1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <inttypes.h> 4 #include "string2.h" 5 #include <sys/param.h> 6 #include <sys/types.h> 7 #include <byteswap.h> 8 #include <unistd.h> 9 #include <regex.h> 10 #include <stdio.h> 11 #include <stdlib.h> 12 #include <linux/compiler.h> 13 #include <linux/list.h> 14 #include <linux/kernel.h> 15 #include <linux/bitops.h> 16 #include <linux/string.h> 17 #include <linux/stringify.h> 18 #include <linux/zalloc.h> 19 #include <sys/stat.h> 20 #include <sys/utsname.h> 21 #include <linux/time64.h> 22 #include <dirent.h> 23 #ifdef HAVE_LIBBPF_SUPPORT 24 #include <bpf/libbpf.h> 25 #endif 26 #include <perf/cpumap.h> 27 #include <tools/libc_compat.h> // reallocarray 28 29 #include "dso.h" 30 #include "evlist.h" 31 #include "evsel.h" 32 #include "util/evsel_fprintf.h" 33 #include "header.h" 34 #include "memswap.h" 35 #include "trace-event.h" 36 #include "session.h" 37 #include "symbol.h" 38 #include "debug.h" 39 #include "cpumap.h" 40 #include "pmu.h" 41 #include "pmus.h" 42 #include "vdso.h" 43 #include "strbuf.h" 44 #include "build-id.h" 45 #include "data.h" 46 #include <api/fs/fs.h> 47 #include "asm/bug.h" 48 #include "tool.h" 49 #include "time-utils.h" 50 #include "units.h" 51 #include "util/util.h" // perf_exe() 52 #include "cputopo.h" 53 #include "bpf-event.h" 54 #include "bpf-utils.h" 55 #include "clockid.h" 56 57 #include <linux/ctype.h> 58 #include <internal/lib.h> 59 60 #ifdef HAVE_LIBTRACEEVENT 61 #include <traceevent/event-parse.h> 62 #endif 63 64 /* 65 * magic2 = "PERFILE2" 66 * must be a numerical value to let the endianness 67 * determine the memory layout. That way we are able 68 * to detect endianness when reading the perf.data file 69 * back. 70 * 71 * we check for legacy (PERFFILE) format. 72 */ 73 static const char *__perf_magic1 = "PERFFILE"; 74 static const u64 __perf_magic2 = 0x32454c4946524550ULL; 75 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; 76 77 #define PERF_MAGIC __perf_magic2 78 79 const char perf_version_string[] = PERF_VERSION; 80 81 struct perf_file_attr { 82 struct perf_event_attr attr; 83 struct perf_file_section ids; 84 }; 85 86 void perf_header__set_feat(struct perf_header *header, int feat) 87 { 88 __set_bit(feat, header->adds_features); 89 } 90 91 void perf_header__clear_feat(struct perf_header *header, int feat) 92 { 93 __clear_bit(feat, header->adds_features); 94 } 95 96 bool perf_header__has_feat(const struct perf_header *header, int feat) 97 { 98 return test_bit(feat, header->adds_features); 99 } 100 101 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) 102 { 103 ssize_t ret = writen(ff->fd, buf, size); 104 105 if (ret != (ssize_t)size) 106 return ret < 0 ? (int)ret : -1; 107 return 0; 108 } 109 110 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) 111 { 112 /* struct perf_event_header::size is u16 */ 113 const size_t max_size = 0xffff - sizeof(struct perf_event_header); 114 size_t new_size = ff->size; 115 void *addr; 116 117 if (size + ff->offset > max_size) 118 return -E2BIG; 119 120 while (size > (new_size - ff->offset)) 121 new_size <<= 1; 122 new_size = min(max_size, new_size); 123 124 if (ff->size < new_size) { 125 addr = realloc(ff->buf, new_size); 126 if (!addr) 127 return -ENOMEM; 128 ff->buf = addr; 129 ff->size = new_size; 130 } 131 132 memcpy(ff->buf + ff->offset, buf, size); 133 ff->offset += size; 134 135 return 0; 136 } 137 138 /* Return: 0 if succeeded, -ERR if failed. */ 139 int do_write(struct feat_fd *ff, const void *buf, size_t size) 140 { 141 if (!ff->buf) 142 return __do_write_fd(ff, buf, size); 143 return __do_write_buf(ff, buf, size); 144 } 145 146 /* Return: 0 if succeeded, -ERR if failed. */ 147 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) 148 { 149 u64 *p = (u64 *) set; 150 int i, ret; 151 152 ret = do_write(ff, &size, sizeof(size)); 153 if (ret < 0) 154 return ret; 155 156 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 157 ret = do_write(ff, p + i, sizeof(*p)); 158 if (ret < 0) 159 return ret; 160 } 161 162 return 0; 163 } 164 165 /* Return: 0 if succeeded, -ERR if failed. */ 166 int write_padded(struct feat_fd *ff, const void *bf, 167 size_t count, size_t count_aligned) 168 { 169 static const char zero_buf[NAME_ALIGN]; 170 int err = do_write(ff, bf, count); 171 172 if (!err) 173 err = do_write(ff, zero_buf, count_aligned - count); 174 175 return err; 176 } 177 178 #define string_size(str) \ 179 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) 180 181 /* Return: 0 if succeeded, -ERR if failed. */ 182 static int do_write_string(struct feat_fd *ff, const char *str) 183 { 184 u32 len, olen; 185 int ret; 186 187 olen = strlen(str) + 1; 188 len = PERF_ALIGN(olen, NAME_ALIGN); 189 190 /* write len, incl. \0 */ 191 ret = do_write(ff, &len, sizeof(len)); 192 if (ret < 0) 193 return ret; 194 195 return write_padded(ff, str, olen, len); 196 } 197 198 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) 199 { 200 ssize_t ret = readn(ff->fd, addr, size); 201 202 if (ret != size) 203 return ret < 0 ? (int)ret : -1; 204 return 0; 205 } 206 207 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) 208 { 209 if (size > (ssize_t)ff->size - ff->offset) 210 return -1; 211 212 memcpy(addr, ff->buf + ff->offset, size); 213 ff->offset += size; 214 215 return 0; 216 217 } 218 219 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) 220 { 221 if (!ff->buf) 222 return __do_read_fd(ff, addr, size); 223 return __do_read_buf(ff, addr, size); 224 } 225 226 static int do_read_u32(struct feat_fd *ff, u32 *addr) 227 { 228 int ret; 229 230 ret = __do_read(ff, addr, sizeof(*addr)); 231 if (ret) 232 return ret; 233 234 if (ff->ph->needs_swap) 235 *addr = bswap_32(*addr); 236 return 0; 237 } 238 239 static int do_read_u64(struct feat_fd *ff, u64 *addr) 240 { 241 int ret; 242 243 ret = __do_read(ff, addr, sizeof(*addr)); 244 if (ret) 245 return ret; 246 247 if (ff->ph->needs_swap) 248 *addr = bswap_64(*addr); 249 return 0; 250 } 251 252 static char *do_read_string(struct feat_fd *ff) 253 { 254 u32 len; 255 char *buf; 256 257 if (do_read_u32(ff, &len)) 258 return NULL; 259 260 buf = malloc(len); 261 if (!buf) 262 return NULL; 263 264 if (!__do_read(ff, buf, len)) { 265 /* 266 * strings are padded by zeroes 267 * thus the actual strlen of buf 268 * may be less than len 269 */ 270 return buf; 271 } 272 273 free(buf); 274 return NULL; 275 } 276 277 /* Return: 0 if succeeded, -ERR if failed. */ 278 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) 279 { 280 unsigned long *set; 281 u64 size, *p; 282 int i, ret; 283 284 ret = do_read_u64(ff, &size); 285 if (ret) 286 return ret; 287 288 set = bitmap_zalloc(size); 289 if (!set) 290 return -ENOMEM; 291 292 p = (u64 *) set; 293 294 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 295 ret = do_read_u64(ff, p + i); 296 if (ret < 0) { 297 free(set); 298 return ret; 299 } 300 } 301 302 *pset = set; 303 *psize = size; 304 return 0; 305 } 306 307 #ifdef HAVE_LIBTRACEEVENT 308 static int write_tracing_data(struct feat_fd *ff, 309 struct evlist *evlist) 310 { 311 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 312 return -1; 313 314 return read_tracing_data(ff->fd, &evlist->core.entries); 315 } 316 #endif 317 318 static int write_build_id(struct feat_fd *ff, 319 struct evlist *evlist __maybe_unused) 320 { 321 struct perf_session *session; 322 int err; 323 324 session = container_of(ff->ph, struct perf_session, header); 325 326 if (!perf_session__read_build_ids(session, true)) 327 return -1; 328 329 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 330 return -1; 331 332 err = perf_session__write_buildid_table(session, ff); 333 if (err < 0) { 334 pr_debug("failed to write buildid table\n"); 335 return err; 336 } 337 perf_session__cache_build_ids(session); 338 339 return 0; 340 } 341 342 static int write_hostname(struct feat_fd *ff, 343 struct evlist *evlist __maybe_unused) 344 { 345 struct utsname uts; 346 int ret; 347 348 ret = uname(&uts); 349 if (ret < 0) 350 return -1; 351 352 return do_write_string(ff, uts.nodename); 353 } 354 355 static int write_osrelease(struct feat_fd *ff, 356 struct evlist *evlist __maybe_unused) 357 { 358 struct utsname uts; 359 int ret; 360 361 ret = uname(&uts); 362 if (ret < 0) 363 return -1; 364 365 return do_write_string(ff, uts.release); 366 } 367 368 static int write_arch(struct feat_fd *ff, 369 struct evlist *evlist __maybe_unused) 370 { 371 struct utsname uts; 372 int ret; 373 374 ret = uname(&uts); 375 if (ret < 0) 376 return -1; 377 378 return do_write_string(ff, uts.machine); 379 } 380 381 static int write_version(struct feat_fd *ff, 382 struct evlist *evlist __maybe_unused) 383 { 384 return do_write_string(ff, perf_version_string); 385 } 386 387 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) 388 { 389 FILE *file; 390 char *buf = NULL; 391 char *s, *p; 392 const char *search = cpuinfo_proc; 393 size_t len = 0; 394 int ret = -1; 395 396 if (!search) 397 return -1; 398 399 file = fopen("/proc/cpuinfo", "r"); 400 if (!file) 401 return -1; 402 403 while (getline(&buf, &len, file) > 0) { 404 ret = strncmp(buf, search, strlen(search)); 405 if (!ret) 406 break; 407 } 408 409 if (ret) { 410 ret = -1; 411 goto done; 412 } 413 414 s = buf; 415 416 p = strchr(buf, ':'); 417 if (p && *(p+1) == ' ' && *(p+2)) 418 s = p + 2; 419 p = strchr(s, '\n'); 420 if (p) 421 *p = '\0'; 422 423 /* squash extra space characters (branding string) */ 424 p = s; 425 while (*p) { 426 if (isspace(*p)) { 427 char *r = p + 1; 428 char *q = skip_spaces(r); 429 *p = ' '; 430 if (q != (p+1)) 431 while ((*r++ = *q++)); 432 } 433 p++; 434 } 435 ret = do_write_string(ff, s); 436 done: 437 free(buf); 438 fclose(file); 439 return ret; 440 } 441 442 static int write_cpudesc(struct feat_fd *ff, 443 struct evlist *evlist __maybe_unused) 444 { 445 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__) 446 #define CPUINFO_PROC { "cpu", } 447 #elif defined(__s390__) 448 #define CPUINFO_PROC { "vendor_id", } 449 #elif defined(__sh__) 450 #define CPUINFO_PROC { "cpu type", } 451 #elif defined(__alpha__) || defined(__mips__) 452 #define CPUINFO_PROC { "cpu model", } 453 #elif defined(__arm__) 454 #define CPUINFO_PROC { "model name", "Processor", } 455 #elif defined(__arc__) 456 #define CPUINFO_PROC { "Processor", } 457 #elif defined(__xtensa__) 458 #define CPUINFO_PROC { "core ID", } 459 #elif defined(__loongarch__) 460 #define CPUINFO_PROC { "Model Name", } 461 #else 462 #define CPUINFO_PROC { "model name", } 463 #endif 464 const char *cpuinfo_procs[] = CPUINFO_PROC; 465 #undef CPUINFO_PROC 466 unsigned int i; 467 468 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { 469 int ret; 470 ret = __write_cpudesc(ff, cpuinfo_procs[i]); 471 if (ret >= 0) 472 return ret; 473 } 474 return -1; 475 } 476 477 478 static int write_nrcpus(struct feat_fd *ff, 479 struct evlist *evlist __maybe_unused) 480 { 481 long nr; 482 u32 nrc, nra; 483 int ret; 484 485 nrc = cpu__max_present_cpu().cpu; 486 487 nr = sysconf(_SC_NPROCESSORS_ONLN); 488 if (nr < 0) 489 return -1; 490 491 nra = (u32)(nr & UINT_MAX); 492 493 ret = do_write(ff, &nrc, sizeof(nrc)); 494 if (ret < 0) 495 return ret; 496 497 return do_write(ff, &nra, sizeof(nra)); 498 } 499 500 static int write_event_desc(struct feat_fd *ff, 501 struct evlist *evlist) 502 { 503 struct evsel *evsel; 504 u32 nre, nri, sz; 505 int ret; 506 507 nre = evlist->core.nr_entries; 508 509 /* 510 * write number of events 511 */ 512 ret = do_write(ff, &nre, sizeof(nre)); 513 if (ret < 0) 514 return ret; 515 516 /* 517 * size of perf_event_attr struct 518 */ 519 sz = (u32)sizeof(evsel->core.attr); 520 ret = do_write(ff, &sz, sizeof(sz)); 521 if (ret < 0) 522 return ret; 523 524 evlist__for_each_entry(evlist, evsel) { 525 ret = do_write(ff, &evsel->core.attr, sz); 526 if (ret < 0) 527 return ret; 528 /* 529 * write number of unique id per event 530 * there is one id per instance of an event 531 * 532 * copy into an nri to be independent of the 533 * type of ids, 534 */ 535 nri = evsel->core.ids; 536 ret = do_write(ff, &nri, sizeof(nri)); 537 if (ret < 0) 538 return ret; 539 540 /* 541 * write event string as passed on cmdline 542 */ 543 ret = do_write_string(ff, evsel__name(evsel)); 544 if (ret < 0) 545 return ret; 546 /* 547 * write unique ids for this event 548 */ 549 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 550 if (ret < 0) 551 return ret; 552 } 553 return 0; 554 } 555 556 static int write_cmdline(struct feat_fd *ff, 557 struct evlist *evlist __maybe_unused) 558 { 559 char pbuf[MAXPATHLEN], *buf; 560 int i, ret, n; 561 562 /* actual path to perf binary */ 563 buf = perf_exe(pbuf, MAXPATHLEN); 564 565 /* account for binary path */ 566 n = perf_env.nr_cmdline + 1; 567 568 ret = do_write(ff, &n, sizeof(n)); 569 if (ret < 0) 570 return ret; 571 572 ret = do_write_string(ff, buf); 573 if (ret < 0) 574 return ret; 575 576 for (i = 0 ; i < perf_env.nr_cmdline; i++) { 577 ret = do_write_string(ff, perf_env.cmdline_argv[i]); 578 if (ret < 0) 579 return ret; 580 } 581 return 0; 582 } 583 584 585 static int write_cpu_topology(struct feat_fd *ff, 586 struct evlist *evlist __maybe_unused) 587 { 588 struct cpu_topology *tp; 589 u32 i; 590 int ret, j; 591 592 tp = cpu_topology__new(); 593 if (!tp) 594 return -1; 595 596 ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists)); 597 if (ret < 0) 598 goto done; 599 600 for (i = 0; i < tp->package_cpus_lists; i++) { 601 ret = do_write_string(ff, tp->package_cpus_list[i]); 602 if (ret < 0) 603 goto done; 604 } 605 ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists)); 606 if (ret < 0) 607 goto done; 608 609 for (i = 0; i < tp->core_cpus_lists; i++) { 610 ret = do_write_string(ff, tp->core_cpus_list[i]); 611 if (ret < 0) 612 break; 613 } 614 615 ret = perf_env__read_cpu_topology_map(&perf_env); 616 if (ret < 0) 617 goto done; 618 619 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 620 ret = do_write(ff, &perf_env.cpu[j].core_id, 621 sizeof(perf_env.cpu[j].core_id)); 622 if (ret < 0) 623 return ret; 624 ret = do_write(ff, &perf_env.cpu[j].socket_id, 625 sizeof(perf_env.cpu[j].socket_id)); 626 if (ret < 0) 627 return ret; 628 } 629 630 if (!tp->die_cpus_lists) 631 goto done; 632 633 ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists)); 634 if (ret < 0) 635 goto done; 636 637 for (i = 0; i < tp->die_cpus_lists; i++) { 638 ret = do_write_string(ff, tp->die_cpus_list[i]); 639 if (ret < 0) 640 goto done; 641 } 642 643 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 644 ret = do_write(ff, &perf_env.cpu[j].die_id, 645 sizeof(perf_env.cpu[j].die_id)); 646 if (ret < 0) 647 return ret; 648 } 649 650 done: 651 cpu_topology__delete(tp); 652 return ret; 653 } 654 655 656 657 static int write_total_mem(struct feat_fd *ff, 658 struct evlist *evlist __maybe_unused) 659 { 660 char *buf = NULL; 661 FILE *fp; 662 size_t len = 0; 663 int ret = -1, n; 664 uint64_t mem; 665 666 fp = fopen("/proc/meminfo", "r"); 667 if (!fp) 668 return -1; 669 670 while (getline(&buf, &len, fp) > 0) { 671 ret = strncmp(buf, "MemTotal:", 9); 672 if (!ret) 673 break; 674 } 675 if (!ret) { 676 n = sscanf(buf, "%*s %"PRIu64, &mem); 677 if (n == 1) 678 ret = do_write(ff, &mem, sizeof(mem)); 679 } else 680 ret = -1; 681 free(buf); 682 fclose(fp); 683 return ret; 684 } 685 686 static int write_numa_topology(struct feat_fd *ff, 687 struct evlist *evlist __maybe_unused) 688 { 689 struct numa_topology *tp; 690 int ret = -1; 691 u32 i; 692 693 tp = numa_topology__new(); 694 if (!tp) 695 return -ENOMEM; 696 697 ret = do_write(ff, &tp->nr, sizeof(u32)); 698 if (ret < 0) 699 goto err; 700 701 for (i = 0; i < tp->nr; i++) { 702 struct numa_topology_node *n = &tp->nodes[i]; 703 704 ret = do_write(ff, &n->node, sizeof(u32)); 705 if (ret < 0) 706 goto err; 707 708 ret = do_write(ff, &n->mem_total, sizeof(u64)); 709 if (ret) 710 goto err; 711 712 ret = do_write(ff, &n->mem_free, sizeof(u64)); 713 if (ret) 714 goto err; 715 716 ret = do_write_string(ff, n->cpus); 717 if (ret < 0) 718 goto err; 719 } 720 721 ret = 0; 722 723 err: 724 numa_topology__delete(tp); 725 return ret; 726 } 727 728 /* 729 * File format: 730 * 731 * struct pmu_mappings { 732 * u32 pmu_num; 733 * struct pmu_map { 734 * u32 type; 735 * char name[]; 736 * }[pmu_num]; 737 * }; 738 */ 739 740 static int write_pmu_mappings(struct feat_fd *ff, 741 struct evlist *evlist __maybe_unused) 742 { 743 struct perf_pmu *pmu = NULL; 744 u32 pmu_num = 0; 745 int ret; 746 747 /* 748 * Do a first pass to count number of pmu to avoid lseek so this 749 * works in pipe mode as well. 750 */ 751 while ((pmu = perf_pmus__scan(pmu))) 752 pmu_num++; 753 754 ret = do_write(ff, &pmu_num, sizeof(pmu_num)); 755 if (ret < 0) 756 return ret; 757 758 while ((pmu = perf_pmus__scan(pmu))) { 759 ret = do_write(ff, &pmu->type, sizeof(pmu->type)); 760 if (ret < 0) 761 return ret; 762 763 ret = do_write_string(ff, pmu->name); 764 if (ret < 0) 765 return ret; 766 } 767 768 return 0; 769 } 770 771 /* 772 * File format: 773 * 774 * struct group_descs { 775 * u32 nr_groups; 776 * struct group_desc { 777 * char name[]; 778 * u32 leader_idx; 779 * u32 nr_members; 780 * }[nr_groups]; 781 * }; 782 */ 783 static int write_group_desc(struct feat_fd *ff, 784 struct evlist *evlist) 785 { 786 u32 nr_groups = evlist__nr_groups(evlist); 787 struct evsel *evsel; 788 int ret; 789 790 ret = do_write(ff, &nr_groups, sizeof(nr_groups)); 791 if (ret < 0) 792 return ret; 793 794 evlist__for_each_entry(evlist, evsel) { 795 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 796 const char *name = evsel->group_name ?: "{anon_group}"; 797 u32 leader_idx = evsel->core.idx; 798 u32 nr_members = evsel->core.nr_members; 799 800 ret = do_write_string(ff, name); 801 if (ret < 0) 802 return ret; 803 804 ret = do_write(ff, &leader_idx, sizeof(leader_idx)); 805 if (ret < 0) 806 return ret; 807 808 ret = do_write(ff, &nr_members, sizeof(nr_members)); 809 if (ret < 0) 810 return ret; 811 } 812 } 813 return 0; 814 } 815 816 /* 817 * Return the CPU id as a raw string. 818 * 819 * Each architecture should provide a more precise id string that 820 * can be use to match the architecture's "mapfile". 821 */ 822 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused) 823 { 824 return NULL; 825 } 826 827 /* Return zero when the cpuid from the mapfile.csv matches the 828 * cpuid string generated on this platform. 829 * Otherwise return non-zero. 830 */ 831 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid) 832 { 833 regex_t re; 834 regmatch_t pmatch[1]; 835 int match; 836 837 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) { 838 /* Warn unable to generate match particular string. */ 839 pr_info("Invalid regular expression %s\n", mapcpuid); 840 return 1; 841 } 842 843 match = !regexec(&re, cpuid, 1, pmatch, 0); 844 regfree(&re); 845 if (match) { 846 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so); 847 848 /* Verify the entire string matched. */ 849 if (match_len == strlen(cpuid)) 850 return 0; 851 } 852 return 1; 853 } 854 855 /* 856 * default get_cpuid(): nothing gets recorded 857 * actual implementation must be in arch/$(SRCARCH)/util/header.c 858 */ 859 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused) 860 { 861 return ENOSYS; /* Not implemented */ 862 } 863 864 static int write_cpuid(struct feat_fd *ff, 865 struct evlist *evlist __maybe_unused) 866 { 867 char buffer[64]; 868 int ret; 869 870 ret = get_cpuid(buffer, sizeof(buffer)); 871 if (ret) 872 return -1; 873 874 return do_write_string(ff, buffer); 875 } 876 877 static int write_branch_stack(struct feat_fd *ff __maybe_unused, 878 struct evlist *evlist __maybe_unused) 879 { 880 return 0; 881 } 882 883 static int write_auxtrace(struct feat_fd *ff, 884 struct evlist *evlist __maybe_unused) 885 { 886 struct perf_session *session; 887 int err; 888 889 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 890 return -1; 891 892 session = container_of(ff->ph, struct perf_session, header); 893 894 err = auxtrace_index__write(ff->fd, &session->auxtrace_index); 895 if (err < 0) 896 pr_err("Failed to write auxtrace index\n"); 897 return err; 898 } 899 900 static int write_clockid(struct feat_fd *ff, 901 struct evlist *evlist __maybe_unused) 902 { 903 return do_write(ff, &ff->ph->env.clock.clockid_res_ns, 904 sizeof(ff->ph->env.clock.clockid_res_ns)); 905 } 906 907 static int write_clock_data(struct feat_fd *ff, 908 struct evlist *evlist __maybe_unused) 909 { 910 u64 *data64; 911 u32 data32; 912 int ret; 913 914 /* version */ 915 data32 = 1; 916 917 ret = do_write(ff, &data32, sizeof(data32)); 918 if (ret < 0) 919 return ret; 920 921 /* clockid */ 922 data32 = ff->ph->env.clock.clockid; 923 924 ret = do_write(ff, &data32, sizeof(data32)); 925 if (ret < 0) 926 return ret; 927 928 /* TOD ref time */ 929 data64 = &ff->ph->env.clock.tod_ns; 930 931 ret = do_write(ff, data64, sizeof(*data64)); 932 if (ret < 0) 933 return ret; 934 935 /* clockid ref time */ 936 data64 = &ff->ph->env.clock.clockid_ns; 937 938 return do_write(ff, data64, sizeof(*data64)); 939 } 940 941 static int write_hybrid_topology(struct feat_fd *ff, 942 struct evlist *evlist __maybe_unused) 943 { 944 struct hybrid_topology *tp; 945 int ret; 946 u32 i; 947 948 tp = hybrid_topology__new(); 949 if (!tp) 950 return -ENOENT; 951 952 ret = do_write(ff, &tp->nr, sizeof(u32)); 953 if (ret < 0) 954 goto err; 955 956 for (i = 0; i < tp->nr; i++) { 957 struct hybrid_topology_node *n = &tp->nodes[i]; 958 959 ret = do_write_string(ff, n->pmu_name); 960 if (ret < 0) 961 goto err; 962 963 ret = do_write_string(ff, n->cpus); 964 if (ret < 0) 965 goto err; 966 } 967 968 ret = 0; 969 970 err: 971 hybrid_topology__delete(tp); 972 return ret; 973 } 974 975 static int write_dir_format(struct feat_fd *ff, 976 struct evlist *evlist __maybe_unused) 977 { 978 struct perf_session *session; 979 struct perf_data *data; 980 981 session = container_of(ff->ph, struct perf_session, header); 982 data = session->data; 983 984 if (WARN_ON(!perf_data__is_dir(data))) 985 return -1; 986 987 return do_write(ff, &data->dir.version, sizeof(data->dir.version)); 988 } 989 990 /* 991 * Check whether a CPU is online 992 * 993 * Returns: 994 * 1 -> if CPU is online 995 * 0 -> if CPU is offline 996 * -1 -> error case 997 */ 998 int is_cpu_online(unsigned int cpu) 999 { 1000 char *str; 1001 size_t strlen; 1002 char buf[256]; 1003 int status = -1; 1004 struct stat statbuf; 1005 1006 snprintf(buf, sizeof(buf), 1007 "/sys/devices/system/cpu/cpu%d", cpu); 1008 if (stat(buf, &statbuf) != 0) 1009 return 0; 1010 1011 /* 1012 * Check if /sys/devices/system/cpu/cpux/online file 1013 * exists. Some cases cpu0 won't have online file since 1014 * it is not expected to be turned off generally. 1015 * In kernels without CONFIG_HOTPLUG_CPU, this 1016 * file won't exist 1017 */ 1018 snprintf(buf, sizeof(buf), 1019 "/sys/devices/system/cpu/cpu%d/online", cpu); 1020 if (stat(buf, &statbuf) != 0) 1021 return 1; 1022 1023 /* 1024 * Read online file using sysfs__read_str. 1025 * If read or open fails, return -1. 1026 * If read succeeds, return value from file 1027 * which gets stored in "str" 1028 */ 1029 snprintf(buf, sizeof(buf), 1030 "devices/system/cpu/cpu%d/online", cpu); 1031 1032 if (sysfs__read_str(buf, &str, &strlen) < 0) 1033 return status; 1034 1035 status = atoi(str); 1036 1037 free(str); 1038 return status; 1039 } 1040 1041 #ifdef HAVE_LIBBPF_SUPPORT 1042 static int write_bpf_prog_info(struct feat_fd *ff, 1043 struct evlist *evlist __maybe_unused) 1044 { 1045 struct perf_env *env = &ff->ph->env; 1046 struct rb_root *root; 1047 struct rb_node *next; 1048 int ret; 1049 1050 down_read(&env->bpf_progs.lock); 1051 1052 ret = do_write(ff, &env->bpf_progs.infos_cnt, 1053 sizeof(env->bpf_progs.infos_cnt)); 1054 if (ret < 0) 1055 goto out; 1056 1057 root = &env->bpf_progs.infos; 1058 next = rb_first(root); 1059 while (next) { 1060 struct bpf_prog_info_node *node; 1061 size_t len; 1062 1063 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1064 next = rb_next(&node->rb_node); 1065 len = sizeof(struct perf_bpil) + 1066 node->info_linear->data_len; 1067 1068 /* before writing to file, translate address to offset */ 1069 bpil_addr_to_offs(node->info_linear); 1070 ret = do_write(ff, node->info_linear, len); 1071 /* 1072 * translate back to address even when do_write() fails, 1073 * so that this function never changes the data. 1074 */ 1075 bpil_offs_to_addr(node->info_linear); 1076 if (ret < 0) 1077 goto out; 1078 } 1079 out: 1080 up_read(&env->bpf_progs.lock); 1081 return ret; 1082 } 1083 1084 static int write_bpf_btf(struct feat_fd *ff, 1085 struct evlist *evlist __maybe_unused) 1086 { 1087 struct perf_env *env = &ff->ph->env; 1088 struct rb_root *root; 1089 struct rb_node *next; 1090 int ret; 1091 1092 down_read(&env->bpf_progs.lock); 1093 1094 ret = do_write(ff, &env->bpf_progs.btfs_cnt, 1095 sizeof(env->bpf_progs.btfs_cnt)); 1096 1097 if (ret < 0) 1098 goto out; 1099 1100 root = &env->bpf_progs.btfs; 1101 next = rb_first(root); 1102 while (next) { 1103 struct btf_node *node; 1104 1105 node = rb_entry(next, struct btf_node, rb_node); 1106 next = rb_next(&node->rb_node); 1107 ret = do_write(ff, &node->id, 1108 sizeof(u32) * 2 + node->data_size); 1109 if (ret < 0) 1110 goto out; 1111 } 1112 out: 1113 up_read(&env->bpf_progs.lock); 1114 return ret; 1115 } 1116 #endif // HAVE_LIBBPF_SUPPORT 1117 1118 static int cpu_cache_level__sort(const void *a, const void *b) 1119 { 1120 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; 1121 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; 1122 1123 return cache_a->level - cache_b->level; 1124 } 1125 1126 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) 1127 { 1128 if (a->level != b->level) 1129 return false; 1130 1131 if (a->line_size != b->line_size) 1132 return false; 1133 1134 if (a->sets != b->sets) 1135 return false; 1136 1137 if (a->ways != b->ways) 1138 return false; 1139 1140 if (strcmp(a->type, b->type)) 1141 return false; 1142 1143 if (strcmp(a->size, b->size)) 1144 return false; 1145 1146 if (strcmp(a->map, b->map)) 1147 return false; 1148 1149 return true; 1150 } 1151 1152 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) 1153 { 1154 char path[PATH_MAX], file[PATH_MAX]; 1155 struct stat st; 1156 size_t len; 1157 1158 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); 1159 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); 1160 1161 if (stat(file, &st)) 1162 return 1; 1163 1164 scnprintf(file, PATH_MAX, "%s/level", path); 1165 if (sysfs__read_int(file, (int *) &cache->level)) 1166 return -1; 1167 1168 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); 1169 if (sysfs__read_int(file, (int *) &cache->line_size)) 1170 return -1; 1171 1172 scnprintf(file, PATH_MAX, "%s/number_of_sets", path); 1173 if (sysfs__read_int(file, (int *) &cache->sets)) 1174 return -1; 1175 1176 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); 1177 if (sysfs__read_int(file, (int *) &cache->ways)) 1178 return -1; 1179 1180 scnprintf(file, PATH_MAX, "%s/type", path); 1181 if (sysfs__read_str(file, &cache->type, &len)) 1182 return -1; 1183 1184 cache->type[len] = 0; 1185 cache->type = strim(cache->type); 1186 1187 scnprintf(file, PATH_MAX, "%s/size", path); 1188 if (sysfs__read_str(file, &cache->size, &len)) { 1189 zfree(&cache->type); 1190 return -1; 1191 } 1192 1193 cache->size[len] = 0; 1194 cache->size = strim(cache->size); 1195 1196 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); 1197 if (sysfs__read_str(file, &cache->map, &len)) { 1198 zfree(&cache->size); 1199 zfree(&cache->type); 1200 return -1; 1201 } 1202 1203 cache->map[len] = 0; 1204 cache->map = strim(cache->map); 1205 return 0; 1206 } 1207 1208 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) 1209 { 1210 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); 1211 } 1212 1213 /* 1214 * Build caches levels for a particular CPU from the data in 1215 * /sys/devices/system/cpu/cpu<cpu>/cache/ 1216 * The cache level data is stored in caches[] from index at 1217 * *cntp. 1218 */ 1219 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp) 