if (do_read_u64(ff, &data64))
2950 		return -1;
2951 
2952 	ff->ph->env.clock.tod_ns = data64;
2953 
2954 	/* clockid ref time */
2955 	if (do_read_u64(ff, &data64))
2956 		return -1;
2957 
2958 	ff->ph->env.clock.clockid_ns = data64;
2959 	ff->ph->env.clock.enabled = true;
2960 	return 0;
2961 }
2962 
2963 static int process_hybrid_topology(struct feat_fd *ff,
2964 				   void *data __maybe_unused)
2965 {
2966 	struct hybrid_node *nodes, *n;
2967 	u32 nr, i;
2968 
2969 	/* nr nodes */
2970 	if (do_read_u32(ff, &nr))
2971 		return -1;
2972 
2973 	nodes = zalloc(sizeof(*nodes) * nr);
2974 	if (!nodes)
2975 		return -ENOMEM;
2976 
2977 	for (i = 0; i < nr; i++) {
2978 		n = &nodes[i];
2979 
2980 		n->pmu_name = do_read_string(ff);
2981 		if (!n->pmu_name)
2982 			goto error;
2983 
2984 		n->cpus = do_read_string(ff);
2985 		if (!n->cpus)
2986 			goto error;
2987 	}
2988 
2989 	ff->ph->env.nr_hybrid_nodes = nr;
2990 	ff->ph->env.hybrid_nodes = nodes;
2991 	return 0;
2992 
2993 error:
2994 	for (i = 0; i < nr; i++) {
2995 		free(nodes[i].pmu_name);
2996 		free(nodes[i].cpus);
2997 	}
2998 
2999 	free(nodes);
3000 	return -1;
3001 }
3002 
3003 static int process_dir_format(struct feat_fd *ff,
3004 			      void *_data __maybe_unused)
3005 {
3006 	struct perf_session *session;
3007 	struct perf_data *data;
3008 
3009 	session = container_of(ff->ph, struct perf_session, header);
3010 	data = session->data;
3011 
3012 	if (WARN_ON(!perf_data__is_dir(data)))
3013 		return -1;
3014 
3015 	return do_read_u64(ff, &data->dir.version);
3016 }
3017 
3018 #ifdef HAVE_LIBBPF_SUPPORT
3019 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3020 {
3021 	struct bpf_prog_info_linear *info_linear;
3022 	struct bpf_prog_info_node *info_node;
3023 	struct perf_env *env = &ff->ph->env;
3024 	u32 count, i;
3025 	int err = -1;
3026 
3027 	if (ff->ph->needs_swap) {
3028 		pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3029 		return 0;
3030 	}
3031 
3032 	if (do_read_u32(ff, &count))
3033 		return -1;
3034 
3035 	down_write(&env->bpf_progs.lock);
3036 
3037 	for (i = 0; i < count; ++i) {
3038 		u32 info_len, data_len;
3039 
3040 		info_linear = NULL;
3041 		info_node = NULL;
3042 		if (do_read_u32(ff, &info_len))
3043 			goto out;
3044 		if (do_read_u32(ff, &data_len))
3045 			goto out;
3046 
3047 		if (info_len > sizeof(struct bpf_prog_info)) {
3048 			pr_warning("detected invalid bpf_prog_info\n");
3049 			goto out;
3050 		}
3051 
3052 		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
3053 				     data_len);
3054 		if (!info_linear)
3055 			goto out;
3056 		info_linear->info_len = sizeof(struct bpf_prog_info);
3057 		info_linear->data_len = data_len;
3058 		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3059 			goto out;
3060 		if (__do_read(ff, &info_linear->info, info_len))
3061 			goto out;
3062 		if (info_len < sizeof(struct bpf_prog_info))
3063 			memset(((void *)(&info_linear->info)) + info_len, 0,
3064 			       sizeof(struct bpf_prog_info) - info_len);
3065 
3066 		if (__do_read(ff, info_linear->data, data_len))
3067 			goto out;
3068 
3069 		info_node = malloc(sizeof(struct bpf_prog_info_node));
3070 		if (!info_node)
3071 			goto out;
3072 
3073 		/* after reading from file, translate offset to address */
3074 		bpf_program__bpil_offs_to_addr(info_linear);
3075 		info_node->info_linear = info_linear;
3076 		perf_env__insert_bpf_prog_info(env, info_node);
3077 	}
3078 
3079 	up_write(&env->bpf_progs.lock);
3080 	return 0;
3081 out:
3082 	free(info_linear);
3083 	free(info_node);
3084 	up_write(&env->bpf_progs.lock);
3085 	return err;
3086 }
3087 
3088 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3089 {
3090 	struct perf_env *env = &ff->ph->env;
3091 	struct btf_node *node = NULL;
3092 	u32 count, i;
3093 	int err = -1;
3094 
3095 	if (ff->ph->needs_swap) {
3096 		pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3097 		return 0;
3098 	}
3099 
3100 	if (do_read_u32(ff, &count))
3101 		return -1;
3102 
3103 	down_write(&env->bpf_progs.lock);
3104 
3105 	for (i = 0; i < count; ++i) {
3106 		u32 id, data_size;
3107 
3108 		if (do_read_u32(ff, &id))
3109 			goto out;
3110 		if (do_read_u32(ff, &data_size))
3111 			goto out;
3112 
3113 		node = malloc(sizeof(struct btf_node) + data_size);
3114 		if (!node)
3115 			goto out;
3116 
3117 		node->id = id;
3118 		node->data_size = data_size;
3119 
3120 		if (__do_read(ff, node->data, data_size))
3121 			goto out;
3122 
3123 		perf_env__insert_btf(env, node);
3124 		node = NULL;
3125 	}
3126 
3127 	err = 0;
3128 out:
3129 	up_write(&env->bpf_progs.lock);
3130 	free(node);
3131 	return err;
3132 }
3133 #endif // HAVE_LIBBPF_SUPPORT
3134 
3135 static int process_compressed(struct feat_fd *ff,
3136 			      void *data __maybe_unused)
3137 {
3138 	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3139 		return -1;
3140 
