1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <inttypes.h> 4 #include "string2.h" 5 #include <sys/param.h> 6 #include <sys/types.h> 7 #include <byteswap.h> 8 #include <unistd.h> 9 #include <stdio.h> 10 #include <stdlib.h> 11 #include <linux/compiler.h> 12 #include <linux/list.h> 13 #include <linux/kernel.h> 14 #include <linux/bitops.h> 15 #include <linux/string.h> 16 #include <linux/stringify.h> 17 #include <linux/zalloc.h> 18 #include <sys/stat.h> 19 #include <sys/utsname.h> 20 #include <linux/time64.h> 21 #include <dirent.h> 22 #ifdef HAVE_LIBBPF_SUPPORT 23 #include <bpf/libbpf.h> 24 #endif 25 #include <perf/cpumap.h> 26 27 #include "dso.h" 28 #include "evlist.h" 29 #include "evsel.h" 30 #include "util/evsel_fprintf.h" 31 #include "header.h" 32 #include "memswap.h" 33 #include "trace-event.h" 34 #include "session.h" 35 #include "symbol.h" 36 #include "debug.h" 37 #include "cpumap.h" 38 #include "pmu.h" 39 #include "vdso.h" 40 #include "strbuf.h" 41 #include "build-id.h" 42 #include "data.h" 43 #include <api/fs/fs.h> 44 #include "asm/bug.h" 45 #include "tool.h" 46 #include "time-utils.h" 47 #include "units.h" 48 #include "util/util.h" // perf_exe() 49 #include "cputopo.h" 50 #include "bpf-event.h" 51 #include "clockid.h" 52 #include "pmu-hybrid.h" 53 54 #include <linux/ctype.h> 55 #include <internal/lib.h> 56 57 /* 58 * magic2 = "PERFILE2" 59 * must be a numerical value to let the endianness 60 * determine the memory layout. That way we are able 61 * to detect endianness when reading the perf.data file 62 * back. 63 * 64 * we check for legacy (PERFFILE) format. 65 */ 66 static const char *__perf_magic1 = "PERFFILE"; 67 static const u64 __perf_magic2 = 0x32454c4946524550ULL; 68 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; 69 70 #define PERF_MAGIC __perf_magic2 71 72 const char perf_version_string[] = PERF_VERSION; 73 74 struct perf_file_attr { 75 struct perf_event_attr attr; 76 struct perf_file_section ids; 77 }; 78 79 void perf_header__set_feat(struct perf_header *header, int feat) 80 { 81 set_bit(feat, header->adds_features); 82 } 83 84 void perf_header__clear_feat(struct perf_header *header, int feat) 85 { 86 clear_bit(feat, header->adds_features); 87 } 88 89 bool perf_header__has_feat(const struct perf_header *header, int feat) 90 { 91 return test_bit(feat, header->adds_features); 92 } 93 94 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) 95 { 96 ssize_t ret = writen(ff->fd, buf, size); 97 98 if (ret != (ssize_t)size) 99 return ret < 0 ? (int)ret : -1; 100 return 0; 101 } 102 103 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) 104 { 105 /* struct perf_event_header::size is u16 */ 106 const size_t max_size = 0xffff - sizeof(struct perf_event_header); 107 size_t new_size = ff->size; 108 void *addr; 109 110 if (size + ff->offset > max_size) 111 return -E2BIG; 112 113 while (size > (new_size - ff->offset)) 114 new_size <<= 1; 115 new_size = min(max_size, new_size); 116 117 if (ff->size < new_size) { 118 addr = realloc(ff->buf, new_size); 119 if (!addr) 120 return -ENOMEM; 121 ff->buf = addr; 122 ff->size = new_size; 123 } 124 125 memcpy(ff->buf + ff->offset, buf, size); 126 ff->offset += size; 127 128 return 0; 129 } 130 131 /* Return: 0 if succeeded, -ERR if failed. */ 132 int do_write(struct feat_fd *ff, const void *buf, size_t size) 133 { 134 if (!ff->buf) 135 return __do_write_fd(ff, buf, size); 136 return __do_write_buf(ff, buf, size); 137 } 138 139 /* Return: 0 if succeeded, -ERR if failed. */ 140 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) 141 { 142 u64 *p = (u64 *) set; 143 int i, ret; 144 145 ret = do_write(ff, &size, sizeof(size)); 146 if (ret < 0) 147 return ret; 148 149 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 150 ret = do_write(ff, p + i, sizeof(*p)); 151 if (ret < 0) 152 return ret; 153 } 154 155 return 0; 156 } 157 158 /* Return: 0 if succeeded, -ERR if failed. */ 159 int write_padded(struct feat_fd *ff, const void *bf, 160 size_t count, size_t count_aligned) 161 { 162 static const char zero_buf[NAME_ALIGN]; 163 int err = do_write(ff, bf, count); 164 165 if (!err) 166 err = do_write(ff, zero_buf, count_aligned - count); 167 168 return err; 169 } 170 171 #define string_size(str) \ 172 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) 173 174 /* Return: 0 if succeeded, -ERR if failed. */ 175 static int do_write_string(struct feat_fd *ff, const char *str) 176 { 177 u32 len, olen; 178 int ret; 179 180 olen = strlen(str) + 1; 181 len = PERF_ALIGN(olen, NAME_ALIGN); 182 183 /* write len, incl. \0 */ 184 ret = do_write(ff, &len, sizeof(len)); 185 if (ret < 0) 186 return ret; 187 188 return write_padded(ff, str, olen, len); 189 } 190 191 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) 192 { 193 ssize_t ret = readn(ff->fd, addr, size); 194 195 if (ret != size) 196 return ret < 0 ? (int)ret : -1; 197 return 0; 198 } 199 200 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) 201 { 202 if (size > (ssize_t)ff->size - ff->offset) 203 return -1; 204 205 memcpy(addr, ff->buf + ff->offset, size); 206 ff->offset += size; 207 208 return 0; 209 210 } 211 212 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) 213 { 214 if (!ff->buf) 215 return __do_read_fd(ff, addr, size); 216 return __do_read_buf(ff, addr, size); 217 } 218 219 static int do_read_u32(struct feat_fd *ff, u32 *addr) 220 { 221 int ret; 222 223 ret = __do_read(ff, addr, sizeof(*addr)); 224 if (ret) 225 return ret; 226 227 if (ff->ph->needs_swap) 228 *addr = bswap_32(*addr); 229 return 0; 230 } 231 232 static int do_read_u64(struct feat_fd *ff, u64 *addr) 233 { 234 int ret; 235 236 ret = __do_read(ff, addr, sizeof(*addr)); 237 if (ret) 238 return ret; 239 240 if (ff->ph->needs_swap) 241 *addr = bswap_64(*addr); 242 return 0; 243 } 244 245 static char *do_read_string(struct feat_fd *ff) 246 { 247 u32 len; 248 char *buf; 249 250 if (do_read_u32(ff, &len)) 251 return NULL; 252 253 buf = malloc(len); 254 if (!buf) 255 return NULL; 256 257 if (!__do_read(ff, buf, len)) { 258 /* 259 * strings are padded by zeroes 260 * thus the actual strlen of buf 261 * may be less than len 262 */ 263 return buf; 264 } 265 266 free(buf); 267 return NULL; 268 } 269 270 /* Return: 0 if succeeded, -ERR if failed. */ 271 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) 272 { 273 unsigned long *set; 274 u64 size, *p; 275 int i, ret; 276 277 ret = do_read_u64(ff, &size); 278 if (ret) 279 return ret; 280 281 set = bitmap_zalloc(size); 282 if (!set) 283 return -ENOMEM; 284 285 p = (u64 *) set; 286 287 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 288 ret = do_read_u64(ff, p + i); 289 if (ret < 0) { 290 free(set); 291 return ret; 292 } 293 } 294 295 *pset = set; 296 *psize = size; 297 return 0; 298 } 299 300 static int write_tracing_data(struct feat_fd *ff, 301 struct evlist *evlist) 302 { 303 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 304 return -1; 305 306 return read_tracing_data(ff->fd, &evlist->core.entries); 307 } 308 309 static int write_build_id(struct feat_fd *ff, 310 struct evlist *evlist __maybe_unused) 311 { 312 struct perf_session *session; 313 int err; 314 315 session = container_of(ff->ph, struct perf_session, header); 316 317 if (!perf_session__read_build_ids(session, true)) 318 return -1; 319 320 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 321 return -1; 322 323 err = perf_session__write_buildid_table(session, ff); 324 if (err < 0) { 325 pr_debug("failed to write buildid table\n"); 326 return err; 327 } 328 perf_session__cache_build_ids(session); 329 330 return 0; 331 } 332 333 static int write_hostname(struct feat_fd *ff, 334 struct evlist *evlist __maybe_unused) 335 { 336 struct utsname uts; 337 int ret; 338 339 ret = uname(&uts); 340 if (ret < 0) 341 return -1; 342 343 return do_write_string(ff, uts.nodename); 344 } 345 346 static int write_osrelease(struct feat_fd *ff, 347 struct evlist *evlist __maybe_unused) 348 { 349 struct utsname uts; 350 int ret; 351 352 ret = uname(&uts); 353 if (ret < 0) 354 return -1; 355 356 return do_write_string(ff, uts.release); 357 } 358 359 static int write_arch(struct feat_fd *ff, 360 struct evlist *evlist __maybe_unused) 361 { 362 struct utsname uts; 363 int ret; 364 365 ret = uname(&uts); 366 if (ret < 0) 367 return -1; 368 369 return do_write_string(ff, uts.machine); 370 } 371 372 static int write_version(struct feat_fd *ff, 373 struct evlist *evlist __maybe_unused) 374 { 375 return do_write_string(ff, perf_version_string); 