1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <inttypes.h> 4 #include "string2.h" 5 #include <sys/param.h> 6 #include <sys/types.h> 7 #include <byteswap.h> 8 #include <unistd.h> 9 #include <stdio.h> 10 #include <stdlib.h> 11 #include <linux/compiler.h> 12 #include <linux/list.h> 13 #include <linux/kernel.h> 14 #include <linux/bitops.h> 15 #include <linux/string.h> 16 #include <linux/stringify.h> 17 #include <linux/zalloc.h> 18 #include <sys/stat.h> 19 #include <sys/utsname.h> 20 #include <linux/time64.h> 21 #include <dirent.h> 22 #include <bpf/libbpf.h> 23 #include <perf/cpumap.h> 24 25 #include "dso.h" 26 #include "evlist.h" 27 #include "evsel.h" 28 #include "util/evsel_fprintf.h" 29 #include "header.h" 30 #include "memswap.h" 31 #include "trace-event.h" 32 #include "session.h" 33 #include "symbol.h" 34 #include "debug.h" 35 #include "cpumap.h" 36 #include "pmu.h" 37 #include "vdso.h" 38 #include "strbuf.h" 39 #include "build-id.h" 40 #include "data.h" 41 #include <api/fs/fs.h> 42 #include "asm/bug.h" 43 #include "tool.h" 44 #include "time-utils.h" 45 #include "units.h" 46 #include "util/util.h" // perf_exe() 47 #include "cputopo.h" 48 #include "bpf-event.h" 49 50 #include <linux/ctype.h> 51 #include <internal/lib.h> 52 53 /* 54 * magic2 = "PERFILE2" 55 * must be a numerical value to let the endianness 56 * determine the memory layout. That way we are able 57 * to detect endianness when reading the perf.data file 58 * back. 59 * 60 * we check for legacy (PERFFILE) format. 61 */ 62 static const char *__perf_magic1 = "PERFFILE"; 63 static const u64 __perf_magic2 = 0x32454c4946524550ULL; 64 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; 65 66 #define PERF_MAGIC __perf_magic2 67 68 const char perf_version_string[] = PERF_VERSION; 69 70 struct perf_file_attr { 71 struct perf_event_attr attr; 72 struct perf_file_section ids; 73 }; 74 75 void perf_header__set_feat(struct perf_header *header, int feat) 76 { 77 set_bit(feat, header->adds_features); 78 } 79 80 void perf_header__clear_feat(struct perf_header *header, int feat) 81 { 82 clear_bit(feat, header->adds_features); 83 } 84 85 bool perf_header__has_feat(const struct perf_header *header, int feat) 86 { 87 return test_bit(feat, header->adds_features); 88 } 89 90 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) 91 { 92 ssize_t ret = writen(ff->fd, buf, size); 93 94 if (ret != (ssize_t)size) 95 return ret < 0 ? (int)ret : -1; 96 return 0; 97 } 98 99 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) 100 { 101 /* struct perf_event_header::size is u16 */ 102 const size_t max_size = 0xffff - sizeof(struct perf_event_header); 103 size_t new_size = ff->size; 104 void *addr; 105 106 if (size + ff->offset > max_size) 107 return -E2BIG; 108 109 while (size > (new_size - ff->offset)) 110 new_size <<= 1; 111 new_size = min(max_size, new_size); 112 113 if (ff->size < new_size) { 114 addr = realloc(ff->buf, new_size); 115 if (!addr) 116 return -ENOMEM; 117 ff->buf = addr; 118 ff->size = new_size; 119 } 120 121 memcpy(ff->buf + ff->offset, buf, size); 122 ff->offset += size; 123 124 return 0; 125 } 126 127 /* Return: 0 if succeded, -ERR if failed. */ 128 int do_write(struct feat_fd *ff, const void *buf, size_t size) 129 { 130 if (!ff->buf) 131 return __do_write_fd(ff, buf, size); 132 return __do_write_buf(ff, buf, size); 133 } 134 135 /* Return: 0 if succeded, -ERR if failed. */ 136 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) 137 { 138 u64 *p = (u64 *) set; 139 int i, ret; 140 141 ret = do_write(ff, &size, sizeof(size)); 142 if (ret < 0) 143 return ret; 144 145 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 146 ret = do_write(ff, p + i, sizeof(*p)); 147 if (ret < 0) 148 return ret; 149 } 150 151 return 0; 152 } 153 154 /* Return: 0 if succeded, -ERR if failed. */ 155 int write_padded(struct feat_fd *ff, const void *bf, 156 size_t count, size_t count_aligned) 157 { 158 static const char zero_buf[NAME_ALIGN]; 159 int err = do_write(ff, bf, count); 160 161 if (!err) 162 err = do_write(ff, zero_buf, count_aligned - count); 163 164 return err; 165 } 166 167 #define string_size(str) \ 168 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) 169 170 /* Return: 0 if succeded, -ERR if failed. */ 171 static int do_write_string(struct feat_fd *ff, const char *str) 172 { 173 u32 len, olen; 174 int ret; 175 176 olen = strlen(str) + 1; 177 len = PERF_ALIGN(olen, NAME_ALIGN); 178 179 /* write len, incl. \0 */ 180 ret = do_write(ff, &len, sizeof(len)); 181 if (ret < 0) 182 return ret; 183 184 return write_padded(ff, str, olen, len); 185 } 186 187 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) 188 { 189 ssize_t ret = readn(ff->fd, addr, size); 190 191 if (ret != size) 192 return ret < 0 ? (int)ret : -1; 193 return 0; 194 } 195 196 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) 197 { 198 if (size > (ssize_t)ff->size - ff->offset) 199 return -1; 200 201 memcpy(addr, ff->buf + ff->offset, size); 202 ff->offset += size; 203 204 return 0; 205 206 } 207 208 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) 209 { 210 if (!ff->buf) 211 return __do_read_fd(ff, addr, size); 212 return __do_read_buf(ff, addr, size); 213 } 214 215 static int do_read_u32(struct feat_fd *ff, u32 *addr) 216 { 217 int ret; 218 219 ret = __do_read(ff, addr, sizeof(*addr)); 220 if (ret) 221 return ret; 222 223 if (ff->ph->needs_swap) 224 *addr = bswap_32(*addr); 225 return 0; 226 } 227 228 static int do_read_u64(struct feat_fd *ff, u64 *addr) 229 { 230 int ret; 231 232 ret = __do_read(ff, addr, sizeof(*addr)); 233 if (ret) 234 return ret; 235 236 if (ff->ph->needs_swap) 237 *addr = bswap_64(*addr); 238 return 0; 239 } 240 241 static char *do_read_string(struct feat_fd *ff) 242 { 243 u32 len; 244 char *buf; 245 246 if (do_read_u32(ff, &len)) 247 return NULL; 248 249 buf = malloc(len); 250 if (!buf) 251 return NULL; 252 253 if (!__do_read(ff, buf, len)) { 254 /* 255 * strings are padded by zeroes 256 * thus the actual strlen of buf 257 * may be less than len 258 */ 259 return buf; 260 } 261 262 free(buf); 263 return NULL; 264 } 265 266 /* Return: 0 if succeded, -ERR if failed. */ 267 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) 268 { 269 unsigned long *set; 270 u64 size, *p; 271 int i, ret; 272 273 ret = do_read_u64(ff, &size); 274 if (ret) 275 return ret; 276 277 set = bitmap_alloc(size); 278 if (!set) 279 return -ENOMEM; 280 281 p = (u64 *) set; 282 283 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 284 ret = do_read_u64(ff, p + i); 285 if (ret < 0) { 286 free(set); 287 return ret; 288 } 289 } 290 291 *pset = set; 292 *psize = size; 293 return 0; 294 } 295 296 static int write_tracing_data(struct feat_fd *ff, 297 struct evlist *evlist) 298 { 299 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 300 return -1; 301 302 return read_tracing_data(ff->fd, &evlist->core.entries); 303 } 304 305 static int write_build_id(struct feat_fd *ff, 306 struct evlist *evlist __maybe_unused) 307 { 308 struct perf_session *session; 309 int err; 310 311 session = container_of(ff->ph, struct perf_session, header); 312 313 if (!perf_session__read_build_ids(session, true)) 314 return -1; 315 316 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 317 return -1; 318 319 err = perf_session__write_buildid_table(session, ff); 320 if (err < 0) { 321 pr_debug("failed to write buildid table\n"); 322 return err; 323 } 324 perf_session__cache_build_ids(session); 325 326 return 0; 327 } 328 329 static int write_hostname(struct feat_fd *ff, 330 struct evlist *evlist __maybe_unused) 331 { 332 struct utsname uts; 333 int ret; 334 335 ret = uname(&uts); 336 if (ret < 0) 337 return -1; 338 339 return do_write_string(ff, uts.nodename); 340 } 341 342 static int write_osrelease(struct feat_fd *ff, 343 struct evlist *evlist __maybe_unused) 344 { 345 struct utsname uts; 346 int ret; 347 348 ret = uname(&uts); 349 if (ret < 0) 350 return -1; 351 352 return do_write_string(ff, uts.release); 353 } 354 355 static int write_arch(struct feat_fd *ff, 356 struct evlist *evlist __maybe_unused) 357 { 358 struct utsname uts; 359 int ret; 360 361 ret = uname(&uts); 362 if (ret < 0) 363 return -1; 364 365 return do_write_string(ff, uts.machine); 366 } 367 368 static int write_version(struct feat_fd *ff, 369 struct evlist *evlist __maybe_unused) 370 { 371 return do_write_string(ff, perf_version_string); 372 } 373 374 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) 375 { 376 FILE *file; 377 char *buf = NULL; 378 char *s, *p; 379 const char *search = cpuinfo_proc; 380 size_t len = 0; 381 int ret = -1; 382 383 if (!search) 384 return -1; 385 386 file = fopen("/proc/cpuinfo", "r"); 387 if (!file) 388 return -1; 389 390 while (getline(&buf, &len, file) > 0) { 391 ret = strncmp(buf, search, strlen(search)); 392 if (!ret) 393 break; 394 } 395 396 if (ret) { 397 ret = -1; 398 goto done; 399 } 400 401 s = buf; 402 403 p = strchr(buf, ':'); 404 if (p && *(p+1) == ' ' && *(p+2)) 405 s = p + 2; 406 p = strchr(s, '\n'); 407 if (p) 408 *p = '\0'; 409 410 /* squash extra space characters (branding string) */ 411 p = s; 412 while (*p) { 413 if (isspace(*p)) { 414 char *r = p + 1; 415 char *q = skip_spaces(r); 416 *p = ' '; 417 if (q != (p+1)) 418 while ((*r++ = *q++)); 419 } 420 p++; 421 } 422 ret = do_write_string(ff, s); 423 done: 424 free(buf); 425 fclose(file); 426 return ret; 427 } 428 429 static int write_cpudesc(struct feat_fd *ff, 430 struct evlist *evlist __maybe_unused) 431 { 432 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__) 433 #define CPUINFO_PROC { "cpu", } 434 #elif defined(__s390__) 435 #define CPUINFO_PROC { "vendor_id", } 436 #elif defined(__sh__) 437 #define CPUINFO_PROC { "cpu type", } 438 #elif defined(__alpha__) || defined(__mips__) 439 #define CPUINFO_PROC { "cpu model", } 440 #elif defined(__arm__) 441 #define CPUINFO_PROC { "model name", "Processor", } 442 #elif defined(__arc__) 443 #define CPUINFO_PROC { "Processor", } 444 #elif defined(__xtensa__) 445 #define CPUINFO_PROC { "core ID", } 446 #else 447 #define CPUINFO_PROC { "model name", } 448 #endif 449 const char *cpuinfo_procs[] = CPUINFO_PROC; 450 #undef CPUINFO_PROC 451 unsigned int i; 452 453 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { 454 int ret; 455 ret = __write_cpudesc(ff, cpuinfo_procs[i]); 456 if (ret >= 0) 457 return ret; 458 } 459 return -1; 460 } 461 462 463 static int write_nrcpus(struct feat_fd *ff, 464 struct evlist *evlist __maybe_unused) 465 { 466 long nr; 467 u32 nrc, nra; 468 int ret; 469 470 nrc = cpu__max_present_cpu(); 471 472 nr = sysconf(_SC_NPROCESSORS_ONLN); 473 if (nr < 0) 474 return -1; 475 476 nra = (u32)(nr & UINT_MAX); 477 478 ret = do_write(ff, &nrc, sizeof(nrc)); 479 if (ret < 0) 480 return ret; 481 482 return do_write(ff, &nra, sizeof(nra)); 483 } 484 485 static int write_event_desc(struct feat_fd *ff, 486 struct evlist *evlist) 487 { 488 struct evsel *evsel; 489 u32 nre, nri, sz; 490 int ret; 491 492 nre = evlist->core.nr_entries; 493 494 /* 495 * write number of events 496 */ 497 ret = do_write(ff, &nre, sizeof(nre)); 498 if (ret < 0) 499 return ret; 500 501 /* 502 * size of perf_event_attr struct 503 */ 504 sz = (u32)sizeof(evsel->core.attr); 505 ret = do_write(ff, &sz, sizeof(sz)); 506 if (ret < 0) 507 return ret; 508 509 evlist__for_each_entry(evlist, evsel) { 510 ret = do_write(ff, &evsel->core.attr, sz); 511 if (ret < 0) 512 return ret; 513 /* 514 * write number of unique id per event 515 * there is one id per instance of an event 516 * 517 * copy into an nri to be independent of the 518 * type of ids, 519 */ 520 nri = evsel->core.ids; 521 ret = do_write(ff, &nri, sizeof(nri)); 522 if (ret < 0) 523 return ret; 524 525 /* 526 * write event string as passed on cmdline 527 */ 528 ret = do_write_string(ff, perf_evsel__name(evsel)); 529 if (ret < 0) 530 return ret; 531 /* 532 * write unique ids for this event 533 */ 534 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 535 if (ret < 0) 536 