1220 { 1221 u16 level; 1222 1223 for (level = 0; level < MAX_CACHE_LVL; level++) { 1224 struct cpu_cache_level c; 1225 int err; 1226 u32 i; 1227 1228 err = cpu_cache_level__read(&c, cpu, level); 1229 if (err < 0) 1230 return err; 1231 1232 if (err == 1) 1233 break; 1234 1235 for (i = 0; i < *cntp; i++) { 1236 if (cpu_cache_level__cmp(&c, &caches[i])) 1237 break; 1238 } 1239 1240 if (i == *cntp) { 1241 caches[*cntp] = c; 1242 *cntp = *cntp + 1; 1243 } else 1244 cpu_cache_level__free(&c); 1245 } 1246 1247 return 0; 1248 } 1249 1250 static int build_caches(struct cpu_cache_level caches[], u32 *cntp) 1251 { 1252 u32 nr, cpu, cnt = 0; 1253 1254 nr = cpu__max_cpu().cpu; 1255 1256 for (cpu = 0; cpu < nr; cpu++) { 1257 int ret = build_caches_for_cpu(cpu, caches, &cnt); 1258 1259 if (ret) 1260 return ret; 1261 } 1262 *cntp = cnt; 1263 return 0; 1264 } 1265 1266 static int write_cache(struct feat_fd *ff, 1267 struct evlist *evlist __maybe_unused) 1268 { 1269 u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL; 1270 struct cpu_cache_level caches[max_caches]; 1271 u32 cnt = 0, i, version = 1; 1272 int ret; 1273 1274 ret = build_caches(caches, &cnt); 1275 if (ret) 1276 goto out; 1277 1278 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); 1279 1280 ret = do_write(ff, &version, sizeof(u32)); 1281 if (ret < 0) 1282 goto out; 1283 1284 ret = do_write(ff, &cnt, sizeof(u32)); 1285 if (ret < 0) 1286 goto out; 1287 1288 for (i = 0; i < cnt; i++) { 1289 struct cpu_cache_level *c = &caches[i]; 1290 1291 #define _W(v) \ 1292 ret = do_write(ff, &c->v, sizeof(u32)); \ 1293 if (ret < 0) \ 1294 goto out; 1295 1296 _W(level) 1297 _W(line_size) 1298 _W(sets) 1299 _W(ways) 1300 #undef _W 1301 1302 #define _W(v) \ 1303 ret = do_write_string(ff, (const char *) c->v); \ 1304 if (ret < 0) \ 1305 goto out; 1306 1307 _W(type) 1308 _W(size) 1309 _W(map) 1310 #undef _W 1311 } 1312 1313 out: 1314 for (i = 0; i < cnt; i++) 1315 cpu_cache_level__free(&caches[i]); 1316 return ret; 1317 } 1318 1319 static int write_stat(struct feat_fd *ff __maybe_unused, 1320 struct evlist *evlist __maybe_unused) 1321 { 1322 return 0; 1323 } 1324 1325 static int write_sample_time(struct feat_fd *ff, 1326 struct evlist *evlist) 1327 { 1328 int ret; 1329 1330 ret = do_write(ff, &evlist->first_sample_time, 1331 sizeof(evlist->first_sample_time)); 1332 if (ret < 0) 1333 return ret; 1334 1335 return do_write(ff, &evlist->last_sample_time, 1336 sizeof(evlist->last_sample_time)); 1337 } 1338 1339 1340 static int memory_node__read(struct memory_node *n, unsigned long idx) 1341 { 1342 unsigned int phys, size = 0; 1343 char path[PATH_MAX]; 1344 struct dirent *ent; 1345 DIR *dir; 1346 1347 #define for_each_memory(mem, dir) \ 1348 while ((ent = readdir(dir))) \ 1349 if (strcmp(ent->d_name, ".") && \ 1350 strcmp(ent->d_name, "..") && \ 1351 sscanf(ent->d_name, "memory%u", &mem) == 1) 1352 1353 scnprintf(path, PATH_MAX, 1354 "%s/devices/system/node/node%lu", 1355 sysfs__mountpoint(), idx); 1356 1357 dir = opendir(path); 1358 if (!dir) { 1359 pr_warning("failed: can't open memory sysfs data\n"); 1360 return -1; 1361 } 1362 1363 for_each_memory(phys, dir) { 1364 size = max(phys, size); 1365 } 1366 1367 size++; 1368 1369 n->set = bitmap_zalloc(size); 1370 if (!n->set) { 1371 closedir(dir); 1372 return -ENOMEM; 1373 } 1374 1375 n->node = idx; 1376 n->size = size; 1377 1378 rewinddir(dir); 1379 1380 for_each_memory(phys, dir) { 1381 __set_bit(phys, n->set); 1382 } 1383 1384 closedir(dir); 1385 return 0; 1386 } 1387 1388 static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt) 1389 { 1390 for (u64 i = 0; i < cnt; i++) 1391 bitmap_free(nodesp[i].set); 1392 1393 free(nodesp); 1394 } 1395 1396 static int memory_node__sort(const void *a, const void *b) 1397 { 1398 const struct memory_node *na = a; 1399 const struct memory_node *nb = b; 1400 1401 return na->node - nb->node; 1402 } 1403 1404 static int build_mem_topology(struct memory_node **nodesp, u64 *cntp) 1405 { 1406 char path[PATH_MAX]; 1407 struct dirent *ent; 1408 DIR *dir; 1409 int ret = 0; 1410 size_t cnt = 0, size = 0; 1411 struct memory_node *nodes = NULL; 1412 1413 scnprintf(path, PATH_MAX, "%s/devices/system/node/", 1414 sysfs__mountpoint()); 1415 1416 dir = opendir(path); 1417 if (!dir) { 1418 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n", 1419 __func__, path); 1420 return -1; 1421 } 1422 1423 while (!ret && (ent = readdir(dir))) { 1424 unsigned int idx; 1425 int r; 1426 1427 if (!strcmp(ent->d_name, ".") || 1428 !strcmp(ent->d_name, "..")) 1429 continue; 1430 1431 r = sscanf(ent->d_name, "node%u", &idx); 1432 if (r != 1) 1433 continue; 1434 1435 if (cnt >= size) { 1436 struct memory_node *new_nodes = 1437 reallocarray(nodes, cnt + 4, sizeof(*nodes)); 1438 1439 if (!new_nodes) { 1440 pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size); 1441 ret = -ENOMEM; 1442 goto out; 1443 } 1444 nodes = new_nodes; 1445 size += 4; 1446 } 1447 ret = memory_node__read(&nodes[cnt], idx); 1448 if (!ret) 1449 cnt += 1; 1450 } 1451 out: 1452 closedir(dir); 1453 if (!ret) { 1454 *cntp = cnt; 1455 *nodesp = nodes; 1456 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); 1457 } else 1458 memory_node__delete_nodes(nodes, cnt); 1459 1460 return ret; 1461 } 1462 1463 /* 1464 * The MEM_TOPOLOGY holds physical memory map for every 1465 * node in system. The format of data is as follows: 1466 * 1467 * 0 - version | for future changes 1468 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes 1469 * 16 - count | number of nodes 1470 * 1471 * For each node we store map of physical indexes for 1472 * each node: 1473 * 1474 * 32 - node id | node index 1475 * 40 - size | size of bitmap 1476 * 48 - bitmap | bitmap of memory indexes that belongs to node 1477 */ 1478 static int write_mem_topology(struct feat_fd *ff __maybe_unused, 1479 struct evlist *evlist __maybe_unused) 1480 { 1481 struct memory_node *nodes = NULL; 1482 u64 bsize, version = 1, i, nr = 0; 1483 int ret; 1484 1485 ret = sysfs__read_xll("devices/system/memory/block_size_bytes", 1486 (unsigned long long *) &bsize); 1487 if (ret) 1488 return ret; 1489 1490 ret = build_mem_topology(&nodes, &nr); 1491 if (ret) 1492 return ret; 1493 1494 ret = do_write(ff, &version, sizeof(version)); 1495 if (ret < 0) 1496 goto out; 1497 1498 ret = do_write(ff, &bsize, sizeof(bsize)); 1499 if (ret < 0) 1500 goto out; 1501 1502 ret = do_write(ff, &nr, sizeof(nr)); 1503 if (ret < 0) 1504 goto out; 1505 1506 for (i = 0; i < nr; i++) { 1507 struct memory_node *n = &nodes[i]; 1508 1509 #define _W(v) \ 1510 ret = do_write(ff, &n->v, sizeof(n->v)); \ 1511 if (ret < 0) \ 1512 goto out; 1513 1514 _W(node) 1515 _W(size) 1516 1517 #undef _W 1518 1519 ret = do_write_bitmap(ff, n->set, n->size); 1520 if (ret < 0) 1521 goto out; 1522 } 1523 1524 out: 1525 memory_node__delete_nodes(nodes, nr); 1526 return ret; 1527 } 1528 1529 static int write_compressed(struct feat_fd *ff __maybe_unused, 1530 struct evlist *evlist __maybe_unused) 1531 { 1532 int ret; 1533 1534 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver)); 1535 if (ret) 1536 return ret; 1537 1538 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type)); 1539 if (ret) 1540 return ret; 1541 1542 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level)); 1543 if (ret) 1544 return ret; 1545 1546 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio)); 1547 if (ret) 1548 return ret; 1549 1550 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len)); 1551 } 1552 1553 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu, 1554 bool write_pmu) 1555 { 1556 struct perf_pmu_caps *caps = NULL; 1557 int ret; 1558 1559 ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps)); 1560 if (ret < 0) 1561 return ret; 1562 1563 list_for_each_entry(caps, &pmu->caps, list) { 1564 ret = do_write_string(ff, caps->name); 1565 if (ret < 0) 1566 return ret; 1567 1568 ret = do_write_string(ff, caps->value); 1569 if (ret < 0) 1570 return ret; 1571 } 1572 1573 if (write_pmu) { 1574 ret = do_write_string(ff, pmu->name); 1575 if (ret < 0) 1576 return ret; 1577 } 1578 1579 return ret; 1580 } 1581 1582 static int write_cpu_pmu_caps(struct feat_fd *ff, 1583 struct evlist *evlist __maybe_unused) 1584 { 1585 struct perf_pmu *cpu_pmu = perf_pmus__find("cpu"); 1586 int ret; 1587 1588 if (!cpu_pmu) 1589 return -ENOENT; 1590 1591 ret = perf_pmu__caps_parse(cpu_pmu); 1592 if (ret < 0) 1593 return ret; 1594 1595 return __write_pmu_caps(ff, cpu_pmu, false); 1596 } 1597 1598 static int write_pmu_caps(struct feat_fd *ff, 1599 struct evlist *evlist __maybe_unused) 1600 { 1601 struct perf_pmu *pmu = NULL; 1602 int nr_pmu = 0; 1603 int ret; 1604 1605 while ((pmu = perf_pmus__scan(pmu))) { 1606 if (!strcmp(pmu->name, "cpu")) { 1607 /* 1608 * The "cpu" PMU is special and covered by 1609 * HEADER_CPU_PMU_CAPS. Note, core PMUs are 1610 * counted/written here for ARM, s390 and Intel hybrid. 1611 */ 1612 continue; 1613 } 1614 if (perf_pmu__caps_parse(pmu) <= 0) 1615 continue; 1616 nr_pmu++; 1617 } 1618 1619 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu)); 1620 if (ret < 0) 1621 return ret; 1622 1623 if (!nr_pmu) 1624 return 0; 1625 1626 /* 1627 * Note older perf tools assume core PMUs come first, this is a property 1628 * of perf_pmus__scan. 1629 */ 1630 pmu = NULL; 1631 while ((pmu = perf_pmus__scan(pmu))) { 1632 if (!strcmp(pmu->name, "cpu")) { 1633 /* Skip as above. */ 1634 continue; 1635 } 1636 if (perf_pmu__caps_parse(pmu) <= 0) 1637 continue; 1638 ret = __write_pmu_caps(ff, pmu, true); 1639 if (ret < 0) 1640 return ret; 1641 } 1642 return 0; 1643 } 1644 1645 static void print_hostname(struct feat_fd *ff, FILE *fp) 1646 { 1647 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); 1648 } 1649 1650 static void print_osrelease(struct feat_fd *ff, FILE *fp) 1651 { 1652 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); 1653 } 1654 1655 static void print_arch(struct feat_fd *ff, FILE *fp) 1656 { 1657 fprintf(fp, "# arch : %s\n", ff->ph->env.arch); 1658 } 1659 1660 static void print_cpudesc(struct feat_fd *ff, FILE *fp) 1661 { 1662 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); 1663 } 1664 1665 static void print_nrcpus(struct feat_fd *ff, FILE *fp) 1666 { 1667 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); 1668 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); 1669 } 1670 1671 static void print_version(struct feat_fd *ff, FILE *fp) 1672 { 1673 fprintf(fp, "# perf version : %s\n", ff->ph->env.version); 1674 } 1675 1676 static void print_cmdline(struct feat_fd *ff, FILE *fp) 1677 { 1678 int nr, i; 1679 1680 nr = ff->ph->env.nr_cmdline; 1681 1682 fprintf(fp, "# cmdline : "); 1683 1684 for (i = 0; i < nr; i++) { 1685 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); 1686 if (!argv_i) { 1687 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); 1688 } else { 1689 char *mem = argv_i; 1690 do { 1691 char *quote = strchr(argv_i, '\''); 1692 if (!quote) 1693 break; 1694 *quote++ = '\0'; 1695 fprintf(fp, "%s\\\'", argv_i); 1696 argv_i = quote; 1697 } while (1); 1698 fprintf(fp, "%s ", argv_i); 1699 free(mem); 1700 } 1701 } 1702 fputc('\n', fp); 1703 } 1704 1705 static void print_cpu_topology(struct feat_fd *ff, FILE *fp) 1706 { 1707 struct perf_header *ph = ff->ph; 1708 int cpu_nr = ph->env.nr_cpus_avail; 1709 int nr, i; 1710 char *str; 1711 1712 nr = ph->env.nr_sibling_cores; 1713 str = ph->env.sibling_cores; 1714 1715 for (i = 0; i < nr; i++) { 1716 fprintf(fp, "# sibling sockets : %s\n", str); 1717 str += strlen(str) + 1; 1718 } 1719 1720 if (ph->env.nr_sibling_dies) { 1721 nr = ph->env.nr_sibling_dies; 1722 str = ph->env.sibling_dies; 1723 1724 for (i = 0; i < nr; i++) { 1725 fprintf(fp, "# sibling dies : %s\n", str); 1726 str += strlen(str) + 1; 1727 } 1728 } 1729 1730 nr = ph->env.nr_sibling_threads; 1731 str = ph->env.sibling_threads; 1732 1733 for (i = 0; i < nr; i++) { 1734 fprintf(fp, "# sibling threads : %s\n", str); 1735 str += strlen(str) + 1; 1736 } 1737 1738 if (ph->env.nr_sibling_dies) { 1739 if (ph->env.cpu != NULL) { 1740 for (i = 0; i < cpu_nr; i++) 1741 fprintf(fp, "# CPU %d: Core ID %d, " 1742 "Die ID %d, Socket ID %d\n", 1743 i, ph->env.cpu[i].core_id, 1744 ph->env.cpu[i].die_id, 1745 ph->env.cpu[i].socket_id); 1746 } else 1747 fprintf(fp, "# Core ID, Die ID and Socket ID " 1748 "information is not available\n"); 1749 } else { 1750 if (ph->env.cpu != NULL) { 1751 for (i = 0; i < cpu_nr; i++) 1752 fprintf(fp, "# CPU %d: Core ID %d, " 1753 "Socket ID %d\n", 1754 i, ph->env.cpu[i].core_id, 1755 ph->env.cpu[i].socket_id); 1756 } else 1757 fprintf(fp, "# Core ID and Socket ID " 1758 "information is not available\n"); 1759 } 1760 } 1761 1762 static void print_clockid(struct feat_fd *ff, FILE *fp) 1763 { 1764 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", 1765 ff->ph->env.clock.clockid_res_ns * 1000); 1766 } 1767 1768 static void print_clock_data(struct feat_fd *ff, FILE *fp) 1769 { 1770 struct timespec clockid_ns; 1771 char tstr[64], date[64]; 1772 struct timeval tod_ns; 1773 clockid_t clockid; 1774 struct tm ltime; 1775 u64 ref; 1776 1777 if (!ff->ph->env.clock.enabled) { 1778 fprintf(fp, "# reference time disabled\n"); 1779 return; 1780 } 1781 1782 /* Compute TOD time. */ 1783 ref = ff->ph->env.clock.tod_ns; 1784 tod_ns.tv_sec = ref / NSEC_PER_SEC; 1785 ref -= tod_ns.tv_sec * NSEC_PER_SEC; 1786 tod_ns.tv_usec = ref / NSEC_PER_USEC; 1787 1788 /* Compute clockid time. */ 1789 ref = ff->ph->env.clock.clockid_ns; 1790 clockid_ns.tv_sec = ref / NSEC_PER_SEC; 1791 ref -= clockid_ns.tv_sec * NSEC_PER_SEC; 1792 clockid_ns.tv_nsec = ref; 1793 1794 clockid = ff->ph->env.clock.clockid; 1795 1796 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL) 1797 snprintf(tstr, sizeof(tstr), "<error>"); 1798 else { 1799 strftime(date, sizeof(date), "%F %T", <ime); 1800 scnprintf(tstr, sizeof(tstr), "%s.