1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <inttypes.h> 4 #include "util.h" 5 #include "string2.h" 6 #include <sys/param.h> 7 #include <sys/types.h> 8 #include <byteswap.h> 9 #include <unistd.h> 10 #include <stdio.h> 11 #include <stdlib.h> 12 #include <linux/compiler.h> 13 #include <linux/list.h> 14 #include <linux/kernel.h> 15 #include <linux/bitops.h> 16 #include <linux/stringify.h> 17 #include <sys/stat.h> 18 #include <sys/utsname.h> 19 #include <linux/time64.h> 20 #include <dirent.h> 21 #include <bpf/libbpf.h> 22 23 #include "evlist.h" 24 #include "evsel.h" 25 #include "header.h" 26 #include "memswap.h" 27 #include "../perf.h" 28 #include "trace-event.h" 29 #include "session.h" 30 #include "symbol.h" 31 #include "debug.h" 32 #include "cpumap.h" 33 #include "pmu.h" 34 #include "vdso.h" 35 #include "strbuf.h" 36 #include "build-id.h" 37 #include "data.h" 38 #include <api/fs/fs.h> 39 #include "asm/bug.h" 40 #include "tool.h" 41 #include "time-utils.h" 42 #include "units.h" 43 #include "cputopo.h" 44 #include "bpf-event.h" 45 46 #include "sane_ctype.h" 47 48 /* 49 * magic2 = "PERFILE2" 50 * must be a numerical value to let the endianness 51 * determine the memory layout. That way we are able 52 * to detect endianness when reading the perf.data file 53 * back. 54 * 55 * we check for legacy (PERFFILE) format. 56 */ 57 static const char *__perf_magic1 = "PERFFILE"; 58 static const u64 __perf_magic2 = 0x32454c4946524550ULL; 59 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; 60 61 #define PERF_MAGIC __perf_magic2 62 63 const char perf_version_string[] = PERF_VERSION; 64 65 struct perf_file_attr { 66 struct perf_event_attr attr; 67 struct perf_file_section ids; 68 }; 69 70 struct feat_fd { 71 struct perf_header *ph; 72 int fd; 73 void *buf; /* Either buf != NULL or fd >= 0 */ 74 ssize_t offset; 75 size_t size; 76 struct perf_evsel *events; 77 }; 78 79 void perf_header__set_feat(struct perf_header *header, int feat) 80 { 81 set_bit(feat, header->adds_features); 82 } 83 84 void perf_header__clear_feat(struct perf_header *header, int feat) 85 { 86 clear_bit(feat, header->adds_features); 87 } 88 89 bool perf_header__has_feat(const struct perf_header *header, int feat) 90 { 91 return test_bit(feat, header->adds_features); 92 } 93 94 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) 95 { 96 ssize_t ret = writen(ff->fd, buf, size); 97 98 if (ret != (ssize_t)size) 99 return ret < 0 ? (int)ret : -1; 100 return 0; 101 } 102 103 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) 104 { 105 /* struct perf_event_header::size is u16 */ 106 const size_t max_size = 0xffff - sizeof(struct perf_event_header); 107 size_t new_size = ff->size; 108 void *addr; 109 110 if (size + ff->offset > max_size) 111 return -E2BIG; 112 113 while (size > (new_size - ff->offset)) 114 new_size <<= 1; 115 new_size = min(max_size, new_size); 116 117 if (ff->size < new_size) { 118 addr = realloc(ff->buf, new_size); 119 if (!addr) 120 return -ENOMEM; 121 ff->buf = addr; 122 ff->size = new_size; 123 } 124 125 memcpy(ff->buf + ff->offset, buf, size); 126 ff->offset += size; 127 128 return 0; 129 } 130 131 /* Return: 0 if succeded, -ERR if failed. */ 132 int do_write(struct feat_fd *ff, const void *buf, size_t size) 133 { 134 if (!ff->buf) 135 return __do_write_fd(ff, buf, size); 136 return __do_write_buf(ff, buf, size); 137 } 138 139 /* Return: 0 if succeded, -ERR if failed. */ 140 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) 141 { 142 u64 *p = (u64 *) set; 143 int i, ret; 144 145 ret = do_write(ff, &size, sizeof(size)); 146 if (ret < 0) 147 return ret; 148 149 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 150 ret = do_write(ff, p + i, sizeof(*p)); 151 if (ret < 0) 152 return ret; 153 } 154 155 return 0; 156 } 157 158 /* Return: 0 if succeded, -ERR if failed. */ 159 int write_padded(struct feat_fd *ff, const void *bf, 160 size_t count, size_t count_aligned) 161 { 162 static const char zero_buf[NAME_ALIGN]; 163 int err = do_write(ff, bf, count); 164 165 if (!err) 166 err = do_write(ff, zero_buf, count_aligned - count); 167 168 return err; 169 } 170 171 #define string_size(str) \ 172 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) 173 174 /* Return: 0 if succeded, -ERR if failed. */ 175 static int do_write_string(struct feat_fd *ff, const char *str) 176 { 177 u32 len, olen; 178 int ret; 179 180 olen = strlen(str) + 1; 181 len = PERF_ALIGN(olen, NAME_ALIGN); 182 183 /* write len, incl. \0 */ 184 ret = do_write(ff, &len, sizeof(len)); 185 if (ret < 0) 186 return ret; 187 188 return write_padded(ff, str, olen, len); 189 } 190 191 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) 192 { 193 ssize_t ret = readn(ff->fd, addr, size); 194 195 if (ret != size) 196 return ret < 0 ? (int)ret : -1; 197 return 0; 198 } 199 200 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) 201 { 202 if (size > (ssize_t)ff->size - ff->offset) 203 return -1; 204 205 memcpy(addr, ff->buf + ff->offset, size); 206 ff->offset += size; 207 208 return 0; 209 210 } 211 212 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) 213 { 214 if (!ff->buf) 215 return __do_read_fd(ff, addr, size); 216 return __do_read_buf(ff, addr, size); 217 } 218 219 static int do_read_u32(struct feat_fd *ff, u32 *addr) 220 { 221 int ret; 222 223 ret = __do_read(ff, addr, sizeof(*addr)); 224 if (ret) 225 return ret; 226 227 if (ff->ph->needs_swap) 228 *addr = bswap_32(*addr); 229 return 0; 230 } 231 232 static int do_read_u64(struct feat_fd *ff, u64 *addr) 233 { 234 int ret; 235 236 ret = __do_read(ff, addr, sizeof(*addr)); 237 if (ret) 238 return ret; 239 240 if (ff->ph->needs_swap) 241 *addr = bswap_64(*addr); 242 return 0; 243 } 244 245 static char *do_read_string(struct feat_fd *ff) 246 { 247 u32 len; 248 char *buf; 249 250 if (do_read_u32(ff, &len)) 251 return NULL; 252 253 buf = malloc(len); 254 if (!buf) 255 return NULL; 256 257 if (!__do_read(ff, buf, len)) { 258 /* 259 * strings are padded by zeroes 260 * thus the actual strlen of buf 261 * may be less than len 262 */ 263 return buf; 264 } 265 266 free(buf); 267 return NULL; 268 } 269 270 /* Return: 0 if succeded, -ERR if failed. */ 271 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) 272 { 273 unsigned long *set; 274 u64 size, *p; 275 int i, ret; 276 277 ret = do_read_u64(ff, &size); 278 if (ret) 279 return ret; 280 281 set = bitmap_alloc(size); 282 if (!set) 283 return -ENOMEM; 284 285 p = (u64 *) set; 286 287 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 288 ret = do_read_u64(ff, p + i); 289 if (ret < 0) { 290 free(set); 291 return ret; 292 } 293 } 294 295 *pset = set; 296 *psize = size; 297 return 0; 298 } 299 300 static int write_tracing_data(struct feat_fd *ff, 301 struct perf_evlist *evlist) 302 { 303 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 304 return -1; 305 306 return read_tracing_data(ff->fd, &evlist->entries); 307 } 308 309 static int write_build_id(struct feat_fd *ff, 310 struct perf_evlist *evlist __maybe_unused) 311 { 312 struct perf_session *session; 313 int err; 314 315 session = container_of(ff->ph, struct perf_session, header); 316 317 if (!perf_session__read_build_ids(session, true)) 318 return -1; 319 320 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 321 return -1; 322 323 err = perf_session__write_buildid_table(session, ff); 324 if (err < 0) { 325 pr_debug("failed to write buildid table\n"); 326 return err; 327 } 328 perf_session__cache_build_ids(session); 329 330 return 0; 331 } 332 333 static int write_hostname(struct feat_fd *ff, 334 struct perf_evlist *evlist __maybe_unused) 335 { 336 struct utsname uts; 337 int ret; 338 339 ret = uname(&uts); 340 if (ret < 0) 341 return -1; 342 343 return do_write_string(ff, uts.nodename); 344 } 345 346 static int write_osrelease(struct feat_fd *ff, 347 struct perf_evlist *evlist __maybe_unused) 348 { 349 struct utsname uts; 350 int ret; 351 352 ret = uname(&uts); 353 if (ret < 0) 354 return -1; 355 356 return do_write_string(ff, uts.release); 357 } 358 359 static int write_arch(struct feat_fd *ff, 360 struct perf_evlist *evlist __maybe_unused) 361 { 362 struct utsname uts; 363 int ret; 364 365 ret = uname(&uts); 366 if (ret < 0) 367 return -1; 368 369 return do_write_string(ff, uts.machine); 370 } 371 372 static int write_version(struct feat_fd *ff, 373 struct perf_evlist *evlist __maybe_unused) 374 { 375 return do_write_string(ff, perf_version_string); 376 } 377 378 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) 379 { 380 FILE *file; 381 char *buf = NULL; 382 char *s, *p; 383 const char *search = cpuinfo_proc; 384 size_t len = 0; 385 int ret = -1; 386 387 if (!search) 388 return -1; 389 390 file = fopen("/proc/cpuinfo", "r"); 391 if (!file) 392 return -1; 393 394 while (getline(&buf, &len, file) > 0) { 395 ret = strncmp(buf, search, strlen(search)); 396 if (!ret) 397 break; 398 } 399 400 if (ret) { 401 ret = -1; 402 goto done; 403 } 404 405 s = buf; 406 407 p = strchr(buf, ':'); 408 if (p && *(p+1) == ' ' && *(p+2)) 409 s = p + 2; 410 p = strchr(s, '\n'); 411 if (p) 412 *p = '\0'; 413 414 /* squash extra space characters (branding string) */ 415 p = s; 416 while (*p) { 417 if (isspace(*p)) { 418 char *r = p + 1; 419 char *q = r; 420 *p = ' '; 421 while (*q && isspace(*q)) 422 q++; 423 if (q != (p+1)) 424 while ((*r++ = *q++)); 425 } 426 p++; 427 } 428 ret = do_write_string(ff, s); 429 done: 430 free(buf); 431 fclose(file); 432 return ret; 433 } 434 435 static int write_cpudesc(struct feat_fd *ff, 436 struct perf_evlist *evlist __maybe_unused) 437 { 438 const char *cpuinfo_procs[] = CPUINFO_PROC; 439 unsigned int i; 440 441 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { 442 int ret; 443 ret = __write_cpudesc(ff, cpuinfo_procs[i]); 444 if (ret >= 0) 445 return ret; 446 } 447 return -1; 448 } 449 450 451 static int write_nrcpus(struct feat_fd *ff, 452 struct perf_evlist *evlist __maybe_unused) 453 { 454 long nr; 455 u32 nrc, nra; 456 int ret; 457 458 nrc = cpu__max_present_cpu(); 459 460 nr = sysconf(_SC_NPROCESSORS_ONLN); 461 if (nr < 0) 462 return -1; 463 464 nra = (u32)(nr & UINT_MAX); 465 466 ret = do_write(ff, &nrc, sizeof(nrc)); 467 if (ret < 0) 468 return ret; 469 470 return do_write(ff, &nra, sizeof(nra)); 471 } 472 473 static int write_event_desc(struct feat_fd *ff, 474 struct perf_evlist *evlist) 475 { 476 struct perf_evsel *evsel; 477 u32 nre, nri, sz; 478 int ret; 479 480 nre = evlist->nr_entries; 481 482 /* 483 * write number of events 484 */ 485 ret = do_write(ff, &nre, sizeof(nre)); 486 if (ret < 0) 487 return ret; 488 489 /* 490 * size of perf_event_attr struct 491 */ 492 sz = (u32)sizeof(evsel->attr); 493 ret = do_write(ff, &sz, sizeof(sz)); 494 if (ret < 0) 495 return ret; 496 497 evlist__for_each_entry(evlist, evsel) { 498 ret = do_write(ff, &evsel->attr, sz); 499 if (ret < 0) 500 return ret; 501 /* 502 * write number of unique id per event 503 * there is one id per instance of an event 504 * 505 * copy into an nri to be independent of the 506 * type of ids, 507 */ 508 nri = evsel->ids; 509 ret = do_write(ff, &nri, sizeof(nri)); 510 if (ret < 0) 511 return ret; 512 513 /* 514 * write event string as passed on cmdline 515 */ 516 ret = do_write_string(ff, perf_evsel__name(evsel)); 517 if (ret < 0) 518 return ret; 519 /* 520 * write unique ids for this event 521 */ 522 ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64)); 523 if (ret < 0) 524 return ret; 525 } 526 return 0; 527 } 528 529 static int write_cmdline(struct feat_fd *ff, 530 struct perf_evlist *evlist __maybe_unused) 531 { 532 char pbuf[MAXPATHLEN], *buf; 533 int i, ret, n; 534 535 /* actual path to perf binary */ 536 buf = perf_exe(pbuf, MAXPATHLEN); 537 538 /* account for binary path */ 539 n = perf_env.nr_cmdline + 1; 540 541 ret = do_write(ff, &n, sizeof(n)); 542 if (ret < 0) 543 return ret; 544 545 ret = do_write_string(ff, buf); 546 if (ret < 0) 547 return ret; 548 549 for (i = 0 ; i < perf_env.nr_cmdline; i++) { 550 ret = do_write_string(ff, perf_env.cmdline_argv[i]); 551 if (ret < 0) 552 return ret; 553 } 554 return 0; 555 } 556 557 558 static int write_cpu_topology(struct feat_fd *ff, 559 struct perf_evlist *evlist __maybe_unused) 560 { 561 struct cpu_topology *tp; 562 u32 i; 563 int ret, j; 564 565 tp = cpu_topology__new(); 566 if (!tp) 567 return -1; 568 569 ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib)); 570 if (ret < 0) 571 goto done; 572 573 for (i = 0; i < tp->core_sib; i++) { 574 ret = do_write_string(ff, tp->core_siblings[i]); 575 if (ret < 0) 576 goto done; 577 } 578 ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib)); 579 if (ret < 0) 580 goto done; 581 582 for (i = 0; i < tp->thread_sib; i++) { 583 ret = do_write_string(ff, tp->thread_siblings[i]); 584 if (ret < 0) 585 break; 586 } 587 588 ret = perf_env__read_cpu_topology_map(&perf_env); 589 if (ret < 0) 590 goto done; 591 592 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 593 ret = do_write(ff, &perf_env.cpu[j].core_id, 594 sizeof(perf_env.cpu[j].core_id)); 595 if (ret < 0) 596 return ret; 597 ret = do_write(ff, &perf_env.cpu[j].socket_id, 598 sizeof(perf_env.cpu[j].socket_id)); 599 if (ret < 0) 600 return ret; 601 } 602 done: 603 cpu_topology__delete(tp); 604 return ret; 605 } 606 607 608 609 static int write_total_mem(struct feat_fd *ff, 610 struct perf_evlist *evlist __maybe_unused) 611 { 612 char *buf = NULL; 613 FILE *fp; 614 size_t len = 0; 615 int ret = -1, n; 616 uint64_t mem; 617 618 fp = fopen("/proc/meminfo", "r"); 619 if (!fp) 620 return -1; 621 622 while (getline(&buf, &len, fp) > 0) { 623 ret = strncmp(buf, "MemTotal:", 9); 624 if (!ret) 625 break; 626 } 627 if (!ret) { 628 n = sscanf(buf, "%*s %"PRIu64, &mem); 629 if (n == 1) 630 ret = do_write(ff, &mem, sizeof(mem)); 631 } else 632 ret = -1; 633 free(buf); 634 fclose(fp); 635 return ret; 636 } 637 638 static int write_numa_topology(struct feat_fd *ff, 639 struct perf_evlist *evlist __maybe_unused) 640 { 641 struct numa_topology *tp; 642 int ret = -1; 643 u32 i; 644 645 tp = numa_topology__new(); 646 if (!tp) 647 return -ENOMEM; 648 649 ret = do_write(ff, &tp->nr, sizeof(u32)); 650 if (ret < 0) 651 goto err; 652 653 for (i = 0; i < tp->nr; i++) { 654 struct numa_topology_node *n = &tp->nodes[i]; 655 656 ret = do_write(ff, &n->node, sizeof(u32)); 657 if (ret < 0) 658 goto err; 659 660 ret = do_write(ff, &n->mem_total, sizeof(u64)); 661 if (ret) 662 goto err; 663 664 ret = do_write(ff, &n->mem_free, sizeof(u64)); 665 if (ret) 666 goto err; 667 668 ret = do_write_string(ff, n->cpus); 669 if (ret < 0) 670 goto err; 671 } 672 673 ret = 0; 674 675 err: 676 numa_topology__delete(tp); 677 return ret; 678 } 679 680 /* 681 * File format: 682 * 683 * struct pmu_mappings { 684 * u32 pmu_num; 685 * struct pmu_map { 686 * u32 type; 687 * char name[]; 688 * }[pmu_num]; 689 * }; 690 */ 691 692 static int write_pmu_mappings(struct feat_fd *ff, 693 struct perf_evlist *evlist __maybe_unused) 694 { 695 struct perf_pmu *pmu = NULL; 696 u32 pmu_num = 0; 697 int ret; 698 699 /* 700 * Do a first pass to count number of pmu to avoid lseek so this 701 * works in pipe mode as well. 702 */ 703 while ((pmu = perf_pmu__scan(pmu))) { 704 if (!pmu->name) 705 continue; 706 pmu_num++; 707 } 708 709 ret = do_write(ff, &pmu_num, sizeof(pmu_num)); 710 if (ret < 0) 711 return ret; 712 713 while ((pmu = perf_pmu__scan(pmu))) { 714 if (!pmu->name) 715 continue; 716 717 ret = do_write(ff, &pmu->type, sizeof(pmu->type)); 718 if (ret < 0) 719 return ret; 720 721 ret = do_write_string(ff, pmu->name); 722 if (ret < 0) 723 return ret; 724 } 725 726 return 0; 727 } 728 729 /* 730 * File format: 731 * 732 * struct group_descs { 733 * u32 nr_groups; 734 * struct group_desc { 735 * char name[]; 736 * u32 leader_idx; 737 * u32 nr_members; 738 * }[nr_groups]; 739 * }; 740 */ 741 static int write_group_desc(struct feat_fd *ff, 742 struct perf_evlist *evlist) 743 { 744 u32 nr_groups = evlist->nr_groups; 745 struct perf_evsel *evsel; 746 int ret; 747 748 ret = do_write(ff, &nr_groups, sizeof(nr_groups)); 749 if (ret < 0) 750 return ret; 751 752 evlist__for_each_entry(evlist, evsel) { 753 if (perf_evsel__is_group_leader(evsel) && 754 evsel->nr_members > 1) { 755 const char *name = evsel->group_name ?: "{anon_group}"; 756 u32 leader_idx = evsel->idx; 757 u32 nr_members = evsel->nr_members; 758 759 ret = do_write_string(ff, name); 760 if (ret < 0) 761 return ret; 762 763 ret = do_write(ff, &leader_idx, sizeof(leader_idx)); 764 if (ret < 0) 765 return ret; 766 767 ret = do_write(ff, &nr_members, sizeof(nr_members)); 768 if (ret < 0) 769 return ret; 770 } 771 } 772 return 0; 773 } 774 775 /* 776 * Return the CPU id as a raw string. 777 * 778 * Each architecture should provide a more precise id string that 779 * can be use to match the architecture's "mapfile". 780 */ 781 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused) 782 { 783 return NULL; 784 } 785 786 /* Return zero when the cpuid from the mapfile.csv matches the 787 * cpuid string generated on this platform. 788 * Otherwise return non-zero. 789 */ 790 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid) 791 { 792 regex_t re; 793 regmatch_t pmatch[1]; 794 int match; 795 796 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) { 797 /* Warn unable to generate match particular string. */ 798 pr_info("Invalid regular expression %s\n", mapcpuid); 799 return 1; 800 } 801 802 match = !regexec(&re, cpuid, 1, pmatch, 0); 803 regfree(&re); 804 if (match) { 805 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so); 806 807 /* Verify the entire string matched. */ 808 if (match_len == strlen(cpuid)) 809 return 0; 810 } 811 return 1; 812 } 813 814 /* 815 * default get_cpuid(): nothing gets recorded 816 * actual implementation must be in arch/$(SRCARCH)/util/header.c 817 */ 818 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused) 819 { 820 return -1; 821 } 822 823 static int write_cpuid(struct feat_fd *ff, 824 struct perf_evlist *evlist __maybe_unused) 825 { 826 char buffer[64]; 827 int ret; 828 829 ret = get_cpuid(buffer, sizeof(buffer)); 830 if (ret) 831 return -1; 832 833 return do_write_string(ff, buffer); 834 } 835 836 static int write_branch_stack(struct feat_fd *ff __maybe_unused, 837 struct perf_evlist *evlist __maybe_unused) 838 { 839 return 0; 840 } 841 842 static int write_auxtrace(struct feat_fd *ff, 843 struct perf_evlist *evlist __maybe_unused) 844 { 845 struct perf_session *session; 846 int err; 847 848 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 849 return -1; 850 851 session = container_of(ff->ph, struct perf_session, header); 852 853 err = auxtrace_index__write(ff->fd, &session->auxtrace_index); 854 if (err < 0) 855 pr_err("Failed to write auxtrace index\n"); 856 return err; 857 } 858 859 static int write_clockid(struct feat_fd *ff, 860 struct perf_evlist *evlist __maybe_unused) 861 { 862 return do_write(ff, &ff->ph->env.clockid_res_ns, 863 sizeof(ff->ph->env.clockid_res_ns)); 864 } 865 866 static int write_dir_format(struct feat_fd *ff, 867 struct perf_evlist *evlist __maybe_unused) 868 { 869 struct perf_session *session; 870 struct perf_data *data; 871 872 session = container_of(ff->ph, struct perf_session, header); 873 data = session->data; 874 875 if (WARN_ON(!perf_data__is_dir(data))) 876 return -1; 877 878 return do_write(ff, &data->dir.version, sizeof(data->dir.version)); 879 } 880 881 #ifdef HAVE_LIBBPF_SUPPORT 882 static int write_bpf_prog_info(struct feat_fd *ff, 883 struct perf_evlist *evlist __maybe_unused) 884 { 885 struct perf_env *env = &ff->ph->env; 886 struct rb_root *root; 887 struct rb_node *next; 888 int ret; 889 890 down_read(&env->bpf_progs.lock); 891 892 ret = do_write(ff, &env->bpf_progs.infos_cnt, 893 sizeof(env->bpf_progs.infos_cnt)); 894 if (ret < 0) 895 goto out; 896 897 root = &env->bpf_progs.infos; 898 next = rb_first(root); 899 while (next) { 900 struct bpf_prog_info_node *node; 901 size_t len; 902 903 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 904 next = rb_next(&node->rb_node); 905 len = sizeof(struct bpf_prog_info_linear) + 906 node->info_linear->data_len; 907 908 /* before writing to file, translate address to offset */ 909 bpf_program__bpil_addr_to_offs(node->info_linear); 910 ret = do_write(ff, node->info_linear, len); 911 /* 912 * translate back to address even when do_write() fails, 913 * so that this function never changes the data. 914 */ 915 bpf_program__bpil_offs_to_addr(node->info_linear); 916 if (ret < 0) 917 goto out; 918 } 919 out: 920 up_read(&env->bpf_progs.lock); 921 return ret; 922 } 923 #else // HAVE_LIBBPF_SUPPORT 924 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused, 925 struct perf_evlist *evlist __maybe_unused) 926 { 927 return 0; 928 } 929 #endif // HAVE_LIBBPF_SUPPORT 930 931 static int write_bpf_btf(struct feat_fd *ff, 932 struct perf_evlist *evlist __maybe_unused) 933 { 934 struct perf_env *env = &ff->ph->env; 935 struct rb_root *root; 936 struct rb_node *next; 937 int ret; 938 939 down_read(&env->bpf_progs.lock); 940 941 ret = do_write(ff, &env->bpf_progs.btfs_cnt, 942 sizeof(env->bpf_progs.btfs_cnt)); 943 944 if (ret < 0) 945 goto out; 946 947 root = &env->bpf_progs.btfs; 948 next = rb_first(root); 949 while (next) { 950 struct btf_node *node; 951 952 node = rb_entry(next, struct btf_node, rb_node); 953 next = rb_next(&node->rb_node); 954 ret = do_write(ff, &node->id, 955 sizeof(u32) * 2 + node->data_size); 956 if (ret < 0) 957 goto out; 958 } 959 out: 960 up_read(&env->bpf_progs.lock); 961 return ret; 962 } 963 964 static int cpu_cache_level__sort(const void *a, const void *b) 965 { 966 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; 967 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; 968 969 return cache_a->level - cache_b->level; 970 } 971 972 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) 973 { 974 if (a->level != b->level) 975 return false; 976 977 if (a->line_size != b->line_size) 978 return false; 979 980 if (a->sets != b->sets) 981 return false; 982 983 if (a->ways != b->ways) 984 return false; 985 986 if (strcmp(a->type, b->type)) 987 return false; 988 989 if (strcmp(a->size, b->size)) 990 return false; 991 992 if (strcmp(a->map, b->map)) 993 return false; 994 995 return true; 996 } 997 998 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) 999 { 1000 char path[PATH_MAX], file[PATH_MAX]; 1001 struct stat st; 1002 size_t len; 1003 1004 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); 1005 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); 1006 1007 if (stat(file, &st)) 1008 return 1; 1009 1010 scnprintf(file, PATH_MAX, "%s/level", path); 1011 if (sysfs__read_int(file, (int *) &cache->level)) 1012 return -1; 1013 1014 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); 1015 if (sysfs__read_int(file, (int *) &cache->line_size)) 1016 return -1; 1017 1018 scnprintf(file, PATH_MAX, "%s/number_of_sets", path); 1019 if (sysfs__read_int(file, (int *) &cache->sets)) 1020 return -1; 1021 1022 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); 1023 if (sysfs__read_int(file, (int *) &cache->ways)) 1024 return -1; 1025 1026 scnprintf(file, PATH_MAX, "%s/type", path); 1027 if (sysfs__read_str(file, &cache->type, &len)) 1028 return -1; 1029 1030 cache->type[len] = 0; 1031 cache->type = rtrim(cache->type); 1032 1033 scnprintf(file, PATH_MAX, "%s/size", path); 1034 if (sysfs__read_str(file, &cache->size, &len)) { 1035 free(cache->type); 1036 return -1; 1037 } 1038 1039 cache->size[len] = 0; 1040 cache->size = rtrim(cache->size); 1041 1042 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); 1043 if (sysfs__read_str(file, &cache->map, &len)) { 1044 free(cache->map); 1045 free(cache->type); 1046 return -1; 1047 } 1048 1049 cache->map[len] = 0; 1050 cache->map = rtrim(cache->map); 1051 return 0; 1052 } 1053 1054 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) 1055 { 1056 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); 1057 } 1058 1059 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp) 1060 { 1061 u32 i, cnt = 0; 1062 long ncpus; 1063 u32 nr, cpu; 1064 u16 level; 1065 1066 ncpus = sysconf(_SC_NPROCESSORS_CONF); 1067 if (ncpus < 0) 1068 return -1; 1069 1070 nr = (u32)(ncpus & UINT_MAX); 1071 1072 for (cpu = 0; cpu < nr; cpu++) { 1073 for (level = 0; level < 10; level++) { 1074 struct cpu_cache_level c; 1075 int err; 1076 1077 err = cpu_cache_level__read(&c, cpu, level); 1078 if (err < 0) 1079 return err; 1080 1081 if (err == 1) 1082 break; 1083 1084 for (i = 0; i < cnt; i++) { 1085 if (cpu_cache_level__cmp(&c, &caches[i])) 1086 break; 1087 } 1088 1089 if (i == cnt) 1090 caches[cnt++] = c; 1091 else 1092 cpu_cache_level__free(&c); 1093 1094 if (WARN_ONCE(cnt == size, "way too many cpu caches..")) 