xref: /openbmc/linux/tools/perf/util/header.c (revision 9fb29c73)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "util.h"
5 #include "string2.h"
6 #include <sys/param.h>
7 #include <sys/types.h>
8 #include <byteswap.h>
9 #include <unistd.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/stringify.h>
17 #include <sys/stat.h>
18 #include <sys/utsname.h>
19 #include <linux/time64.h>
20 #include <dirent.h>
21 
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "header.h"
25 #include "memswap.h"
26 #include "../perf.h"
27 #include "trace-event.h"
28 #include "session.h"
29 #include "symbol.h"
30 #include "debug.h"
31 #include "cpumap.h"
32 #include "pmu.h"
33 #include "vdso.h"
34 #include "strbuf.h"
35 #include "build-id.h"
36 #include "data.h"
37 #include <api/fs/fs.h>
38 #include "asm/bug.h"
39 #include "tool.h"
40 #include "time-utils.h"
41 #include "units.h"
42 
43 #include "sane_ctype.h"
44 
45 /*
46  * magic2 = "PERFILE2"
47  * must be a numerical value to let the endianness
48  * determine the memory layout. That way we are able
49  * to detect endianness when reading the perf.data file
50  * back.
51  *
52  * we check for legacy (PERFFILE) format.
53  */
54 static const char *__perf_magic1 = "PERFFILE";
55 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
56 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
57 
58 #define PERF_MAGIC	__perf_magic2
59 
60 const char perf_version_string[] = PERF_VERSION;
61 
62 struct perf_file_attr {
63 	struct perf_event_attr	attr;
64 	struct perf_file_section	ids;
65 };
66 
67 struct feat_fd {
68 	struct perf_header	*ph;
69 	int			fd;
70 	void			*buf;	/* Either buf != NULL or fd >= 0 */
71 	ssize_t			offset;
72 	size_t			size;
73 	struct perf_evsel	*events;
74 };
75 
76 void perf_header__set_feat(struct perf_header *header, int feat)
77 {
78 	set_bit(feat, header->adds_features);
79 }
80 
81 void perf_header__clear_feat(struct perf_header *header, int feat)
82 {
83 	clear_bit(feat, header->adds_features);
84 }
85 
86 bool perf_header__has_feat(const struct perf_header *header, int feat)
87 {
88 	return test_bit(feat, header->adds_features);
89 }
90 
91 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
92 {
93 	ssize_t ret = writen(ff->fd, buf, size);
94 
95 	if (ret != (ssize_t)size)
96 		return ret < 0 ? (int)ret : -1;
97 	return 0;
98 }
99 
100 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
101 {
102 	/* struct perf_event_header::size is u16 */
103 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
104 	size_t new_size = ff->size;
105 	void *addr;
106 
107 	if (size + ff->offset > max_size)
108 		return -E2BIG;
109 
110 	while (size > (new_size - ff->offset))
111 		new_size <<= 1;
112 	new_size = min(max_size, new_size);
113 
114 	if (ff->size < new_size) {
115 		addr = realloc(ff->buf, new_size);
116 		if (!addr)
117 			return -ENOMEM;
118 		ff->buf = addr;
119 		ff->size = new_size;
120 	}
121 
122 	memcpy(ff->buf + ff->offset, buf, size);
123 	ff->offset += size;
124 
125 	return 0;
126 }
127 
128 /* Return: 0 if succeded, -ERR if failed. */
129 int do_write(struct feat_fd *ff, const void *buf, size_t size)
130 {
131 	if (!ff->buf)
132 		return __do_write_fd(ff, buf, size);
133 	return __do_write_buf(ff, buf, size);
134 }
135 
136 /* Return: 0 if succeded, -ERR if failed. */
137 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
138 {
139 	u64 *p = (u64 *) set;
140 	int i, ret;
141 
142 	ret = do_write(ff, &size, sizeof(size));
143 	if (ret < 0)
144 		return ret;
145 
146 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
147 		ret = do_write(ff, p + i, sizeof(*p));
148 		if (ret < 0)
149 			return ret;
150 	}
151 
152 	return 0;
153 }
154 
155 /* Return: 0 if succeded, -ERR if failed. */
156 int write_padded(struct feat_fd *ff, const void *bf,
157 		 size_t count, size_t count_aligned)
158 {
159 	static const char zero_buf[NAME_ALIGN];
160 	int err = do_write(ff, bf, count);
161 
162 	if (!err)
163 		err = do_write(ff, zero_buf, count_aligned - count);
164 
165 	return err;
166 }
167 
168 #define string_size(str)						\
169 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
170 
171 /* Return: 0 if succeded, -ERR if failed. */
172 static int do_write_string(struct feat_fd *ff, const char *str)
173 {
174 	u32 len, olen;
175 	int ret;
176 
177 	olen = strlen(str) + 1;
178 	len = PERF_ALIGN(olen, NAME_ALIGN);
179 
180 	/* write len, incl. \0 */
181 	ret = do_write(ff, &len, sizeof(len));
182 	if (ret < 0)
183 		return ret;
184 
185 	return write_padded(ff, str, olen, len);
186 }
187 
188 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
189 {
190 	ssize_t ret = readn(ff->fd, addr, size);
191 
192 	if (ret != size)
193 		return ret < 0 ? (int)ret : -1;
194 	return 0;
195 }
196 
197 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
198 {
199 	if (size > (ssize_t)ff->size - ff->offset)
200 		return -1;
201 
202 	memcpy(addr, ff->buf + ff->offset, size);
203 	ff->offset += size;
204 
205 	return 0;
206 
207 }
208 
209 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
210 {
211 	if (!ff->buf)
212 		return __do_read_fd(ff, addr, size);
213 	return __do_read_buf(ff, addr, size);
214 }
215 
216 static int do_read_u32(struct feat_fd *ff, u32 *addr)
217 {
218 	int ret;
219 
220 	ret = __do_read(ff, addr, sizeof(*addr));
221 	if (ret)
222 		return ret;
223 
224 	if (ff->ph->needs_swap)
225 		*addr = bswap_32(*addr);
226 	return 0;
227 }
228 
229 static int do_read_u64(struct feat_fd *ff, u64 *addr)
230 {
231 	int ret;
232 
233 	ret = __do_read(ff, addr, sizeof(*addr));
234 	if (ret)
235 		return ret;
236 
237 	if (ff->ph->needs_swap)
238 		*addr = bswap_64(*addr);
239 	return 0;
240 }
241 
242 static char *do_read_string(struct feat_fd *ff)
243 {
244 	u32 len;
245 	char *buf;
246 
247 	if (do_read_u32(ff, &len))
248 		return NULL;
249 
250 	buf = malloc(len);
251 	if (!buf)
252 		return NULL;
253 
254 	if (!__do_read(ff, buf, len)) {
255 		/*
256 		 * strings are padded by zeroes
257 		 * thus the actual strlen of buf
258 		 * may be less than len
259 		 */
260 		return buf;
261 	}
262 
263 	free(buf);
264 	return NULL;
265 }
266 
267 /* Return: 0 if succeded, -ERR if failed. */
268 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
269 {
270 	unsigned long *set;
271 	u64 size, *p;
272 	int i, ret;
273 
274 	ret = do_read_u64(ff, &size);
275 	if (ret)
276 		return ret;
277 
278 	set = bitmap_alloc(size);
279 	if (!set)
280 		return -ENOMEM;
281 
282 	p = (u64 *) set;
283 
284 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
285 		ret = do_read_u64(ff, p + i);
286 		if (ret < 0) {
287 			free(set);
288 			return ret;
289 		}
290 	}
291 
292 	*pset  = set;
293 	*psize = size;
294 	return 0;
295 }
296 
297 static int write_tracing_data(struct feat_fd *ff,
298 			      struct perf_evlist *evlist)
299 {
300 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
301 		return -1;
302 
303 	return read_tracing_data(ff->fd, &evlist->entries);
304 }
305 
306 static int write_build_id(struct feat_fd *ff,
307 			  struct perf_evlist *evlist __maybe_unused)
308 {
309 	struct perf_session *session;
310 	int err;
311 
312 	session = container_of(ff->ph, struct perf_session, header);
313 
314 	if (!perf_session__read_build_ids(session, true))
315 		return -1;
316 
317 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
318 		return -1;
319 
320 	err = perf_session__write_buildid_table(session, ff);
321 	if (err < 0) {
322 		pr_debug("failed to write buildid table\n");
323 		return err;
324 	}
325 	perf_session__cache_build_ids(session);
326 
327 	return 0;
328 }
329 
330 static int write_hostname(struct feat_fd *ff,
331 			  struct perf_evlist *evlist __maybe_unused)
332 {
333 	struct utsname uts;
334 	int ret;
335 
336 	ret = uname(&uts);
337 	if (ret < 0)
338 		return -1;
339 
340 	return do_write_string(ff, uts.nodename);
341 }
342 
343 static int write_osrelease(struct feat_fd *ff,
344 			   struct perf_evlist *evlist __maybe_unused)
345 {
346 	struct utsname uts;
347 	int ret;
348 
349 	ret = uname(&uts);
350 	if (ret < 0)
351 		return -1;
352 
353 	return do_write_string(ff, uts.release);
354 }
355 
356 static int write_arch(struct feat_fd *ff,
357 		      struct perf_evlist *evlist __maybe_unused)
358 {
359 	struct utsname uts;
360 	int ret;
361 
362 	ret = uname(&uts);
363 	if (ret < 0)
364 		return -1;
365 
366 	return do_write_string(ff, uts.machine);
367 }
368 
369 static int write_version(struct feat_fd *ff,
370 			 struct perf_evlist *evlist __maybe_unused)
371 {
372 	return do_write_string(ff, perf_version_string);
373 }
374 
375 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
376 {
377 	FILE *file;
378 	char *buf = NULL;
379 	char *s, *p;
380 	const char *search = cpuinfo_proc;
381 	size_t len = 0;
382 	int ret = -1;
383 
384 	if (!search)
385 		return -1;
386 
387 	file = fopen("/proc/cpuinfo", "r");
388 	if (!file)
389 		return -1;
390 
391 	while (getline(&buf, &len, file) > 0) {
392 		ret = strncmp(buf, search, strlen(search));
393 		if (!ret)
394 			break;
395 	}
396 
397 	if (ret) {
398 		ret = -1;
399 		goto done;
400 	}
401 
402 	s = buf;
403 
404 	p = strchr(buf, ':');
405 	if (p && *(p+1) == ' ' && *(p+2))
406 		s = p + 2;
407 	p = strchr(s, '\n');
408 	if (p)
409 		*p = '\0';
410 
411 	/* squash extra space characters (branding string) */
412 	p = s;
413 	while (*p) {
414 		if (isspace(*p)) {
415 			char *r = p + 1;
416 			char *q = r;
417 			*p = ' ';
418 			while (*q && isspace(*q))
419 				q++;
420 			if (q != (p+1))
421 				while ((*r++ = *q++));
422 		}
423 		p++;
424 	}
425 	ret = do_write_string(ff, s);
426 done:
427 	free(buf);
428 	fclose(file);
429 	return ret;
430 }
431 
432 static int write_cpudesc(struct feat_fd *ff,
433 		       struct perf_evlist *evlist __maybe_unused)
434 {
435 	const char *cpuinfo_procs[] = CPUINFO_PROC;
436 	unsigned int i;
437 
438 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
439 		int ret;
440 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
441 		if (ret >= 0)
442 			return ret;
443 	}
444 	return -1;
445 }
446 
447 
448 static int write_nrcpus(struct feat_fd *ff,
449 			struct perf_evlist *evlist __maybe_unused)
450 {
451 	long nr;
452 	u32 nrc, nra;
453 	int ret;
454 
455 	nrc = cpu__max_present_cpu();
456 
457 	nr = sysconf(_SC_NPROCESSORS_ONLN);
458 	if (nr < 0)
459 		return -1;
460 
461 	nra = (u32)(nr & UINT_MAX);
462 
463 	ret = do_write(ff, &nrc, sizeof(nrc));
464 	if (ret < 0)
465 		return ret;
466 
467 	return do_write(ff, &nra, sizeof(nra));
468 }
469 
470 static int write_event_desc(struct feat_fd *ff,
471 			    struct perf_evlist *evlist)
472 {
473 	struct perf_evsel *evsel;
474 	u32 nre, nri, sz;
475 	int ret;
476 
477 	nre = evlist->nr_entries;
478 
479 	/*
480 	 * write number of events
481 	 */
482 	ret = do_write(ff, &nre, sizeof(nre));
483 	if (ret < 0)
484 		return ret;
485 
486 	/*
487 	 * size of perf_event_attr struct
488 	 */
489 	sz = (u32)sizeof(evsel->attr);
490 	ret = do_write(ff, &sz, sizeof(sz));
491 	if (ret < 0)
492 		return ret;
493 
494 	evlist__for_each_entry(evlist, evsel) {
495 		ret = do_write(ff, &evsel->attr, sz);
496 		if (ret < 0)
497 			return ret;
498 		/*