return ret; 537 } 538 return 0; 539 } 540 541 static int write_cmdline(struct feat_fd *ff, 542 struct evlist *evlist __maybe_unused) 543 { 544 char pbuf[MAXPATHLEN], *buf; 545 int i, ret, n; 546 547 /* actual path to perf binary */ 548 buf = perf_exe(pbuf, MAXPATHLEN); 549 550 /* account for binary path */ 551 n = perf_env.nr_cmdline + 1; 552 553 ret = do_write(ff, &n, sizeof(n)); 554 if (ret < 0) 555 return ret; 556 557 ret = do_write_string(ff, buf); 558 if (ret < 0) 559 return ret; 560 561 for (i = 0 ; i < perf_env.nr_cmdline; i++) { 562 ret = do_write_string(ff, perf_env.cmdline_argv[i]); 563 if (ret < 0) 564 return ret; 565 } 566 return 0; 567 } 568 569 570 static int write_cpu_topology(struct feat_fd *ff, 571 struct evlist *evlist __maybe_unused) 572 { 573 struct cpu_topology *tp; 574 u32 i; 575 int ret, j; 576 577 tp = cpu_topology__new(); 578 if (!tp) 579 return -1; 580 581 ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib)); 582 if (ret < 0) 583 goto done; 584 585 for (i = 0; i < tp->core_sib; i++) { 586 ret = do_write_string(ff, tp->core_siblings[i]); 587 if (ret < 0) 588 goto done; 589 } 590 ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib)); 591 if (ret < 0) 592 goto done; 593 594 for (i = 0; i < tp->thread_sib; i++) { 595 ret = do_write_string(ff, tp->thread_siblings[i]); 596 if (ret < 0) 597 break; 598 } 599 600 ret = perf_env__read_cpu_topology_map(&perf_env); 601 if (ret < 0) 602 goto done; 603 604 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 605 ret = do_write(ff, &perf_env.cpu[j].core_id, 606 sizeof(perf_env.cpu[j].core_id)); 607 if (ret < 0) 608 return ret; 609 ret = do_write(ff, &perf_env.cpu[j].socket_id, 610 sizeof(perf_env.cpu[j].socket_id)); 611 if (ret < 0) 612 return ret; 613 } 614 615 if (!tp->die_sib) 616 goto done; 617 618 ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib)); 619 if (ret < 0) 620 goto done; 621 622 for (i = 0; i < tp->die_sib; i++) { 623 ret = do_write_string(ff, tp->die_siblings[i]); 624 if (ret < 0) 625 goto done; 626 } 627 628 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 629 ret = do_write(ff, &perf_env.cpu[j].die_id, 630 sizeof(perf_env.cpu[j].die_id)); 631 if (ret < 0) 632 return ret; 633 } 634 635 done: 636 cpu_topology__delete(tp); 637 return ret; 638 } 639 640 641 642 static int write_total_mem(struct feat_fd *ff, 643 struct evlist *evlist __maybe_unused) 644 { 645 char *buf = NULL; 646 FILE *fp; 647 size_t len = 0; 648 int ret = -1, n; 649 uint64_t mem; 650 651 fp = fopen("/proc/meminfo", "r"); 652 if (!fp) 653 return -1; 654 655 while (getline(&buf, &len, fp) > 0) { 656 ret = strncmp(buf, "MemTotal:", 9); 657 if (!ret) 658 break; 659 } 660 if (!ret) { 661 n = sscanf(buf, "%*s %"PRIu64, &mem); 662 if (n == 1) 663 ret = do_write(ff, &mem, sizeof(mem)); 664 } else 665 ret = -1; 666 free(buf); 667 fclose(fp); 668 return ret; 669 } 670 671 static int write_numa_topology(struct feat_fd *ff, 672 struct evlist *evlist __maybe_unused) 673 { 674 struct numa_topology *tp; 675 int ret = -1; 676 u32 i; 677 678 tp = numa_topology__new(); 679 if (!tp) 680 return -ENOMEM; 681 682 ret = do_write(ff, &tp->nr, sizeof(u32)); 683 if (ret < 0) 684 goto err; 685 686 for (i = 0; i < tp->nr; i++) { 687 struct numa_topology_node *n = &tp->nodes[i]; 688 689 ret = do_write(ff, &n->node, sizeof(u32)); 690 if (ret < 0) 691 goto err; 692 693 ret = do_write(ff, &n->mem_total, sizeof(u64)); 694 if (ret) 695 goto err; 696 697 ret = do_write(ff, &n->mem_free, sizeof(u64)); 698 if (ret) 699 goto err; 700 701 ret = do_write_string(ff, n->cpus); 702 if (ret < 0) 703 goto err; 704 } 705 706 ret = 0; 707 708 err: 709 numa_topology__delete(tp); 710 return ret; 711 } 712 713 /* 714 * File format: 715 * 716 * struct pmu_mappings { 717 * u32 pmu_num; 718 * struct pmu_map { 719 * u32 type; 720 * char name[]; 721 * }[pmu_num]; 722 * }; 723 */ 724 725 static int write_pmu_mappings(struct feat_fd *ff, 726 struct evlist *evlist __maybe_unused) 727 { 728 struct perf_pmu *pmu = NULL; 729 u32 pmu_num = 0; 730 int ret; 731 732 /* 733 * Do a first pass to count number of pmu to avoid lseek so this 734 * works in pipe mode as well. 735 */ 736 while ((pmu = perf_pmu__scan(pmu))) { 737 if (!pmu->name) 738 continue; 739 pmu_num++; 740 } 741 742 ret = do_write(ff, &pmu_num, sizeof(pmu_num)); 743 if (ret < 0) 744 return ret; 745 746 while ((pmu = perf_pmu__scan(pmu))) { 747 if (!pmu->name) 748 continue; 749 750 ret = do_write(ff, &pmu->type, sizeof(pmu->type)); 751 if (ret < 0) 752 return ret; 753 754 ret = do_write_string(ff, pmu->name); 755 if (ret < 0) 756 return ret; 757 } 758 759 return 0; 760 } 761 762 /* 763 * File format: 764 * 765 * struct group_descs { 766 * u32 nr_groups; 767 * struct group_desc { 768 * char name[]; 769 * u32 leader_idx; 770 * u32 nr_members; 771 * }[nr_groups]; 772 * }; 773 */ 774 static int write_group_desc(struct feat_fd *ff, 775 struct evlist *evlist) 776 { 777 u32 nr_groups = evlist->nr_groups; 778 struct evsel *evsel; 779 int ret; 780 781 ret = do_write(ff, &nr_groups, sizeof(nr_groups)); 782 if (ret < 0) 783 return ret; 784 785 evlist__for_each_entry(evlist, evsel) { 786 if (perf_evsel__is_group_leader(evsel) && 787 evsel->core.nr_members > 1) { 788 const char *name = evsel->group_name ?: "{anon_group}"; 789 u32 leader_idx = evsel->idx; 790 u32 nr_members = evsel->core.nr_members; 791 792 ret = do_write_string(ff, name); 793 if (ret < 0) 794 return ret; 795 796 ret = do_write(ff, &leader_idx, sizeof(leader_idx)); 797 if (ret < 0) 798 return ret; 799 800 ret = do_write(ff, &nr_members, sizeof(nr_members)); 801 if (ret < 0) 802 return ret; 803 } 804 } 805 return 0; 806 } 807 808 /* 809 * Return the CPU id as a raw string. 810 * 811 * Each architecture should provide a more precise id string that 812 * can be use to match the architecture's "mapfile". 813 */ 814 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused) 815 { 816 return NULL; 817 } 818 819 /* Return zero when the cpuid from the mapfile.csv matches the 820 * cpuid string generated on this platform. 821 * Otherwise return non-zero. 822 */ 823 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid) 824 { 825 regex_t re; 826 regmatch_t pmatch[1]; 827 int match; 828 829 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) { 830 /* Warn unable to generate match particular string. */ 831 pr_info("Invalid regular expression %s\n", mapcpuid); 832 return 1; 833 } 834 835 match = !regexec(&re, cpuid, 1, pmatch, 0); 836 regfree(&re); 837 if (match) { 838 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so); 839 840 /* Verify the entire string matched. */ 841 if (match_len == strlen(cpuid)) 842 return 0; 843 } 844 return 1; 845 } 846 847 /* 848 * default get_cpuid(): nothing gets recorded 849 * actual implementation must be in arch/$(SRCARCH)/util/header.c 850 */ 851 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused) 852 { 853 return -1; 854 } 855 856 static int write_cpuid(struct feat_fd *ff, 857 struct evlist *evlist __maybe_unused) 858 { 859 char buffer[64]; 860 int ret; 861 862 ret = get_cpuid(buffer, sizeof(buffer)); 863 if (ret) 864 return -1; 865 866 return do_write_string(ff, buffer); 867 } 868 869 static int write_branch_stack(struct feat_fd *ff __maybe_unused, 870 struct evlist *evlist __maybe_unused) 871 { 872 return 0; 873 } 874 875 static int write_auxtrace(struct feat_fd *ff, 876 struct evlist *evlist __maybe_unused) 877 { 878 struct perf_session *session; 879 int err; 880 881 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 882 return -1; 883 884 session = container_of(ff->ph, struct perf_session, header); 885 886 err = auxtrace_index__write(ff->fd, &session->auxtrace_index); 887 if (err < 0) 888 pr_err("Failed to write auxtrace index\n"); 889 return err; 890 } 891 892 static int write_clockid(struct feat_fd *ff, 893 struct evlist *evlist __maybe_unused) 894 { 895 return do_write(ff, &ff->ph->env.clockid_res_ns, 896 sizeof(ff->ph->env.clockid_res_ns)); 897 } 898 899 static int write_dir_format(struct feat_fd *ff, 900 struct evlist *evlist __maybe_unused) 901 { 902 struct perf_session *session; 903 struct perf_data *data; 904 905 session = container_of(ff->ph, struct perf_session, header); 906 data = session->data; 907 908 if (WARN_ON(!perf_data__is_dir(data))) 909 return -1; 910 911 return do_write(ff, &data->dir.version, sizeof(data->dir.version)); 912 } 913 914 #ifdef HAVE_LIBBPF_SUPPORT 915 static int write_bpf_prog_info(struct feat_fd *ff, 916 struct evlist *evlist __maybe_unused) 917 { 918 struct perf_env *env = &ff->ph->env; 919 struct rb_root *root; 920 struct rb_node *next; 921 int ret; 922 923 down_read(&env->bpf_progs.lock); 924 925 ret = do_write(ff, &env->bpf_progs.infos_cnt, 926 sizeof(env->bpf_progs.infos_cnt)); 927 if (ret < 0) 928 goto out; 929 930 root = &env->bpf_progs.infos; 931 next = rb_first(root); 932 while (next) { 933 struct bpf_prog_info_node *node; 934 size_t len; 935 936 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 937 next = rb_next(&node->rb_node); 938 len = sizeof(struct bpf_prog_info_linear) + 939 node->info_linear->data_len; 940 941 /* before writing to file, translate address to offset */ 942 bpf_program__bpil_addr_to_offs(node->info_linear); 943 ret = do_write(ff, node->info_linear, len); 944 /* 945 * translate back to address even when do_write() fails, 946 * so that this function never changes the data. 947 */ 948 bpf_program__bpil_offs_to_addr(node->info_linear); 949 if (ret < 0) 950 goto out; 951 } 952 out: 953 up_read(&env->bpf_progs.lock); 954 return ret; 955 } 956 #else // HAVE_LIBBPF_SUPPORT 957 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused, 958 struct evlist *evlist __maybe_unused) 959 { 960 return 0; 961 } 962 #endif // HAVE_LIBBPF_SUPPORT 963 964 static int write_bpf_btf(struct feat_fd *ff, 965 struct evlist *evlist __maybe_unused) 966 { 967 struct perf_env *env = &ff->ph->env; 968 struct rb_root *root; 969 struct rb_node *next; 970 int ret; 971 972 down_read(&env->bpf_progs.lock); 973 974 ret = do_write(ff, &env->bpf_progs.btfs_cnt, 975 sizeof(env->bpf_progs.btfs_cnt)); 976 977 if (ret < 0) 978 goto out; 979 980 root = &env->bpf_progs.btfs; 981 next = rb_first(root); 982 while (next) { 983 struct btf_node *node; 984 985 node = rb_entry(next, struct btf_node, rb_node); 986 next = rb_next(&node->rb_node); 987 ret = do_write(ff, &node->id, 988 sizeof(u32) * 2 + node->data_size); 989 if (ret < 0) 990 goto out; 991 } 992 out: 993 up_read(&env->bpf_progs.lock); 994 return ret; 995 } 996 997 static int cpu_cache_level__sort(const void *a, const void *b) 998 { 999 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; 1000 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; 1001 1002 return cache_a->level - cache_b->level; 1003 } 1004 1005 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) 1006 { 1007 if (a->level != b->level) 1008 return false; 1009 1010 if (a->line_size != b->line_size) 1011 return false; 1012 1013 if (a->sets != b->sets) 1014 return false; 1015 1016 if (a->ways != b->ways) 1017 return false; 1018 1019 if (strcmp(a->type, b->type)) 1020 return false; 1021 1022 if (strcmp(a->size, b->size)) 1023 return false; 1024 1025 if (strcmp(a->map, b->map)) 1026 return false; 1027 1028 return true; 1029 } 1030 1031 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) 1032 { 1033 char path[PATH_MAX], file[PATH_MAX]; 1034 struct stat st; 1035 size_t len; 1036 1037 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); 1038 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); 1039 1040 if (stat(file, &st)) 1041 return 1; 1042 1043 scnprintf(file, PATH_MAX, "%s/level", path); 1044 if (sysfs__read_int(file, (int *) &cache->level)) 1045 return -1; 1046 1047 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); 1048 if (sysfs__read_int(file, (int *) &cache->line_size)) 1049 return -1; 1050 1051 scnprintf(file, PATH_MAX, "%s/number_of_sets", path); 1052 if (sysfs__read_int(file, (int *) &cache->sets)) 1053 return -1; 1054 1055 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); 1056 if (sysfs__read_int(file, (int *) &cache->ways)) 1057 return -1; 1058 1059 scnprintf(file, PATH_MAX, "%s/type", path); 1060 if (sysfs__read_str(file, &cache->type, &len)) 1061 return -1; 1062 1063 cache->type[len] = 0; 1064 cache->type = strim(cache->type); 1065 1066 scnprintf(file, PATH_MAX, "%s/size", path); 1067 if (sysfs__read_str(file, &cache->size, &len)) { 1068 zfree(&cache->type); 1069 return -1; 1070 } 1071 1072 cache->size[len] = 0; 1073 cache->size = strim(cache->size); 1074 1075 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); 1076 if (sysfs__read_str(file, &cache->map, &len)) { 1077 zfree(&cache->size); 1078 zfree(&cache->type); 1079 return -1; 1080 } 1081 1082 cache->map[len] = 0; 1083 cache->map = strim(cache->map); 1084 return 0; 1085 } 1086 1087 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) 1088 { 1089 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); 1090 } 1091 1092 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp) 1093 { 1094 u32 i, cnt = 0; 1095 long ncpus; 1096 u32 nr, cpu; 1097 u16 level; 1098 1099 ncpus = sysconf(_SC_NPROCESSORS_CONF); 1100 if (ncpus < 0) 1101 return -1; 1102 1103 nr = (u32)(ncpus & UINT_MAX); 1104 1105 for (cpu = 0; cpu < nr; cpu++) { 1106 for (level = 0; level < 10; level++) { 1107 struct cpu_cache_level c; 1108 int err; 1109 1110 err = cpu_cache_level__read(&c, cpu, level); 1111 if (err < 0) 1112 return err; 1113 1114 if (err == 1) 1115 break; 1116 1117 for (i = 0; i < cnt; i++) { 1118 if (cpu_cache_level__cmp(&c, &caches[i])) 1119 break; 1120 } 1121 1122 if (i == cnt) 1123 caches[cnt++] = c; 1124 else 1125 cpu_cache_level__free(&c); 1126 1127 if (WARN_ONCE(cnt == size, "way too many cpu caches..")) 