3141 	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3142 		return -1;
3143 
3144 	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3145 		return -1;
3146 
3147 	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3148 		return -1;
3149 
3150 	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3151 		return -1;
3152 
3153 	return 0;
3154 }
3155 
3156 static int process_per_cpu_pmu_caps(struct feat_fd *ff, int *nr_cpu_pmu_caps,
3157 				    char **cpu_pmu_caps,
3158 				    unsigned int *max_branches)
3159 {
3160 	char *name, *value;
3161 	struct strbuf sb;
3162 	u32 nr_caps;
3163 
3164 	if (do_read_u32(ff, &nr_caps))
3165 		return -1;
3166 
3167 	if (!nr_caps) {
3168 		pr_debug("cpu pmu capabilities not available\n");
3169 		return 0;
3170 	}
3171 
3172 	*nr_cpu_pmu_caps = nr_caps;
3173 
3174 	if (strbuf_init(&sb, 128) < 0)
3175 		return -1;
3176 
3177 	while (nr_caps--) {
3178 		name = do_read_string(ff);
3179 		if (!name)
3180 			goto error;
3181 
3182 		value = do_read_string(ff);
3183 		if (!value)
3184 			goto free_name;
3185 
3186 		if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
3187 			goto free_value;
3188 
3189 		/* include a NULL character at the end */
3190 		if (strbuf_add(&sb, "", 1) < 0)
3191 			goto free_value;
3192 
3193 		if (!strcmp(name, "branches"))
3194 			*max_branches = atoi(value);
3195 
3196 		free(value);
3197 		free(name);
3198 	}
3199 	*cpu_pmu_caps = strbuf_detach(&sb, NULL);
3200 	return 0;
3201 
3202 free_value:
3203 	free(value);
3204 free_name:
3205 	free(name);
3206 error:
3207 	strbuf_release(&sb);
3208 	return -1;
3209 }
3210 
3211 static int process_cpu_pmu_caps(struct feat_fd *ff,
3212 				void *data __maybe_unused)
3213 {
3214 	return process_per_cpu_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3215 					&ff->ph->env.cpu_pmu_caps,
3216 					&ff->ph->env.max_branches);
3217 }
3218 
3219 static int process_hybrid_cpu_pmu_caps(struct feat_fd *ff,
3220 				       void *data __maybe_unused)
3221 {
3222 	struct hybrid_cpc_node *nodes;
3223 	u32 nr_pmu, i;
3224 	int ret;
3225 
3226 	if (do_read_u32(ff, &nr_pmu))
3227 		return -1;
3228 
3229 	if (!nr_pmu) {
3230 		pr_debug("hybrid cpu pmu capabilities not available\n");
3231 		return 0;
3232 	}
3233 
3234 	nodes = zalloc(sizeof(*nodes) * nr_pmu);
3235 	if (!nodes)
3236 		return -ENOMEM;
3237 
3238 	for (i = 0; i < nr_pmu; i++) {
3239 		struct hybrid_cpc_node *n = &nodes[i];
3240 
3241 		ret = process_per_cpu_pmu_caps(ff, &n->nr_cpu_pmu_caps,
3242 					       &n->cpu_pmu_caps,
3243 					       &n->max_branches);
3244 		if (ret)
3245 			goto err;
3246 
3247 		n->pmu_name = do_read_string(ff);
3248 		if (!n->pmu_name) {
3249 			ret = -1;
3250 			goto err;
3251 		}
3252 	}
3253 
3254 	ff->ph->env.nr_hybrid_cpc_nodes = nr_pmu;
3255 	ff->ph->env.hybrid_cpc_nodes = nodes;
3256 	return 0;
3257 
3258 err:
3259 	for (i = 0; i < nr_pmu; i++) {
3260 		free(nodes[i].cpu_pmu_caps);
3261 		free(nodes[i].pmu_name);
3262 	}
3263 
3264 	free(nodes);
3265 	return ret;
3266 }
3267 
3268 #define FEAT_OPR(n, func, __full_only) \
3269 	[HEADER_##n] = {					\
3270 		.name	    = __stringify(n),			\
3271 		.write	    = write_##func,			\
3272 		.print	    = print_##func,			\
3273 		.full_only  = __full_only,			\
3274 		.process    = process_##func,			\
3275 		.synthesize = true				\
3276 	}
3277 
3278 #define FEAT_OPN(n, func, __full_only) \
3279 	[HEADER_##n] = {					\
3280 		.name	    = __stringify(n),			\
3281 		.write	    = write_##func,			\
3282 		.print	    = print_##func,			\
3283 		.full_only  = __full_only,			\
3284 		.process    = process_##func			\
3285 	}
3286 
3287 /* feature_ops not implemented: */
3288 #define print_tracing_data	NULL
3289 #define print_build_id		NULL
3290 
3291 #define process_branch_stack	NULL
3292 #define process_stat		NULL
3293 
3294 // Only used in util/synthetic-events.c
3295 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3296 
3297 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3298 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
3299 	FEAT_OPN(BUILD_ID,	build_id,	false),
3300 	FEAT_OPR(HOSTNAME,	hostname,	false),
3301 	FEAT_OPR(OSRELEASE,	osrelease,	false),
3302 	FEAT_OPR(VERSION,	version,	false),
3303 	FEAT_OPR(ARCH,		arch,		false),
3304 	FEAT_OPR(NRCPUS,	nrcpus,		false),
3305 	FEAT_OPR(CPUDESC,	cpudesc,	false),
3306 	FEAT_OPR(CPUID,		cpuid,		false),
3307 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
3308 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
3309 	FEAT_OPR(CMDLINE,	cmdline,	false),
3310 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
3311 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
3312 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
3313 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3314 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3315 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