499 		 * write number of unique id per event
500 		 * there is one id per instance of an event
501 		 *
502 		 * copy into an nri to be independent of the
503 		 * type of ids,
504 		 */
505 		nri = evsel->ids;
506 		ret = do_write(ff, &nri, sizeof(nri));
507 		if (ret < 0)
508 			return ret;
509 
510 		/*
511 		 * write event string as passed on cmdline
512 		 */
513 		ret = do_write_string(ff, perf_evsel__name(evsel));
514 		if (ret < 0)
515 			return ret;
516 		/*
517 		 * write unique ids for this event
518 		 */
519 		ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
520 		if (ret < 0)
521 			return ret;
522 	}
523 	return 0;
524 }
525 
526 static int write_cmdline(struct feat_fd *ff,
527 			 struct perf_evlist *evlist __maybe_unused)
528 {
529 	char buf[MAXPATHLEN];
530 	u32 n;
531 	int i, ret;
532 
533 	/* actual path to perf binary */
534 	ret = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
535 	if (ret <= 0)
536 		return -1;
537 
538 	/* readlink() does not add null termination */
539 	buf[ret] = '\0';
540 
541 	/* account for binary path */
542 	n = perf_env.nr_cmdline + 1;
543 
544 	ret = do_write(ff, &n, sizeof(n));
545 	if (ret < 0)
546 		return ret;
547 
548 	ret = do_write_string(ff, buf);
549 	if (ret < 0)
550 		return ret;
551 
552 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
553 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
554 		if (ret < 0)
555 			return ret;
556 	}
557 	return 0;
558 }
559 
560 #define CORE_SIB_FMT \
561 	"/sys/devices/system/cpu/cpu%d/topology/core_siblings_list"
562 #define THRD_SIB_FMT \
563 	"/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list"
564 
565 struct cpu_topo {
566 	u32 cpu_nr;
567 	u32 core_sib;
568 	u32 thread_sib;
569 	char **core_siblings;
570 	char **thread_siblings;
571 };
572 
573 static int build_cpu_topo(struct cpu_topo *tp, int cpu)
574 {
575 	FILE *fp;
576 	char filename[MAXPATHLEN];
577 	char *buf = NULL, *p;
578 	size_t len = 0;
579 	ssize_t sret;
580 	u32 i = 0;
581 	int ret = -1;
582 
583 	sprintf(filename, CORE_SIB_FMT, cpu);
584 	fp = fopen(filename, "r");
585 	if (!fp)
586 		goto try_threads;
587 
588 	sret = getline(&buf, &len, fp);
589 	fclose(fp);
590 	if (sret <= 0)
591 		goto try_threads;
592 
593 	p = strchr(buf, '\n');
594 	if (p)
595 		*p = '\0';
596 
597 	for (i = 0; i < tp->core_sib; i++) {
598 		if (!strcmp(buf, tp->core_siblings[i]))
599 			break;
600 	}
601 	if (i == tp->core_sib) {
602 		tp->core_siblings[i] = buf;
603 		tp->core_sib++;
604 		buf = NULL;
605 		len = 0;
606 	}
607 	ret = 0;
608 
609 try_threads:
610 	sprintf(filename, THRD_SIB_FMT, cpu);
611 	fp = fopen(filename, "r");
612 	if (!fp)
613 		goto done;
614 
615 	if (getline(&buf, &len, fp) <= 0)
616 		goto done;
617 
618 	p = strchr(buf, '\n');
619 	if (p)
620 		*p = '\0';
621 
622 	for (i = 0; i < tp->thread_sib; i++) {
623 		if (!strcmp(buf, tp->thread_siblings[i]))
624 			break;
625 	}
626 	if (i == tp->thread_sib) {
627 		tp->thread_siblings[i] = buf;
628 		tp->thread_sib++;
629 		buf = NULL;
630 	}
631 	ret = 0;
632 done:
633 	if(fp)
634 		fclose(fp);
635 	free(buf);
636 	return ret;
637 }
638 
639 static void free_cpu_topo(struct cpu_topo *tp)
640 {
641 	u32 i;
642 
643 	if (!tp)
644 		return;
645 
646 	for (i = 0 ; i < tp->core_sib; i++)
647 		zfree(&tp->core_siblings[i]);
648 
649 	for (i = 0 ; i < tp->thread_sib; i++)
650 		zfree(&tp->thread_siblings[i]);
651 
652 	free(tp);
653 }
654 
655 static struct cpu_topo *build_cpu_topology(void)
656 {
657 	struct cpu_topo *tp = NULL;
658 	void *addr;
659 	u32 nr, i;
660 	size_t sz;
661 	long ncpus;
662 	int ret = -1;
663 	struct cpu_map *map;
664 
665 	ncpus = cpu__max_present_cpu();
666 
667 	/* build online CPU map */
668 	map = cpu_map__new(NULL);
669 	if (map == NULL) {
670 		pr_debug("failed to get system cpumap\n");
671 		return NULL;
672 	}
673 
674 	nr = (u32)(ncpus & UINT_MAX);
675 
676 	sz = nr * sizeof(char *);
677 	addr = calloc(1, sizeof(*tp) + 2 * sz);
678 	if (!addr)
679 		goto out_free;
680 
681 	tp = addr;
682 	tp->cpu_nr = nr;
683 	addr += sizeof(*tp);
684 	tp->core_siblings = addr;
685 	addr += sz;
686 	tp->thread_siblings = addr;
687 
688 	for (i = 0; i < nr; i++) {
689 		if (!cpu_map__has(map, i))
690 			continue;
691 
692 		ret = build_cpu_topo(tp, i);
693 		if (ret < 0)
694 			break;
695 	}
696 
697 out_free:
698 	cpu_map__put(map);
699 	if (ret) {
700 		free_cpu_topo(tp);
701 		tp = NULL;
702 	}
703 	return tp;
704 }
705 
706 static int write_cpu_topology(struct feat_fd *ff,
707 			      struct perf_evlist *evlist __maybe_unused)
708 {
709 	struct cpu_topo *tp;
710 	u32 i;
711 	int ret, j;
712 
713 	tp = build_cpu_topology();
714 	if (!tp)
715 		return -1;
716 
717 	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
718 	if (ret < 0)
719 		goto done;
720 
721 	for (i = 0; i < tp->core_sib; i++) {
722 		ret = do_write_string(ff, tp->core_siblings[i]);
723 		if (ret < 0)
724 			goto done;
725 	}
726 	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
727 	if (ret < 0)
728 		goto done;
729 
730 	for (i = 0; i < tp->thread_sib; i++) {
731 		ret = do_write_string(ff, tp->thread_siblings[i]);
732 		if (ret < 0)
733 			break;
734 	}
735 
736 	ret = perf_env__read_cpu_topology_map(&perf_env);
737 	if (ret < 0)
738 		goto done;
739 
740 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
741 		ret = do_write(ff, &perf_env.cpu[j].core_id,
742 			       sizeof(perf_env.cpu[j].core_id));
743 		if (ret < 0)
744 			return ret;
745 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
746 			       sizeof(perf_env.cpu[j].socket_id));
747 		if (ret < 0)
748 			return ret;
749 	}
750 done:
751 	free_cpu_topo(tp);
752 	return ret;
753 }
754 
755 
756 
757 static int write_total_mem(struct feat_fd *ff,
758 			   struct perf_evlist *evlist __maybe_unused)
759 {
760 	char *buf = NULL;
761 	FILE *fp;
762 	size_t len = 0;
763 	int ret = -1, n;
764 	uint64_t mem;
765 
766 	fp = fopen("/proc/meminfo", "r");
767 	if (!fp)
768 		return -1;
769 
770 	while (getline(&buf, &len, fp) > 0) {
771 		ret = strncmp(buf, "MemTotal:", 9);
772 		if (!ret)
773 			break;
774 	}
775 	if (!ret) {
776 		n = sscanf(buf, "%*s %"PRIu64, &mem);
777 		if (n == 1)
778 			ret = do_write(ff, &mem, sizeof(mem));
779 	} else
780 		ret = -1;
781 	free(buf);
782 	fclose(fp);
783 	return ret;
784 }
785 
786 static int write_topo_node(struct feat_fd *ff, int node)
787 {
788 	char str[MAXPATHLEN];
789 	char field[32];
790 	char *buf = NULL, *p;
791 	size_t len = 0;
792 	FILE *fp;
793 	u64 mem_total, mem_free, mem;
794 	int ret = -1;
795 
796 	sprintf(str, "/sys/devices/system/node/node%d/meminfo", node);
797 	fp = fopen(str, "r");
798 	if (!fp)
799 		return -1;
800 
801 	while (getline(&buf, &len, fp) > 0) {
802 		/* skip over invalid lines */
803 		if (!strchr(buf, ':'))
804 			continue;
805 		if (sscanf(buf, "%*s %*d %31s %"PRIu64, field, &mem) != 2)
806 			goto done;
807 		if (!strcmp(field, "MemTotal:"))
808 			mem_total = mem;
809 		if (!strcmp(field, "MemFree:"))
810 			mem_free = mem;
811 	}
812 
813 	fclose(fp);
814 	fp = NULL;
815 
816 	ret = do_write(ff, &mem_total, sizeof(u64));
817 	if (ret)
818 		goto done;
819 
820 	ret = do_write(ff, &mem_free, sizeof(u64));
821 	if (ret)
822 		goto done;
823 
824 	ret = -1;
825 	sprintf(str, "/sys/devices/system/node/node%d/cpulist", node);
826 
827 	fp = fopen(str, "r");
828 	if (!fp)
829 		goto done;
830 
831 	if (getline(&buf, &len, fp) <= 0)
832 		goto done;
833 
834 	p = strchr(buf, '\n');
835 	if (p)
836 		*p = '\0';
837 
838 	ret = do_write_string(ff, buf);
839 done:
840 	free(buf);
841 	if (fp)
842 		fclose(fp);
843 	return ret;
844 }
845 
846 static int write_numa_topology(struct feat_fd *ff,
847 			       struct perf_evlist *evlist __maybe_unused)
848 {
849 	char *buf = NULL;
850 	size_t len = 0;
851 	FILE *fp;
852 	struct cpu_map *node_map = NULL;
853 	char *c;
854 	u32 nr, i, j;
855 	int ret = -1;
856 
857 	fp = fopen("/sys/devices/system/node/online", "r");
858 	if (!fp)
859 		return -1;
860 
861 	if (getline(&buf, &len, fp) <= 0)
862 		goto done;
863 
864 	c = strchr(buf, '\n');
865 	if (c)
866 		*c = '\0';
867 
868 	node_map = cpu_map__new(buf);
869 	if (!node_map)
870 		goto done;
871 
872 	nr = (u32)node_map->nr;
873 
874 	ret = do_write(ff, &nr, sizeof(nr));
875 	if (ret < 0)
876 		goto done;
877 
878 	for (i = 0; i < nr; i++) {
879 		j = (u32)node_map->map[i];
880 		ret = do_write(ff, &j, sizeof(j));
881 		if (ret < 0)
882 			break;
883 
884 		ret = write_topo_node(ff, i);
885 		if (ret < 0)
886 			break;
887 	}
888 done:
889 	free(buf);
890 	fclose(fp);
891 	cpu_map__put(node_map);
892 	return ret;
893 }
894 
895 /*
896  * File format:
897  *
898  * struct pmu_mappings {
899  *	u32	pmu_num;
900  *	struct pmu_map {
901  *		u32	type;
902  *		char	name[];
903  *	}[pmu_num];
904  * };
905  */
906 
907 static int write_pmu_mappings(struct feat_fd *ff,
908 			      struct perf_evlist *evlist __maybe_unused)
909 {
910 	struct perf_pmu *pmu = NULL;
911 	u32 pmu_num = 0;
912 	int ret;
913 
914 	/*
915 	 * Do a first pass to count number of pmu to avoid lseek so this
916 	 * works in pipe mode as well.
917 	 */
918 	while ((pmu = perf_pmu__scan(pmu))) {
919 		if (!pmu->name)
920 			continue;
921 		pmu_num++;
922 	}
923 
924 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
925 	if (ret < 0)
926 		return ret;
927 
928 	while ((pmu = perf_pmu__scan(pmu))) {
929 		if (!pmu->name)
930 			continue;
931 
932 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
933 		if (ret < 0)
934 			return ret;
935 
936 		ret = do_write_string(ff, pmu->name);
937 		if (ret < 0)
938 			return ret;
939 	}
940 
941 	return 0;
942 }
943 
944 /*
945  * File format:
946  *
947  * struct group_descs {
948  *	u32	nr_groups;
949  *	struct group_desc {
950  *		char	name[];
951  *		u32	leader_idx;
952  *		u32	nr_members;
953  *	}[nr_groups];
954  * };
955  */
956 static int write_group_desc(struct feat_fd *ff,
957 			    struct perf_evlist *evlist)
958 {
959 	u32 nr_groups = evlist->nr_groups;
960 	struct perf_evsel *evsel;
961 	int ret;
962 
963 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
964 	if (ret < 0)
965 		return ret;
966 
967 	evlist__for_each_entry(evlist, evsel) {
968 		if (perf_evsel__is_group_leader(evsel) &&
969 		    evsel->nr_members > 1) {
970 			const char *name = evsel->group_name ?: "{anon_group}";
971 			u32 leader_idx = evsel->idx;
972 			u32 nr_members = evsel->nr_members;
973 
974 			ret = do_write_string(ff, name);
975 			if (ret < 0)
976 				return ret;
977 
978 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
979 			if (ret < 0)
980 				return ret;
981 
982 			ret = do_write(ff, &nr_members, sizeof(nr_members));
983 			if (ret < 0)
984 				return ret;
985 		}
986 	}
987 	return 0;
988 }
989 
990 /*
991  * Return the CPU id as a raw string.
992  *
993  * Each architecture should provide a more precise id string that
994  * can be use to match the architecture's "mapfile".
995  */
996 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
997 {
998 	return NULL;
999 }
1000 
1001 /* Return zero when the cpuid from the mapfile.csv matches the
1002  * cpuid string generated on this platform.
1003  * Otherwise return non-zero.