1128 goto out; 1129 } 1130 } 1131 out: 1132 *cntp = cnt; 1133 return 0; 1134 } 1135 1136 #define MAX_CACHE_LVL 4 1137 1138 static int write_cache(struct feat_fd *ff, 1139 struct evlist *evlist __maybe_unused) 1140 { 1141 u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL; 1142 struct cpu_cache_level caches[max_caches]; 1143 u32 cnt = 0, i, version = 1; 1144 int ret; 1145 1146 ret = build_caches(caches, max_caches, &cnt); 1147 if (ret) 1148 goto out; 1149 1150 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); 1151 1152 ret = do_write(ff, &version, sizeof(u32)); 1153 if (ret < 0) 1154 goto out; 1155 1156 ret = do_write(ff, &cnt, sizeof(u32)); 1157 if (ret < 0) 1158 goto out; 1159 1160 for (i = 0; i < cnt; i++) { 1161 struct cpu_cache_level *c = &caches[i]; 1162 1163 #define _W(v) \ 1164 ret = do_write(ff, &c->v, sizeof(u32)); \ 1165 if (ret < 0) \ 1166 goto out; 1167 1168 _W(level) 1169 _W(line_size) 1170 _W(sets) 1171 _W(ways) 1172 #undef _W 1173 1174 #define _W(v) \ 1175 ret = do_write_string(ff, (const char *) c->v); \ 1176 if (ret < 0) \ 1177 goto out; 1178 1179 _W(type) 1180 _W(size) 1181 _W(map) 1182 #undef _W 1183 } 1184 1185 out: 1186 for (i = 0; i < cnt; i++) 1187 cpu_cache_level__free(&caches[i]); 1188 return ret; 1189 } 1190 1191 static int write_stat(struct feat_fd *ff __maybe_unused, 1192 struct evlist *evlist __maybe_unused) 1193 { 1194 return 0; 1195 } 1196 1197 static int write_sample_time(struct feat_fd *ff, 1198 struct evlist *evlist) 1199 { 1200 int ret; 1201 1202 ret = do_write(ff, &evlist->first_sample_time, 1203 sizeof(evlist->first_sample_time)); 1204 if (ret < 0) 1205 return ret; 1206 1207 return do_write(ff, &evlist->last_sample_time, 1208 sizeof(evlist->last_sample_time)); 1209 } 1210 1211 1212 static int memory_node__read(struct memory_node *n, unsigned long idx) 1213 { 1214 unsigned int phys, size = 0; 1215 char path[PATH_MAX]; 1216 struct dirent *ent; 1217 DIR *dir; 1218 1219 #define for_each_memory(mem, dir) \ 1220 while ((ent = readdir(dir))) \ 1221 if (strcmp(ent->d_name, ".") && \ 1222 strcmp(ent->d_name, "..") && \ 1223 sscanf(ent->d_name, "memory%u", &mem) == 1) 1224 1225 scnprintf(path, PATH_MAX, 1226 "%s/devices/system/node/node%lu", 1227 sysfs__mountpoint(), idx); 1228 1229 dir = opendir(path); 1230 if (!dir) { 1231 pr_warning("failed: cant' open memory sysfs data\n"); 1232 return -1; 1233 } 1234 1235 for_each_memory(phys, dir) { 1236 size = max(phys, size); 1237 } 1238 1239 size++; 1240 1241 n->set = bitmap_alloc(size); 1242 if (!n->set) { 1243 closedir(dir); 1244 return -ENOMEM; 1245 } 1246 1247 n->node = idx; 1248 n->size = size; 1249 1250 rewinddir(dir); 1251 1252 for_each_memory(phys, dir) { 1253 set_bit(phys, n->set); 1254 } 1255 1256 closedir(dir); 1257 return 0; 1258 } 1259 1260 static int memory_node__sort(const void *a, const void *b) 1261 { 1262 const struct memory_node *na = a; 1263 const struct memory_node *nb = b; 1264 1265 return na->node - nb->node; 1266 } 1267 1268 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp) 1269 { 1270 char path[PATH_MAX]; 1271 struct dirent *ent; 1272 DIR *dir; 1273 u64 cnt = 0; 1274 int ret = 0; 1275 1276 scnprintf(path, PATH_MAX, "%s/devices/system/node/", 1277 sysfs__mountpoint()); 1278 1279 dir = opendir(path); 1280 if (!dir) { 1281 pr_debug2("%s: could't read %s, does this arch have topology information?\n", 1282 __func__, path); 1283 return -1; 1284 } 1285 1286 while (!ret && (ent = readdir(dir))) { 1287 unsigned int idx; 1288 int r; 1289 1290 if (!strcmp(ent->d_name, ".") || 1291 !strcmp(ent->d_name, "..")) 1292 continue; 1293 1294 r = sscanf(ent->d_name, "node%u", &idx); 1295 if (r != 1) 1296 continue; 1297 1298 if (WARN_ONCE(cnt >= size, 1299 "failed to write MEM_TOPOLOGY, way too many nodes\n")) { 1300 closedir(dir); 1301 return -1; 1302 } 1303 1304 ret = memory_node__read(&nodes[cnt++], idx); 1305 } 1306 1307 *cntp = cnt; 1308 closedir(dir); 1309 1310 if (!ret) 1311 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); 1312 1313 return ret; 1314 } 1315 1316 #define MAX_MEMORY_NODES 2000 1317 1318 /* 1319 * The MEM_TOPOLOGY holds physical memory map for every 1320 * node in system. The format of data is as follows: 1321 * 1322 * 0 - version | for future changes 1323 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes 1324 * 16 - count | number of nodes 1325 * 1326 * For each node we store map of physical indexes for 1327 * each node: 1328 * 1329 * 32 - node id | node index 1330 * 40 - size | size of bitmap 1331 * 48 - bitmap | bitmap of memory indexes that belongs to node 1332 */ 1333 static int write_mem_topology(struct feat_fd *ff __maybe_unused, 1334 struct evlist *evlist __maybe_unused) 1335 { 1336 static struct memory_node nodes[MAX_MEMORY_NODES]; 1337 u64 bsize, version = 1, i, nr; 1338 int ret; 1339 1340 ret = sysfs__read_xll("devices/system/memory/block_size_bytes", 1341 (unsigned long long *) &bsize); 1342 if (ret) 1343 return ret; 1344 1345 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr); 1346 if (ret) 1347 return ret; 1348 1349 ret = do_write(ff, &version, sizeof(version)); 1350 if (ret < 0) 1351 goto out; 1352 1353 ret = do_write(ff, &bsize, sizeof(bsize)); 1354 if (ret < 0) 1355 goto out; 1356 1357 ret = do_write(ff, &nr, sizeof(nr)); 1358 if (ret < 0) 1359 goto out; 1360 1361 for (i = 0; i < nr; i++) { 1362 struct memory_node *n = &nodes[i]; 1363 1364 #define _W(v) \ 1365 ret = do_write(ff, &n->v, sizeof(n->v)); \ 1366 if (ret < 0) \ 1367 goto out; 1368 1369 _W(node) 1370 _W(size) 1371 1372 #undef _W 1373 1374 ret = do_write_bitmap(ff, n->set, n->size); 1375 if (ret < 0) 1376 goto out; 1377 } 1378 1379 out: 1380 return ret; 1381 } 1382 1383 static int write_compressed(struct feat_fd *ff __maybe_unused, 1384 struct evlist *evlist __maybe_unused) 1385 { 1386 int ret; 1387 1388 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver)); 1389 if (ret) 1390 return ret; 1391 1392 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type)); 1393 if (ret) 1394 return ret; 1395 1396 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level)); 1397 if (ret) 1398 return ret; 1399 1400 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio)); 1401 if (ret) 1402 return ret; 1403 1404 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len)); 1405 } 1406 1407 static void print_hostname(struct feat_fd *ff, FILE *fp) 1408 { 1409 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); 1410 } 1411 1412 static void print_osrelease(struct feat_fd *ff, FILE *fp) 1413 { 1414 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); 1415 } 1416 1417 static void print_arch(struct feat_fd *ff, FILE *fp) 1418 { 1419 fprintf(fp, "# arch : %s\n", ff->ph->env.arch); 1420 } 1421 1422 static void print_cpudesc(struct feat_fd *ff, FILE *fp) 1423 { 1424 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); 1425 } 1426 1427 static void print_nrcpus(struct feat_fd *ff, FILE *fp) 1428 { 1429 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); 1430 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); 1431 } 1432 1433 static void print_version(struct feat_fd *ff, FILE *fp) 1434 { 1435 fprintf(fp, "# perf version : %s\n", ff->ph->env.version); 1436 } 1437 1438 static void print_cmdline(struct feat_fd *ff, FILE *fp) 1439 { 1440 int nr, i; 1441 1442 nr = ff->ph->env.nr_cmdline; 1443 1444 fprintf(fp, "# cmdline : "); 1445 1446 for (i = 0; i < nr; i++) { 1447 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); 1448 if (!argv_i) { 1449 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); 1450 } else { 1451 char *mem = argv_i; 1452 do { 1453 char *quote = strchr(argv_i, '\''); 1454 if (!quote) 1455 break; 1456 *quote++ = '\0'; 1457 fprintf(fp, "%s\\\'", argv_i); 1458 argv_i = quote; 1459 } while (1); 1460 fprintf(fp, "%s ", argv_i); 1461 free(mem); 1462 } 1463 } 1464 fputc('\n', fp); 1465 } 1466 1467 static void print_cpu_topology(struct feat_fd *ff, FILE *fp) 1468 { 1469 struct perf_header *ph = ff->ph; 1470 int cpu_nr = ph->env.nr_cpus_avail; 1471 int nr, i; 1472 char *str; 1473 1474 nr = ph->env.nr_sibling_cores; 1475 str = ph->env.sibling_cores; 1476 1477 for (i = 0; i < nr; i++) { 1478 fprintf(fp, "# sibling sockets : %s\n", str); 1479 str += strlen(str) + 1; 1480 } 1481 1482 if (ph->env.nr_sibling_dies) { 1483 nr = ph->env.nr_sibling_dies; 1484 str = ph->env.sibling_dies; 1485 1486 for (i = 0; i < nr; i++) { 1487 fprintf(fp, "# sibling dies : %s\n", str); 1488 str += strlen(str) + 1; 1489 } 1490 } 1491 1492 nr = ph->env.nr_sibling_threads; 1493 str = ph->env.sibling_threads; 1494 1495 for (i = 0; i < nr; i++) { 1496 fprintf(fp, "# sibling threads : %s\n", str); 1497 str += strlen(str) + 1; 1498 } 1499 1500 if (ph->env.nr_sibling_dies) { 1501 if (ph->env.cpu != NULL) { 1502 for (i = 0; i < cpu_nr; i++) 1503 fprintf(fp, "# CPU %d: Core ID %d, " 1504 "Die ID %d, Socket ID %d\n", 1505 i, ph->env.cpu[i].core_id, 1506 ph->env.cpu[i].die_id, 1507 ph->env.cpu[i].socket_id); 1508 } else 1509 fprintf(fp, "# Core ID, Die ID and Socket ID " 1510 "information is not available\n"); 1511 } else { 1512 if (ph->env.cpu != NULL) { 1513 for (i = 0; i < cpu_nr; i++) 1514 fprintf(fp, "# CPU %d: Core ID %d, " 1515 "Socket ID %d\n", 1516 i, ph->env.cpu[i].core_id, 1517 ph->env.cpu[i].socket_id); 1518 } else 1519 fprintf(fp, "# Core ID and Socket ID " 1520 "information is not available\n"); 1521 } 1522 } 1523 1524 static void print_clockid(struct feat_fd *ff, FILE *fp) 1525 { 1526 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", 1527 ff->ph->env.clockid_res_ns * 1000); 1528 } 1529 1530 static void print_dir_format(struct feat_fd *ff, FILE *fp) 1531 { 1532 struct perf_session *session; 1533 struct perf_data *data; 1534 1535 session = container_of(ff->ph, struct perf_session, header); 1536 data = session->data; 1537 1538 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version); 1539 } 1540 1541 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp) 1542 { 1543 struct perf_env *env = &ff->ph->env; 1544 struct rb_root *root; 1545 struct rb_node *next; 1546 1547 down_read(&env->bpf_progs.lock); 1548 1549 root = &env->bpf_progs.infos; 1550 next = rb_first(root); 1551 1552 while (next) { 1553 struct