%06d", 1801 date, (int) tod_ns.tv_usec); 1802 } 1803 1804 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid); 1805 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n", 1806 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec, 1807 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec, 1808 clockid_name(clockid)); 1809 } 1810 1811 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp) 1812 { 1813 int i; 1814 struct hybrid_node *n; 1815 1816 fprintf(fp, "# hybrid cpu system:\n"); 1817 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) { 1818 n = &ff->ph->env.hybrid_nodes[i]; 1819 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus); 1820 } 1821 } 1822 1823 static void print_dir_format(struct feat_fd *ff, FILE *fp) 1824 { 1825 struct perf_session *session; 1826 struct perf_data *data; 1827 1828 session = container_of(ff->ph, struct perf_session, header); 1829 data = session->data; 1830 1831 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version); 1832 } 1833 1834 #ifdef HAVE_LIBBPF_SUPPORT 1835 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp) 1836 { 1837 struct perf_env *env = &ff->ph->env; 1838 struct rb_root *root; 1839 struct rb_node *next; 1840 1841 down_read(&env->bpf_progs.lock); 1842 1843 root = &env->bpf_progs.infos; 1844 next = rb_first(root); 1845 1846 while (next) { 1847 struct bpf_prog_info_node *node; 1848 1849 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1850 next = rb_next(&node->rb_node); 1851 1852 __bpf_event__print_bpf_prog_info(&node->info_linear->info, 1853 env, fp); 1854 } 1855 1856 up_read(&env->bpf_progs.lock); 1857 } 1858 1859 static void print_bpf_btf(struct feat_fd *ff, FILE *fp) 1860 { 1861 struct perf_env *env = &ff->ph->env; 1862 struct rb_root *root; 1863 struct rb_node *next; 1864 1865 down_read(&env->bpf_progs.lock); 1866 1867 root = &env->bpf_progs.btfs; 1868 next = rb_first(root); 1869 1870 while (next) { 1871 struct btf_node *node; 1872 1873 node = rb_entry(next, struct btf_node, rb_node); 1874 next = rb_next(&node->rb_node); 1875 fprintf(fp, "# btf info of id %u\n", node->id); 1876 } 1877 1878 up_read(&env->bpf_progs.lock); 1879 } 1880 #endif // HAVE_LIBBPF_SUPPORT 1881 1882 static void free_event_desc(struct evsel *events) 1883 { 1884 struct evsel *evsel; 1885 1886 if (!events) 1887 return; 1888 1889 for (evsel = events; evsel->core.attr.size; evsel++) { 1890 zfree(&evsel->name); 1891 zfree(&evsel->core.id); 1892 } 1893 1894 free(events); 1895 } 1896 1897 static bool perf_attr_check(struct perf_event_attr *attr) 1898 { 1899 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) { 1900 pr_warning("Reserved bits are set unexpectedly. " 1901 "Please update perf tool.\n"); 1902 return false; 1903 } 1904 1905 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) { 1906 pr_warning("Unknown sample type (0x%llx) is detected. " 1907 "Please update perf tool.\n", 1908 attr->sample_type); 1909 return false; 1910 } 1911 1912 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) { 1913 pr_warning("Unknown read format (0x%llx) is detected. " 1914 "Please update perf tool.\n", 1915 attr->read_format); 1916 return false; 1917 } 1918 1919 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) && 1920 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) { 1921 pr_warning("Unknown branch sample type (0x%llx) is detected. " 1922 "Please update perf tool.\n", 1923 attr->branch_sample_type); 1924 1925 return false; 1926 } 1927 1928 return true; 1929 } 1930 1931 static struct evsel *read_event_desc(struct feat_fd *ff) 1932 { 1933 struct evsel *evsel, *events = NULL; 1934 u64 *id; 1935 void *buf = NULL; 1936 u32 nre, sz, nr, i, j; 1937 size_t msz; 1938 1939 /* number of events */ 1940 if (do_read_u32(ff, &nre)) 1941 goto error; 1942 1943 if (do_read_u32(ff, &sz)) 1944 goto error; 1945 1946 /* buffer to hold on file attr struct */ 1947 buf = malloc(sz); 1948 if (!buf) 1949 goto error; 1950 1951 /* the last event terminates with evsel->core.attr.size == 0: */ 1952 events = calloc(nre + 1, sizeof(*events)); 1953 if (!events) 1954 goto error; 1955 1956 msz = sizeof(evsel->core.attr); 1957 if (sz < msz) 1958 msz = sz; 1959 1960 for (i = 0, evsel = events; i < nre; evsel++, i++) { 1961 evsel->core.idx = i; 1962 1963 /* 1964 * must read entire on-file attr struct to 1965 * sync up with layout. 1966 */ 1967 if (__do_read(ff, buf, sz)) 1968 goto error; 1969 1970 if (ff->ph->needs_swap) 1971 perf_event__attr_swap(buf); 1972 1973 memcpy(&evsel->core.attr, buf, msz); 1974 1975 if (!perf_attr_check(&evsel->core.attr)) 1976 goto error; 1977 1978 if (do_read_u32(ff, &nr)) 1979 goto error; 1980 1981 if (ff->ph->needs_swap) 1982 evsel->needs_swap = true; 1983 1984 evsel->name = do_read_string(ff); 1985 if (!evsel->name) 1986 goto error; 1987 1988 if (!nr) 1989 continue; 1990 1991 id = calloc(nr, sizeof(*id)); 1992 if (!id) 1993 goto error; 1994 evsel->core.ids = nr; 1995 evsel->core.id = id; 1996 1997 for (j = 0 ; j < nr; j++) { 1998 if (do_read_u64(ff, id)) 1999 goto error; 2000 id++; 2001 } 2002 } 2003 out: 2004 free(buf); 2005 return events; 2006 error: 2007 free_event_desc(events); 2008 events = NULL; 2009 goto out; 2010 } 2011 2012 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, 2013 void *priv __maybe_unused) 2014 { 2015 return fprintf(fp, ", %s = %s", name, val); 2016 } 2017 2018 static void print_event_desc(struct feat_fd *ff, FILE *fp) 2019 { 2020 struct evsel *evsel, *events; 2021 u32 j; 2022 u64 *id; 2023 2024 if (ff->events) 2025 events = ff->events; 2026 else 2027 events = read_event_desc(ff); 2028 2029 if (!events) { 2030 fprintf(fp, "# event desc: not available or unable to read\n"); 2031 return; 2032 } 2033 2034 for (evsel = events; evsel->core.attr.size; evsel++) { 2035 fprintf(fp, "# event : name = %s, ", evsel->name); 2036 2037 if (evsel->core.ids) { 2038 fprintf(fp, ", id = {"); 2039 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) { 2040 if (j) 2041 fputc(',', fp); 2042 fprintf(fp, " %"PRIu64, *id); 2043 } 2044 fprintf(fp, " }"); 2045 } 2046 2047 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL); 2048 2049 fputc('\n', fp); 2050 } 2051 2052 free_event_desc(events); 2053 ff->events = NULL; 2054 } 2055 2056 static void print_total_mem(struct feat_fd *ff, FILE *fp) 2057 { 2058 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); 2059 } 2060 2061 static void print_numa_topology(struct feat_fd *ff, FILE *fp) 2062 { 2063 int i; 2064 struct numa_node *n; 2065 2066 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { 2067 n = &ff->ph->env.numa_nodes[i]; 2068 2069 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," 2070 " free = %"PRIu64" kB\n", 2071 n->node, n->mem_total, n->mem_free); 2072 2073 fprintf(fp, "# node%u cpu list : ", n->node); 2074 cpu_map__fprintf(n->map, fp); 2075 } 2076 } 2077 2078 static void print_cpuid(struct feat_fd *ff, FILE *fp) 2079 { 2080 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); 2081 } 2082 2083 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) 2084 { 2085 fprintf(fp, "# contains samples with branch stack\n"); 2086 } 2087 2088 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) 2089 { 2090 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); 2091 } 2092 2093 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) 2094 { 2095 fprintf(fp, "# contains stat data\n"); 2096 } 2097 2098 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) 2099 { 2100 int i; 2101 2102 fprintf(fp, "# CPU cache info:\n"); 2103 for (i = 0; i < ff->ph->env.caches_cnt; i++) { 2104 fprintf(fp, "# "); 2105 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); 2106 } 2107 } 2108 2109 static void print_compressed(struct feat_fd *ff, FILE *fp) 2110 { 2111 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n", 2112 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown", 2113 ff->ph->env.comp_level, ff->ph->env.comp_ratio); 2114 } 2115 2116 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name) 2117 { 2118 const char *delimiter = ""; 2119 int i; 2120 2121 if (!nr_caps) { 2122 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name); 2123 return; 2124 } 2125 2126 fprintf(fp, "# %s pmu capabilities: ", pmu_name); 2127 for (i = 0; i < nr_caps; i++) { 2128 fprintf(fp, "%s%s", delimiter, caps[i]); 2129 delimiter = ", "; 2130 } 2131 2132 fprintf(fp, "\n"); 2133 } 2134 2135 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp) 2136 { 2137 __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps, 2138 ff->ph->env.cpu_pmu_caps, (char *)"cpu"); 2139 } 2140 2141 static void print_pmu_caps(struct feat_fd *ff, FILE *fp) 2142 { 2143 struct pmu_caps *pmu_caps; 2144 2145 for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) { 2146 pmu_caps = &ff->ph->env.pmu_caps[i]; 2147 __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps, 2148 pmu_caps->pmu_name); 2149 } 2150 } 2151 2152 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) 2153 { 2154 const char *delimiter = "# pmu mappings: "; 2155 char *str, *tmp; 2156 u32 pmu_num; 2157 u32 type; 2158 2159 pmu_num = ff->ph->env.nr_pmu_mappings; 2160 if (!pmu_num) { 2161 fprintf(fp, "# pmu mappings: not available\n"); 2162 return; 2163 } 2164 2165 str = ff->ph->env.pmu_mappings; 2166 2167 while (pmu_num) { 2168 type = strtoul(str, &tmp, 0); 2169 if (*tmp != ':') 2170 goto error; 2171 2172 str = tmp + 1; 2173 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); 2174 2175 delimiter = ", "; 2176 str += strlen(str) + 1; 2177 pmu_num--; 2178 } 2179 2180 fprintf(fp, "\n"); 2181 2182 if (!pmu_num) 2183 return; 2184 error: 2185 fprintf(fp, "# pmu mappings: unable to read\n"); 2186 } 2187 2188 static void print_group_desc(struct feat_fd *ff, FILE *fp) 2189 { 2190 struct perf_session *session; 2191 struct evsel *evsel; 2192 u32 nr = 0; 2193 2194 session = container_of(ff->ph, struct perf_session, header); 2195 2196 evlist__for_each_entry(session->evlist, evsel) { 2197 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 2198 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel)); 2199 2200 nr = evsel->core.nr_members - 1; 2201 } else if (nr) { 2202 fprintf(fp, ",%s", evsel__name(evsel)); 2203 2204 if (--nr == 0) 2205 fprintf(fp, "}\n"); 2206 } 2207 } 2208 } 2209 2210 static void print_sample_time(struct feat_fd *ff, FILE *fp) 2211 { 2212 struct perf_session *session; 2213 char time_buf[32]; 2214 double d; 2215 2216 session = container_of(ff->ph, struct perf_session, header); 2217 2218 timestamp__scnprintf_usec(session->evlist->first_sample_time, 2219 time_buf, sizeof(time_buf)); 2220 fprintf(fp, "# time of first sample : %s\n", time_buf); 2221 2222 timestamp__scnprintf_usec(session->evlist->last_sample_time, 2223 time_buf, sizeof(time_buf)); 2224 fprintf(fp, "# time of last sample : %s\n", time_buf); 2225 2226 d = (double)(session->evlist->last_sample_time - 2227 session->evlist->first_sample_time) / NSEC_PER_MSEC; 2228 2229 fprintf(fp, "# sample duration : %10.3f ms\n", d); 2230 } 2231 2232 static void memory_node__fprintf(struct memory_node *n, 2233 unsigned long long bsize, FILE *fp) 2234 { 2235 char buf_map[100], buf_size[50]; 2236 unsigned long long size; 2237 2238 size = bsize * bitmap_weight(n->set, n->size); 2239 unit_number__scnprintf(buf_size, 50, size); 2240 2241 bitmap_scnprintf(n->set, n->size, buf_map, 100); 2242 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); 2243 } 2244 2245 static void print_mem_topology(struct feat_fd *ff, FILE *fp) 2246 { 2247 struct memory_node *nodes; 2248 int i, nr; 2249 2250 nodes = ff->ph->env.memory_nodes; 2251 nr = ff->ph->env.nr_memory_nodes; 2252 2253 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", 2254 nr, ff->ph->env.memory_bsize); 2255 2256 for (i = 0; i < nr; i++) { 2257 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp); 2258 } 2259 } 2260 2261 static int __event_process_build_id(struct perf_record_header_build_id *bev, 2262 char *filename, 2263 struct perf_session *session) 2264 { 2265 int err = -1; 2266 struct machine *machine; 2267 u16 cpumode; 2268 struct dso *dso; 2269 enum dso_space_type dso_space; 2270 2271 machine = perf_session__findnew_machine(session, bev->pid); 2272 if (!machine) 2273 goto out; 2274 2275 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2276 2277 switch (cpumode) { 2278 case PERF_RECORD_MISC_KERNEL: 2279 dso_space = DSO_SPACE__KERNEL; 2280 break; 2281 case PERF_RECORD_MISC_GUEST_KERNEL: 2282 dso_space = DSO_SPACE__KERNEL_GUEST; 2283 break; 2284 case PERF_RECORD_MISC_USER: 2285 case PERF_RECORD_MISC_GUEST_USER: 2286 dso_space = DSO_SPACE__USER; 2287 break; 2288 default: 2289 goto out; 2290 } 2291 2292 dso = machine__findnew_dso(machine, filename); 2293 if (dso != NULL) { 2294 char sbuild_id[SBUILD_ID_SIZE]; 2295 struct build_id bid; 2296 size_t size = BUILD_ID_SIZE; 2297 2298 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE) 2299 size = bev->size; 2300 2301 build_id__init(&bid, bev->data, size); 2302 dso__set_build_id(dso, &bid); 2303 dso->header_build_id = 1; 2304 2305 if (dso_space != DSO_SPACE__USER) { 2306 struct kmod_path m = { .name = NULL, }; 2307 2308 if (!kmod_path__parse_name(&m, filename) && m.kmod) 2309 dso__set_module_info(dso, &m, machine); 2310 2311 dso->kernel = dso_space; 2312 free(m.name); 2313 } 2314 2315 build_id__sprintf(&dso->bid, sbuild_id); 2316 pr_debug("build id event received for %s: %s [%zu]\n", 2317 dso->long_name, sbuild_id, size); 2318 dso__put(dso); 2319 } 2320 2321 err = 0; 2322 out: 2323 return err; 2324 } 2325 2326 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, 2327 int input, u64 offset, u64 size) 2328 { 2329 struct perf_session *session = container_of(header, struct perf_session, header); 2330 struct { 2331 struct perf_event_header header; 2332 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; 2333 char filename[0]; 2334 } old_bev; 2335 struct perf_record_header_build_id bev; 2336 char filename[PATH_MAX]; 2337 u64 limit = offset + size; 2338 2339 while (offset < limit) { 2340 ssize_t len; 2341 2342 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) 2343 return -1; 2344 2345 if (header->needs_swap) 2346 perf_event_header__bswap(&old_bev.header); 2347 2348 len = old_bev.header.size - sizeof(old_bev); 2349 if (readn(input, filename, len) != len) 2350 return -1; 2351 2352 bev.header = old_bev.header; 2353 2354 /* 2355 * As the pid is the missing value, we need to fill 2356 * it properly. The header.misc value give us nice hint. 2357 */ 2358 bev.pid = HOST_KERNEL_ID; 2359 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || 2360 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) 2361 bev.pid = DEFAULT_GUEST_KERNEL_ID; 2362 2363 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); 2364 __event_process_build_id(&bev, filename, session); 2365 2366 offset += bev.header.size; 2367 } 2368 2369 return 0; 2370 } 2371 2372 static int perf_header__read_build_ids(struct perf_header *header, 2373 int input, u64 offset, u64 size) 2374 { 2375 struct perf_session *session = container_of(header, struct perf_session, header); 2376 struct perf_record_header_build_id bev; 2377 char filename[PATH_MAX]; 2378 u64 limit = offset + size, orig_offset = offset; 2379 int err = -1; 2380 2381 while (offset < limit) { 2382 ssize_t len; 2383 2384 if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) 2385 goto out; 2386 2387 if (header->needs_swap) 2388 perf_event_header__bswap(&bev.header); 2389 2390 len = bev.header.size - sizeof(bev); 2391 if (readn(input, filename, len) != len) 2392 goto out; 2393 /* 2394 * The a1645ce1 changeset: 2395 * 2396 * "perf: 'perf kvm' tool for monitoring guest performance from host" 2397 * 2398 * Added a field to struct perf_record_header_build_id that broke the file 2399 * format. 