1095 goto out; 1096 } 1097 } 1098 out: 1099 *cntp = cnt; 1100 return 0; 1101 } 1102 1103 #define MAX_CACHES 2000 1104 1105 static int write_cache(struct feat_fd *ff, 1106 struct perf_evlist *evlist __maybe_unused) 1107 { 1108 struct cpu_cache_level caches[MAX_CACHES]; 1109 u32 cnt = 0, i, version = 1; 1110 int ret; 1111 1112 ret = build_caches(caches, MAX_CACHES, &cnt); 1113 if (ret) 1114 goto out; 1115 1116 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); 1117 1118 ret = do_write(ff, &version, sizeof(u32)); 1119 if (ret < 0) 1120 goto out; 1121 1122 ret = do_write(ff, &cnt, sizeof(u32)); 1123 if (ret < 0) 1124 goto out; 1125 1126 for (i = 0; i < cnt; i++) { 1127 struct cpu_cache_level *c = &caches[i]; 1128 1129 #define _W(v) \ 1130 ret = do_write(ff, &c->v, sizeof(u32)); \ 1131 if (ret < 0) \ 1132 goto out; 1133 1134 _W(level) 1135 _W(line_size) 1136 _W(sets) 1137 _W(ways) 1138 #undef _W 1139 1140 #define _W(v) \ 1141 ret = do_write_string(ff, (const char *) c->v); \ 1142 if (ret < 0) \ 1143 goto out; 1144 1145 _W(type) 1146 _W(size) 1147 _W(map) 1148 #undef _W 1149 } 1150 1151 out: 1152 for (i = 0; i < cnt; i++) 1153 cpu_cache_level__free(&caches[i]); 1154 return ret; 1155 } 1156 1157 static int write_stat(struct feat_fd *ff __maybe_unused, 1158 struct perf_evlist *evlist __maybe_unused) 1159 { 1160 return 0; 1161 } 1162 1163 static int write_sample_time(struct feat_fd *ff, 1164 struct perf_evlist *evlist) 1165 { 1166 int ret; 1167 1168 ret = do_write(ff, &evlist->first_sample_time, 1169 sizeof(evlist->first_sample_time)); 1170 if (ret < 0) 1171 return ret; 1172 1173 return do_write(ff, &evlist->last_sample_time, 1174 sizeof(evlist->last_sample_time)); 1175 } 1176 1177 1178 static int memory_node__read(struct memory_node *n, unsigned long idx) 1179 { 1180 unsigned int phys, size = 0; 1181 char path[PATH_MAX]; 1182 struct dirent *ent; 1183 DIR *dir; 1184 1185 #define for_each_memory(mem, dir) \ 1186 while ((ent = readdir(dir))) \ 1187 if (strcmp(ent->d_name, ".") && \ 1188 strcmp(ent->d_name, "..") && \ 1189 sscanf(ent->d_name, "memory%u", &mem) == 1) 1190 1191 scnprintf(path, PATH_MAX, 1192 "%s/devices/system/node/node%lu", 1193 sysfs__mountpoint(), idx); 1194 1195 dir = opendir(path); 1196 if (!dir) { 1197 pr_warning("failed: cant' open memory sysfs data\n"); 1198 return -1; 1199 } 1200 1201 for_each_memory(phys, dir) { 1202 size = max(phys, size); 1203 } 1204 1205 size++; 1206 1207 n->set = bitmap_alloc(size); 1208 if (!n->set) { 1209 closedir(dir); 1210 return -ENOMEM; 1211 } 1212 1213 n->node = idx; 1214 n->size = size; 1215 1216 rewinddir(dir); 1217 1218 for_each_memory(phys, dir) { 1219 set_bit(phys, n->set); 1220 } 1221 1222 closedir(dir); 1223 return 0; 1224 } 1225 1226 static int memory_node__sort(const void *a, const void *b) 1227 { 1228 const struct memory_node *na = a; 1229 const struct memory_node *nb = b; 1230 1231 return na->node - nb->node; 1232 } 1233 1234 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp) 1235 { 1236 char path[PATH_MAX]; 1237 struct dirent *ent; 1238 DIR *dir; 1239 u64 cnt = 0; 1240 int ret = 0; 1241 1242 scnprintf(path, PATH_MAX, "%s/devices/system/node/", 1243 sysfs__mountpoint()); 1244 1245 dir = opendir(path); 1246 if (!dir) { 1247 pr_debug2("%s: could't read %s, does this arch have topology information?\n", 1248 __func__, path); 1249 return -1; 1250 } 1251 1252 while (!ret && (ent = readdir(dir))) { 1253 unsigned int idx; 1254 int r; 1255 1256 if (!strcmp(ent->d_name, ".") || 1257 !strcmp(ent->d_name, "..")) 1258 continue; 1259 1260 r = sscanf(ent->d_name, "node%u", &idx); 1261 if (r != 1) 1262 continue; 1263 1264 if (WARN_ONCE(cnt >= size, 1265 "failed to write MEM_TOPOLOGY, way too many nodes\n")) 1266 return -1; 1267 1268 ret = memory_node__read(&nodes[cnt++], idx); 1269 } 1270 1271 *cntp = cnt; 1272 closedir(dir); 1273 1274 if (!ret) 1275 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); 1276 1277 return ret; 1278 } 1279 1280 #define MAX_MEMORY_NODES 2000 1281 1282 /* 1283 * The MEM_TOPOLOGY holds physical memory map for every 1284 * node in system. The format of data is as follows: 1285 * 1286 * 0 - version | for future changes 1287 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes 1288 * 16 - count | number of nodes 1289 * 1290 * For each node we store map of physical indexes for 1291 * each node: 1292 * 1293 * 32 - node id | node index 1294 * 40 - size | size of bitmap 1295 * 48 - bitmap | bitmap of memory indexes that belongs to node 1296 */ 1297 static int write_mem_topology(struct feat_fd *ff __maybe_unused, 1298 struct perf_evlist *evlist __maybe_unused) 1299 { 1300 static struct memory_node nodes[MAX_MEMORY_NODES]; 1301 u64 bsize, version = 1, i, nr; 1302 int ret; 1303 1304 ret = sysfs__read_xll("devices/system/memory/block_size_bytes", 1305 (unsigned long long *) &bsize); 1306 if (ret) 1307 return ret; 1308 1309 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr); 1310 if (ret) 1311 return ret; 1312 1313 ret = do_write(ff, &version, sizeof(version)); 1314 if (ret < 0) 1315 goto out; 1316 1317 ret = do_write(ff, &bsize, sizeof(bsize)); 1318 if (ret < 0) 1319 goto out; 1320 1321 ret = do_write(ff, &nr, sizeof(nr)); 1322 if (ret < 0) 1323 goto out; 1324 1325 for (i = 0; i < nr; i++) { 1326 struct memory_node *n = &nodes[i]; 1327 1328 #define _W(v) \ 1329 ret = do_write(ff, &n->v, sizeof(n->v)); \ 1330 if (ret < 0) \ 1331 goto out; 1332 1333 _W(node) 1334 _W(size) 1335 1336 #undef _W 1337 1338 ret = do_write_bitmap(ff, n->set, n->size); 1339 if (ret < 0) 1340 goto out; 1341 } 1342 1343 out: 1344 return ret; 1345 } 1346 1347 static void print_hostname(struct feat_fd *ff, FILE *fp) 1348 { 1349 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); 1350 } 1351 1352 static void print_osrelease(struct feat_fd *ff, FILE *fp) 1353 { 1354 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); 1355 } 1356 1357 static void print_arch(struct feat_fd *ff, FILE *fp) 1358 { 1359 fprintf(fp, "# arch : %s\n", ff->ph->env.arch); 1360 } 1361 1362 static void print_cpudesc(struct feat_fd *ff, FILE *fp) 1363 { 1364 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); 1365 } 1366 1367 static void print_nrcpus(struct feat_fd *ff, FILE *fp) 1368 { 1369 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); 1370 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); 1371 } 1372 1373 static void print_version(struct feat_fd *ff, FILE *fp) 1374 { 1375 fprintf(fp, "# perf version : %s\n", ff->ph->env.version); 1376 } 1377 1378 static void print_cmdline(struct feat_fd *ff, FILE *fp) 1379 { 1380 int nr, i; 1381 1382 nr = ff->ph->env.nr_cmdline; 1383 1384 fprintf(fp, "# cmdline : "); 1385 1386 for (i = 0; i < nr; i++) { 1387 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); 1388 if (!argv_i) { 1389 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); 1390 } else { 1391 char *mem = argv_i; 1392 do { 1393 char *quote = strchr(argv_i, '\''); 1394 if (!quote) 1395 break; 1396 *quote++ = '\0'; 1397 fprintf(fp, "%s\\\'", argv_i); 1398 argv_i = quote; 1399 } while (1); 1400 fprintf(fp, "%s ", argv_i); 1401 free(mem); 1402 } 1403 } 1404 fputc('\n', fp); 1405 } 1406 1407 static void print_cpu_topology(struct feat_fd *ff, FILE *fp) 1408 { 1409 struct perf_header *ph = ff->ph; 1410 int cpu_nr = ph->env.nr_cpus_avail; 1411 int nr, i; 1412 char *str; 1413 1414 nr = ph->env.nr_sibling_cores; 1415 str = ph->env.sibling_cores; 1416 1417 for (i = 0; i < nr; i++) { 1418 fprintf(fp, "# sibling cores : %s\n", str); 1419 str += strlen(str) + 1; 1420 } 1421 1422 nr = ph->env.nr_sibling_threads; 1423 str = ph->env.sibling_threads; 1424 1425 for (i = 0; i < nr; i++) { 1426 fprintf(fp, "# sibling threads : %s\n", str); 1427 str += strlen(str) + 1; 1428 } 1429 1430 if (ph->env.cpu != NULL) { 1431 for (i = 0; i < cpu_nr; i++) 1432 fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i, 1433 ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id); 1434 } else 1435 fprintf(fp, "# Core ID and Socket ID information is not available\n"); 1436 } 1437 1438 static void print_clockid(struct feat_fd *ff, FILE *fp) 1439 { 1440 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", 1441 ff->ph->env.clockid_res_ns * 1000); 1442 } 1443 1444 static void print_dir_format(struct feat_fd *ff, FILE *fp) 1445 { 1446 struct perf_session *session; 1447 struct perf_data *data; 1448 1449 session = container_of(ff->ph, struct perf_session, header); 1450 data = session->data; 1451 1452 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version); 1453 } 1454 1455 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp) 1456 { 1457 struct perf_env *env = &ff->ph->env; 1458 struct rb_root *root; 1459 struct rb_node *next; 1460 1461 down_read(&env->bpf_progs.lock); 1462 1463 root = &env->bpf_progs.infos; 1464 next = rb_first(root); 1465 1466 while (next) { 1467 struct bpf_prog_info_node *node; 1468 1469 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1470 next = rb_next(&node->rb_node); 1471 1472 bpf_event__print_bpf_prog_info(&node->info_linear->info, 1473 env, fp); 1474 } 1475 1476 up_read(&env->bpf_progs.lock); 1477 } 1478 1479 static void print_bpf_btf(struct feat_fd *ff, FILE *fp) 1480 { 1481 struct perf_env *env = &ff->ph->env; 1482 struct rb_root *root; 1483 struct rb_node *next; 1484 1485 down_read(&env->bpf_progs.lock); 1486 1487 root = &env->bpf_progs.btfs; 1488 next = rb_first(root); 1489 1490 while (next) { 1491 struct btf_node *node; 1492 1493 node = rb_entry(next, struct btf_node, rb_node); 1494 next = rb_next(&node->rb_node); 1495 fprintf(fp, "# btf info of id %u\n", node->id); 1496 } 1497 1498 up_read(&env->bpf_progs.lock); 1499 } 1500 1501 static void free_event_desc(struct perf_evsel *events) 1502 { 1503 struct perf_evsel *evsel; 1504 1505 if (!events) 1506 return; 1507 1508 for (evsel = events; evsel->attr.size; evsel++) { 1509 zfree(&evsel->name); 1510 zfree(&evsel->id); 1511 } 1512 1513 free(events); 1514 } 1515 1516 static struct perf_evsel *read_event_desc(struct feat_fd *ff) 1517 { 1518 struct perf_evsel *evsel, *events = NULL; 1519 u64 *id; 1520 void *buf = NULL; 1521 u32 nre, sz, nr, i, j; 1522 size_t msz; 1523 1524 /* number of events */ 1525 if (do_read_u32(ff, &nre)) 1526 goto error; 1527 1528 if (do_read_u32(ff, &sz)) 1529 goto error; 1530 1531 /* buffer to hold on file attr struct */ 1532 buf = malloc(sz); 1533 if (!buf) 1534 goto error; 1535 1536 /* the last event terminates with evsel->attr.size == 0: */ 1537 events = calloc(nre + 1, sizeof(*events)); 1538 if (!events) 1539 goto error; 1540 1541 msz = sizeof(evsel->attr); 1542 if (sz < msz) 1543 msz = sz; 1544 1545 for (i = 0, evsel = events; i < nre; evsel++, i++) { 1546 evsel->idx = i; 1547 1548 /* 1549 * must read entire on-file attr struct to 1550 * sync up with layout. 1551 */ 1552 if (__do_read(ff, buf, sz)) 1553 goto error; 1554 1555 if (ff->ph->needs_swap) 1556 perf_event__attr_swap(buf); 1557 1558 memcpy(&evsel->attr, buf, msz); 1559 1560 if (do_read_u32(ff, &nr)) 1561 goto error; 1562 1563 if (ff->ph->needs_swap) 1564 evsel->needs_swap = true; 1565 1566 evsel->name = do_read_string(ff); 1567 if (!evsel->name) 1568 goto error; 1569 1570 if (!nr) 1571 continue; 1572 1573 id = calloc(nr, sizeof(*id)); 1574 if (!id) 1575 goto error; 1576 evsel->ids = nr; 1577 evsel->id = id; 1578 1579 for (j = 0 ; j < nr; j++) { 1580 if (do_read_u64(ff, id)) 1581 goto error; 1582 id++; 1583 } 1584 } 1585 out: 1586 free(buf); 1587 return events; 1588 error: 1589 free_event_desc(events); 1590 events = NULL; 1591 goto out; 1592 } 1593 1594 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, 1595 void *priv __maybe_unused) 1596 { 1597 return fprintf(fp, ", %s = %s", name, val); 1598 } 1599 1600 static void print_event_desc(struct feat_fd *ff, FILE *fp) 1601 { 1602 struct perf_evsel *evsel, *events; 1603 u32 j; 1604 u64 *id; 1605 1606 if (ff->events) 1607 events = ff->events; 1608 else 1609 events = read_event_desc(ff); 1610 1611 if (!events) { 1612 fprintf(fp, "# event desc: not available or unable to read\n"); 1613 return; 1614 } 1615 1616 for (evsel = events; evsel->attr.size; evsel++) { 1617 fprintf(fp, "# event : name = %s, ", evsel->name); 1618 1619 if (evsel->ids) { 1620 fprintf(fp, ", id = {"); 1621 for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) { 1622 if (j) 1623 fputc(',', fp); 1624 fprintf(fp, " %"PRIu64, *id); 1625 } 1626 fprintf(fp, " }"); 1627 } 1628 1629 perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL); 1630 1631 fputc('\n', fp); 1632 } 1633 1634 free_event_desc(events); 1635 ff->events = NULL; 1636 } 1637 1638 static void print_total_mem(struct feat_fd *ff, FILE *fp) 1639 { 1640 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); 1641 } 1642 1643 static void print_numa_topology(struct feat_fd *ff, FILE *fp) 1644 { 1645 int i; 1646 struct numa_node *n; 1647 1648 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { 1649 n = &ff->ph->env.numa_nodes[i]; 1650 1651 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," 1652 " free = %"PRIu64" kB\n", 1653 n->node, n->mem_total, n->mem_free); 1654 1655 fprintf(fp, "# node%u cpu list : ", n->node); 1656 cpu_map__fprintf(n->map, fp); 1657 } 1658 } 1659 1660 static void print_cpuid(struct feat_fd *ff, FILE *fp) 1661 { 1662 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); 