1004  */
1005 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
1006 {
1007 	regex_t re;
1008 	regmatch_t pmatch[1];
1009 	int match;
1010 
1011 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
1012 		/* Warn unable to generate match particular string. */
1013 		pr_info("Invalid regular expression %s\n", mapcpuid);
1014 		return 1;
1015 	}
1016 
1017 	match = !regexec(&re, cpuid, 1, pmatch, 0);
1018 	regfree(&re);
1019 	if (match) {
1020 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
1021 
1022 		/* Verify the entire string matched. */
1023 		if (match_len == strlen(cpuid))
1024 			return 0;
1025 	}
1026 	return 1;
1027 }
1028 
1029 /*
1030  * default get_cpuid(): nothing gets recorded
1031  * actual implementation must be in arch/$(SRCARCH)/util/header.c
1032  */
1033 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
1034 {
1035 	return -1;
1036 }
1037 
1038 static int write_cpuid(struct feat_fd *ff,
1039 		       struct perf_evlist *evlist __maybe_unused)
1040 {
1041 	char buffer[64];
1042 	int ret;
1043 
1044 	ret = get_cpuid(buffer, sizeof(buffer));
1045 	if (!ret)
1046 		goto write_it;
1047 
1048 	return -1;
1049 write_it:
1050 	return do_write_string(ff, buffer);
1051 }
1052 
1053 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
1054 			      struct perf_evlist *evlist __maybe_unused)
1055 {
1056 	return 0;
1057 }
1058 
1059 static int write_auxtrace(struct feat_fd *ff,
1060 			  struct perf_evlist *evlist __maybe_unused)
1061 {
1062 	struct perf_session *session;
1063 	int err;
1064 
1065 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
1066 		return -1;
1067 
1068 	session = container_of(ff->ph, struct perf_session, header);
1069 
1070 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
1071 	if (err < 0)
1072 		pr_err("Failed to write auxtrace index\n");
1073 	return err;
1074 }
1075 
1076 static int write_clockid(struct feat_fd *ff,
1077 			 struct perf_evlist *evlist __maybe_unused)
1078 {
1079 	return do_write(ff, &ff->ph->env.clockid_res_ns,
1080 			sizeof(ff->ph->env.clockid_res_ns));
1081 }
1082 
1083 static int cpu_cache_level__sort(const void *a, const void *b)
1084 {
1085 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1086 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1087 
1088 	return cache_a->level - cache_b->level;
1089 }
1090 
1091 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1092 {
1093 	if (a->level != b->level)
1094 		return false;
1095 
1096 	if (a->line_size != b->line_size)
1097 		return false;
1098 
1099 	if (a->sets != b->sets)
1100 		return false;
1101 
1102 	if (a->ways != b->ways)
1103 		return false;
1104 
1105 	if (strcmp(a->type, b->type))
1106 		return false;
1107 
1108 	if (strcmp(a->size, b->size))
1109 		return false;
1110 
1111 	if (strcmp(a->map, b->map))
1112 		return false;
1113 
1114 	return true;
1115 }
1116 
1117 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1118 {
1119 	char path[PATH_MAX], file[PATH_MAX];
1120 	struct stat st;
1121 	size_t len;
1122 
1123 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1124 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1125 
1126 	if (stat(file, &st))
1127 		return 1;
1128 
1129 	scnprintf(file, PATH_MAX, "%s/level", path);
1130 	if (sysfs__read_int(file, (int *) &cache->level))
1131 		return -1;
1132 
1133 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1134 	if (sysfs__read_int(file, (int *) &cache->line_size))
1135 		return -1;
1136 
1137 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1138 	if (sysfs__read_int(file, (int *) &cache->sets))
1139 		return -1;
1140 
1141 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1142 	if (sysfs__read_int(file, (int *) &cache->ways))
1143 		return -1;
1144 
1145 	scnprintf(file, PATH_MAX, "%s/type", path);
1146 	if (sysfs__read_str(file, &cache->type, &len))
1147 		return -1;
1148 
1149 	cache->type[len] = 0;
1150 	cache->type = rtrim(cache->type);
1151 
1152 	scnprintf(file, PATH_MAX, "%s/size", path);
1153 	if (sysfs__read_str(file, &cache->size, &len)) {
1154 		free(cache->type);
1155 		return -1;
1156 	}
1157 
1158 	cache->size[len] = 0;
1159 	cache->size = rtrim(cache->size);
1160 
1161 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1162 	if (sysfs__read_str(file, &cache->map, &len)) {
1163 		free(cache->map);
1164 		free(cache->type);
1165 		return -1;
1166 	}
1167 
1168 	cache->map[len] = 0;
1169 	cache->map = rtrim(cache->map);
1170 	return 0;
1171 }
1172 
1173 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1174 {
1175 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1176 }
1177 
1178 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1179 {
1180 	u32 i, cnt = 0;
1181 	long ncpus;
1182 	u32 nr, cpu;
1183 	u16 level;
1184 
1185 	ncpus = sysconf(_SC_NPROCESSORS_CONF);
1186 	if (ncpus < 0)
1187 		return -1;
1188 
1189 	nr = (u32)(ncpus & UINT_MAX);
1190 
1191 	for (cpu = 0; cpu < nr; cpu++) {
1192 		for (level = 0; level < 10; level++) {
1193 			struct cpu_cache_level c;
1194 			int err;
1195 
1196 			err = cpu_cache_level__read(&c, cpu, level);
1197 			if (err < 0)
1198 				return err;
1199 
1200 			if (err == 1)
1201 				break;
1202 
1203 			for (i = 0; i < cnt; i++) {
1204 				if (cpu_cache_level__cmp(&c, &caches[i]))
1205 					break;
1206 			}
1207 
1208 			if (i == cnt)
1209 				caches[cnt++] = c;
1210 			else
1211 				cpu_cache_level__free(&c);
1212 
1213 			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1214 				goto out;
1215 		}
1216 	}
1217  out:
1218 	*cntp = cnt;
1219 	return 0;
1220 }
1221 
1222 #define MAX_CACHES 2000
1223 
1224 static int write_cache(struct feat_fd *ff,
1225 		       struct perf_evlist *evlist __maybe_unused)
1226 {
1227 	struct cpu_cache_level caches[MAX_CACHES];
1228 	u32 cnt = 0, i, version = 1;
1229 	int ret;
1230 
1231 	ret = build_caches(caches, MAX_CACHES, &cnt);
1232 	if (ret)
1233 		goto out;
1234 
1235 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1236 
1237 	ret = do_write(ff, &version, sizeof(u32));
1238 	if (ret < 0)
1239 		goto out;
1240 
1241 	ret = do_write(ff, &cnt, sizeof(u32));
1242 	if (ret < 0)
1243 		goto out;
1244 
1245 	for (i = 0; i < cnt; i++) {
1246 		struct cpu_cache_level *c = &caches[i];
1247 
1248 		#define _W(v)					\
1249 			ret = do_write(ff, &c->v, sizeof(u32));	\
1250 			if (ret < 0)				\
1251 				goto out;
1252 
1253 		_W(level)
1254 		_W(line_size)
1255 		_W(sets)
1256 		_W(ways)
1257 		#undef _W
1258 
1259 		#define _W(v)						\
1260 			ret = do_write_string(ff, (const char *) c->v);	\
1261 			if (ret < 0)					\
1262 				goto out;
1263 
1264 		_W(type)
1265 		_W(size)
1266 		_W(map)
1267 		#undef _W
1268 	}
1269 
1270 out:
1271 	for (i = 0; i < cnt; i++)
1272 		cpu_cache_level__free(&caches[i]);
1273 	return ret;
1274 }
1275 
1276 static int write_stat(struct feat_fd *ff __maybe_unused,
1277 		      struct perf_evlist *evlist __maybe_unused)
1278 {
1279 	return 0;
1280 }
1281 
1282 static int write_sample_time(struct feat_fd *ff,
1283 			     struct perf_evlist *evlist)
1284 {
1285 	int ret;
1286 
1287 	ret = do_write(ff, &evlist->first_sample_time,
1288 		       sizeof(evlist->first_sample_time));
1289 	if (ret < 0)
1290 		return ret;
1291 
1292 	return do_write(ff, &evlist->last_sample_time,
1293 			sizeof(evlist->last_sample_time));
1294 }
1295 
1296 
1297 static int memory_node__read(struct memory_node *n, unsigned long idx)
1298 {
1299 	unsigned int phys, size = 0;
1300 	char path[PATH_MAX];
1301 	struct dirent *ent;
1302 	DIR *dir;
1303 
1304 #define for_each_memory(mem, dir)					\
1305 	while ((ent = readdir(dir)))					\
1306 		if (strcmp(ent->d_name, ".") &&				\
1307 		    strcmp(ent->d_name, "..") &&			\
1308 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1309 
1310 	scnprintf(path, PATH_MAX,
1311 		  "%s/devices/system/node/node%lu",
1312 		  sysfs__mountpoint(), idx);
1313 
1314 	dir = opendir(path);
1315 	if (!dir) {
1316 		pr_warning("failed: cant' open memory sysfs data\n");
1317 		return -1;
1318 	}
1319 
1320 	for_each_memory(phys, dir) {
1321 		size = max(phys, size);
1322 	}
1323 
1324 	size++;
1325 
1326 	n->set = bitmap_alloc(size);
1327 	if (!n->set) {
1328 		closedir(dir);
1329 		return -ENOMEM;
1330 	}
1331 
1332 	n->node = idx;
1333 	n->size = size;
1334 
1335 	rewinddir(dir);
1336 
1337 	for_each_memory(phys, dir) {
1338 		set_bit(phys, n->set);
1339 	}
1340 
1341 	closedir(dir);
1342 	return 0;
1343 }
1344 
1345 static int memory_node__sort(const void *a, const void *b)
1346 {
1347 	const struct memory_node *na = a;
1348 	const struct memory_node *nb = b;
1349 
1350 	return na->node - nb->node;
1351 }
1352 
1353 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1354 {
1355 	char path[PATH_MAX];
1356 	struct dirent *ent;
1357 	DIR *dir;
1358 	u64 cnt = 0;
1359 	int ret = 0;
1360 
1361 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1362 		  sysfs__mountpoint());
1363 
1364 	dir = opendir(path);
1365 	if (!dir) {
1366 		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1367 			  __func__, path);
1368 		return -1;
1369 	}
1370 
1371 	while (!ret && (ent = readdir(dir))) {
1372 		unsigned int idx;
1373 		int r;
1374 
1375 		if (!strcmp(ent->d_name, ".") ||
1376 		    !strcmp(ent->d_name, ".."))
1377 			continue;
1378 
1379 		r = sscanf(ent->d_name, "node%u", &idx);
1380 		if (r != 1)
1381 			continue;
1382 
1383 		if (WARN_ONCE(cnt >= size,
1384 			      "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1385 			return -1;
1386 
1387 		ret = memory_node__read(&nodes[cnt++], idx);
1388 	}
1389 
1390 	*cntp = cnt;
1391 	closedir(dir);
1392 
1393 	if (!ret)
1394 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1395 
1396 	return ret;
1397 }
1398 
1399 #define MAX_MEMORY_NODES 2000
1400 
1401 /*
1402  * The MEM_TOPOLOGY holds physical memory map for every
1403  * node in system. The format of data is as follows:
1404  *
1405  *  0 - version          | for future changes
1406  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1407  * 16 - count            | number of nodes
1408  *
1409  * For each node we store map of physical indexes for
1410  * each node:
1411  *
1412  * 32 - node id          | node index
1413  * 40 - size             | size of bitmap
1414  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1415  */
1416 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1417 			      struct perf_evlist *evlist __maybe_unused)
1418 {
1419 	static struct memory_node nodes[MAX_MEMORY_NODES];
1420 	u64 bsize, version = 1, i, nr;
1421 	int ret;
1422 
1423 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1424 			      (unsigned long long *) &bsize);
1425 	if (ret)
1426 		return ret;
1427 
1428 	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1429 	if (ret)
1430 		return ret;
1431 
1432 	ret = do_write(ff, &version, sizeof(version));
1433 	if (ret < 0)
1434 		goto out;
1435 
1436 	ret = do_write(ff, &bsize, sizeof(bsize));
1437 	if (ret < 0)
1438 		goto out;
1439 
1440 	ret = do_write(ff, &nr, sizeof(nr));
1441 	if (ret < 0)
1442 		goto out;
1443 
1444 	for (i = 0; i < nr; i++) {
1445 		struct memory_node *n = &nodes[i];
1446 
1447 		#define _W(v)						\
1448 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1449 			if (ret < 0)					\
1450 				goto out;
1451 
1452 		_W(node)
1453 		_W(size)
1454 
1455 		#undef _W
1456 
1457 		ret = do_write_bitmap(ff, n->set, n->size);
1458 		if (ret < 0)
1459 			goto out;
1460 	}
1461 
1462 out:
1463 	return ret;
1464 }
1465 
1466 static void print_hostname(struct feat_fd *ff, FILE *fp)
1467 {
1468 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1469 }
1470 
1471 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1472 {
1473 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1474 }
1475 
1476 static void print_arch(struct feat_fd *ff, FILE *fp)
1477 {
1478 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1479 }
1480 
1481 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1482 {
1483 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1484 }
1485 
1486 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1487 {
1488 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1489 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1490 }
1491 
1492 static void print_version(struct feat_fd *ff, FILE *fp)
1493 {
1494 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1495 }
1496 
1497 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1498 {
1499 	int nr, i;
1500 
1501 	nr = ff->ph->env.nr_cmdline;
1502 
1503 	fprintf(fp, "# cmdline : ");
1504 
1505 	for (i = 0; i < nr; i++) {
1506 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1507 		if (!argv_i) {
1508 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1509 		} else {
1510 			char *mem = argv_i;
1511 			do {
1512 				char *quote = strchr(argv_i, '\'');
1513 				if (!quote)
1514 					break;
1515 				*quote++ = '\0';
1516 				fprintf(fp, "%s\\\'", argv_i);
1517 				argv_i = quote;
1518 			} while (1);
1519 			fprintf(fp, "%s ", argv_i);
1520 			free(mem);
1521 		}
1522 	}
1523 	fputc('\n', fp);
1524 }
1525 
1526 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1527 {
1528 	struct perf_header *ph = ff->ph;
1529 	int cpu_nr = ph->env.nr_cpus_avail;
1530 	int nr, i;
1531 	char *str;
1532 
1533 	nr = ph->env.nr_sibling_cores;
1534 	str = ph->env.sibling_cores;
1535 
1536 	for (i = 0; i < nr; i++) {
1537 		fprintf(fp, "# sibling cores   : %s\n", str);
1538 		str += strlen(str) + 1;
1539 	}
1540 
1541 	nr = ph->env.nr_sibling_threads;
1542 	str = ph->env.sibling_threads;
1543 
1544 	for (i = 0; i < nr; i++) {
1545 		fprintf(fp, "# sibling threads : %s\n", str);
1546 		str += strlen(str) + 1;
1547 	}
1548 
1549 	if (ph->env.cpu != NULL) {
1550 		for (i = 0; i < cpu_nr; i++)
1551 			fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i,
1552 				ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id);
1553 	} else
1554 		fprintf(fp, "# Core ID and Socket ID information is not available\n");
1555 }
1556 
1557 static void print_clockid(struct feat_fd *ff, FILE *fp)
1558 {
1559 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1560 		ff->ph->env.clockid_res_ns * 1000);
1561 }
1562 
1563 static void free_event_desc(struct perf_evsel *events)
1564 {
1565 	struct perf_evsel *evsel;
1566 
1567 	if (!events)
1568 		return;
1569 
1570 	for (evsel = events; evsel->attr.size; evsel++) {
1571 		zfree(&evsel->name);
1572 		zfree(&evsel->id);
1573 	}
1574 
1575 	free(events);
1576 }
1577 
1578 static struct perf_evsel *read_event_desc(struct feat_fd *ff)
1579 {
1580 	struct perf_evsel *evsel, *events = NULL;
1581 	u64 *id;
1582 	void *buf = NULL;
1583 	u32 nre, sz, nr, i, j;
1584 	size_t msz;
1585 
1586 	/* number of events */
1587 	if (do_read_u32(ff, &nre))
1588 		goto error;
1589 
1590 	if (do_read_u32(ff, &sz))
1591 		goto error;
1592 
1593 	/* buffer to hold on file attr struct */
1594 	buf = malloc(sz);
1595 	if (!buf)
1596 		goto error;
1597 
1598 	/* the last event terminates with evsel->attr.size == 0: */
1599 	events = calloc(nre + 1, sizeof(*events));
1600 	if (!events)
1601 		goto error;
1602 
1603 	msz = sizeof(evsel->attr);
1604 	if (sz < msz)
1605 		msz = sz;
1606 
1607 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1608 		evsel->idx = i;
1609 
1610 		/*
1611 		 * must read entire on-file attr struct to
1612 		 * sync up with layout.