376 } 377 378 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) 379 { 380 FILE *file; 381 char *buf = NULL; 382 char *s, *p; 383 const char *search = cpuinfo_proc; 384 size_t len = 0; 385 int ret = -1; 386 387 if (!search) 388 return -1; 389 390 file = fopen("/proc/cpuinfo", "r"); 391 if (!file) 392 return -1; 393 394 while (getline(&buf, &len, file) > 0) { 395 ret = strncmp(buf, search, strlen(search)); 396 if (!ret) 397 break; 398 } 399 400 if (ret) { 401 ret = -1; 402 goto done; 403 } 404 405 s = buf; 406 407 p = strchr(buf, ':'); 408 if (p && *(p+1) == ' ' && *(p+2)) 409 s = p + 2; 410 p = strchr(s, '\n'); 411 if (p) 412 *p = '\0'; 413 414 /* squash extra space characters (branding string) */ 415 p = s; 416 while (*p) { 417 if (isspace(*p)) { 418 char *r = p + 1; 419 char *q = skip_spaces(r); 420 *p = ' '; 421 if (q != (p+1)) 422 while ((*r++ = *q++)); 423 } 424 p++; 425 } 426 ret = do_write_string(ff, s); 427 done: 428 free(buf); 429 fclose(file); 430 return ret; 431 } 432 433 static int write_cpudesc(struct feat_fd *ff, 434 struct evlist *evlist __maybe_unused) 435 { 436 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__) 437 #define CPUINFO_PROC { "cpu", } 438 #elif defined(__s390__) 439 #define CPUINFO_PROC { "vendor_id", } 440 #elif defined(__sh__) 441 #define CPUINFO_PROC { "cpu type", } 442 #elif defined(__alpha__) || defined(__mips__) 443 #define CPUINFO_PROC { "cpu model", } 444 #elif defined(__arm__) 445 #define CPUINFO_PROC { "model name", "Processor", } 446 #elif defined(__arc__) 447 #define CPUINFO_PROC { "Processor", } 448 #elif defined(__xtensa__) 449 #define CPUINFO_PROC { "core ID", } 450 #else 451 #define CPUINFO_PROC { "model name", } 452 #endif 453 const char *cpuinfo_procs[] = CPUINFO_PROC; 454 #undef CPUINFO_PROC 455 unsigned int i; 456 457 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { 458 int ret; 459 ret = __write_cpudesc(ff, cpuinfo_procs[i]); 460 if (ret >= 0) 461 return ret; 462 } 463 return -1; 464 } 465 466 467 static int write_nrcpus(struct feat_fd *ff, 468 struct evlist *evlist __maybe_unused) 469 { 470 long nr; 471 u32 nrc, nra; 472 int ret; 473 474 nrc = cpu__max_present_cpu(); 475 476 nr = sysconf(_SC_NPROCESSORS_ONLN); 477 if (nr < 0) 478 return -1; 479 480 nra = (u32)(nr & UINT_MAX); 481 482 ret = do_write(ff, &nrc, sizeof(nrc)); 483 if (ret < 0) 484 return ret; 485 486 return do_write(ff, &nra, sizeof(nra)); 487 } 488 489 static int write_event_desc(struct feat_fd *ff, 490 struct evlist *evlist) 491 { 492 struct evsel *evsel; 493 u32 nre, nri, sz; 494 int ret; 495 496 nre = evlist->core.nr_entries; 497 498 /* 499 * write number of events 500 */ 501 ret = do_write(ff, &nre, sizeof(nre)); 502 if (ret < 0) 503 return ret; 504 505 /* 506 * size of perf_event_attr struct 507 */ 508 sz = (u32)sizeof(evsel->core.attr); 509 ret = do_write(ff, &sz, sizeof(sz)); 510 if (ret < 0) 511 return ret; 512 513 evlist__for_each_entry(evlist, evsel) { 514 ret = do_write(ff, &evsel->core.attr, sz); 515 if (ret < 0) 516 return ret; 517 /* 518 * write number of unique id per event 519 * there is one id per instance of an event 520 * 521 * copy into an nri to be independent of the 522 * type of ids, 523 */ 524 nri = evsel->core.ids; 525 ret = do_write(ff, &nri, sizeof(nri)); 526 if (ret < 0) 527 return ret; 528 529 /* 530 * write event string as passed on cmdline 531 */ 532 ret = do_write_string(ff, evsel__name(evsel)); 533 if (ret < 0) 534 return ret; 535 /* 536 * write unique ids for this event 537 */ 538 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 539 if (ret < 0) 540 return ret; 541 } 542 return 0; 543 } 544 545 static int write_cmdline(struct feat_fd *ff, 546 struct evlist *evlist __maybe_unused) 547 { 548 char pbuf[MAXPATHLEN], *buf; 549 int i, ret, n; 550 551 /* actual path to perf binary */ 552 buf = perf_exe(pbuf, MAXPATHLEN); 553 554 /* account for binary path */ 555 n = perf_env.nr_cmdline + 1; 556 557 ret = do_write(ff, &n, sizeof(n)); 558 if (ret < 0) 559 return ret; 560 561 ret = do_write_string(ff, buf); 562 if (ret < 0) 563 return ret; 564 565 for (i = 0 ; i < perf_env.nr_cmdline; i++) { 566 ret = do_write_string(ff, perf_env.cmdline_argv[i]); 567 if (ret < 0) 568 return ret; 569 } 570 return 0; 571 } 572 573 574 static int write_cpu_topology(struct feat_fd *ff, 575 struct evlist *evlist __maybe_unused) 576 { 577 struct cpu_topology *tp; 578 u32 i; 579 int ret, j; 580 581 tp = cpu_topology__new(); 582 if (!tp) 583 return -1; 584 585 ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib)); 586 if (ret < 0) 587 goto done; 588 589 for (i = 0; i < tp->core_sib; i++) { 590 ret = do_write_string(ff, tp->core_siblings[i]); 591 if (ret < 0) 592 goto done; 593 } 594 ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib)); 595 if (ret < 0) 596 goto done; 597 598 for (i = 0; i < tp->thread_sib; i++) { 599 ret = do_write_string(ff, tp->thread_siblings[i]); 600 if (ret < 0) 601 break; 602 } 603 604 ret = perf_env__read_cpu_topology_map(&perf_env); 605 if (ret < 0) 606 goto done; 607 608 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 609 ret = do_write(ff, &perf_env.cpu[j].core_id, 610 sizeof(perf_env.cpu[j].core_id)); 611 if (ret < 0) 612 return ret; 613 ret = do_write(ff, &perf_env.cpu[j].socket_id, 614 sizeof(perf_env.cpu[j].socket_id)); 615 if (ret < 0) 616 return ret; 617 } 618 619 if (!tp->die_sib) 620 goto done; 621 622 ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib)); 623 if (ret < 0) 624 goto done; 625 626 for (i = 0; i < tp->die_sib; i++) { 627 ret = do_write_string(ff, tp->die_siblings[i]); 628 if (ret < 0) 629 goto done; 630 } 631 632 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 633 ret = do_write(ff, &perf_env.cpu[j].die_id, 634 sizeof(perf_env.cpu[j].die_id)); 635 if (ret < 0) 636 return ret; 637 } 638 639 done: 640 cpu_topology__delete(tp); 641 return ret; 642 } 643 644 645 646 static int write_total_mem(struct feat_fd *ff, 647 struct evlist *evlist __maybe_unused) 648 { 649 char *buf = NULL; 650 FILE *fp; 651 size_t len = 0; 652 int ret = -1, n; 653 uint64_t mem; 654 655 fp = fopen("/proc/meminfo", "r"); 656 if (!fp) 657 return -1; 658 659 while (getline(&buf, &len, fp) > 0) { 660 ret = strncmp(buf, "MemTotal:", 9); 661 if (!ret) 662 break; 663 } 664 if (!ret) { 665 n = sscanf(buf, "%*s %"PRIu64, &mem); 666 if (n == 1) 667 ret = do_write(ff, &mem, sizeof(mem)); 668 } else 669 ret = -1; 670 free(buf); 671 fclose(fp); 672 return ret; 673 } 674 675 static int write_numa_topology(struct feat_fd *ff, 676 struct evlist *evlist __maybe_unused) 677 { 678 struct numa_topology *tp; 679 int ret = -1; 680 u32 i; 681 682 tp = numa_topology__new(); 683 if (!tp) 684 return -ENOMEM; 685 686 ret = do_write(ff, &tp->nr, sizeof(u32)); 687 if (ret < 0) 688 goto err; 689 690 for (i = 0; i < tp->nr; i++) { 691 struct numa_topology_node *n = &tp->nodes[i]; 692 693 ret = do_write(ff, &n->node, sizeof(u32)); 694 if (ret < 0) 695 goto err; 696 697 ret = do_write(ff, &n->mem_total, sizeof(u64)); 698 if (ret) 699 goto err; 700 701 ret = do_write(ff, &n->mem_free, sizeof(u64)); 702 if (ret) 703 goto err; 704 705 ret = do_write_string(ff, n->cpus); 706 if (ret < 0) 707 goto err; 708 } 709 710 ret = 0; 711 712 err: 713 numa_topology__delete(tp); 714 return ret; 715 } 716 717 /* 718 * File format: 719 * 720 * struct pmu_mappings { 721 * u32 pmu_num; 722 * struct pmu_map { 723 * u32 type; 724 * char name[]; 725 * }[pmu_num]; 726 * }; 727 */ 728 729 static int write_pmu_mappings(struct feat_fd *ff, 730 struct evlist *evlist __maybe_unused) 731 { 732 struct perf_pmu *pmu = NULL; 733 u32 pmu_num = 0; 734 int ret; 735 736 /* 737 * Do a first pass to count number of pmu to avoid lseek so this 738 * works in pipe mode as well. 739 */ 740 while ((pmu = perf_pmu__scan(pmu))) { 741 if (!pmu->name) 742 continue; 743 pmu_num++; 744 } 745 746 ret = do_write(ff, &pmu_num, sizeof(pmu_num)); 747 if (ret < 0) 748 return ret; 749 750 while ((pmu = perf_pmu__scan(pmu))) { 751 if (!pmu->name) 752 continue; 753 754 ret = do_write(ff, &pmu->type, sizeof(pmu->type)); 755 if (ret < 0) 756 return ret; 757 758 ret = do_write_string(ff, pmu->name); 759 if (ret < 0) 760 return ret; 761 } 762 763 return 0; 764 } 765 766 /* 767 * File format: 768 * 769 * struct group_descs { 770 * u32 nr_groups; 771 * struct group_desc { 772 * char name[]; 773 * u32 leader_idx; 774 * u32 nr_members; 775 * }[nr_groups]; 776 * }; 777 */ 778 static int write_group_desc(struct feat_fd *ff, 779 struct evlist *evlist) 780 { 781 u32 nr_groups = evlist->core.nr_groups; 782 struct evsel *evsel; 783 int ret; 784 785 ret = do_write(ff, &nr_groups, sizeof(nr_groups)); 786 if (ret < 0) 787 return ret; 788 789 evlist__for_each_entry(evlist, evsel) { 790 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 791 const char *name = evsel->group_name ?: "{anon_group}"; 792 u32 leader_idx = evsel->core.idx; 793 u32 nr_members = evsel->core.nr_members; 794 795 ret = do_write_string(ff, name); 796 if (ret < 0) 797 return ret; 798 799 ret = do_write(ff, &leader_idx, sizeof(leader_idx)); 800 if (ret < 0) 801 return ret; 802 803 ret = do_write(ff, &nr_members, sizeof(nr_members)); 804 if (ret < 0) 805 return ret; 806 } 807 } 808 return 0; 809 } 810 811 /* 812 * Return the CPU id as a raw string. 