1663 } 1664 1665 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) 1666 { 1667 fprintf(fp, "# contains samples with branch stack\n"); 1668 } 1669 1670 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) 1671 { 1672 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); 1673 } 1674 1675 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) 1676 { 1677 fprintf(fp, "# contains stat data\n"); 1678 } 1679 1680 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) 1681 { 1682 int i; 1683 1684 fprintf(fp, "# CPU cache info:\n"); 1685 for (i = 0; i < ff->ph->env.caches_cnt; i++) { 1686 fprintf(fp, "# "); 1687 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); 1688 } 1689 } 1690 1691 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) 1692 { 1693 const char *delimiter = "# pmu mappings: "; 1694 char *str, *tmp; 1695 u32 pmu_num; 1696 u32 type; 1697 1698 pmu_num = ff->ph->env.nr_pmu_mappings; 1699 if (!pmu_num) { 1700 fprintf(fp, "# pmu mappings: not available\n"); 1701 return; 1702 } 1703 1704 str = ff->ph->env.pmu_mappings; 1705 1706 while (pmu_num) { 1707 type = strtoul(str, &tmp, 0); 1708 if (*tmp != ':') 1709 goto error; 1710 1711 str = tmp + 1; 1712 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); 1713 1714 delimiter = ", "; 1715 str += strlen(str) + 1; 1716 pmu_num--; 1717 } 1718 1719 fprintf(fp, "\n"); 1720 1721 if (!pmu_num) 1722 return; 1723 error: 1724 fprintf(fp, "# pmu mappings: unable to read\n"); 1725 } 1726 1727 static void print_group_desc(struct feat_fd *ff, FILE *fp) 1728 { 1729 struct perf_session *session; 1730 struct perf_evsel *evsel; 1731 u32 nr = 0; 1732 1733 session = container_of(ff->ph, struct perf_session, header); 1734 1735 evlist__for_each_entry(session->evlist, evsel) { 1736 if (perf_evsel__is_group_leader(evsel) && 1737 evsel->nr_members > 1) { 1738 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", 1739 perf_evsel__name(evsel)); 1740 1741 nr = evsel->nr_members - 1; 1742 } else if (nr) { 1743 fprintf(fp, ",%s", perf_evsel__name(evsel)); 1744 1745 if (--nr == 0) 1746 fprintf(fp, "}\n"); 1747 } 1748 } 1749 } 1750 1751 static void print_sample_time(struct feat_fd *ff, FILE *fp) 1752 { 1753 struct perf_session *session; 1754 char time_buf[32]; 1755 double d; 1756 1757 session = container_of(ff->ph, struct perf_session, header); 1758 1759 timestamp__scnprintf_usec(session->evlist->first_sample_time, 1760 time_buf, sizeof(time_buf)); 1761 fprintf(fp, "# time of first sample : %s\n", time_buf); 1762 1763 timestamp__scnprintf_usec(session->evlist->last_sample_time, 1764 time_buf, sizeof(time_buf)); 1765 fprintf(fp, "# time of last sample : %s\n", time_buf); 1766 1767 d = (double)(session->evlist->last_sample_time - 1768 session->evlist->first_sample_time) / NSEC_PER_MSEC; 1769 1770 fprintf(fp, "# sample duration : %10.3f ms\n", d); 1771 } 1772 1773 static void memory_node__fprintf(struct memory_node *n, 1774 unsigned long long bsize, FILE *fp) 1775 { 1776 char buf_map[100], buf_size[50]; 1777 unsigned long long size; 1778 1779 size = bsize * bitmap_weight(n->set, n->size); 1780 unit_number__scnprintf(buf_size, 50, size); 1781 1782 bitmap_scnprintf(n->set, n->size, buf_map, 100); 1783 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); 1784 } 1785 1786 static void print_mem_topology(struct feat_fd *ff, FILE *fp) 1787 { 1788 struct memory_node *nodes; 1789 int i, nr; 1790 1791 nodes = ff->ph->env.memory_nodes; 1792 nr = ff->ph->env.nr_memory_nodes; 1793 1794 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", 1795 nr, ff->ph->env.memory_bsize); 1796 1797 for (i = 0; i < nr; i++) { 1798 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp); 1799 } 1800 } 1801 1802 static int __event_process_build_id(struct build_id_event *bev, 1803 char *filename, 1804 struct perf_session *session) 1805 { 1806 int err = -1; 1807 struct machine *machine; 1808 u16 cpumode; 1809 struct dso *dso; 1810 enum dso_kernel_type dso_type; 1811 1812 machine = perf_session__findnew_machine(session, bev->pid); 1813 if (!machine) 1814 goto out; 1815 1816 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1817 1818 switch (cpumode) { 1819 case PERF_RECORD_MISC_KERNEL: 1820 dso_type = DSO_TYPE_KERNEL; 1821 break; 1822 case PERF_RECORD_MISC_GUEST_KERNEL: 1823 dso_type = DSO_TYPE_GUEST_KERNEL; 1824 break; 1825 case PERF_RECORD_MISC_USER: 1826 case PERF_RECORD_MISC_GUEST_USER: 1827 dso_type = DSO_TYPE_USER; 1828 break; 1829 default: 1830 goto out; 1831 } 1832 1833 dso = machine__findnew_dso(machine, filename); 1834 if (dso != NULL) { 1835 char sbuild_id[SBUILD_ID_SIZE]; 1836 1837 dso__set_build_id(dso, &bev->build_id); 1838 1839 if (dso_type != DSO_TYPE_USER) { 1840 struct kmod_path m = { .name = NULL, }; 1841 1842 if (!kmod_path__parse_name(&m, filename) && m.kmod) 1843 dso__set_module_info(dso, &m, machine); 1844 else 1845 dso->kernel = dso_type; 1846 1847 free(m.name); 1848 } 1849 1850 build_id__sprintf(dso->build_id, sizeof(dso->build_id), 1851 sbuild_id); 1852 pr_debug("build id event received for %s: %s\n", 1853 dso->long_name, sbuild_id); 1854 dso__put(dso); 1855 } 1856 1857 err = 0; 1858 out: 1859 return err; 1860 } 1861 1862 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, 1863 int input, u64 offset, u64 size) 1864 { 1865 struct perf_session *session = container_of(header, struct perf_session, header); 1866 struct { 1867 struct perf_event_header header; 1868 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; 1869 char filename[0]; 1870 } old_bev; 1871 struct build_id_event bev; 1872 char filename[PATH_MAX]; 1873 u64 limit = offset + size; 1874 1875 while (offset < limit) { 1876 ssize_t len; 1877 1878 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) 1879 return -1; 1880 1881 if (header->needs_swap) 1882 perf_event_header__bswap(&old_bev.header); 1883 1884 len = old_bev.header.size - sizeof(old_bev); 1885 if (readn(input, filename, len) != len) 1886 return -1; 1887 1888 bev.header = old_bev.header; 1889 1890 /* 1891 * As the pid is the missing value, we need to fill 1892 * it properly. The header.misc value give us nice hint. 1893 */ 1894 bev.pid = HOST_KERNEL_ID; 1895 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || 1896 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) 1897 bev.pid = DEFAULT_GUEST_KERNEL_ID; 1898 1899 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); 1900 __event_process_build_id(&bev, filename, session); 1901 1902 offset += bev.header.size; 1903 } 1904 1905 return 0; 1906 } 1907 1908 static int perf_header__read_build_ids(struct perf_header *header, 1909 int input, u64 offset, u64 size) 1910 { 1911 struct perf_session *session = container_of(header, struct perf_session, header); 1912 struct build_id_event bev; 1913 char filename[PATH_MAX]; 1914 u64 limit = offset + size, orig_offset = offset; 1915 int err = -1; 1916 1917 while (offset < limit) { 1918 ssize_t len; 1919 1920 if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) 1921 goto out; 1922 1923 if (header->needs_swap) 1924 perf_event_header__bswap(&bev.header); 1925 1926 len = bev.header.size - sizeof(bev); 1927 if (readn(input, filename, len) != len) 1928 goto out; 1929 /* 1930 * The a1645ce1 changeset: 1931 * 1932 * "perf: 'perf kvm' tool for monitoring guest performance from host" 1933 * 1934 * Added a field to struct build_id_event that broke the file 1935 * format. 1936 * 1937 * Since the kernel build-id is the first entry, process the 1938 * table using the old format if the well known 1939 * '[kernel.kallsyms]' string for the kernel build-id has the 1940 * first 4 characters chopped off (where the pid_t sits). 1941 */ 1942 if (memcmp(filename, "nel.kallsyms]", 13) == 0) { 1943 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) 1944 return -1; 1945 return perf_header__read_build_ids_abi_quirk(header, input, offset, size); 1946 } 1947 1948 __event_process_build_id(&bev, filename, session); 1949 1950 offset += bev.header.size; 1951 } 1952 err = 0; 1953 out: 1954 return err; 1955 } 1956 1957 /* Macro for features that simply need to read and store a string. */ 1958 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ 1959 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ 1960 {\ 1961 ff->ph->env.__feat_env = do_read_string(ff); \ 1962 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ 1963 } 1964 1965 FEAT_PROCESS_STR_FUN(hostname, hostname); 1966 FEAT_PROCESS_STR_FUN(osrelease, os_release); 1967 FEAT_PROCESS_STR_FUN(version, version); 1968 FEAT_PROCESS_STR_FUN(arch, arch); 1969 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); 1970 FEAT_PROCESS_STR_FUN(cpuid, cpuid); 1971 1972 static int process_tracing_data(struct feat_fd *ff, void *data) 1973 { 1974 ssize_t ret = trace_report(ff->fd, data, false); 1975 1976 return ret < 0 ? -1 : 0; 1977 } 1978 1979 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) 1980 { 1981 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) 1982 pr_debug("Failed to read buildids, continuing...\n"); 1983 return 0; 1984 } 1985 1986 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) 1987 { 1988 int ret; 1989 u32 nr_cpus_avail, nr_cpus_online; 1990 1991 ret = do_read_u32(ff, &nr_cpus_avail); 1992 if (ret) 1993 return ret; 1994 1995 ret = do_read_u32(ff, &nr_cpus_online); 1996 if (ret) 1997 return ret; 1998 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail; 1999 ff->ph->env.nr_cpus_online = (int)nr_cpus_online; 2000 return 0; 2001 } 2002 2003 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) 2004 { 2005 u64 total_mem; 2006 int ret; 2007 2008 ret = do_read_u64(ff, &total_mem); 2009 if (ret) 2010 return -1; 2011 ff->ph->env.total_mem = (unsigned long long)total_mem; 2012 return 0; 2013 } 2014 2015 static struct perf_evsel * 2016 perf_evlist__find_by_index(struct perf_evlist *evlist, int idx) 2017 { 2018 struct perf_evsel *evsel; 2019 2020 evlist__for_each_entry(evlist, evsel) { 2021 if (evsel->idx == idx) 2022 return evsel; 2023 } 2024 2025 return NULL; 2026 } 2027 2028 static void 2029 perf_evlist__set_event_name(struct perf_evlist *evlist, 2030 struct perf_evsel *event) 2031 { 2032 struct perf_evsel *evsel; 2033 2034 if (!event->name) 2035 return; 2036 2037 evsel = perf_evlist__find_by_index(evlist, event->idx); 2038 if (!evsel) 2039 return; 2040 2041 if (evsel->name) 2042 return; 2043 2044 evsel->name = strdup(event->name); 2045 } 2046 2047 static int 2048 process_event_desc(struct feat_fd *ff, void *data __maybe_unused) 2049 { 2050 struct perf_session *session; 2051 struct perf_evsel *evsel, *events = read_event_desc(ff); 2052 2053 if (!events) 2054 return 0; 2055 2056 session = container_of(ff->ph, struct perf_session, header); 2057 2058 if (session->data->is_pipe) { 2059 /* Save events for reading later by print_event_desc, 2060 * since they can't be read again in pipe mode. */ 2061 ff->events = events; 2062 } 2063 2064 for (evsel = events; evsel->attr.size; evsel++) 2065 perf_evlist__set_event_name(session->evlist, evsel); 2066 2067 if (!session->data->is_pipe) 2068 free_event_desc(events); 2069 2070 return 0; 2071 } 2072 2073 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) 2074 { 2075 char *str, *cmdline = NULL, **argv = NULL; 2076 u32 nr, i, len = 0; 2077 2078 if (do_read_u32(ff, &nr)) 2079 return -1; 2080 2081 ff->ph->env.nr_cmdline = nr; 2082 2083 cmdline = zalloc(ff->size + nr + 1); 2084 if (!cmdline) 2085 return -1; 2086 2087 argv = zalloc(sizeof(char *) * (nr + 1)); 2088 if (!argv) 2089 goto error; 2090 2091 for (i = 0; i < nr; i++) { 2092 str = do_read_string(ff); 2093 if (!str) 2094 goto error; 2095 2096 argv[i] = cmdline + len; 2097 memcpy(argv[i], str, strlen(str) + 1); 2098 len += strlen(str) + 1; 2099 free(str); 2100 } 2101 ff->ph->env.cmdline = cmdline; 2102 ff->ph->env.cmdline_argv = (const char **) argv; 2103 return 0; 2104 2105 error: 2106 free(argv); 2107 free(cmdline); 2108 return -1; 2109 } 2110 2111 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) 2112 { 2113 u32 nr, i; 2114 char *str; 2115 struct strbuf sb; 2116 int cpu_nr = ff->ph->env.nr_cpus_avail; 2117 u64 size = 0; 2118 struct perf_header *ph = ff->ph; 2119 bool do_core_id_test = true; 2120 2121 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu)); 2122 if (!ph->env.cpu) 2123 return -1; 2124 2125 if (do_read_u32(ff, &nr)) 2126 goto free_cpu; 2127 2128 ph->env.nr_sibling_cores = nr; 2129 size += sizeof(u32); 2130 if (strbuf_init(&sb, 128) < 0) 2131 goto free_cpu; 2132 2133 for (i = 0; i < nr; i++) { 2134 str = do_read_string(ff); 2135 if (!str) 2136 goto error; 2137 2138 /* include a NULL character at the end */ 2139 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2140 goto error; 2141 size += string_size(str); 2142 free(str); 2143 } 2144 ph->env.sibling_cores = strbuf_detach(&sb, NULL); 2145 2146 if (do_read_u32(ff, &nr)) 2147 return -1; 2148 2149 ph->env.nr_sibling_threads = nr; 2150 size += sizeof(u32); 2151 2152 for (i = 0; i < nr; i++) { 2153 str = do_read_string(ff); 2154 if (!str) 2155 goto error; 2156 2157 /* include a NULL character at the end */ 2158 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2159 goto error; 2160 size += string_size(str); 2161 free(str); 2162 } 2163 ph->env.sibling_threads = strbuf_detach(&sb, NULL); 2164 2165 /* 2166 * The header may be from old perf, 2167 * which doesn't include core id and socket id information. 