1613 		 */
1614 		if (__do_read(ff, buf, sz))
1615 			goto error;
1616 
1617 		if (ff->ph->needs_swap)
1618 			perf_event__attr_swap(buf);
1619 
1620 		memcpy(&evsel->attr, buf, msz);
1621 
1622 		if (do_read_u32(ff, &nr))
1623 			goto error;
1624 
1625 		if (ff->ph->needs_swap)
1626 			evsel->needs_swap = true;
1627 
1628 		evsel->name = do_read_string(ff);
1629 		if (!evsel->name)
1630 			goto error;
1631 
1632 		if (!nr)
1633 			continue;
1634 
1635 		id = calloc(nr, sizeof(*id));
1636 		if (!id)
1637 			goto error;
1638 		evsel->ids = nr;
1639 		evsel->id = id;
1640 
1641 		for (j = 0 ; j < nr; j++) {
1642 			if (do_read_u64(ff, id))
1643 				goto error;
1644 			id++;
1645 		}
1646 	}
1647 out:
1648 	free(buf);
1649 	return events;
1650 error:
1651 	free_event_desc(events);
1652 	events = NULL;
1653 	goto out;
1654 }
1655 
1656 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1657 				void *priv __maybe_unused)
1658 {
1659 	return fprintf(fp, ", %s = %s", name, val);
1660 }
1661 
1662 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1663 {
1664 	struct perf_evsel *evsel, *events;
1665 	u32 j;
1666 	u64 *id;
1667 
1668 	if (ff->events)
1669 		events = ff->events;
1670 	else
1671 		events = read_event_desc(ff);
1672 
1673 	if (!events) {
1674 		fprintf(fp, "# event desc: not available or unable to read\n");
1675 		return;
1676 	}
1677 
1678 	for (evsel = events; evsel->attr.size; evsel++) {
1679 		fprintf(fp, "# event : name = %s, ", evsel->name);
1680 
1681 		if (evsel->ids) {
1682 			fprintf(fp, ", id = {");
1683 			for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1684 				if (j)
1685 					fputc(',', fp);
1686 				fprintf(fp, " %"PRIu64, *id);
1687 			}
1688 			fprintf(fp, " }");
1689 		}
1690 
1691 		perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1692 
1693 		fputc('\n', fp);
1694 	}
1695 
1696 	free_event_desc(events);
1697 	ff->events = NULL;
1698 }
1699 
1700 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1701 {
1702 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1703 }
1704 
1705 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1706 {
1707 	int i;
1708 	struct numa_node *n;
1709 
1710 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1711 		n = &ff->ph->env.numa_nodes[i];
1712 
1713 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1714 			    " free = %"PRIu64" kB\n",
1715 			n->node, n->mem_total, n->mem_free);
1716 
1717 		fprintf(fp, "# node%u cpu list : ", n->node);
1718 		cpu_map__fprintf(n->map, fp);
1719 	}
1720 }
1721 
1722 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1723 {
1724 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1725 }
1726 
1727 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1728 {
1729 	fprintf(fp, "# contains samples with branch stack\n");
1730 }
1731 
1732 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1733 {
1734 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1735 }
1736 
1737 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1738 {
1739 	fprintf(fp, "# contains stat data\n");
1740 }
1741 
1742 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1743 {
1744 	int i;
1745 
1746 	fprintf(fp, "# CPU cache info:\n");
1747 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1748 		fprintf(fp, "#  ");
1749 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1750 	}
1751 }
1752 
1753 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1754 {
1755 	const char *delimiter = "# pmu mappings: ";
1756 	char *str, *tmp;
1757 	u32 pmu_num;
1758 	u32 type;
1759 
1760 	pmu_num = ff->ph->env.nr_pmu_mappings;
1761 	if (!pmu_num) {
1762 		fprintf(fp, "# pmu mappings: not available\n");
1763 		return;
1764 	}
1765 
1766 	str = ff->ph->env.pmu_mappings;
1767 
1768 	while (pmu_num) {
1769 		type = strtoul(str, &tmp, 0);
1770 		if (*tmp != ':')
1771 			goto error;
1772 
1773 		str = tmp + 1;
1774 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1775 
1776 		delimiter = ", ";
1777 		str += strlen(str) + 1;
1778 		pmu_num--;
1779 	}
1780 
1781 	fprintf(fp, "\n");
1782 
1783 	if (!pmu_num)
1784 		return;
1785 error:
1786 	fprintf(fp, "# pmu mappings: unable to read\n");
1787 }
1788 
1789 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1790 {
1791 	struct perf_session *session;
1792 	struct perf_evsel *evsel;
1793 	u32 nr = 0;
1794 
1795 	session = container_of(ff->ph, struct perf_session, header);
1796 
1797 	evlist__for_each_entry(session->evlist, evsel) {
1798 		if (perf_evsel__is_group_leader(evsel) &&
1799 		    evsel->nr_members > 1) {
1800 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1801 				perf_evsel__name(evsel));
1802 
1803 			nr = evsel->nr_members - 1;
1804 		} else if (nr) {
1805 			fprintf(fp, ",%s", perf_evsel__name(evsel));
1806 
1807 			if (--nr == 0)
1808 				fprintf(fp, "}\n");
1809 		}
1810 	}
1811 }
1812 
1813 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1814 {
1815 	struct perf_session *session;
1816 	char time_buf[32];
1817 	double d;
1818 
1819 	session = container_of(ff->ph, struct perf_session, header);
1820 
1821 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
1822 				  time_buf, sizeof(time_buf));
1823 	fprintf(fp, "# time of first sample : %s\n", time_buf);
1824 
1825 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
1826 				  time_buf, sizeof(time_buf));
1827 	fprintf(fp, "# time of last sample : %s\n", time_buf);
1828 
1829 	d = (double)(session->evlist->last_sample_time -
1830 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
1831 
1832 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
1833 }
1834 
1835 static void memory_node__fprintf(struct memory_node *n,
1836 				 unsigned long long bsize, FILE *fp)
1837 {
1838 	char buf_map[100], buf_size[50];
1839 	unsigned long long size;
1840 
1841 	size = bsize * bitmap_weight(n->set, n->size);
1842 	unit_number__scnprintf(buf_size, 50, size);
1843 
1844 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
1845 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1846 }
1847 
1848 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1849 {
1850 	struct memory_node *nodes;
1851 	int i, nr;
1852 
1853 	nodes = ff->ph->env.memory_nodes;
1854 	nr    = ff->ph->env.nr_memory_nodes;
1855 
1856 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1857 		nr, ff->ph->env.memory_bsize);
1858 
1859 	for (i = 0; i < nr; i++) {
1860 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1861 	}
1862 }
1863 
1864 static int __event_process_build_id(struct build_id_event *bev,
1865 				    char *filename,
1866 				    struct perf_session *session)
1867 {
1868 	int err = -1;
1869 	struct machine *machine;
1870 	u16 cpumode;
1871 	struct dso *dso;
1872 	enum dso_kernel_type dso_type;
1873 
1874 	machine = perf_session__findnew_machine(session, bev->pid);
1875 	if (!machine)
1876 		goto out;
1877 
1878 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1879 
1880 	switch (cpumode) {
1881 	case PERF_RECORD_MISC_KERNEL:
1882 		dso_type = DSO_TYPE_KERNEL;
1883 		break;
1884 	case PERF_RECORD_MISC_GUEST_KERNEL:
1885 		dso_type = DSO_TYPE_GUEST_KERNEL;
1886 		break;
1887 	case PERF_RECORD_MISC_USER:
1888 	case PERF_RECORD_MISC_GUEST_USER:
1889 		dso_type = DSO_TYPE_USER;
1890 		break;
1891 	default:
1892 		goto out;
1893 	}
1894 
1895 	dso = machine__findnew_dso(machine, filename);
1896 	if (dso != NULL) {
1897 		char sbuild_id[SBUILD_ID_SIZE];
1898 
1899 		dso__set_build_id(dso, &bev->build_id);
1900 
1901 		if (dso_type != DSO_TYPE_USER) {
1902 			struct kmod_path m = { .name = NULL, };
1903 
1904 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1905 				dso__set_module_info(dso, &m, machine);
1906 			else
1907 				dso->kernel = dso_type;
1908 
1909 			free(m.name);
1910 		}
1911 
1912 		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1913 				  sbuild_id);
1914 		pr_debug("build id event received for %s: %s\n",
1915 			 dso->long_name, sbuild_id);
1916 		dso__put(dso);
1917 	}
1918 
1919 	err = 0;
1920 out:
1921 	return err;
1922 }
1923 
1924 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1925 						 int input, u64 offset, u64 size)
1926 {
1927 	struct perf_session *session = container_of(header, struct perf_session, header);
1928 	struct {
1929 		struct perf_event_header   header;
1930 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1931 		char			   filename[0];
1932 	} old_bev;
1933 	struct build_id_event bev;
1934 	char filename[PATH_MAX];
1935 	u64 limit = offset + size;
1936 
1937 	while (offset < limit) {
1938 		ssize_t len;
1939 
1940 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1941 			return -1;
1942 
1943 		if (header->needs_swap)
1944 			perf_event_header__bswap(&old_bev.header);
1945 
1946 		len = old_bev.header.size - sizeof(old_bev);
1947 		if (readn(input, filename, len) != len)
1948 			return -1;
1949 
1950 		bev.header = old_bev.header;
1951 
1952 		/*
1953 		 * As the pid is the missing value, we need to fill
1954 		 * it properly. The header.misc value give us nice hint.
1955 		 */
1956 		bev.pid	= HOST_KERNEL_ID;
1957 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1958 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1959 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
1960 
1961 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1962 		__event_process_build_id(&bev, filename, session);
1963 
1964 		offset += bev.header.size;
1965 	}
1966 
1967 	return 0;
1968 }
1969 
1970 static int perf_header__read_build_ids(struct perf_header *header,
1971 				       int input, u64 offset, u64 size)
1972 {
1973 	struct perf_session *session = container_of(header, struct perf_session, header);
1974 	struct build_id_event bev;
1975 	char filename[PATH_MAX];
1976 	u64 limit = offset + size, orig_offset = offset;
1977 	int err = -1;
1978 
1979 	while (offset < limit) {
1980 		ssize_t len;
1981 
1982 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1983 			goto out;
1984 
1985 		if (header->needs_swap)
1986 			perf_event_header__bswap(&bev.header);
1987 
1988 		len = bev.header.size - sizeof(bev);
1989 		if (readn(input, filename, len) != len)
1990 			goto out;
1991 		/*
1992 		 * The a1645ce1 changeset:
1993 		 *
1994 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
1995 		 *
1996 		 * Added a field to struct build_id_event that broke the file
1997 		 * format.
1998 		 *
1999 		 * Since the kernel build-id is the first entry, process the
2000 		 * table using the old format if the well known
2001 		 * '[kernel.kallsyms]' string for the kernel build-id has the
2002 		 * first 4 characters chopped off (where the pid_t sits).
2003 		 */
2004 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2005 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2006 				return -1;
2007 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2008 		}
2009 
2010 		__event_process_build_id(&bev, filename, session);
2011 
2012 		offset += bev.header.size;
2013 	}
2014 	err = 0;
2015 out:
2016 	return err;
2017 }
2018 
2019 /* Macro for features that simply need to read and store a string. */
2020 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2021 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2022 {\
2023 	ff->ph->env.__feat_env = do_read_string(ff); \
2024 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2025 }
2026 
2027 FEAT_PROCESS_STR_FUN(hostname, hostname);
2028 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2029 FEAT_PROCESS_STR_FUN(version, version);
2030 FEAT_PROCESS_STR_FUN(arch, arch);
2031 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2032 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2033 
2034 static int process_tracing_data(struct feat_fd *ff, void *data)
2035 {
2036 	ssize_t ret = trace_report(ff->fd, data, false);
2037 
2038 	return ret < 0 ? -1 : 0;
2039 }
2040 
2041 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2042 {
2043 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2044 		pr_debug("Failed to read buildids, continuing...\n");
2045 	return 0;
2046 }
2047 
2048 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2049 {
2050 	int ret;
2051 	u32 nr_cpus_avail, nr_cpus_online;
2052 
2053 	ret = do_read_u32(ff, &nr_cpus_avail);
2054 	if (ret)
2055 		return ret;
2056 
2057 	ret = do_read_u32(ff, &nr_cpus_online);
2058 	if (ret)
2059 		return ret;
2060 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2061 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2062 	return 0;
2063 }
2064 
2065 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2066 {
2067 	u64 total_mem;
2068 	int ret;
2069 
2070 	ret = do_read_u64(ff, &total_mem);
2071 	if (ret)
2072 		return -1;
2073 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2074 	return 0;
2075 }
2076 
2077 static struct perf_evsel *
2078 perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
2079 {
2080 	struct perf_evsel *evsel;
2081 
2082 	evlist__for_each_entry(evlist, evsel) {
2083 		if (evsel->idx == idx)
2084 			return evsel;
2085 	}
2086 
2087 	return NULL;
2088 }
2089 
2090 static void
2091 perf_evlist__set_event_name(struct perf_evlist *evlist,
2092 			    struct perf_evsel *event)
2093 {
2094 	struct perf_evsel *evsel;
2095 
2096 	if (!event->name)
2097 		return;
2098 
2099 	evsel = perf_evlist__find_by_index(evlist, event->idx);
2100 	if (!evsel)
2101 		return;
2102 
2103 	if (evsel->name)
2104 		return;
2105 
2106 	evsel->name = strdup(event->name);
2107 }
2108 
2109 static int
2110 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2111 {
2112 	struct perf_session *session;
2113 	struct perf_evsel *evsel, *events = read_event_desc(ff);
2114 
2115 	if (!events)
2116 		return 0;
2117 
2118 	session = container_of(ff->ph, struct perf_session, header);
2119 
2120 	if (session->data->is_pipe) {
2121 		/* Save events for reading later by print_event_desc,
2122 		 * since they can't be read again in pipe mode. */
2123 		ff->events = events;
2124 	}
2125 
2126 	for (evsel = events; evsel->attr.size; evsel++)
2127 		perf_evlist__set_event_name(session->evlist, evsel);
2128 
2129 	if (!session->data->is_pipe)
2130 		free_event_desc(events);
2131 
2132 	return 0;
2133 }
2134 
2135 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2136 {
2137 	char *str, *cmdline = NULL, **argv = NULL;
2138 	u32 nr, i, len = 0;
2139 
2140 	if (do_read_u32(ff, &nr))
2141 		return -1;
2142 
2143 	ff->ph->env.nr_cmdline = nr;
2144 
2145 	cmdline = zalloc(ff->size + nr + 1);
2146 	if (!cmdline)
2147 		return -1;
2148 
2149 	argv = zalloc(sizeof(char *) * (nr + 1));
2150 	if (!argv)
2151 		goto error;
2152 
2153 	for (i = 0; i < nr; i++) {
2154 		str = do_read_string(ff);
2155 		if (!str)
2156 			goto error;
2157 
2158 		argv[i] = cmdline + len;
2159 		memcpy(argv[i], str, strlen(str) + 1);
2160 		len += strlen(str) + 1;
2161 		free(str);
2162 	}
2163 	ff->ph->env.cmdline = cmdline;
2164 	ff->ph->env.cmdline_argv = (const char **) argv;
2165 	return 0;
2166 
2167 error:
2168 	free(argv);
2169 	free(cmdline);
2170 	return -1;
2171 }
2172 
2173 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2174 {
2175 	u32 nr, i;
2176 	char *str;
2177 	struct strbuf sb;
2178 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2179 	u64 size = 0;
2180 	struct perf_header *ph = ff->ph;
2181 	bool do_core_id_test = true;
2182 
2183 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2184 	if (!ph->env.cpu)
2185 		return -1;
2186 
2187 	if (do_read_u32(ff, &nr))
2188 		goto free_cpu;
2189 
2190 	ph->env.nr_sibling_cores = nr;
2191 	size += sizeof(u32);
2192 	if (strbuf_init(&sb, 128) < 0)
2193 		goto free_cpu;
2194 
2195 	for (i = 0; i < nr; i++) {
2196 		str = do_read_string(ff);
2197 		if (!str)
2198 			goto error;
2199 
2200 		/* include a NULL character at the end */
2201 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2202 			goto error;
2203 		size += string_size(str);
2204 		free(str);
2205 	}
2206 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2207 
2208 	if (do_read_u32(ff, &nr))
2209 		return -1;
2210 
2211 	ph->env.nr_sibling_threads = nr;
2212 	size += sizeof(u32);
2213 
2214 	for (i = 0; i < nr; i++) {
2215 		str = do_read_string(ff);
2216 		if (!str)
2217 			goto error;
2218 
2219 		/* include a NULL character at the end */
2220 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2221 			goto error;
2222 		size += string_size(str);
2223 		free(str);
2224 	}
2225 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2226 
2227 	/*
2228 	 * The header may be from old perf,
2229 	 * which doesn't include core id and socket id information.