813 * 814 * Each architecture should provide a more precise id string that 815 * can be use to match the architecture's "mapfile". 816 */ 817 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused) 818 { 819 return NULL; 820 } 821 822 /* Return zero when the cpuid from the mapfile.csv matches the 823 * cpuid string generated on this platform. 824 * Otherwise return non-zero. 825 */ 826 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid) 827 { 828 regex_t re; 829 regmatch_t pmatch[1]; 830 int match; 831 832 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) { 833 /* Warn unable to generate match particular string. */ 834 pr_info("Invalid regular expression %s\n", mapcpuid); 835 return 1; 836 } 837 838 match = !regexec(&re, cpuid, 1, pmatch, 0); 839 regfree(&re); 840 if (match) { 841 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so); 842 843 /* Verify the entire string matched. */ 844 if (match_len == strlen(cpuid)) 845 return 0; 846 } 847 return 1; 848 } 849 850 /* 851 * default get_cpuid(): nothing gets recorded 852 * actual implementation must be in arch/$(SRCARCH)/util/header.c 853 */ 854 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused) 855 { 856 return ENOSYS; /* Not implemented */ 857 } 858 859 static int write_cpuid(struct feat_fd *ff, 860 struct evlist *evlist __maybe_unused) 861 { 862 char buffer[64]; 863 int ret; 864 865 ret = get_cpuid(buffer, sizeof(buffer)); 866 if (ret) 867 return -1; 868 869 return do_write_string(ff, buffer); 870 } 871 872 static int write_branch_stack(struct feat_fd *ff __maybe_unused, 873 struct evlist *evlist __maybe_unused) 874 { 875 return 0; 876 } 877 878 static int write_auxtrace(struct feat_fd *ff, 879 struct evlist *evlist __maybe_unused) 880 { 881 struct perf_session *session; 882 int err; 883 884 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 885 return -1; 886 887 session = container_of(ff->ph, struct perf_session, header); 888 889 err = auxtrace_index__write(ff->fd, &session->auxtrace_index); 890 if (err < 0) 891 pr_err("Failed to write auxtrace index\n"); 892 return err; 893 } 894 895 static int write_clockid(struct feat_fd *ff, 896 struct evlist *evlist __maybe_unused) 897 { 898 return do_write(ff, &ff->ph->env.clock.clockid_res_ns, 899 sizeof(ff->ph->env.clock.clockid_res_ns)); 900 } 901 902 static int write_clock_data(struct feat_fd *ff, 903 struct evlist *evlist __maybe_unused) 904 { 905 u64 *data64; 906 u32 data32; 907 int ret; 908 909 /* version */ 910 data32 = 1; 911 912 ret = do_write(ff, &data32, sizeof(data32)); 913 if (ret < 0) 914 return ret; 915 916 /* clockid */ 917 data32 = ff->ph->env.clock.clockid; 918 919 ret = do_write(ff, &data32, sizeof(data32)); 920 if (ret < 0) 921 return ret; 922 923 /* TOD ref time */ 924 data64 = &ff->ph->env.clock.tod_ns; 925 926 ret = do_write(ff, data64, sizeof(*data64)); 927 if (ret < 0) 928 return ret; 929 930 /* clockid ref time */ 931 data64 = &ff->ph->env.clock.clockid_ns; 932 933 return do_write(ff, data64, sizeof(*data64)); 934 } 935 936 static int write_hybrid_topology(struct feat_fd *ff, 937 struct evlist *evlist __maybe_unused) 938 { 939 struct hybrid_topology *tp; 940 int ret; 941 u32 i; 942 943 tp = hybrid_topology__new(); 944 if (!tp) 945 return -ENOENT; 946 947 ret = do_write(ff, &tp->nr, sizeof(u32)); 948 if (ret < 0) 949 goto err; 950 951 for (i = 0; i < tp->nr; i++) { 952 struct hybrid_topology_node *n = &tp->nodes[i]; 953 954 ret = do_write_string(ff, n->pmu_name); 955 if (ret < 0) 956 goto err; 957 958 ret = do_write_string(ff, n->cpus); 959 if (ret < 0) 960 goto err; 961 } 962 963 ret = 0; 964 965 err: 966 hybrid_topology__delete(tp); 967 return ret; 968 } 969 970 static int write_dir_format(struct feat_fd *ff, 971 struct evlist *evlist __maybe_unused) 972 { 973 struct perf_session *session; 974 struct perf_data *data; 975 976 session = container_of(ff->ph, struct perf_session, header); 977 data = session->data; 978 979 if (WARN_ON(!perf_data__is_dir(data))) 980 return -1; 981 982 return do_write(ff, &data->dir.version, sizeof(data->dir.version)); 983 } 984 985 #ifdef HAVE_LIBBPF_SUPPORT 986 static int write_bpf_prog_info(struct feat_fd *ff, 987 struct evlist *evlist __maybe_unused) 988 { 989 struct perf_env *env = &ff->ph->env; 990 struct rb_root *root; 991 struct rb_node *next; 992 int ret; 993 994 down_read(&env->bpf_progs.lock); 995 996 ret = do_write(ff, &env->bpf_progs.infos_cnt, 997 sizeof(env->bpf_progs.infos_cnt)); 998 if (ret < 0) 999 goto out; 1000 1001 root = &env->bpf_progs.infos; 1002 next = rb_first(root); 1003 while (next) { 1004 struct bpf_prog_info_node *node; 1005 size_t len; 1006 1007 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1008 next = rb_next(&node->rb_node); 1009 len = sizeof(struct bpf_prog_info_linear) + 1010 node->info_linear->data_len; 1011 1012 /* before writing to file, translate address to offset */ 1013 bpf_program__bpil_addr_to_offs(node->info_linear); 1014 ret = do_write(ff, node->info_linear, len); 1015 /* 1016 * translate back to address even when do_write() fails, 1017 * so that this function never changes the data. 1018 */ 1019 bpf_program__bpil_offs_to_addr(node->info_linear); 1020 if (ret < 0) 1021 goto out; 1022 } 1023 out: 1024 up_read(&env->bpf_progs.lock); 1025 return ret; 1026 } 1027 1028 static int write_bpf_btf(struct feat_fd *ff, 1029 struct evlist *evlist __maybe_unused) 1030 { 1031 struct perf_env *env = &ff->ph->env; 1032 struct rb_root *root; 1033 struct rb_node *next; 1034 int ret; 1035 1036 down_read(&env->bpf_progs.lock); 1037 1038 ret = do_write(ff, &env->bpf_progs.btfs_cnt, 1039 sizeof(env->bpf_progs.btfs_cnt)); 1040 1041 if (ret < 0) 1042 goto out; 1043 1044 root = &env->bpf_progs.btfs; 1045 next = rb_first(root); 1046 while (next) { 1047 struct btf_node *node; 1048 1049 node = rb_entry(next, struct btf_node, rb_node); 1050 next = rb_next(&node->rb_node); 1051 ret = do_write(ff, &node->id, 1052 sizeof(u32) * 2 + node->data_size); 1053 if (ret < 0) 1054 goto out; 1055 } 1056 out: 1057 up_read(&env->bpf_progs.lock); 1058 return ret; 1059 } 1060 #endif // HAVE_LIBBPF_SUPPORT 1061 1062 static int cpu_cache_level__sort(const void *a, const void *b) 1063 { 1064 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; 1065 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; 1066 1067 return cache_a->level - cache_b->level; 1068 } 1069 1070 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) 1071 { 1072 if (a->level != b->level) 1073 return false; 1074 1075 if (a->line_size != b->line_size) 1076 return false; 1077 1078 if (a->sets != b->sets) 1079 return false; 1080 1081 if (a->ways != b->ways) 1082 return false; 1083 1084 if (strcmp(a->type, b->type)) 1085 return false; 1086 1087 if (strcmp(a->size, b->size)) 1088 return false; 1089 1090 if (strcmp(a->map, b->map)) 1091 return false; 1092 1093 return true; 1094 } 1095 1096 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) 1097 { 1098 char path[PATH_MAX], file[PATH_MAX]; 1099 struct stat st; 1100 size_t len; 1101 1102 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); 1103 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); 1104 1105 if (stat(file, &st)) 1106 return 1; 1107 1108 scnprintf(file, PATH_MAX, "%s/level", path); 1109 if (sysfs__read_int(file, (int *) &cache->level)) 1110 return -1; 1111 1112 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); 1113 if (sysfs__read_int(file, (int *) &cache->line_size)) 1114 return -1; 1115 1116 scnprintf(file, PATH_MAX, "%s/number_of_sets", path); 1117 if (sysfs__read_int(file, (int *) &cache->sets)) 1118 return -1; 1119 1120 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); 1121 if (sysfs__read_int(file, (int *) &cache->ways)) 1122 return -1; 1123 1124 scnprintf(file, PATH_MAX, "%s/type", path); 1125 if (sysfs__read_str(file, &cache->type, &len)) 1126 return -1; 1127 1128 cache->type[len] = 0; 1129 cache->type = strim(cache->type); 1130 1131 scnprintf(file, PATH_MAX, "%s/size", path); 1132 if (sysfs__read_str(file, &cache->size, &len)) { 1133 zfree(&cache->type); 1134 return -1; 1135 } 1136 1137 cache->size[len] = 0; 1138 cache->size = strim(cache->size); 1139 1140 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); 1141 if (sysfs__read_str(file, &cache->map, &len)) { 1142 zfree(&cache->size); 1143 zfree(&cache->type); 1144 return -1; 1145 } 1146 1147 cache->map[len] = 0; 1148 cache->map = strim(cache->map); 1149 return 0; 1150 } 1151 1152 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) 1153 { 1154 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); 1155 } 1156 1157 #define MAX_CACHE_LVL 4 1158 1159 static int build_caches(struct cpu_cache_level caches[], u32 *cntp) 1160 { 1161 u32 i, cnt = 0; 1162 u32 nr, cpu; 1163 u16 level; 1164 1165 nr = cpu__max_cpu(); 1166 1167 for (cpu = 0; cpu < nr; cpu++) { 1168 for (level = 0; level < MAX_CACHE_LVL; level++) { 1169 struct cpu_cache_level c; 1170 int err; 1171 1172 err = cpu_cache_level__read(&c, cpu, level); 1173 if (err < 0) 1174 return err; 1175 1176 if (err == 1) 1177 break; 1178 1179 for (i = 0; i < cnt; i++) { 1180 if (cpu_cache_level__cmp(&c, &caches[i])) 1181 break; 1182 } 1183 1184 if (i == cnt) 1185 caches[cnt++] = c; 1186 else 1187 cpu_cache_level__free(&c); 1188 } 1189 } 1190 *cntp = cnt; 1191 return 0; 1192 } 1193 1194 static int write_cache(struct feat_fd *ff, 1195 struct evlist *evlist __maybe_unused) 1196 { 1197 u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL; 1198 struct cpu_cache_level caches[max_caches]; 1199 u32 cnt = 0, i, version = 1; 1200 int ret; 1201 1202 ret = build_caches(caches, &cnt); 1203 if (ret) 1204 goto out; 1205 1206 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); 1207 1208 ret = do_write(ff, &version, sizeof(u32)); 1209 if (ret < 0) 1210 goto out; 1211 1212 ret = do_write(ff, &cnt, sizeof(u32)); 1213 if (ret < 0) 1214 goto out; 1215 1216 for (i = 0; i < cnt; i++) { 1217 struct cpu_cache_level *c = &caches[i]; 1218 1219 #define _W(v) \ 1220 ret = do_write(ff, &c->v, sizeof(u32)); \ 1221 if (ret < 0) \ 1222 goto out; 1223 1224 _W(level) 1225 _W(line_size) 1226 _W(sets) 1227 _W(ways) 1228 #undef _W 1229 1230 #define _W(v) \ 1231 ret = do_write_string(ff, (const char *) c->v); \ 1232 if (ret < 0) \ 1233 goto out; 1234 1235 _W(type) 1236 _W(size) 1237 _W(map) 1238 #undef _W 1239 } 1240 1241 out: 1242 for (i = 0; i < cnt; i++) 1243 cpu_cache_level__free(&caches[i]); 1244 return ret; 1245 } 1246 1247 static int write_stat(struct feat_fd *ff __maybe_unused, 1248 struct evlist *evlist __maybe_unused) 1249 { 1250 return 0; 1251 } 1252 1253 static int write_sample_time(struct feat_fd *ff, 1254 struct evlist *evlist) 1255 { 1256 int ret; 1257 1258 ret = do_write(ff, &evlist->first_sample_time, 1259 sizeof(evlist->first_sample_time)); 1260 if (ret < 0) 1261 return ret; 1262 1263 return do_write(ff, &evlist->last_sample_time, 1264 sizeof(evlist->last_sample_time)); 1265 } 1266 1267 1268 static int memory_node__read(struct memory_node *n, unsigned long idx) 1269 { 1270 unsigned int phys, size = 0; 1271 char path[PATH_MAX]; 1272 struct dirent *ent; 1273 DIR *dir; 1274 1275 #define for_each_memory(mem, dir) \ 1276 while ((ent = readdir(dir))) \ 1277 if (strcmp(ent->d_name, ".") && \ 1278 strcmp(ent->d_name, "..") && \ 1279 sscanf(ent->d_name, "memory%u", &mem) == 1) 1280 1281 scnprintf(path, PATH_MAX, 1282 "%s/devices/system/node/node%lu", 1283 sysfs__mountpoint(), idx); 1284 1285 dir = opendir(path); 1286 if (!dir) { 1287 pr_warning("failed: can't open memory sysfs data\n"); 1288 return -1; 1289 } 1290 1291 for_each_memory(phys, dir) { 1292 size = max(phys, size); 1293 } 1294 1295 size++; 1296 1297 n->set = bitmap_zalloc(size); 1298 if (!n->set) { 1299 closedir(dir); 1300 return -ENOMEM; 1301 } 1302 1303 n->node = idx; 1304 n->size = size; 1305 1306 rewinddir(dir); 1307 1308 for_each_memory(phys, dir) { 1309 set_bit(phys, n->set); 1310 } 1311 1312 closedir(dir); 1313 return 0; 1314 } 1315 1316 static int memory_node__sort(const void *a, const void *b) 1317 { 1318 const struct memory_node *na = a; 1319 const struct memory_node *nb = b; 1320 1321 return na->node - nb->node; 1322 } 1323 1324 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp) 1325 { 1326 char path[PATH_MAX]; 1327 struct dirent *ent; 1328 DIR *dir; 1329 u64 cnt = 0; 1330 int ret = 0; 1331 1332 scnprintf(path, PATH_MAX, "%s/devices/system/node/", 1333 sysfs__mountpoint()); 1334 1335 dir = opendir(path); 1336 if (!dir) { 1337 pr_debug2("%s: could't read %s, does this arch have topology information?\n", 1338 __func__, path); 1339 return -1; 1340 } 1341 1342 while (!ret && (ent = readdir(dir))) { 1343 unsigned int idx; 1344 int r; 1345 1346 if (!strcmp(ent->d_name, ".") || 1347 !strcmp(ent->d_name, "..")) 1348 continue; 1349 1350 r = sscanf(ent->d_name, "node%u", &idx); 1351 if (r != 1) 1352 continue; 1353 1354 if (WARN_ONCE(cnt >= size, 1355 "failed to write MEM_TOPOLOGY, way too many nodes\n")) { 1356 closedir(dir); 1357 return -1; 1358 } 1359 1360 ret = memory_node__read(&nodes[cnt++], idx); 1361 } 1362 1363 *cntp = cnt; 1364 closedir(dir); 1365 1366 if (!ret) 1367 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); 1368 1369 return ret; 1370 } 1371 1372 #define MAX_MEMORY_NODES 2000 1373 1374 /* 1375 * The MEM_TOPOLOGY holds physical memory map for every 1376 * node in system. The format of data is as follows: 1377 * 1378 * 0 - version | for future changes 1379 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes 1380 * 16 - count | number of nodes 1381 * 1382 * For each node we store map of physical indexes for 1383 * each node: 1384 * 1385 * 32 - node id | node index 1386 * 40 - size | size of bitmap 1387 * 48 - bitmap | bitmap of memory indexes that belongs to node 1388 */ 1389 static int write_mem_topology(struct feat_fd *ff __maybe_unused, 1390 struct evlist *evlist __maybe_unused) 1391 { 1392 static struct memory_node nodes[MAX_MEMORY_NODES]; 1393 u64 bsize, version = 1, i, nr; 1394 int ret; 1395 1396 ret = sysfs__read_xll("devices/system/memory/block_size_bytes", 1397 (unsigned long long *) &bsize); 1398 if (ret) 1399 return ret; 1400 1401 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr); 1402 if (ret) 1403 return ret; 1404 1405 ret = do_write(ff, &version, sizeof(version)); 1406 if (ret < 0) 1407 goto out; 1408 1409 ret = do_write(ff, &bsize, sizeof(bsize)); 1410 if (ret < 0) 1411 goto out; 1412 1413 ret = do_write(ff, &nr, sizeof(nr)); 1414 if (ret < 0) 1415 goto out; 1416 1417 for (i = 0; i < nr; i++) { 1418 struct memory_node *n = &nodes[i]; 1419 1420 #define _W(v) \ 1421 ret = do_write(ff, &n->v, sizeof(n->v)); \ 1422 if (ret < 0) \ 1423 goto out; 1424 1425 _W(node) 1426 _W(size) 1427 1428 #undef _W 1429 1430 ret = do_write_bitmap(ff, n->set, n->size); 1431 if (ret < 0) 1432 goto out; 1433 } 1434 1435 out: 1436 return ret; 1437 } 1438 1439 static int write_compressed(struct feat_fd *ff __maybe_unused, 1440 struct evlist *evlist __maybe_unused) 1441 { 1442 int ret; 1443 1444 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver)); 1445 if (ret) 1446 return ret; 1447 1448 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type)); 1449 if (ret) 1450 return ret; 1451 1452 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level)); 1453 if (ret) 1454 return ret; 1455 1456 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio)); 1457 if (ret) 1458 return ret; 1459 1460 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len)); 1461 } 1462 1463 static int write_per_cpu_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu, 1464 bool write_pmu) 1465 { 1466 struct perf_pmu_caps *caps = NULL; 1467 int nr_caps; 1468 int ret; 1469 1470 nr_caps = perf_pmu__caps_parse(pmu); 1471 if (nr_caps < 0) 1472 return nr_caps; 1473 1474 ret = do_write(ff, &nr_caps, sizeof(nr_caps)); 1475 if (ret < 0) 1476 return ret; 1477 1478 list_for_each_entry(caps, &pmu->caps, list) { 1479 ret = do_write_string(ff, caps->name); 1480 if (ret < 0) 1481 return ret; 1482 1483 ret = do_write_string(ff, caps->value); 1484 if (ret < 0) 1485 return ret; 1486 } 1487 1488 if (write_pmu) { 1489 ret = do_write_string(ff, pmu->name); 1490 if (ret < 0) 1491 return ret; 1492 } 