3316 	FEAT_OPN(STAT,		stat,		false),
3317 	FEAT_OPN(CACHE,		cache,		true),
3318 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3319 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3320 	FEAT_OPR(CLOCKID,	clockid,	false),
3321 	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3322 #ifdef HAVE_LIBBPF_SUPPORT
3323 	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3324 	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3325 #endif
3326 	FEAT_OPR(COMPRESSED,	compressed,	false),
3327 	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3328 	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3329 	FEAT_OPN(HYBRID_TOPOLOGY,	hybrid_topology,	true),
3330 	FEAT_OPR(HYBRID_CPU_PMU_CAPS,	hybrid_cpu_pmu_caps,	false),
3331 };
3332 
3333 struct header_print_data {
3334 	FILE *fp;
3335 	bool full; /* extended list of headers */
3336 };
3337 
3338 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3339 					   struct perf_header *ph,
3340 					   int feat, int fd, void *data)
3341 {
3342 	struct header_print_data *hd = data;
3343 	struct feat_fd ff;
3344 
3345 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3346 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3347 				"%d, continuing...\n", section->offset, feat);
3348 		return 0;
3349 	}
3350 	if (feat >= HEADER_LAST_FEATURE) {
3351 		pr_warning("unknown feature %d\n", feat);
3352 		return 0;
3353 	}
3354 	if (!feat_ops[feat].print)
3355 		return 0;
3356 
3357 	ff = (struct  feat_fd) {
3358 		.fd = fd,
3359 		.ph = ph,
3360 	};
3361 
3362 	if (!feat_ops[feat].full_only || hd->full)
3363 		feat_ops[feat].print(&ff, hd->fp);
3364 	else
3365 		fprintf(hd->fp, "# %s info available, use -I to display\n",
3366 			feat_ops[feat].name);
3367 
3368 	return 0;
3369 }
3370 
3371 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3372 {
3373 	struct header_print_data hd;
3374 	struct perf_header *header = &session->header;
3375 	int fd = perf_data__fd(session->data);
3376 	struct stat st;
3377 	time_t stctime;
3378 	int ret, bit;
3379 
3380 	hd.fp = fp;
3381 	hd.full = full;
3382 
3383 	ret = fstat(fd, &st);
3384 	if (ret == -1)
3385 		return -1;
3386 
3387 	stctime = st.st_mtime;
3388 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3389 
3390 	fprintf(fp, "# header version : %u\n", header->version);
3391 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3392 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3393 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3394 
3395 	perf_header__process_sections(header, fd, &hd,
3396 				      perf_file_section__fprintf_info);
3397 
3398 	if (session->data->is_pipe)
3399 		return 0;
3400 
3401 	fprintf(fp, "# missing features: ");
3402 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3403 		if (bit)
3404 			fprintf(fp, "%s ", feat_ops[bit].name);
3405 	}
3406 
3407 	fprintf(fp, "\n");
3408 	return 0;
3409 }
3410 
3411 static int do_write_feat(struct feat_fd *ff, int type,
3412 			 struct perf_file_section **p,
3413 			 struct evlist *evlist)
3414 {
3415 	int err;
3416 	int ret = 0;
3417 
3418 	if (perf_header__has_feat(ff->ph, type)) {
3419 		if (!feat_ops[type].write)
3420 			return -1;
3421 
3422 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3423 			return -1;
3424 
3425 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3426 
3427 		err = feat_ops[type].write(ff, evlist);
3428 		if (err < 0) {
3429 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3430 
3431 			/* undo anything written */
3432 			lseek(ff->fd, (*p)->offset, SEEK_SET);
3433 
3434 			return -1;
3435 		}
3436 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3437 		(*p)++;
3438 	}
3439 	return ret;
3440 }
3441 
3442 static int perf_header__adds_write(struct perf_header *header,
3443 				   struct evlist *evlist, int fd)
3444 {
3445 	int nr_sections;
3446 	struct feat_fd ff;
3447 	struct perf_file_section *feat_sec, *p;
3448 	int sec_size;
3449 	u64 sec_start;
3450 	int feat;
3451 	int err;
3452 
3453 	ff = (struct feat_fd){
3454 		.fd  = fd,
3455 		.ph = header,
3456 	};
3457 
3458 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3459 	if (!nr_sections)
3460 		return 0;
3461 
3462 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3463 	if (feat_sec == NULL)
3464 		return -ENOMEM;
3465 
3466 	sec_size = sizeof(*feat_sec) * nr_sections;
3467 
3468 	sec_start = header->feat_offset;
3469 	lseek(fd, sec_start + sec_size, SEEK_SET);
3470 
3471 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3472 		if (do_write_feat(&ff, feat, &p, evlist))
3473 			perf_header__clear_feat(header, feat);
3474 	}
3475 
3476 	lseek(fd, sec_start, SEEK_SET);
3477 	/*
3478 	 * may write more than needed due to dropped feature, but
3479 	 * this is okay, reader will skip the missing entries
3480 	 */
3481 	err = do_write(&ff, feat_sec, sec_size);
3482 	if (err < 0)