2230 	 */
2231 	if (ff->size <= size) {
2232 		zfree(&ph->env.cpu);
2233 		return 0;
2234 	}
2235 
2236 	/* On s390 the socket_id number is not related to the numbers of cpus.
2237 	 * The socket_id number might be higher than the numbers of cpus.
2238 	 * This depends on the configuration.
2239 	 */
2240 	if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4))
2241 		do_core_id_test = false;
2242 
2243 	for (i = 0; i < (u32)cpu_nr; i++) {
2244 		if (do_read_u32(ff, &nr))
2245 			goto free_cpu;
2246 
2247 		ph->env.cpu[i].core_id = nr;
2248 
2249 		if (do_read_u32(ff, &nr))
2250 			goto free_cpu;
2251 
2252 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2253 			pr_debug("socket_id number is too big."
2254 				 "You may need to upgrade the perf tool.\n");
2255 			goto free_cpu;
2256 		}
2257 
2258 		ph->env.cpu[i].socket_id = nr;
2259 	}
2260 
2261 	return 0;
2262 
2263 error:
2264 	strbuf_release(&sb);
2265 free_cpu:
2266 	zfree(&ph->env.cpu);
2267 	return -1;
2268 }
2269 
2270 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2271 {
2272 	struct numa_node *nodes, *n;
2273 	u32 nr, i;
2274 	char *str;
2275 
2276 	/* nr nodes */
2277 	if (do_read_u32(ff, &nr))
2278 		return -1;
2279 
2280 	nodes = zalloc(sizeof(*nodes) * nr);
2281 	if (!nodes)
2282 		return -ENOMEM;
2283 
2284 	for (i = 0; i < nr; i++) {
2285 		n = &nodes[i];
2286 
2287 		/* node number */
2288 		if (do_read_u32(ff, &n->node))
2289 			goto error;
2290 
2291 		if (do_read_u64(ff, &n->mem_total))
2292 			goto error;
2293 
2294 		if (do_read_u64(ff, &n->mem_free))
2295 			goto error;
2296 
2297 		str = do_read_string(ff);
2298 		if (!str)
2299 			goto error;
2300 
2301 		n->map = cpu_map__new(str);
2302 		if (!n->map)
2303 			goto error;
2304 
2305 		free(str);
2306 	}
2307 	ff->ph->env.nr_numa_nodes = nr;
2308 	ff->ph->env.numa_nodes = nodes;
2309 	return 0;
2310 
2311 error:
2312 	free(nodes);
2313 	return -1;
2314 }
2315 
2316 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2317 {
2318 	char *name;
2319 	u32 pmu_num;
2320 	u32 type;
2321 	struct strbuf sb;
2322 
2323 	if (do_read_u32(ff, &pmu_num))
2324 		return -1;
2325 
2326 	if (!pmu_num) {
2327 		pr_debug("pmu mappings not available\n");
2328 		return 0;
2329 	}
2330 
2331 	ff->ph->env.nr_pmu_mappings = pmu_num;
2332 	if (strbuf_init(&sb, 128) < 0)
2333 		return -1;
2334 
2335 	while (pmu_num) {
2336 		if (do_read_u32(ff, &type))
2337 			goto error;
2338 
2339 		name = do_read_string(ff);
2340 		if (!name)
2341 			goto error;
2342 
2343 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2344 			goto error;
2345 		/* include a NULL character at the end */
2346 		if (strbuf_add(&sb, "", 1) < 0)
2347 			goto error;
2348 
2349 		if (!strcmp(name, "msr"))
2350 			ff->ph->env.msr_pmu_type = type;
2351 
2352 		free(name);
2353 		pmu_num--;
2354 	}
2355 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2356 	return 0;
2357 
2358 error:
2359 	strbuf_release(&sb);
2360 	return -1;
2361 }
2362 
2363 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2364 {
2365 	size_t ret = -1;
2366 	u32 i, nr, nr_groups;
2367 	struct perf_session *session;
2368 	struct perf_evsel *evsel, *leader = NULL;
2369 	struct group_desc {
2370 		char *name;
2371 		u32 leader_idx;
2372 		u32 nr_members;
2373 	} *desc;
2374 
2375 	if (do_read_u32(ff, &nr_groups))
2376 		return -1;
2377 
2378 	ff->ph->env.nr_groups = nr_groups;
2379 	if (!nr_groups) {
2380 		pr_debug("group desc not available\n");
2381 		return 0;
2382 	}
2383 
2384 	desc = calloc(nr_groups, sizeof(*desc));
2385 	if (!desc)
2386 		return -1;
2387 
2388 	for (i = 0; i < nr_groups; i++) {
2389 		desc[i].name = do_read_string(ff);
2390 		if (!desc[i].name)
2391 			goto out_free;
2392 
2393 		if (do_read_u32(ff, &desc[i].leader_idx))
2394 			goto out_free;
2395 
2396 		if (do_read_u32(ff, &desc[i].nr_members))
2397 			goto out_free;
2398 	}
2399 
2400 	/*
2401 	 * Rebuild group relationship based on the group_desc
2402 	 */
2403 	session = container_of(ff->ph, struct perf_session, header);
2404 	session->evlist->nr_groups = nr_groups;
2405 
2406 	i = nr = 0;
2407 	evlist__for_each_entry(session->evlist, evsel) {
2408 		if (evsel->idx == (int) desc[i].leader_idx) {
2409 			evsel->leader = evsel;
2410 			/* {anon_group} is a dummy name */
2411 			if (strcmp(desc[i].name, "{anon_group}")) {
2412 				evsel->group_name = desc[i].name;
2413 				desc[i].name = NULL;
2414 			}
2415 			evsel->nr_members = desc[i].nr_members;
2416 
2417 			if (i >= nr_groups || nr > 0) {
2418 				pr_debug("invalid group desc\n");
2419 				goto out_free;
2420 			}
2421 
2422 			leader = evsel;
2423 			nr = evsel->nr_members - 1;
2424 			i++;
2425 		} else if (nr) {
2426 			/* This is a group member */
2427 			evsel->leader = leader;
2428 
2429 			nr--;
2430 		}
2431 	}
2432 
2433 	if (i != nr_groups || nr != 0) {
2434 		pr_debug("invalid group desc\n");
2435 		goto out_free;
2436 	}
2437 
2438 	ret = 0;
2439 out_free:
2440 	for (i = 0; i < nr_groups; i++)
2441 		zfree(&desc[i].name);
2442 	free(desc);
2443 
2444 	return ret;
2445 }
2446 
2447 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2448 {
2449 	struct perf_session *session;
2450 	int err;
2451 
2452 	session = container_of(ff->ph, struct perf_session, header);
2453 
2454 	err = auxtrace_index__process(ff->fd, ff->size, session,
2455 				      ff->ph->needs_swap);
2456 	if (err < 0)
2457 		pr_err("Failed to process auxtrace index\n");
2458 	return err;
2459 }
2460 
2461 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2462 {
2463 	struct cpu_cache_level *caches;
2464 	u32 cnt, i, version;
2465 
2466 	if (do_read_u32(ff, &version))
2467 		return -1;
2468 
2469 	if (version != 1)
2470 		return -1;
2471 
2472 	if (do_read_u32(ff, &cnt))
2473 		return -1;
2474 
2475 	caches = zalloc(sizeof(*caches) * cnt);
2476 	if (!caches)
2477 		return -1;
2478 
2479 	for (i = 0; i < cnt; i++) {
2480 		struct cpu_cache_level c;
2481 
2482 		#define _R(v)						\
2483 			if (do_read_u32(ff, &c.v))\
2484 				goto out_free_caches;			\
2485 
2486 		_R(level)
2487 		_R(line_size)
2488 		_R(sets)
2489 		_R(ways)
2490 		#undef _R
2491 
2492 		#define _R(v)					\
2493 			c.v = do_read_string(ff);		\
2494 			if (!c.v)				\
2495 				goto out_free_caches;
2496 
2497 		_R(type)
2498 		_R(size)
2499 		_R(map)
2500 		#undef _R
2501 
2502 		caches[i] = c;
2503 	}
2504 
2505 	ff->ph->env.caches = caches;
2506 	ff->ph->env.caches_cnt = cnt;
2507 	return 0;
2508 out_free_caches:
2509 	free(caches);
2510 	return -1;
2511 }
2512 
2513 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2514 {
2515 	struct perf_session *session;
2516 	u64 first_sample_time, last_sample_time;
2517 	int ret;
2518 
2519 	session = container_of(ff->ph, struct perf_session, header);
2520 
2521 	ret = do_read_u64(ff, &first_sample_time);
2522 	if (ret)
2523 		return -1;
2524 
2525 	ret = do_read_u64(ff, &last_sample_time);
2526 	if (ret)
2527 		return -1;
2528 
2529 	session->evlist->first_sample_time = first_sample_time;
2530 	session->evlist->last_sample_time = last_sample_time;
2531 	return 0;
2532 }
2533 
2534 static int process_mem_topology(struct feat_fd *ff,
2535 				void *data __maybe_unused)
2536 {
2537 	struct memory_node *nodes;
2538 	u64 version, i, nr, bsize;
2539 	int ret = -1;
2540 
2541 	if (do_read_u64(ff, &version))
2542 		return -1;
2543 
2544 	if (version != 1)
2545 		return -1;
2546 
2547 	if (do_read_u64(ff, &bsize))
2548 		return -1;
2549 
2550 	if (do_read_u64(ff, &nr))
2551 		return -1;
2552 
2553 	nodes = zalloc(sizeof(*nodes) * nr);
2554 	if (!nodes)
2555 		return -1;
2556 
2557 	for (i = 0; i < nr; i++) {
2558 		struct memory_node n;
2559 
2560 		#define _R(v)				\
2561 			if (do_read_u64(ff, &n.v))	\
2562 				goto out;		\
2563 
2564 		_R(node)
2565 		_R(size)
2566 
2567 		#undef _R
2568 
2569 		if (do_read_bitmap(ff, &n.set, &n.size))
2570 			goto out;
2571 
2572 		nodes[i] = n;
2573 	}
2574 
2575 	ff->ph->env.memory_bsize    = bsize;
2576 	ff->ph->env.memory_nodes    = nodes;
2577 	ff->ph->env.nr_memory_nodes = nr;
2578 	ret = 0;
2579 
2580 out:
2581 	if (ret)
2582 		free(nodes);
2583 	return ret;
2584 }
2585 
2586 static int process_clockid(struct feat_fd *ff,
2587 			   void *data __maybe_unused)
2588 {
2589 	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2590 		return -1;
2591 
2592 	return 0;
2593 }
2594 
2595 struct feature_ops {
2596 	int (*write)(struct feat_fd *ff, struct perf_evlist *evlist);
2597 	void (*print)(struct feat_fd *ff, FILE *fp);
2598 	int (*process)(struct feat_fd *ff, void *data);
2599 	const char *name;
2600 	bool full_only;
2601 	bool synthesize;
2602 };
2603 
2604 #define FEAT_OPR(n, func, __full_only) \
2605 	[HEADER_##n] = {					\
2606 		.name	    = __stringify(n),			\
2607 		.write	    = write_##func,			\
2608 		.print	    = print_##func,			\
2609 		.full_only  = __full_only,			\
2610 		.process    = process_##func,			\
2611 		.synthesize = true				\
2612 	}
2613 
2614 #define FEAT_OPN(n, func, __full_only) \
2615 	[HEADER_##n] = {					\
2616 		.name	    = __stringify(n),			\
2617 		.write	    = write_##func,			\
2618 		.print	    = print_##func,			\
2619 		.full_only  = __full_only,			\
2620 		.process    = process_##func			\
2621 	}
2622 
2623 /* feature_ops not implemented: */
2624 #define print_tracing_data	NULL
2625 #define print_build_id		NULL
2626 
2627 #define process_branch_stack	NULL
2628 #define process_stat		NULL
2629 
2630 
2631 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2632 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
2633 	FEAT_OPN(BUILD_ID,	build_id,	false),
2634 	FEAT_OPR(HOSTNAME,	hostname,	false),
2635 	FEAT_OPR(OSRELEASE,	osrelease,	false),
2636 	FEAT_OPR(VERSION,	version,	false),
2637 	FEAT_OPR(ARCH,		arch,		false),
2638 	FEAT_OPR(NRCPUS,	nrcpus,		false),
2639 	FEAT_OPR(CPUDESC,	cpudesc,	false),
2640 	FEAT_OPR(CPUID,		cpuid,		false),
2641 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
2642 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
2643 	FEAT_OPR(CMDLINE,	cmdline,	false),
2644 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
2645 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
2646 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
2647 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2648 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2649 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
2650 	FEAT_OPN(STAT,		stat,		false),
2651 	FEAT_OPN(CACHE,		cache,		true),
2652 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2653 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2654 	FEAT_OPR(CLOCKID,       clockid,        false)
2655 };
2656 
2657 struct header_print_data {
2658 	FILE *fp;
2659 	bool full; /* extended list of headers */
2660 };
2661 
2662 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2663 					   struct perf_header *ph,
2664 					   int feat, int fd, void *data)
2665 {
2666 	struct header_print_data *hd = data;
2667 	struct feat_fd ff;
2668 
2669 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2670 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2671 				"%d, continuing...\n", section->offset, feat);
2672 		return 0;
2673 	}
2674 	if (feat >= HEADER_LAST_FEATURE) {
2675 		pr_warning("unknown feature %d\n", feat);
2676 		return 0;
2677 	}
2678 	if (!feat_ops[feat].print)
2679 		return 0;
2680 
2681 	ff = (struct  feat_fd) {
2682 		.fd = fd,
2683 		.ph = ph,
2684 	};
2685 
2686 	if (!feat_ops[feat].full_only || hd->full)
2687 		feat_ops[feat].print(&ff, hd->fp);
2688 	else
2689 		fprintf(hd->fp, "# %s info available, use -I to display\n",
2690 			feat_ops[feat].name);
2691 
2692 	return 0;
2693 }
2694 
2695 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2696 {
