1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <inttypes.h> 4 #include "string2.h" 5 #include <sys/param.h> 6 #include <sys/types.h> 7 #include <byteswap.h> 8 #include <unistd.h> 9 #include <stdio.h> 10 #include <stdlib.h> 11 #include <linux/compiler.h> 12 #include <linux/list.h> 13 #include <linux/kernel.h> 14 #include <linux/bitops.h> 15 #include <linux/string.h> 16 #include <linux/stringify.h> 17 #include <linux/zalloc.h> 18 #include <sys/stat.h> 19 #include <sys/utsname.h> 20 #include <linux/time64.h> 21 #include <dirent.h> 22 #include <bpf/libbpf.h> 23 #include <perf/cpumap.h> 24 25 #include "dso.h" 26 #include "evlist.h" 27 #include "evsel.h" 28 #include "util/evsel_fprintf.h" 29 #include "header.h" 30 #include "memswap.h" 31 #include "trace-event.h" 32 #include "session.h" 33 #include "symbol.h" 34 #include "debug.h" 35 #include "cpumap.h" 36 #include "pmu.h" 37 #include "vdso.h" 38 #include "strbuf.h" 39 #include "build-id.h" 40 #include "data.h" 41 #include <api/fs/fs.h> 42 #include "asm/bug.h" 43 #include "tool.h" 44 #include "time-utils.h" 45 #include "units.h" 46 #include "util/util.h" // perf_exe() 47 #include "cputopo.h" 48 #include "bpf-event.h" 49 50 #include <linux/ctype.h> 51 #include <internal/lib.h> 52 53 /* 54 * magic2 = "PERFILE2" 55 * must be a numerical value to let the endianness 56 * determine the memory layout. That way we are able 57 * to detect endianness when reading the perf.data file 58 * back. 59 * 60 * we check for legacy (PERFFILE) format. 61 */ 62 static const char *__perf_magic1 = "PERFFILE"; 63 static const u64 __perf_magic2 = 0x32454c4946524550ULL; 64 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; 65 66 #define PERF_MAGIC __perf_magic2 67 68 const char perf_version_string[] = PERF_VERSION; 69 70 struct perf_file_attr { 71 struct perf_event_attr attr; 72 struct perf_file_section ids; 73 }; 74 75 void perf_header__set_feat(struct perf_header *header, int feat) 76 { 77 set_bit(feat, header->adds_features); 78 } 79 80 void perf_header__clear_feat(struct perf_header *header, int feat) 81 { 82 clear_bit(feat, header->adds_features); 83 } 84 85 bool perf_header__has_feat(const struct perf_header *header, int feat) 86 { 87 return test_bit(feat, header->adds_features); 88 } 89 90 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) 91 { 92 ssize_t ret = writen(ff->fd, buf, size); 93 94 if (ret != (ssize_t)size) 95 return ret < 0 ? (int)ret : -1; 96 return 0; 97 } 98 99 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) 100 { 101 /* struct perf_event_header::size is u16 */ 102 const size_t max_size = 0xffff - sizeof(struct perf_event_header); 103 size_t new_size = ff->size; 104 void *addr; 105 106 if (size + ff->offset > max_size) 107 return -E2BIG; 108 109 while (size > (new_size - ff->offset)) 110 new_size <<= 1; 111 new_size = min(max_size, new_size); 112 113 if (ff->size < new_size) { 114 addr = realloc(ff->buf, new_size); 115 if (!addr) 116 return -ENOMEM; 117 ff->buf = addr; 118 ff->size = new_size; 119 } 120 121 memcpy(ff->buf + ff->offset, buf, size); 122 ff->offset += size; 123 124 return 0; 125 } 126 127 /* Return: 0 if succeded, -ERR if failed. */ 128 int do_write(struct feat_fd *ff, const void *buf, size_t size) 129 { 130 if (!ff->buf) 131 return __do_write_fd(ff, buf, size); 132 return __do_write_buf(ff, buf, size); 133 } 134 135 /* Return: 0 if succeded, -ERR if failed. */ 136 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) 137 { 138 u64 *p = (u64 *) set; 139 int i, ret; 140 141 ret = do_write(ff, &size, sizeof(size)); 142 if (ret < 0) 143 return ret; 144 145 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 146 ret = do_write(ff, p + i, sizeof(*p)); 147 if (ret < 0) 148 return ret; 149 } 150 151 return 0; 152 } 153 154 /* Return: 0 if succeded, -ERR if failed. */ 155 int write_padded(struct feat_fd *ff, const void *bf, 156 size_t count, size_t count_aligned) 157 { 158 static const char zero_buf[NAME_ALIGN]; 159 int err = do_write(ff, bf, count); 160 161 if (!err) 162 err = do_write(ff, zero_buf, count_aligned - count); 163 164 return err; 165 } 166 167 #define string_size(str) \ 168 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) 169 170 /* Return: 0 if succeded, -ERR if failed. */ 171 static int do_write_string(struct feat_fd *ff, const char *str) 172 { 173 u32 len, olen; 174 int ret; 175 176 olen = strlen(str) + 1; 177 len = PERF_ALIGN(olen, NAME_ALIGN); 178 179 /* write len, incl. \0 */ 180 ret = do_write(ff, &len, sizeof(len)); 181 if (ret < 0) 182 return ret; 183 184 return write_padded(ff, str, olen, len); 185 } 186 187 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) 188 { 189 ssize_t ret = readn(ff->fd, addr, size); 190 191 if (ret != size) 192 return ret < 0 ? (int)ret : -1; 193 return 0; 194 } 195 196 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) 197 { 198 if (size > (ssize_t)ff->size - ff->offset) 199 return -1; 200 201 memcpy(addr, ff->buf + ff->offset, size); 202 ff->offset += size; 203 204 return 0; 205 206 } 207 208 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) 209 { 210 if (!ff->buf) 211 return __do_read_fd(ff, addr, size); 212 return __do_read_buf(ff, addr, size); 213 } 214 215 static int do_read_u32(struct feat_fd *ff, u32 *addr) 216 { 217 int ret; 218 219 ret = __do_read(ff, addr, sizeof(*addr)); 220 if (ret) 221 return ret; 222 223 if (ff->ph->needs_swap) 224 *addr = bswap_32(*addr); 225 return 0; 226 } 227 228 static int do_read_u64(struct feat_fd *ff, u64 *addr) 229 { 230 int ret; 231 232 ret = __do_read(ff, addr, sizeof(*addr)); 233 if (ret) 234 return ret; 235 236 if (ff->ph->needs_swap) 237 *addr = bswap_64(*addr); 238 return 0; 239 } 240 241 static char *do_read_string(struct feat_fd *ff) 242 { 243 u32 len; 244 char *buf; 245 246 if (do_read_u32(ff, &len)) 247 return NULL; 248 249 buf = malloc(len); 250 if (!buf) 251 return NULL; 252 253 if (!__do_read(ff, buf, len)) { 254 /* 255 * strings are padded by zeroes 256 * thus the actual strlen of buf 257 * may be less than len 258 */ 259 return buf; 260 } 261 262 free(buf); 263 return NULL; 264 } 265 266 /* Return: 0 if succeded, -ERR if failed. */ 267 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) 268 { 269 unsigned long *set; 270 u64 size, *p; 271 int i, ret; 272 273 ret = do_read_u64(ff, &size); 274 if (ret) 275 return ret; 276 277 set = bitmap_alloc(size); 278 if (!set) 279 return -ENOMEM; 280 281 p = (u64 *) set; 282 283 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 284 ret = do_read_u64(ff, p + i); 285 if (ret < 0) { 286 free(set); 287 return ret; 288 } 289 } 290 291 *pset = set; 292 *psize = size; 293 return 0; 294 } 295 296 static int write_tracing_data(struct feat_fd *ff, 297 struct evlist *evlist) 298 { 299 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 300 return -1; 301 302 return read_tracing_data(ff->fd, &evlist->core.entries); 303 } 304 305 static int write_build_id(struct feat_fd *ff, 306 struct evlist *evlist __maybe_unused) 307 { 308 struct perf_session *session; 309 int err; 310 311 session = container_of(ff->ph, struct perf_session, header); 312 313 if (!perf_session__read_build_ids(session, true)) 314 return -1; 315 316 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 317 return -1; 318 319 err = perf_session__write_buildid_table(session, ff); 320 if (err < 0) { 321 pr_debug("failed to write buildid table\n"); 322 return err; 323 } 324 perf_session__cache_build_ids(session); 325 326 return 0; 327 } 328 329 static int write_hostname(struct feat_fd *ff, 330 struct evlist *evlist __maybe_unused) 331 { 332 struct utsname uts; 333 int ret; 334 335 ret = uname(&uts); 336 if (ret < 0) 337 return -1; 338 339 return do_write_string(ff, uts.nodename); 340 } 341 342 static int write_osrelease(struct feat_fd *ff, 343 struct evlist *evlist __maybe_unused) 344 { 345 struct utsname uts; 346 int ret; 347 348 ret = uname(&uts); 349 if (ret < 0) 350 return -1; 351 352 return do_write_string(ff, uts.release); 353 } 354 355 static int write_arch(struct feat_fd *ff, 356 struct evlist *evlist __maybe_unused) 357 { 358 struct utsname uts; 359 int ret; 360 361 ret = uname(&uts); 362 if (ret < 0) 363 return -1; 364 365 return do_write_string(ff, uts.machine); 366 } 367 368 static int write_version(struct feat_fd *ff, 369 struct evlist *evlist __maybe_unused) 370 { 371 return do_write_string(ff, perf_version_string); 372 } 373 374 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) 375 { 376 FILE *file; 377 char *buf = NULL; 378 char *s, *p; 379 const char *search = cpuinfo_proc; 380 size_t len = 0; 381 int ret = -1; 382 383 if (!search) 384 return -1; 385 386 file = fopen("/proc/cpuinfo", "r"); 387 if (!file) 388 return -1; 389 390 while (getline(&buf, &len, file) > 0) { 391 ret = strncmp(buf, search, strlen(search)); 392 if (!ret) 393 break; 394 } 395 396 if (ret) { 397 ret = -1; 398 goto done; 399 } 400 401 s = buf; 402 403 p = strchr(buf, ':'); 404 if (p && *(p+1) == ' ' && *(p+2)) 405 s = p + 2; 406 p = strchr(s, '\n'); 407 if (p) 408 *p = '\0'; 409 410 /* squash extra space characters (branding string) */ 411 p = s; 412 while (*p) { 413 if (isspace(*p)) { 414 char *r = p + 1; 415 char *q = skip_spaces(r); 416 *p = ' '; 417 if (q != (p+1)) 418 while ((*r++ = *q++)); 419 } 420 p++; 421 } 422 ret = do_write_string(ff, s); 423 done: 424 free(buf); 425 fclose(file); 426 return ret; 427 } 428 429 static int write_cpudesc(struct feat_fd *ff, 430 struct evlist *evlist __maybe_unused) 431 { 432 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__) 433 #define CPUINFO_PROC { "cpu", } 434 #elif defined(__s390__) 435 #define CPUINFO_PROC { "vendor_id", } 436 #elif defined(__sh__) 437 #define CPUINFO_PROC { "cpu type", } 438 #elif defined(__alpha__) || defined(__mips__) 439 #define CPUINFO_PROC { "cpu model", } 440 #elif defined(__arm__) 441 #define CPUINFO_PROC { "model name", "Processor", } 442 #elif defined(__arc__) 443 #define CPUINFO_PROC { "Processor", } 444 #elif defined(__xtensa__) 445 #define CPUINFO_PROC { "core ID", } 446 #else 447 #define CPUINFO_PROC { "model name", } 448 #endif 449 const char *cpuinfo_procs[] = CPUINFO_PROC; 450 #undef CPUINFO_PROC 451 unsigned int i; 452 453 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { 454 int ret; 455 ret = __write_cpudesc(ff, cpuinfo_procs[i]); 456 if (ret >= 0) 457 return ret; 458 } 459 return -1; 460 } 461 462 463 static int write_nrcpus(struct feat_fd *ff, 464 struct evlist *evlist __maybe_unused) 465 { 466 long nr; 467 u32 nrc, nra; 468 int ret; 469 470 nrc = cpu__max_present_cpu(); 471 472 nr = sysconf(_SC_NPROCESSORS_ONLN); 473 if (nr < 0) 474 return -1; 475 476 nra = (u32)(nr & UINT_MAX); 477 478 ret = do_write(ff, &nrc, sizeof(nrc)); 479 if (ret < 0) 480 return ret; 481 482 return do_write(ff, &nra, sizeof(nra)); 483 } 484 485 static int write_event_desc(struct feat_fd *ff, 486 struct evlist *evlist) 487 { 488 struct evsel *evsel; 489 u32 nre, nri, sz; 490 int ret; 491 492 nre = evlist->core.nr_entries; 493 494 /* 495 * write number of events 496 */ 497 ret = do_write(ff, &nre, sizeof(nre)); 498 if (ret < 0) 499 return ret; 500 501 /* 502 * size of perf_event_attr struct 503 */ 504 sz = (u32)sizeof(evsel->core.attr); 505 ret = do_write(ff, &sz, sizeof(sz)); 506 if (ret < 0) 507 return ret; 508 509 evlist__for_each_entry(evlist, evsel) { 510 ret = do_write(ff, &evsel->core.attr, sz); 511 if (ret < 0) 512 return ret; 513 /* 514 * write number of unique id per event 515 * there is one id per instance of an event 516 * 517 * copy into an nri to be independent of the 518 * type of ids, 519 */ 520 nri = evsel->core.ids; 521 ret = do_write(ff, &nri, sizeof(nri)); 522 if (ret < 0) 523 return ret; 524 525 /* 526 * write event string as passed on cmdline 527 */ 528 ret = do_write_string(ff, perf_evsel__name(evsel)); 529 if (ret < 0) 530 return ret; 531 /* 532 * write unique ids for this event 533 */ 534 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 535 