2168 */ 2169 if (ff->size <= size) { 2170 zfree(&ph->env.cpu); 2171 return 0; 2172 } 2173 2174 /* On s390 the socket_id number is not related to the numbers of cpus. 2175 * The socket_id number might be higher than the numbers of cpus. 2176 * This depends on the configuration. 2177 */ 2178 if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4)) 2179 do_core_id_test = false; 2180 2181 for (i = 0; i < (u32)cpu_nr; i++) { 2182 if (do_read_u32(ff, &nr)) 2183 goto free_cpu; 2184 2185 ph->env.cpu[i].core_id = nr; 2186 2187 if (do_read_u32(ff, &nr)) 2188 goto free_cpu; 2189 2190 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) { 2191 pr_debug("socket_id number is too big." 2192 "You may need to upgrade the perf tool.\n"); 2193 goto free_cpu; 2194 } 2195 2196 ph->env.cpu[i].socket_id = nr; 2197 } 2198 2199 return 0; 2200 2201 error: 2202 strbuf_release(&sb); 2203 free_cpu: 2204 zfree(&ph->env.cpu); 2205 return -1; 2206 } 2207 2208 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) 2209 { 2210 struct numa_node *nodes, *n; 2211 u32 nr, i; 2212 char *str; 2213 2214 /* nr nodes */ 2215 if (do_read_u32(ff, &nr)) 2216 return -1; 2217 2218 nodes = zalloc(sizeof(*nodes) * nr); 2219 if (!nodes) 2220 return -ENOMEM; 2221 2222 for (i = 0; i < nr; i++) { 2223 n = &nodes[i]; 2224 2225 /* node number */ 2226 if (do_read_u32(ff, &n->node)) 2227 goto error; 2228 2229 if (do_read_u64(ff, &n->mem_total)) 2230 goto error; 2231 2232 if (do_read_u64(ff, &n->mem_free)) 2233 goto error; 2234 2235 str = do_read_string(ff); 2236 if (!str) 2237 goto error; 2238 2239 n->map = cpu_map__new(str); 2240 if (!n->map) 2241 goto error; 2242 2243 free(str); 2244 } 2245 ff->ph->env.nr_numa_nodes = nr; 2246 ff->ph->env.numa_nodes = nodes; 2247 return 0; 2248 2249 error: 2250 free(nodes); 2251 return -1; 2252 } 2253 2254 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) 2255 { 2256 char *name; 2257 u32 pmu_num; 2258 u32 type; 2259 struct strbuf sb; 2260 2261 if (do_read_u32(ff, &pmu_num)) 2262 return -1; 2263 2264 if (!pmu_num) { 2265 pr_debug("pmu mappings not available\n"); 2266 return 0; 2267 } 2268 2269 ff->ph->env.nr_pmu_mappings = pmu_num; 2270 if (strbuf_init(&sb, 128) < 0) 2271 return -1; 2272 2273 while (pmu_num) { 2274 if (do_read_u32(ff, &type)) 2275 goto error; 2276 2277 name = do_read_string(ff); 2278 if (!name) 2279 goto error; 2280 2281 if (strbuf_addf(&sb, "%u:%s", type, name) < 0) 2282 goto error; 2283 /* include a NULL character at the end */ 2284 if (strbuf_add(&sb, "", 1) < 0) 2285 goto error; 2286 2287 if (!strcmp(name, "msr")) 2288 ff->ph->env.msr_pmu_type = type; 2289 2290 free(name); 2291 pmu_num--; 2292 } 2293 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL); 2294 return 0; 2295 2296 error: 2297 strbuf_release(&sb); 2298 return -1; 2299 } 2300 2301 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) 2302 { 2303 size_t ret = -1; 2304 u32 i, nr, nr_groups; 2305 struct perf_session *session; 2306 struct perf_evsel *evsel, *leader = NULL; 2307 struct group_desc { 2308 char *name; 2309 u32 leader_idx; 2310 u32 nr_members; 2311 } *desc; 2312 2313 if (do_read_u32(ff, &nr_groups)) 2314 return -1; 2315 2316 ff->ph->env.nr_groups = nr_groups; 2317 if (!nr_groups) { 2318 pr_debug("group desc not available\n"); 2319 return 0; 2320 } 2321 2322 desc = calloc(nr_groups, sizeof(*desc)); 2323 if (!desc) 2324 return -1; 2325 2326 for (i = 0; i < nr_groups; i++) { 2327 desc[i].name = do_read_string(ff); 2328 if (!desc[i].name) 2329 goto out_free; 2330 2331 if (do_read_u32(ff, &desc[i].leader_idx)) 2332 goto out_free; 2333 2334 if (do_read_u32(ff, &desc[i].nr_members)) 2335 goto out_free; 2336 } 2337 2338 /* 2339 * Rebuild group relationship based on the group_desc 2340 */ 2341 session = container_of(ff->ph, struct perf_session, header); 2342 session->evlist->nr_groups = nr_groups; 2343 2344 i = nr = 0; 2345 evlist__for_each_entry(session->evlist, evsel) { 2346 if (evsel->idx == (int) desc[i].leader_idx) { 2347 evsel->leader = evsel; 2348 /* {anon_group} is a dummy name */ 2349 if (strcmp(desc[i].name, "{anon_group}")) { 2350 evsel->group_name = desc[i].name; 2351 desc[i].name = NULL; 2352 } 2353 evsel->nr_members = desc[i].nr_members; 2354 2355 if (i >= nr_groups || nr > 0) { 2356 pr_debug("invalid group desc\n"); 2357 goto out_free; 2358 } 2359 2360 leader = evsel; 2361 nr = evsel->nr_members - 1; 2362 i++; 2363 } else if (nr) { 2364 /* This is a group member */ 2365 evsel->leader = leader; 2366 2367 nr--; 2368 } 2369 } 2370 2371 if (i != nr_groups || nr != 0) { 2372 pr_debug("invalid group desc\n"); 2373 goto out_free; 2374 } 2375 2376 ret = 0; 2377 out_free: 2378 for (i = 0; i < nr_groups; i++) 2379 zfree(&desc[i].name); 2380 free(desc); 2381 2382 return ret; 2383 } 2384 2385 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) 2386 { 2387 struct perf_session *session; 2388 int err; 2389 2390 session = container_of(ff->ph, struct perf_session, header); 2391 2392 err = auxtrace_index__process(ff->fd, ff->size, session, 2393 ff->ph->needs_swap); 2394 if (err < 0) 2395 pr_err("Failed to process auxtrace index\n"); 2396 return err; 2397 } 2398 2399 static int process_cache(struct feat_fd *ff, void *data __maybe_unused) 2400 { 2401 struct cpu_cache_level *caches; 2402 u32 cnt, i, version; 2403 2404 if (do_read_u32(ff, &version)) 2405 return -1; 2406 2407 if (version != 1) 2408 return -1; 2409 2410 if (do_read_u32(ff, &cnt)) 2411 return -1; 2412 2413 caches = zalloc(sizeof(*caches) * cnt); 2414 if (!caches) 2415 return -1; 2416 2417 for (i = 0; i < cnt; i++) { 2418 struct cpu_cache_level c; 2419 2420 #define _R(v) \ 2421 if (do_read_u32(ff, &c.v))\ 2422 goto out_free_caches; \ 2423 2424 _R(level) 2425 _R(line_size) 2426 _R(sets) 2427 _R(ways) 2428 #undef _R 2429 2430 #define _R(v) \ 2431 c.v = do_read_string(ff); \ 2432 if (!c.v) \ 2433 goto out_free_caches; 2434 2435 _R(type) 2436 _R(size) 2437 _R(map) 2438 #undef _R 2439 2440 caches[i] = c; 2441 } 2442 2443 ff->ph->env.caches = caches; 2444 ff->ph->env.caches_cnt = cnt; 2445 return 0; 2446 out_free_caches: 2447 free(caches); 2448 return -1; 2449 } 2450 2451 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) 2452 { 2453 struct perf_session *session; 2454 u64 first_sample_time, last_sample_time; 2455 int ret; 2456 2457 session = container_of(ff->ph, struct perf_session, header); 2458 2459 ret = do_read_u64(ff, &first_sample_time); 2460 if (ret) 2461 return -1; 2462 2463 ret = do_read_u64(ff, &last_sample_time); 2464 if (ret) 2465 return -1; 2466 2467 session->evlist->first_sample_time = first_sample_time; 2468 session->evlist->last_sample_time = last_sample_time; 2469 return 0; 2470 } 2471 2472 static int process_mem_topology(struct feat_fd *ff, 2473 void *data __maybe_unused) 2474 { 2475 struct memory_node *nodes; 2476 u64 version, i, nr, bsize; 2477 int ret = -1; 2478 2479 if (do_read_u64(ff, &version)) 2480 return -1; 2481 2482 if (version != 1) 2483 return -1; 2484 2485 if (do_read_u64(ff, &bsize)) 2486 return -1; 2487 2488 if (do_read_u64(ff, &nr)) 2489 return -1; 2490 2491 nodes = zalloc(sizeof(*nodes) * nr); 2492 if (!nodes) 2493 return -1; 2494 2495 for (i = 0; i < nr; i++) { 2496 struct memory_node n; 2497 2498 #define _R(v) \ 2499 if (do_read_u64(ff, &n.v)) \ 2500 goto out; \ 2501 2502 _R(node) 2503 _R(size) 2504 2505 #undef _R 2506 2507 if (do_read_bitmap(ff, &n.set, &n.size)) 2508 goto out; 2509 2510 nodes[i] = n; 2511 } 2512 2513 ff->ph->env.memory_bsize = bsize; 2514 ff->ph->env.memory_nodes = nodes; 2515 ff->ph->env.nr_memory_nodes = nr; 2516 ret = 0; 2517 2518 out: 2519 if (ret) 2520 free(nodes); 2521 return ret; 2522 } 2523 2524 static int process_clockid(struct feat_fd *ff, 2525 void *data __maybe_unused) 2526 { 2527 if (do_read_u64(ff, &ff->ph->env.clockid_res_ns)) 2528 return -1; 2529 2530 return 0; 2531 } 2532 2533 static int process_dir_format(struct feat_fd *ff, 2534 void *_data __maybe_unused) 2535 { 2536 struct perf_session *session; 2537 struct perf_data *data; 2538 2539 session = container_of(ff->ph, struct perf_session, header); 2540 data = session->data; 2541 2542 if (WARN_ON(!perf_data__is_dir(data))) 2543 return -1; 2544 2545 return do_read_u64(ff, &data->dir.version); 2546 } 2547 2548 #ifdef HAVE_LIBBPF_SUPPORT 2549 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused) 2550 { 2551 struct bpf_prog_info_linear *info_linear; 2552 struct bpf_prog_info_node *info_node; 2553 struct perf_env *env = &ff->ph->env; 2554 u32 count, i; 2555 int err = -1; 2556 2557 if (ff->ph->needs_swap) { 2558 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n"); 2559 return 0; 2560 } 2561 2562 if (do_read_u32(ff, &count)) 2563 return -1; 2564 2565 down_write(&env->bpf_progs.lock); 2566 2567 for (i = 0; i < count; ++i) { 2568 u32 info_len, data_len; 2569 2570 info_linear = NULL; 2571 info_node = NULL; 2572 if (do_read_u32(ff, &info_len)) 2573 goto out; 2574 if (do_read_u32(ff, &data_len)) 2575 goto out; 2576 2577 if (info_len > sizeof(struct bpf_prog_info)) { 2578 pr_warning("detected invalid bpf_prog_info\n"); 2579 goto out; 2580 } 2581 2582 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + 2583 data_len); 2584 if (!info_linear) 2585 goto out; 2586 info_linear->info_len = sizeof(struct bpf_prog_info); 2587 info_linear->data_len = data_len; 2588 if (do_read_u64(ff, (u64 *)(&info_linear->arrays))) 2589 goto out; 2590 if (__do_read(ff, &info_linear->info, info_len)) 2591 goto out; 2592 if (info_len < sizeof(struct bpf_prog_info)) 2593 memset(((void *)(&info_linear->info)) + info_len, 0, 2594 sizeof(struct bpf_prog_info) - info_len); 2595 2596 if (__do_read(ff, info_linear->data, data_len)) 2597 goto out; 2598 2599 info_node = malloc(sizeof(struct bpf_prog_info_node)); 2600 if (!info_node) 2601 goto out; 2602 2603 /* after reading from file, translate offset to address */ 2604 bpf_program__bpil_offs_to_addr(info_linear); 2605 info_node->info_linear = info_linear; 2606 perf_env__insert_bpf_prog_info(env, info_node); 2607 } 2608 2609 up_write(&env->bpf_progs.lock); 2610 return 0; 2611 out: 2612 free(info_linear); 2613 free(info_node); 2614 up_write(&env->bpf_progs.lock); 2615 return err; 2616 } 2617 #else // HAVE_LIBBPF_SUPPORT 2618 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused) 2619 { 2620 return 0; 2621 } 2622 #endif // HAVE_LIBBPF_SUPPORT 2623 2624 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused) 2625 { 2626 struct perf_env *env = &ff->ph->env; 2627 struct btf_node *node = NULL; 2628 u32 count, i; 2629 int err = -1; 2630 2631 if (ff->ph->needs_swap) { 2632 pr_warning("interpreting btf from systems with endianity is not yet supported\n"); 2633 return 0; 2634 } 2635 2636 if (do_read_u32(ff, &count)) 2637 return -1; 2638 2639 down_write(&env->bpf_progs.lock); 2640 2641 for (i = 0; i < count; ++i) { 2642 u32 id, data_size; 2643 2644 if (do_read_u32(ff, &id)) 2645 goto out; 2646 if (do_read_u32(ff, &data_size)) 2647 goto out; 2648 2649 node = malloc(sizeof(struct btf_node) + data_size); 2650 if (!node) 2651 goto out; 2652 2653 node->id = id; 2654 node->data_size = data_size; 2655 2656 if (__do_read(ff, node->data, data_size)) 2657 goto out; 2658 2659 perf_env__insert_btf(env, node); 2660 node = NULL; 2661 } 2662 2663 err = 0; 2664 out: 2665 up_write(&env->bpf_progs.lock); 2666 free(node); 2667 return err; 2668 } 2669 2670 struct feature_ops { 2671 int (*write)(struct feat_fd *ff, struct perf_evlist *evlist); 2672 void (*print)(struct feat_fd *ff, FILE *fp); 2673 int (*process)(struct feat_fd *ff, void *data); 2674 const char *name; 2675 bool full_only; 2676 bool synthesize; 2677 }; 2678 2679 #define FEAT_OPR(n, func, __full_only) \ 2680 [HEADER_##n] = { \ 2681 .name = __stringify(n), \ 2682 .write = write_##func, \ 2683 .print = print_##func, \ 2684 .full_only = __full_only, \ 2685 .process = process_##func, \ 2686 .synthesize = true \ 2687 } 2688 2689 #define FEAT_OPN(n, func, __full_only) \ 2690 [HEADER_##n] = { \ 2691 .name = __stringify(n), \ 2692 .write = write_##func, \ 2693 .print = print_##func, \ 2694 .full_only = __full_only, \ 2695 .process = process_##func \ 2696 } 2697 2698 /* feature_ops not implemented: */ 2699 #define print_tracing_data NULL 2700 #define print_build_id NULL 2701 2702 #define process_branch_stack NULL 2703 #define process_stat NULL 2704 2705 2706 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = { 2707 FEAT_OPN(TRACING_DATA, tracing_data, false), 2708 FEAT_OPN(BUILD_ID, build_id, false), 2709 FEAT_OPR(HOSTNAME, hostname, false), 2710 FEAT_OPR(OSRELEASE, osrelease, false), 2711 FEAT_OPR(VERSION, version, false), 2712 FEAT_OPR(ARCH, arch, false), 2713 FEAT_OPR(NRCPUS, nrcpus, false), 2714 FEAT_OPR(CPUDESC, cpudesc, false), 2715 FEAT_OPR(CPUID, cpuid, false), 2716 FEAT_OPR(TOTAL_MEM, total_mem, false), 2717 FEAT_OPR(EVENT_DESC, event_desc, false), 2718 FEAT_OPR(CMDLINE, cmdline, false), 2719 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), 2720 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), 2721 FEAT_OPN(BRANCH_STACK, branch_stack, false), 2722 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), 2723 FEAT_OPR(GROUP_DESC, group_desc, false), 2724 FEAT_OPN(AUXTRACE, auxtrace, false), 2725 FEAT_OPN(STAT, stat, false), 2726 FEAT_OPN(CACHE, cache, true), 2727 FEAT_OPR(SAMPLE_TIME, sample_time, false), 2728 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), 2729 FEAT_OPR(CLOCKID, clockid, false), 2730 FEAT_OPN(DIR_FORMAT, dir_format, false), 2731 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false), 2732 FEAT_OPR(BPF_BTF, bpf_btf, false), 2733 }; 2734 2735 struct header_print_data { 2736 FILE *fp; 2737 bool full; /* extended list of headers */ 2738 }; 2739 2740 static int perf_file_section__fprintf_info(struct perf_file_section *section, 2741 struct perf_header *ph, 2742 int feat, int fd, void *data) 2743 { 2744 struct header_print_data *hd = data; 2745 struct feat_fd ff; 2746 2747 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 2748 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 2749 "%d, continuing...\n", section->offset, feat); 2750 return 0; 2751 } 2752 if (feat >= HEADER_LAST_FEATURE) { 2753 pr_warning("unknown feature %d\n", feat); 2754 return 0; 2755 } 2756 if (!feat_ops[feat].print) 2757 return 0; 2758 2759 ff = (struct feat_fd) { 2760 .fd = fd, 2761 .ph = ph, 2762 }; 2763 2764 if (!feat_ops[feat].full_only || hd->full) 2765 feat_ops[feat].print(&ff, hd->fp); 2766 else 2767 fprintf(hd->fp, "# %s info available, use -I to display\n", 2768 feat_ops[feat].name); 2769 2770 return 0; 2771 } 2772 2773 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) 2774 { 2775 struct header_print_data hd; 2776 struct perf_header *header = &session->header; 2777 int fd = perf_data__fd(session->data); 2778 struct stat st; 2779 time_t stctime; 2780 int ret, bit; 2781 2782 hd.fp = fp; 2783 hd.full = full; 2784 2785 ret = fstat(fd, &st); 2786 if (ret == -1) 2787 return -1; 2788 2789 stctime = st.st_ctime; 2790 fprintf(fp, "# captured on : %s", ctime(&stctime)); 2791 2792 fprintf(fp, "# header version : %u\n", header->version); 2793 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); 2794 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); 2795 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); 2796 2797 perf_header__process_sections(header, fd, &hd, 2798 perf_file_section__fprintf_info); 2799 2800 if (session->data->is_pipe) 2801 return 0; 2802 2803 fprintf(fp, "# missing features: "); 2804 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { 2805 if (bit) 2806 fprintf(fp, "%s ", feat_ops[bit].name); 2807 } 2808 2809 fprintf(fp, "\n"); 2810 return 0; 2811 } 2812 2813 static int do_write_feat(struct feat_fd *ff, int type, 2814 struct perf_file_section **p, 2815 struct perf_evlist *evlist) 2816 { 2817 int err; 2818 int ret = 0; 2819 2820 if (perf_header__has_feat(ff->ph, type)) { 2821 if (!feat_ops[type].write) 2822 return -1; 2823 2824 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 2825 return -1; 2826 2827 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); 2828 2829 err = feat_ops[type].write(ff, evlist); 2830 if (err < 0) { 2831 pr_debug("failed to write feature %s\n", feat_ops[type].name); 2832 2833 /* undo anything written */ 2834 lseek(ff->fd, (*p)->offset, SEEK_SET); 2835 2836 return -1; 2837 } 2838 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; 2839 (*p)++; 2840 } 2841 return ret; 2842 } 2843 2844 static int perf_header__adds_write(struct perf_header *header, 2845 struct perf_evlist *evlist, int fd) 2846 { 2847 int nr_sections; 2848 struct feat_fd ff; 2849 struct perf_file_section *feat_sec, *p; 2850 int sec_size; 2851 u64 sec_start; 2852 int feat; 2853 int err; 2854 2855 ff = (struct feat_fd){ 2856 .fd = fd, 2857 .ph = header, 2858 }; 2859 2860 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 2861 if (!nr_sections) 2862 return 0; 2863 2864 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); 2865 if (feat_sec == NULL) 2866 return -ENOMEM; 2867 2868 sec_size = sizeof(*feat_sec) * nr_sections; 2869 2870 sec_start = header->feat_offset; 2871 lseek(fd, sec_start + sec_size, SEEK_SET); 2872 2873 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 2874 if (do_write_feat(&ff, feat, &p, evlist)) 2875 perf_header__clear_feat(header, feat); 2876 } 2877 2878 lseek(fd, sec_start, SEEK_SET); 2879 /* 2880 * may write more than needed due to dropped feature, but 2881 * this is okay, reader will skip the missing entries 2882 */ 2883 err = do_write(&ff, feat_sec, sec_size); 2884 if (err < 0) 2885 pr_debug("failed to write feature section\n"); 2886 free(feat_sec); 2887 return err; 2888 } 2889 2890 int perf_header__write_pipe(int fd) 2891 { 2892 struct perf_pipe_file_header f_header; 2893 struct feat_fd ff; 2894 int err; 2895 2896 ff = (struct feat_fd){ .fd = fd }; 2897 2898 f_header = (struct perf_pipe_file_header){ 2899 .magic = PERF_MAGIC, 2900 .size = sizeof(f_header), 2901 }; 2902 2903 err = do_write(&ff, &f_header, sizeof(f_header)); 2904 if (err < 0) { 2905 pr_debug("failed to write perf pipe header\n"); 2906 return err; 2907 } 2908 2909 return 0; 2910 } 2911 2912 int perf_session__write_header(struct perf_session *session, 2913 struct perf_evlist *evlist, 2914 int fd, bool at_exit) 2915 { 2916 struct perf_file_header f_header; 2917 struct perf_file_attr f_attr; 2918 struct perf_header *header = &session->header; 2919 struct perf_evsel *evsel; 2920 struct feat_fd ff; 2921 u64 attr_offset; 2922 int err; 2923 2924 ff = (struct feat_fd){ .fd = fd}; 2925 lseek(fd, sizeof(f_header), SEEK_SET); 2926 2927 evlist__for_each_entry(session->evlist, evsel) { 2928 evsel->id_offset = lseek(fd, 0, SEEK_CUR); 2929 err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64)); 2930 if (err < 0) { 2931 pr_debug("failed to write perf header\n"); 2932 return err; 2933 } 2934 } 2935 2936 attr_offset = lseek(ff.fd, 0, SEEK_CUR); 2937 2938 evlist__for_each_entry(evlist, evsel) { 2939 f_attr = (struct perf_file_attr){ 2940 .attr = evsel->attr, 2941 .ids = { 2942 .offset = evsel->id_offset, 2943 .size = evsel->ids * sizeof(u64), 2944 } 2945 }; 2946 err = do_write(&ff, &f_attr, sizeof(f_attr)); 2947 if (err < 0) { 2948 pr_debug("failed to write perf header attribute\n"); 2949 return err; 2950 } 2951 } 2952 2953 if (!header->data_offset) 2954 header->data_offset = lseek(fd, 0, SEEK_CUR); 2955 header->feat_offset = header->data_offset + header->data_size; 2956 2957 if (at_exit) { 2958 err = perf_header__adds_write(header, evlist, fd); 2959 if (err < 0) 2960 return err; 2961 } 2962 2963 f_header = (struct perf_file_header){ 2964 .magic = PERF_MAGIC, 2965 .size = sizeof(f_header), 2966 .attr_size = sizeof(f_attr), 2967 .attrs = { 2968 .offset = attr_offset, 2969 .size = evlist->nr_entries * sizeof(f_attr), 2970 }, 2971 .data = { 2972 .offset = header->data_offset, 2973 .size = header->data_size, 2974 }, 2975 /* event_types is ignored, store zeros */ 2976 }; 2977 2978 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); 2979 2980 lseek(fd, 0, SEEK_SET); 2981 err = do_write(&ff, &f_header, sizeof(f_header)); 2982 if (err < 0) { 2983 pr_debug("failed to write perf header\n"); 2984 return err; 2985 } 2986 lseek(fd, header->data_offset + header->data_size, SEEK_SET); 2987 2988 return 0; 2989 } 2990 2991 static int perf_header__getbuffer64(struct perf_header *header, 2992 int fd, void *buf, size_t size) 2993 { 2994 if (readn(fd, buf, size) <= 0) 2995 return -1; 2996 2997 if (header->needs_swap) 2998 mem_bswap_64(buf, size); 2999 3000 return 0; 3001 } 3002 3003 int perf_header__process_sections(struct perf_header *header, int fd, 3004 void *data, 3005 int (*process)(struct perf_file_section *section, 3006 struct perf_header *ph, 3007 int feat, int fd, void *data)) 3008 { 3009 struct perf_file_section *feat_sec, *sec; 3010 int nr_sections; 3011 int sec_size; 3012 int feat; 3013 int err; 3014 3015 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3016 if (!nr_sections) 3017 return 0; 3018 3019 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); 3020 if (!feat_sec) 3021 return -1; 3022 3023 sec_size = sizeof(*feat_sec) * nr_sections; 3024 3025 lseek(fd, header->feat_offset, SEEK_SET); 3026 3027 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); 3028 if (err < 0) 3029 goto out_free; 3030 3031 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { 3032 err = process(sec++, header, feat, fd, data); 3033 if (err < 0) 3034 goto out_free; 3035 } 3036 err = 0; 3037 out_free: 3038 free(feat_sec); 3039 return err; 3040 } 3041 3042 static const int attr_file_abi_sizes[] = { 3043 [0] = PERF_ATTR_SIZE_VER0, 3044 [1] = PERF_ATTR_SIZE_VER1, 3045 [2] = PERF_ATTR_SIZE_VER2, 3046 [3] = PERF_ATTR_SIZE_VER3, 3047 [4] = PERF_ATTR_SIZE_VER4, 3048 0, 3049 }; 3050 3051 /* 3052 * In the legacy file format, the magic number is not used to encode endianness. 3053 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based 3054 * on ABI revisions, we need to try all combinations for all endianness to 3055 * detect the endianness. 3056 */ 3057 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) 3058 { 3059 uint64_t ref_size, attr_size; 3060 int i; 3061 3062 for (i = 0 ; attr_file_abi_sizes[i]; i++) { 3063 ref_size = attr_file_abi_sizes[i] 3064 + sizeof(struct perf_file_section); 3065 if (hdr_sz != ref_size) { 3066 attr_size = bswap_64(hdr_sz); 3067 if (attr_size != ref_size) 3068 continue; 3069 3070 ph->needs_swap = true; 3071 } 3072 pr_debug("ABI%d perf.data file detected, need_swap=%d\n", 3073 i, 3074 ph->needs_swap); 3075 return 0; 3076 } 3077 /* could not determine endianness */ 3078 return -1; 3079 } 3080 3081 #define PERF_PIPE_HDR_VER0 16 3082 3083 static const size_t attr_pipe_abi_sizes[] = { 3084 [0] = PERF_PIPE_HDR_VER0, 3085 0, 3086 }; 3087 3088 /* 3089 * In the legacy pipe format, there is an implicit assumption that endiannesss 3090 * between host recording the samples, and host parsing the samples is the 3091 * same. This is not always the case given that the pipe output may always be 3092 * redirected into a file and analyzed on a different machine with possibly a 3093 * different endianness and perf_event ABI revsions in the perf tool itself. 3094 */ 3095 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) 3096 { 3097 u64 attr_size; 3098 int i; 3099 3100 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { 3101 if (hdr_sz != attr_pipe_abi_sizes[i]) { 3102 attr_size = bswap_64(hdr_sz); 3103 if (attr_size != hdr_sz) 3104 continue; 3105 3106 ph->needs_swap = true; 3107 } 3108 pr_debug("Pipe ABI%d perf.data file detected\n", i); 3109 return 0; 3110 } 3111 return -1; 3112 } 3113 3114 bool is_perf_magic(u64 magic) 3115 { 3116 if (!memcmp(&magic, __perf_magic1, sizeof(magic)) 3117 || magic == __perf_magic2 3118 || magic == __perf_magic2_sw) 3119 return true; 3120 3121 return false; 3122 } 3123 3124 static int check_magic_endian(u64 magic, uint64_t hdr_sz, 3125 bool is_pipe, struct perf_header *ph) 3126 { 3127 int ret; 3128 3129 /* check for legacy format */ 3130 ret = memcmp(&magic, __perf_magic1, sizeof(magic)); 3131 if (ret == 0) { 3132 ph->version = PERF_HEADER_VERSION_1; 3133 pr_debug("legacy perf.data format\n"); 3134 if (is_pipe) 3135 return try_all_pipe_abis(hdr_sz, ph); 3136 3137 return try_all_file_abis(hdr_sz, ph); 3138 } 3139 /* 3140 * the new magic number serves two purposes: 3141 * - unique number to identify actual perf.data files 3142 * - encode endianness of file 3143 */ 3144 ph->version = PERF_HEADER_VERSION_2; 3145 3146 /* check magic number with one endianness */ 3147 if (magic == __perf_magic2) 3148 return 0; 3149 3150 /* check magic number with opposite endianness */ 3151 if (magic != __perf_magic2_sw) 3152 return -1; 3153 3154 ph->needs_swap = true; 3155 3156 return 0; 3157 } 3158 3159 int perf_file_header__read(struct perf_file_header *header, 3160 struct perf_header *ph, int fd) 3161 { 3162 ssize_t ret; 3163 3164 lseek(fd, 0, SEEK_SET); 3165 3166 ret = readn(fd, header, sizeof(*header)); 3167 if (ret <= 0) 3168 return -1; 3169 3170 if (check_magic_endian(header->magic, 3171 header->attr_size, false, ph) < 0) { 3172 pr_debug("magic/endian check failed\n"); 3173 return -1; 3174 } 3175 3176 if (ph->needs_swap) { 3177 mem_bswap_64(header, offsetof(struct perf_file_header, 3178 adds_features)); 3179 } 3180 3181 if (header->size != sizeof(*header)) { 3182 /* Support the previous format */ 3183 if (header->size == offsetof(typeof(*header), adds_features)) 3184 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3185 else 3186 return -1; 3187 } else if (ph->needs_swap) { 3188 /* 3189 * feature bitmap is declared as an array of unsigned longs -- 3190 * not good since its size can differ between the host that 3191 * generated the data file and the host analyzing the file. 3192 * 3193 * We need to handle endianness, but we don't know the size of 3194 * the unsigned long where the file was generated. Take a best 3195 * guess at determining it: try 64-bit swap first (ie., file 3196 * created on a 64-bit host), and check if the hostname feature 3197 * bit is set (this feature bit is forced on as of fbe96f2). 