bpf_prog_info_node *node; 1554 1555 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1556 next = rb_next(&node->rb_node); 1557 1558 bpf_event__print_bpf_prog_info(&node->info_linear->info, 1559 env, fp); 1560 } 1561 1562 up_read(&env->bpf_progs.lock); 1563 } 1564 1565 static void print_bpf_btf(struct feat_fd *ff, FILE *fp) 1566 { 1567 struct perf_env *env = &ff->ph->env; 1568 struct rb_root *root; 1569 struct rb_node *next; 1570 1571 down_read(&env->bpf_progs.lock); 1572 1573 root = &env->bpf_progs.btfs; 1574 next = rb_first(root); 1575 1576 while (next) { 1577 struct btf_node *node; 1578 1579 node = rb_entry(next, struct btf_node, rb_node); 1580 next = rb_next(&node->rb_node); 1581 fprintf(fp, "# btf info of id %u\n", node->id); 1582 } 1583 1584 up_read(&env->bpf_progs.lock); 1585 } 1586 1587 static void free_event_desc(struct evsel *events) 1588 { 1589 struct evsel *evsel; 1590 1591 if (!events) 1592 return; 1593 1594 for (evsel = events; evsel->core.attr.size; evsel++) { 1595 zfree(&evsel->name); 1596 zfree(&evsel->core.id); 1597 } 1598 1599 free(events); 1600 } 1601 1602 static struct evsel *read_event_desc(struct feat_fd *ff) 1603 { 1604 struct evsel *evsel, *events = NULL; 1605 u64 *id; 1606 void *buf = NULL; 1607 u32 nre, sz, nr, i, j; 1608 size_t msz; 1609 1610 /* number of events */ 1611 if (do_read_u32(ff, &nre)) 1612 goto error; 1613 1614 if (do_read_u32(ff, &sz)) 1615 goto error; 1616 1617 /* buffer to hold on file attr struct */ 1618 buf = malloc(sz); 1619 if (!buf) 1620 goto error; 1621 1622 /* the last event terminates with evsel->core.attr.size == 0: */ 1623 events = calloc(nre + 1, sizeof(*events)); 1624 if (!events) 1625 goto error; 1626 1627 msz = sizeof(evsel->core.attr); 1628 if (sz < msz) 1629 msz = sz; 1630 1631 for (i = 0, evsel = events; i < nre; evsel++, i++) { 1632 evsel->idx = i; 1633 1634 /* 1635 * must read entire on-file attr struct to 1636 * sync up with layout. 1637 */ 1638 if (__do_read(ff, buf, sz)) 1639 goto error; 1640 1641 if (ff->ph->needs_swap) 1642 perf_event__attr_swap(buf); 1643 1644 memcpy(&evsel->core.attr, buf, msz); 1645 1646 if (do_read_u32(ff, &nr)) 1647 goto error; 1648 1649 if (ff->ph->needs_swap) 1650 evsel->needs_swap = true; 1651 1652 evsel->name = do_read_string(ff); 1653 if (!evsel->name) 1654 goto error; 1655 1656 if (!nr) 1657 continue; 1658 1659 id = calloc(nr, sizeof(*id)); 1660 if (!id) 1661 goto error; 1662 evsel->core.ids = nr; 1663 evsel->core.id = id; 1664 1665 for (j = 0 ; j < nr; j++) { 1666 if (do_read_u64(ff, id)) 1667 goto error; 1668 id++; 1669 } 1670 } 1671 out: 1672 free(buf); 1673 return events; 1674 error: 1675 free_event_desc(events); 1676 events = NULL; 1677 goto out; 1678 } 1679 1680 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, 1681 void *priv __maybe_unused) 1682 { 1683 return fprintf(fp, ", %s = %s", name, val); 1684 } 1685 1686 static void print_event_desc(struct feat_fd *ff, FILE *fp) 1687 { 1688 struct evsel *evsel, *events; 1689 u32 j; 1690 u64 *id; 1691 1692 if (ff->events) 1693 events = ff->events; 1694 else 1695 events = read_event_desc(ff); 1696 1697 if (!events) { 1698 fprintf(fp, "# event desc: not available or unable to read\n"); 1699 return; 1700 } 1701 1702 for (evsel = events; evsel->core.attr.size; evsel++) { 1703 fprintf(fp, "# event : name = %s, ", evsel->name); 1704 1705 if (evsel->core.ids) { 1706 fprintf(fp, ", id = {"); 1707 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) { 1708 if (j) 1709 fputc(',', fp); 1710 fprintf(fp, " %"PRIu64, *id); 1711 } 1712 fprintf(fp, " }"); 1713 } 1714 1715 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL); 1716 1717 fputc('\n', fp); 1718 } 1719 1720 free_event_desc(events); 1721 ff->events = NULL; 1722 } 1723 1724 static void print_total_mem(struct feat_fd *ff, FILE *fp) 1725 { 1726 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); 1727 } 1728 1729 static void print_numa_topology(struct feat_fd *ff, FILE *fp) 1730 { 1731 int i; 1732 struct numa_node *n; 1733 1734 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { 1735 n = &ff->ph->env.numa_nodes[i]; 1736 1737 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," 1738 " free = %"PRIu64" kB\n", 1739 n->node, n->mem_total, n->mem_free); 1740 1741 fprintf(fp, "# node%u cpu list : ", n->node); 1742 cpu_map__fprintf(n->map, fp); 1743 } 1744 } 1745 1746 static void print_cpuid(struct feat_fd *ff, FILE *fp) 1747 { 1748 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); 1749 } 1750 1751 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) 1752 { 1753 fprintf(fp, "# contains samples with branch stack\n"); 1754 } 1755 1756 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) 1757 { 1758 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); 1759 } 1760 1761 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) 1762 { 1763 fprintf(fp, "# contains stat data\n"); 1764 } 1765 1766 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) 1767 { 1768 int i; 1769 1770 fprintf(fp, "# CPU cache info:\n"); 1771 for (i = 0; i < ff->ph->env.caches_cnt; i++) { 1772 fprintf(fp, "# "); 1773 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); 1774 } 1775 } 1776 1777 static void print_compressed(struct feat_fd *ff, FILE *fp) 1778 { 1779 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n", 1780 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown", 1781 ff->ph->env.comp_level, ff->ph->env.comp_ratio); 1782 } 1783 1784 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) 1785 { 1786 const char *delimiter = "# pmu mappings: "; 1787 char *str, *tmp; 1788 u32 pmu_num; 1789 u32 type; 1790 1791 pmu_num = ff->ph->env.nr_pmu_mappings; 1792 if (!pmu_num) { 1793 fprintf(fp, "# pmu mappings: not available\n"); 1794 return; 1795 } 1796 1797 str = ff->ph->env.pmu_mappings; 1798 1799 while (pmu_num) { 1800 type = strtoul(str, &tmp, 0); 1801 if (*tmp != ':') 1802 goto error; 1803 1804 str = tmp + 1; 1805 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); 1806 1807 delimiter = ", "; 1808 str += strlen(str) + 1; 1809 pmu_num--; 1810 } 1811 1812 fprintf(fp, "\n"); 1813 1814 if (!pmu_num) 1815 return; 1816 error: 1817 fprintf(fp, "# pmu mappings: unable to read\n"); 1818 } 1819 1820 static void print_group_desc(struct feat_fd *ff, FILE *fp) 1821 { 1822 struct perf_session *session; 1823 struct evsel *evsel; 1824 u32 nr = 0; 1825 1826 session = container_of(ff->ph, struct perf_session, header); 1827 1828 evlist__for_each_entry(session->evlist, evsel) { 1829 if (perf_evsel__is_group_leader(evsel) && 1830 evsel->core.nr_members > 1) { 1831 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", 1832 perf_evsel__name(evsel)); 1833 1834 nr = evsel->core.nr_members - 1; 1835 } else if (nr) { 1836 fprintf(fp, ",%s", perf_evsel__name(evsel)); 1837 1838 if (--nr == 0) 1839 fprintf(fp, "}\n"); 1840 } 1841 } 1842 } 1843 1844 static void print_sample_time(struct feat_fd *ff, FILE *fp) 1845 { 1846 struct perf_session *session; 1847 char time_buf[32]; 1848 double d; 1849 1850 session = container_of(ff->ph, struct perf_session, header); 1851 1852 timestamp__scnprintf_usec(session->evlist->first_sample_time, 1853 time_buf, sizeof(time_buf)); 1854 fprintf(fp, "# time of first sample : %s\n", time_buf); 1855 1856 timestamp__scnprintf_usec(session->evlist->last_sample_time, 1857 time_buf, sizeof(time_buf)); 1858 fprintf(fp, "# time of last sample : %s\n", time_buf); 1859 1860 d = (double)(session->evlist->last_sample_time - 1861 session->evlist->first_sample_time) / NSEC_PER_MSEC; 1862 1863 fprintf(fp, "# sample duration : %10.3f ms\n", d); 1864 } 1865 1866 static void memory_node__fprintf(struct memory_node *n, 1867 unsigned long long bsize, FILE *fp) 1868 { 1869 char buf_map[100], buf_size[50]; 1870 unsigned long long size; 1871 1872 size = bsize * bitmap_weight(n->set, n->size); 1873 unit_number__scnprintf(buf_size, 50, size); 1874 1875 bitmap_scnprintf(n->set, n->size, buf_map, 100); 1876 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); 1877 } 1878 1879 static void print_mem_topology(struct feat_fd *ff, FILE *fp) 1880 { 1881 struct memory_node *nodes; 1882 int i, nr; 1883 1884 nodes = ff->ph->env.memory_nodes; 1885 nr = ff->ph->env.nr_memory_nodes; 1886 1887 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", 1888 nr, ff->ph->env.memory_bsize); 1889 1890 for (i = 0; i < nr; i++) { 1891 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp); 1892 } 1893 } 1894 1895 static int __event_process_build_id(struct perf_record_header_build_id *bev, 1896 char *filename, 1897 struct perf_session *session) 1898 { 1899 int err = -1; 1900 struct machine *machine; 1901 u16 cpumode; 1902 struct dso *dso; 1903 enum dso_kernel_type dso_type; 1904 1905 machine = perf_session__findnew_machine(session, bev->pid); 1906 if (!machine) 1907 goto out; 1908 1909 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1910 1911 switch (cpumode) { 1912 case PERF_RECORD_MISC_KERNEL: 1913 dso_type = DSO_TYPE_KERNEL; 1914 break; 1915 case PERF_RECORD_MISC_GUEST_KERNEL: 1916 dso_type = DSO_TYPE_GUEST_KERNEL; 1917 break; 1918 case PERF_RECORD_MISC_USER: 1919 case PERF_RECORD_MISC_GUEST_USER: 1920 dso_type = DSO_TYPE_USER; 1921 break; 1922 default: 1923 goto out; 1924 } 1925 1926 dso = machine__findnew_dso(machine, filename); 1927 if (dso != NULL) { 1928 char sbuild_id[SBUILD_ID_SIZE]; 1929 1930 dso__set_build_id(dso, &bev->build_id); 1931 1932 if (dso_type != DSO_TYPE_USER) { 1933 struct kmod_path m = { .name = NULL, }; 1934 1935 if (!kmod_path__parse_name(&m, filename) && m.kmod) 1936 dso__set_module_info(dso, &m, machine); 1937 else 1938 dso->kernel = dso_type; 1939 1940 free(m.name); 1941 } 1942 1943 build_id__sprintf(dso->build_id, sizeof(dso->build_id), 1944 sbuild_id); 1945 pr_debug("build id event received for %s: %s\n", 1946 dso->long_name, sbuild_id); 1947 dso__put(dso); 1948 } 1949 1950 err = 0; 1951 out: 1952 return err; 1953 } 1954 1955 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, 1956 int input, u64 offset, u64 size) 1957 { 1958 struct perf_session *session = container_of(header, struct perf_session, header); 1959 struct { 1960 struct perf_event_header header; 1961 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; 1962 char filename[0]; 1963 } old_bev; 1964 struct perf_record_header_build_id bev; 1965 char filename[PATH_MAX]; 1966 u64 limit = offset + size; 1967 1968 while (offset < limit) { 1969 ssize_t len; 1970 1971 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) 1972 return -1; 1973 1974 if (header->needs_swap) 1975 perf_event_header__bswap(&old_bev.header); 1976 1977 len = old_bev.header.size - sizeof(old_bev); 1978 if (readn(input, filename, len) != len) 1979 return -1; 1980 1981 bev.header = old_bev.header; 1982 1983 /* 1984 * As the pid is the missing value, we need to fill 1985 * it properly. The header.misc value give us nice hint. 1986 */ 1987 bev.pid = HOST_KERNEL_ID; 1988 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || 1989 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) 1990 bev.pid = DEFAULT_GUEST_KERNEL_ID; 1991 1992 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); 1993 __event_process_build_id(&bev, filename, session); 1994 1995 offset += bev.header.size; 1996 } 1997 1998 return 0; 1999 } 2000 2001 static int perf_header__read_build_ids(struct perf_header *header, 2002 int input, u64 offset, u64 size) 2003 { 2004 struct perf_session *session = container_of(header, struct perf_session, header); 2005 struct perf_record_header_build_id bev; 2006 char filename[PATH_MAX]; 2007 u64 limit = offset + size, orig_offset = offset; 2008 int err = -1; 2009 2010 while (offset < limit) { 2011 ssize_t len; 2012 2013 if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) 2014 goto out; 2015 2016 if (header->needs_swap) 2017 perf_event_header__bswap(&bev.header); 2018 2019 len = bev.header.size - sizeof(bev); 2020 if (readn(input, filename, len) != len) 2021 goto out; 2022 /* 2023 * The a1645ce1 changeset: 2024 * 2025 * "perf: 'perf kvm' tool for monitoring guest performance from host" 2026 * 2027 * Added a field to struct perf_record_header_build_id that broke the file 2028 * format. 