2697 	struct header_print_data hd;
2698 	struct perf_header *header = &session->header;
2699 	int fd = perf_data__fd(session->data);
2700 	struct stat st;
2701 	time_t stctime;
2702 	int ret, bit;
2703 
2704 	hd.fp = fp;
2705 	hd.full = full;
2706 
2707 	ret = fstat(fd, &st);
2708 	if (ret == -1)
2709 		return -1;
2710 
2711 	stctime = st.st_ctime;
2712 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
2713 
2714 	fprintf(fp, "# header version : %u\n", header->version);
2715 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2716 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2717 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2718 
2719 	perf_header__process_sections(header, fd, &hd,
2720 				      perf_file_section__fprintf_info);
2721 
2722 	if (session->data->is_pipe)
2723 		return 0;
2724 
2725 	fprintf(fp, "# missing features: ");
2726 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2727 		if (bit)
2728 			fprintf(fp, "%s ", feat_ops[bit].name);
2729 	}
2730 
2731 	fprintf(fp, "\n");
2732 	return 0;
2733 }
2734 
2735 static int do_write_feat(struct feat_fd *ff, int type,
2736 			 struct perf_file_section **p,
2737 			 struct perf_evlist *evlist)
2738 {
2739 	int err;
2740 	int ret = 0;
2741 
2742 	if (perf_header__has_feat(ff->ph, type)) {
2743 		if (!feat_ops[type].write)
2744 			return -1;
2745 
2746 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2747 			return -1;
2748 
2749 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2750 
2751 		err = feat_ops[type].write(ff, evlist);
2752 		if (err < 0) {
2753 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2754 
2755 			/* undo anything written */
2756 			lseek(ff->fd, (*p)->offset, SEEK_SET);
2757 
2758 			return -1;
2759 		}
2760 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2761 		(*p)++;
2762 	}
2763 	return ret;
2764 }
2765 
2766 static int perf_header__adds_write(struct perf_header *header,
2767 				   struct perf_evlist *evlist, int fd)
2768 {
2769 	int nr_sections;
2770 	struct feat_fd ff;
2771 	struct perf_file_section *feat_sec, *p;
2772 	int sec_size;
2773 	u64 sec_start;
2774 	int feat;
2775 	int err;
2776 
2777 	ff = (struct feat_fd){
2778 		.fd  = fd,
2779 		.ph = header,
2780 	};
2781 
2782 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2783 	if (!nr_sections)
2784 		return 0;
2785 
2786 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2787 	if (feat_sec == NULL)
2788 		return -ENOMEM;
2789 
2790 	sec_size = sizeof(*feat_sec) * nr_sections;
2791 
2792 	sec_start = header->feat_offset;
2793 	lseek(fd, sec_start + sec_size, SEEK_SET);
2794 
2795 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
2796 		if (do_write_feat(&ff, feat, &p, evlist))
2797 			perf_header__clear_feat(header, feat);
2798 	}
2799 
2800 	lseek(fd, sec_start, SEEK_SET);
2801 	/*
2802 	 * may write more than needed due to dropped feature, but
2803 	 * this is okay, reader will skip the missing entries
2804 	 */
2805 	err = do_write(&ff, feat_sec, sec_size);
2806 	if (err < 0)
2807 		pr_debug("failed to write feature section\n");
2808 	free(feat_sec);
2809 	return err;
2810 }
2811 
2812 int perf_header__write_pipe(int fd)
2813 {
2814 	struct perf_pipe_file_header f_header;
2815 	struct feat_fd ff;
2816 	int err;
2817 
2818 	ff = (struct feat_fd){ .fd = fd };
2819 
2820 	f_header = (struct perf_pipe_file_header){
2821 		.magic	   = PERF_MAGIC,
2822 		.size	   = sizeof(f_header),
2823 	};
2824 
2825 	err = do_write(&ff, &f_header, sizeof(f_header));
2826 	if (err < 0) {
2827 		pr_debug("failed to write perf pipe header\n");
2828 		return err;
2829 	}
2830 
2831 	return 0;
2832 }
2833 
2834 int perf_session__write_header(struct perf_session *session,
2835 			       struct perf_evlist *evlist,
2836 			       int fd, bool at_exit)
2837 {
2838 	struct perf_file_header f_header;
2839 	struct perf_file_attr   f_attr;
2840 	struct perf_header *header = &session->header;
2841 	struct perf_evsel *evsel;
2842 	struct feat_fd ff;
2843 	u64 attr_offset;
2844 	int err;
2845 
2846 	ff = (struct feat_fd){ .fd = fd};
2847 	lseek(fd, sizeof(f_header), SEEK_SET);
2848 
2849 	evlist__for_each_entry(session->evlist, evsel) {
2850 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
2851 		err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
2852 		if (err < 0) {
2853 			pr_debug("failed to write perf header\n");
2854 			return err;
2855 		}
2856 	}
2857 
2858 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
2859 
2860 	evlist__for_each_entry(evlist, evsel) {
2861 		f_attr = (struct perf_file_attr){
2862 			.attr = evsel->attr,
2863 			.ids  = {
2864 				.offset = evsel->id_offset,
2865 				.size   = evsel->ids * sizeof(u64),
2866 			}
2867 		};
2868 		err = do_write(&ff, &f_attr, sizeof(f_attr));
2869 		if (err < 0) {
2870 			pr_debug("failed to write perf header attribute\n");
2871 			return err;
2872 		}
2873 	}
2874 
2875 	if (!header->data_offset)
2876 		header->data_offset = lseek(fd, 0, SEEK_CUR);
2877 	header->feat_offset = header->data_offset + header->data_size;
2878 
2879 	if (at_exit) {
2880 		err = perf_header__adds_write(header, evlist, fd);
2881 		if (err < 0)
2882 			return err;
2883 	}
2884 
2885 	f_header = (struct perf_file_header){
2886 		.magic	   = PERF_MAGIC,
2887 		.size	   = sizeof(f_header),
2888 		.attr_size = sizeof(f_attr),
2889 		.attrs = {
2890 			.offset = attr_offset,
2891 			.size   = evlist->nr_entries * sizeof(f_attr),
2892 		},
2893 		.data = {
2894 			.offset = header->data_offset,
2895 			.size	= header->data_size,
2896 		},
2897 		/* event_types is ignored, store zeros */
2898 	};
2899 
2900 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
2901 
2902 	lseek(fd, 0, SEEK_SET);
2903 	err = do_write(&ff, &f_header, sizeof(f_header));
2904 	if (err < 0) {
2905 		pr_debug("failed to write perf header\n");
2906 		return err;
2907 	}
2908 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
2909 
2910 	return 0;
2911 }
2912 
2913 static int perf_header__getbuffer64(struct perf_header *header,
2914 				    int fd, void *buf, size_t size)
2915 {
2916 	if (readn(fd, buf, size) <= 0)
2917 		return -1;
2918 
2919 	if (header->needs_swap)
2920 		mem_bswap_64(buf, size);
2921 
2922 	return 0;
2923 }
2924 
2925 int perf_header__process_sections(struct perf_header *header, int fd,
2926 				  void *data,
2927 				  int (*process)(struct perf_file_section *section,
2928 						 struct perf_header *ph,
2929 						 int feat, int fd, void *data))
2930 {
2931 	struct perf_file_section *feat_sec, *sec;
2932 	int nr_sections;
2933 	int sec_size;
2934 	int feat;
2935 	int err;
2936 
2937 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2938 	if (!nr_sections)
2939 		return 0;
2940 
2941 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
2942 	if (!feat_sec)
2943 		return -1;
2944 
2945 	sec_size = sizeof(*feat_sec) * nr_sections;
2946 
2947 	lseek(fd, header->feat_offset, SEEK_SET);
2948 
2949 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
2950 	if (err < 0)
2951 		goto out_free;
2952 
2953 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
2954 		err = process(sec++, header, feat, fd, data);
2955 		if (err < 0)
2956 			goto out_free;
2957 	}
2958 	err = 0;
2959 out_free:
2960 	free(feat_sec);
2961 	return err;
2962 }
2963 
2964 static const int attr_file_abi_sizes[] = {
2965 	[0] = PERF_ATTR_SIZE_VER0,
2966 	[1] = PERF_ATTR_SIZE_VER1,
2967 	[2] = PERF_ATTR_SIZE_VER2,
2968 	[3] = PERF_ATTR_SIZE_VER3,
2969 	[4] = PERF_ATTR_SIZE_VER4,
2970 	0,
2971 };
2972 
2973 /*
2974  * In the legacy file format, the magic number is not used to encode endianness.
2975  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
2976  * on ABI revisions, we need to try all combinations for all endianness to
2977  * detect the endianness.
2978  */
2979 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
2980 {
2981 	uint64_t ref_size, attr_size;
2982 	int i;
2983 
2984 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
2985 		ref_size = attr_file_abi_sizes[i]
2986 			 + sizeof(struct perf_file_section);
2987 		if (hdr_sz != ref_size) {
2988 			attr_size = bswap_64(hdr_sz);
2989 			if (attr_size != ref_size)
2990 				continue;
2991 
2992 			ph->needs_swap = true;
2993 		}
2994 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
2995 			 i,
2996 			 ph->needs_swap);
2997 		return 0;
2998 	}
2999 	/* could not determine endianness */
3000 	return -1;
3001 }
3002 
3003 #define PERF_PIPE_HDR_VER0	16
3004 
3005 static const size_t attr_pipe_abi_sizes[] = {
3006 	[0] = PERF_PIPE_HDR_VER0,
3007 	0,
3008 };
3009 
3010 /*
3011  * In the legacy pipe format, there is an implicit assumption that endiannesss
3012  * between host recording the samples, and host parsing the samples is the
3013  * same. This is not always the case given that the pipe output may always be
3014  * redirected into a file and analyzed on a different machine with possibly a
3015  * different endianness and perf_event ABI revsions in the perf tool itself.
3016  */
3017 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3018 {
3019 	u64 attr_size;
3020 	int i;
3021 
3022 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3023 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3024 			attr_size = bswap_64(hdr_sz);
3025 			if (attr_size != hdr_sz)
3026 				continue;
3027 
3028 			ph->needs_swap = true;
3029 		}
3030 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3031 		return 0;
3032 	}
3033 	return -1;
3034 }
3035 
3036 bool is_perf_magic(u64 magic)
3037 {
3038 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3039 		|| magic == __perf_magic2
3040 		|| magic == __perf_magic2_sw)
3041 		return true;
3042 
3043 	return false;
3044 }
3045 
3046 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3047 			      bool is_pipe, struct perf_header *ph)
3048 {
3049 	int ret;
3050 
3051 	/* check for legacy format */
3052 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3053 	if (ret == 0) {
3054 		ph->version = PERF_HEADER_VERSION_1;
3055 		pr_debug("legacy perf.data format\n");
3056 		if (is_pipe)
3057 			return try_all_pipe_abis(hdr_sz, ph);
3058 
3059 		return try_all_file_abis(hdr_sz, ph);
3060 	}
3061 	/*
3062 	 * the new magic number serves two purposes:
3063 	 * - unique number to identify actual perf.data files
3064 	 * - encode endianness of file
3065 	 */
3066 	ph->version = PERF_HEADER_VERSION_2;
3067 
3068 	/* check magic number with one endianness */
3069 	if (magic == __perf_magic2)
3070 		return 0;
3071 
3072 	/* check magic number with opposite endianness */
3073 	if (magic != __perf_magic2_sw)
3074 		return -1;
3075 
3076 	ph->needs_swap = true;
3077 
3078 	return 0;
3079 }
3080 
3081 int perf_file_header__read(struct perf_file_header *header,
3082 			   struct perf_header *ph, int fd)
3083 {
3084 	ssize_t ret;
3085 
3086 	lseek(fd, 0, SEEK_SET);
3087 
3088 	ret = readn(fd, header, sizeof(*header));
3089 	if (ret <= 0)
3090 		return -1;
3091 
3092 	if (check_magic_endian(header->magic,
3093 			       header->attr_size, false, ph) < 0) {
3094 		pr_debug("magic/endian check failed\n");
3095 		return -1;
3096 	}
3097 
3098 	if (ph->needs_swap) {
3099 		mem_bswap_64(header, offsetof(struct perf_file_header,
3100 			     adds_features));
3101 	}
3102 
3103 	if (header->size != sizeof(*header)) {
3104 		/* Support the previous format */
3105 		if (header->size == offsetof(typeof(*header), adds_features))
3106 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3107 		else
3108 			return -1;
3109 	} else if (ph->needs_swap) {
3110 		/*
3111 		 * feature bitmap is declared as an array of unsigned longs --
3112 		 * not good since its size can differ between the host that
3113 		 * generated the data file and the host analyzing the file.