2400 * 2401 * Since the kernel build-id is the first entry, process the 2402 * table using the old format if the well known 2403 * '[kernel.kallsyms]' string for the kernel build-id has the 2404 * first 4 characters chopped off (where the pid_t sits). 2405 */ 2406 if (memcmp(filename, "nel.kallsyms]", 13) == 0) { 2407 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) 2408 return -1; 2409 return perf_header__read_build_ids_abi_quirk(header, input, offset, size); 2410 } 2411 2412 __event_process_build_id(&bev, filename, session); 2413 2414 offset += bev.header.size; 2415 } 2416 err = 0; 2417 out: 2418 return err; 2419 } 2420 2421 /* Macro for features that simply need to read and store a string. */ 2422 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ 2423 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ 2424 {\ 2425 free(ff->ph->env.__feat_env); \ 2426 ff->ph->env.__feat_env = do_read_string(ff); \ 2427 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ 2428 } 2429 2430 FEAT_PROCESS_STR_FUN(hostname, hostname); 2431 FEAT_PROCESS_STR_FUN(osrelease, os_release); 2432 FEAT_PROCESS_STR_FUN(version, version); 2433 FEAT_PROCESS_STR_FUN(arch, arch); 2434 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); 2435 FEAT_PROCESS_STR_FUN(cpuid, cpuid); 2436 2437 #ifdef HAVE_LIBTRACEEVENT 2438 static int process_tracing_data(struct feat_fd *ff, void *data) 2439 { 2440 ssize_t ret = trace_report(ff->fd, data, false); 2441 2442 return ret < 0 ? -1 : 0; 2443 } 2444 #endif 2445 2446 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) 2447 { 2448 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) 2449 pr_debug("Failed to read buildids, continuing...\n"); 2450 return 0; 2451 } 2452 2453 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) 2454 { 2455 int ret; 2456 u32 nr_cpus_avail, nr_cpus_online; 2457 2458 ret = do_read_u32(ff, &nr_cpus_avail); 2459 if (ret) 2460 return ret; 2461 2462 ret = do_read_u32(ff, &nr_cpus_online); 2463 if (ret) 2464 return ret; 2465 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail; 2466 ff->ph->env.nr_cpus_online = (int)nr_cpus_online; 2467 return 0; 2468 } 2469 2470 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) 2471 { 2472 u64 total_mem; 2473 int ret; 2474 2475 ret = do_read_u64(ff, &total_mem); 2476 if (ret) 2477 return -1; 2478 ff->ph->env.total_mem = (unsigned long long)total_mem; 2479 return 0; 2480 } 2481 2482 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx) 2483 { 2484 struct evsel *evsel; 2485 2486 evlist__for_each_entry(evlist, evsel) { 2487 if (evsel->core.idx == idx) 2488 return evsel; 2489 } 2490 2491 return NULL; 2492 } 2493 2494 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event) 2495 { 2496 struct evsel *evsel; 2497 2498 if (!event->name) 2499 return; 2500 2501 evsel = evlist__find_by_index(evlist, event->core.idx); 2502 if (!evsel) 2503 return; 2504 2505 if (evsel->name) 2506 return; 2507 2508 evsel->name = strdup(event->name); 2509 } 2510 2511 static int 2512 process_event_desc(struct feat_fd *ff, void *data __maybe_unused) 2513 { 2514 struct perf_session *session; 2515 struct evsel *evsel, *events = read_event_desc(ff); 2516 2517 if (!events) 2518 return 0; 2519 2520 session = container_of(ff->ph, struct perf_session, header); 2521 2522 if (session->data->is_pipe) { 2523 /* Save events for reading later by print_event_desc, 2524 * since they can't be read again in pipe mode. */ 2525 ff->events = events; 2526 } 2527 2528 for (evsel = events; evsel->core.attr.size; evsel++) 2529 evlist__set_event_name(session->evlist, evsel); 2530 2531 if (!session->data->is_pipe) 2532 free_event_desc(events); 2533 2534 return 0; 2535 } 2536 2537 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) 2538 { 2539 char *str, *cmdline = NULL, **argv = NULL; 2540 u32 nr, i, len = 0; 2541 2542 if (do_read_u32(ff, &nr)) 2543 return -1; 2544 2545 ff->ph->env.nr_cmdline = nr; 2546 2547 cmdline = zalloc(ff->size + nr + 1); 2548 if (!cmdline) 2549 return -1; 2550 2551 argv = zalloc(sizeof(char *) * (nr + 1)); 2552 if (!argv) 2553 goto error; 2554 2555 for (i = 0; i < nr; i++) { 2556 str = do_read_string(ff); 2557 if (!str) 2558 goto error; 2559 2560 argv[i] = cmdline + len; 2561 memcpy(argv[i], str, strlen(str) + 1); 2562 len += strlen(str) + 1; 2563 free(str); 2564 } 2565 ff->ph->env.cmdline = cmdline; 2566 ff->ph->env.cmdline_argv = (const char **) argv; 2567 return 0; 2568 2569 error: 2570 free(argv); 2571 free(cmdline); 2572 return -1; 2573 } 2574 2575 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) 2576 { 2577 u32 nr, i; 2578 char *str; 2579 struct strbuf sb; 2580 int cpu_nr = ff->ph->env.nr_cpus_avail; 2581 u64 size = 0; 2582 struct perf_header *ph = ff->ph; 2583 bool do_core_id_test = true; 2584 2585 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu)); 2586 if (!ph->env.cpu) 2587 return -1; 2588 2589 if (do_read_u32(ff, &nr)) 2590 goto free_cpu; 2591 2592 ph->env.nr_sibling_cores = nr; 2593 size += sizeof(u32); 2594 if (strbuf_init(&sb, 128) < 0) 2595 goto free_cpu; 2596 2597 for (i = 0; i < nr; i++) { 2598 str = do_read_string(ff); 2599 if (!str) 2600 goto error; 2601 2602 /* include a NULL character at the end */ 2603 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2604 goto error; 2605 size += string_size(str); 2606 free(str); 2607 } 2608 ph->env.sibling_cores = strbuf_detach(&sb, NULL); 2609 2610 if (do_read_u32(ff, &nr)) 2611 return -1; 2612 2613 ph->env.nr_sibling_threads = nr; 2614 size += sizeof(u32); 2615 2616 for (i = 0; i < nr; i++) { 2617 str = do_read_string(ff); 2618 if (!str) 2619 goto error; 2620 2621 /* include a NULL character at the end */ 2622 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2623 goto error; 2624 size += string_size(str); 2625 free(str); 2626 } 2627 ph->env.sibling_threads = strbuf_detach(&sb, NULL); 2628 2629 /* 2630 * The header may be from old perf, 2631 * which doesn't include core id and socket id information. 2632 */ 2633 if (ff->size <= size) { 2634 zfree(&ph->env.cpu); 2635 return 0; 2636 } 2637 2638 /* On s390 the socket_id number is not related to the numbers of cpus. 2639 * The socket_id number might be higher than the numbers of cpus. 2640 * This depends on the configuration. 2641 * AArch64 is the same. 2642 */ 2643 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4) 2644 || !strncmp(ph->env.arch, "aarch64", 7))) 2645 do_core_id_test = false; 2646 2647 for (i = 0; i < (u32)cpu_nr; i++) { 2648 if (do_read_u32(ff, &nr)) 2649 goto free_cpu; 2650 2651 ph->env.cpu[i].core_id = nr; 2652 size += sizeof(u32); 2653 2654 if (do_read_u32(ff, &nr)) 2655 goto free_cpu; 2656 2657 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) { 2658 pr_debug("socket_id number is too big." 2659 "You may need to upgrade the perf tool.\n"); 2660 goto free_cpu; 2661 } 2662 2663 ph->env.cpu[i].socket_id = nr; 2664 size += sizeof(u32); 2665 } 2666 2667 /* 2668 * The header may be from old perf, 2669 * which doesn't include die information. 2670 */ 2671 if (ff->size <= size) 2672 return 0; 2673 2674 if (do_read_u32(ff, &nr)) 2675 return -1; 2676 2677 ph->env.nr_sibling_dies = nr; 2678 size += sizeof(u32); 2679 2680 for (i = 0; i < nr; i++) { 2681 str = do_read_string(ff); 2682 if (!str) 2683 goto error; 2684 2685 /* include a NULL character at the end */ 2686 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2687 goto error; 2688 size += string_size(str); 2689 free(str); 2690 } 2691 ph->env.sibling_dies = strbuf_detach(&sb, NULL); 2692 2693 for (i = 0; i < (u32)cpu_nr; i++) { 2694 if (do_read_u32(ff, &nr)) 2695 goto free_cpu; 2696 2697 ph->env.cpu[i].die_id = nr; 2698 } 2699 2700 return 0; 2701 2702 error: 2703 strbuf_release(&sb); 2704 free_cpu: 2705 zfree(&ph->env.cpu); 2706 return -1; 2707 } 2708 2709 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) 2710 { 2711 struct numa_node *nodes, *n; 2712 u32 nr, i; 2713 char *str; 2714 2715 /* nr nodes */ 2716 if (do_read_u32(ff, &nr)) 2717 return -1; 2718 2719 nodes = zalloc(sizeof(*nodes) * nr); 2720 if (!nodes) 2721 return -ENOMEM; 2722 2723 for (i = 0; i < nr; i++) { 2724 n = &nodes[i]; 2725 2726 /* node number */ 2727 if (do_read_u32(ff, &n->node)) 2728 goto error; 2729 2730 if (do_read_u64(ff, &n->mem_total)) 2731 goto error; 2732 2733 if (do_read_u64(ff, &n->mem_free)) 2734 goto error; 2735 2736 str = do_read_string(ff); 2737 if (!str) 2738 goto error; 2739 2740 n->map = perf_cpu_map__new(str); 2741 if (!n->map) 2742 goto error; 2743 2744 free(str); 2745 } 2746 ff->ph->env.nr_numa_nodes = nr; 2747 ff->ph->env.numa_nodes = nodes; 2748 return 0; 2749 2750 error: 2751 free(nodes); 2752 return -1; 2753 } 2754 2755 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) 2756 { 2757 char *name; 2758 u32 pmu_num; 2759 u32 type; 2760 struct strbuf sb; 2761 2762 if (do_read_u32(ff, &pmu_num)) 2763 return -1; 2764 2765 if (!pmu_num) { 2766 pr_debug("pmu mappings not available\n"); 2767 return 0; 2768 } 2769 2770 ff->ph->env.nr_pmu_mappings = pmu_num; 2771 if (strbuf_init(&sb, 128) < 0) 2772 return -1; 2773 2774 while (pmu_num) { 2775 if (do_read_u32(ff, &type)) 2776 goto error; 2777 2778 name = do_read_string(ff); 2779 if (!name) 2780 goto error; 2781 2782 if (strbuf_addf(&sb, "%u:%s", type, name) < 0) 2783 goto error; 2784 /* include a NULL character at the end */ 2785 if (strbuf_add(&sb, "", 1) < 0) 2786 goto error; 2787 2788 if (!strcmp(name, "msr")) 2789 ff->ph->env.msr_pmu_type = type; 2790 2791 free(name); 2792 pmu_num--; 2793 } 2794 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL); 2795 return 0; 2796 2797 error: 2798 strbuf_release(&sb); 2799 return -1; 2800 } 2801 2802 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) 2803 { 2804 size_t ret = -1; 2805 u32 i, nr, nr_groups; 2806 struct perf_session *session; 2807 struct evsel *evsel, *leader = NULL; 2808 struct group_desc { 2809 char *name; 2810 u32 leader_idx; 2811 u32 nr_members; 2812 } *desc; 2813 2814 if (do_read_u32(ff, &nr_groups)) 2815 return -1; 2816 2817 ff->ph->env.nr_groups = nr_groups; 2818 if (!nr_groups) { 2819 pr_debug("group desc not available\n"); 2820 return 0; 2821 } 2822 2823 desc = calloc(nr_groups, sizeof(*desc)); 2824 if (!desc) 2825 return -1; 2826 2827 for (i = 0; i < nr_groups; i++) { 2828 desc[i].name = do_read_string(ff); 2829 if (!desc[i].name) 2830 goto out_free; 2831 2832 if (do_read_u32(ff, &desc[i].leader_idx)) 2833 goto out_free; 2834 2835 if (do_read_u32(ff, &desc[i].nr_members)) 2836 goto out_free; 2837 } 2838 2839 /* 2840 * Rebuild group relationship based on the group_desc 2841 */ 2842 session = container_of(ff->ph, struct perf_session, header); 2843 2844 i = nr = 0; 2845 evlist__for_each_entry(session->evlist, evsel) { 2846 if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) { 2847 evsel__set_leader(evsel, evsel); 2848 /* {anon_group} is a dummy name */ 2849 if (strcmp(desc[i].name, "{anon_group}")) { 2850 evsel->group_name = desc[i].name; 2851 desc[i].name = NULL; 2852 } 2853 evsel->core.nr_members = desc[i].nr_members; 2854 2855 if (i >= nr_groups || nr > 0) { 2856 pr_debug("invalid group desc\n"); 2857 goto out_free; 2858 } 2859 2860 leader = evsel; 2861 nr = evsel->core.nr_members - 1; 2862 i++; 2863 } else if (nr) { 2864 /* This is a group member */ 2865 evsel__set_leader(evsel, leader); 2866 2867 nr--; 2868 } 2869 } 2870 2871 if (i != nr_groups || nr != 0) { 2872 pr_debug("invalid group desc\n"); 2873 goto out_free; 2874 } 2875 2876 ret = 0; 2877 out_free: 2878 for (i = 0; i < nr_groups; i++) 2879 zfree(&desc[i].name); 2880 free(desc); 2881 2882 return ret; 2883 } 2884 2885 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) 2886 { 2887 struct perf_session *session; 2888 int err; 2889 2890 session = container_of(ff->ph, struct perf_session, header); 2891 2892 err = auxtrace_index__process(ff->fd, ff->size, session, 2893 ff->ph->needs_swap); 2894 if (err < 0) 2895 pr_err("Failed to process auxtrace index\n"); 2896 return err; 2897 } 2898 2899 static int process_cache(struct feat_fd *ff, void *data __maybe_unused) 2900 { 2901 struct cpu_cache_level *caches; 2902 u32 cnt, i, version; 2903 2904 if (do_read_u32(ff, &version)) 2905 return -1; 2906 2907 if (version != 1) 2908 return -1; 2909 2910 if (do_read_u32(ff, &cnt)) 2911 return -1; 2912 2913 caches = zalloc(sizeof(*caches) * cnt); 2914 if (!caches) 2915 return -1; 2916 2917 for (i = 0; i < cnt; i++) { 2918 struct cpu_cache_level c; 2919 2920 #define _R(v) \ 2921 if (do_read_u32(ff, &c.v))\ 2922 goto out_free_caches; \ 2923 2924 _R(level) 2925 _R(line_size) 2926 _R(sets) 2927 _R(ways) 2928 #undef _R 2929 2930 #define _R(v) \ 2931 c.v = do_read_string(ff); \ 2932 if (!c.v) \ 2933 goto out_free_caches; 2934 2935 _R(type) 2936 _R(size) 2937 _R(map) 2938 #undef _R 2939 2940 caches[i] = c; 2941 } 2942 2943 ff->ph->env.caches = caches; 2944 ff->ph->env.caches_cnt = cnt; 2945 return 0; 2946 out_free_caches: 2947 free(caches); 2948 return -1; 2949 } 2950 2951 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) 2952 { 2953 struct perf_session *session; 2954 u64 first_sample_time, last_sample_time; 2955 int ret; 2956 2957 session = container_of(ff->ph, struct perf_session, header); 2958 2959 ret = do_read_u64(ff, &first_sample_time); 2960 if (ret) 2961 return -1; 2962 2963 ret = do_read_u64(ff, &last_sample_time); 2964 if (ret) 2965 return -1; 2966 2967 session->evlist->first_sample_time = first_sample_time; 2968 session->evlist->last_sample_time = last_sample_time; 2969 return 0; 2970 } 2971 2972 static int process_mem_topology(struct feat_fd *ff, 2973 void *data __maybe_unused) 2974 { 2975 struct memory_node *nodes; 2976 u64 version, i, nr, bsize; 2977 int ret = -1; 2978 2979 if (do_read_u64(ff, &version)) 2980 return -1; 2981 2982 if (version != 1) 2983 return -1; 2984 2985 if (do_read_u64(ff, &bsize)) 2986 return -1; 2987 2988 if (do_read_u64(ff, &nr)) 2989 return -1; 2990 2991 nodes = zalloc(sizeof(*nodes) * nr); 2992 if (!nodes) 2993 return -1; 2994 2995 for (i = 0; i < nr; i++) { 2996 struct memory_node n; 2997 2998 #define _R(v) \ 2999 if (do_read_u64(ff, &n.v)) \ 3000 goto out; \ 3001 3002 _R(node) 3003 _R(size) 3004 3005 #undef _R 3006 3007 if (do_read_bitmap(ff, &n.set, &n.size)) 3008 goto out; 3009 3010 nodes[i] = n; 3011 } 3012 3013 ff->ph->env.memory_bsize = bsize; 3014 ff->ph->env.memory_nodes = nodes; 3015 ff->ph->env.nr_memory_nodes = nr; 3016 ret = 0; 3017 3018 out: 3019 if (ret) 3020 free(nodes); 3021 return ret; 3022 } 3023 3024 static int process_clockid(struct feat_fd *ff, 3025 void *data __maybe_unused) 3026 { 3027 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns)) 3028 return -1; 3029 3030 return 0; 3031 } 3032 3033 static int process_clock_data(struct feat_fd *ff, 3034 void *_data __maybe_unused) 3035 { 3036 u32 data32; 3037 u64 data64; 3038 3039 /* version */ 3040 if (do_read_u32(ff, &data32)) 3041 return -1; 3042 3043 if (data32 != 1) 3044 return -1; 3045 3046 /* clockid */ 3047 if (do_read_u32(ff, &data32)) 3048 return -1; 3049 3050 ff->ph->env.clock.clockid = data32; 3051 3052 /* TOD ref time */ 3053 if (do_read_u64(ff, &data64)) 3054 return -1; 3055 3056 ff->ph->env.clock.tod_ns = data64; 3057 3058 /* clockid ref time */ 3059 if (do_read_u64(ff, &data64)) 3060 return -1; 3061 3062 ff->ph->env.clock.clockid_ns = data64; 3063 ff->ph->env.clock.enabled = true; 3064 return 0; 3065 } 3066 3067 static int process_hybrid_topology(struct feat_fd *ff, 3068 void *data __maybe_unused) 3069 { 3070 struct hybrid_node *nodes, *n; 3071 u32 nr, i; 3072 3073 /* nr nodes */ 3074 if (do_read_u32(ff, &nr)) 3075 return -1; 3076 3077 nodes = zalloc(sizeof(*nodes) * nr); 3078 if (!nodes) 3079 return -ENOMEM; 3080 3081 for (i = 0; i < nr; i++) { 3082 n = &nodes[i]; 3083 3084 n->pmu_name = do_read_string(ff); 3085 if (!n->pmu_name) 3086 goto error; 3087 3088 n->cpus = do_read_string(ff); 3089 if (!n->cpus) 3090 goto error; 3091 } 3092 3093 ff->ph->env.nr_hybrid_nodes = nr; 3094 ff->ph->env.hybrid_nodes = nodes; 3095 return 0; 3096 3097 error: 3098 for (i = 0; i < nr; i++) { 3099 free(nodes[i].pmu_name); 3100 free(nodes[i].cpus); 3101 } 3102 3103 free(nodes); 3104 return -1; 3105 } 3106 3107 static int process_dir_format(struct feat_fd *ff, 3108 void *_data __maybe_unused) 3109 { 3110 struct perf_session *session; 3111 struct perf_data *data; 3112 3113 session = container_of(ff->ph, struct perf_session, header); 3114 data = session->data; 3115 3116 if (WARN_ON(!perf_data__is_dir(data))) 3117 return -1; 3118 3119 return do_read_u64(ff, &data->dir.version); 3120 } 3121 3122 #ifdef HAVE_LIBBPF_SUPPORT 3123 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused) 3124 { 3125 struct bpf_prog_info_node *info_node; 3126 struct perf_env *env = &ff->ph->env; 3127 struct perf_bpil *info_linear; 3128 u32 count, i; 3129 int err = -1; 3130 3131 if (ff->ph->needs_swap) { 3132 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n"); 3133 return 0; 3134 } 3135 3136 if (do_read_u32(ff, &count)) 3137 return -1; 3138 3139 down_write(&env->bpf_progs.lock); 3140 3141 for (i = 0; i < count; ++i) { 3142 u32 info_len, data_len; 3143 3144 info_linear = NULL; 3145 info_node = NULL; 3146 if (do_read_u32(ff, &info_len)) 3147 goto out; 3148 if (do_read_u32(ff, &data_len)) 3149 goto out; 3150 3151 if (info_len > sizeof(struct bpf_prog_info)) { 3152 pr_warning("detected invalid bpf_prog_info\n"); 3153 goto out; 3154 } 3155 3156 info_linear = malloc(sizeof(struct perf_bpil) + 3157 data_len); 3158 if (!info_linear) 3159 goto out; 3160 info_linear->info_len = sizeof(struct bpf_prog_info); 3161 info_linear->data_len = data_len; 3162 if (do_read_u64(ff, (u64 *)(&info_linear->arrays))) 3163 goto out; 3164 if (__do_read(ff, &info_linear->info, info_len)) 3165 goto out; 3166 if (info_len < sizeof(struct bpf_prog_info)) 3167 memset(((void *)(&info_linear->info)) + info_len, 0, 3168 sizeof(struct bpf_prog_info) - info_len); 3169 3170 if (__do_read(ff, info_linear->data, data_len)) 3171 goto out; 3172 3173 info_node = malloc(sizeof(struct bpf_prog_info_node)); 3174 if (!info_node) 3175 goto out; 3176 3177 /* after reading from file, translate offset to address */ 3178 bpil_offs_to_addr(info_linear); 3179 info_node->info_linear = info_linear; 3180 __perf_env__insert_bpf_prog_info(env, info_node); 3181 } 3182 3183 up_write(&env->bpf_progs.lock); 3184 return 0; 3185 out: 3186 free(info_linear); 3187 free(info_node); 3188 up_write(&env->bpf_progs.lock); 3189 return err; 3190 } 3191 3192 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused) 3193 { 3194 struct perf_env *env = &ff->ph->env; 3195 struct btf_node *node = NULL; 3196 u32 count, i; 3197 int err = -1; 3198 3199 if (ff->ph->needs_swap) { 3200 pr_warning("interpreting btf from systems with endianness is not yet supported\n"); 3201 return 0; 3202 } 3203 3204 if (do_read_u32(ff, &count)) 3205 return -1; 3206 3207 down_write(&env->bpf_progs.lock); 3208 3209 for (i = 0; i < count; ++i) { 3210 u32 id, data_size; 3211 3212 if (do_read_u32(ff, &id)) 3213 goto out; 3214 if (do_read_u32(ff, &data_size)) 3215 goto out; 3216 3217 node = malloc(sizeof(struct btf_node) + data_size); 3218 if (!node) 3219 goto out; 3220 3221 node->id = id; 3222 node->data_size = data_size; 3223 3224 if (__do_read(ff, node->data, data_size)) 3225 goto out; 3226 3227 __perf_env__insert_btf(env, node); 3228 node = NULL; 3229 } 3230 3231 err = 0; 3232 out: 3233 up_write(&env->bpf_progs.lock); 3234 free(node); 3235 return err; 3236 } 3237 #endif // HAVE_LIBBPF_SUPPORT 3238 3239 static int process_compressed(struct feat_fd *ff, 3240 void *data __maybe_unused) 3241 { 3242 if (do_read_u32(ff, &(ff->ph->env.comp_ver))) 3243 return -1; 3244 3245 if (do_read_u32(ff, &(ff->ph->env.comp_type))) 3246 return -1; 3247 3248 if (do_read_u32(ff, &(ff->ph->env.comp_level))) 3249 return -1; 3250 3251 if (do_read_u32(ff, &(ff->ph->env.comp_ratio))) 3252 return -1; 3253 3254 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len))) 3255 return -1; 3256 3257 return 0; 3258 } 3259 3260 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps, 3261 char ***caps, unsigned int *max_branches) 3262 { 3263 char *name, *value, *ptr; 3264 u32 nr_pmu_caps, i; 3265 3266 *nr_caps = 0; 3267 *caps = NULL; 3268 3269 if (do_read_u32(ff, &nr_pmu_caps)) 3270 return -1; 3271 3272 if (!nr_pmu_caps) 3273 return 0; 3274 3275 *caps = zalloc(sizeof(char *) * nr_pmu_caps); 3276 if (!*caps) 3277 return -1; 3278 3279 for (i = 0; i < nr_pmu_caps; i++) { 3280 name = do_read_string(ff); 3281 if (!name) 3282 goto error; 3283 3284 value = do_read_string(ff); 3285 if (!value) 3286 goto free_name; 3287 3288 if (asprintf(&ptr, "%s=%s", name, value) < 0) 3289 goto free_value; 3290 3291 (*caps)[i] = ptr; 3292 3293 if (!strcmp(name, "branches")) 3294 *max_branches = atoi(value); 3295 3296 free(value); 3297 free(name); 3298 } 3299 *nr_caps = nr_pmu_caps; 3300 return 0; 3301 3302 free_value: 3303 free(value); 3304 free_name: 3305 free(name); 3306 error: 3307 for (; i > 0; i--) 3308 free((*caps)[i - 1]); 3309 free(*caps); 3310 *caps = NULL; 3311 *nr_caps = 0; 3312 return -1; 3313 } 3314 3315 static int process_cpu_pmu_caps(struct feat_fd *ff, 3316 void *data __maybe_unused) 3317 { 3318 int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps, 3319 &ff->ph->env.cpu_pmu_caps, 3320 &ff->ph->env.max_branches); 3321 3322 if (!ret && !ff->ph->env.cpu_pmu_caps) 3323 pr_debug("cpu pmu capabilities not available\n"); 3324 return ret; 3325 } 3326 3327 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused) 3328 { 3329 struct pmu_caps *pmu_caps; 3330 u32 nr_pmu, i; 3331 int ret; 3332 int j; 3333 3334 if (do_read_u32(ff, &nr_pmu)) 3335 return -1; 3336 3337 if (!nr_pmu) { 3338 pr_debug("pmu capabilities not available\n"); 3339 return 0; 3340 } 3341 3342 pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu); 3343 if (!pmu_caps) 3344 return -ENOMEM; 3345 3346 for (i = 0; i < nr_pmu; i++) { 3347 ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps, 3348 &pmu_caps[i].caps, 3349 &pmu_caps[i].max_branches); 3350 if (ret) 3351 goto err; 3352 3353 pmu_caps[i].pmu_name = do_read_string(ff); 3354 if (!pmu_caps[i].pmu_name) { 3355 ret = -1; 3356 goto err; 3357 } 3358 if (!pmu_caps[i].nr_caps) { 3359 pr_debug("%s pmu capabilities not available\n", 3360 pmu_caps[i].pmu_name); 3361 } 3362 } 3363 3364 ff->ph->env.nr_pmus_with_caps = nr_pmu; 3365 ff->ph->env.pmu_caps = pmu_caps; 3366 return 0; 3367 3368 err: 3369 for (i = 0; i < nr_pmu; i++) { 3370 for (j = 0; j < pmu_caps[i].nr_caps; j++) 3371 free(pmu_caps[i].caps[j]); 3372 free(pmu_caps[i].caps); 3373 free(pmu_caps[i].pmu_name); 3374 } 3375 3376 free(pmu_caps); 3377 return ret; 3378 } 3379 3380 #define FEAT_OPR(n, func, __full_only) \ 3381 [HEADER_##n] = { \ 3382 .name = __stringify(n), \ 3383 .write = write_##func, \ 3384 .print = print_##func, \ 3385 .full_only = __full_only, \ 3386 .process = process_##func, \ 3387 .synthesize = true \ 3388 } 3389 3390 #define FEAT_OPN(n, func, __full_only) \ 3391 [HEADER_##n] = { \ 3392 .name = __stringify(n), \ 3393 .write = write_##func, \ 3394 .print = print_##func, \ 3395 .full_only = __full_only, \ 3396 .process = process_##func \ 3397 } 3398 3399 /* feature_ops not implemented: */ 3400 #define print_tracing_data NULL 3401 #define print_build_id NULL 3402 3403 #define process_branch_stack NULL 3404 #define process_stat NULL 3405 3406 // Only used in util/synthetic-events.c 3407 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE]; 3408 3409 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = { 3410 #ifdef HAVE_LIBTRACEEVENT 3411 FEAT_OPN(TRACING_DATA, tracing_data, false), 3412 #endif 3413 FEAT_OPN(BUILD_ID, build_id, false), 3414 FEAT_OPR(HOSTNAME, hostname, false), 3415 FEAT_OPR(OSRELEASE, osrelease, false), 3416 FEAT_OPR(VERSION, version, false), 3417 FEAT_OPR(ARCH, arch, false), 3418 FEAT_OPR(NRCPUS, nrcpus, false), 3419 FEAT_OPR(CPUDESC, cpudesc, false), 3420 FEAT_OPR(CPUID, cpuid, false), 3421 FEAT_OPR(TOTAL_MEM, total_mem, false), 3422 FEAT_OPR(EVENT_DESC, event_desc, false), 3423 FEAT_OPR(CMDLINE, cmdline, false), 3424 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), 3425 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), 3426 FEAT_OPN(BRANCH_STACK, branch_stack, false), 3427 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), 3428 FEAT_OPR(GROUP_DESC, group_desc, false), 3429 FEAT_OPN(AUXTRACE, auxtrace, false), 3430 FEAT_OPN(STAT, stat, false), 3431 FEAT_OPN(CACHE, cache, true), 3432 FEAT_OPR(SAMPLE_TIME, sample_time, false), 3433 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), 3434 FEAT_OPR(CLOCKID, clockid, false), 3435 FEAT_OPN(DIR_FORMAT, dir_format, false), 3436 #ifdef HAVE_LIBBPF_SUPPORT 3437 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false), 3438 FEAT_OPR(BPF_BTF, bpf_btf, false), 3439 #endif 3440 FEAT_OPR(COMPRESSED, compressed, false), 3441 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false), 3442 FEAT_OPR(CLOCK_DATA, clock_data, false), 3443 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true), 3444 FEAT_OPR(PMU_CAPS, pmu_caps, false), 3445 }; 3446 3447 struct header_print_data { 3448 FILE *fp; 3449 bool full; /* extended list of headers */ 3450 }; 3451 3452 static int perf_file_section__fprintf_info(struct perf_file_section *section, 3453 struct perf_header *ph, 3454 int feat, int fd, void *data) 3455 { 3456 struct header_print_data *hd = data; 3457 struct feat_fd ff; 3458 3459 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3460 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3461 "%d, continuing...