2029 * 2030 * Since the kernel build-id is the first entry, process the 2031 * table using the old format if the well known 2032 * '[kernel.kallsyms]' string for the kernel build-id has the 2033 * first 4 characters chopped off (where the pid_t sits). 2034 */ 2035 if (memcmp(filename, "nel.kallsyms]", 13) == 0) { 2036 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) 2037 return -1; 2038 return perf_header__read_build_ids_abi_quirk(header, input, offset, size); 2039 } 2040 2041 __event_process_build_id(&bev, filename, session); 2042 2043 offset += bev.header.size; 2044 } 2045 err = 0; 2046 out: 2047 return err; 2048 } 2049 2050 /* Macro for features that simply need to read and store a string. */ 2051 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ 2052 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ 2053 {\ 2054 ff->ph->env.__feat_env = do_read_string(ff); \ 2055 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ 2056 } 2057 2058 FEAT_PROCESS_STR_FUN(hostname, hostname); 2059 FEAT_PROCESS_STR_FUN(osrelease, os_release); 2060 FEAT_PROCESS_STR_FUN(version, version); 2061 FEAT_PROCESS_STR_FUN(arch, arch); 2062 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); 2063 FEAT_PROCESS_STR_FUN(cpuid, cpuid); 2064 2065 static int process_tracing_data(struct feat_fd *ff, void *data) 2066 { 2067 ssize_t ret = trace_report(ff->fd, data, false); 2068 2069 return ret < 0 ? -1 : 0; 2070 } 2071 2072 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) 2073 { 2074 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) 2075 pr_debug("Failed to read buildids, continuing...\n"); 2076 return 0; 2077 } 2078 2079 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) 2080 { 2081 int ret; 2082 u32 nr_cpus_avail, nr_cpus_online; 2083 2084 ret = do_read_u32(ff, &nr_cpus_avail); 2085 if (ret) 2086 return ret; 2087 2088 ret = do_read_u32(ff, &nr_cpus_online); 2089 if (ret) 2090 return ret; 2091 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail; 2092 ff->ph->env.nr_cpus_online = (int)nr_cpus_online; 2093 return 0; 2094 } 2095 2096 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) 2097 { 2098 u64 total_mem; 2099 int ret; 2100 2101 ret = do_read_u64(ff, &total_mem); 2102 if (ret) 2103 return -1; 2104 ff->ph->env.total_mem = (unsigned long long)total_mem; 2105 return 0; 2106 } 2107 2108 static struct evsel * 2109 perf_evlist__find_by_index(struct evlist *evlist, int idx) 2110 { 2111 struct evsel *evsel; 2112 2113 evlist__for_each_entry(evlist, evsel) { 2114 if (evsel->idx == idx) 2115 return evsel; 2116 } 2117 2118 return NULL; 2119 } 2120 2121 static void 2122 perf_evlist__set_event_name(struct evlist *evlist, 2123 struct evsel *event) 2124 { 2125 struct evsel *evsel; 2126 2127 if (!event->name) 2128 return; 2129 2130 evsel = perf_evlist__find_by_index(evlist, event->idx); 2131 if (!evsel) 2132 return; 2133 2134 if (evsel->name) 2135 return; 2136 2137 evsel->name = strdup(event->name); 2138 } 2139 2140 static int 2141 process_event_desc(struct feat_fd *ff, void *data __maybe_unused) 2142 { 2143 struct perf_session *session; 2144 struct evsel *evsel, *events = read_event_desc(ff); 2145 2146 if (!events) 2147 return 0; 2148 2149 session = container_of(ff->ph, struct perf_session, header); 2150 2151 if (session->data->is_pipe) { 2152 /* Save events for reading later by print_event_desc, 2153 * since they can't be read again in pipe mode. */ 2154 ff->events = events; 2155 } 2156 2157 for (evsel = events; evsel->core.attr.size; evsel++) 2158 perf_evlist__set_event_name(session->evlist, evsel); 2159 2160 if (!session->data->is_pipe) 2161 free_event_desc(events); 2162 2163 return 0; 2164 } 2165 2166 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) 2167 { 2168 char *str, *cmdline = NULL, **argv = NULL; 2169 u32 nr, i, len = 0; 2170 2171 if (do_read_u32(ff, &nr)) 2172 return -1; 2173 2174 ff->ph->env.nr_cmdline = nr; 2175 2176 cmdline = zalloc(ff->size + nr + 1); 2177 if (!cmdline) 2178 return -1; 2179 2180 argv = zalloc(sizeof(char *) * (nr + 1)); 2181 if (!argv) 2182 goto error; 2183 2184 for (i = 0; i < nr; i++) { 2185 str = do_read_string(ff); 2186 if (!str) 2187 goto error; 2188 2189 argv[i] = cmdline + len; 2190 memcpy(argv[i], str, strlen(str) + 1); 2191 len += strlen(str) + 1; 2192 free(str); 2193 } 2194 ff->ph->env.cmdline = cmdline; 2195 ff->ph->env.cmdline_argv = (const char **) argv; 2196 return 0; 2197 2198 error: 2199 free(argv); 2200 free(cmdline); 2201 return -1; 2202 } 2203 2204 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) 2205 { 2206 u32 nr, i; 2207 char *str; 2208 struct strbuf sb; 2209 int cpu_nr = ff->ph->env.nr_cpus_avail; 2210 u64 size = 0; 2211 struct perf_header *ph = ff->ph; 2212 bool do_core_id_test = true; 2213 2214 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu)); 2215 if (!ph->env.cpu) 2216 return -1; 2217 2218 if (do_read_u32(ff, &nr)) 2219 goto free_cpu; 2220 2221 ph->env.nr_sibling_cores = nr; 2222 size += sizeof(u32); 2223 if (strbuf_init(&sb, 128) < 0) 2224 goto free_cpu; 2225 2226 for (i = 0; i < nr; i++) { 2227 str = do_read_string(ff); 2228 if (!str) 2229 goto error; 2230 2231 /* include a NULL character at the end */ 2232 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2233 goto error; 2234 size += string_size(str); 2235 free(str); 2236 } 2237 ph->env.sibling_cores = strbuf_detach(&sb, NULL); 2238 2239 if (do_read_u32(ff, &nr)) 2240 return -1; 2241 2242 ph->env.nr_sibling_threads = nr; 2243 size += sizeof(u32); 2244 2245 for (i = 0; i < nr; i++) { 2246 str = do_read_string(ff); 2247 if (!str) 2248 goto error; 2249 2250 /* include a NULL character at the end */ 2251 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2252 goto error; 2253 size += string_size(str); 2254 free(str); 2255 } 2256 ph->env.sibling_threads = strbuf_detach(&sb, NULL); 2257 2258 /* 2259 * The header may be from old perf, 2260 * which doesn't include core id and socket id information. 2261 */ 2262 if (ff->size <= size) { 2263 zfree(&ph->env.cpu); 2264 return 0; 2265 } 2266 2267 /* On s390 the socket_id number is not related to the numbers of cpus. 2268 * The socket_id number might be higher than the numbers of cpus. 2269 * This depends on the configuration. 2270 * AArch64 is the same. 2271 */ 2272 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4) 2273 || !strncmp(ph->env.arch, "aarch64", 7))) 2274 do_core_id_test = false; 2275 2276 for (i = 0; i < (u32)cpu_nr; i++) { 2277 if (do_read_u32(ff, &nr)) 2278 goto free_cpu; 2279 2280 ph->env.cpu[i].core_id = nr; 2281 size += sizeof(u32); 2282 2283 if (do_read_u32(ff, &nr)) 2284 goto free_cpu; 2285 2286 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) { 2287 pr_debug("socket_id number is too big." 2288 "You may need to upgrade the perf tool.\n"); 2289 goto free_cpu; 2290 } 2291 2292 ph->env.cpu[i].socket_id = nr; 2293 size += sizeof(u32); 2294 } 2295 2296 /* 2297 * The header may be from old perf, 2298 * which doesn't include die information. 2299 */ 2300 if (ff->size <= size) 2301 return 0; 2302 2303 if (do_read_u32(ff, &nr)) 2304 return -1; 2305 2306 ph->env.nr_sibling_dies = nr; 2307 size += sizeof(u32); 2308 2309 for (i = 0; i < nr; i++) { 2310 str = do_read_string(ff); 2311 if (!str) 2312 goto error; 2313 2314 /* include a NULL character at the end */ 2315 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2316 goto error; 2317 size += string_size(str); 2318 free(str); 2319 } 2320 ph->env.sibling_dies = strbuf_detach(&sb, NULL); 2321 2322 for (i = 0; i < (u32)cpu_nr; i++) { 2323 if (do_read_u32(ff, &nr)) 2324 goto free_cpu; 2325 2326 ph->env.cpu[i].die_id = nr; 2327 } 2328 2329 return 0; 2330 2331 error: 2332 strbuf_release(&sb); 2333 free_cpu: 2334 zfree(&ph->env.cpu); 2335 return -1; 2336 } 2337 2338 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) 2339 { 2340 struct numa_node *nodes, *n; 2341 u32 nr, i; 2342 char *str; 2343 2344 /* nr nodes */ 2345 if (do_read_u32(ff, &nr)) 2346 return -1; 2347 2348 nodes = zalloc(sizeof(*nodes) * nr); 2349 if (!nodes) 2350 return -ENOMEM; 2351 2352 for (i = 0; i < nr; i++) { 2353 n = &nodes[i]; 2354 2355 /* node number */ 2356 if (do_read_u32(ff, &n->node)) 2357 goto error; 2358 2359 if (do_read_u64(ff, &n->mem_total)) 2360 goto error; 2361 2362 if (do_read_u64(ff, &n->mem_free)) 2363 goto error; 2364 2365 str = do_read_string(ff); 2366 if (!str) 2367 goto error; 2368 2369 n->map = perf_cpu_map__new(str); 2370 if (!n->map) 2371 goto error; 2372 2373 free(str); 2374 } 2375 ff->ph->env.nr_numa_nodes = nr; 2376 ff->ph->env.numa_nodes = nodes; 2377 return 0; 2378 2379 error: 2380 free(nodes); 2381 return -1; 2382 } 2383 2384 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) 2385 { 2386 char *name; 2387 u32 pmu_num; 2388 u32 type; 2389 struct strbuf sb; 2390 2391 if (do_read_u32(ff, &pmu_num)) 2392 return -1; 2393 2394 if (!pmu_num) { 2395 pr_debug("pmu mappings not available\n"); 2396 return 0; 2397 } 2398 2399 ff->ph->env.nr_pmu_mappings = pmu_num; 2400 if (strbuf_init(&sb, 128) < 0) 2401 return -1; 2402 2403 while (pmu_num) { 2404 if (do_read_u32(ff, &type)) 2405 goto error; 2406 2407 name = do_read_string(ff); 2408 if (!name) 2409 goto error; 2410 2411 if (strbuf_addf(&sb, "%u:%s", type, name) < 0) 2412 goto error; 2413 /* include a NULL character at the end */ 2414 if (strbuf_add(&sb, "", 1) < 0) 2415 goto error; 2416 2417 if (!strcmp(name, "msr")) 2418 ff->ph->env.msr_pmu_type = type; 2419 2420 free(name); 2421 pmu_num--; 2422 } 2423 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL); 2424 return 0; 2425 2426 error: 2427 strbuf_release(&sb); 2428 return -1; 2429 } 2430 2431 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) 2432 { 2433 size_t ret = -1; 2434 u32 i, nr, nr_groups; 2435 struct perf_session *session; 2436 struct evsel *evsel, *leader = NULL; 2437 struct group_desc { 2438 char *name; 2439 u32 leader_idx; 2440 u32 nr_members; 2441 } *desc; 2442 2443 if (do_read_u32(ff, &nr_groups)) 2444 return -1; 2445 2446 ff->ph->env.nr_groups = nr_groups; 2447 if (!nr_groups) { 2448 pr_debug("group desc not available\n"); 2449 return 0; 2450 } 2451 2452 desc = calloc(nr_groups, sizeof(*desc)); 2453 if (!desc) 2454 return -1; 2455 2456 for (i = 0; i < nr_groups; i++) { 2457 desc[i].name = do_read_string(ff); 2458 if (!desc[i].name) 2459 goto out_free; 2460 2461 if (do_read_u32(ff, &desc[i].leader_idx)) 2462 goto out_free; 2463 2464 if (do_read_u32(ff, &desc[i].nr_members)) 2465 goto out_free; 2466 } 2467 2468 /* 2469 * Rebuild group relationship based on the group_desc 2470 */ 2471 session = container_of(ff->ph, struct perf_session, header); 2472 session->evlist->nr_groups = nr_groups; 2473 2474 i = nr = 0; 2475 evlist__for_each_entry(session->evlist, evsel) { 2476 if (evsel->idx == (int) desc[i].leader_idx) { 2477 evsel->leader = evsel; 2478 /* {anon_group} is a dummy name */ 2479 if (strcmp(desc[i].name, "{anon_group}")) { 2480 evsel->group_name = desc[i].name; 2481 desc[i].name = NULL; 2482 } 2483 evsel->core.nr_members = desc[i].nr_members; 2484 2485 if (i >= nr_groups || nr > 0) { 2486 pr_debug("invalid group desc\n"); 2487 goto out_free; 2488 } 2489 2490 leader = evsel; 2491 nr = evsel->core.nr_members - 1; 2492 i++; 2493 } else if (nr) { 2494 /* This is a group member */ 2495 evsel->leader = leader; 2496 2497 nr--; 2498 } 2499 } 2500 2501 if (i != nr_groups || nr != 0) { 2502 pr_debug("invalid group desc\n"); 2503 goto out_free; 2504 } 2505 2506 ret = 0; 2507 out_free: 2508 for (i = 0; i < nr_groups; i++) 2509 zfree(&desc[i].name); 2510 free(desc); 2511 2512 return ret; 2513 } 2514 2515 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) 2516 { 2517 struct perf_session *session; 2518 int err; 2519 2520 session = container_of(ff->ph, struct perf_session, header); 2521 2522 err = auxtrace_index__process(ff->fd, ff->size, session, 