3114 		 *
3115 		 * We need to handle endianness, but we don't know the size of
3116 		 * the unsigned long where the file was generated. Take a best
3117 		 * guess at determining it: try 64-bit swap first (ie., file
3118 		 * created on a 64-bit host), and check if the hostname feature
3119 		 * bit is set (this feature bit is forced on as of fbe96f2).
3120 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3121 		 * swap. If the hostname bit is still not set (e.g., older data
3122 		 * file), punt and fallback to the original behavior --
3123 		 * clearing all feature bits and setting buildid.
3124 		 */
3125 		mem_bswap_64(&header->adds_features,
3126 			    BITS_TO_U64(HEADER_FEAT_BITS));
3127 
3128 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3129 			/* unswap as u64 */
3130 			mem_bswap_64(&header->adds_features,
3131 				    BITS_TO_U64(HEADER_FEAT_BITS));
3132 
3133 			/* unswap as u32 */
3134 			mem_bswap_32(&header->adds_features,
3135 				    BITS_TO_U32(HEADER_FEAT_BITS));
3136 		}
3137 
3138 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3139 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3140 			set_bit(HEADER_BUILD_ID, header->adds_features);
3141 		}
3142 	}
3143 
3144 	memcpy(&ph->adds_features, &header->adds_features,
3145 	       sizeof(ph->adds_features));
3146 
3147 	ph->data_offset  = header->data.offset;
3148 	ph->data_size	 = header->data.size;
3149 	ph->feat_offset  = header->data.offset + header->data.size;
3150 	return 0;
3151 }
3152 
3153 static int perf_file_section__process(struct perf_file_section *section,
3154 				      struct perf_header *ph,
3155 				      int feat, int fd, void *data)
3156 {
3157 	struct feat_fd fdd = {
3158 		.fd	= fd,
3159 		.ph	= ph,
3160 		.size	= section->size,
3161 		.offset	= section->offset,
3162 	};
3163 
3164 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3165 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3166 			  "%d, continuing...\n", section->offset, feat);
3167 		return 0;
3168 	}
3169 
3170 	if (feat >= HEADER_LAST_FEATURE) {
3171 		pr_debug("unknown feature %d, continuing...\n", feat);
3172 		return 0;
3173 	}
3174 
3175 	if (!feat_ops[feat].process)
3176 		return 0;
3177 
3178 	return feat_ops[feat].process(&fdd, data);
3179 }
3180 
3181 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3182 				       struct perf_header *ph, int fd,
3183 				       bool repipe)
3184 {
3185 	struct feat_fd ff = {
3186 		.fd = STDOUT_FILENO,
3187 		.ph = ph,
3188 	};
3189 	ssize_t ret;
3190 
3191 	ret = readn(fd, header, sizeof(*header));
3192 	if (ret <= 0)
3193 		return -1;
3194 
3195 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3196 		pr_debug("endian/magic failed\n");
3197 		return -1;
3198 	}
3199 
3200 	if (ph->needs_swap)
3201 		header->size = bswap_64(header->size);
3202 
3203 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3204 		return -1;
3205 
3206 	return 0;
3207 }
3208 
3209 static int perf_header__read_pipe(struct perf_session *session)
3210 {
3211 	struct perf_header *header = &session->header;
3212 	struct perf_pipe_file_header f_header;
3213 
3214 	if (perf_file_header__read_pipe(&f_header, header,
3215 					perf_data__fd(session->data),
3216 					session->repipe) < 0) {
3217 		pr_debug("incompatible file format\n");
3218 		return -EINVAL;
3219 	}
3220 
3221 	return 0;
3222 }
3223 
3224 static int read_attr(int fd, struct perf_header *ph,
3225 		     struct perf_file_attr *f_attr)
3226 {
3227 	struct perf_event_attr *attr = &f_attr->attr;
3228 	size_t sz, left;
3229 	size_t our_sz = sizeof(f_attr->attr);
3230 	ssize_t ret;
3231 
3232 	memset(f_attr, 0, sizeof(*f_attr));
3233 
3234 	/* read minimal guaranteed structure */
3235 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3236 	if (ret <= 0) {
3237 		pr_debug("cannot read %d bytes of header attr\n",
3238 			 PERF_ATTR_SIZE_VER0);
3239 		return -1;
3240 	}
3241 
3242 	/* on file perf_event_attr size */
3243 	sz = attr->size;
3244 
3245 	if (ph->needs_swap)
3246 		sz = bswap_32(sz);
3247 
3248 	if (sz == 0) {
3249 		/* assume ABI0 */
3250 		sz =  PERF_ATTR_SIZE_VER0;
3251 	} else if (sz > our_sz) {
3252 		pr_debug("file uses a more recent and unsupported ABI"
3253 			 " (%zu bytes extra)\n", sz - our_sz);
3254 		return -1;
3255 	}
3256 	/* what we have not yet read and that we know about */
3257 	left = sz - PERF_ATTR_SIZE_VER0;
3258 	if (left) {
3259 		void *ptr = attr;
3260 		ptr += PERF_ATTR_SIZE_VER0;
3261 
3262 		ret = readn(fd, ptr, left);
3263 	}
3264 	/* read perf_file_section, ids are read in caller */
3265 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3266 
3267 	return ret <= 0 ? -1 : 0;
3268 }
3269 
3270 static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
3271 						struct tep_handle *pevent)
3272 {
3273 	struct tep_event *event;
3274 	char bf[128];
3275 
3276 	/* already prepared */
3277 	if (evsel->tp_format)
3278 		return 0;
3279 
3280 	if (pevent == NULL) {
3281 		pr_debug("broken or missing trace data\n");
3282 		return -1;
3283 	}
3284 
3285 	event = tep_find_event(pevent, evsel->attr.config);
3286 	if (event == NULL) {
3287 		pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3288 		return -1;
3289 	}
3290 
3291 	if (!evsel->name) {
3292 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3293 		evsel->name = strdup(bf);
3294 		if (evsel->name == NULL)
3295 			return -1;
3296 	}
3297 
3298 	evsel->tp_format = event;
3299 	return 0;
3300 }
3301 
3302 static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
3303 						  struct tep_handle *pevent)
3304 {
3305 	struct perf_evsel *pos;
3306 
3307 	evlist__for_each_entry(evlist, pos) {
3308 		if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
3309 		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3310 			return -1;
3311 	}
3312 
3313 	return 0;
3314 }
3315 
3316 int perf_session__read_header(struct perf_session *session)
3317 {
3318 	struct perf_data *data = session->data;
3319 	struct perf_header *header = &session->header;
3320 	struct perf_file_header	f_header;
3321 	struct perf_file_attr	f_attr;
3322 	u64			f_id;
3323 	int nr_attrs, nr_ids, i, j;
3324 	int fd = perf_data__fd(data);
3325 
3326 	session->evlist = perf_evlist__new();
3327 	if (session->evlist == NULL)
3328 		return -ENOMEM;
3329 
3330 	session->evlist->env = &header->env;
3331 	session->machines.host.env = &header->env;
3332 	if (perf_data__is_pipe(data))
3333 		return perf_header__read_pipe(session);
3334 
3335 	if (perf_file_header__read(&f_header, header, fd) < 0)
3336 		return -EINVAL;
3337 
3338 	/*
3339 	 * Sanity check that perf.data was written cleanly; data size is
3340 	 * initialized to 0 and updated only if the on_exit function is run.
3341 	 * If data size is still 0 then the file contains only partial
3342 	 * information.  Just warn user and process it as much as it can.
3343 	 */
3344 	if (f_header.data.size == 0) {
3345 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3346 			   "Was the 'perf record' command properly terminated?\n",
3347 			   data->file.path);
3348 	}
3349 
3350 	nr_attrs = f_header.attrs.size / f_header.attr_size;
3351 	lseek(fd, f_header.attrs.offset, SEEK_SET);
3352 
3353 	for (i = 0; i < nr_attrs; i++) {
3354 		struct perf_evsel *evsel;
3355 		off_t tmp;
3356 
3357 		if (read_attr(fd, header, &f_attr) < 0)
3358 			goto out_errno;
3359 
3360 		if (header->needs_swap) {
3361 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3362 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3363 			perf_event__attr_swap(&f_attr.attr);
3364 		}
3365 
3366 		tmp = lseek(fd, 0, SEEK_CUR);
3367 		evsel = perf_evsel__new(&f_attr.attr);
3368 
3369 		if (evsel == NULL)
3370 			goto out_delete_evlist;
3371 
3372 		evsel->needs_swap = header->needs_swap;
3373 		/*
3374 		 * Do it before so that if perf_evsel__alloc_id fails, this
3375 		 * entry gets purged too at perf_evlist__delete().
3376 		 */
3377 		perf_evlist__add(session->evlist, evsel);
3378 
3379 		nr_ids = f_attr.ids.size / sizeof(u64);
3380 		/*
3381 		 * We don't have the cpu and thread maps on the header, so
3382 		 * for allocating the perf_sample_id table we fake 1 cpu and
3383 		 * hattr->ids threads.
3384 		 */
3385 		if (perf_evsel__alloc_id(evsel, 1, nr_ids))
3386 			goto out_delete_evlist;
3387 
3388 		lseek(fd, f_attr.ids.offset, SEEK_SET);
3389 
3390 		for (j = 0; j < nr_ids; j++) {
3391 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3392 				goto out_errno;
3393 
3394 			perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3395 		}
3396 
3397 		lseek(fd, tmp, SEEK_SET);
3398 	}
3399 
3400 	perf_header__process_sections(header, fd, &session->tevent,
3401 				      perf_file_section__process);
3402 
3403 	if (perf_evlist__prepare_tracepoint_events(session->evlist,
3404 						   session->tevent.pevent))
3405 		goto out_delete_evlist;
3406 
3407 	return 0;
3408 out_errno:
3409 	return -errno;
3410 
3411 out_delete_evlist:
3412 	perf_evlist__delete(session->evlist);
3413 	session->evlist = NULL;
3414 	return -ENOMEM;
3415 }
3416 
3417 int perf_event__synthesize_attr(struct perf_tool *tool,
3418 				struct perf_event_attr *attr, u32 ids, u64 *id,
3419 				perf_event__handler_t process)
3420 {
3421 	union perf_event *ev;
3422 	size_t size;
3423 	int err;
3424 
3425 	size = sizeof(struct perf_event_attr);
3426 	size = PERF_ALIGN(size, sizeof(u64));
3427 	size += sizeof(struct perf_event_header);
3428 	size += ids * sizeof(u64);
3429 
3430 	ev = malloc(size);
3431 
3432 	if (ev == NULL)
3433 		return -ENOMEM;
3434 
3435 	ev->attr.attr = *attr;
3436 	memcpy(ev->attr.id, id, ids * sizeof(u64));
3437 
3438 	ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3439 	ev->attr.header.size = (u16)size;
3440 
3441 	if (ev->attr.header.size == size)
3442 		err = process(tool, ev, NULL, NULL);
3443 	else
3444 		err = -E2BIG;
3445 
3446 	free(ev);
3447 
3448 	return err;
3449 }
3450 
3451 int perf_event__synthesize_features(struct perf_tool *tool,
3452 				    struct perf_session *session,
3453 				    struct perf_evlist *evlist,
3454 				    perf_event__handler_t process)
3455 {
3456 	struct perf_header *header = &session->header;
3457 	struct feat_fd ff;
3458 	struct feature_event *fe;
3459 	size_t sz, sz_hdr;
3460 	int feat, ret;
3461 
3462 	sz_hdr = sizeof(fe->header);
3463 	sz = sizeof(union perf_event);
3464 	/* get a nice alignment */
3465 	sz = PERF_ALIGN(sz, page_size);
3466 
3467 	memset(&ff, 0, sizeof(ff));
3468 
3469 	ff.buf = malloc(sz);
3470 	if (!ff.buf)
3471 		return -ENOMEM;
3472 
3473 	ff.size = sz - sz_hdr;
3474 
3475 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3476 		if (!feat_ops[feat].synthesize) {
3477 			pr_debug("No record header feature for header :%d\n", feat);
3478 			continue;
3479 		}
3480 
3481 		ff.offset = sizeof(*fe);
3482 
3483 		ret = feat_ops[feat].write(&ff, evlist);
3484 		if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
3485 			pr_debug("Error writing feature\n");
3486 			continue;
3487 		}
3488 		/* ff.buf may have changed due to realloc in do_write() */
3489 		fe = ff.buf;
3490 		memset(fe, 0, sizeof(*fe));
3491 
3492 		fe->feat_id = feat;
3493 		fe->header.type = PERF_RECORD_HEADER_FEATURE;
3494 		fe->header.size = ff.offset;
3495 
3496 		ret = process(tool, ff.buf, NULL, NULL);
3497 		if (ret) {
3498 			free(ff.buf);
3499 			return ret;
3500 		}
3501 	}
3502 
3503 	/* Send HEADER_LAST_FEATURE mark. */
3504 	fe = ff.buf;
3505 	fe->feat_id     = HEADER_LAST_FEATURE;
3506 	fe->header.type = PERF_RECORD_HEADER_FEATURE;
3507 	fe->header.size = sizeof(*fe);
3508 
3509 	ret = process(tool, ff.buf, NULL, NULL);
3510 
3511 	free(ff.buf);
3512 	return ret;
3513 }
3514 
3515 int perf_event__process_feature(struct perf_session *session,
3516 				union perf_event *event)
3517 {
3518 	struct perf_tool *tool = session->tool;
3519 	struct feat_fd ff = { .fd = 0 };
3520 	struct feature_event *fe = (struct feature_event *)event;
3521 	int type = fe->header.type;
3522 	u64 feat = fe->feat_id;
3523 
3524 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3525 		pr_warning("invalid record type %d in pipe-mode\n", type);
3526 		return 0;
3527 	}
3528 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3529 		pr_warning("invalid record type %d in pipe-mode\n", type);
3530 		return -1;
3531 	}
3532 
3533 	if (!feat_ops[feat].process)
3534 		return 0;
3535 
3536 	ff.buf  = (void *)fe->data;
3537 	ff.size = event->header.size - sizeof(event->header);
3538 	ff.ph = &session->header;
3539 
3540 	if (feat_ops[feat].process(&ff, NULL))
3541 		return -1;
3542 
3543 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3544 		return 0;
3545 
3546 	if (!feat_ops[feat].full_only ||
3547 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3548 		feat_ops[feat].print(&ff, stdout);