if (ret < 0) 536 return ret; 537 } 538 return 0; 539 } 540 541 static int write_cmdline(struct feat_fd *ff, 542 struct evlist *evlist __maybe_unused) 543 { 544 char pbuf[MAXPATHLEN], *buf; 545 int i, ret, n; 546 547 /* actual path to perf binary */ 548 buf = perf_exe(pbuf, MAXPATHLEN); 549 550 /* account for binary path */ 551 n = perf_env.nr_cmdline + 1; 552 553 ret = do_write(ff, &n, sizeof(n)); 554 if (ret < 0) 555 return ret; 556 557 ret = do_write_string(ff, buf); 558 if (ret < 0) 559 return ret; 560 561 for (i = 0 ; i < perf_env.nr_cmdline; i++) { 562 ret = do_write_string(ff, perf_env.cmdline_argv[i]); 563 if (ret < 0) 564 return ret; 565 } 566 return 0; 567 } 568 569 570 static int write_cpu_topology(struct feat_fd *ff, 571 struct evlist *evlist __maybe_unused) 572 { 573 struct cpu_topology *tp; 574 u32 i; 575 int ret, j; 576 577 tp = cpu_topology__new(); 578 if (!tp) 579 return -1; 580 581 ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib)); 582 if (ret < 0) 583 goto done; 584 585 for (i = 0; i < tp->core_sib; i++) { 586 ret = do_write_string(ff, tp->core_siblings[i]); 587 if (ret < 0) 588 goto done; 589 } 590 ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib)); 591 if (ret < 0) 592 goto done; 593 594 for (i = 0; i < tp->thread_sib; i++) { 595 ret = do_write_string(ff, tp->thread_siblings[i]); 596 if (ret < 0) 597 break; 598 } 599 600 ret = perf_env__read_cpu_topology_map(&perf_env); 601 if (ret < 0) 602 goto done; 603 604 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 605 ret = do_write(ff, &perf_env.cpu[j].core_id, 606 sizeof(perf_env.cpu[j].core_id)); 607 if (ret < 0) 608 return ret; 609 ret = do_write(ff, &perf_env.cpu[j].socket_id, 610 sizeof(perf_env.cpu[j].socket_id)); 611 if (ret < 0) 612 return ret; 613 } 614 615 if (!tp->die_sib) 616 goto done; 617 618 ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib)); 619 if (ret < 0) 620 goto done; 621 622 for (i = 0; i < tp->die_sib; i++) { 623 ret = do_write_string(ff, tp->die_siblings[i]); 624 if (ret < 0) 625 goto done; 626 } 627 628 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 629 ret = do_write(ff, &perf_env.cpu[j].die_id, 630 sizeof(perf_env.cpu[j].die_id)); 631 if (ret < 0) 632 return ret; 633 } 634 635 done: 636 cpu_topology__delete(tp); 637 return ret; 638 } 639 640 641 642 static int write_total_mem(struct feat_fd *ff, 643 struct evlist *evlist __maybe_unused) 644 { 645 char *buf = NULL; 646 FILE *fp; 647 size_t len = 0; 648 int ret = -1, n; 649 uint64_t mem; 650 651 fp = fopen("/proc/meminfo", "r"); 652 if (!fp) 653 return -1; 654 655 while (getline(&buf, &len, fp) > 0) { 656 ret = strncmp(buf, "MemTotal:", 9); 657 if (!ret) 658 break; 659 } 660 if (!ret) { 661 n = sscanf(buf, "%*s %"PRIu64, &mem); 662 if (n == 1) 663 ret = do_write(ff, &mem, sizeof(mem)); 664 } else 665 ret = -1; 666 free(buf); 667 fclose(fp); 668 return ret; 669 } 670 671 static int write_numa_topology(struct feat_fd *ff, 672 struct evlist *evlist __maybe_unused) 673 { 674 struct numa_topology *tp; 675 int ret = -1; 676 u32 i; 677 678 tp = numa_topology__new(); 679 if (!tp) 680 return -ENOMEM; 681 682 ret = do_write(ff, &tp->nr, sizeof(u32)); 683 if (ret < 0) 684 goto err; 685 686 for (i = 0; i < tp->nr; i++) { 687 struct numa_topology_node *n = &tp->nodes[i]; 688 689 ret = do_write(ff, &n->node, sizeof(u32)); 690 if (ret < 0) 691 goto err; 692 693 ret = do_write(ff, &n->mem_total, sizeof(u64)); 694 if (ret) 695 goto err; 696 697 ret = do_write(ff, &n->mem_free, sizeof(u64)); 698 if (ret) 699 goto err; 700 701 ret = do_write_string(ff, n->cpus); 702 if (ret < 0) 703 goto err; 704 } 705 706 ret = 0; 707 708 err: 709 numa_topology__delete(tp); 710 return ret; 711 } 712 713 /* 714 * File format: 715 * 716 * struct pmu_mappings { 717 * u32 pmu_num; 718 * struct pmu_map { 719 * u32 type; 720 * char name[]; 721 * }[pmu_num]; 722 * }; 723 */ 724 725 static int write_pmu_mappings(struct feat_fd *ff, 726 struct evlist *evlist __maybe_unused) 727 { 728 struct perf_pmu *pmu = NULL; 729 u32 pmu_num = 0; 730 int ret; 731 732 /* 733 * Do a first pass to count number of pmu to avoid lseek so this 734 * works in pipe mode as well. 735 */ 736 while ((pmu = perf_pmu__scan(pmu))) { 737 if (!pmu->name) 738 continue; 739 pmu_num++; 740 } 741 742 ret = do_write(ff, &pmu_num, sizeof(pmu_num)); 743 if (ret < 0) 744 return ret; 745 746 while ((pmu = perf_pmu__scan(pmu))) { 747 if (!pmu->name) 748 continue; 749 750 ret = do_write(ff, &pmu->type, sizeof(pmu->type)); 751 if (ret < 0) 752 return ret; 753 754 ret = do_write_string(ff, pmu->name); 755 if (ret < 0) 756 return ret; 757 } 758 759 return 0; 760 } 761 762 /* 763 * File format: 764 * 765 * struct group_descs { 766 * u32 nr_groups; 767 * struct group_desc { 768 * char name[]; 769 * u32 leader_idx; 770 * u32 nr_members; 771 * }[nr_groups]; 772 * }; 773 */ 774 static int write_group_desc(struct feat_fd *ff, 775 struct evlist *evlist) 776 { 777 u32 nr_groups = evlist->nr_groups; 778 struct evsel *evsel; 779 int ret; 780 781 ret = do_write(ff, &nr_groups, sizeof(nr_groups)); 782 if (ret < 0) 783 return ret; 784 785 evlist__for_each_entry(evlist, evsel) { 786 if (perf_evsel__is_group_leader(evsel) && 787 evsel->core.nr_members > 1) { 788 const char *name = evsel->group_name ?: "{anon_group}"; 789 u32 leader_idx = evsel->idx; 790 u32 nr_members = evsel->core.nr_members; 791 792 ret = do_write_string(ff, name); 793 if (ret < 0) 794 return ret; 795 796 ret = do_write(ff, &leader_idx, sizeof(leader_idx)); 797 if (ret < 0) 798 return ret; 799 800 ret = do_write(ff, &nr_members, sizeof(nr_members)); 801 if (ret < 0) 802 return ret; 803 } 804 } 805 return 0; 806 } 807 808 /* 809 * Return the CPU id as a raw string. 810 * 811 * Each architecture should provide a more precise id string that 812 * can be use to match the architecture's "mapfile". 813 */ 814 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused) 815 { 816 return NULL; 817 } 818 819 /* Return zero when the cpuid from the mapfile.csv matches the 820 * cpuid string generated on this platform. 821 * Otherwise return non-zero. 822 */ 823 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid) 824 { 825 regex_t re; 826 regmatch_t pmatch[1]; 827 int match; 828 829 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) { 830 /* Warn unable to generate match particular string. */ 831 pr_info("Invalid regular expression %s\n", mapcpuid); 832 return 1; 833 } 834 835 match = !regexec(&re, cpuid, 1, pmatch, 0); 836 regfree(&re); 837 if (match) { 838 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so); 839 840 /* Verify the entire string matched. */ 841 if (match_len == strlen(cpuid)) 842 return 0; 843 } 844 return 1; 845 } 846 847 /* 848 * default get_cpuid(): nothing gets recorded 849 * actual implementation must be in arch/$(SRCARCH)/util/header.c 850 */ 851 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused) 852 { 853 return ENOSYS; /* Not implemented */ 854 } 855 856 static int write_cpuid(struct feat_fd *ff, 857 struct evlist *evlist __maybe_unused) 858 { 859 char buffer[64]; 860 int ret; 861 862 ret = get_cpuid(buffer, sizeof(buffer)); 863 if (ret) 864 return -1; 865 866 return do_write_string(ff, buffer); 867 } 868 869 static int write_branch_stack(struct feat_fd *ff __maybe_unused, 870 struct evlist *evlist __maybe_unused) 871 { 872 return 0; 873 } 874 875 static int write_auxtrace(struct feat_fd *ff, 876 struct evlist *evlist __maybe_unused) 877 { 878 struct perf_session *session; 879 int err; 880 881 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 882 return -1; 883 884 session = container_of(ff->ph, struct perf_session, header); 885 886 err = auxtrace_index__write(ff->fd, &session->auxtrace_index); 887 if (err < 0) 888 pr_err("Failed to write auxtrace index\n"); 889 return err; 890 } 891 892 static int write_clockid(struct feat_fd *ff, 893 struct evlist *evlist __maybe_unused) 894 { 895 return do_write(ff, &ff->ph->env.clockid_res_ns, 896 sizeof(ff->ph->env.clockid_res_ns)); 897 } 898 899 static int write_dir_format(struct feat_fd *ff, 900 struct evlist *evlist __maybe_unused) 901 { 902 struct perf_session *session; 903 struct perf_data *data; 904 905 session = container_of(ff->ph, struct perf_session, header); 906 data = session->data; 907 908 if (WARN_ON(!perf_data__is_dir(data))) 909 return -1; 910 911 return do_write(ff, &data->dir.version, sizeof(data->dir.version)); 912 } 913 914 #ifdef HAVE_LIBBPF_SUPPORT 915 static int write_bpf_prog_info(struct feat_fd *ff, 916 struct evlist *evlist __maybe_unused) 917 { 918 struct perf_env *env = &ff->ph->env; 919 struct rb_root *root; 920 struct rb_node *next; 921 int ret; 922 923 down_read(&env->bpf_progs.lock); 924 925 ret = do_write(ff, &env->bpf_progs.infos_cnt, 926 sizeof(env->bpf_progs.infos_cnt)); 927 if (ret < 0) 928 goto out; 929 930 root = &env->bpf_progs.infos; 931 next = rb_first(root); 932 while (next) { 933 struct bpf_prog_info_node *node; 934 size_t len; 935 936 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 937 next = rb_next(&node->rb_node); 938 len = sizeof(struct bpf_prog_info_linear) + 939 node->info_linear->data_len; 940 941 /* before writing to file, translate address to offset */ 942 bpf_program__bpil_addr_to_offs(node->info_linear); 943 ret = do_write(ff, node->info_linear, len); 944 /* 945 * translate back to address even when do_write() fails, 946 * so that this function never changes the data. 947 */ 948 bpf_program__bpil_offs_to_addr(node->info_linear); 949 if (ret < 0) 950 goto out; 951 } 952 out: 953 up_read(&env->bpf_progs.lock); 954 return ret; 955 } 956 #else // HAVE_LIBBPF_SUPPORT 957 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused, 958 struct evlist *evlist __maybe_unused) 959 { 960 return 0; 961 } 962 #endif // HAVE_LIBBPF_SUPPORT 963 964 static int write_bpf_btf(struct feat_fd *ff, 965 struct evlist *evlist __maybe_unused) 966 { 967 struct perf_env *env = &ff->ph->env; 968 struct rb_root *root; 969 struct rb_node *next; 970 int ret; 971 972 down_read(&env->bpf_progs.lock); 973 974 ret = do_write(ff, &env->bpf_progs.btfs_cnt, 975 sizeof(env->bpf_progs.btfs_cnt)); 976 977 if (ret < 0) 978 goto out; 979 980 root = &env->bpf_progs.btfs; 981 next = rb_first(root); 982 while (next) { 983 struct btf_node *node; 984 985 node = rb_entry(next, struct btf_node, rb_node); 986 next = rb_next(&node->rb_node); 987 ret = do_write(ff, &node->id, 988 sizeof(u32) * 2 + node->data_size); 989 if (ret < 0) 990 goto out; 991 } 992 out: 993 up_read(&env->bpf_progs.lock); 994 return ret; 995 } 996 997 static int cpu_cache_level__sort(const void *a, const void *b) 998 { 999 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; 1000 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; 1001 1002 return cache_a->level - cache_b->level; 1003 } 1004 1005 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) 1006 { 1007 if (a->level != b->level) 1008 return false; 1009 1010 if (a->line_size != b->line_size) 1011 return false; 1012 1013 if (a->sets != b->sets) 1014 return false; 1015 1016 if (a->ways != b->ways) 1017 return false; 1018 1019 if (strcmp(a->type, b->type)) 1020 return false; 1021 1022 if (strcmp(a->size, b->size)) 1023 return false; 1024 1025 if (strcmp(a->map, b->map)) 1026 return false; 1027 1028 return true; 1029 } 1030 1031 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) 1032 { 1033 char path[PATH_MAX], file[PATH_MAX]; 1034 struct stat st; 1035 size_t len; 1036 1037 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); 1038 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); 1039 1040 if (stat(file, &st)) 1041 return 1; 1042 1043 scnprintf(file, PATH_MAX, "%s/level", path); 1044 if (sysfs__read_int(file, (int *) &cache->level)) 1045 return -1; 1046 1047 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); 1048 if (sysfs__read_int(file, (int *) &cache->line_size)) 1049 return -1; 1050 1051 scnprintf(file, PATH_MAX, "%s/number_of_sets", path); 