2523 ff->ph->needs_swap); 2524 if (err < 0) 2525 pr_err("Failed to process auxtrace index\n"); 2526 return err; 2527 } 2528 2529 static int process_cache(struct feat_fd *ff, void *data __maybe_unused) 2530 { 2531 struct cpu_cache_level *caches; 2532 u32 cnt, i, version; 2533 2534 if (do_read_u32(ff, &version)) 2535 return -1; 2536 2537 if (version != 1) 2538 return -1; 2539 2540 if (do_read_u32(ff, &cnt)) 2541 return -1; 2542 2543 caches = zalloc(sizeof(*caches) * cnt); 2544 if (!caches) 2545 return -1; 2546 2547 for (i = 0; i < cnt; i++) { 2548 struct cpu_cache_level c; 2549 2550 #define _R(v) \ 2551 if (do_read_u32(ff, &c.v))\ 2552 goto out_free_caches; \ 2553 2554 _R(level) 2555 _R(line_size) 2556 _R(sets) 2557 _R(ways) 2558 #undef _R 2559 2560 #define _R(v) \ 2561 c.v = do_read_string(ff); \ 2562 if (!c.v) \ 2563 goto out_free_caches; 2564 2565 _R(type) 2566 _R(size) 2567 _R(map) 2568 #undef _R 2569 2570 caches[i] = c; 2571 } 2572 2573 ff->ph->env.caches = caches; 2574 ff->ph->env.caches_cnt = cnt; 2575 return 0; 2576 out_free_caches: 2577 free(caches); 2578 return -1; 2579 } 2580 2581 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) 2582 { 2583 struct perf_session *session; 2584 u64 first_sample_time, last_sample_time; 2585 int ret; 2586 2587 session = container_of(ff->ph, struct perf_session, header); 2588 2589 ret = do_read_u64(ff, &first_sample_time); 2590 if (ret) 2591 return -1; 2592 2593 ret = do_read_u64(ff, &last_sample_time); 2594 if (ret) 2595 return -1; 2596 2597 session->evlist->first_sample_time = first_sample_time; 2598 session->evlist->last_sample_time = last_sample_time; 2599 return 0; 2600 } 2601 2602 static int process_mem_topology(struct feat_fd *ff, 2603 void *data __maybe_unused) 2604 { 2605 struct memory_node *nodes; 2606 u64 version, i, nr, bsize; 2607 int ret = -1; 2608 2609 if (do_read_u64(ff, &version)) 2610 return -1; 2611 2612 if (version != 1) 2613 return -1; 2614 2615 if (do_read_u64(ff, &bsize)) 2616 return -1; 2617 2618 if (do_read_u64(ff, &nr)) 2619 return -1; 2620 2621 nodes = zalloc(sizeof(*nodes) * nr); 2622 if (!nodes) 2623 return -1; 2624 2625 for (i = 0; i < nr; i++) { 2626 struct memory_node n; 2627 2628 #define _R(v) \ 2629 if (do_read_u64(ff, &n.v)) \ 2630 goto out; \ 2631 2632 _R(node) 2633 _R(size) 2634 2635 #undef _R 2636 2637 if (do_read_bitmap(ff, &n.set, &n.size)) 2638 goto out; 2639 2640 nodes[i] = n; 2641 } 2642 2643 ff->ph->env.memory_bsize = bsize; 2644 ff->ph->env.memory_nodes = nodes; 2645 ff->ph->env.nr_memory_nodes = nr; 2646 ret = 0; 2647 2648 out: 2649 if (ret) 2650 free(nodes); 2651 return ret; 2652 } 2653 2654 static int process_clockid(struct feat_fd *ff, 2655 void *data __maybe_unused) 2656 { 2657 if (do_read_u64(ff, &ff->ph->env.clockid_res_ns)) 2658 return -1; 2659 2660 return 0; 2661 } 2662 2663 static int process_dir_format(struct feat_fd *ff, 2664 void *_data __maybe_unused) 2665 { 2666 struct perf_session *session; 2667 struct perf_data *data; 2668 2669 session = container_of(ff->ph, struct perf_session, header); 2670 data = session->data; 2671 2672 if (WARN_ON(!perf_data__is_dir(data))) 2673 return -1; 2674 2675 return do_read_u64(ff, &data->dir.version); 2676 } 2677 2678 #ifdef HAVE_LIBBPF_SUPPORT 2679 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused) 2680 { 2681 struct bpf_prog_info_linear *info_linear; 2682 struct bpf_prog_info_node *info_node; 2683 struct perf_env *env = &ff->ph->env; 2684 u32 count, i; 2685 int err = -1; 2686 2687 if (ff->ph->needs_swap) { 2688 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n"); 2689 return 0; 2690 } 2691 2692 if (do_read_u32(ff, &count)) 2693 return -1; 2694 2695 down_write(&env->bpf_progs.lock); 2696 2697 for (i = 0; i < count; ++i) { 2698 u32 info_len, data_len; 2699 2700 info_linear = NULL; 2701 info_node = NULL; 2702 if (do_read_u32(ff, &info_len)) 2703 goto out; 2704 if (do_read_u32(ff, &data_len)) 2705 goto out; 2706 2707 if (info_len > sizeof(struct bpf_prog_info)) { 2708 pr_warning("detected invalid bpf_prog_info\n"); 2709 goto out; 2710 } 2711 2712 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + 2713 data_len); 2714 if (!info_linear) 2715 goto out; 2716 info_linear->info_len = sizeof(struct bpf_prog_info); 2717 info_linear->data_len = data_len; 2718 if (do_read_u64(ff, (u64 *)(&info_linear->arrays))) 2719 goto out; 2720 if (__do_read(ff, &info_linear->info, info_len)) 2721 goto out; 2722 if (info_len < sizeof(struct bpf_prog_info)) 2723 memset(((void *)(&info_linear->info)) + info_len, 0, 2724 sizeof(struct bpf_prog_info) - info_len); 2725 2726 if (__do_read(ff, info_linear->data, data_len)) 2727 goto out; 2728 2729 info_node = malloc(sizeof(struct bpf_prog_info_node)); 2730 if (!info_node) 2731 goto out; 2732 2733 /* after reading from file, translate offset to address */ 2734 bpf_program__bpil_offs_to_addr(info_linear); 2735 info_node->info_linear = info_linear; 2736 perf_env__insert_bpf_prog_info(env, info_node); 2737 } 2738 2739 up_write(&env->bpf_progs.lock); 2740 return 0; 2741 out: 2742 free(info_linear); 2743 free(info_node); 2744 up_write(&env->bpf_progs.lock); 2745 return err; 2746 } 2747 #else // HAVE_LIBBPF_SUPPORT 2748 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused) 2749 { 2750 return 0; 2751 } 2752 #endif // HAVE_LIBBPF_SUPPORT 2753 2754 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused) 2755 { 2756 struct perf_env *env = &ff->ph->env; 2757 struct btf_node *node = NULL; 2758 u32 count, i; 2759 int err = -1; 2760 2761 if (ff->ph->needs_swap) { 2762 pr_warning("interpreting btf from systems with endianity is not yet supported\n"); 2763 return 0; 2764 } 2765 2766 if (do_read_u32(ff, &count)) 2767 return -1; 2768 2769 down_write(&env->bpf_progs.lock); 2770 2771 for (i = 0; i < count; ++i) { 2772 u32 id, data_size; 2773 2774 if (do_read_u32(ff, &id)) 2775 goto out; 2776 if (do_read_u32(ff, &data_size)) 2777 goto out; 2778 2779 node = malloc(sizeof(struct btf_node) + data_size); 2780 if (!node) 2781 goto out; 2782 2783 node->id = id; 2784 node->data_size = data_size; 2785 2786 if (__do_read(ff, node->data, data_size)) 2787 goto out; 2788 2789 perf_env__insert_btf(env, node); 2790 node = NULL; 2791 } 2792 2793 err = 0; 2794 out: 2795 up_write(&env->bpf_progs.lock); 2796 free(node); 2797 return err; 2798 } 2799 2800 static int process_compressed(struct feat_fd *ff, 2801 void *data __maybe_unused) 2802 { 2803 if (do_read_u32(ff, &(ff->ph->env.comp_ver))) 2804 return -1; 2805 2806 if (do_read_u32(ff, &(ff->ph->env.comp_type))) 2807 return -1; 2808 2809 if (do_read_u32(ff, &(ff->ph->env.comp_level))) 2810 return -1; 2811 2812 if (do_read_u32(ff, &(ff->ph->env.comp_ratio))) 2813 return -1; 2814 2815 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len))) 2816 return -1; 2817 2818 return 0; 2819 } 2820 2821 #define FEAT_OPR(n, func, __full_only) \ 2822 [HEADER_##n] = { \ 2823 .name = __stringify(n), \ 2824 .write = write_##func, \ 2825 .print = print_##func, \ 2826 .full_only = __full_only, \ 2827 .process = process_##func, \ 2828 .synthesize = true \ 2829 } 2830 2831 #define FEAT_OPN(n, func, __full_only) \ 2832 [HEADER_##n] = { \ 2833 .name = __stringify(n), \ 2834 .write = write_##func, \ 2835 .print = print_##func, \ 2836 .full_only = __full_only, \ 2837 .process = process_##func \ 2838 } 2839 2840 /* feature_ops not implemented: */ 2841 #define print_tracing_data NULL 2842 #define print_build_id NULL 2843 2844 #define process_branch_stack NULL 2845 #define process_stat NULL 2846 2847 // Only used in util/synthetic-events.c 2848 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE]; 2849 2850 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = { 2851 FEAT_OPN(TRACING_DATA, tracing_data, false), 2852 FEAT_OPN(BUILD_ID, build_id, false), 2853 FEAT_OPR(HOSTNAME, hostname, false), 2854 FEAT_OPR(OSRELEASE, osrelease, false), 2855 FEAT_OPR(VERSION, version, false), 2856 FEAT_OPR(ARCH, arch, false), 2857 FEAT_OPR(NRCPUS, nrcpus, false), 2858 FEAT_OPR(CPUDESC, cpudesc, false), 2859 FEAT_OPR(CPUID, cpuid, false), 2860 FEAT_OPR(TOTAL_MEM, total_mem, false), 2861 FEAT_OPR(EVENT_DESC, event_desc, false), 2862 FEAT_OPR(CMDLINE, cmdline, false), 2863 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), 2864 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), 2865 FEAT_OPN(BRANCH_STACK, branch_stack, false), 2866 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), 2867 FEAT_OPR(GROUP_DESC, group_desc, false), 2868 FEAT_OPN(AUXTRACE, auxtrace, false), 2869 FEAT_OPN(STAT, stat, false), 2870 FEAT_OPN(CACHE, cache, true), 2871 FEAT_OPR(SAMPLE_TIME, sample_time, false), 2872 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), 2873 FEAT_OPR(CLOCKID, clockid, false), 2874 FEAT_OPN(DIR_FORMAT, dir_format, false), 2875 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false), 2876 FEAT_OPR(BPF_BTF, bpf_btf, false), 2877 FEAT_OPR(COMPRESSED, compressed, false), 2878 }; 2879 2880 struct header_print_data { 2881 FILE *fp; 2882 bool full; /* extended list of headers */ 2883 }; 2884 2885 static int perf_file_section__fprintf_info(struct perf_file_section *section, 2886 struct perf_header *ph, 2887 int feat, int fd, void *data) 2888 { 2889 struct header_print_data *hd = data; 2890 struct feat_fd ff; 2891 2892 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 2893 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 2894 "%d, continuing...\n", section->offset, feat); 2895 return 0; 2896 } 2897 if (feat >= HEADER_LAST_FEATURE) { 2898 pr_warning("unknown feature %d\n", feat); 2899 return 0; 2900 } 2901 if (!feat_ops[feat].print) 2902 return 0; 2903 2904 ff = (struct feat_fd) { 2905 .fd = fd, 2906 .ph = ph, 2907 }; 2908 2909 if (!feat_ops[feat].full_only || hd->full) 2910 feat_ops[feat].print(&ff, hd->fp); 2911 else 2912 fprintf(hd->fp, "# %s info available, use -I to display\n", 2913 feat_ops[feat].name); 2914 2915 return 0; 2916 } 2917 2918 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) 2919 { 2920 struct header_print_data hd; 2921 struct perf_header *header = &session->header; 2922 int fd = perf_data__fd(session->data); 2923 struct stat st; 2924 time_t stctime; 2925 int ret, bit; 2926 2927 hd.fp = fp; 2928 hd.full = full; 2929 2930 ret = fstat(fd, &st); 2931 if (ret == -1) 2932 return -1; 2933 2934 stctime = st.st_ctime; 2935 fprintf(fp, "# captured on : %s", ctime(&stctime)); 2936 2937 fprintf(fp, "# header version : %u\n", header->version); 2938 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); 2939 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); 2940 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); 2941 2942 perf_header__process_sections(header, fd, &hd, 2943 perf_file_section__fprintf_info); 2944 2945 if (session->data->is_pipe) 2946 return 0; 2947 2948 fprintf(fp, "# missing features: "); 2949 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { 2950 if (bit) 2951 fprintf(fp, "%s ", feat_ops[bit].name); 2952 } 2953 2954 fprintf(fp, "\n"); 2955 return 0; 2956 } 2957 2958 static int do_write_feat(struct feat_fd *ff, int type, 2959 struct perf_file_section **p, 2960 struct evlist *evlist) 2961 { 2962 int err; 2963 int ret = 0; 2964 2965 if (perf_header__has_feat(ff->ph, type)) { 2966 if (!feat_ops[type].write) 2967 return -1; 2968 2969 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 2970 return -1; 2971 2972 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); 2973 2974 err = feat_ops[type].write(ff, evlist); 2975 if (err < 0) { 2976 pr_debug("failed to write feature %s\n", feat_ops[type].name); 2977 2978 /* undo anything written */ 2979 lseek(ff->fd, (*p)->offset, SEEK_SET); 2980 2981 return -1; 2982 } 2983 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; 2984 (*p)++; 2985 } 2986 return ret; 2987 } 2988 2989 static int perf_header__adds_write(struct perf_header *header, 2990 struct evlist *evlist, int fd) 2991 { 2992 int nr_sections; 2993 struct feat_fd ff; 2994 struct perf_file_section *feat_sec, *p; 