3483 		pr_debug("failed to write feature section\n");
3484 	free(feat_sec);
3485 	return err;
3486 }
3487 
3488 int perf_header__write_pipe(int fd)
3489 {
3490 	struct perf_pipe_file_header f_header;
3491 	struct feat_fd ff;
3492 	int err;
3493 
3494 	ff = (struct feat_fd){ .fd = fd };
3495 
3496 	f_header = (struct perf_pipe_file_header){
3497 		.magic	   = PERF_MAGIC,
3498 		.size	   = sizeof(f_header),
3499 	};
3500 
3501 	err = do_write(&ff, &f_header, sizeof(f_header));
3502 	if (err < 0) {
3503 		pr_debug("failed to write perf pipe header\n");
3504 		return err;
3505 	}
3506 
3507 	return 0;
3508 }
3509 
3510 int perf_session__write_header(struct perf_session *session,
3511 			       struct evlist *evlist,
3512 			       int fd, bool at_exit)
3513 {
3514 	struct perf_file_header f_header;
3515 	struct perf_file_attr   f_attr;
3516 	struct perf_header *header = &session->header;
3517 	struct evsel *evsel;
3518 	struct feat_fd ff;
3519 	u64 attr_offset;
3520 	int err;
3521 
3522 	ff = (struct feat_fd){ .fd = fd};
3523 	lseek(fd, sizeof(f_header), SEEK_SET);
3524 
3525 	evlist__for_each_entry(session->evlist, evsel) {
3526 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3527 		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3528 		if (err < 0) {
3529 			pr_debug("failed to write perf header\n");
3530 			return err;
3531 		}
3532 	}
3533 
3534 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3535 
3536 	evlist__for_each_entry(evlist, evsel) {
3537 		if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3538 			/*
3539 			 * We are likely in "perf inject" and have read
3540 			 * from an older file. Update attr size so that
3541 			 * reader gets the right offset to the ids.
3542 			 */
3543 			evsel->core.attr.size = sizeof(evsel->core.attr);
3544 		}
3545 		f_attr = (struct perf_file_attr){
3546 			.attr = evsel->core.attr,
3547 			.ids  = {
3548 				.offset = evsel->id_offset,
3549 				.size   = evsel->core.ids * sizeof(u64),
3550 			}
3551 		};
3552 		err = do_write(&ff, &f_attr, sizeof(f_attr));
3553 		if (err < 0) {
3554 			pr_debug("failed to write perf header attribute\n");
3555 			return err;
3556 		}
3557 	}
3558 
3559 	if (!header->data_offset)
3560 		header->data_offset = lseek(fd, 0, SEEK_CUR);
3561 	header->feat_offset = header->data_offset + header->data_size;
3562 
3563 	if (at_exit) {
3564 		err = perf_header__adds_write(header, evlist, fd);
3565 		if (err < 0)
3566 			return err;
3567 	}
3568 
3569 	f_header = (struct perf_file_header){
3570 		.magic	   = PERF_MAGIC,
3571 		.size	   = sizeof(f_header),
3572 		.attr_size = sizeof(f_attr),
3573 		.attrs = {
3574 			.offset = attr_offset,
3575 			.size   = evlist->core.nr_entries * sizeof(f_attr),
3576 		},
3577 		.data = {
3578 			.offset = header->data_offset,
3579 			.size	= header->data_size,
3580 		},
3581 		/* event_types is ignored, store zeros */
3582 	};
3583 
3584 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3585 
3586 	lseek(fd, 0, SEEK_SET);
3587 	err = do_write(&ff, &f_header, sizeof(f_header));
3588 	if (err < 0) {
3589 		pr_debug("failed to write perf header\n");
3590 		return err;
3591 	}
3592 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3593 
3594 	return 0;
3595 }
3596 
3597 static int perf_header__getbuffer64(struct perf_header *header,
3598 				    int fd, void *buf, size_t size)
3599 {
3600 	if (readn(fd, buf, size) <= 0)
3601 		return -1;
3602 
3603 	if (header->needs_swap)
3604 		mem_bswap_64(buf, size);
3605 
3606 	return 0;
3607 }
3608 
3609 int perf_header__process_sections(struct perf_header *header, int fd,
3610 				  void *data,
3611 				  int (*process)(struct perf_file_section *section,
3612 						 struct perf_header *ph,
3613 						 int feat, int fd, void *data))
3614 {
3615 	struct perf_file_section *feat_sec, *sec;
3616 	int nr_sections;
3617 	int sec_size;
3618 	int feat;
3619 	int err;
3620 
3621 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3622 	if (!nr_sections)
3623 		return 0;
3624 
3625 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3626 	if (!feat_sec)
3627 		return -1;
3628 
3629 	sec_size = sizeof(*feat_sec) * nr_sections;
3630 
3631 	lseek(fd, header->feat_offset, SEEK_SET);
3632 
3633 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3634 	if (err < 0)
3635 		goto out_free;
3636 
3637 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3638 		err = process(sec++, header, feat, fd, data);
3639 		if (err < 0)
3640 			goto out_free;
3641 	}
3642 	err = 0;
3643 out_free:
3644 	free(feat_sec);
3645 	return err;
3646 }
3647 
3648 static const int attr_file_abi_sizes[] = {
3649 	[0] = PERF_ATTR_SIZE_VER0,
3650 	[1] = PERF_ATTR_SIZE_VER1,
3651 	[2] = PERF_ATTR_SIZE_VER2,
3652 	[3] = PERF_ATTR_SIZE_VER3,
3653 	[4] = PERF_ATTR_SIZE_VER4,
3654 	0,
3655 };
3656 
3657 /*
3658  * In the legacy file format, the magic number is not used to encode endianness.