3549 	} else {
3550 		fprintf(stdout, "# %s info available, use -I to display\n",
3551 			feat_ops[feat].name);
3552 	}
3553 
3554 	return 0;
3555 }
3556 
3557 static struct event_update_event *
3558 event_update_event__new(size_t size, u64 type, u64 id)
3559 {
3560 	struct event_update_event *ev;
3561 
3562 	size += sizeof(*ev);
3563 	size  = PERF_ALIGN(size, sizeof(u64));
3564 
3565 	ev = zalloc(size);
3566 	if (ev) {
3567 		ev->header.type = PERF_RECORD_EVENT_UPDATE;
3568 		ev->header.size = (u16)size;
3569 		ev->type = type;
3570 		ev->id = id;
3571 	}
3572 	return ev;
3573 }
3574 
3575 int
3576 perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3577 					 struct perf_evsel *evsel,
3578 					 perf_event__handler_t process)
3579 {
3580 	struct event_update_event *ev;
3581 	size_t size = strlen(evsel->unit);
3582 	int err;
3583 
3584 	ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3585 	if (ev == NULL)
3586 		return -ENOMEM;
3587 
3588 	strlcpy(ev->data, evsel->unit, size + 1);
3589 	err = process(tool, (union perf_event *)ev, NULL, NULL);
3590 	free(ev);
3591 	return err;
3592 }
3593 
3594 int
3595 perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3596 					  struct perf_evsel *evsel,
3597 					  perf_event__handler_t process)
3598 {
3599 	struct event_update_event *ev;
3600 	struct event_update_event_scale *ev_data;
3601 	int err;
3602 
3603 	ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3604 	if (ev == NULL)
3605 		return -ENOMEM;
3606 
3607 	ev_data = (struct event_update_event_scale *) ev->data;
3608 	ev_data->scale = evsel->scale;
3609 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3610 	free(ev);
3611 	return err;
3612 }
3613 
3614 int
3615 perf_event__synthesize_event_update_name(struct perf_tool *tool,
3616 					 struct perf_evsel *evsel,
3617 					 perf_event__handler_t process)
3618 {
3619 	struct event_update_event *ev;
3620 	size_t len = strlen(evsel->name);
3621 	int err;
3622 
3623 	ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3624 	if (ev == NULL)
3625 		return -ENOMEM;
3626 
3627 	strlcpy(ev->data, evsel->name, len + 1);
3628 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3629 	free(ev);
3630 	return err;
3631 }
3632 
3633 int
3634 perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3635 					struct perf_evsel *evsel,
3636 					perf_event__handler_t process)
3637 {
3638 	size_t size = sizeof(struct event_update_event);
3639 	struct event_update_event *ev;
3640 	int max, err;
3641 	u16 type;
3642 
3643 	if (!evsel->own_cpus)
3644 		return 0;
3645 
3646 	ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
3647 	if (!ev)
3648 		return -ENOMEM;
3649 
3650 	ev->header.type = PERF_RECORD_EVENT_UPDATE;
3651 	ev->header.size = (u16)size;
3652 	ev->type = PERF_EVENT_UPDATE__CPUS;
3653 	ev->id   = evsel->id[0];
3654 
3655 	cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3656 				 evsel->own_cpus,
3657 				 type, max);
3658 
3659 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3660 	free(ev);
3661 	return err;
3662 }
3663 
3664 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3665 {
3666 	struct event_update_event *ev = &event->event_update;
3667 	struct event_update_event_scale *ev_scale;
3668 	struct event_update_event_cpus *ev_cpus;
3669 	struct cpu_map *map;
3670 	size_t ret;
3671 
3672 	ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);
3673 
3674 	switch (ev->type) {
3675 	case PERF_EVENT_UPDATE__SCALE:
3676 		ev_scale = (struct event_update_event_scale *) ev->data;
3677 		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3678 		break;
3679 	case PERF_EVENT_UPDATE__UNIT:
3680 		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3681 		break;
3682 	case PERF_EVENT_UPDATE__NAME:
3683 		ret += fprintf(fp, "... name:  %s\n", ev->data);
3684 		break;
3685 	case PERF_EVENT_UPDATE__CPUS:
3686 		ev_cpus = (struct event_update_event_cpus *) ev->data;
3687 		ret += fprintf(fp, "... ");
3688 
3689 		map = cpu_map__new_data(&ev_cpus->cpus);
3690 		if (map)
3691 			ret += cpu_map__fprintf(map, fp);
3692 		else
3693 			ret += fprintf(fp, "failed to get cpus\n");
3694 		break;
3695 	default:
3696 		ret += fprintf(fp, "... unknown type\n");
3697 		break;
3698 	}
3699 
3700 	return ret;
3701 }
3702 
3703 int perf_event__synthesize_attrs(struct perf_tool *tool,
3704 				 struct perf_evlist *evlist,
3705 				 perf_event__handler_t process)
3706 {
3707 	struct perf_evsel *evsel;
3708 	int err = 0;
3709 
3710 	evlist__for_each_entry(evlist, evsel) {
3711 		err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
3712 						  evsel->id, process);
3713 		if (err) {
3714 			pr_debug("failed to create perf header attribute\n");
3715 			return err;
3716 		}
3717 	}
3718 
3719 	return err;
3720 }
3721 
3722 static bool has_unit(struct perf_evsel *counter)
3723 {
3724 	return counter->unit && *counter->unit;
3725 }
3726 
3727 static bool has_scale(struct perf_evsel *counter)
3728 {
3729 	return counter->scale != 1;
3730 }
3731 
3732 int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3733 				      struct perf_evlist *evsel_list,
3734 				      perf_event__handler_t process,
3735 				      bool is_pipe)
3736 {
3737 	struct perf_evsel *counter;
3738 	int err;
3739 
3740 	/*
3741 	 * Synthesize other events stuff not carried within
3742 	 * attr event - unit, scale, name
3743 	 */
3744 	evlist__for_each_entry(evsel_list, counter) {
3745 		if (!counter->supported)
3746 			continue;
3747 
3748 		/*
3749 		 * Synthesize unit and scale only if it's defined.
3750 		 */
3751 		if (has_unit(counter)) {
3752 			err = perf_event__synthesize_event_update_unit(tool, counter, process);
3753 			if (err < 0) {
3754 				pr_err("Couldn't synthesize evsel unit.\n");
3755 				return err;
3756 			}
3757 		}
3758 
3759 		if (has_scale(counter)) {
3760 			err = perf_event__synthesize_event_update_scale(tool, counter, process);
3761 			if (err < 0) {
3762 				pr_err("Couldn't synthesize evsel counter.\n");
3763 				return err;
3764 			}
3765 		}
3766 
3767 		if (counter->own_cpus) {
3768 			err = perf_event__synthesize_event_update_cpus(tool, counter, process);
3769 			if (err < 0) {
3770 				pr_err("Couldn't synthesize evsel cpus.\n");
3771 				return err;
3772 			}
3773 		}
3774 
3775 		/*
3776 		 * Name is needed only for pipe output,
3777 		 * perf.data carries event names.
3778 		 */
3779 		if (is_pipe) {
3780 			err = perf_event__synthesize_event_update_name(tool, counter, process);
3781 			if (err < 0) {
3782 				pr_err("Couldn't synthesize evsel name.\n");
3783 				return err;
3784 			}
3785 		}
3786 	}
3787 	return 0;
3788 }
3789 
3790 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3791 			     union perf_event *event,
3792 			     struct perf_evlist **pevlist)
3793 {
3794 	u32 i, ids, n_ids;
3795 	struct perf_evsel *evsel;
3796 	struct perf_evlist *evlist = *pevlist;
3797 
3798 	if (evlist == NULL) {
3799 		*pevlist = evlist = perf_evlist__new();
3800 		if (evlist == NULL)
3801 			return -ENOMEM;
3802 	}
3803 
3804 	evsel = perf_evsel__new(&event->attr.attr);
3805 	if (evsel == NULL)
3806 		return -ENOMEM;
3807 
3808 	perf_evlist__add(evlist, evsel);
3809 
3810 	ids = event->header.size;
3811 	ids -= (void *)&event->attr.id - (void *)event;
3812 	n_ids = ids / sizeof(u64);
3813 	/*
3814 	 * We don't have the cpu and thread maps on the header, so
3815 	 * for allocating the perf_sample_id table we fake 1 cpu and
3816 	 * hattr->ids threads.
3817 	 */
3818 	if (perf_evsel__alloc_id(evsel, 1, n_ids))
3819 		return -ENOMEM;
3820 
3821 	for (i = 0; i < n_ids; i++) {
3822 		perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
3823 	}
3824 
3825 	return 0;
3826 }
3827 
3828 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3829 				     union perf_event *event,
3830 				     struct perf_evlist **pevlist)
3831 {
3832 	struct event_update_event *ev = &event->event_update;
3833 	struct event_update_event_scale *ev_scale;
3834 	struct event_update_event_cpus *ev_cpus;
3835 	struct perf_evlist *evlist;
3836 	struct perf_evsel *evsel;
3837 	struct cpu_map *map;
3838 
3839 	if (!pevlist || *pevlist == NULL)
3840 		return -EINVAL;
3841 
3842 	evlist = *pevlist;
3843 
3844 	evsel = perf_evlist__id2evsel(evlist, ev->id);
3845 	if (evsel == NULL)
3846 		return -EINVAL;
3847 
3848 	switch (ev->type) {
3849 	case PERF_EVENT_UPDATE__UNIT:
3850 		evsel->unit = strdup(ev->data);
3851 		break;
3852 	case PERF_EVENT_UPDATE__NAME:
3853 		evsel->name = strdup(ev->data);
3854 		break;
3855 	case PERF_EVENT_UPDATE__SCALE:
3856 		ev_scale = (struct event_update_event_scale *) ev->data;
3857 		evsel->scale = ev_scale->scale;
3858 		break;
3859 	case PERF_EVENT_UPDATE__CPUS:
3860 		ev_cpus = (struct event_update_event_cpus *) ev->data;
3861 
3862 		map = cpu_map__new_data(&ev_cpus->cpus);
3863 		if (map)
3864 			evsel->own_cpus = map;
3865 		else
3866 			pr_err("failed to get event_update cpus\n");
3867 	default:
3868 		break;
3869 	}
3870 
3871 	return 0;
3872 }
3873 
3874 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
3875 					struct perf_evlist *evlist,
3876 					perf_event__handler_t process)
3877 {
3878 	union perf_event ev;
3879 	struct tracing_data *tdata;
3880 	ssize_t size = 0, aligned_size = 0, padding;
3881 	struct feat_fd ff;
3882 	int err __maybe_unused = 0;
3883 
3884 	/*
3885 	 * We are going to store the size of the data followed
3886 	 * by the data contents. Since the fd descriptor is a pipe,
3887 	 * we cannot seek back to store the size of the data once
3888 	 * we know it. Instead we:
3889 	 *
3890 	 * - write the tracing data to the temp file
3891 	 * - get/write the data size to pipe
3892 	 * - write the tracing data from the temp file
3893 	 *   to the pipe
3894 	 */
3895 	tdata = tracing_data_get(&evlist->entries, fd, true);
3896 	if (!tdata)
3897 		return -1;
3898 
3899 	memset(&ev, 0, sizeof(ev));
3900 
3901 	ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
3902 	size = tdata->size;
3903 	aligned_size = PERF_ALIGN(size, sizeof(u64));
3904 	padding = aligned_size - size;
3905 	ev.tracing_data.header.size = sizeof(ev.tracing_data);
3906 	ev.tracing_data.size = aligned_size;
3907 
3908 	process(tool, &ev, NULL, NULL);
3909 
3910 	/*
3911 	 * The put function will copy all the tracing data
3912 	 * stored in temp file to the pipe.
3913 	 */
3914 	tracing_data_put(tdata);
3915 
3916 	ff = (struct feat_fd){ .fd = fd };
3917 	if (write_padded(&ff, NULL, 0, padding))
3918 		return -1;
3919 
3920 	return aligned_size;
3921 }
3922 
3923 int perf_event__process_tracing_data(struct perf_session *session,
3924 				     union perf_event *event)
3925 {
3926 	ssize_t size_read, padding, size = event->tracing_data.size;
3927 	int fd = perf_data__fd(session->data);
3928 	off_t offset = lseek(fd, 0, SEEK_CUR);
3929 	char buf[BUFSIZ];
3930 
3931 	/* setup for reading amidst mmap */
3932 	lseek(fd, offset + sizeof(struct tracing_data_event),
3933 	      SEEK_SET);
3934 
3935 	size_read = trace_report(fd, &session->tevent,
3936 				 session->repipe);
3937 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3938 
3939 	if (readn(fd, buf, padding) < 0) {
3940 		pr_err("%s: reading input file", __func__);
3941 		return -1;
3942 	}
3943 	if (session->repipe) {
3944 		int retw = write(STDOUT_FILENO, buf, padding);
3945 		if (retw <= 0 || retw != padding) {
3946 			pr_err("%s: repiping tracing data padding", __func__);
3947 			return -1;
3948 		}
3949 	}
3950 
3951 	if (size_read + padding != size) {
3952 		pr_err("%s: tracing data size mismatch", __func__);
3953 		return -1;
3954 	}
3955 
3956 	perf_evlist__prepare_tracepoint_events(session->evlist,
3957 					       session->tevent.pevent);
3958 
3959 	return size_read + padding;
3960 }
3961 
3962 int perf_event__synthesize_build_id(struct perf_tool *tool,
3963 				    struct dso *pos, u16 misc,
3964 				    perf_event__handler_t process,
3965 				    struct machine *machine)
3966 {
3967 	union perf_event ev;
3968 	size_t len;
3969 	int err = 0;
3970 
3971 	if (!pos->hit)
3972 		return err;
3973 
3974 	memset(&ev, 0, sizeof(ev));
3975 
3976 	len = pos->long_name_len + 1;
3977 	len = PERF_ALIGN(len, NAME_ALIGN);
3978 	memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
3979 	ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
3980 	ev.build_id.header.misc = misc;
3981 	ev.build_id.pid = machine->pid;
3982 	ev.build_id.header.size = sizeof(ev.build_id) + len;
3983 	memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
3984 
3985 	err = process(tool, &ev, NULL, machine);
3986 
3987 	return err;
3988 }
3989 
3990 int perf_event__process_build_id(struct perf_session *session,
3991 				 union perf_event *event)
3992 {
3993 	__event_process_build_id(&event->build_id,
3994 				 event->build_id.filename,
3995 				 session);
3996 	return 0;
3997 }
3998