2995 int sec_size; 2996 u64 sec_start; 2997 int feat; 2998 int err; 2999 3000 ff = (struct feat_fd){ 3001 .fd = fd, 3002 .ph = header, 3003 }; 3004 3005 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3006 if (!nr_sections) 3007 return 0; 3008 3009 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); 3010 if (feat_sec == NULL) 3011 return -ENOMEM; 3012 3013 sec_size = sizeof(*feat_sec) * nr_sections; 3014 3015 sec_start = header->feat_offset; 3016 lseek(fd, sec_start + sec_size, SEEK_SET); 3017 3018 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3019 if (do_write_feat(&ff, feat, &p, evlist)) 3020 perf_header__clear_feat(header, feat); 3021 } 3022 3023 lseek(fd, sec_start, SEEK_SET); 3024 /* 3025 * may write more than needed due to dropped feature, but 3026 * this is okay, reader will skip the missing entries 3027 */ 3028 err = do_write(&ff, feat_sec, sec_size); 3029 if (err < 0) 3030 pr_debug("failed to write feature section\n"); 3031 free(feat_sec); 3032 return err; 3033 } 3034 3035 int perf_header__write_pipe(int fd) 3036 { 3037 struct perf_pipe_file_header f_header; 3038 struct feat_fd ff; 3039 int err; 3040 3041 ff = (struct feat_fd){ .fd = fd }; 3042 3043 f_header = (struct perf_pipe_file_header){ 3044 .magic = PERF_MAGIC, 3045 .size = sizeof(f_header), 3046 }; 3047 3048 err = do_write(&ff, &f_header, sizeof(f_header)); 3049 if (err < 0) { 3050 pr_debug("failed to write perf pipe header\n"); 3051 return err; 3052 } 3053 3054 return 0; 3055 } 3056 3057 int perf_session__write_header(struct perf_session *session, 3058 struct evlist *evlist, 3059 int fd, bool at_exit) 3060 { 3061 struct perf_file_header f_header; 3062 struct perf_file_attr f_attr; 3063 struct perf_header *header = &session->header; 3064 struct evsel *evsel; 3065 struct feat_fd ff; 3066 u64 attr_offset; 3067 int err; 3068 3069 ff = (struct feat_fd){ .fd = fd}; 3070 lseek(fd, sizeof(f_header), SEEK_SET); 3071 3072 evlist__for_each_entry(session->evlist, evsel) { 3073 evsel->id_offset = lseek(fd, 0, SEEK_CUR); 3074 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 3075 if (err < 0) { 3076 pr_debug("failed to write perf header\n"); 3077 return err; 3078 } 3079 } 3080 3081 attr_offset = lseek(ff.fd, 0, SEEK_CUR); 3082 3083 evlist__for_each_entry(evlist, evsel) { 3084 f_attr = (struct perf_file_attr){ 3085 .attr = evsel->core.attr, 3086 .ids = { 3087 .offset = evsel->id_offset, 3088 .size = evsel->core.ids * sizeof(u64), 3089 } 3090 }; 3091 err = do_write(&ff, &f_attr, sizeof(f_attr)); 3092 if (err < 0) { 3093 pr_debug("failed to write perf header attribute\n"); 3094 return err; 3095 } 3096 } 3097 3098 if (!header->data_offset) 3099 header->data_offset = lseek(fd, 0, SEEK_CUR); 3100 header->feat_offset = header->data_offset + header->data_size; 3101 3102 if (at_exit) { 3103 err = perf_header__adds_write(header, evlist, fd); 3104 if (err < 0) 3105 return err; 3106 } 3107 3108 f_header = (struct perf_file_header){ 3109 .magic = PERF_MAGIC, 3110 .size = sizeof(f_header), 3111 .attr_size = sizeof(f_attr), 3112 .attrs = { 3113 .offset = attr_offset, 3114 .size = evlist->core.nr_entries * sizeof(f_attr), 3115 }, 3116 .data = { 3117 .offset = header->data_offset, 3118 .size = header->data_size, 3119 }, 3120 /* event_types is ignored, store zeros */ 3121 }; 3122 3123 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); 3124 3125 lseek(fd, 0, SEEK_SET); 3126 err = do_write(&ff, &f_header, sizeof(f_header)); 3127 if (err < 0) { 3128 pr_debug("failed to write perf header\n"); 3129 return err; 3130 } 3131 lseek(fd, header->data_offset + header->data_size, SEEK_SET); 3132 3133 return 0; 3134 } 3135 3136 static int perf_header__getbuffer64(struct perf_header *header, 3137 int fd, void *buf, size_t size) 3138 { 3139 if (readn(fd, buf, size) <= 0) 3140 return -1; 3141 3142 if (header->needs_swap) 3143 mem_bswap_64(buf, size); 3144 3145 return 0; 3146 } 3147 3148 int perf_header__process_sections(struct perf_header *header, int fd, 3149 void *data, 3150 int (*process)(struct perf_file_section *section, 3151 struct perf_header *ph, 3152 int feat, int fd, void *data)) 3153 { 3154 struct perf_file_section *feat_sec, *sec; 3155 int nr_sections; 3156 int sec_size; 3157 int feat; 3158 int err; 3159 3160 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3161 if (!nr_sections) 3162 return 0; 3163 3164 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); 3165 if (!feat_sec) 3166 return -1; 3167 3168 sec_size = sizeof(*feat_sec) * nr_sections; 3169 3170 lseek(fd, header->feat_offset, SEEK_SET); 3171 3172 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); 3173 if (err < 0) 3174 goto out_free; 3175 3176 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { 3177 err = process(sec++, header, feat, fd, data); 3178 if (err < 0) 3179 goto out_free; 3180 } 3181 err = 0; 3182 out_free: 3183 free(feat_sec); 3184 return err; 3185 } 3186 3187 static const int attr_file_abi_sizes[] = { 3188 [0] = PERF_ATTR_SIZE_VER0, 3189 [1] = PERF_ATTR_SIZE_VER1, 3190 [2] = PERF_ATTR_SIZE_VER2, 3191 [3] = PERF_ATTR_SIZE_VER3, 3192 [4] = PERF_ATTR_SIZE_VER4, 3193 0, 3194 }; 3195 3196 /* 3197 * In the legacy file format, the magic number is not used to encode endianness. 3198 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based 3199 * on ABI revisions, we need to try all combinations for all endianness to 3200 * detect the endianness. 3201 */ 3202 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) 3203 { 3204 uint64_t ref_size, attr_size; 3205 int i; 3206 3207 for (i = 0 ; attr_file_abi_sizes[i]; i++) { 3208 ref_size = attr_file_abi_sizes[i] 3209 + sizeof(struct perf_file_section); 3210 if (hdr_sz != ref_size) { 3211 attr_size = bswap_64(hdr_sz); 3212 if (attr_size != ref_size) 3213 continue; 3214 3215 ph->needs_swap = true; 3216 } 3217 pr_debug("ABI%d perf.data file detected, need_swap=%d\n", 3218 i, 3219 ph->needs_swap); 3220 return 0; 3221 } 3222 /* could not determine endianness */ 3223 return -1; 3224 } 3225 3226 #define PERF_PIPE_HDR_VER0 16 3227 3228 static const size_t attr_pipe_abi_sizes[] = { 3229 [0] = PERF_PIPE_HDR_VER0, 3230 0, 3231 }; 3232 3233 /* 3234 * In the legacy pipe format, there is an implicit assumption that endiannesss 3235 * between host recording the samples, and host parsing the samples is the 3236 * same. This is not always the case given that the pipe output may always be 3237 * redirected into a file and analyzed on a different machine with possibly a 3238 * different endianness and perf_event ABI revsions in the perf tool itself. 3239 */ 3240 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) 3241 { 3242 u64 attr_size; 3243 int i; 3244 3245 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { 3246 if (hdr_sz != attr_pipe_abi_sizes[i]) { 3247 attr_size = bswap_64(hdr_sz); 3248 if (attr_size != hdr_sz) 3249 continue; 3250 3251 ph->needs_swap = true; 3252 } 3253 pr_debug("Pipe ABI%d perf.data file detected\n", i); 3254 return 0; 3255 } 3256 return -1; 3257 } 3258 3259 bool is_perf_magic(u64 magic) 3260 { 3261 if (!memcmp(&magic, __perf_magic1, sizeof(magic)) 3262 || magic == __perf_magic2 3263 || magic == __perf_magic2_sw) 3264 return true; 3265 3266 return false; 3267 } 3268 3269 static int check_magic_endian(u64 magic, uint64_t hdr_sz, 3270 bool is_pipe, struct perf_header *ph) 3271 { 3272 int ret; 3273 3274 /* check for legacy format */ 3275 ret = memcmp(&magic, __perf_magic1, sizeof(magic)); 3276 if (ret == 0) { 3277 ph->version = PERF_HEADER_VERSION_1; 3278 pr_debug("legacy perf.data format\n"); 3279 if (is_pipe) 3280 return try_all_pipe_abis(hdr_sz, ph); 3281 3282 return try_all_file_abis(hdr_sz, ph); 3283 } 3284 /* 3285 * the new magic number serves two purposes: 3286 * - unique number to identify actual perf.data files 3287 * - encode endianness of file 3288 */ 3289 ph->version = PERF_HEADER_VERSION_2; 3290 3291 /* check magic number with one endianness */ 3292 if (magic == __perf_magic2) 3293 return 0; 3294 3295 /* check magic number with opposite endianness */ 3296 if (magic != __perf_magic2_sw) 3297 return -1; 3298 3299 ph->needs_swap = true; 3300 3301 return 0; 3302 } 3303 3304 int perf_file_header__read(struct perf_file_header *header, 3305 struct perf_header *ph, int fd) 3306 { 3307 ssize_t ret; 3308 3309 lseek(fd, 0, SEEK_SET); 3310 3311 ret = readn(fd, header, sizeof(*header)); 3312 if (ret <= 0) 3313 return -1; 3314 3315 if (check_magic_endian(header->magic, 3316 header->attr_size, false, ph) < 0) { 3317 pr_debug("magic/endian check failed\n"); 3318 return -1; 3319 } 3320 3321 if (ph->needs_swap) { 3322 mem_bswap_64(header, offsetof(struct perf_file_header, 3323 adds_features)); 3324 } 3325 3326 if (header->size != sizeof(*header)) { 3327 /* Support the previous format */ 3328 if (header->size == offsetof(typeof(*header), adds_features)) 3329 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3330 else 3331 return -1; 3332 } else if (ph->needs_swap) { 3333 /* 3334 * feature bitmap is declared as an array of unsigned longs -- 3335 * not good since its size can differ between the host that 3336 * generated the data file and the host analyzing the file. 3337 * 3338 * We need to handle endianness, but we don't know the size of 3339 * the unsigned long where the file was generated. Take a best 3340 * guess at determining it: try 64-bit swap first (ie., file 3341 * created on a 64-bit host), and check if the hostname feature 3342 * bit is set (this feature bit is forced on as of fbe96f2). 3343 * If the bit is not, undo the 64-bit swap and try a 32-bit 3344 * swap. If the hostname bit is still not set (e.g., older data 3345 * file), punt and fallback to the original behavior -- 3346 * clearing all feature bits and setting buildid. 3347 */ 3348 mem_bswap_64(&header->adds_features, 3349 BITS_TO_U64(HEADER_FEAT_BITS)); 3350 3351 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3352 /* unswap as u64 */ 3353 mem_bswap_64(&header->adds_features, 3354 BITS_TO_U64(HEADER_FEAT_BITS)); 3355 3356 /* unswap as u32 */ 3357 mem_bswap_32(&header->adds_features, 3358 BITS_TO_U32(HEADER_FEAT_BITS)); 3359 } 3360 3361 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3362 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3363 set_bit(HEADER_BUILD_ID, header->adds_features); 3364 } 3365 } 3366 3367 memcpy(&ph->adds_features, &header->adds_features, 3368 sizeof(ph->adds_features)); 3369 3370 ph->data_offset = header->data.offset; 3371 ph->data_size = header->data.size; 3372 ph->feat_offset = header->data.offset + header->data.size; 3373 return 0; 3374 } 3375 3376 static int perf_file_section__process(struct perf_file_section *section, 3377 struct perf_header *ph, 3378 int feat, int fd, void *data) 3379 { 3380 struct feat_fd fdd = { 3381 .fd = fd, 3382 .ph = ph, 3383 .size = section->size, 3384 .offset = section->offset, 3385 }; 3386 3387 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3388 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3389 "%d, continuing...\n", section->offset, feat); 3390 return 0; 3391 } 3392 3393 if (feat >= HEADER_LAST_FEATURE) { 3394 pr_debug("unknown feature %d, continuing...