1052 if (sysfs__read_int(file, (int *) &cache->sets)) 1053 return -1; 1054 1055 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); 1056 if (sysfs__read_int(file, (int *) &cache->ways)) 1057 return -1; 1058 1059 scnprintf(file, PATH_MAX, "%s/type", path); 1060 if (sysfs__read_str(file, &cache->type, &len)) 1061 return -1; 1062 1063 cache->type[len] = 0; 1064 cache->type = strim(cache->type); 1065 1066 scnprintf(file, PATH_MAX, "%s/size", path); 1067 if (sysfs__read_str(file, &cache->size, &len)) { 1068 zfree(&cache->type); 1069 return -1; 1070 } 1071 1072 cache->size[len] = 0; 1073 cache->size = strim(cache->size); 1074 1075 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); 1076 if (sysfs__read_str(file, &cache->map, &len)) { 1077 zfree(&cache->size); 1078 zfree(&cache->type); 1079 return -1; 1080 } 1081 1082 cache->map[len] = 0; 1083 cache->map = strim(cache->map); 1084 return 0; 1085 } 1086 1087 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) 1088 { 1089 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); 1090 } 1091 1092 #define MAX_CACHE_LVL 4 1093 1094 static int build_caches(struct cpu_cache_level caches[], u32 *cntp) 1095 { 1096 u32 i, cnt = 0; 1097 u32 nr, cpu; 1098 u16 level; 1099 1100 nr = cpu__max_cpu(); 1101 1102 for (cpu = 0; cpu < nr; cpu++) { 1103 for (level = 0; level < MAX_CACHE_LVL; level++) { 1104 struct cpu_cache_level c; 1105 int err; 1106 1107 err = cpu_cache_level__read(&c, cpu, level); 1108 if (err < 0) 1109 return err; 1110 1111 if (err == 1) 1112 break; 1113 1114 for (i = 0; i < cnt; i++) { 1115 if (cpu_cache_level__cmp(&c, &caches[i])) 1116 break; 1117 } 1118 1119 if (i == cnt) 1120 caches[cnt++] = c; 1121 else 1122 cpu_cache_level__free(&c); 1123 } 1124 } 1125 *cntp = cnt; 1126 return 0; 1127 } 1128 1129 static int write_cache(struct feat_fd *ff, 1130 struct evlist *evlist __maybe_unused) 1131 { 1132 u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL; 1133 struct cpu_cache_level caches[max_caches]; 1134 u32 cnt = 0, i, version = 1; 1135 int ret; 1136 1137 ret = build_caches(caches, &cnt); 1138 if (ret) 1139 goto out; 1140 1141 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); 1142 1143 ret = do_write(ff, &version, sizeof(u32)); 1144 if (ret < 0) 1145 goto out; 1146 1147 ret = do_write(ff, &cnt, sizeof(u32)); 1148 if (ret < 0) 1149 goto out; 1150 1151 for (i = 0; i < cnt; i++) { 1152 struct cpu_cache_level *c = &caches[i]; 1153 1154 #define _W(v) \ 1155 ret = do_write(ff, &c->v, sizeof(u32)); \ 1156 if (ret < 0) \ 1157 goto out; 1158 1159 _W(level) 1160 _W(line_size) 1161 _W(sets) 1162 _W(ways) 1163 #undef _W 1164 1165 #define _W(v) \ 1166 ret = do_write_string(ff, (const char *) c->v); \ 1167 if (ret < 0) \ 1168 goto out; 1169 1170 _W(type) 1171 _W(size) 1172 _W(map) 1173 #undef _W 1174 } 1175 1176 out: 1177 for (i = 0; i < cnt; i++) 1178 cpu_cache_level__free(&caches[i]); 1179 return ret; 1180 } 1181 1182 static int write_stat(struct feat_fd *ff __maybe_unused, 1183 struct evlist *evlist __maybe_unused) 1184 { 1185 return 0; 1186 } 1187 1188 static int write_sample_time(struct feat_fd *ff, 1189 struct evlist *evlist) 1190 { 1191 int ret; 1192 1193 ret = do_write(ff, &evlist->first_sample_time, 1194 sizeof(evlist->first_sample_time)); 1195 if (ret < 0) 1196 return ret; 1197 1198 return do_write(ff, &evlist->last_sample_time, 1199 sizeof(evlist->last_sample_time)); 1200 } 1201 1202 1203 static int memory_node__read(struct memory_node *n, unsigned long idx) 1204 { 1205 unsigned int phys, size = 0; 1206 char path[PATH_MAX]; 1207 struct dirent *ent; 1208 DIR *dir; 1209 1210 #define for_each_memory(mem, dir) \ 1211 while ((ent = readdir(dir))) \ 1212 if (strcmp(ent->d_name, ".") && \ 1213 strcmp(ent->d_name, "..") && \ 1214 sscanf(ent->d_name, "memory%u", &mem) == 1) 1215 1216 scnprintf(path, PATH_MAX, 1217 "%s/devices/system/node/node%lu", 1218 sysfs__mountpoint(), idx); 1219 1220 dir = opendir(path); 1221 if (!dir) { 1222 pr_warning("failed: cant' open memory sysfs data\n"); 1223 return -1; 1224 } 1225 1226 for_each_memory(phys, dir) { 1227 size = max(phys, size); 1228 } 1229 1230 size++; 1231 1232 n->set = bitmap_alloc(size); 1233 if (!n->set) { 1234 closedir(dir); 1235 return -ENOMEM; 1236 } 1237 1238 n->node = idx; 1239 n->size = size; 1240 1241 rewinddir(dir); 1242 1243 for_each_memory(phys, dir) { 1244 set_bit(phys, n->set); 1245 } 1246 1247 closedir(dir); 1248 return 0; 1249 } 1250 1251 static int memory_node__sort(const void *a, const void *b) 1252 { 1253 const struct memory_node *na = a; 1254 const struct memory_node *nb = b; 1255 1256 return na->node - nb->node; 1257 } 1258 1259 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp) 1260 { 1261 char path[PATH_MAX]; 1262 struct dirent *ent; 1263 DIR *dir; 1264 u64 cnt = 0; 1265 int ret = 0; 1266 1267 scnprintf(path, PATH_MAX, "%s/devices/system/node/", 1268 sysfs__mountpoint()); 1269 1270 dir = opendir(path); 1271 if (!dir) { 1272 pr_debug2("%s: could't read %s, does this arch have topology information?\n", 1273 __func__, path); 1274 return -1; 1275 } 1276 1277 while (!ret && (ent = readdir(dir))) { 1278 unsigned int idx; 1279 int r; 1280 1281 if (!strcmp(ent->d_name, ".") || 1282 !strcmp(ent->d_name, "..")) 1283 continue; 1284 1285 r = sscanf(ent->d_name, "node%u", &idx); 1286 if (r != 1) 1287 continue; 1288 1289 if (WARN_ONCE(cnt >= size, 1290 "failed to write MEM_TOPOLOGY, way too many nodes\n")) { 1291 closedir(dir); 1292 return -1; 1293 } 1294 1295 ret = memory_node__read(&nodes[cnt++], idx); 1296 } 1297 1298 *cntp = cnt; 1299 closedir(dir); 1300 1301 if (!ret) 1302 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); 1303 1304 return ret; 1305 } 1306 1307 #define MAX_MEMORY_NODES 2000 1308 1309 /* 1310 * The MEM_TOPOLOGY holds physical memory map for every 1311 * node in system. The format of data is as follows: 1312 * 1313 * 0 - version | for future changes 1314 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes 1315 * 16 - count | number of nodes 1316 * 1317 * For each node we store map of physical indexes for 1318 * each node: 1319 * 1320 * 32 - node id | node index 1321 * 40 - size | size of bitmap 1322 * 48 - bitmap | bitmap of memory indexes that belongs to node 1323 */ 1324 static int write_mem_topology(struct feat_fd *ff __maybe_unused, 1325 struct evlist *evlist __maybe_unused) 1326 { 1327 static struct memory_node nodes[MAX_MEMORY_NODES]; 1328 u64 bsize, version = 1, i, nr; 1329 int ret; 1330 1331 ret = sysfs__read_xll("devices/system/memory/block_size_bytes", 1332 (unsigned long long *) &bsize); 1333 if (ret) 1334 return ret; 1335 1336 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr); 1337 if (ret) 1338 return ret; 1339 1340 ret = do_write(ff, &version, sizeof(version)); 1341 if (ret < 0) 1342 goto out; 1343 1344 ret = do_write(ff, &bsize, sizeof(bsize)); 1345 if (ret < 0) 1346 goto out; 1347 1348 ret = do_write(ff, &nr, sizeof(nr)); 1349 if (ret < 0) 1350 goto out; 1351 1352 for (i = 0; i < nr; i++) { 1353 struct memory_node *n = &nodes[i]; 1354 1355 #define _W(v) \ 1356 ret = do_write(ff, &n->v, sizeof(n->v)); \ 1357 if (ret < 0) \ 1358 goto out; 1359 1360 _W(node) 1361 _W(size) 1362 1363 #undef _W 1364 1365 ret = do_write_bitmap(ff, n->set, n->size); 1366 if (ret < 0) 1367 goto out; 1368 } 1369 1370 out: 1371 return ret; 1372 } 1373 1374 static int write_compressed(struct feat_fd *ff __maybe_unused, 1375 struct evlist *evlist __maybe_unused) 1376 { 1377 int ret; 1378 1379 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver)); 1380 if (ret) 1381 return ret; 1382 1383 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type)); 1384 if (ret) 1385 return ret; 1386 1387 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level)); 1388 if (ret) 1389 return ret; 1390 1391 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio)); 1392 if (ret) 1393 return ret; 1394 1395 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len)); 1396 } 1397 1398 static void print_hostname(struct feat_fd *ff, FILE *fp) 1399 { 1400 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); 1401 } 1402 1403 static void print_osrelease(struct feat_fd *ff, FILE *fp) 1404 { 1405 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); 1406 } 1407 1408 static void print_arch(struct feat_fd *ff, FILE *fp) 1409 { 1410 fprintf(fp, "# arch : %s\n", ff->ph->env.arch); 1411 } 1412 1413 static void print_cpudesc(struct feat_fd *ff, FILE *fp) 1414 { 1415 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); 1416 } 1417 1418 static void print_nrcpus(struct feat_fd *ff, FILE *fp) 1419 { 1420 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); 1421 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); 1422 } 1423 1424 static void print_version(struct feat_fd *ff, FILE *fp) 1425 { 1426 fprintf(fp, "# perf version : %s\n", ff->ph->env.version); 1427 } 1428 1429 static void print_cmdline(struct feat_fd *ff, FILE *fp) 1430 { 1431 int nr, i; 1432 1433 nr = ff->ph->env.nr_cmdline; 1434 1435 fprintf(fp, "# cmdline : "); 1436 1437 for (i = 0; i < nr; i++) { 1438 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); 1439 if (!argv_i) { 1440 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); 1441 } else { 1442 char *mem = argv_i; 1443 do { 1444 char *quote = strchr(argv_i, '\''); 1445 if (!quote) 1446 break; 1447 *quote++ = '\0'; 1448 fprintf(fp, "%s\\\'", argv_i); 1449 argv_i = quote; 1450 } while (1); 1451 fprintf(fp, "%s ", argv_i); 1452 free(mem); 1453 } 1454 } 1455 fputc('\n', fp); 1456 } 1457 1458 static void print_cpu_topology(struct feat_fd *ff, FILE *fp) 1459 { 1460 struct perf_header *ph = ff->ph; 1461 int cpu_nr = ph->env.nr_cpus_avail; 1462 int nr, i; 1463 char *str; 1464 1465 nr = ph->env.nr_sibling_cores; 1466 str = ph->env.sibling_cores; 1467 1468 for (i = 0; i < nr; i++) { 1469 fprintf(fp, "# sibling sockets : %s\n", str); 1470 str += strlen(str) + 1; 1471 } 1472 1473 if (ph->env.nr_sibling_dies) { 1474 nr = ph->env.nr_sibling_dies; 1475 str = ph->env.sibling_dies; 1476 1477 for (i = 0; i < nr; i++) { 1478 fprintf(fp, "# sibling dies : %s\n", str); 1479 str += strlen(str) + 1; 1480 } 1481 } 1482 1483 nr = ph->env.nr_sibling_threads; 1484 str = ph->env.sibling_threads; 1485 1486 for (i = 0; i < nr; i++) { 1487 fprintf(fp, "# sibling threads : %s\n", str); 1488 str += strlen(str) + 1; 1489 } 1490 1491 if (ph->env.nr_sibling_dies) { 1492 if (ph->env.cpu != NULL) { 1493 for (i = 0; i < cpu_nr; i++) 1494 fprintf(fp, "# CPU %d: Core ID %d, " 1495 "Die ID %d, Socket ID %d\n", 1496 i, ph->env.cpu[i].core_id, 1497 ph->env.cpu[i].die_id, 1498 ph->env.cpu[i].socket_id); 1499 } else 1500 fprintf(fp, "# Core ID, Die ID and Socket ID " 1501 "information is not available\n"); 1502 } else { 1503 if (ph->env.cpu != NULL) { 1504 for (i = 0; i < cpu_nr; i++) 1505 fprintf(fp, "# CPU %d: Core ID %d, " 1506 "Socket ID %d\n", 1507 i, ph->env.cpu[i].core_id, 1508 ph->env.cpu[i].socket_id); 1509 } else 1510 fprintf(fp, "# Core ID and Socket ID " 1511 "information is not available\n"); 1512 } 1513 } 1514 1515 static void print_clockid(struct feat_fd *ff, FILE *fp) 1516 { 1517 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", 1518 ff->ph->env.clockid_res_ns * 1000); 1519 } 1520 1521 static void print_dir_format(struct feat_fd *ff, FILE *fp) 1522 { 1523 struct perf_session *session; 1524 struct perf_data *data; 1525 1526 session = container_of(ff->ph, struct perf_session, header); 1527 data = session->data; 1528 1529 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version); 1530 } 1531 1532 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp) 1533 { 1534 struct perf_env *env = &ff->ph->env; 1535 struct rb_root *root; 1536 struct rb_node *next; 1537 1538 down_read(&env->bpf_progs.lock); 1539 1540 root = &env->bpf_progs.infos; 1541 next = rb_first(root); 1542 1543 while (next) { 1544 struct bpf_prog_info_node *node; 1545 1546 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1547 next = rb_next(&node->rb_node); 1548 1549 bpf_event__print_bpf_prog_info(&node->info_linear->info, 1550 env, fp); 1551 } 1552 1553 up_read(&env->bpf_progs.lock); 1554 } 1555 1556 static void print_bpf_btf(struct feat_fd *ff, FILE *fp) 1557 { 1558 struct perf_env *env = &ff->ph->env; 1559 struct rb_root *root; 1560 struct rb_node *next; 1561 1562 down_read(&env->bpf_progs.lock); 1563 1564 root = &env->bpf_progs.btfs; 1565 next = rb_first(root); 1566 1567 while (next) { 1568 struct btf_node *node; 1569 1570 node = rb_entry(next, struct btf_node, rb_node); 1571 next = rb_next(&node->rb_node); 1572 fprintf(fp, "# btf info of id %u\n", node->id); 1573 } 1574 1575 up_read(&env->bpf_progs.lock); 1576 } 1577 1578 static void free_event_desc(struct evsel *events) 1579 { 1580 struct evsel *evsel; 1581 1582 if (!events) 1583 return; 1584 1585 for (evsel = events; evsel->core.attr.size; evsel++) { 1586 zfree(&evsel->name); 1587 zfree(&evsel->core.id); 1588 } 1589 1590 free(events); 1591 } 1592 1593 static struct evsel *read_event_desc(struct feat_fd *ff) 1594 { 1595 struct evsel *evsel, *events = NULL; 1596 u64 *id; 1597 void *buf = NULL; 1598 u32 nre, sz, nr, i, j; 1599 size_t msz; 1600 1601 /* number of events */ 1602 if (do_read_u32(ff, &nre)) 1603 goto error; 1604 1605 if (do_read_u32(ff, &sz)) 1606 goto error; 1607 1608 /* buffer to hold on file attr struct */ 1609 buf = malloc(sz); 1610 if (!buf) 1611 goto error; 1612 1613 /* the last event terminates with evsel->core.attr.size == 0: */ 1614 events = calloc(nre + 1, sizeof(*events)); 1615 if (!events) 1616 goto error; 1617 1618 msz = sizeof(evsel->core.attr); 1619 if (sz < msz) 1620 msz = sz; 1621 1622 for (i = 0, evsel = events; i < nre; evsel++, i++) { 1623 evsel->idx = i; 1624 1625 /* 1626 * must read entire on-file attr struct to 1627 * sync up with layout. 1628 */ 1629 if (__do_read(ff, buf, sz)) 1630 goto error; 1631 1632 if (ff->ph->needs_swap) 1633 perf_event__attr_swap(buf); 1634 1635 memcpy(&evsel->core.attr, buf, msz); 1636 1637 if (do_read_u32(ff, &nr)) 1638 goto error; 1639 1640 if (ff->ph->needs_swap) 1641 evsel->needs_swap = true; 1642 1643 evsel->name = do_read_string(ff); 1644 if (!evsel->name) 1645 goto error; 1646 1647 if (!nr) 1648 continue; 1649 1650 id = calloc(nr, sizeof(*id)); 1651 if (!id) 1652 goto error; 1653 evsel->core.ids = nr; 1654 evsel->core.id = id; 1655 1656 for (j = 0 ; j < nr; j++) { 1657 if (do_read_u64(ff, id)) 1658 goto error; 1659 id++; 1660 } 1661 } 1662 out: 1663 free(buf); 1664 return events; 1665 error: 1666 free_event_desc(events); 1667 events = NULL; 1668 goto out; 1669 } 1670 1671 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, 1672 void *priv __maybe_unused) 1673 { 1674 return fprintf(fp, ", %s = %s", name, val); 1675 } 1676 1677 static void print_event_desc(struct feat_fd *ff, FILE *fp) 1678 { 1679 struct evsel *evsel, *events; 1680 u32 j; 1681 u64 *id; 1682 1683 if (ff->events) 1684 events = ff->events; 1685 else 1686 events = read_event_desc(ff); 1687 1688 if (!events) { 1689 fprintf(fp, "# event desc: not available or unable to read\n"); 1690 return; 1691 } 1692 1693 for (evsel = events; evsel->core.attr.size; evsel++) { 1694 fprintf(fp, "# event : name = %s, ", evsel->name); 1695 1696 if (evsel->core.ids) { 1697 fprintf(fp, ", id = {"); 1698 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) { 1699 if (j) 1700 fputc(',', fp); 1701 fprintf(fp, " %"PRIu64, *id); 1702 } 1703 fprintf(fp, " }"); 1704 } 1705 1706 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL); 1707 1708 fputc('\n', fp); 1709 } 1710 1711 free_event_desc(events); 1712 ff->events = NULL; 1713 } 1714 1715 static void print_total_mem(struct feat_fd *ff, FILE *fp) 1716 { 1717 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); 1718 } 1719 1720 static void print_numa_topology(struct feat_fd *ff, FILE *fp) 1721 { 1722 int i; 1723 struct numa_node *n; 1724 1725 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { 1726 n = &ff->ph->env.numa_nodes[i]; 1727 1728 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," 1729 " free = %"PRIu64" kB\n", 1730 n->node, n->mem_total, n->mem_free); 1731 1732 fprintf(fp, "# node%u cpu list : ", n->node); 1733 cpu_map__fprintf(n->map, fp); 1734 } 1735 } 1736 1737 static void print_cpuid(struct feat_fd *ff, FILE *fp) 1738 { 1739 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); 1740 } 1741 1742 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) 1743 { 1744 fprintf(fp, "# contains samples with branch stack\n"); 1745 } 1746 1747 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) 1748 { 1749 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); 1750 } 1751 1752 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) 1753 { 1754 fprintf(fp, "# contains stat data\n"); 1755 } 1756 1757 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) 1758 { 1759 int i; 1760 1761 fprintf(fp, "# CPU cache info:\n"); 1762 for (i = 0; i < ff->ph->env.caches_cnt; i++) { 1763 fprintf(fp, "# "); 1764 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); 1765 } 1766 } 1767 1768 static void print_compressed(struct feat_fd *ff, FILE *fp) 1769 { 1770 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n", 1771 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown", 1772 ff->ph->env.comp_level, ff->ph->env.comp_ratio); 1773 } 1774 1775 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) 1776 { 1777 const char *delimiter = "# pmu mappings: "; 1778 char *str, *tmp; 1779 u32 pmu_num; 1780 u32 type; 1781 1782 pmu_num = ff->ph->env.nr_pmu_mappings; 1783 if (!pmu_num) { 1784 fprintf(fp, "# pmu mappings: not available\n"); 1785 return; 1786 } 1787 1788 str = ff->ph->env.pmu_mappings; 1789 1790 while (pmu_num) { 1791 type = strtoul(str, &tmp, 0); 1792 if (*tmp != ':') 1793 goto error; 1794 1795 str = tmp + 1; 1796 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); 1797 1798 delimiter = ", "; 1799 str += strlen(str) + 1; 1800 pmu_num--; 1801 } 1802 1803 fprintf(fp, "\n"); 1804 1805 if (!pmu_num) 1806 return; 1807 error: 1808 fprintf(fp, "# pmu mappings: unable to read\n"); 1809 } 1810 1811 static void print_group_desc(struct feat_fd *ff, FILE *fp) 1812 { 1813 struct perf_session *session; 1814 struct evsel *evsel; 1815 u32 nr = 0; 1816 1817 session = container_of(ff->ph, struct perf_session, header); 1818 1819 evlist__for_each_entry(session->evlist, evsel) { 1820 if (perf_evsel__is_group_leader(evsel) && 1821 evsel->core.nr_members > 1) { 1822 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", 1823 perf_evsel__name(evsel)); 1824 1825 nr = evsel->core.nr_members - 1; 1826 } else if (nr) { 1827 fprintf(fp, ",%s", perf_evsel__name(evsel)); 1828 1829 if (--nr == 0) 1830 fprintf(fp, "}\n"); 1831 } 1832 } 1833 } 1834 1835 static void print_sample_time(struct feat_fd *ff, FILE *fp) 1836 { 1837 struct perf_session *session; 1838 char time_buf[32]; 1839 double d; 1840 1841 session = container_of(ff->ph, struct perf_session, header); 1842 1843 timestamp__scnprintf_usec(session->evlist->first_sample_time, 1844 time_buf, sizeof(time_buf)); 1845 fprintf(fp, "# time of first sample : %s\n", time_buf); 1846 1847 timestamp__scnprintf_usec(session->evlist->last_sample_time, 1848 time_buf, sizeof(time_buf)); 1849 fprintf(fp, "# time of last sample : %s\n", time_buf); 1850 1851 d = (double)(session->evlist->last_sample_time - 1852 session->evlist->first_sample_time) / NSEC_PER_MSEC; 1853 1854 fprintf(fp, "# sample duration : %10.3f ms\n", d); 1855 } 1856 1857 static void memory_node__fprintf(struct memory_node *n, 1858 unsigned long long bsize, FILE *fp) 1859 { 1860 char buf_map[100], buf_size[50]; 1861 unsigned long long size; 1862 1863 size = bsize * bitmap_weight(n->set, n->size); 1864 unit_number__scnprintf(buf_size, 50, size); 1865 1866 bitmap_scnprintf(n->set, n->size, buf_map, 100); 1867 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); 1868 } 1869 1870 static void print_mem_topology(struct feat_fd *ff, FILE *fp) 1871 { 1872 struct memory_node *nodes; 1873 int i, nr; 1874 1875 nodes = ff->ph->env.memory_nodes; 1876 nr = ff->ph->env.nr_memory_nodes; 1877 1878 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", 1879 nr, ff->ph->env.memory_bsize); 1880 1881 for (i = 0; i < nr; i++) { 1882 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp); 1883 } 1884 } 1885 1886 static int __event_process_build_id(struct perf_record_header_build_id *bev, 1887 char *filename, 1888 struct perf_session *session) 1889 { 1890 int err = -1; 1891 struct machine *machine; 1892 u16 cpumode; 1893 struct dso *dso; 1894 enum dso_kernel_type dso_type; 1895 1896 machine = perf_session__findnew_machine(session, bev->pid); 1897 if (!machine) 1898 goto out; 1899 1900 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1901 1902 switch (cpumode) { 1903 case PERF_RECORD_MISC_KERNEL: 1904 dso_type = DSO_TYPE_KERNEL; 1905 break; 1906 case PERF_RECORD_MISC_GUEST_KERNEL: 1907 dso_type = DSO_TYPE_GUEST_KERNEL; 1908 break; 1909 case PERF_RECORD_MISC_USER: 1910 case PERF_RECORD_MISC_GUEST_USER: 1911 dso_type = DSO_TYPE_USER; 1912 break; 1913 default: 1914 goto out; 1915 } 1916 1917 dso = machine__findnew_dso(machine, filename); 1918 if (dso != NULL) { 1919 char sbuild_id[SBUILD_ID_SIZE]; 1920 1921 dso__set_build_id(dso, &bev->build_id); 1922 1923 if (dso_type != DSO_TYPE_USER) { 1924 struct kmod_path m = { .name = NULL, }; 1925 1926 if (!kmod_path__parse_name(&m, filename) && m.kmod) 1927 dso__set_module_info(dso, &m, machine); 1928 else 1929 dso->kernel = dso_type; 1930 1931 free(m.name); 1932 } 1933 1934 build_id__sprintf(dso->build_id, sizeof(dso->build_id), 1935 sbuild_id); 1936 pr_debug("build id event received for %s: %s\n", 1937 dso->long_name, sbuild_id); 1938 dso__put(dso); 1939 } 1940 1941 err = 0; 1942 out: 1943 return err; 1944 } 1945 1946 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, 1947 int input, u64 offset, u64 size) 1948 { 1949 struct perf_session *session = container_of(header, struct perf_session, header); 1950 struct { 1951 struct perf_event_header header; 1952 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; 1953 char filename[0]; 1954 } old_bev; 1955 struct perf_record_header_build_id bev; 1956 char filename[PATH_MAX]; 1957 u64 limit = offset + size; 1958 1959 while (offset < limit) { 1960 ssize_t len; 1961 1962 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) 1963 return -1; 1964 1965 if (header->needs_swap) 1966 perf_event_header__bswap(&old_bev.header); 1967 1968 len = old_bev.header.size - sizeof(old_bev); 1969 if (readn(input, filename, len) != len) 1970 return -1; 1971 1972 bev.header = old_bev.header; 1973 1974 /* 1975 * As the pid is the missing value, we need to fill 1976 * it properly. The header.misc value give us nice hint. 1977 */ 1978 bev.pid = HOST_KERNEL_ID; 1979 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || 1980 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) 1981 bev.pid = DEFAULT_GUEST_KERNEL_ID; 1982 1983 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); 1984 __event_process_build_id(&bev, filename, session); 1985 1986 offset += bev.header.size; 1987 } 1988 1989 return 0; 1990 } 1991 1992 static int perf_header__read_build_ids(struct perf_header *header, 1993 int input, u64 offset, u64 size) 1994 { 1995 struct perf_session *session = container_of(header, struct perf_session, header); 1996 struct perf_record_header_build_id bev; 1997 char filename[PATH_MAX]; 1998 u64 limit = offset + size, orig_offset = offset; 1999 int err = -1; 2000 2001 while (offset < limit) { 2002 ssize_t len; 2003 2004 if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) 2005 goto out; 2006 2007 if (header->needs_swap) 2008 perf_event_header__bswap(&bev.header); 2009 2010 len = bev.header.size - sizeof(bev); 2011 if (readn(input, filename, len) != len) 2012 goto out; 2013 /* 2014 * The a1645ce1 changeset: 2015 * 2016 * "perf: 'perf kvm' tool for monitoring guest performance from host" 2017 * 2018 * Added a field to struct perf_record_header_build_id that broke the file 2019 * format. 