\n", section->offset, feat); 3462 return 0; 3463 } 3464 if (feat >= HEADER_LAST_FEATURE) { 3465 pr_warning("unknown feature %d\n", feat); 3466 return 0; 3467 } 3468 if (!feat_ops[feat].print) 3469 return 0; 3470 3471 ff = (struct feat_fd) { 3472 .fd = fd, 3473 .ph = ph, 3474 }; 3475 3476 if (!feat_ops[feat].full_only || hd->full) 3477 feat_ops[feat].print(&ff, hd->fp); 3478 else 3479 fprintf(hd->fp, "# %s info available, use -I to display\n", 3480 feat_ops[feat].name); 3481 3482 return 0; 3483 } 3484 3485 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) 3486 { 3487 struct header_print_data hd; 3488 struct perf_header *header = &session->header; 3489 int fd = perf_data__fd(session->data); 3490 struct stat st; 3491 time_t stctime; 3492 int ret, bit; 3493 3494 hd.fp = fp; 3495 hd.full = full; 3496 3497 ret = fstat(fd, &st); 3498 if (ret == -1) 3499 return -1; 3500 3501 stctime = st.st_mtime; 3502 fprintf(fp, "# captured on : %s", ctime(&stctime)); 3503 3504 fprintf(fp, "# header version : %u\n", header->version); 3505 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); 3506 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); 3507 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); 3508 3509 perf_header__process_sections(header, fd, &hd, 3510 perf_file_section__fprintf_info); 3511 3512 if (session->data->is_pipe) 3513 return 0; 3514 3515 fprintf(fp, "# missing features: "); 3516 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { 3517 if (bit) 3518 fprintf(fp, "%s ", feat_ops[bit].name); 3519 } 3520 3521 fprintf(fp, "\n"); 3522 return 0; 3523 } 3524 3525 struct header_fw { 3526 struct feat_writer fw; 3527 struct feat_fd *ff; 3528 }; 3529 3530 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz) 3531 { 3532 struct header_fw *h = container_of(fw, struct header_fw, fw); 3533 3534 return do_write(h->ff, buf, sz); 3535 } 3536 3537 static int do_write_feat(struct feat_fd *ff, int type, 3538 struct perf_file_section **p, 3539 struct evlist *evlist, 3540 struct feat_copier *fc) 3541 { 3542 int err; 3543 int ret = 0; 3544 3545 if (perf_header__has_feat(ff->ph, type)) { 3546 if (!feat_ops[type].write) 3547 return -1; 3548 3549 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 3550 return -1; 3551 3552 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); 3553 3554 /* 3555 * Hook to let perf inject copy features sections from the input 3556 * file. 3557 */ 3558 if (fc && fc->copy) { 3559 struct header_fw h = { 3560 .fw.write = feat_writer_cb, 3561 .ff = ff, 3562 }; 3563 3564 /* ->copy() returns 0 if the feature was not copied */ 3565 err = fc->copy(fc, type, &h.fw); 3566 } else { 3567 err = 0; 3568 } 3569 if (!err) 3570 err = feat_ops[type].write(ff, evlist); 3571 if (err < 0) { 3572 pr_debug("failed to write feature %s\n", feat_ops[type].name); 3573 3574 /* undo anything written */ 3575 lseek(ff->fd, (*p)->offset, SEEK_SET); 3576 3577 return -1; 3578 } 3579 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; 3580 (*p)++; 3581 } 3582 return ret; 3583 } 3584 3585 static int perf_header__adds_write(struct perf_header *header, 3586 struct evlist *evlist, int fd, 3587 struct feat_copier *fc) 3588 { 3589 int nr_sections; 3590 struct feat_fd ff; 3591 struct perf_file_section *feat_sec, *p; 3592 int sec_size; 3593 u64 sec_start; 3594 int feat; 3595 int err; 3596 3597 ff = (struct feat_fd){ 3598 .fd = fd, 3599 .ph = header, 3600 }; 3601 3602 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3603 if (!nr_sections) 3604 return 0; 3605 3606 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); 3607 if (feat_sec == NULL) 3608 return -ENOMEM; 3609 3610 sec_size = sizeof(*feat_sec) * nr_sections; 3611 3612 sec_start = header->feat_offset; 3613 lseek(fd, sec_start + sec_size, SEEK_SET); 3614 3615 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3616 if (do_write_feat(&ff, feat, &p, evlist, fc)) 3617 perf_header__clear_feat(header, feat); 3618 } 3619 3620 lseek(fd, sec_start, SEEK_SET); 3621 /* 3622 * may write more than needed due to dropped feature, but 3623 * this is okay, reader will skip the missing entries 3624 */ 3625 err = do_write(&ff, feat_sec, sec_size); 3626 if (err < 0) 3627 pr_debug("failed to write feature section\n"); 3628 free(feat_sec); 3629 return err; 3630 } 3631 3632 int perf_header__write_pipe(int fd) 3633 { 3634 struct perf_pipe_file_header f_header; 3635 struct feat_fd ff; 3636 int err; 3637 3638 ff = (struct feat_fd){ .fd = fd }; 3639 3640 f_header = (struct perf_pipe_file_header){ 3641 .magic = PERF_MAGIC, 3642 .size = sizeof(f_header), 3643 }; 3644 3645 err = do_write(&ff, &f_header, sizeof(f_header)); 3646 if (err < 0) { 3647 pr_debug("failed to write perf pipe header\n"); 3648 return err; 3649 } 3650 3651 return 0; 3652 } 3653 3654 static int perf_session__do_write_header(struct perf_session *session, 3655 struct evlist *evlist, 3656 int fd, bool at_exit, 3657 struct feat_copier *fc) 3658 { 3659 struct perf_file_header f_header; 3660 struct perf_file_attr f_attr; 3661 struct perf_header *header = &session->header; 3662 struct evsel *evsel; 3663 struct feat_fd ff; 3664 u64 attr_offset; 3665 int err; 3666 3667 ff = (struct feat_fd){ .fd = fd}; 3668 lseek(fd, sizeof(f_header), SEEK_SET); 3669 3670 evlist__for_each_entry(session->evlist, evsel) { 3671 evsel->id_offset = lseek(fd, 0, SEEK_CUR); 3672 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 3673 if (err < 0) { 3674 pr_debug("failed to write perf header\n"); 3675 return err; 3676 } 3677 } 3678 3679 attr_offset = lseek(ff.fd, 0, SEEK_CUR); 3680 3681 evlist__for_each_entry(evlist, evsel) { 3682 if (evsel->core.attr.size < sizeof(evsel->core.attr)) { 3683 /* 3684 * We are likely in "perf inject" and have read 3685 * from an older file. Update attr size so that 3686 * reader gets the right offset to the ids. 3687 */ 3688 evsel->core.attr.size = sizeof(evsel->core.attr); 3689 } 3690 f_attr = (struct perf_file_attr){ 3691 .attr = evsel->core.attr, 3692 .ids = { 3693 .offset = evsel->id_offset, 3694 .size = evsel->core.ids * sizeof(u64), 3695 } 3696 }; 3697 err = do_write(&ff, &f_attr, sizeof(f_attr)); 3698 if (err < 0) { 3699 pr_debug("failed to write perf header attribute\n"); 3700 return err; 3701 } 3702 } 3703 3704 if (!header->data_offset) 3705 header->data_offset = lseek(fd, 0, SEEK_CUR); 3706 header->feat_offset = header->data_offset + header->data_size; 3707 3708 if (at_exit) { 3709 err = perf_header__adds_write(header, evlist, fd, fc); 3710 if (err < 0) 3711 return err; 3712 } 3713 3714 f_header = (struct perf_file_header){ 3715 .magic = PERF_MAGIC, 3716 .size = sizeof(f_header), 3717 .attr_size = sizeof(f_attr), 3718 .attrs = { 3719 .offset = attr_offset, 3720 .size = evlist->core.nr_entries * sizeof(f_attr), 3721 }, 3722 .data = { 3723 .offset = header->data_offset, 3724 .size = header->data_size, 3725 }, 3726 /* event_types is ignored, store zeros */ 3727 }; 3728 3729 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); 3730 3731 lseek(fd, 0, SEEK_SET); 3732 err = do_write(&ff, &f_header, sizeof(f_header)); 3733 if (err < 0) { 3734 pr_debug("failed to write perf header\n"); 3735 return err; 3736 } 3737 lseek(fd, header->data_offset + header->data_size, SEEK_SET); 3738 3739 return 0; 3740 } 3741 3742 int perf_session__write_header(struct perf_session *session, 3743 struct evlist *evlist, 3744 int fd, bool at_exit) 3745 { 3746 return perf_session__do_write_header(session, evlist, fd, at_exit, NULL); 3747 } 3748 3749 size_t perf_session__data_offset(const struct evlist *evlist) 3750 { 3751 struct evsel *evsel; 3752 size_t data_offset; 3753 3754 data_offset = sizeof(struct perf_file_header); 3755 evlist__for_each_entry(evlist, evsel) { 3756 data_offset += evsel->core.ids * sizeof(u64); 3757 } 3758 data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr); 3759 3760 return data_offset; 3761 } 3762 3763 int perf_session__inject_header(struct perf_session *session, 3764 struct evlist *evlist, 3765 int fd, 3766 struct feat_copier *fc) 3767 { 3768 return perf_session__do_write_header(session, evlist, fd, true, fc); 3769 } 3770 3771 static int perf_header__getbuffer64(struct perf_header *header, 3772 int fd, void *buf, size_t size) 3773 { 3774 if (readn(fd, buf, size) <= 0) 3775 return -1; 3776 3777 if (header->needs_swap) 3778 mem_bswap_64(buf, size); 3779 3780 return 0; 3781 } 3782 3783 int perf_header__process_sections(struct perf_header *header, int fd, 3784 void *data, 3785 int (*process)(struct perf_file_section *section, 3786 struct perf_header *ph, 3787 int feat, int fd, void *data)) 3788 { 3789 struct perf_file_section *feat_sec, *sec; 3790 int nr_sections; 3791 int sec_size; 3792 int feat; 3793 int err; 3794 3795 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3796 if (!nr_sections) 3797 return 0; 3798 3799 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); 3800 if (!feat_sec) 3801 return -1; 3802 3803 sec_size = sizeof(*feat_sec) * nr_sections; 3804 3805 lseek(fd, header->feat_offset, SEEK_SET); 3806 3807 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); 3808 if (err < 0) 3809 goto out_free; 3810 3811 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { 3812 err = process(sec++, header, feat, fd, data); 3813 if (err < 0) 3814 goto out_free; 3815 } 3816 err = 0; 3817 out_free: 3818 free(feat_sec); 3819 return err; 3820 } 3821 3822 static const int attr_file_abi_sizes[] = { 3823 [0] = PERF_ATTR_SIZE_VER0, 3824 [1] = PERF_ATTR_SIZE_VER1, 3825 [2] = PERF_ATTR_SIZE_VER2, 3826 [3] = PERF_ATTR_SIZE_VER3, 3827 [4] = PERF_ATTR_SIZE_VER4, 3828 0, 3829 }; 3830 3831 /* 3832 * In the legacy file format, the magic number is not used to encode endianness. 3833 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based 3834 * on ABI revisions, we need to try all combinations for all endianness to 3835 * detect the endianness. 3836 */ 3837 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) 3838 { 3839 uint64_t ref_size, attr_size; 3840 int i; 3841 3842 for (i = 0 ; attr_file_abi_sizes[i]; i++) { 3843 ref_size = attr_file_abi_sizes[i] 3844 + sizeof(struct perf_file_section); 3845 if (hdr_sz != ref_size) { 3846 attr_size = bswap_64(hdr_sz); 3847 if (attr_size != ref_size) 3848 continue; 3849 3850 ph->needs_swap = true; 3851 } 3852 pr_debug("ABI%d perf.data file detected, need_swap=%d\n", 3853 i, 3854 ph->needs_swap); 3855 return 0; 3856 } 3857 /* could not determine endianness */ 3858 return -1; 3859 } 3860 3861 #define PERF_PIPE_HDR_VER0 16 3862 3863 static const size_t attr_pipe_abi_sizes[] = { 3864 [0] = PERF_PIPE_HDR_VER0, 3865 0, 3866 }; 3867 3868 /* 3869 * In the legacy pipe format, there is an implicit assumption that endianness 3870 * between host recording the samples, and host parsing the samples is the 3871 * same. This is not always the case given that the pipe output may always be 3872 * redirected into a file and analyzed on a different machine with possibly a 3873 * different endianness and perf_event ABI revisions in the perf tool itself. 3874 */ 3875 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) 3876 { 3877 u64 attr_size; 3878 int i; 3879 3880 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { 3881 if (hdr_sz != attr_pipe_abi_sizes[i]) { 3882 attr_size = bswap_64(hdr_sz); 3883 if (attr_size != hdr_sz) 3884 continue; 3885 3886 ph->needs_swap = true; 3887 } 3888 pr_debug("Pipe ABI%d perf.data file detected\n", i); 3889 return 0; 3890 } 3891 return -1; 3892 } 3893 3894 bool is_perf_magic(u64 magic) 3895 { 3896 if (!memcmp(&magic, __perf_magic1, sizeof(magic)) 3897 || magic == __perf_magic2 3898 || magic == __perf_magic2_sw) 3899 return true; 3900 3901 return false; 3902 } 3903 3904 static int check_magic_endian(u64 magic, uint64_t hdr_sz, 3905 bool is_pipe, struct perf_header *ph) 3906 { 3907 int ret; 3908 3909 /* check for legacy format */ 3910 ret = memcmp(&magic, __perf_magic1, sizeof(magic)); 3911 if (ret == 0) { 3912 ph->version = PERF_HEADER_VERSION_1; 3913 pr_debug("legacy perf.data format\n"); 3914 if (is_pipe) 3915 return try_all_pipe_abis(hdr_sz, ph); 3916 3917 return try_all_file_abis(hdr_sz, ph); 3918 } 3919 /* 3920 * the new magic number serves two purposes: 3921 * - unique number to identify actual perf.data files 3922 * - encode endianness of file 3923 */ 3924 ph->version = PERF_HEADER_VERSION_2; 3925 3926 /* check magic number with one endianness */ 3927 if (magic == __perf_magic2) 3928 return 0; 3929 3930 /* check magic number with opposite endianness */ 3931 if (magic != __perf_magic2_sw) 3932 return -1; 3933 3934 ph->needs_swap = true; 3935 3936 return 0; 3937 } 3938 3939 int perf_file_header__read(struct perf_file_header *header, 3940 struct perf_header *ph, int fd) 3941 { 3942 ssize_t ret; 3943 3944 lseek(fd, 0, SEEK_SET); 3945 3946 ret = readn(fd, header, sizeof(*header)); 3947 if (ret <= 0) 3948 return -1; 3949 3950 if (check_magic_endian(header->magic, 3951 header->attr_size, false, ph) < 0) { 3952 pr_debug("magic/endian check failed\n"); 3953 return -1; 3954 } 3955 3956 if (ph->needs_swap) { 3957 mem_bswap_64(header, offsetof(struct perf_file_header, 3958 adds_features)); 3959 } 3960 3961 if (header->size != sizeof(*header)) { 3962 /* Support the previous format */ 3963 if (header->size == offsetof(typeof(*header), adds_features)) 3964 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3965 else 3966 return -1; 3967 } else if (ph->needs_swap) { 3968 /* 3969 * feature bitmap is declared as an array of unsigned longs -- 3970 * not good since its size can differ between the host that 3971 * generated the data file and the host analyzing the file. 3972 * 3973 * We need to handle endianness, but we don't know the size of 3974 * the unsigned long where the file was generated. Take a best 3975 * guess at determining it: try 64-bit swap first (ie., file 3976 * created on a 64-bit host), and check if the hostname feature 3977 * bit is set (this feature bit is forced on as of fbe96f2). 3978 * If the bit is not, undo the 64-bit swap and try a 32-bit 3979 * swap. If the hostname bit is still not set (e.g., older data 3980 * file), punt and fallback to the original behavior -- 3981 * clearing all feature bits and setting buildid. 3982 */ 3983 mem_bswap_64(&header->adds_features, 3984 BITS_TO_U64(HEADER_FEAT_BITS)); 3985 3986 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3987 /* unswap as u64 */ 3988 mem_bswap_64(&header->adds_features, 3989 BITS_TO_U64(HEADER_FEAT_BITS)); 3990 3991 /* unswap as u32 */ 3992 mem_bswap_32(&header->adds_features, 3993 BITS_TO_U32(HEADER_FEAT_BITS)); 3994 } 3995 3996 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3997 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3998 __set_bit(HEADER_BUILD_ID, header->adds_features); 3999 } 4000 } 4001 4002 memcpy(&ph->adds_features, &header->adds_features, 4003 sizeof(ph->adds_features)); 4004 4005 ph->data_offset = header->data.offset; 4006 ph->data_size = header->data.size; 4007 ph->feat_offset = header->data.offset + header->data.size; 4008 return 0; 4009 } 4010 4011 static int perf_file_section__process(struct perf_file_section *section, 4012 struct perf_header *ph, 4013 int feat, int fd, void *data) 4014 { 4015 struct feat_fd fdd = { 4016 .fd = fd, 4017 .ph = ph, 4018 .size = section->size, 4019 .offset = section->offset, 4020 }; 4021 4022 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 4023 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 4024 "%d, continuing...