1493 1494 return ret; 1495 } 1496 1497 static int write_cpu_pmu_caps(struct feat_fd *ff, 1498 struct evlist *evlist __maybe_unused) 1499 { 1500 struct perf_pmu *cpu_pmu = perf_pmu__find("cpu"); 1501 1502 if (!cpu_pmu) 1503 return -ENOENT; 1504 1505 return write_per_cpu_pmu_caps(ff, cpu_pmu, false); 1506 } 1507 1508 static int write_hybrid_cpu_pmu_caps(struct feat_fd *ff, 1509 struct evlist *evlist __maybe_unused) 1510 { 1511 struct perf_pmu *pmu; 1512 u32 nr_pmu = perf_pmu__hybrid_pmu_num(); 1513 int ret; 1514 1515 if (nr_pmu == 0) 1516 return -ENOENT; 1517 1518 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu)); 1519 if (ret < 0) 1520 return ret; 1521 1522 perf_pmu__for_each_hybrid_pmu(pmu) { 1523 ret = write_per_cpu_pmu_caps(ff, pmu, true); 1524 if (ret < 0) 1525 return ret; 1526 } 1527 1528 return 0; 1529 } 1530 1531 static void print_hostname(struct feat_fd *ff, FILE *fp) 1532 { 1533 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); 1534 } 1535 1536 static void print_osrelease(struct feat_fd *ff, FILE *fp) 1537 { 1538 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); 1539 } 1540 1541 static void print_arch(struct feat_fd *ff, FILE *fp) 1542 { 1543 fprintf(fp, "# arch : %s\n", ff->ph->env.arch); 1544 } 1545 1546 static void print_cpudesc(struct feat_fd *ff, FILE *fp) 1547 { 1548 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); 1549 } 1550 1551 static void print_nrcpus(struct feat_fd *ff, FILE *fp) 1552 { 1553 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); 1554 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); 1555 } 1556 1557 static void print_version(struct feat_fd *ff, FILE *fp) 1558 { 1559 fprintf(fp, "# perf version : %s\n", ff->ph->env.version); 1560 } 1561 1562 static void print_cmdline(struct feat_fd *ff, FILE *fp) 1563 { 1564 int nr, i; 1565 1566 nr = ff->ph->env.nr_cmdline; 1567 1568 fprintf(fp, "# cmdline : "); 1569 1570 for (i = 0; i < nr; i++) { 1571 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); 1572 if (!argv_i) { 1573 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); 1574 } else { 1575 char *mem = argv_i; 1576 do { 1577 char *quote = strchr(argv_i, '\''); 1578 if (!quote) 1579 break; 1580 *quote++ = '\0'; 1581 fprintf(fp, "%s\\\'", argv_i); 1582 argv_i = quote; 1583 } while (1); 1584 fprintf(fp, "%s ", argv_i); 1585 free(mem); 1586 } 1587 } 1588 fputc('\n', fp); 1589 } 1590 1591 static void print_cpu_topology(struct feat_fd *ff, FILE *fp) 1592 { 1593 struct perf_header *ph = ff->ph; 1594 int cpu_nr = ph->env.nr_cpus_avail; 1595 int nr, i; 1596 char *str; 1597 1598 nr = ph->env.nr_sibling_cores; 1599 str = ph->env.sibling_cores; 1600 1601 for (i = 0; i < nr; i++) { 1602 fprintf(fp, "# sibling sockets : %s\n", str); 1603 str += strlen(str) + 1; 1604 } 1605 1606 if (ph->env.nr_sibling_dies) { 1607 nr = ph->env.nr_sibling_dies; 1608 str = ph->env.sibling_dies; 1609 1610 for (i = 0; i < nr; i++) { 1611 fprintf(fp, "# sibling dies : %s\n", str); 1612 str += strlen(str) + 1; 1613 } 1614 } 1615 1616 nr = ph->env.nr_sibling_threads; 1617 str = ph->env.sibling_threads; 1618 1619 for (i = 0; i < nr; i++) { 1620 fprintf(fp, "# sibling threads : %s\n", str); 1621 str += strlen(str) + 1; 1622 } 1623 1624 if (ph->env.nr_sibling_dies) { 1625 if (ph->env.cpu != NULL) { 1626 for (i = 0; i < cpu_nr; i++) 1627 fprintf(fp, "# CPU %d: Core ID %d, " 1628 "Die ID %d, Socket ID %d\n", 1629 i, ph->env.cpu[i].core_id, 1630 ph->env.cpu[i].die_id, 1631 ph->env.cpu[i].socket_id); 1632 } else 1633 fprintf(fp, "# Core ID, Die ID and Socket ID " 1634 "information is not available\n"); 1635 } else { 1636 if (ph->env.cpu != NULL) { 1637 for (i = 0; i < cpu_nr; i++) 1638 fprintf(fp, "# CPU %d: Core ID %d, " 1639 "Socket ID %d\n", 1640 i, ph->env.cpu[i].core_id, 1641 ph->env.cpu[i].socket_id); 1642 } else 1643 fprintf(fp, "# Core ID and Socket ID " 1644 "information is not available\n"); 1645 } 1646 } 1647 1648 static void print_clockid(struct feat_fd *ff, FILE *fp) 1649 { 1650 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", 1651 ff->ph->env.clock.clockid_res_ns * 1000); 1652 } 1653 1654 static void print_clock_data(struct feat_fd *ff, FILE *fp) 1655 { 1656 struct timespec clockid_ns; 1657 char tstr[64], date[64]; 1658 struct timeval tod_ns; 1659 clockid_t clockid; 1660 struct tm ltime; 1661 u64 ref; 1662 1663 if (!ff->ph->env.clock.enabled) { 1664 fprintf(fp, "# reference time disabled\n"); 1665 return; 1666 } 1667 1668 /* Compute TOD time. */ 1669 ref = ff->ph->env.clock.tod_ns; 1670 tod_ns.tv_sec = ref / NSEC_PER_SEC; 1671 ref -= tod_ns.tv_sec * NSEC_PER_SEC; 1672 tod_ns.tv_usec = ref / NSEC_PER_USEC; 1673 1674 /* Compute clockid time. */ 1675 ref = ff->ph->env.clock.clockid_ns; 1676 clockid_ns.tv_sec = ref / NSEC_PER_SEC; 1677 ref -= clockid_ns.tv_sec * NSEC_PER_SEC; 1678 clockid_ns.tv_nsec = ref; 1679 1680 clockid = ff->ph->env.clock.clockid; 1681 1682 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL) 1683 snprintf(tstr, sizeof(tstr), "<error>"); 1684 else { 1685 strftime(date, sizeof(date), "%F %T", <ime); 1686 scnprintf(tstr, sizeof(tstr), "%s.%06d", 1687 date, (int) tod_ns.tv_usec); 1688 } 1689 1690 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid); 1691 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n", 1692 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec, 1693 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec, 1694 clockid_name(clockid)); 1695 } 1696 1697 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp) 1698 { 1699 int i; 1700 struct hybrid_node *n; 1701 1702 fprintf(fp, "# hybrid cpu system:\n"); 1703 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) { 1704 n = &ff->ph->env.hybrid_nodes[i]; 1705 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus); 1706 } 1707 } 1708 1709 static void print_dir_format(struct feat_fd *ff, FILE *fp) 1710 { 1711 struct perf_session *session; 1712 struct perf_data *data; 1713 1714 session = container_of(ff->ph, struct perf_session, header); 1715 data = session->data; 1716 1717 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version); 1718 } 1719 1720 #ifdef HAVE_LIBBPF_SUPPORT 1721 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp) 1722 { 1723 struct perf_env *env = &ff->ph->env; 1724 struct rb_root *root; 1725 struct rb_node *next; 1726 1727 down_read(&env->bpf_progs.lock); 1728 1729 root = &env->bpf_progs.infos; 1730 next = rb_first(root); 1731 1732 while (next) { 1733 struct bpf_prog_info_node *node; 1734 1735 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1736 next = rb_next(&node->rb_node); 1737 1738 bpf_event__print_bpf_prog_info(&node->info_linear->info, 1739 env, fp); 1740 } 1741 1742 up_read(&env->bpf_progs.lock); 1743 } 1744 1745 static void print_bpf_btf(struct feat_fd *ff, FILE *fp) 1746 { 1747 struct perf_env *env = &ff->ph->env; 1748 struct rb_root *root; 1749 struct rb_node *next; 1750 1751 down_read(&env->bpf_progs.lock); 1752 1753 root = &env->bpf_progs.btfs; 1754 next = rb_first(root); 1755 1756 while (next) { 1757 struct btf_node *node; 1758 1759 node = rb_entry(next, struct btf_node, rb_node); 1760 next = rb_next(&node->rb_node); 1761 fprintf(fp, "# btf info of id %u\n", node->id); 1762 } 1763 1764 up_read(&env->bpf_progs.lock); 1765 } 1766 #endif // HAVE_LIBBPF_SUPPORT 1767 1768 static void free_event_desc(struct evsel *events) 1769 { 1770 struct evsel *evsel; 1771 1772 if (!events) 1773 return; 1774 1775 for (evsel = events; evsel->core.attr.size; evsel++) { 1776 zfree(&evsel->name); 1777 zfree(&evsel->core.id); 1778 } 1779 1780 free(events); 1781 } 1782 1783 static bool perf_attr_check(struct perf_event_attr *attr) 1784 { 1785 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) { 1786 pr_warning("Reserved bits are set unexpectedly. " 1787 "Please update perf tool.\n"); 1788 return false; 1789 } 1790 1791 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) { 1792 pr_warning("Unknown sample type (0x%llx) is detected. " 1793 "Please update perf tool.\n", 1794 attr->sample_type); 1795 return false; 1796 } 1797 1798 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) { 1799 pr_warning("Unknown read format (0x%llx) is detected. " 1800 "Please update perf tool.\n", 1801 attr->read_format); 1802 return false; 1803 } 1804 1805 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) && 1806 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) { 1807 pr_warning("Unknown branch sample type (0x%llx) is detected. " 1808 "Please update perf tool.