2020 * 2021 * Since the kernel build-id is the first entry, process the 2022 * table using the old format if the well known 2023 * '[kernel.kallsyms]' string for the kernel build-id has the 2024 * first 4 characters chopped off (where the pid_t sits). 2025 */ 2026 if (memcmp(filename, "nel.kallsyms]", 13) == 0) { 2027 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) 2028 return -1; 2029 return perf_header__read_build_ids_abi_quirk(header, input, offset, size); 2030 } 2031 2032 __event_process_build_id(&bev, filename, session); 2033 2034 offset += bev.header.size; 2035 } 2036 err = 0; 2037 out: 2038 return err; 2039 } 2040 2041 /* Macro for features that simply need to read and store a string. */ 2042 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ 2043 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ 2044 {\ 2045 ff->ph->env.__feat_env = do_read_string(ff); \ 2046 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ 2047 } 2048 2049 FEAT_PROCESS_STR_FUN(hostname, hostname); 2050 FEAT_PROCESS_STR_FUN(osrelease, os_release); 2051 FEAT_PROCESS_STR_FUN(version, version); 2052 FEAT_PROCESS_STR_FUN(arch, arch); 2053 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); 2054 FEAT_PROCESS_STR_FUN(cpuid, cpuid); 2055 2056 static int process_tracing_data(struct feat_fd *ff, void *data) 2057 { 2058 ssize_t ret = trace_report(ff->fd, data, false); 2059 2060 return ret < 0 ? -1 : 0; 2061 } 2062 2063 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) 2064 { 2065 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) 2066 pr_debug("Failed to read buildids, continuing...\n"); 2067 return 0; 2068 } 2069 2070 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) 2071 { 2072 int ret; 2073 u32 nr_cpus_avail, nr_cpus_online; 2074 2075 ret = do_read_u32(ff, &nr_cpus_avail); 2076 if (ret) 2077 return ret; 2078 2079 ret = do_read_u32(ff, &nr_cpus_online); 2080 if (ret) 2081 return ret; 2082 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail; 2083 ff->ph->env.nr_cpus_online = (int)nr_cpus_online; 2084 return 0; 2085 } 2086 2087 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) 2088 { 2089 u64 total_mem; 2090 int ret; 2091 2092 ret = do_read_u64(ff, &total_mem); 2093 if (ret) 2094 return -1; 2095 ff->ph->env.total_mem = (unsigned long long)total_mem; 2096 return 0; 2097 } 2098 2099 static struct evsel * 2100 perf_evlist__find_by_index(struct evlist *evlist, int idx) 2101 { 2102 struct evsel *evsel; 2103 2104 evlist__for_each_entry(evlist, evsel) { 2105 if (evsel->idx == idx) 2106 return evsel; 2107 } 2108 2109 return NULL; 2110 } 2111 2112 static void 2113 perf_evlist__set_event_name(struct evlist *evlist, 2114 struct evsel *event) 2115 { 2116 struct evsel *evsel; 2117 2118 if (!event->name) 2119 return; 2120 2121 evsel = perf_evlist__find_by_index(evlist, event->idx); 2122 if (!evsel) 2123 return; 2124 2125 if (evsel->name) 2126 return; 2127 2128 evsel->name = strdup(event->name); 2129 } 2130 2131 static int 2132 process_event_desc(struct feat_fd *ff, void *data __maybe_unused) 2133 { 2134 struct perf_session *session; 2135 struct evsel *evsel, *events = read_event_desc(ff); 2136 2137 if (!events) 2138 return 0; 2139 2140 session = container_of(ff->ph, struct perf_session, header); 2141 2142 if (session->data->is_pipe) { 2143 /* Save events for reading later by print_event_desc, 2144 * since they can't be read again in pipe mode. */ 2145 ff->events = events; 2146 } 2147 2148 for (evsel = events; evsel->core.attr.size; evsel++) 2149 perf_evlist__set_event_name(session->evlist, evsel); 2150 2151 if (!session->data->is_pipe) 2152 free_event_desc(events); 2153 2154 return 0; 2155 } 2156 2157 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) 2158 { 2159 char *str, *cmdline = NULL, **argv = NULL; 2160 u32 nr, i, len = 0; 2161 2162 if (do_read_u32(ff, &nr)) 2163 return -1; 2164 2165 ff->ph->env.nr_cmdline = nr; 2166 2167 cmdline = zalloc(ff->size + nr + 1); 2168 if (!cmdline) 2169 return -1; 2170 2171 argv = zalloc(sizeof(char *) * (nr + 1)); 2172 if (!argv) 2173 goto error; 2174 2175 for (i = 0; i < nr; i++) { 2176 str = do_read_string(ff); 2177 if (!str) 2178 goto error; 2179 2180 argv[i] = cmdline + len; 2181 memcpy(argv[i], str, strlen(str) + 1); 2182 len += strlen(str) + 1; 2183 free(str); 2184 } 2185 ff->ph->env.cmdline = cmdline; 2186 ff->ph->env.cmdline_argv = (const char **) argv; 2187 return 0; 2188 2189 error: 2190 free(argv); 2191 free(cmdline); 2192 return -1; 2193 } 2194 2195 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) 2196 { 2197 u32 nr, i; 2198 char *str; 2199 struct strbuf sb; 2200 int cpu_nr = ff->ph->env.nr_cpus_avail; 2201 u64 size = 0; 2202 struct perf_header *ph = ff->ph; 2203 bool do_core_id_test = true; 2204 2205 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu)); 2206 if (!ph->env.cpu) 2207 return -1; 2208 2209 if (do_read_u32(ff, &nr)) 2210 goto free_cpu; 2211 2212 ph->env.nr_sibling_cores = nr; 2213 size += sizeof(u32); 2214 if (strbuf_init(&sb, 128) < 0) 2215 goto free_cpu; 2216 2217 for (i = 0; i < nr; i++) { 2218 str = do_read_string(ff); 2219 if (!str) 2220 goto error; 2221 2222 /* include a NULL character at the end */ 2223 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2224 goto error; 2225 size += string_size(str); 2226 free(str); 2227 } 2228 ph->env.sibling_cores = strbuf_detach(&sb, NULL); 2229 2230 if (do_read_u32(ff, &nr)) 2231 return -1; 2232 2233 ph->env.nr_sibling_threads = nr; 2234 size += sizeof(u32); 2235 2236 for (i = 0; i < nr; i++) { 2237 str = do_read_string(ff); 2238 if (!str) 2239 goto error; 2240 2241 /* include a NULL character at the end */ 2242 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2243 goto error; 2244 size += string_size(str); 2245 free(str); 2246 } 2247 ph->env.sibling_threads = strbuf_detach(&sb, NULL); 2248 2249 /* 2250 * The header may be from old perf, 2251 * which doesn't include core id and socket id information. 2252 */ 2253 if (ff->size <= size) { 2254 zfree(&ph->env.cpu); 2255 return 0; 2256 } 2257 2258 /* On s390 the socket_id number is not related to the numbers of cpus. 2259 * The socket_id number might be higher than the numbers of cpus. 2260 * This depends on the configuration. 2261 * AArch64 is the same. 2262 */ 2263 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4) 2264 || !strncmp(ph->env.arch, "aarch64", 7))) 2265 do_core_id_test = false; 2266 2267 for (i = 0; i < (u32)cpu_nr; i++) { 2268 if (do_read_u32(ff, &nr)) 2269 goto free_cpu; 2270 2271 ph->env.cpu[i].core_id = nr; 2272 size += sizeof(u32); 2273 2274 if (do_read_u32(ff, &nr)) 2275 goto free_cpu; 2276 2277 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) { 2278 pr_debug("socket_id number is too big." 2279 "You may need to upgrade the perf tool.\n"); 2280 goto free_cpu; 2281 } 2282 2283 ph->env.cpu[i].socket_id = nr; 2284 size += sizeof(u32); 2285 } 2286 2287 /* 2288 * The header may be from old perf, 2289 * which doesn't include die information. 2290 */ 2291 if (ff->size <= size) 2292 return 0; 2293 2294 if (do_read_u32(ff, &nr)) 2295 return -1; 2296 2297 ph->env.nr_sibling_dies = nr; 2298 size += sizeof(u32); 2299 2300 for (i = 0; i < nr; i++) { 2301 str = do_read_string(ff); 2302 if (!str) 2303 goto error; 2304 2305 /* include a NULL character at the end */ 2306 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2307 goto error; 2308 size += string_size(str); 2309 free(str); 2310 } 2311 ph->env.sibling_dies = strbuf_detach(&sb, NULL); 2312 2313 for (i = 0; i < (u32)cpu_nr; i++) { 2314 if (do_read_u32(ff, &nr)) 2315 goto free_cpu; 2316 2317 ph->env.cpu[i].die_id = nr; 2318 } 2319 2320 return 0; 2321 2322 error: 2323 strbuf_release(&sb); 2324 free_cpu: 2325 zfree(&ph->env.cpu); 2326 return -1; 2327 } 2328 2329 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) 2330 { 2331 struct numa_node *nodes, *n; 2332 u32 nr, i; 2333 char *str; 2334 2335 /* nr nodes */ 2336 if (do_read_u32(ff, &nr)) 2337 return -1; 2338 2339 nodes = zalloc(sizeof(*nodes) * nr); 2340 if (!nodes) 2341 return -ENOMEM; 2342 2343 for (i = 0; i < nr; i++) { 2344 n = &nodes[i]; 2345 2346 /* node number */ 2347 if (do_read_u32(ff, &n->node)) 2348 goto error; 2349 2350 if (do_read_u64(ff, &n->mem_total)) 2351 goto error; 2352 2353 if (do_read_u64(ff, &n->mem_free)) 2354 goto error; 2355 2356 str = do_read_string(ff); 2357 if (!str) 2358 goto error; 2359 2360 n->map = perf_cpu_map__new(str); 2361 if (!n->map) 2362 goto error; 2363 2364 free(str); 2365 } 2366 ff->ph->env.nr_numa_nodes = nr; 2367 ff->ph->env.numa_nodes = nodes; 2368 return 0; 2369 2370 error: 2371 free(nodes); 2372 return -1; 2373 } 2374 2375 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) 2376 { 2377 char *name; 2378 u32 pmu_num; 2379 u32 type; 2380 struct strbuf sb; 2381 2382 if (do_read_u32(ff, &pmu_num)) 2383 return -1; 2384 2385 if (!pmu_num) { 2386 pr_debug("pmu mappings not available\n"); 2387 return 0; 2388 } 2389 2390 ff->ph->env.nr_pmu_mappings = pmu_num; 2391 if (strbuf_init(&sb, 128) < 0) 2392 return -1; 2393 2394 while (pmu_num) { 2395 if (do_read_u32(ff, &type)) 2396 goto error; 2397 2398 name = do_read_string(ff); 2399 if (!name) 2400 goto error; 2401 2402 if (strbuf_addf(&sb, "%u:%s", type, name) < 0) 2403 goto error; 2404 /* include a NULL character at the end */ 2405 if (strbuf_add(&sb, "", 1) < 0) 2406 goto error; 2407 2408 if (!strcmp(name, "msr")) 2409 ff->ph->env.msr_pmu_type = type; 2410 2411 free(name); 2412 pmu_num--; 2413 } 2414 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL); 2415 return 0; 2416 2417 error: 2418 strbuf_release(&sb); 2419 return -1; 2420 } 2421 2422 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) 2423 { 2424 size_t ret = -1; 2425 u32 i, nr, nr_groups; 2426 struct perf_session *session; 2427 struct evsel *evsel, *leader = NULL; 2428 struct group_desc { 2429 char *name; 2430 u32 leader_idx; 2431 u32 nr_members; 2432 } *desc; 2433 2434 if (do_read_u32(ff, &nr_groups)) 2435 return -1; 2436 2437 ff->ph->env.nr_groups = nr_groups; 2438 if (!nr_groups) { 2439 pr_debug("group desc not available\n"); 2440 return 0; 2441 } 2442 2443 desc = calloc(nr_groups, sizeof(*desc)); 2444 if (!desc) 2445 return -1; 2446 2447 for (i = 0; i < nr_groups; i++) { 2448 desc[i].name = do_read_string(ff); 2449 if (!desc[i].name) 2450 goto out_free; 2451 2452 if (do_read_u32(ff, &desc[i].leader_idx)) 2453 goto out_free; 2454 2455 if (do_read_u32(ff, &desc[i].nr_members)) 2456 goto out_free; 2457 } 2458 2459 /* 2460 * Rebuild group relationship based on the group_desc 2461 */ 2462 session = container_of(ff->ph, struct perf_session, header); 2463 session->evlist->nr_groups = nr_groups; 2464 2465 i = nr = 0; 2466 evlist__for_each_entry(session->evlist, evsel) { 2467 if (evsel->idx == (int) desc[i].leader_idx) { 2468 evsel->leader = evsel; 2469 /* {anon_group} is a dummy name */ 2470 if (strcmp(desc[i].name, "{anon_group}")) { 2471 evsel->group_name = desc[i].name; 2472 desc[i].name = NULL; 2473 } 2474 evsel->core.nr_members = desc[i].nr_members; 2475 2476 if (i >= nr_groups || nr > 0) { 2477 pr_debug("invalid group desc\n"); 2478 goto out_free; 2479 } 2480 2481 leader = evsel; 2482 nr = evsel->core.nr_members - 1; 2483 i++; 2484 } else if (nr) { 2485 /* This is a group member */ 2486 evsel->leader = leader; 2487 2488 nr--; 2489 } 2490 } 2491 2492 if (i != nr_groups || nr != 0) { 2493 pr_debug("invalid group desc\n"); 2494 goto out_free; 2495 } 2496 2497 ret = 0; 2498 out_free: 2499 for (i = 0; i < nr_groups; i++) 2500 zfree(&desc[i].name); 2501 free(desc); 2502 2503 return ret; 2504 } 2505 2506 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) 2507 { 2508 struct perf_session *session; 2509 int err; 2510 2511 session = container_of(ff->ph, struct perf_session, header); 2512 2513 err = auxtrace_index__process(ff->fd, ff->size, session, 2514 ff->ph->needs_swap); 2515 if (err < 0) 