\n", section->offset, feat); 4025 return 0; 4026 } 4027 4028 if (feat >= HEADER_LAST_FEATURE) { 4029 pr_debug("unknown feature %d, continuing...\n", feat); 4030 return 0; 4031 } 4032 4033 if (!feat_ops[feat].process) 4034 return 0; 4035 4036 return feat_ops[feat].process(&fdd, data); 4037 } 4038 4039 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, 4040 struct perf_header *ph, 4041 struct perf_data* data, 4042 bool repipe, int repipe_fd) 4043 { 4044 struct feat_fd ff = { 4045 .fd = repipe_fd, 4046 .ph = ph, 4047 }; 4048 ssize_t ret; 4049 4050 ret = perf_data__read(data, header, sizeof(*header)); 4051 if (ret <= 0) 4052 return -1; 4053 4054 if (check_magic_endian(header->magic, header->size, true, ph) < 0) { 4055 pr_debug("endian/magic failed\n"); 4056 return -1; 4057 } 4058 4059 if (ph->needs_swap) 4060 header->size = bswap_64(header->size); 4061 4062 if (repipe && do_write(&ff, header, sizeof(*header)) < 0) 4063 return -1; 4064 4065 return 0; 4066 } 4067 4068 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd) 4069 { 4070 struct perf_header *header = &session->header; 4071 struct perf_pipe_file_header f_header; 4072 4073 if (perf_file_header__read_pipe(&f_header, header, session->data, 4074 session->repipe, repipe_fd) < 0) { 4075 pr_debug("incompatible file format\n"); 4076 return -EINVAL; 4077 } 4078 4079 return f_header.size == sizeof(f_header) ? 0 : -1; 4080 } 4081 4082 static int read_attr(int fd, struct perf_header *ph, 4083 struct perf_file_attr *f_attr) 4084 { 4085 struct perf_event_attr *attr = &f_attr->attr; 4086 size_t sz, left; 4087 size_t our_sz = sizeof(f_attr->attr); 4088 ssize_t ret; 4089 4090 memset(f_attr, 0, sizeof(*f_attr)); 4091 4092 /* read minimal guaranteed structure */ 4093 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); 4094 if (ret <= 0) { 4095 pr_debug("cannot read %d bytes of header attr\n", 4096 PERF_ATTR_SIZE_VER0); 4097 return -1; 4098 } 4099 4100 /* on file perf_event_attr size */ 4101 sz = attr->size; 4102 4103 if (ph->needs_swap) 4104 sz = bswap_32(sz); 4105 4106 if (sz == 0) { 4107 /* assume ABI0 */ 4108 sz = PERF_ATTR_SIZE_VER0; 4109 } else if (sz > our_sz) { 4110 pr_debug("file uses a more recent and unsupported ABI" 4111 " (%zu bytes extra)\n", sz - our_sz); 4112 return -1; 4113 } 4114 /* what we have not yet read and that we know about */ 4115 left = sz - PERF_ATTR_SIZE_VER0; 4116 if (left) { 4117 void *ptr = attr; 4118 ptr += PERF_ATTR_SIZE_VER0; 4119 4120 ret = readn(fd, ptr, left); 4121 } 4122 /* read perf_file_section, ids are read in caller */ 4123 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); 4124 4125 return ret <= 0 ? -1 : 0; 4126 } 4127 4128 #ifdef HAVE_LIBTRACEEVENT 4129 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent) 4130 { 4131 struct tep_event *event; 4132 char bf[128]; 4133 4134 /* already prepared */ 4135 if (evsel->tp_format) 4136 return 0; 4137 4138 if (pevent == NULL) { 4139 pr_debug("broken or missing trace data\n"); 4140 return -1; 4141 } 4142 4143 event = tep_find_event(pevent, evsel->core.attr.config); 4144 if (event == NULL) { 4145 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config); 4146 return -1; 4147 } 4148 4149 if (!evsel->name) { 4150 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); 4151 evsel->name = strdup(bf); 4152 if (evsel->name == NULL) 4153 return -1; 4154 } 4155 4156 evsel->tp_format = event; 4157 return 0; 4158 } 4159 4160 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent) 4161 { 4162 struct evsel *pos; 4163 4164 evlist__for_each_entry(evlist, pos) { 4165 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT && 4166 evsel__prepare_tracepoint_event(pos, pevent)) 4167 return -1; 4168 } 4169 4170 return 0; 4171 } 4172 #endif 4173 4174 int perf_session__read_header(struct perf_session *session, int repipe_fd) 4175 { 4176 struct perf_data *data = session->data; 4177 struct perf_header *header = &session->header; 4178 struct perf_file_header f_header; 4179 struct perf_file_attr f_attr; 4180 u64 f_id; 4181 int nr_attrs, nr_ids, i, j, err; 4182 int fd = perf_data__fd(data); 4183 4184 session->evlist = evlist__new(); 4185 if (session->evlist == NULL) 4186 return -ENOMEM; 4187 4188 session->evlist->env = &header->env; 4189 session->machines.host.env = &header->env; 4190 4191 /* 4192 * We can read 'pipe' data event from regular file, 4193 * check for the pipe header regardless of source. 4194 */ 4195 err = perf_header__read_pipe(session, repipe_fd); 4196 if (!err || perf_data__is_pipe(data)) { 4197 data->is_pipe = true; 4198 return err; 4199 } 4200 4201 if (perf_file_header__read(&f_header, header, fd) < 0) 4202 return -EINVAL; 4203 4204 if (header->needs_swap && data->in_place_update) { 4205 pr_err("In-place update not supported when byte-swapping is required\n"); 4206 return -EINVAL; 4207 } 4208 4209 /* 4210 * Sanity check that perf.data was written cleanly; data size is 4211 * initialized to 0 and updated only if the on_exit function is run. 4212 * If data size is still 0 then the file contains only partial 4213 * information. Just warn user and process it as much as it can. 4214 */ 4215 if (f_header.data.size == 0) { 4216 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" 4217 "Was the 'perf record' command properly terminated?\n", 4218 data->file.path); 4219 } 4220 4221 if (f_header.attr_size == 0) { 4222 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n" 4223 "Was the 'perf record' command properly terminated?\n", 4224 data->file.path); 4225 return -EINVAL; 4226 } 4227 4228 nr_attrs = f_header.attrs.size / f_header.attr_size; 4229 lseek(fd, f_header.attrs.offset, SEEK_SET); 4230 4231 for (i = 0; i < nr_attrs; i++) { 4232 struct evsel *evsel; 4233 off_t tmp; 4234 4235 if (read_attr(fd, header, &f_attr) < 0) 4236 goto out_errno; 4237 4238 if (header->needs_swap) { 4239 f_attr.ids.size = bswap_64(f_attr.ids.size); 4240 f_attr.ids.offset = bswap_64(f_attr.ids.offset); 4241 perf_event__attr_swap(&f_attr.attr); 4242 } 4243 4244 tmp = lseek(fd, 0, SEEK_CUR); 4245 evsel = evsel__new(&f_attr.attr); 4246 4247 if (evsel == NULL) 4248 goto out_delete_evlist; 4249 4250 evsel->needs_swap = header->needs_swap; 4251 /* 4252 * Do it before so that if perf_evsel__alloc_id fails, this 4253 * entry gets purged too at evlist__delete(). 4254 */ 4255 evlist__add(session->evlist, evsel); 4256 4257 nr_ids = f_attr.ids.size / sizeof(u64); 4258 /* 4259 * We don't have the cpu and thread maps on the header, so 4260 * for allocating the perf_sample_id table we fake 1 cpu and 4261 * hattr->ids threads. 4262 */ 4263 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids)) 4264 goto out_delete_evlist; 4265 4266 lseek(fd, f_attr.ids.offset, SEEK_SET); 4267 4268 for (j = 0; j < nr_ids; j++) { 4269 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) 4270 goto out_errno; 4271 4272 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id); 4273 } 4274 4275 lseek(fd, tmp, SEEK_SET); 4276 } 4277 4278 #ifdef HAVE_LIBTRACEEVENT 4279 perf_header__process_sections(header, fd, &session->tevent, 4280 perf_file_section__process); 4281 4282 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent)) 4283 goto out_delete_evlist; 4284 #else 4285 perf_header__process_sections(header, fd, NULL, perf_file_section__process); 4286 #endif 4287 4288 return 0; 4289 out_errno: 4290 return -errno; 4291 4292 out_delete_evlist: 4293 evlist__delete(session->evlist); 4294 session->evlist = NULL; 4295 return -ENOMEM; 4296 } 4297 4298 int perf_event__process_feature(struct perf_session *session, 4299 union perf_event *event) 4300 { 4301 struct perf_tool *tool = session->tool; 4302 struct feat_fd ff = { .fd = 0 }; 4303 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event; 4304 int type = fe->header.type; 4305 u64 feat = fe->feat_id; 4306 int ret = 0; 4307 4308 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { 4309 pr_warning("invalid record type %d in pipe-mode\n", type); 4310 return 0; 4311 } 4312 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { 4313 pr_warning("invalid record type %d in pipe-mode\n", type); 4314 return -1; 4315 } 4316 4317 if (!feat_ops[feat].process) 4318 return 0; 4319 4320 ff.buf = (void *)fe->data; 4321 ff.size = event->header.size - sizeof(*fe); 4322 ff.ph = &session->header; 4323 4324 if (feat_ops[feat].process(&ff, NULL)) { 4325 ret = -1; 4326 goto out; 4327 } 4328 4329 if (!feat_ops[feat].print || !tool->show_feat_hdr) 4330 goto out; 4331 4332 if (!feat_ops[feat].full_only || 4333 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { 4334 feat_ops[feat].print(&ff, stdout); 4335 } else { 4336 fprintf(stdout, "# %s info available, use -I to display\n", 4337 feat_ops[feat].name); 4338 } 4339 out: 4340 free_event_desc(ff.events); 4341 return ret; 4342 } 4343 4344 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) 4345 { 4346 struct perf_record_event_update *ev = &event->event_update; 4347 struct perf_cpu_map *map; 4348 size_t ret; 4349 4350 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id); 4351 4352 switch (ev->type) { 4353 case PERF_EVENT_UPDATE__SCALE: 4354 ret += fprintf(fp, "... scale: %f\n", ev->scale.scale); 4355 break; 4356 case PERF_EVENT_UPDATE__UNIT: 4357 ret += fprintf(fp, "... unit: %s\n", ev->unit); 4358 break; 4359 case PERF_EVENT_UPDATE__NAME: 4360 ret += fprintf(fp, "... name: %s\n", ev->name); 4361 break; 4362 case PERF_EVENT_UPDATE__CPUS: 4363 ret += fprintf(fp, "... "); 4364 4365 map = cpu_map__new_data(&ev->cpus.cpus); 4366 if (map) { 4367 ret += cpu_map__fprintf(map, fp); 4368 perf_cpu_map__put(map); 4369 } else 4370 ret += fprintf(fp, "failed to get cpus\n"); 4371 break; 4372 default: 4373 ret += fprintf(fp, "... unknown type\n"); 4374 break; 4375 } 4376 4377 return ret; 4378 } 4379 4380 int perf_event__process_attr(struct perf_tool *tool __maybe_unused, 4381 union perf_event *event, 4382 struct evlist **pevlist) 4383 { 4384 u32 i, n_ids; 4385 u64 *ids; 4386 struct evsel *evsel; 4387 struct evlist *evlist = *pevlist; 4388 4389 if (evlist == NULL) { 4390 *pevlist = evlist = evlist__new(); 4391 if (evlist == NULL) 4392 return -ENOMEM; 4393 } 4394 4395 evsel = evsel__new(&event->attr.attr); 4396 if (evsel == NULL) 4397 return -ENOMEM; 4398 4399 evlist__add(evlist, evsel); 4400 4401 n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size; 4402 n_ids = n_ids / sizeof(u64); 4403 /* 4404 * We don't have the cpu and thread maps on the header, so 4405 * for allocating the perf_sample_id table we fake 1 cpu and 4406 * hattr->ids threads. 4407 */ 4408 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids)) 4409 return -ENOMEM; 4410 4411 ids = perf_record_header_attr_id(event); 4412 for (i = 0; i < n_ids; i++) { 4413 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]); 4414 } 4415 4416 return 0; 4417 } 4418 4419 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused, 4420 union perf_event *event, 4421 struct evlist **pevlist) 4422 { 4423 struct perf_record_event_update *ev = &event->event_update; 4424 struct evlist *evlist; 4425 struct evsel *evsel; 4426 struct perf_cpu_map *map; 4427 4428 if (dump_trace) 4429 perf_event__fprintf_event_update(event, stdout); 4430 4431 if (!pevlist || *pevlist == NULL) 4432 return -EINVAL; 4433 4434 evlist = *pevlist; 4435 4436 evsel = evlist__id2evsel(evlist, ev->id); 4437 if (evsel == NULL) 4438 return -EINVAL; 4439 4440 switch (ev->type) { 4441 case PERF_EVENT_UPDATE__UNIT: 4442 free((char *)evsel->unit); 4443 evsel->unit = strdup(ev->unit); 4444 break; 4445 case PERF_EVENT_UPDATE__NAME: 4446 free(evsel->name); 4447 evsel->name = strdup(ev->name); 4448 break; 4449 case PERF_EVENT_UPDATE__SCALE: 4450 evsel->scale = ev->scale.scale; 4451 break; 4452 case PERF_EVENT_UPDATE__CPUS: 4453 map = cpu_map__new_data(&ev->cpus.cpus); 4454 if (map) { 4455 perf_cpu_map__put(evsel->core.own_cpus); 4456 evsel->core.own_cpus = map; 4457 } else 4458 pr_err("failed to get event_update cpus\n"); 4459 default: 4460 break; 4461 } 4462 4463 return 0; 4464 } 4465 4466 #ifdef HAVE_LIBTRACEEVENT 4467 int perf_event__process_tracing_data(struct perf_session *session, 4468 union perf_event *event) 4469 { 4470 ssize_t size_read, padding, size = event->tracing_data.size; 4471 int fd = perf_data__fd(session->data); 4472 char buf[BUFSIZ]; 4473 4474 /* 4475 * The pipe fd is already in proper place and in any case 4476 * we can't move it, and we'd screw the case where we read 4477 * 'pipe' data from regular file. The trace_report reads 4478 * data from 'fd' so we need to set it directly behind the 4479 * event, where the tracing data starts. 4480 */ 4481 if (!perf_data__is_pipe(session->data)) { 4482 off_t offset = lseek(fd, 0, SEEK_CUR); 4483 4484 /* setup for reading amidst mmap */ 4485 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data), 4486 SEEK_SET); 4487 } 4488 4489 size_read = trace_report(fd, &session->tevent, 4490 session->repipe); 4491 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; 4492 4493 if (readn(fd, buf, padding) < 0) { 4494 pr_err("%s: reading input file", __func__); 4495 return -1; 4496 } 4497 if (session->repipe) { 4498 int retw = write(STDOUT_FILENO, buf, padding); 4499 if (retw <= 0 || retw != padding) { 4500 pr_err("%s: repiping tracing data padding", __func__); 4501 return -1; 4502 } 4503 } 4504 4505 if (size_read + padding != size) { 4506 pr_err("%s: tracing data size mismatch", __func__); 4507 return -1; 4508 } 4509 4510 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent); 4511 4512 return size_read + padding; 4513 } 4514 #endif 4515 4516 int perf_event__process_build_id(struct perf_session *session, 4517 union perf_event *event) 4518 { 4519 __event_process_build_id(&event->build_id, 4520 event->build_id.filename, 4521 session); 4522 return 0; 4523 } 4524