3659  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3660  * on ABI revisions, we need to try all combinations for all endianness to
3661  * detect the endianness.
3662  */
3663 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3664 {
3665 	uint64_t ref_size, attr_size;
3666 	int i;
3667 
3668 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3669 		ref_size = attr_file_abi_sizes[i]
3670 			 + sizeof(struct perf_file_section);
3671 		if (hdr_sz != ref_size) {
3672 			attr_size = bswap_64(hdr_sz);
3673 			if (attr_size != ref_size)
3674 				continue;
3675 
3676 			ph->needs_swap = true;
3677 		}
3678 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3679 			 i,
3680 			 ph->needs_swap);
3681 		return 0;
3682 	}
3683 	/* could not determine endianness */
3684 	return -1;
3685 }
3686 
3687 #define PERF_PIPE_HDR_VER0	16
3688 
3689 static const size_t attr_pipe_abi_sizes[] = {
3690 	[0] = PERF_PIPE_HDR_VER0,
3691 	0,
3692 };
3693 
3694 /*
3695  * In the legacy pipe format, there is an implicit assumption that endianness
3696  * between host recording the samples, and host parsing the samples is the
3697  * same. This is not always the case given that the pipe output may always be
3698  * redirected into a file and analyzed on a different machine with possibly a
3699  * different endianness and perf_event ABI revisions in the perf tool itself.
3700  */
3701 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3702 {
3703 	u64 attr_size;
3704 	int i;
3705 
3706 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3707 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3708 			attr_size = bswap_64(hdr_sz);
3709 			if (attr_size != hdr_sz)
3710 				continue;
3711 
3712 			ph->needs_swap = true;
3713 		}
3714 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3715 		return 0;
3716 	}
3717 	return -1;
3718 }
3719 
3720 bool is_perf_magic(u64 magic)
3721 {
3722 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3723 		|| magic == __perf_magic2
3724 		|| magic == __perf_magic2_sw)
3725 		return true;
3726 
3727 	return false;
3728 }
3729 
3730 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3731 			      bool is_pipe, struct perf_header *ph)
3732 {
3733 	int ret;
3734 
3735 	/* check for legacy format */
3736 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3737 	if (ret == 0) {
3738 		ph->version = PERF_HEADER_VERSION_1;
3739 		pr_debug("legacy perf.data format\n");
3740 		if (is_pipe)
3741 			return try_all_pipe_abis(hdr_sz, ph);
3742 
3743 		return try_all_file_abis(hdr_sz, ph);
3744 	}
3745 	/*
3746 	 * the new magic number serves two purposes:
3747 	 * - unique number to identify actual perf.data files
3748 	 * - encode endianness of file
3749 	 */
3750 	ph->version = PERF_HEADER_VERSION_2;
3751 
3752 	/* check magic number with one endianness */
3753 	if (magic == __perf_magic2)
3754 		return 0;
3755 
3756 	/* check magic number with opposite endianness */
3757 	if (magic != __perf_magic2_sw)
3758 		return -1;
3759 
3760 	ph->needs_swap = true;
3761 
3762 	return 0;
3763 }
3764 
3765 int perf_file_header__read(struct perf_file_header *header,
3766 			   struct perf_header *ph, int fd)
3767 {
3768 	ssize_t ret;
3769 
3770 	lseek(fd, 0, SEEK_SET);
3771 
3772 	ret = readn(fd, header, sizeof(*header));
3773 	if (ret <= 0)
3774 		return -1;
3775 
3776 	if (check_magic_endian(header->magic,
3777 			       header->attr_size, false, ph) < 0) {
3778 		pr_debug("magic/endian check failed\n");
3779 		return -1;
3780 	}
3781 
3782 	if (ph->needs_swap) {
3783 		mem_bswap_64(header, offsetof(struct perf_file_header,
3784 			     adds_features));
3785 	}
3786 
3787 	if (header->size != sizeof(*header)) {
3788 		/* Support the previous format */
3789 		if (header->size == offsetof(typeof(*header), adds_features))
3790 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3791 		else
3792 			return -1;
3793 	} else if (ph->needs_swap) {
3794 		/*
3795 		 * feature bitmap is declared as an array of unsigned longs --
3796 		 * not good since its size can differ between the host that
3797 		 * generated the data file and the host analyzing the file.
3798 		 *
3799 		 * We need to handle endianness, but we don't know the size of
3800 		 * the unsigned long where the file was generated. Take a best
3801 		 * guess at determining it: try 64-bit swap first (ie., file
3802 		 * created on a 64-bit host), and check if the hostname feature
3803 		 * bit is set (this feature bit is forced on as of fbe96f2).
3804 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3805 		 * swap. If the hostname bit is still not set (e.g., older data
3806 		 * file), punt and fallback to the original behavior --
3807 		 * clearing all feature bits and setting buildid.