2516 pr_err("Failed to process auxtrace index\n"); 2517 return err; 2518 } 2519 2520 static int process_cache(struct feat_fd *ff, void *data __maybe_unused) 2521 { 2522 struct cpu_cache_level *caches; 2523 u32 cnt, i, version; 2524 2525 if (do_read_u32(ff, &version)) 2526 return -1; 2527 2528 if (version != 1) 2529 return -1; 2530 2531 if (do_read_u32(ff, &cnt)) 2532 return -1; 2533 2534 caches = zalloc(sizeof(*caches) * cnt); 2535 if (!caches) 2536 return -1; 2537 2538 for (i = 0; i < cnt; i++) { 2539 struct cpu_cache_level c; 2540 2541 #define _R(v) \ 2542 if (do_read_u32(ff, &c.v))\ 2543 goto out_free_caches; \ 2544 2545 _R(level) 2546 _R(line_size) 2547 _R(sets) 2548 _R(ways) 2549 #undef _R 2550 2551 #define _R(v) \ 2552 c.v = do_read_string(ff); \ 2553 if (!c.v) \ 2554 goto out_free_caches; 2555 2556 _R(type) 2557 _R(size) 2558 _R(map) 2559 #undef _R 2560 2561 caches[i] = c; 2562 } 2563 2564 ff->ph->env.caches = caches; 2565 ff->ph->env.caches_cnt = cnt; 2566 return 0; 2567 out_free_caches: 2568 free(caches); 2569 return -1; 2570 } 2571 2572 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) 2573 { 2574 struct perf_session *session; 2575 u64 first_sample_time, last_sample_time; 2576 int ret; 2577 2578 session = container_of(ff->ph, struct perf_session, header); 2579 2580 ret = do_read_u64(ff, &first_sample_time); 2581 if (ret) 2582 return -1; 2583 2584 ret = do_read_u64(ff, &last_sample_time); 2585 if (ret) 2586 return -1; 2587 2588 session->evlist->first_sample_time = first_sample_time; 2589 session->evlist->last_sample_time = last_sample_time; 2590 return 0; 2591 } 2592 2593 static int process_mem_topology(struct feat_fd *ff, 2594 void *data __maybe_unused) 2595 { 2596 struct memory_node *nodes; 2597 u64 version, i, nr, bsize; 2598 int ret = -1; 2599 2600 if (do_read_u64(ff, &version)) 2601 return -1; 2602 2603 if (version != 1) 2604 return -1; 2605 2606 if (do_read_u64(ff, &bsize)) 2607 return -1; 2608 2609 if (do_read_u64(ff, &nr)) 2610 return -1; 2611 2612 nodes = zalloc(sizeof(*nodes) * nr); 2613 if (!nodes) 2614 return -1; 2615 2616 for (i = 0; i < nr; i++) { 2617 struct memory_node n; 2618 2619 #define _R(v) \ 2620 if (do_read_u64(ff, &n.v)) \ 2621 goto out; \ 2622 2623 _R(node) 2624 _R(size) 2625 2626 #undef _R 2627 2628 if (do_read_bitmap(ff, &n.set, &n.size)) 2629 goto out; 2630 2631 nodes[i] = n; 2632 } 2633 2634 ff->ph->env.memory_bsize = bsize; 2635 ff->ph->env.memory_nodes = nodes; 2636 ff->ph->env.nr_memory_nodes = nr; 2637 ret = 0; 2638 2639 out: 2640 if (ret) 2641 free(nodes); 2642 return ret; 2643 } 2644 2645 static int process_clockid(struct feat_fd *ff, 2646 void *data __maybe_unused) 2647 { 2648 if (do_read_u64(ff, &ff->ph->env.clockid_res_ns)) 2649 return -1; 2650 2651 return 0; 2652 } 2653 2654 static int process_dir_format(struct feat_fd *ff, 2655 void *_data __maybe_unused) 2656 { 2657 struct perf_session *session; 2658 struct perf_data *data; 2659 2660 session = container_of(ff->ph, struct perf_session, header); 2661 data = session->data; 2662 2663 if (WARN_ON(!perf_data__is_dir(data))) 2664 return -1; 2665 2666 return do_read_u64(ff, &data->dir.version); 2667 } 2668 2669 #ifdef HAVE_LIBBPF_SUPPORT 2670 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused) 2671 { 2672 struct bpf_prog_info_linear *info_linear; 2673 struct bpf_prog_info_node *info_node; 2674 struct perf_env *env = &ff->ph->env; 2675 u32 count, i; 2676 int err = -1; 2677 2678 if (ff->ph->needs_swap) { 2679 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n"); 2680 return 0; 2681 } 2682 2683 if (do_read_u32(ff, &count)) 2684 return -1; 2685 2686 down_write(&env->bpf_progs.lock); 2687 2688 for (i = 0; i < count; ++i) { 2689 u32 info_len, data_len; 2690 2691 info_linear = NULL; 2692 info_node = NULL; 2693 if (do_read_u32(ff, &info_len)) 2694 goto out; 2695 if (do_read_u32(ff, &data_len)) 2696 goto out; 2697 2698 if (info_len > sizeof(struct bpf_prog_info)) { 2699 pr_warning("detected invalid bpf_prog_info\n"); 2700 goto out; 2701 } 2702 2703 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + 2704 data_len); 2705 if (!info_linear) 2706 goto out; 2707 info_linear->info_len = sizeof(struct bpf_prog_info); 2708 info_linear->data_len = data_len; 2709 if (do_read_u64(ff, (u64 *)(&info_linear->arrays))) 2710 goto out; 2711 if (__do_read(ff, &info_linear->info, info_len)) 2712 goto out; 2713 if (info_len < sizeof(struct bpf_prog_info)) 2714 memset(((void *)(&info_linear->info)) + info_len, 0, 2715 sizeof(struct bpf_prog_info) - info_len); 2716 2717 if (__do_read(ff, info_linear->data, data_len)) 2718 goto out; 2719 2720 info_node = malloc(sizeof(struct bpf_prog_info_node)); 2721 if (!info_node) 2722 goto out; 2723 2724 /* after reading from file, translate offset to address */ 2725 bpf_program__bpil_offs_to_addr(info_linear); 2726 info_node->info_linear = info_linear; 2727 perf_env__insert_bpf_prog_info(env, info_node); 2728 } 2729 2730 up_write(&env->bpf_progs.lock); 2731 return 0; 2732 out: 2733 free(info_linear); 2734 free(info_node); 2735 up_write(&env->bpf_progs.lock); 2736 return err; 2737 } 2738 #else // HAVE_LIBBPF_SUPPORT 2739 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused) 2740 { 2741 return 0; 2742 } 2743 #endif // HAVE_LIBBPF_SUPPORT 2744 2745 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused) 2746 { 2747 struct perf_env *env = &ff->ph->env; 2748 struct btf_node *node = NULL; 2749 u32 count, i; 2750 int err = -1; 2751 2752 if (ff->ph->needs_swap) { 2753 pr_warning("interpreting btf from systems with endianity is not yet supported\n"); 2754 return 0; 2755 } 2756 2757 if (do_read_u32(ff, &count)) 2758 return -1; 2759 2760 down_write(&env->bpf_progs.lock); 2761 2762 for (i = 0; i < count; ++i) { 2763 u32 id, data_size; 2764 2765 if (do_read_u32(ff, &id)) 2766 goto out; 2767 if (do_read_u32(ff, &data_size)) 2768 goto out; 2769 2770 node = malloc(sizeof(struct btf_node) + data_size); 2771 if (!node) 2772 goto out; 2773 2774 node->id = id; 2775 node->data_size = data_size; 2776 2777 if (__do_read(ff, node->data, data_size)) 2778 goto out; 2779 2780 perf_env__insert_btf(env, node); 2781 node = NULL; 2782 } 2783 2784 err = 0; 2785 out: 2786 up_write(&env->bpf_progs.lock); 2787 free(node); 2788 return err; 2789 } 2790 2791 static int process_compressed(struct feat_fd *ff, 2792 void *data __maybe_unused) 2793 { 2794 if (do_read_u32(ff, &(ff->ph->env.comp_ver))) 2795 return -1; 2796 2797 if (do_read_u32(ff, &(ff->ph->env.comp_type))) 2798 return -1; 2799 2800 if (do_read_u32(ff, &(ff->ph->env.comp_level))) 2801 return -1; 2802 2803 if (do_read_u32(ff, &(ff->ph->env.comp_ratio))) 2804 return -1; 2805 2806 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len))) 2807 return -1; 2808 2809 return 0; 2810 } 2811 2812 #define FEAT_OPR(n, func, __full_only) \ 2813 [HEADER_##n] = { \ 2814 .name = __stringify(n), \ 2815 .write = write_##func, \ 2816 .print = print_##func, \ 2817 .full_only = __full_only, \ 2818 .process = process_##func, \ 2819 .synthesize = true \ 2820 } 2821 2822 #define FEAT_OPN(n, func, __full_only) \ 2823 [HEADER_##n] = { \ 2824 .name = __stringify(n), \ 2825 .write = write_##func, \ 2826 .print = print_##func, \ 2827 .full_only = __full_only, \ 2828 .process = process_##func \ 2829 } 2830 2831 /* feature_ops not implemented: */ 2832 #define print_tracing_data NULL 2833 #define print_build_id NULL 2834 2835 #define process_branch_stack NULL 2836 #define process_stat NULL 2837 2838 // Only used in util/synthetic-events.c 2839 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE]; 2840 2841 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = { 2842 FEAT_OPN(TRACING_DATA, tracing_data, false), 2843 FEAT_OPN(BUILD_ID, build_id, false), 2844 FEAT_OPR(HOSTNAME, hostname, false), 2845 FEAT_OPR(OSRELEASE, osrelease, false), 2846 FEAT_OPR(VERSION, version, false), 2847 FEAT_OPR(ARCH, arch, false), 2848 FEAT_OPR(NRCPUS, nrcpus, false), 2849 FEAT_OPR(CPUDESC, cpudesc, false), 2850 FEAT_OPR(CPUID, cpuid, false), 2851 FEAT_OPR(TOTAL_MEM, total_mem, false), 2852 FEAT_OPR(EVENT_DESC, event_desc, false), 2853 FEAT_OPR(CMDLINE, cmdline, false), 2854 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), 2855 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), 2856 FEAT_OPN(BRANCH_STACK, branch_stack, false), 2857 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), 2858 FEAT_OPR(GROUP_DESC, group_desc, false), 2859 FEAT_OPN(AUXTRACE, auxtrace, false), 2860 FEAT_OPN(STAT, stat, false), 2861 FEAT_OPN(CACHE, cache, true), 2862 FEAT_OPR(SAMPLE_TIME, sample_time, false), 2863 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), 2864 FEAT_OPR(CLOCKID, clockid, false), 2865 FEAT_OPN(DIR_FORMAT, dir_format, false), 2866 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false), 2867 FEAT_OPR(BPF_BTF, bpf_btf, false), 2868 FEAT_OPR(COMPRESSED, compressed, false), 2869 }; 2870 2871 struct header_print_data { 2872 FILE *fp; 2873 bool full; /* extended list of headers */ 2874 }; 2875 2876 static int perf_file_section__fprintf_info(struct perf_file_section *section, 2877 struct perf_header *ph, 2878 int feat, int fd, void *data) 2879 { 2880 struct header_print_data *hd = data; 2881 struct feat_fd ff; 2882 2883 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 2884 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 2885 "%d, continuing...\n", section->offset, feat); 2886 return 0; 2887 } 2888 if (feat >= HEADER_LAST_FEATURE) { 2889 pr_warning("unknown feature %d\n", feat); 2890 return 0; 2891 } 2892 if (!feat_ops[feat].print) 2893 return 0; 2894 2895 ff = (struct feat_fd) { 2896 .fd = fd, 2897 .ph = ph, 2898 }; 2899 2900 if (!feat_ops[feat].full_only || hd->full) 2901 feat_ops[feat].print(&ff, hd->fp); 2902 else 2903 fprintf(hd->fp, "# %s info available, use -I to display\n", 2904 feat_ops[feat].name); 2905 2906 return 0; 2907 } 2908 2909 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) 2910 { 2911 struct header_print_data hd; 2912 struct perf_header *header = &session->header; 2913 int fd = perf_data__fd(session->data); 2914 struct stat st; 2915 time_t stctime; 2916 int ret, bit; 2917 2918 hd.fp = fp; 2919 hd.full = full; 2920 2921 ret = fstat(fd, &st); 2922 if (ret == -1) 2923 return -1; 2924 2925 stctime = st.st_ctime; 2926 fprintf(fp, "# captured on : %s", ctime(&stctime)); 2927 2928 fprintf(fp, "# header version : %u\n", header->version); 2929 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); 2930 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); 2931 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); 2932 2933 perf_header__process_sections(header, fd, &hd, 2934 perf_file_section__fprintf_info); 2935 2936 if (session->data->is_pipe) 2937 return 0; 2938 2939 fprintf(fp, "# missing features: "); 2940 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { 2941 if (bit) 2942 fprintf(fp, "%s ", feat_ops[bit].name); 2943 } 2944 2945 fprintf(fp, "\n"); 2946 return 0; 2947 } 2948 2949 static int do_write_feat(struct feat_fd *ff, int type, 2950 struct perf_file_section **p, 2951 struct evlist *evlist) 2952 { 2953 int err; 2954 int ret = 0; 2955 2956 if (perf_header__has_feat(ff->ph, type)) { 2957 if (!feat_ops[type].write) 2958 return -1; 2959 2960 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 2961 return -1; 2962 2963 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); 2964 2965 err = feat_ops[type].write(ff, evlist); 2966 if (err < 0) { 2967 pr_debug("failed to write feature %s\n", feat_ops[type].name); 2968 2969 /* undo anything written */ 2970 lseek(ff->fd, (*p)->offset, SEEK_SET); 2971 2972 return -1; 2973 } 2974 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; 2975 (*p)++; 2976 } 2977 return ret; 2978 } 2979 2980 static int perf_header__adds_write(struct perf_header *header, 2981 struct evlist *evlist, int fd) 2982 { 2983 int nr_sections; 2984 struct feat_fd ff; 2985 struct perf_file_section *feat_sec, *p; 2986 int sec_size; 2987 u64 sec_start; 