\n", 1809 attr->branch_sample_type); 1810 1811 return false; 1812 } 1813 1814 return true; 1815 } 1816 1817 static struct evsel *read_event_desc(struct feat_fd *ff) 1818 { 1819 struct evsel *evsel, *events = NULL; 1820 u64 *id; 1821 void *buf = NULL; 1822 u32 nre, sz, nr, i, j; 1823 size_t msz; 1824 1825 /* number of events */ 1826 if (do_read_u32(ff, &nre)) 1827 goto error; 1828 1829 if (do_read_u32(ff, &sz)) 1830 goto error; 1831 1832 /* buffer to hold on file attr struct */ 1833 buf = malloc(sz); 1834 if (!buf) 1835 goto error; 1836 1837 /* the last event terminates with evsel->core.attr.size == 0: */ 1838 events = calloc(nre + 1, sizeof(*events)); 1839 if (!events) 1840 goto error; 1841 1842 msz = sizeof(evsel->core.attr); 1843 if (sz < msz) 1844 msz = sz; 1845 1846 for (i = 0, evsel = events; i < nre; evsel++, i++) { 1847 evsel->core.idx = i; 1848 1849 /* 1850 * must read entire on-file attr struct to 1851 * sync up with layout. 1852 */ 1853 if (__do_read(ff, buf, sz)) 1854 goto error; 1855 1856 if (ff->ph->needs_swap) 1857 perf_event__attr_swap(buf); 1858 1859 memcpy(&evsel->core.attr, buf, msz); 1860 1861 if (!perf_attr_check(&evsel->core.attr)) 1862 goto error; 1863 1864 if (do_read_u32(ff, &nr)) 1865 goto error; 1866 1867 if (ff->ph->needs_swap) 1868 evsel->needs_swap = true; 1869 1870 evsel->name = do_read_string(ff); 1871 if (!evsel->name) 1872 goto error; 1873 1874 if (!nr) 1875 continue; 1876 1877 id = calloc(nr, sizeof(*id)); 1878 if (!id) 1879 goto error; 1880 evsel->core.ids = nr; 1881 evsel->core.id = id; 1882 1883 for (j = 0 ; j < nr; j++) { 1884 if (do_read_u64(ff, id)) 1885 goto error; 1886 id++; 1887 } 1888 } 1889 out: 1890 free(buf); 1891 return events; 1892 error: 1893 free_event_desc(events); 1894 events = NULL; 1895 goto out; 1896 } 1897 1898 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, 1899 void *priv __maybe_unused) 1900 { 1901 return fprintf(fp, ", %s = %s", name, val); 1902 } 1903 1904 static void print_event_desc(struct feat_fd *ff, FILE *fp) 1905 { 1906 struct evsel *evsel, *events; 1907 u32 j; 1908 u64 *id; 1909 1910 if (ff->events) 1911 events = ff->events; 1912 else 1913 events = read_event_desc(ff); 1914 1915 if (!events) { 1916 fprintf(fp, "# event desc: not available or unable to read\n"); 1917 return; 1918 } 1919 1920 for (evsel = events; evsel->core.attr.size; evsel++) { 1921 fprintf(fp, "# event : name = %s, ", evsel->name); 1922 1923 if (evsel->core.ids) { 1924 fprintf(fp, ", id = {"); 1925 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) { 1926 if (j) 1927 fputc(',', fp); 1928 fprintf(fp, " %"PRIu64, *id); 1929 } 1930 fprintf(fp, " }"); 1931 } 1932 1933 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL); 1934 1935 fputc('\n', fp); 1936 } 1937 1938 free_event_desc(events); 1939 ff->events = NULL; 1940 } 1941 1942 static void print_total_mem(struct feat_fd *ff, FILE *fp) 1943 { 1944 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); 1945 } 1946 1947 static void print_numa_topology(struct feat_fd *ff, FILE *fp) 1948 { 1949 int i; 1950 struct numa_node *n; 1951 1952 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { 1953 n = &ff->ph->env.numa_nodes[i]; 1954 1955 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," 1956 " free = %"PRIu64" kB\n", 1957 n->node, n->mem_total, n->mem_free); 1958 1959 fprintf(fp, "# node%u cpu list : ", n->node); 1960 cpu_map__fprintf(n->map, fp); 1961 } 1962 } 1963 1964 static void print_cpuid(struct feat_fd *ff, FILE *fp) 1965 { 1966 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); 1967 } 1968 1969 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) 1970 { 1971 fprintf(fp, "# contains samples with branch stack\n"); 1972 } 1973 1974 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) 1975 { 1976 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); 1977 } 1978 1979 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) 1980 { 1981 fprintf(fp, "# contains stat data\n"); 1982 } 1983 1984 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) 1985 { 1986 int i; 1987 1988 fprintf(fp, "# CPU cache info:\n"); 1989 for (i = 0; i < ff->ph->env.caches_cnt; i++) { 1990 fprintf(fp, "# "); 1991 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); 1992 } 1993 } 1994 1995 static void print_compressed(struct feat_fd *ff, FILE *fp) 1996 { 1997 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n", 1998 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown", 1999 ff->ph->env.comp_level, ff->ph->env.comp_ratio); 2000 } 2001 2002 static void print_per_cpu_pmu_caps(FILE *fp, int nr_caps, char *cpu_pmu_caps, 2003 char *pmu_name) 2004 { 2005 const char *delimiter; 2006 char *str, buf[128]; 2007 2008 if (!nr_caps) { 2009 if (!pmu_name) 2010 fprintf(fp, "# cpu pmu capabilities: not available\n"); 2011 else 2012 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name); 2013 return; 2014 } 2015 2016 if (!pmu_name) 2017 scnprintf(buf, sizeof(buf), "# cpu pmu capabilities: "); 2018 else 2019 scnprintf(buf, sizeof(buf), "# %s pmu capabilities: ", pmu_name); 2020 2021 delimiter = buf; 2022 2023 str = cpu_pmu_caps; 2024 while (nr_caps--) { 2025 fprintf(fp, "%s%s", delimiter, str); 2026 delimiter = ", "; 2027 str += strlen(str) + 1; 2028 } 2029 2030 fprintf(fp, "\n"); 2031 } 2032 2033 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp) 2034 { 2035 print_per_cpu_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps, 2036 ff->ph->env.cpu_pmu_caps, NULL); 2037 } 2038 2039 static void print_hybrid_cpu_pmu_caps(struct feat_fd *ff, FILE *fp) 2040 { 2041 struct hybrid_cpc_node *n; 2042 2043 for (int i = 0; i < ff->ph->env.nr_hybrid_cpc_nodes; i++) { 2044 n = &ff->ph->env.hybrid_cpc_nodes[i]; 2045 print_per_cpu_pmu_caps(fp, n->nr_cpu_pmu_caps, 2046 n->cpu_pmu_caps, 2047 n->pmu_name); 2048 } 2049 } 2050 2051 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) 2052 { 2053 const char *delimiter = "# pmu mappings: "; 2054 char *str, *tmp; 2055 u32 pmu_num; 2056 u32 type; 2057 2058 pmu_num = ff->ph->env.nr_pmu_mappings; 2059 if (!pmu_num) { 2060 fprintf(fp, "# pmu mappings: not available\n"); 2061 return; 2062 } 2063 2064 str = ff->ph->env.pmu_mappings; 2065 2066 while (pmu_num) { 2067 type = strtoul(str, &tmp, 0); 2068 if (*tmp != ':') 2069 goto error; 2070 2071 str = tmp + 1; 2072 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); 2073 2074 delimiter = ", "; 2075 str += strlen(str) + 1; 2076 pmu_num--; 2077 } 2078 2079 fprintf(fp, "\n"); 2080 2081 if (!pmu_num) 2082 return; 2083 error: 2084 fprintf(fp, "# pmu mappings: unable to read\n"); 2085 } 2086 2087 static void print_group_desc(struct feat_fd *ff, FILE *fp) 2088 { 2089 struct perf_session *session; 2090 struct evsel *evsel; 2091 u32 nr = 0; 2092 2093 session = container_of(ff->ph, struct perf_session, header); 2094 2095 evlist__for_each_entry(session->evlist, evsel) { 2096 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 2097 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel)); 2098 2099 nr = evsel->core.nr_members - 1; 2100 } else if (nr) { 2101 fprintf(fp, ",%s", evsel__name(evsel)); 2102 2103 if (--nr == 0) 2104 fprintf(fp, "}\n"); 2105 } 2106 } 2107 } 2108 2109 static void print_sample_time(struct feat_fd *ff, FILE *fp) 2110 { 2111 struct perf_session *session; 2112 char time_buf[32]; 2113 double d; 2114 2115 session = container_of(ff->ph, struct perf_session, header); 2116 2117 timestamp__scnprintf_usec(session->evlist->first_sample_time, 2118 time_buf, sizeof(time_buf)); 2119 fprintf(fp, "# time of first sample : %s\n", time_buf); 2120 2121 timestamp__scnprintf_usec(session->evlist->last_sample_time, 2122 time_buf, sizeof(time_buf)); 2123 fprintf(fp, "# time of last sample : %s\n", time_buf); 2124 2125 d = (double)(session->evlist->last_sample_time - 2126 session->evlist->first_sample_time) / NSEC_PER_MSEC; 2127 2128 fprintf(fp, "# sample duration : %10.3f ms\n", d); 2129 } 2130 2131 static void memory_node__fprintf(struct memory_node *n, 2132 unsigned long long bsize, FILE *fp) 2133 { 2134 char buf_map[100], buf_size[50]; 2135 unsigned long long size; 2136 2137 size = bsize * bitmap_weight(n->set, n->size); 2138 unit_number__scnprintf(buf_size, 50, size); 2139 2140 bitmap_scnprintf(n->set, n->size, buf_map, 100); 2141 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); 2142 } 2143 2144 static void print_mem_topology(struct feat_fd *ff, FILE *fp) 2145 { 2146 struct memory_node *nodes; 2147 int i, nr; 2148 2149 nodes = ff->ph->env.memory_nodes; 