3808 		 */
3809 		mem_bswap_64(&header->adds_features,
3810 			    BITS_TO_U64(HEADER_FEAT_BITS));
3811 
3812 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3813 			/* unswap as u64 */
3814 			mem_bswap_64(&header->adds_features,
3815 				    BITS_TO_U64(HEADER_FEAT_BITS));
3816 
3817 			/* unswap as u32 */
3818 			mem_bswap_32(&header->adds_features,
3819 				    BITS_TO_U32(HEADER_FEAT_BITS));
3820 		}
3821 
3822 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3823 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3824 			set_bit(HEADER_BUILD_ID, header->adds_features);
3825 		}
3826 	}
3827 
3828 	memcpy(&ph->adds_features, &header->adds_features,
3829 	       sizeof(ph->adds_features));
3830 
3831 	ph->data_offset  = header->data.offset;
3832 	ph->data_size	 = header->data.size;
3833 	ph->feat_offset  = header->data.offset + header->data.size;
3834 	return 0;
3835 }
3836 
3837 static int perf_file_section__process(struct perf_file_section *section,
3838 				      struct perf_header *ph,
3839 				      int feat, int fd, void *data)
3840 {
3841 	struct feat_fd fdd = {
3842 		.fd	= fd,
3843 		.ph	= ph,
3844 		.size	= section->size,
3845 		.offset	= section->offset,
3846 	};
3847 
3848 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3849 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3850 			  "%d, continuing...\n", section->offset, feat);
3851 		return 0;
3852 	}
3853 
3854 	if (feat >= HEADER_LAST_FEATURE) {
3855 		pr_debug("unknown feature %d, continuing...\n", feat);
3856 		return 0;
3857 	}
3858 
3859 	if (!feat_ops[feat].process)
3860 		return 0;
3861 
3862 	return feat_ops[feat].process(&fdd, data);
3863 }
3864 
3865 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3866 				       struct perf_header *ph,
3867 				       struct perf_data* data,
3868 				       bool repipe)
3869 {
3870 	struct feat_fd ff = {
3871 		.fd = STDOUT_FILENO,
3872 		.ph = ph,
3873 	};
3874 	ssize_t ret;
3875 
3876 	ret = perf_data__read(data, header, sizeof(*header));
3877 	if (ret <= 0)
3878 		return -1;
3879 
3880 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3881 		pr_debug("endian/magic failed\n");
3882 		return -1;
3883 	}
3884 
3885 	if (ph->needs_swap)
3886 		header->size = bswap_64(header->size);
3887 
3888 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3889 		return -1;
3890 
3891 	return 0;
3892 }
3893 
3894 static int perf_header__read_pipe(struct perf_session *session)
3895 {
3896 	struct perf_header *header = &session->header;
3897 	struct perf_pipe_file_header f_header;
3898 
3899 	if (perf_file_header__read_pipe(&f_header, header, session->data,
3900 					session->repipe) < 0) {
3901 		pr_debug("incompatible file format\n");
3902 		return -EINVAL;
3903 	}
3904 
3905 	return f_header.size == sizeof(f_header) ? 0 : -1;
3906 }
3907 
3908 static int read_attr(int fd, struct perf_header *ph,
3909 		     struct perf_file_attr *f_attr)
3910 {
3911 	struct perf_event_attr *attr = &f_attr->attr;
3912 	size_t sz, left;
3913 	size_t our_sz = sizeof(f_attr->attr);
3914 	ssize_t ret;
3915 
3916 	memset(f_attr, 0, sizeof(*f_attr));
3917 
3918 	/* read minimal guaranteed structure */
3919 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3920 	if (ret <= 0) {
3921 		pr_debug("cannot read %d bytes of header attr\n",
3922 			 PERF_ATTR_SIZE_VER0);
3923 		return -1;
3924 	}
3925 
3926 	/* on file perf_event_attr size */
3927 	sz = attr->size;
3928 
3929 	if (ph->needs_swap)
3930 		sz = bswap_32(sz);
3931 
3932 	if (sz == 0) {
3933 		/* assume ABI0 */
3934 		sz =  PERF_ATTR_SIZE_VER0;
3935 	} else if (sz > our_sz) {
3936 		pr_debug("file uses a more recent and unsupported ABI"
3937 			 " (%zu bytes extra)\n", sz - our_sz);
3938 		return -1;
3939 	}
3940 	/* what we have not yet read and that we know about */
3941 	left = sz - PERF_ATTR_SIZE_VER0;
3942 	if (left) {
3943 		void *ptr = attr;
3944 		ptr += PERF_ATTR_SIZE_VER0;
3945 
3946 		ret = readn(fd, ptr, left);
3947 	}
3948 	/* read perf_file_section, ids are read in caller */
3949 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3950 
3951 	return ret <= 0 ? -1 : 0;
3952 }
3953 
3954 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
3955 {
3956 	struct tep_event *event;
3957 	char bf[128];
3958 
3959 	/* already prepared */
3960 	if (evsel->tp_format)
3961 		return 0;
3962 
3963 	if (pevent == NULL) {
3964 		pr_debug("broken or missing trace data\n");
3965 		return -1;
3966 	}
3967 
3968 	event = tep_find_event(pevent, evsel->core.attr.config);
3969 	if (event == NULL) {
3970 		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3971 		return -1;
3972 	}
3973 
3974 	if (!evsel->name) {
3975 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3976 		evsel->name = strdup(bf);
3977 		if (evsel->name == NULL)
3978 			return -1;
3979 	}
3980 
3981 	evsel->tp_format = event;
3982 	return 0;
3983 }
3984 
3985 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
3986 {
3987 	struct evsel *pos;
3988 
3989 	evlist__for_each_entry(evlist, pos) {
3990 		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3991 		    evsel__prepare_tracepoint_event(pos, pevent))
3992 			return -1;
3993 	}
3994 
3995 	return 0;
3996 }
3997 
3998 int perf_session__read_header(struct perf_session *session)
3999 {
4000 	struct perf_data *data = session->data;
4001 	struct perf_header *header = &session->header;
4002 	struct perf_file_header	f_header;
4003 	struct perf_file_attr	f_attr;
4004 	u64			f_id;
4005 	int nr_attrs, nr_ids, i, j, err;
4006 	int fd = perf_data__fd(data);
4007 
4008 	session->evlist = evlist__new();
4009 	if (session->evlist == NULL)
4010 		return -ENOMEM;
4011 
4012 	session->evlist->env = &header->env;
4013 	session->machines.host.env = &header->env;
4014 
4015 	/*
4016 	 * We can read 'pipe' data event from regular file,
4017 	 * check for the pipe header regardless of source.