2988 int feat; 2989 int err; 2990 2991 ff = (struct feat_fd){ 2992 .fd = fd, 2993 .ph = header, 2994 }; 2995 2996 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 2997 if (!nr_sections) 2998 return 0; 2999 3000 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); 3001 if (feat_sec == NULL) 3002 return -ENOMEM; 3003 3004 sec_size = sizeof(*feat_sec) * nr_sections; 3005 3006 sec_start = header->feat_offset; 3007 lseek(fd, sec_start + sec_size, SEEK_SET); 3008 3009 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3010 if (do_write_feat(&ff, feat, &p, evlist)) 3011 perf_header__clear_feat(header, feat); 3012 } 3013 3014 lseek(fd, sec_start, SEEK_SET); 3015 /* 3016 * may write more than needed due to dropped feature, but 3017 * this is okay, reader will skip the missing entries 3018 */ 3019 err = do_write(&ff, feat_sec, sec_size); 3020 if (err < 0) 3021 pr_debug("failed to write feature section\n"); 3022 free(feat_sec); 3023 return err; 3024 } 3025 3026 int perf_header__write_pipe(int fd) 3027 { 3028 struct perf_pipe_file_header f_header; 3029 struct feat_fd ff; 3030 int err; 3031 3032 ff = (struct feat_fd){ .fd = fd }; 3033 3034 f_header = (struct perf_pipe_file_header){ 3035 .magic = PERF_MAGIC, 3036 .size = sizeof(f_header), 3037 }; 3038 3039 err = do_write(&ff, &f_header, sizeof(f_header)); 3040 if (err < 0) { 3041 pr_debug("failed to write perf pipe header\n"); 3042 return err; 3043 } 3044 3045 return 0; 3046 } 3047 3048 int perf_session__write_header(struct perf_session *session, 3049 struct evlist *evlist, 3050 int fd, bool at_exit) 3051 { 3052 struct perf_file_header f_header; 3053 struct perf_file_attr f_attr; 3054 struct perf_header *header = &session->header; 3055 struct evsel *evsel; 3056 struct feat_fd ff; 3057 u64 attr_offset; 3058 int err; 3059 3060 ff = (struct feat_fd){ .fd = fd}; 3061 lseek(fd, sizeof(f_header), SEEK_SET); 3062 3063 evlist__for_each_entry(session->evlist, evsel) { 3064 evsel->id_offset = lseek(fd, 0, SEEK_CUR); 3065 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 3066 if (err < 0) { 3067 pr_debug("failed to write perf header\n"); 3068 return err; 3069 } 3070 } 3071 3072 attr_offset = lseek(ff.fd, 0, SEEK_CUR); 3073 3074 evlist__for_each_entry(evlist, evsel) { 3075 f_attr = (struct perf_file_attr){ 3076 .attr = evsel->core.attr, 3077 .ids = { 3078 .offset = evsel->id_offset, 3079 .size = evsel->core.ids * sizeof(u64), 3080 } 3081 }; 3082 err = do_write(&ff, &f_attr, sizeof(f_attr)); 3083 if (err < 0) { 3084 pr_debug("failed to write perf header attribute\n"); 3085 return err; 3086 } 3087 } 3088 3089 if (!header->data_offset) 3090 header->data_offset = lseek(fd, 0, SEEK_CUR); 3091 header->feat_offset = header->data_offset + header->data_size; 3092 3093 if (at_exit) { 3094 err = perf_header__adds_write(header, evlist, fd); 3095 if (err < 0) 3096 return err; 3097 } 3098 3099 f_header = (struct perf_file_header){ 3100 .magic = PERF_MAGIC, 3101 .size = sizeof(f_header), 3102 .attr_size = sizeof(f_attr), 3103 .attrs = { 3104 .offset = attr_offset, 3105 .size = evlist->core.nr_entries * sizeof(f_attr), 3106 }, 3107 .data = { 3108 .offset = header->data_offset, 3109 .size = header->data_size, 3110 }, 3111 /* event_types is ignored, store zeros */ 3112 }; 3113 3114 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); 3115 3116 lseek(fd, 0, SEEK_SET); 3117 err = do_write(&ff, &f_header, sizeof(f_header)); 3118 if (err < 0) { 3119 pr_debug("failed to write perf header\n"); 3120 return err; 3121 } 3122 lseek(fd, header->data_offset + header->data_size, SEEK_SET); 3123 3124 return 0; 3125 } 3126 3127 static int perf_header__getbuffer64(struct perf_header *header, 3128 int fd, void *buf, size_t size) 3129 { 3130 if (readn(fd, buf, size) <= 0) 3131 return -1; 3132 3133 if (header->needs_swap) 3134 mem_bswap_64(buf, size); 3135 3136 return 0; 3137 } 3138 3139 int perf_header__process_sections(struct perf_header *header, int fd, 3140 void *data, 3141 int (*process)(struct perf_file_section *section, 3142 struct perf_header *ph, 3143 int feat, int fd, void *data)) 3144 { 3145 struct perf_file_section *feat_sec, *sec; 3146 int nr_sections; 3147 int sec_size; 3148 int feat; 3149 int err; 3150 3151 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3152 if (!nr_sections) 3153 return 0; 3154 3155 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); 3156 if (!feat_sec) 3157 return -1; 3158 3159 sec_size = sizeof(*feat_sec) * nr_sections; 3160 3161 lseek(fd, header->feat_offset, SEEK_SET); 3162 3163 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); 3164 if (err < 0) 3165 goto out_free; 3166 3167 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { 3168 err = process(sec++, header, feat, fd, data); 3169 if (err < 0) 3170 goto out_free; 3171 } 3172 err = 0; 3173 out_free: 3174 free(feat_sec); 3175 return err; 3176 } 3177 3178 static const int attr_file_abi_sizes[] = { 3179 [0] = PERF_ATTR_SIZE_VER0, 3180 [1] = PERF_ATTR_SIZE_VER1, 3181 [2] = PERF_ATTR_SIZE_VER2, 3182 [3] = PERF_ATTR_SIZE_VER3, 3183 [4] = PERF_ATTR_SIZE_VER4, 3184 0, 3185 }; 3186 3187 /* 3188 * In the legacy file format, the magic number is not used to encode endianness. 3189 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based 3190 * on ABI revisions, we need to try all combinations for all endianness to 3191 * detect the endianness. 3192 */ 3193 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) 3194 { 3195 uint64_t ref_size, attr_size; 3196 int i; 3197 3198 for (i = 0 ; attr_file_abi_sizes[i]; i++) { 3199 ref_size = attr_file_abi_sizes[i] 3200 + sizeof(struct perf_file_section); 3201 if (hdr_sz != ref_size) { 3202 attr_size = bswap_64(hdr_sz); 3203 if (attr_size != ref_size) 3204 continue; 3205 3206 ph->needs_swap = true; 3207 } 3208 pr_debug("ABI%d perf.data file detected, need_swap=%d\n", 3209 i, 3210 ph->needs_swap); 3211 return 0; 3212 } 3213 /* could not determine endianness */ 3214 return -1; 3215 } 3216 3217 #define PERF_PIPE_HDR_VER0 16 3218 3219 static const size_t attr_pipe_abi_sizes[] = { 3220 [0] = PERF_PIPE_HDR_VER0, 3221 0, 3222 }; 3223 3224 /* 3225 * In the legacy pipe format, there is an implicit assumption that endiannesss 3226 * between host recording the samples, and host parsing the samples is the 3227 * same. This is not always the case given that the pipe output may always be 3228 * redirected into a file and analyzed on a different machine with possibly a 3229 * different endianness and perf_event ABI revsions in the perf tool itself. 3230 */ 3231 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) 3232 { 3233 u64 attr_size; 3234 int i; 3235 3236 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { 3237 if (hdr_sz != attr_pipe_abi_sizes[i]) { 3238 attr_size = bswap_64(hdr_sz); 3239 if (attr_size != hdr_sz) 3240 continue; 3241 3242 ph->needs_swap = true; 3243 } 3244 pr_debug("Pipe ABI%d perf.data file detected\n", i); 3245 return 0; 3246 } 3247 return -1; 3248 } 3249 3250 bool is_perf_magic(u64 magic) 3251 { 3252 if (!memcmp(&magic, __perf_magic1, sizeof(magic)) 3253 || magic == __perf_magic2 3254 || magic == __perf_magic2_sw) 3255 return true; 3256 3257 return false; 3258 } 3259 3260 static int check_magic_endian(u64 magic, uint64_t hdr_sz, 3261 bool is_pipe, struct perf_header *ph) 3262 { 3263 int ret; 3264 3265 /* check for legacy format */ 3266 ret = memcmp(&magic, __perf_magic1, sizeof(magic)); 3267 if (ret == 0) { 3268 ph->version = PERF_HEADER_VERSION_1; 3269 pr_debug("legacy perf.data format\n"); 3270 if (is_pipe) 3271 return try_all_pipe_abis(hdr_sz, ph); 3272 3273 return try_all_file_abis(hdr_sz, ph); 3274 } 3275 /* 3276 * the new magic number serves two purposes: 3277 * - unique number to identify actual perf.data files 3278 * - encode endianness of file 3279 */ 3280 ph->version = PERF_HEADER_VERSION_2; 3281 3282 /* check magic number with one endianness */ 3283 if (magic == __perf_magic2) 3284 return 0; 3285 3286 /* check magic number with opposite endianness */ 3287 if (magic != __perf_magic2_sw) 3288 return -1; 3289 3290 ph->needs_swap = true; 3291 3292 return 0; 3293 } 3294 3295 int perf_file_header__read(struct perf_file_header *header, 3296 struct perf_header *ph, int fd) 3297 { 3298 ssize_t ret; 3299 3300 lseek(fd, 0, SEEK_SET); 3301 3302 ret = readn(fd, header, sizeof(*header)); 3303 if (ret <= 0) 3304 return -1; 3305 3306 if (check_magic_endian(header->magic, 3307 header->attr_size, false, ph) < 0) { 3308 pr_debug("magic/endian check failed\n"); 3309 return -1; 3310 } 3311 3312 if (ph->needs_swap) { 3313 mem_bswap_64(header, offsetof(struct perf_file_header, 3314 adds_features)); 3315 } 3316 3317 if (header->size != sizeof(*header)) { 3318 /* Support the previous format */ 3319 if (header->size == offsetof(typeof(*header), adds_features)) 3320 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3321 else 3322 return -1; 3323 } else if (ph->needs_swap) { 3324 /* 3325 * feature bitmap is declared as an array of unsigned longs -- 3326 * not good since its size can differ between the host that 3327 * generated the data file and the host analyzing the file. 3328 * 3329 * We need to handle endianness, but we don't know the size of 3330 * the unsigned long where the file was generated. Take a best 3331 * guess at determining it: try 64-bit swap first (ie., file 3332 * created on a 64-bit host), and check if the hostname feature 3333 * bit is set (this feature bit is forced on as of fbe96f2). 3334 * If the bit is not, undo the 64-bit swap and try a 32-bit 3335 * swap. If the hostname bit is still not set (e.g., older data 3336 * file), punt and fallback to the original behavior -- 3337 * clearing all feature bits and setting buildid. 3338 */ 3339 mem_bswap_64(&header->adds_features, 3340 BITS_TO_U64(HEADER_FEAT_BITS)); 3341 3342 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3343 /* unswap as u64 */ 3344 mem_bswap_64(&header->adds_features, 3345 BITS_TO_U64(HEADER_FEAT_BITS)); 3346 3347 /* unswap as u32 */ 3348 mem_bswap_32(&header->adds_features, 3349 BITS_TO_U32(HEADER_FEAT_BITS)); 3350 } 3351 3352 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3353 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3354 set_bit(HEADER_BUILD_ID, header->adds_features); 3355 } 3356 } 3357 3358 memcpy(&ph->adds_features, &header->adds_features, 3359 sizeof(ph->adds_features)); 3360 3361 ph->data_offset = header->data.offset; 3362 ph->data_size = header->data.size; 3363 ph->feat_offset = header->data.offset + header->data.size; 3364 return 0; 3365 } 3366 3367 static int perf_file_section__process(struct perf_file_section *section, 3368 struct perf_header *ph, 3369 int feat, int fd, void *data) 3370 { 3371 struct feat_fd fdd = { 3372 .fd = fd, 3373 .ph = ph, 3374 .size = section->size, 3375 .offset = section->offset, 3376 }; 3377 3378 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3379 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3380 "%d, continuing...\n", section->offset, feat); 3381 return 0; 3382 } 3383 3384 if (feat >= HEADER_LAST_FEATURE) { 3385 pr_debug("unknown feature %d, continuing...