3198 * If the bit is not, undo the 64-bit swap and try a 32-bit 3199 * swap. If the hostname bit is still not set (e.g., older data 3200 * file), punt and fallback to the original behavior -- 3201 * clearing all feature bits and setting buildid. 3202 */ 3203 mem_bswap_64(&header->adds_features, 3204 BITS_TO_U64(HEADER_FEAT_BITS)); 3205 3206 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3207 /* unswap as u64 */ 3208 mem_bswap_64(&header->adds_features, 3209 BITS_TO_U64(HEADER_FEAT_BITS)); 3210 3211 /* unswap as u32 */ 3212 mem_bswap_32(&header->adds_features, 3213 BITS_TO_U32(HEADER_FEAT_BITS)); 3214 } 3215 3216 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3217 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3218 set_bit(HEADER_BUILD_ID, header->adds_features); 3219 } 3220 } 3221 3222 memcpy(&ph->adds_features, &header->adds_features, 3223 sizeof(ph->adds_features)); 3224 3225 ph->data_offset = header->data.offset; 3226 ph->data_size = header->data.size; 3227 ph->feat_offset = header->data.offset + header->data.size; 3228 return 0; 3229 } 3230 3231 static int perf_file_section__process(struct perf_file_section *section, 3232 struct perf_header *ph, 3233 int feat, int fd, void *data) 3234 { 3235 struct feat_fd fdd = { 3236 .fd = fd, 3237 .ph = ph, 3238 .size = section->size, 3239 .offset = section->offset, 3240 }; 3241 3242 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3243 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3244 "%d, continuing...\n", section->offset, feat); 3245 return 0; 3246 } 3247 3248 if (feat >= HEADER_LAST_FEATURE) { 3249 pr_debug("unknown feature %d, continuing...\n", feat); 3250 return 0; 3251 } 3252 3253 if (!feat_ops[feat].process) 3254 return 0; 3255 3256 return feat_ops[feat].process(&fdd, data); 3257 } 3258 3259 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, 3260 struct perf_header *ph, int fd, 3261 bool repipe) 3262 { 3263 struct feat_fd ff = { 3264 .fd = STDOUT_FILENO, 3265 .ph = ph, 3266 }; 3267 ssize_t ret; 3268 3269 ret = readn(fd, header, sizeof(*header)); 3270 if (ret <= 0) 3271 return -1; 3272 3273 if (check_magic_endian(header->magic, header->size, true, ph) < 0) { 3274 pr_debug("endian/magic failed\n"); 3275 return -1; 3276 } 3277 3278 if (ph->needs_swap) 3279 header->size = bswap_64(header->size); 3280 3281 if (repipe && do_write(&ff, header, sizeof(*header)) < 0) 3282 return -1; 3283 3284 return 0; 3285 } 3286 3287 static int perf_header__read_pipe(struct perf_session *session) 3288 { 3289 struct perf_header *header = &session->header; 3290 struct perf_pipe_file_header f_header; 3291 3292 if (perf_file_header__read_pipe(&f_header, header, 3293 perf_data__fd(session->data), 3294 session->repipe) < 0) { 3295 pr_debug("incompatible file format\n"); 3296 return -EINVAL; 3297 } 3298 3299 return 0; 3300 } 3301 3302 static int read_attr(int fd, struct perf_header *ph, 3303 struct perf_file_attr *f_attr) 3304 { 3305 struct perf_event_attr *attr = &f_attr->attr; 3306 size_t sz, left; 3307 size_t our_sz = sizeof(f_attr->attr); 3308 ssize_t ret; 3309 3310 memset(f_attr, 0, sizeof(*f_attr)); 3311 3312 /* read minimal guaranteed structure */ 3313 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); 3314 if (ret <= 0) { 3315 pr_debug("cannot read %d bytes of header attr\n", 3316 PERF_ATTR_SIZE_VER0); 3317 return -1; 3318 } 3319 3320 /* on file perf_event_attr size */ 3321 sz = attr->size; 3322 3323 if (ph->needs_swap) 3324 sz = bswap_32(sz); 3325 3326 if (sz == 0) { 3327 /* assume ABI0 */ 3328 sz = PERF_ATTR_SIZE_VER0; 3329 } else if (sz > our_sz) { 3330 pr_debug("file uses a more recent and unsupported ABI" 3331 " (%zu bytes extra)\n", sz - our_sz); 3332 return -1; 3333 } 3334 /* what we have not yet read and that we know about */ 3335 left = sz - PERF_ATTR_SIZE_VER0; 3336 if (left) { 3337 void *ptr = attr; 3338 ptr += PERF_ATTR_SIZE_VER0; 3339 3340 ret = readn(fd, ptr, left); 3341 } 3342 /* read perf_file_section, ids are read in caller */ 3343 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); 3344 3345 return ret <= 0 ? -1 : 0; 3346 } 3347 3348 static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel, 3349 struct tep_handle *pevent) 3350 { 3351 struct tep_event *event; 3352 char bf[128]; 3353 3354 /* already prepared */ 3355 if (evsel->tp_format) 3356 return 0; 3357 3358 if (pevent == NULL) { 3359 pr_debug("broken or missing trace data\n"); 3360 return -1; 3361 } 3362 3363 event = tep_find_event(pevent, evsel->attr.config); 3364 if (event == NULL) { 3365 pr_debug("cannot find event format for %d\n", (int)evsel->attr.config); 3366 return -1; 3367 } 3368 3369 if (!evsel->name) { 3370 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); 3371 evsel->name = strdup(bf); 3372 if (evsel->name == NULL) 3373 return -1; 3374 } 3375 3376 evsel->tp_format = event; 3377 return 0; 3378 } 3379 3380 static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist, 3381 struct tep_handle *pevent) 3382 { 3383 struct perf_evsel *pos; 3384 3385 evlist__for_each_entry(evlist, pos) { 3386 if (pos->attr.type == PERF_TYPE_TRACEPOINT && 3387 perf_evsel__prepare_tracepoint_event(pos, pevent)) 3388 return -1; 3389 } 3390 3391 return 0; 3392 } 3393 3394 int perf_session__read_header(struct perf_session *session) 3395 { 3396 struct perf_data *data = session->data; 3397 struct perf_header *header = &session->header; 3398 struct perf_file_header f_header; 3399 struct perf_file_attr f_attr; 3400 u64 f_id; 3401 int nr_attrs, nr_ids, i, j; 3402 int fd = perf_data__fd(data); 3403 3404 session->evlist = perf_evlist__new(); 3405 if (session->evlist == NULL) 3406 return -ENOMEM; 3407 3408 session->evlist->env = &header->env; 3409 session->machines.host.env = &header->env; 3410 if (perf_data__is_pipe(data)) 3411 return perf_header__read_pipe(session); 3412 3413 if (perf_file_header__read(&f_header, header, fd) < 0) 3414 return -EINVAL; 3415 3416 /* 3417 * Sanity check that perf.data was written cleanly; data size is 3418 * initialized to 0 and updated only if the on_exit function is run. 3419 * If data size is still 0 then the file contains only partial 3420 * information. Just warn user and process it as much as it can. 3421 */ 3422 if (f_header.data.size == 0) { 3423 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" 3424 "Was the 'perf record' command properly terminated?\n", 3425 data->file.path); 3426 } 3427 3428 nr_attrs = f_header.attrs.size / f_header.attr_size; 3429 lseek(fd, f_header.attrs.offset, SEEK_SET); 3430 3431 for (i = 0; i < nr_attrs; i++) { 3432 struct perf_evsel *evsel; 3433 off_t tmp; 3434 3435 if (read_attr(fd, header, &f_attr) < 0) 3436 goto out_errno; 3437 3438 if (header->needs_swap) { 3439 f_attr.ids.size = bswap_64(f_attr.ids.size); 3440 f_attr.ids.offset = bswap_64(f_attr.ids.offset); 3441 perf_event__attr_swap(&f_attr.attr); 3442 } 3443 3444 tmp = lseek(fd, 0, SEEK_CUR); 3445 evsel = perf_evsel__new(&f_attr.attr); 3446 3447 if (evsel == NULL) 3448 goto out_delete_evlist; 3449 3450 evsel->needs_swap = header->needs_swap; 3451 /* 3452 * Do it before so that if perf_evsel__alloc_id fails, this 3453 * entry gets purged too at perf_evlist__delete(). 3454 */ 3455 perf_evlist__add(session->evlist, evsel); 3456 3457 nr_ids = f_attr.ids.size / sizeof(u64); 3458 /* 3459 * We don't have the cpu and thread maps on the header, so 3460 * for allocating the perf_sample_id table we fake 1 cpu and 3461 * hattr->ids threads. 3462 */ 3463 if (perf_evsel__alloc_id(evsel, 1, nr_ids)) 3464 goto out_delete_evlist; 3465 3466 lseek(fd, f_attr.ids.offset, SEEK_SET); 3467 3468 for (j = 0; j < nr_ids; j++) { 3469 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) 3470 goto out_errno; 3471 3472 perf_evlist__id_add(session->evlist, evsel, 0, j, f_id); 3473 } 3474 3475 lseek(fd, tmp, SEEK_SET); 3476 } 3477 3478 perf_header__process_sections(header, fd, &session->tevent, 3479 perf_file_section__process); 3480 3481 if (perf_evlist__prepare_tracepoint_events(session->evlist, 3482 session->tevent.pevent)) 3483 goto out_delete_evlist; 3484 3485 return 0; 3486 out_errno: 3487 return -errno; 3488 3489 out_delete_evlist: 3490 perf_evlist__delete(session->evlist); 3491 session->evlist = NULL; 3492 return -ENOMEM; 3493 } 3494 3495 int perf_event__synthesize_attr(struct perf_tool *tool, 3496 struct perf_event_attr *attr, u32 ids, u64 *id, 3497 perf_event__handler_t process) 3498 { 3499 union perf_event *ev; 3500 size_t size; 3501 int err; 3502 3503 size = sizeof(struct perf_event_attr); 3504 size = PERF_ALIGN(size, sizeof(u64)); 3505 size += sizeof(struct perf_event_header); 3506 size += ids * sizeof(u64); 3507 3508 ev = malloc(size); 3509 3510 if (ev == NULL) 3511 return -ENOMEM; 3512 3513 ev->attr.attr = *attr; 3514 memcpy(ev->attr.id, id, ids * sizeof(u64)); 3515 3516 ev->attr.header.type = PERF_RECORD_HEADER_ATTR; 3517 ev->attr.header.size = (u16)size; 3518 3519 if (ev->attr.header.size == size) 3520 err = process(tool, ev, NULL, NULL); 3521 else 3522 err = -E2BIG; 3523 3524 free(ev); 3525 3526 return err; 3527 } 3528 3529 int perf_event__synthesize_features(struct perf_tool *tool, 3530 struct perf_session *session, 3531 struct perf_evlist *evlist, 3532 perf_event__handler_t process) 3533 { 3534 struct perf_header *header = &session->header; 3535 struct feat_fd ff; 3536 struct feature_event *fe; 3537 size_t sz, sz_hdr; 3538 int feat, ret; 3539 3540 sz_hdr = sizeof(fe->header); 3541 sz = sizeof(union perf_event); 3542 /* get a nice alignment */ 3543 sz = PERF_ALIGN(sz, page_size); 3544 3545 memset(&ff, 0, sizeof(ff)); 3546 3547 ff.buf = malloc(sz); 3548 if (!ff.buf) 3549 return -ENOMEM; 3550 3551 ff.size = sz - sz_hdr; 3552 3553 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3554 if (!feat_ops[feat].synthesize) { 3555 pr_debug("No record header feature for header :%d\n", feat); 3556 continue; 3557 } 3558 3559 ff.offset = sizeof(*fe); 3560 3561 ret = feat_ops[feat].write(&ff, evlist); 3562 if (ret || ff.offset <= (ssize_t)sizeof(*fe)) { 3563 pr_debug("Error writing feature\n"); 3564 continue; 3565 } 3566 /* ff.buf may have changed due to realloc in do_write() */ 3567 fe = ff.buf; 3568 memset(fe, 0, sizeof(*fe)); 3569 3570 fe->feat_id = feat; 3571 fe->header.type = PERF_RECORD_HEADER_FEATURE; 3572 fe->header.size = ff.offset; 3573 3574 ret = process(tool, ff.buf, NULL, NULL); 3575 if (ret) { 3576 free(ff.buf); 3577 return ret; 3578 } 3579 } 3580 3581 /* Send HEADER_LAST_FEATURE mark. */ 3582 fe = ff.buf; 3583 fe->feat_id = HEADER_LAST_FEATURE; 3584 fe->header.type = PERF_RECORD_HEADER_FEATURE; 3585 fe->header.size = sizeof(*fe); 3586 3587 ret = process(tool, ff.buf, NULL, NULL); 3588 3589 free(ff.buf); 3590 return ret; 3591 } 3592 3593 int perf_event__process_feature(struct perf_session *session, 3594 union perf_event *event) 3595 { 3596 struct perf_tool *tool = session->tool; 3597 struct feat_fd ff = { .fd = 0 }; 3598 struct feature_event *fe = (struct feature_event *)event; 3599 int type = fe->header.type; 3600 u64 feat = fe->feat_id; 3601 3602 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { 3603 pr_warning("invalid record type %d in pipe-mode\n", type); 3604 return 0; 3605 } 3606 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { 3607 pr_warning("invalid record type %d in