4018 	 */
4019 	err = perf_header__read_pipe(session);
4020 	if (!err || perf_data__is_pipe(data)) {
4021 		data->is_pipe = true;
4022 		return err;
4023 	}
4024 
4025 	if (perf_file_header__read(&f_header, header, fd) < 0)
4026 		return -EINVAL;
4027 
4028 	if (header->needs_swap && data->in_place_update) {
4029 		pr_err("In-place update not supported when byte-swapping is required\n");
4030 		return -EINVAL;
4031 	}
4032 
4033 	/*
4034 	 * Sanity check that perf.data was written cleanly; data size is
4035 	 * initialized to 0 and updated only if the on_exit function is run.
4036 	 * If data size is still 0 then the file contains only partial
4037 	 * information.  Just warn user and process it as much as it can.
4038 	 */
4039 	if (f_header.data.size == 0) {
4040 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4041 			   "Was the 'perf record' command properly terminated?\n",
4042 			   data->file.path);
4043 	}
4044 
4045 	if (f_header.attr_size == 0) {
4046 		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4047 		       "Was the 'perf record' command properly terminated?\n",
4048 		       data->file.path);
4049 		return -EINVAL;
4050 	}
4051 
4052 	nr_attrs = f_header.attrs.size / f_header.attr_size;
4053 	lseek(fd, f_header.attrs.offset, SEEK_SET);
4054 
4055 	for (i = 0; i < nr_attrs; i++) {
4056 		struct evsel *evsel;
4057 		off_t tmp;
4058 
4059 		if (read_attr(fd, header, &f_attr) < 0)
4060 			goto out_errno;
4061 
4062 		if (header->needs_swap) {
4063 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
4064 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4065 			perf_event__attr_swap(&f_attr.attr);
4066 		}
4067 
4068 		tmp = lseek(fd, 0, SEEK_CUR);
4069 		evsel = evsel__new(&f_attr.attr);
4070 
4071 		if (evsel == NULL)
4072 			goto out_delete_evlist;
4073 
4074 		evsel->needs_swap = header->needs_swap;
4075 		/*
4076 		 * Do it before so that if perf_evsel__alloc_id fails, this
4077 		 * entry gets purged too at evlist__delete().
4078 		 */
4079 		evlist__add(session->evlist, evsel);
4080 
4081 		nr_ids = f_attr.ids.size / sizeof(u64);
4082 		/*
4083 		 * We don't have the cpu and thread maps on the header, so
4084 		 * for allocating the perf_sample_id table we fake 1 cpu and
4085 		 * hattr->ids threads.
4086 		 */
4087 		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4088 			goto out_delete_evlist;
4089 
4090 		lseek(fd, f_attr.ids.offset, SEEK_SET);
4091 
4092 		for (j = 0; j < nr_ids; j++) {
4093 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4094 				goto out_errno;
4095 
4096 			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4097 		}
4098 
4099 		lseek(fd, tmp, SEEK_SET);
4100 	}
4101 
4102 	perf_header__process_sections(header, fd, &session->tevent,
4103 				      perf_file_section__process);
4104 
4105 	if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4106 		goto out_delete_evlist;
4107 
4108 	return 0;
4109 out_errno:
4110 	return -errno;
4111 
4112 out_delete_evlist:
4113 	evlist__delete(session->evlist);
4114 	session->evlist = NULL;
4115 	return -ENOMEM;
4116 }
4117 
4118 int perf_event__process_feature(struct perf_session *session,
4119 				union perf_event *event)
4120 {
4121 	struct perf_tool *tool = session->tool;
4122 	struct feat_fd ff = { .fd = 0 };
4123 	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4124 	int type = fe->header.type;
4125 	u64 feat = fe->feat_id;
4126 
4127 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4128 		pr_warning("invalid record type %d in pipe-mode\n", type);
4129 		return 0;
4130 	}
4131 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4132 		pr_warning("invalid record type %d in pipe-mode\n", type);
4133 		return -1;
4134 	}
4135 
4136 	if (!feat_ops[feat].process)
4137 		return 0;
4138 
4139 	ff.buf  = (void *)fe->data;
4140 	ff.size = event->header.size - sizeof(*fe);
4141 	ff.ph = &session->header;
4142 
4143 	if (feat_ops[feat].process(&ff, NULL))
4144 		return -1;
4145 
4146 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
4147 		return 0;
4148 
4149 	if (!feat_ops[feat].full_only ||
4150 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4151 		feat_ops[feat].print(&ff, stdout);
4152 	} else {
4153 		fprintf(stdout, "# %s info available, use -I to display\n",
4154 			feat_ops[feat].name);
4155 	}
4156 
4157 	return 0;
4158 }
4159 
4160 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4161 {
4162 	struct perf_record_event_update *ev = &event->event_update;
4163 	struct perf_record_event_update_scale *ev_scale;
4164 	struct perf_record_event_update_cpus *ev_cpus;
4165 	struct perf_cpu_map *map;
4166 	size_t ret;
4167 
4168 	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
4169 
4170 	switch (ev->type) {
4171 	case PERF_EVENT_UPDATE__SCALE:
4172 		ev_scale = (struct perf_record_event_update_scale *)ev->data;