\n", feat); 3386 return 0; 3387 } 3388 3389 if (!feat_ops[feat].process) 3390 return 0; 3391 3392 return feat_ops[feat].process(&fdd, data); 3393 } 3394 3395 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, 3396 struct perf_header *ph, int fd, 3397 bool repipe) 3398 { 3399 struct feat_fd ff = { 3400 .fd = STDOUT_FILENO, 3401 .ph = ph, 3402 }; 3403 ssize_t ret; 3404 3405 ret = readn(fd, header, sizeof(*header)); 3406 if (ret <= 0) 3407 return -1; 3408 3409 if (check_magic_endian(header->magic, header->size, true, ph) < 0) { 3410 pr_debug("endian/magic failed\n"); 3411 return -1; 3412 } 3413 3414 if (ph->needs_swap) 3415 header->size = bswap_64(header->size); 3416 3417 if (repipe && do_write(&ff, header, sizeof(*header)) < 0) 3418 return -1; 3419 3420 return 0; 3421 } 3422 3423 static int perf_header__read_pipe(struct perf_session *session) 3424 { 3425 struct perf_header *header = &session->header; 3426 struct perf_pipe_file_header f_header; 3427 3428 if (perf_file_header__read_pipe(&f_header, header, 3429 perf_data__fd(session->data), 3430 session->repipe) < 0) { 3431 pr_debug("incompatible file format\n"); 3432 return -EINVAL; 3433 } 3434 3435 return 0; 3436 } 3437 3438 static int read_attr(int fd, struct perf_header *ph, 3439 struct perf_file_attr *f_attr) 3440 { 3441 struct perf_event_attr *attr = &f_attr->attr; 3442 size_t sz, left; 3443 size_t our_sz = sizeof(f_attr->attr); 3444 ssize_t ret; 3445 3446 memset(f_attr, 0, sizeof(*f_attr)); 3447 3448 /* read minimal guaranteed structure */ 3449 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); 3450 if (ret <= 0) { 3451 pr_debug("cannot read %d bytes of header attr\n", 3452 PERF_ATTR_SIZE_VER0); 3453 return -1; 3454 } 3455 3456 /* on file perf_event_attr size */ 3457 sz = attr->size; 3458 3459 if (ph->needs_swap) 3460 sz = bswap_32(sz); 3461 3462 if (sz == 0) { 3463 /* assume ABI0 */ 3464 sz = PERF_ATTR_SIZE_VER0; 3465 } else if (sz > our_sz) { 3466 pr_debug("file uses a more recent and unsupported ABI" 3467 " (%zu bytes extra)\n", sz - our_sz); 3468 return -1; 3469 } 3470 /* what we have not yet read and that we know about */ 3471 left = sz - PERF_ATTR_SIZE_VER0; 3472 if (left) { 3473 void *ptr = attr; 3474 ptr += PERF_ATTR_SIZE_VER0; 3475 3476 ret = readn(fd, ptr, left); 3477 } 3478 /* read perf_file_section, ids are read in caller */ 3479 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); 3480 3481 return ret <= 0 ? -1 : 0; 3482 } 3483 3484 static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel, 3485 struct tep_handle *pevent) 3486 { 3487 struct tep_event *event; 3488 char bf[128]; 3489 3490 /* already prepared */ 3491 if (evsel->tp_format) 3492 return 0; 3493 3494 if (pevent == NULL) { 3495 pr_debug("broken or missing trace data\n"); 3496 return -1; 3497 } 3498 3499 event = tep_find_event(pevent, evsel->core.attr.config); 3500 if (event == NULL) { 3501 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config); 3502 return -1; 3503 } 3504 3505 if (!evsel->name) { 3506 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); 3507 evsel->name = strdup(bf); 3508 if (evsel->name == NULL) 3509 return -1; 3510 } 3511 3512 evsel->tp_format = event; 3513 return 0; 3514 } 3515 3516 static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist, 3517 struct tep_handle *pevent) 3518 { 3519 struct evsel *pos; 3520 3521 evlist__for_each_entry(evlist, pos) { 3522 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT && 3523 perf_evsel__prepare_tracepoint_event(pos, pevent)) 3524 return -1; 3525 } 3526 3527 return 0; 3528 } 3529 3530 int perf_session__read_header(struct perf_session *session) 3531 { 3532 struct perf_data *data = session->data; 3533 struct perf_header *header = &session->header; 3534 struct perf_file_header f_header; 3535 struct perf_file_attr f_attr; 3536 u64 f_id; 3537 int nr_attrs, nr_ids, i, j; 3538 int fd = perf_data__fd(data); 3539 3540 session->evlist = evlist__new(); 3541 if (session->evlist == NULL) 3542 return -ENOMEM; 3543 3544 session->evlist->env = &header->env; 3545 session->machines.host.env = &header->env; 3546 if (perf_data__is_pipe(data)) 3547 return perf_header__read_pipe(session); 3548 3549 if (perf_file_header__read(&f_header, header, fd) < 0) 3550 return -EINVAL; 3551 3552 /* 3553 * Sanity check that perf.data was written cleanly; data size is 3554 * initialized to 0 and updated only if the on_exit function is run. 3555 * If data size is still 0 then the file contains only partial 3556 * information. Just warn user and process it as much as it can. 3557 */ 3558 if (f_header.data.size == 0) { 3559 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" 3560 "Was the 'perf record' command properly terminated?\n", 3561 data->file.path); 3562 } 3563 3564 if (f_header.attr_size == 0) { 3565 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n" 3566 "Was the 'perf record' command properly terminated?\n", 3567 data->file.path); 3568 return -EINVAL; 3569 } 3570 3571 nr_attrs = f_header.attrs.size / f_header.attr_size; 3572 lseek(fd, f_header.attrs.offset, SEEK_SET); 3573 3574 for (i = 0; i < nr_attrs; i++) { 3575 struct evsel *evsel; 3576 off_t tmp; 3577 3578 if (read_attr(fd, header, &f_attr) < 0) 3579 goto out_errno; 3580 3581 if (header->needs_swap) { 3582 f_attr.ids.size = bswap_64(f_attr.ids.size); 3583 f_attr.ids.offset = bswap_64(f_attr.ids.offset); 3584 perf_event__attr_swap(&f_attr.attr); 3585 } 3586 3587 tmp = lseek(fd, 0, SEEK_CUR); 3588 evsel = evsel__new(&f_attr.attr); 3589 3590 if (evsel == NULL) 3591 goto out_delete_evlist; 3592 3593 evsel->needs_swap = header->needs_swap; 3594 /* 3595 * Do it before so that if perf_evsel__alloc_id fails, this 3596 * entry gets purged too at evlist__delete(). 3597 */ 3598 evlist__add(session->evlist, evsel); 3599 3600 nr_ids = f_attr.ids.size / sizeof(u64); 3601 /* 3602 * We don't have the cpu and thread maps on the header, so 3603 * for allocating the perf_sample_id table we fake 1 cpu and 3604 * hattr->ids threads. 3605 */ 3606 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids)) 3607 goto out_delete_evlist; 3608 3609 lseek(fd, f_attr.ids.offset, SEEK_SET); 3610 3611 for (j = 0; j < nr_ids; j++) { 3612 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) 3613 goto out_errno; 3614 3615 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id); 3616 } 3617 3618 lseek(fd, tmp, SEEK_SET); 3619 } 3620 3621 perf_header__process_sections(header, fd, &session->tevent, 3622 perf_file_section__process); 3623 3624 if (perf_evlist__prepare_tracepoint_events(session->evlist, 3625 session->tevent.pevent)) 3626 goto out_delete_evlist; 3627 3628 return 0; 3629 out_errno: 3630 return -errno; 3631 3632 out_delete_evlist: 3633 evlist__delete(session->evlist); 3634 session->evlist = NULL; 3635 return -ENOMEM; 3636 } 3637 3638 int perf_event__process_feature(struct perf_session *session, 3639 union perf_event *event) 3640 { 3641 struct perf_tool *tool = session->tool; 3642 struct feat_fd ff = { .fd = 0 }; 3643 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event; 3644 int type = fe->header.type; 3645 u64 feat = fe->feat_id; 3646 3647 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { 3648 pr_warning("invalid record type %d in pipe-mode\n", type); 3649 return 0; 3650 } 3651 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { 3652 pr_warning("invalid record type %d in pipe-mode\n", type); 3653 return -1; 3654 } 3655 3656 if (!feat_ops[feat].process) 3657 return 0; 3658 3659 ff.buf = (void *)fe->data; 3660 ff.size = event->header.size - sizeof(*fe); 3661 ff.ph = &session->header; 3662 3663 if (feat_ops[feat].process(&ff, NULL)) 3664 return -1; 3665 3666 if (!feat_ops[feat].print || !tool->show_feat_hdr) 3667 return 0; 3668 3669 if (!feat_ops[feat].full_only || 3670 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { 3671 feat_ops[feat].print(&ff, stdout); 3672 } else { 3673 fprintf(stdout, "# %s info available, use -I to display\n", 3674 feat_ops[feat].name); 3675 } 3676 3677 return 0; 3678 } 3679 3680 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) 3681 { 3682 struct perf_record_event_update *ev = &event->event_update; 3683 struct perf_record_event_update_scale *ev_scale; 3684 struct perf_record_event_update_cpus *ev_cpus; 3685 struct perf_cpu_map *map; 3686 size_t ret; 3687 3688 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id); 3689 3690 switch (ev->type) { 3691 case PERF_EVENT_UPDATE__SCALE: 3692 ev_scale = (struct perf_record_event_update_scale *)ev->data; 3693 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale); 3694 break; 3695 case PERF_EVENT_UPDATE__UNIT: 3696 ret += fprintf(fp, "... unit: %s\n", ev->data); 3697 break; 3698 case PERF_EVENT_UPDATE__NAME: 3699 ret += fprintf(fp, "... name: %s\n", ev->data); 3700 break; 3701 case PERF_EVENT_UPDATE__CPUS: 3702 ev_cpus = (struct perf_record_event_update_cpus *)ev->data; 3703 ret += fprintf(fp, "... "); 3704 3705 map = cpu_map__new_data(&ev_cpus->cpus); 3706 if (map) 3707 ret += cpu_map__fprintf(map, fp); 3708 else 3709 ret += fprintf(fp, "failed to get cpus\n"); 3710 break; 3711 default: 3712 ret += fprintf(fp, "... unknown type\n"); 3713 break; 3714 } 3715 3716 return ret; 3717 } 3718 3719 int perf_event__process_attr(struct perf_tool *tool __maybe_unused, 3720 union perf_event *event, 3721 struct evlist **pevlist) 3722 { 3723 u32 i, ids, n_ids; 3724 struct evsel *evsel; 3725 struct evlist *evlist = *pevlist; 3726 3727 if (evlist == NULL) { 3728 *pevlist = evlist = evlist__new(); 3729 if (evlist == NULL) 3730 return -ENOMEM; 3731 } 3732 3733 evsel = evsel__new(&event->attr.attr); 3734 if (evsel == NULL) 3735 return -ENOMEM; 3736 3737 evlist__add(evlist, evsel); 3738 3739 ids = event->header.size; 3740 ids -= (void *)&event->attr.id - (void *)event; 3741 n_ids = ids / sizeof(u64); 3742 /* 3743 * We don't have the cpu and thread maps on the header, so 3744 * for allocating the perf_sample_id table we fake 1 cpu and 3745 * hattr->ids threads. 3746 */ 3747 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids)) 3748 return -ENOMEM; 3749 3750 for (i = 0; i < n_ids; i++) { 3751 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]); 3752 } 3753 3754 return 0; 3755 } 3756 3757 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused, 3758 union perf_event *event, 3759 struct evlist **pevlist) 3760 { 3761 struct perf_record_event_update *ev = &event->event_update; 3762 struct perf_record_event_update_scale *ev_scale; 3763 struct perf_record_event_update_cpus *ev_cpus; 3764 struct evlist *evlist; 3765 struct evsel *evsel; 3766 struct perf_cpu_map *map; 3767 3768 if (!pevlist || *pevlist == NULL) 3769 return -EINVAL; 3770 3771 evlist = *pevlist; 3772 3773 evsel = perf_evlist__id2evsel(evlist, ev->id); 3774 if (evsel == NULL) 3775 return -EINVAL; 3776 3777 switch (ev->type) { 3778 case PERF_EVENT_UPDATE__UNIT: 3779 evsel->unit = strdup(ev->data); 3780 break; 3781 case PERF_EVENT_UPDATE__NAME: 3782 evsel->name = strdup(ev->data); 3783 break; 3784 case PERF_EVENT_UPDATE__SCALE: 3785 ev_scale = (struct perf_record_event_update_scale *)ev->data; 3786 evsel->scale = ev_scale->scale; 3787 break; 3788 case PERF_EVENT_UPDATE__CPUS: 3789 ev_cpus = (struct perf_record_event_update_cpus *)ev->data; 3790 3791 map = cpu_map__new_data(&ev_cpus->cpus); 3792 if (map) 3793 evsel->core.own_cpus = map; 3794 else 3795 pr_err("failed to get event_update cpus\n"); 3796 default: 3797 break; 3798 } 3799 3800 return 0; 3801 } 3802 3803 int perf_event__process_tracing_data(struct perf_session *session, 3804 union perf_event *event) 3805 { 3806 ssize_t size_read, padding, size = event->tracing_data.size; 3807 int fd = perf_data__fd(session->data); 3808 off_t offset = lseek(fd, 0, SEEK_CUR); 3809 char buf[BUFSIZ]; 3810 3811 /* setup for reading amidst mmap */ 3812 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data), 3813 SEEK_SET); 3814 3815 size_read = trace_report(fd, &session->tevent, 3816 session->repipe); 3817 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; 3818 3819 if (readn(fd, buf, padding) < 0) { 3820 pr_err("%s: reading input file", __func__); 3821 return -1; 3822 } 3823 if (session->repipe) { 3824 int retw = write(STDOUT_FILENO, buf, padding); 3825 if (retw <= 0 || retw != padding) { 3826 pr_err("%s: repiping tracing data padding", __func__); 3827 return -1; 3828 } 3829 } 3830 3831 if (size_read + padding != size) { 3832 pr_err("%s: tracing data size mismatch", __func__); 3833 return -1; 3834 } 3835 3836 perf_evlist__prepare_tracepoint_events(session->evlist, 3837 session->tevent.pevent); 3838 3839 return size_read + padding; 3840 } 3841 3842 int perf_event__process_build_id(struct perf_session *session, 3843 union perf_event *event) 3844 { 3845 __event_process_build_id(&event->build_id, 3846 event->build_id.filename, 3847 session); 3848 return 0; 3849 } 3850