2150 nr = ff->ph->env.nr_memory_nodes; 2151 2152 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", 2153 nr, ff->ph->env.memory_bsize); 2154 2155 for (i = 0; i < nr; i++) { 2156 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp); 2157 } 2158 } 2159 2160 static int __event_process_build_id(struct perf_record_header_build_id *bev, 2161 char *filename, 2162 struct perf_session *session) 2163 { 2164 int err = -1; 2165 struct machine *machine; 2166 u16 cpumode; 2167 struct dso *dso; 2168 enum dso_space_type dso_space; 2169 2170 machine = perf_session__findnew_machine(session, bev->pid); 2171 if (!machine) 2172 goto out; 2173 2174 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2175 2176 switch (cpumode) { 2177 case PERF_RECORD_MISC_KERNEL: 2178 dso_space = DSO_SPACE__KERNEL; 2179 break; 2180 case PERF_RECORD_MISC_GUEST_KERNEL: 2181 dso_space = DSO_SPACE__KERNEL_GUEST; 2182 break; 2183 case PERF_RECORD_MISC_USER: 2184 case PERF_RECORD_MISC_GUEST_USER: 2185 dso_space = DSO_SPACE__USER; 2186 break; 2187 default: 2188 goto out; 2189 } 2190 2191 dso = machine__findnew_dso(machine, filename); 2192 if (dso != NULL) { 2193 char sbuild_id[SBUILD_ID_SIZE]; 2194 struct build_id bid; 2195 size_t size = BUILD_ID_SIZE; 2196 2197 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE) 2198 size = bev->size; 2199 2200 build_id__init(&bid, bev->data, size); 2201 dso__set_build_id(dso, &bid); 2202 2203 if (dso_space != DSO_SPACE__USER) { 2204 struct kmod_path m = { .name = NULL, }; 2205 2206 if (!kmod_path__parse_name(&m, filename) && m.kmod) 2207 dso__set_module_info(dso, &m, machine); 2208 2209 dso->kernel = dso_space; 2210 free(m.name); 2211 } 2212 2213 build_id__sprintf(&dso->bid, sbuild_id); 2214 pr_debug("build id event received for %s: %s [%zu]\n", 2215 dso->long_name, sbuild_id, size); 2216 dso__put(dso); 2217 } 2218 2219 err = 0; 2220 out: 2221 return err; 2222 } 2223 2224 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, 2225 int input, u64 offset, u64 size) 2226 { 2227 struct perf_session *session = container_of(header, struct perf_session, header); 2228 struct { 2229 struct perf_event_header header; 2230 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; 2231 char filename[0]; 2232 } old_bev; 2233 struct perf_record_header_build_id bev; 2234 char filename[PATH_MAX]; 2235 u64 limit = offset + size; 2236 2237 while (offset < limit) { 2238 ssize_t len; 2239 2240 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) 2241 return -1; 2242 2243 if (header->needs_swap) 2244 perf_event_header__bswap(&old_bev.header); 2245 2246 len = old_bev.header.size - sizeof(old_bev); 2247 if (readn(input, filename, len) != len) 2248 return -1; 2249 2250 bev.header = old_bev.header; 2251 2252 /* 2253 * As the pid is the missing value, we need to fill 2254 * it properly. The header.misc value give us nice hint. 2255 */ 2256 bev.pid = HOST_KERNEL_ID; 2257 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || 2258 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) 2259 bev.pid = DEFAULT_GUEST_KERNEL_ID; 2260 2261 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); 2262 __event_process_build_id(&bev, filename, session); 2263 2264 offset += bev.header.size; 2265 } 2266 2267 return 0; 2268 } 2269 2270 static int perf_header__read_build_ids(struct perf_header *header, 2271 int input, u64 offset, u64 size) 2272 { 2273 struct perf_session *session = container_of(header, struct perf_session, header); 2274 struct perf_record_header_build_id bev; 2275 char filename[PATH_MAX]; 2276 u64 limit = offset + size, orig_offset = offset; 2277 int err = -1; 2278 2279 while (offset < limit) { 2280 ssize_t len; 2281 2282 if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) 2283 goto out; 2284 2285 if (header->needs_swap) 2286 perf_event_header__bswap(&bev.header); 2287 2288 len = bev.header.size - sizeof(bev); 2289 if (readn(input, filename, len) != len) 2290 goto out; 2291 /* 2292 * The a1645ce1 changeset: 2293 * 2294 * "perf: 'perf kvm' tool for monitoring guest performance from host" 2295 * 2296 * Added a field to struct perf_record_header_build_id that broke the file 2297 * format. 2298 * 2299 * Since the kernel build-id is the first entry, process the 2300 * table using the old format if the well known 2301 * '[kernel.kallsyms]' string for the kernel build-id has the 2302 * first 4 characters chopped off (where the pid_t sits). 2303 */ 2304 if (memcmp(filename, "nel.kallsyms]", 13) == 0) { 2305 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) 2306 return -1; 2307 return perf_header__read_build_ids_abi_quirk(header, input, offset, size); 2308 } 2309 2310 __event_process_build_id(&bev, filename, session); 2311 2312 offset += bev.header.size; 2313 } 2314 err = 0; 2315 out: 2316 return err; 2317 } 2318 2319 /* Macro for features that simply need to read and store a string. */ 2320 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ 2321 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ 2322 {\ 2323 ff->ph->env.__feat_env = do_read_string(ff); \ 2324 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ 2325 } 2326 2327 FEAT_PROCESS_STR_FUN(hostname, hostname); 2328 FEAT_PROCESS_STR_FUN(osrelease, os_release); 2329 FEAT_PROCESS_STR_FUN(version, version); 2330 FEAT_PROCESS_STR_FUN(arch, arch); 2331 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); 2332 FEAT_PROCESS_STR_FUN(cpuid, cpuid); 2333 2334 static int process_tracing_data(struct feat_fd *ff, void *data) 2335 { 2336 ssize_t ret = trace_report(ff->fd, data, false); 2337 2338 return ret < 0 ? -1 : 0; 2339 } 2340 2341 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) 2342 { 2343 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) 2344 pr_debug("Failed to read buildids, continuing...\n"); 2345 return 0; 2346 } 2347 2348 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) 2349 { 2350 int ret; 2351 u32 nr_cpus_avail, nr_cpus_online; 2352 2353 ret = do_read_u32(ff, &nr_cpus_avail); 2354 if (ret) 2355 return ret; 2356 2357 ret = do_read_u32(ff, &nr_cpus_online); 2358 if (ret) 2359 return ret; 2360 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail; 2361 ff->ph->env.nr_cpus_online = (int)nr_cpus_online; 2362 return 0; 2363 } 2364 2365 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) 2366 { 2367 u64 total_mem; 2368 int ret; 2369 2370 ret = do_read_u64(ff, &total_mem); 2371 if (ret) 2372 return -1; 2373 ff->ph->env.total_mem = (unsigned long long)total_mem; 2374 return 0; 2375 } 2376 2377 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx) 2378 { 2379 struct evsel *evsel; 2380 2381 evlist__for_each_entry(evlist, evsel) { 2382 if (evsel->core.idx == idx) 2383 return evsel; 2384 } 2385 2386 return NULL; 2387 } 2388 2389 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event) 2390 { 2391 struct evsel *evsel; 2392 2393 if (!event->name) 2394 return; 2395 2396 evsel = evlist__find_by_index(evlist, event->core.idx); 2397 if (!evsel) 2398 return; 2399 2400 if (evsel->name) 2401 return; 2402 2403 evsel->name = strdup(event->name); 2404 } 2405 2406 static int 2407 process_event_desc(struct feat_fd *ff, void *data __maybe_unused) 2408 { 2409 struct perf_session *session; 2410 struct evsel *evsel, *events = read_event_desc(ff); 2411 2412 if (!events) 2413 return 0; 2414 2415 session = container_of(ff->ph, struct perf_session, header); 2416 2417 if (session->data->is_pipe) { 2418 /* Save events for reading later by print_event_desc, 2419 * since they can't be read again in pipe mode. */ 2420 ff->events = events; 2421 } 2422 2423 for (evsel = events; evsel->core.attr.size; evsel++) 2424 evlist__set_event_name(session->evlist, evsel); 2425 2426 if (!session->data->is_pipe) 2427 free_event_desc(events); 2428 2429 return 0; 2430 } 2431 2432 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) 2433 { 2434 char *str, *cmdline = NULL, **argv = NULL; 2435 u32 nr, i, len = 0; 2436 2437 if (do_read_u32(ff, &nr)) 2438 return -1; 2439 2440 ff->ph->env.nr_cmdline = nr; 2441 2442 cmdline = zalloc(ff->size + nr + 1); 2443 if (!cmdline) 2444 return -1; 2445 2446 argv = zalloc(sizeof(char *) * (nr + 1)); 2447 if (!argv) 2448 goto error; 2449 2450 for (i = 0; i < nr; i++) { 2451 str = do_read_string(ff); 2452 if (!str) 2453 goto error; 2454 2455 argv[i] = cmdline + len; 2456 memcpy(argv[i], str, strlen(str) + 1); 2457 len += strlen(str) + 1; 2458 free(str); 2459 } 2460 ff->ph->env.cmdline = cmdline; 2461 ff->ph->env.cmdline_argv = (const char **) argv; 2462 return 0; 