\n", feat); 3395 return 0; 3396 } 3397 3398 if (!feat_ops[feat].process) 3399 return 0; 3400 3401 return feat_ops[feat].process(&fdd, data); 3402 } 3403 3404 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, 3405 struct perf_header *ph, int fd, 3406 bool repipe) 3407 { 3408 struct feat_fd ff = { 3409 .fd = STDOUT_FILENO, 3410 .ph = ph, 3411 }; 3412 ssize_t ret; 3413 3414 ret = readn(fd, header, sizeof(*header)); 3415 if (ret <= 0) 3416 return -1; 3417 3418 if (check_magic_endian(header->magic, header->size, true, ph) < 0) { 3419 pr_debug("endian/magic failed\n"); 3420 return -1; 3421 } 3422 3423 if (ph->needs_swap) 3424 header->size = bswap_64(header->size); 3425 3426 if (repipe && do_write(&ff, header, sizeof(*header)) < 0) 3427 return -1; 3428 3429 return 0; 3430 } 3431 3432 static int perf_header__read_pipe(struct perf_session *session) 3433 { 3434 struct perf_header *header = &session->header; 3435 struct perf_pipe_file_header f_header; 3436 3437 if (perf_file_header__read_pipe(&f_header, header, 3438 perf_data__fd(session->data), 3439 session->repipe) < 0) { 3440 pr_debug("incompatible file format\n"); 3441 return -EINVAL; 3442 } 3443 3444 return 0; 3445 } 3446 3447 static int read_attr(int fd, struct perf_header *ph, 3448 struct perf_file_attr *f_attr) 3449 { 3450 struct perf_event_attr *attr = &f_attr->attr; 3451 size_t sz, left; 3452 size_t our_sz = sizeof(f_attr->attr); 3453 ssize_t ret; 3454 3455 memset(f_attr, 0, sizeof(*f_attr)); 3456 3457 /* read minimal guaranteed structure */ 3458 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); 3459 if (ret <= 0) { 3460 pr_debug("cannot read %d bytes of header attr\n", 3461 PERF_ATTR_SIZE_VER0); 3462 return -1; 3463 } 3464 3465 /* on file perf_event_attr size */ 3466 sz = attr->size; 3467 3468 if (ph->needs_swap) 3469 sz = bswap_32(sz); 3470 3471 if (sz == 0) { 3472 /* assume ABI0 */ 3473 sz = PERF_ATTR_SIZE_VER0; 3474 } else if (sz > our_sz) { 3475 pr_debug("file uses a more recent and unsupported ABI" 3476 " (%zu bytes extra)\n", sz - our_sz); 3477 return -1; 3478 } 3479 /* what we have not yet read and that we know about */ 3480 left = sz - PERF_ATTR_SIZE_VER0; 3481 if (left) { 3482 void *ptr = attr; 3483 ptr += PERF_ATTR_SIZE_VER0; 3484 3485 ret = readn(fd, ptr, left); 3486 } 3487 /* read perf_file_section, ids are read in caller */ 3488 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); 3489 3490 return ret <= 0 ? -1 : 0; 3491 } 3492 3493 static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel, 3494 struct tep_handle *pevent) 3495 { 3496 struct tep_event *event; 3497 char bf[128]; 3498 3499 /* already prepared */ 3500 if (evsel->tp_format) 3501 return 0; 3502 3503 if (pevent == NULL) { 3504 pr_debug("broken or missing trace data\n"); 3505 return -1; 3506 } 3507 3508 event = tep_find_event(pevent, evsel->core.attr.config); 3509 if (event == NULL) { 3510 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config); 3511 return -1; 3512 } 3513 3514 if (!evsel->name) { 3515 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); 3516 evsel->name = strdup(bf); 3517 if (evsel->name == NULL) 3518 return -1; 3519 } 3520 3521 evsel->tp_format = event; 3522 return 0; 3523 } 3524 3525 static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist, 3526 struct tep_handle *pevent) 3527 { 3528 struct evsel *pos; 3529 3530 evlist__for_each_entry(evlist, pos) { 3531 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT && 3532 perf_evsel__prepare_tracepoint_event(pos, pevent)) 3533 return -1; 3534 } 3535 3536 return 0; 3537 } 3538 3539 int perf_session__read_header(struct perf_session *session) 3540 { 3541 struct perf_data *data = session->data; 3542 struct perf_header *header = &session->header; 3543 struct perf_file_header f_header; 3544 struct perf_file_attr f_attr; 3545 u64 f_id; 3546 int nr_attrs, nr_ids, i, j; 3547 int fd = perf_data__fd(data); 3548 3549 session->evlist = evlist__new(); 3550 if (session->evlist == NULL) 3551 return -ENOMEM; 3552 3553 session->evlist->env = &header->env; 3554 session->machines.host.env = &header->env; 3555 if (perf_data__is_pipe(data)) 3556 return perf_header__read_pipe(session); 3557 3558 if (perf_file_header__read(&f_header, header, fd) < 0) 3559 return -EINVAL; 3560 3561 /* 3562 * Sanity check that perf.data was written cleanly; data size is 3563 * initialized to 0 and updated only if the on_exit function is run. 3564 * If data size is still 0 then the file contains only partial 3565 * information. Just warn user and process it as much as it can. 3566 */ 3567 if (f_header.data.size == 0) { 3568 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" 3569 "Was the 'perf record' command properly terminated?\n", 3570 data->file.path); 3571 } 3572 3573 if (f_header.attr_size == 0) { 3574 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n" 3575 "Was the 'perf record' command properly terminated?\n", 3576 data->file.path); 3577 return -EINVAL; 3578 } 3579 3580 nr_attrs = f_header.attrs.size / f_header.attr_size; 3581 lseek(fd, f_header.attrs.offset, SEEK_SET); 3582 3583 for (i = 0; i < nr_attrs; i++) { 3584 struct evsel *evsel; 3585 off_t tmp; 3586 3587 if (read_attr(fd, header, &f_attr) < 0) 3588 goto out_errno; 3589 3590 if (header->needs_swap) { 3591 f_attr.ids.size = bswap_64(f_attr.ids.size); 3592 f_attr.ids.offset = bswap_64(f_attr.ids.offset); 3593 perf_event__attr_swap(&f_attr.attr); 3594 } 3595 3596 tmp = lseek(fd, 0, SEEK_CUR); 3597 evsel = evsel__new(&f_attr.attr); 3598 3599 if (evsel == NULL) 3600 goto out_delete_evlist; 3601 3602 evsel->needs_swap = header->needs_swap; 3603 /* 3604 * Do it before so that if perf_evsel__alloc_id fails, this 3605 * entry gets purged too at evlist__delete(). 3606 */ 3607 evlist__add(session->evlist, evsel); 3608 3609 nr_ids = f_attr.ids.size / sizeof(u64); 3610 /* 3611 * We don't have the cpu and thread maps on the header, so 3612 * for allocating the perf_sample_id table we fake 1 cpu and 3613 * hattr->ids threads. 3614 */ 3615 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids)) 3616 goto out_delete_evlist; 3617 3618 lseek(fd, f_attr.ids.offset, SEEK_SET); 3619 3620 for (j = 0; j < nr_ids; j++) { 3621 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) 3622 goto out_errno; 3623 3624 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id); 3625 } 3626 3627 lseek(fd, tmp, SEEK_SET); 3628 } 3629 3630 perf_header__process_sections(header, fd, &session->tevent, 3631 perf_file_section__process); 3632 3633 if (perf_evlist__prepare_tracepoint_events(session->evlist, 3634 session->tevent.pevent)) 3635 goto out_delete_evlist; 3636 3637 return 0; 3638 out_errno: 3639 return -errno; 3640 3641 out_delete_evlist: 3642 evlist__delete(session->evlist); 3643 session->evlist = NULL; 3644 return -ENOMEM; 3645 } 3646 3647 int perf_event__process_feature(struct perf_session *session, 3648 union perf_event *event) 3649 { 3650 struct perf_tool *tool = session->tool; 3651 struct feat_fd ff = { .fd = 0 }; 3652 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event; 3653 int type = fe->header.type; 3654 u64 feat = fe->feat_id; 3655 3656 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { 3657 pr_warning("invalid record type %d in pipe-mode\n", type); 3658 return 0; 3659 } 3660 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { 3661 pr_warning("invalid record type %d in pipe-mode\n", type); 3662 return -1; 3663 } 3664 3665 if (!feat_ops[feat].process) 3666 return 0; 3667 3668 ff.buf = (void *)fe->data; 3669 ff.size = event->header.size - sizeof(*fe); 3670 ff.ph = &session->header; 3671 3672 if (feat_ops[feat].process(&ff, NULL)) 3673 return -1; 3674 3675 if (!feat_ops[feat].print || !tool->show_feat_hdr) 3676 return 0; 3677 3678 if (!feat_ops[feat].full_only || 3679 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { 3680 feat_ops[feat].print(&ff, stdout); 3681 } else { 3682 fprintf(stdout, "# %s info available, use -I to display\n", 3683 feat_ops[feat].name); 3684 } 3685 3686 return 0; 3687 } 3688 3689 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) 3690 { 3691 struct perf_record_event_update *ev = &event->event_update; 3692 struct perf_record_event_update_scale *ev_scale; 3693 struct perf_record_event_update_cpus *ev_cpus; 3694 struct perf_cpu_map *map; 3695 size_t ret; 3696 3697 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id); 3698 3699 switch (ev->type) { 3700 case PERF_EVENT_UPDATE__SCALE: 3701 ev_scale = (struct perf_record_event_update_scale *)ev->data; 3702 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale); 3703 break; 3704 case PERF_EVENT_UPDATE__UNIT: 3705 ret += fprintf(fp, "... unit: %s\n", ev->data); 3706 break; 3707 case PERF_EVENT_UPDATE__NAME: 3708 ret += fprintf(fp, "... name: %s\n", ev->data); 3709 break; 3710 case PERF_EVENT_UPDATE__CPUS: 3711 ev_cpus = (struct perf_record_event_update_cpus *)ev->data; 3712 ret += fprintf(fp, "... "); 3713 3714 map = cpu_map__new_data(&ev_cpus->cpus); 3715 if (map) 3716 ret += cpu_map__fprintf(map, fp); 3717 else 3718 ret += fprintf(fp, "failed to get cpus\n"); 3719 break; 3720 default: 3721 ret += fprintf(fp, "... unknown type\n"); 3722 break; 3723 } 3724 3725 return ret; 3726 } 3727 3728 int perf_event__process_attr(struct perf_tool *tool __maybe_unused, 3729 union perf_event *event, 3730 struct evlist **pevlist) 3731 { 3732 u32 i, ids, n_ids; 3733 struct evsel *evsel; 3734 struct evlist *evlist = *pevlist; 3735 3736 if (evlist == NULL) { 3737 *pevlist = evlist = evlist__new(); 3738 if (evlist == NULL) 3739 return -ENOMEM; 3740 } 3741 3742 evsel = evsel__new(&event->attr.attr); 3743 if (evsel == NULL) 3744 return -ENOMEM; 3745 3746 evlist__add(evlist, evsel); 3747 3748 ids = event->header.size; 3749 ids -= (void *)&event->attr.id - (void *)event; 3750 n_ids = ids / sizeof(u64); 3751 /* 3752 * We don't have the cpu and thread maps on the header, so 3753 * for allocating the perf_sample_id table we fake 1 cpu and 3754 * hattr->ids threads. 3755 */ 3756 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids)) 3757 return -ENOMEM; 3758 3759 for (i = 0; i < n_ids; i++) { 3760 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]); 3761 } 3762 3763 return 0; 3764 } 3765 3766 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused, 3767 union perf_event *event, 3768 struct evlist **pevlist) 3769 { 3770 struct perf_record_event_update *ev = &event->event_update; 3771 struct perf_record_event_update_scale *ev_scale; 3772 struct perf_record_event_update_cpus *ev_cpus; 3773 struct evlist *evlist; 3774 struct evsel *evsel; 3775 struct perf_cpu_map *map; 3776 3777 if (!pevlist || *pevlist == NULL) 3778 return -EINVAL; 3779 3780 evlist = *pevlist; 3781 3782 evsel = perf_evlist__id2evsel(evlist, ev->id); 3783 if (evsel == NULL) 3784 return -EINVAL; 3785 3786 switch (ev->type) { 3787 case PERF_EVENT_UPDATE__UNIT: 3788 evsel->unit = strdup(ev->data); 3789 break; 3790 case PERF_EVENT_UPDATE__NAME: 3791 evsel->name = strdup(ev->data); 3792 break; 3793 case PERF_EVENT_UPDATE__SCALE: 3794 ev_scale = (struct perf_record_event_update_scale *)ev->data; 3795 evsel->scale = ev_scale->scale; 3796 break; 3797 case PERF_EVENT_UPDATE__CPUS: 3798 ev_cpus = (struct perf_record_event_update_cpus *)ev->data; 3799 3800 map = cpu_map__new_data(&ev_cpus->cpus); 3801 if (map) 3802 evsel->core.own_cpus = map; 3803 else 3804 pr_err("failed to get event_update cpus\n"); 3805 default: 3806 break; 3807 } 3808 3809 return 0; 3810 } 3811 3812 int perf_event__process_tracing_data(struct perf_session *session, 3813 union perf_event *event) 3814 { 3815 ssize_t size_read, padding, size = event->tracing_data.size; 3816 int fd = perf_data__fd(session->data); 3817 off_t offset = lseek(fd, 0, SEEK_CUR); 3818 char buf[BUFSIZ]; 3819 3820 /* setup for reading amidst mmap */ 3821 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data), 3822 SEEK_SET); 3823 3824 size_read = trace_report(fd, &session->tevent, 3825 session->repipe); 3826 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; 3827 3828 if (readn(fd, buf, padding) < 0) { 3829 pr_err("%s: reading input file", __func__); 3830 return -1; 3831 } 3832 if (session->repipe) { 3833 int retw = write(STDOUT_FILENO, buf, padding); 3834 if (retw <= 0 || retw != padding) { 3835 pr_err("%s: repiping tracing data padding", __func__); 3836 return -1; 3837 } 3838 } 3839 3840 if (size_read + padding != size) { 3841 pr_err("%s: tracing data size mismatch", __func__); 3842 return -1; 3843 } 3844 3845 perf_evlist__prepare_tracepoint_events(session->evlist, 3846 session->tevent.pevent); 3847 3848 return size_read + padding; 3849 } 3850 3851 int perf_event__process_build_id(struct perf_session *session, 3852 union perf_event *event) 3853 { 3854 __event_process_build_id(&event->build_id, 3855 event->build_id.filename, 3856 session); 3857 return 0; 3858 } 3859