pipe-mode\n", type); 3608 return -1; 3609 } 3610 3611 if (!feat_ops[feat].process) 3612 return 0; 3613 3614 ff.buf = (void *)fe->data; 3615 ff.size = event->header.size - sizeof(event->header); 3616 ff.ph = &session->header; 3617 3618 if (feat_ops[feat].process(&ff, NULL)) 3619 return -1; 3620 3621 if (!feat_ops[feat].print || !tool->show_feat_hdr) 3622 return 0; 3623 3624 if (!feat_ops[feat].full_only || 3625 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { 3626 feat_ops[feat].print(&ff, stdout); 3627 } else { 3628 fprintf(stdout, "# %s info available, use -I to display\n", 3629 feat_ops[feat].name); 3630 } 3631 3632 return 0; 3633 } 3634 3635 static struct event_update_event * 3636 event_update_event__new(size_t size, u64 type, u64 id) 3637 { 3638 struct event_update_event *ev; 3639 3640 size += sizeof(*ev); 3641 size = PERF_ALIGN(size, sizeof(u64)); 3642 3643 ev = zalloc(size); 3644 if (ev) { 3645 ev->header.type = PERF_RECORD_EVENT_UPDATE; 3646 ev->header.size = (u16)size; 3647 ev->type = type; 3648 ev->id = id; 3649 } 3650 return ev; 3651 } 3652 3653 int 3654 perf_event__synthesize_event_update_unit(struct perf_tool *tool, 3655 struct perf_evsel *evsel, 3656 perf_event__handler_t process) 3657 { 3658 struct event_update_event *ev; 3659 size_t size = strlen(evsel->unit); 3660 int err; 3661 3662 ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]); 3663 if (ev == NULL) 3664 return -ENOMEM; 3665 3666 strlcpy(ev->data, evsel->unit, size + 1); 3667 err = process(tool, (union perf_event *)ev, NULL, NULL); 3668 free(ev); 3669 return err; 3670 } 3671 3672 int 3673 perf_event__synthesize_event_update_scale(struct perf_tool *tool, 3674 struct perf_evsel *evsel, 3675 perf_event__handler_t process) 3676 { 3677 struct event_update_event *ev; 3678 struct event_update_event_scale *ev_data; 3679 int err; 3680 3681 ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]); 3682 if (ev == NULL) 3683 return -ENOMEM; 3684 3685 ev_data = (struct event_update_event_scale *) ev->data; 3686 ev_data->scale = evsel->scale; 3687 err = process(tool, (union perf_event*) ev, NULL, NULL); 3688 free(ev); 3689 return err; 3690 } 3691 3692 int 3693 perf_event__synthesize_event_update_name(struct perf_tool *tool, 3694 struct perf_evsel *evsel, 3695 perf_event__handler_t process) 3696 { 3697 struct event_update_event *ev; 3698 size_t len = strlen(evsel->name); 3699 int err; 3700 3701 ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]); 3702 if (ev == NULL) 3703 return -ENOMEM; 3704 3705 strlcpy(ev->data, evsel->name, len + 1); 3706 err = process(tool, (union perf_event*) ev, NULL, NULL); 3707 free(ev); 3708 return err; 3709 } 3710 3711 int 3712 perf_event__synthesize_event_update_cpus(struct perf_tool *tool, 3713 struct perf_evsel *evsel, 3714 perf_event__handler_t process) 3715 { 3716 size_t size = sizeof(struct event_update_event); 3717 struct event_update_event *ev; 3718 int max, err; 3719 u16 type; 3720 3721 if (!evsel->own_cpus) 3722 return 0; 3723 3724 ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max); 3725 if (!ev) 3726 return -ENOMEM; 3727 3728 ev->header.type = PERF_RECORD_EVENT_UPDATE; 3729 ev->header.size = (u16)size; 3730 ev->type = PERF_EVENT_UPDATE__CPUS; 3731 ev->id = evsel->id[0]; 3732 3733 cpu_map_data__synthesize((struct cpu_map_data *) ev->data, 3734 evsel->own_cpus, 3735 type, max); 3736 3737 err = process(tool, (union perf_event*) ev, NULL, NULL); 3738 free(ev); 3739 return err; 3740 } 3741 3742 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) 3743 { 3744 struct event_update_event *ev = &event->event_update; 3745 struct event_update_event_scale *ev_scale; 3746 struct event_update_event_cpus *ev_cpus; 3747 struct cpu_map *map; 3748 size_t ret; 3749 3750 ret = fprintf(fp, "\n... id: %" PRIu64 "\n", ev->id); 3751 3752 switch (ev->type) { 3753 case PERF_EVENT_UPDATE__SCALE: 3754 ev_scale = (struct event_update_event_scale *) ev->data; 3755 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale); 3756 break; 3757 case PERF_EVENT_UPDATE__UNIT: 3758 ret += fprintf(fp, "... unit: %s\n", ev->data); 3759 break; 3760 case PERF_EVENT_UPDATE__NAME: 3761 ret += fprintf(fp, "... name: %s\n", ev->data); 3762 break; 3763 case PERF_EVENT_UPDATE__CPUS: 3764 ev_cpus = (struct event_update_event_cpus *) ev->data; 3765 ret += fprintf(fp, "... "); 3766 3767 map = cpu_map__new_data(&ev_cpus->cpus); 3768 if (map) 3769 ret += cpu_map__fprintf(map, fp); 3770 else 3771 ret += fprintf(fp, "failed to get cpus\n"); 3772 break; 3773 default: 3774 ret += fprintf(fp, "... unknown type\n"); 3775 break; 3776 } 3777 3778 return ret; 3779 } 3780 3781 int perf_event__synthesize_attrs(struct perf_tool *tool, 3782 struct perf_evlist *evlist, 3783 perf_event__handler_t process) 3784 { 3785 struct perf_evsel *evsel; 3786 int err = 0; 3787 3788 evlist__for_each_entry(evlist, evsel) { 3789 err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids, 3790 evsel->id, process); 3791 if (err) { 3792 pr_debug("failed to create perf header attribute\n"); 3793 return err; 3794 } 3795 } 3796 3797 return err; 3798 } 3799 3800 static bool has_unit(struct perf_evsel *counter) 3801 { 3802 return counter->unit && *counter->unit; 3803 } 3804 3805 static bool has_scale(struct perf_evsel *counter) 3806 { 3807 return counter->scale != 1; 3808 } 3809 3810 int perf_event__synthesize_extra_attr(struct perf_tool *tool, 3811 struct perf_evlist *evsel_list, 3812 perf_event__handler_t process, 3813 bool is_pipe) 3814 { 3815 struct perf_evsel *counter; 3816 int err; 3817 3818 /* 3819 * Synthesize other events stuff not carried within 3820 * attr event - unit, scale, name 3821 */ 3822 evlist__for_each_entry(evsel_list, counter) { 3823 if (!counter->supported) 3824 continue; 3825 3826 /* 3827 * Synthesize unit and scale only if it's defined. 3828 */ 3829 if (has_unit(counter)) { 3830 err = perf_event__synthesize_event_update_unit(tool, counter, process); 3831 if (err < 0) { 3832 pr_err("Couldn't synthesize evsel unit.\n"); 3833 return err; 3834 } 3835 } 3836 3837 if (has_scale(counter)) { 3838 err = perf_event__synthesize_event_update_scale(tool, counter, process); 3839 if (err < 0) { 3840 pr_err("Couldn't synthesize evsel counter.\n"); 3841 return err; 3842 } 3843 } 3844 3845 if (counter->own_cpus) { 3846 err = perf_event__synthesize_event_update_cpus(tool, counter, process); 3847 if (err < 0) { 3848 pr_err("Couldn't synthesize evsel cpus.\n"); 3849 return err; 3850 } 3851 } 3852 3853 /* 3854 * Name is needed only for pipe output, 3855 * perf.data carries event names. 3856 */ 3857 if (is_pipe) { 3858 err = perf_event__synthesize_event_update_name(tool, counter, process); 3859 if (err < 0) { 3860 pr_err("Couldn't synthesize evsel name.\n"); 3861 return err; 3862 } 3863 } 3864 } 3865 return 0; 3866 } 3867 3868 int perf_event__process_attr(struct perf_tool *tool __maybe_unused, 3869 union perf_event *event, 3870 struct perf_evlist **pevlist) 3871 { 3872 u32 i, ids, n_ids; 3873 struct perf_evsel *evsel; 3874 struct perf_evlist *evlist = *pevlist; 3875 3876 if (evlist == NULL) { 3877 *pevlist = evlist = perf_evlist__new(); 3878 if (evlist == NULL) 3879 return -ENOMEM; 3880 } 3881 3882 evsel = perf_evsel__new(&event->attr.attr); 3883 if (evsel == NULL) 3884 return -ENOMEM; 3885 3886 perf_evlist__add(evlist, evsel); 3887 3888 ids = event->header.size; 3889 ids -= (void *)&event->attr.id - (void *)event; 3890 n_ids = ids / sizeof(u64); 3891 /* 3892 * We don't have the cpu and thread maps on the header, so 3893 * for allocating the perf_sample_id table we fake 1 cpu and 3894 * hattr->ids threads. 3895 */ 3896 if (perf_evsel__alloc_id(evsel, 1, n_ids)) 3897 return -ENOMEM; 3898 3899 for (i = 0; i < n_ids; i++) { 3900 perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]); 3901 } 3902 3903 return 0; 3904 } 3905 3906 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused, 3907 union perf_event *event, 3908 struct perf_evlist **pevlist) 3909 { 3910 struct event_update_event *ev = &event->event_update; 3911 struct event_update_event_scale *ev_scale; 3912 struct event_update_event_cpus *ev_cpus; 3913 struct perf_evlist *evlist; 3914 struct perf_evsel *evsel; 3915 struct cpu_map *map; 3916 3917 if (!pevlist || *pevlist == NULL) 3918 return -EINVAL; 3919 3920 evlist = *pevlist; 3921 3922 evsel = perf_evlist__id2evsel(evlist, ev->id); 3923 if (evsel == NULL) 3924 return -EINVAL; 3925 3926 switch (ev->type) { 3927 case PERF_EVENT_UPDATE__UNIT: 3928 evsel->unit = strdup(ev->data); 3929 break; 3930 case PERF_EVENT_UPDATE__NAME: 3931 evsel->name = strdup(ev->data); 3932 break; 3933 case PERF_EVENT_UPDATE__SCALE: 3934 ev_scale = (struct event_update_event_scale *) ev->data; 3935 evsel->scale = ev_scale->scale; 3936 break; 3937 case PERF_EVENT_UPDATE__CPUS: 3938 ev_cpus = (struct event_update_event_cpus *) ev->data; 3939 3940 map = cpu_map__new_data(&ev_cpus->cpus); 3941 if (map) 3942 evsel->own_cpus = map; 3943 else 3944 pr_err("failed to get event_update cpus\n"); 3945 default: 3946 break; 3947 } 3948 3949 return 0; 3950 } 3951 3952 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd, 3953 struct perf_evlist *evlist, 3954 perf_event__handler_t process) 3955 { 3956 union perf_event ev; 3957 struct tracing_data *tdata; 3958 ssize_t size = 0, aligned_size = 0, padding; 3959 struct feat_fd ff; 3960 int err __maybe_unused = 0; 3961 3962 /* 3963 * We are going to store the size of the data followed 3964 * by the data contents. Since the fd descriptor is a pipe, 3965 * we cannot seek back to store the size of the data once 3966 * we know it. Instead we: 3967 * 3968 * - write the tracing data to the temp file 3969 * - get/write the data size to pipe 3970 * - write the tracing data from the temp file 3971 * to the pipe 3972 */ 3973 tdata = tracing_data_get(&evlist->entries, fd, true); 3974 if (!tdata) 3975 return -1; 3976 3977 memset(&ev, 0, sizeof(ev)); 3978 3979 ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA; 3980 size = tdata->size; 3981 aligned_size = PERF_ALIGN(size, sizeof(u64)); 3982 padding = aligned_size - size; 3983 ev.tracing_data.header.size = sizeof(ev.tracing_data); 3984 ev.tracing_data.size = aligned_size; 3985 3986 process(tool, &ev, NULL, NULL); 3987 3988 /* 3989 * The put function will copy all the tracing data 3990 * stored in temp file to the pipe. 3991 */ 3992 tracing_data_put(tdata); 3993 3994 ff = (struct feat_fd){ .fd = fd }; 3995 if (write_padded(&ff, NULL, 0, padding)) 3996 return -1; 3997 3998 return aligned_size; 3999 } 4000 4001 int perf_event__process_tracing_data(struct perf_session *session, 4002 union perf_event *event) 4003 { 4004 ssize_t size_read, padding, size = event->tracing_data.size; 4005 int fd = perf_data__fd(session->data); 4006 off_t offset = lseek(fd, 0, SEEK_CUR); 4007 char buf[BUFSIZ]; 4008 4009 /* setup for reading amidst mmap */ 4010 lseek(fd, offset + sizeof(struct tracing_data_event), 4011 SEEK_SET); 4012 4013 size_read = trace_report(fd, &session->tevent, 4014 session->repipe); 4015 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; 4016 4017 if (readn(fd, buf, padding) < 0) { 4018 pr_err("%s: reading input file", __func__); 4019 return -1; 4020 } 4021 if (session->repipe) { 4022 int retw = write(STDOUT_FILENO, buf, padding); 4023 if (retw <= 0 || retw != padding) { 4024 pr_err("%s: repiping tracing data padding", __func__); 4025 return -1; 4026 } 4027 } 4028 4029 if (size_read + padding != size) { 4030 pr_err("%s: tracing data size mismatch", __func__); 4031 return -1; 4032 } 4033 4034 perf_evlist__prepare_tracepoint_events(session->evlist, 4035 session->tevent.pevent); 4036 4037 return size_read + padding; 4038 } 4039 4040 int perf_event__synthesize_build_id(struct perf_tool *tool, 4041 struct dso *pos, u16 misc, 4042 perf_event__handler_t process, 4043 struct machine *machine) 4044 { 4045 union perf_event ev; 4046 size_t len; 4047 int err = 0; 4048 4049 if (!pos->hit) 4050 return err; 4051 4052 memset(&ev, 0, sizeof(ev)); 4053 4054 len = pos->long_name_len + 1; 4055 len = PERF_ALIGN(len, NAME_ALIGN); 4056 memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id)); 4057 ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID; 4058 ev.build_id.header.misc = misc; 4059 ev.build_id.pid = machine->pid; 4060 ev.build_id.header.size = sizeof(ev.build_id) + len; 4061 memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len); 4062 4063 err = process(tool, &ev, NULL, machine); 4064 4065 return err; 4066 } 4067 4068 int perf_event__process_build_id(struct perf_session *session, 4069 union perf_event *event) 4070 { 4071 __event_process_build_id(&event->build_id, 4072 event->build_id.filename, 4073 session); 4074 return 0; 4075 } 4076