4173 		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
4174 		break;
4175 	case PERF_EVENT_UPDATE__UNIT:
4176 		ret += fprintf(fp, "... unit:  %s\n", ev->data);
4177 		break;
4178 	case PERF_EVENT_UPDATE__NAME:
4179 		ret += fprintf(fp, "... name:  %s\n", ev->data);
4180 		break;
4181 	case PERF_EVENT_UPDATE__CPUS:
4182 		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4183 		ret += fprintf(fp, "... ");
4184 
4185 		map = cpu_map__new_data(&ev_cpus->cpus);
4186 		if (map)
4187 			ret += cpu_map__fprintf(map, fp);
4188 		else
4189 			ret += fprintf(fp, "failed to get cpus\n");
4190 		break;
4191 	default:
4192 		ret += fprintf(fp, "... unknown type\n");
4193 		break;
4194 	}
4195 
4196 	return ret;
4197 }
4198 
4199 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4200 			     union perf_event *event,
4201 			     struct evlist **pevlist)
4202 {
4203 	u32 i, ids, n_ids;
4204 	struct evsel *evsel;
4205 	struct evlist *evlist = *pevlist;
4206 
4207 	if (evlist == NULL) {
4208 		*pevlist = evlist = evlist__new();
4209 		if (evlist == NULL)
4210 			return -ENOMEM;
4211 	}
4212 
4213 	evsel = evsel__new(&event->attr.attr);
4214 	if (evsel == NULL)
4215 		return -ENOMEM;
4216 
4217 	evlist__add(evlist, evsel);
4218 
4219 	ids = event->header.size;
4220 	ids -= (void *)&event->attr.id - (void *)event;
4221 	n_ids = ids / sizeof(u64);
4222 	/*
4223 	 * We don't have the cpu and thread maps on the header, so
4224 	 * for allocating the perf_sample_id table we fake 1 cpu and
4225 	 * hattr->ids threads.
4226 	 */
4227 	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4228 		return -ENOMEM;
4229 
4230 	for (i = 0; i < n_ids; i++) {
4231 		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4232 	}
4233 
4234 	return 0;
4235 }
4236 
4237 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4238 				     union perf_event *event,
4239 				     struct evlist **pevlist)
4240 {
4241 	struct perf_record_event_update *ev = &event->event_update;
4242 	struct perf_record_event_update_scale *ev_scale;
4243 	struct perf_record_event_update_cpus *ev_cpus;
4244 	struct evlist *evlist;
4245 	struct evsel *evsel;
4246 	struct perf_cpu_map *map;
4247 
4248 	if (!pevlist || *pevlist == NULL)
4249 		return -EINVAL;
4250 
4251 	evlist = *pevlist;
4252 
4253 	evsel = evlist__id2evsel(evlist, ev->id);
4254 	if (evsel == NULL)
4255 		return -EINVAL;
4256 
4257 	switch (ev->type) {
4258 	case PERF_EVENT_UPDATE__UNIT:
4259 		evsel->unit = strdup(ev->data);
4260 		break;
4261 	case PERF_EVENT_UPDATE__NAME:
4262 		evsel->name = strdup(ev->data);
4263 		break;
4264 	case PERF_EVENT_UPDATE__SCALE:
4265 		ev_scale = (struct perf_record_event_update_scale *)ev->data;
4266 		evsel->scale = ev_scale->scale;
4267 		break;
4268 	case PERF_EVENT_UPDATE__CPUS:
4269 		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4270 
4271 		map = cpu_map__new_data(&ev_cpus->cpus);
4272 		if (map)
4273 			evsel->core.own_cpus = map;
4274 		else
4275 			pr_err("failed to get event_update cpus\n");
4276 	default:
4277 		break;
4278 	}
4279 
4280 	return 0;
4281 }
4282 
4283 int perf_event__process_tracing_data(struct perf_session *session,
4284 				     union perf_event *event)
4285 {
4286 	ssize_t size_read, padding, size = event->tracing_data.size;
4287 	int fd = perf_data__fd(session->data);
4288 	char buf[BUFSIZ];
4289 
4290 	/*
4291 	 * The pipe fd is already in proper place and in any case
4292 	 * we can't move it, and we'd screw the case where we read
4293 	 * 'pipe' data from regular file. The trace_report reads
4294 	 * data from 'fd' so we need to set it directly behind the
4295 	 * event, where the tracing data starts.
4296 	 */
4297 	if (!perf_data__is_pipe(session->data)) {
4298 		off_t offset = lseek(fd, 0, SEEK_CUR);
4299 
4300 		/* setup for reading amidst mmap */
4301 		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4302 		      SEEK_SET);
4303 	}
4304 
4305 	size_read = trace_report(fd, &session->tevent,
4306 				 session->repipe);
4307 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4308 
4309 	if (readn(fd, buf, padding) < 0) {
4310 		pr_err("%s: reading input file", __func__);
4311 		return -1;
4312 	}
4313 	if (session->repipe) {
4314 		int retw = write(STDOUT_FILENO, buf, padding);
4315 		if (retw <= 0 || retw != padding) {
4316 			pr_err("%s: repiping tracing data padding", __func__);
4317 			return -1;
4318 		}
4319 	}
4320 
4321 	if (size_read + padding != size) {
4322 		pr_err("%s: tracing data size mismatch", __func__);
4323 		return -1;
4324 	}
4325 
4326 	evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4327 
4328 	return size_read + padding;
4329 }
4330 
4331 int perf_event__process_build_id(struct perf_session *session,
4332 				 union perf_event *event)
4333 {
4334 	__event_process_build_id(&event->build_id,
4335 				 event->build_id.filename,
4336 				 session);
4337 	return 0;
4338 }
4339