2463 2464 error: 2465 free(argv); 2466 free(cmdline); 2467 return -1; 2468 } 2469 2470 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) 2471 { 2472 u32 nr, i; 2473 char *str; 2474 struct strbuf sb; 2475 int cpu_nr = ff->ph->env.nr_cpus_avail; 2476 u64 size = 0; 2477 struct perf_header *ph = ff->ph; 2478 bool do_core_id_test = true; 2479 2480 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu)); 2481 if (!ph->env.cpu) 2482 return -1; 2483 2484 if (do_read_u32(ff, &nr)) 2485 goto free_cpu; 2486 2487 ph->env.nr_sibling_cores = nr; 2488 size += sizeof(u32); 2489 if (strbuf_init(&sb, 128) < 0) 2490 goto free_cpu; 2491 2492 for (i = 0; i < nr; i++) { 2493 str = do_read_string(ff); 2494 if (!str) 2495 goto error; 2496 2497 /* include a NULL character at the end */ 2498 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2499 goto error; 2500 size += string_size(str); 2501 free(str); 2502 } 2503 ph->env.sibling_cores = strbuf_detach(&sb, NULL); 2504 2505 if (do_read_u32(ff, &nr)) 2506 return -1; 2507 2508 ph->env.nr_sibling_threads = nr; 2509 size += sizeof(u32); 2510 2511 for (i = 0; i < nr; i++) { 2512 str = do_read_string(ff); 2513 if (!str) 2514 goto error; 2515 2516 /* include a NULL character at the end */ 2517 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2518 goto error; 2519 size += string_size(str); 2520 free(str); 2521 } 2522 ph->env.sibling_threads = strbuf_detach(&sb, NULL); 2523 2524 /* 2525 * The header may be from old perf, 2526 * which doesn't include core id and socket id information. 2527 */ 2528 if (ff->size <= size) { 2529 zfree(&ph->env.cpu); 2530 return 0; 2531 } 2532 2533 /* On s390 the socket_id number is not related to the numbers of cpus. 2534 * The socket_id number might be higher than the numbers of cpus. 2535 * This depends on the configuration. 2536 * AArch64 is the same. 2537 */ 2538 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4) 2539 || !strncmp(ph->env.arch, "aarch64", 7))) 2540 do_core_id_test = false; 2541 2542 for (i = 0; i < (u32)cpu_nr; i++) { 2543 if (do_read_u32(ff, &nr)) 2544 goto free_cpu; 2545 2546 ph->env.cpu[i].core_id = nr; 2547 size += sizeof(u32); 2548 2549 if (do_read_u32(ff, &nr)) 2550 goto free_cpu; 2551 2552 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) { 2553 pr_debug("socket_id number is too big." 2554 "You may need to upgrade the perf tool.\n"); 2555 goto free_cpu; 2556 } 2557 2558 ph->env.cpu[i].socket_id = nr; 2559 size += sizeof(u32); 2560 } 2561 2562 /* 2563 * The header may be from old perf, 2564 * which doesn't include die information. 2565 */ 2566 if (ff->size <= size) 2567 return 0; 2568 2569 if (do_read_u32(ff, &nr)) 2570 return -1; 2571 2572 ph->env.nr_sibling_dies = nr; 2573 size += sizeof(u32); 2574 2575 for (i = 0; i < nr; i++) { 2576 str = do_read_string(ff); 2577 if (!str) 2578 goto error; 2579 2580 /* include a NULL character at the end */ 2581 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2582 goto error; 2583 size += string_size(str); 2584 free(str); 2585 } 2586 ph->env.sibling_dies = strbuf_detach(&sb, NULL); 2587 2588 for (i = 0; i < (u32)cpu_nr; i++) { 2589 if (do_read_u32(ff, &nr)) 2590 goto free_cpu; 2591 2592 ph->env.cpu[i].die_id = nr; 2593 } 2594 2595 return 0; 2596 2597 error: 2598 strbuf_release(&sb); 2599 free_cpu: 2600 zfree(&ph->env.cpu); 2601 return -1; 2602 } 2603 2604 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) 2605 { 2606 struct numa_node *nodes, *n; 2607 u32 nr, i; 2608 char *str; 2609 2610 /* nr nodes */ 2611 if (do_read_u32(ff, &nr)) 2612 return -1; 2613 2614 nodes = zalloc(sizeof(*nodes) * nr); 2615 if (!nodes) 2616 return -ENOMEM; 2617 2618 for (i = 0; i < nr; i++) { 2619 n = &nodes[i]; 2620 2621 /* node number */ 2622 if (do_read_u32(ff, &n->node)) 2623 goto error; 2624 2625 if (do_read_u64(ff, &n->mem_total)) 2626 goto error; 2627 2628 if (do_read_u64(ff, &n->mem_free)) 2629 goto error; 2630 2631 str = do_read_string(ff); 2632 if (!str) 2633 goto error; 2634 2635 n->map = perf_cpu_map__new(str); 2636 if (!n->map) 2637 goto error; 2638 2639 free(str); 2640 } 2641 ff->ph->env.nr_numa_nodes = nr; 2642 ff->ph->env.numa_nodes = nodes; 2643 return 0; 2644 2645 error: 2646 free(nodes); 2647 return -1; 2648 } 2649 2650 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) 2651 { 2652 char *name; 2653 u32 pmu_num; 2654 u32 type; 2655 struct strbuf sb; 2656 2657 if (do_read_u32(ff, &pmu_num)) 2658 return -1; 2659 2660 if (!pmu_num) { 2661 pr_debug("pmu mappings not available\n"); 2662 return 0; 2663 } 2664 2665 ff->ph->env.nr_pmu_mappings = pmu_num; 2666 if (strbuf_init(&sb, 128) < 0) 2667 return -1; 2668 2669 while (pmu_num) { 2670 if (do_read_u32(ff, &type)) 2671 goto error; 2672 2673 name = do_read_string(ff); 2674 if (!name) 2675 goto error; 2676 2677 if (strbuf_addf(&sb, "%u:%s", type, name) < 0) 2678 goto error; 2679 /* include a NULL character at the end */ 2680 if (strbuf_add(&sb, "", 1) < 0) 2681 goto error; 2682 2683 if (!strcmp(name, "msr")) 2684 ff->ph->env.msr_pmu_type = type; 2685 2686 free(name); 2687 pmu_num--; 2688 } 2689 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL); 2690 return 0; 2691 2692 error: 2693 strbuf_release(&sb); 2694 return -1; 2695 } 2696 2697 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) 2698 { 2699 size_t ret = -1; 2700 u32 i, nr, nr_groups; 2701 struct perf_session *session; 2702 struct evsel *evsel, *leader = NULL; 2703 struct group_desc { 2704 char *name; 2705 u32 leader_idx; 2706 u32 nr_members; 2707 } *desc; 2708 2709 if (do_read_u32(ff, &nr_groups)) 2710 return -1; 2711 2712 ff->ph->env.nr_groups = nr_groups; 2713 if (!nr_groups) { 2714 pr_debug("group desc not available\n"); 2715 return 0; 2716 } 2717 2718 desc = calloc(nr_groups, sizeof(*desc)); 2719 if (!desc) 2720 return -1; 2721 2722 for (i = 0; i < nr_groups; i++) { 2723 desc[i].name = do_read_string(ff); 2724 if (!desc[i].name) 2725 goto out_free; 2726 2727 if (do_read_u32(ff, &desc[i].leader_idx)) 2728 goto out_free; 2729 2730 if (do_read_u32(ff, &desc[i].nr_members)) 2731 goto out_free; 2732 } 2733 2734 /* 2735 * Rebuild group relationship based on the group_desc 2736 */ 2737 session = container_of(ff->ph, struct perf_session, header); 2738 session->evlist->core.nr_groups = nr_groups; 2739 2740 i = nr = 0; 2741 evlist__for_each_entry(session->evlist, evsel) { 2742 if (evsel->core.idx == (int) desc[i].leader_idx) { 2743 evsel__set_leader(evsel, evsel); 2744 /* {anon_group} is a dummy name */ 2745 if (strcmp(desc[i].name, "{anon_group}")) { 2746 evsel->group_name = desc[i].name; 2747 desc[i].name = NULL; 2748 } 2749 evsel->core.nr_members = desc[i].nr_members; 2750 2751 if (i >= nr_groups || nr > 0) { 2752 pr_debug("invalid group desc\n"); 2753 goto out_free; 2754 } 2755 2756 leader = evsel; 2757 nr = evsel->core.nr_members - 1; 2758 i++; 2759 } else if (nr) { 2760 /* This is a group member */ 2761 evsel__set_leader(evsel, leader); 2762 2763 nr--; 2764 } 2765 } 2766 2767 if (i != nr_groups || nr != 0) { 2768 pr_debug("invalid group desc\n"); 2769 goto out_free; 2770 } 2771 2772 ret = 0; 2773 out_free: 2774 for (i = 0; i < nr_groups; i++) 2775 zfree(&desc[i].name); 2776 free(desc); 2777 2778 return ret; 2779 } 2780 2781 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) 2782 { 2783 struct perf_session *session; 2784 int err; 2785 2786 session = container_of(ff->ph, struct perf_session, header); 2787 2788 err = auxtrace_index__process(ff->fd, ff->size, session, 2789 ff->ph->needs_swap); 2790 if (err < 0) 2791 pr_err("Failed to process auxtrace index\n"); 2792 return err; 2793 } 2794 2795 static int process_cache(struct feat_fd *ff, void *data __maybe_unused) 2796 { 2797 struct cpu_cache_level *caches; 2798 u32 cnt, i, version; 2799 2800 if (do_read_u32(ff, &version)) 2801 return -1; 2802 2803 if (version != 1) 2804 return -1; 2805 2806 if (do_read_u32(ff, &cnt)) 2807 return -1; 2808 2809 caches = zalloc(sizeof(*caches) * cnt); 2810 if (!caches) 2811 return -1; 2812 2813 for (i = 0; i < cnt; i++) { 2814 struct cpu_cache_level c; 2815 2816 #define _R(v) \ 2817 if (do_read_u32(ff, &c.v))\ 2818 goto out_free_caches; \ 2819 2820 _R(level) 2821 _R(line_size) 2822 _R(sets) 2823 _R(ways) 2824 #undef _R 2825 2826 #define _R(v) \ 2827 c.v = do_read_string(ff); \ 2828 if (!c.v) \ 2829 goto out_free_caches; 2830 2831 _R(type) 2832 _R(size) 2833 _R(map) 2834 #undef _R 2835 2836 caches[i] = c; 2837 } 2838 2839 ff->ph->env.caches = caches; 2840 ff->ph->env.caches_cnt = cnt; 2841 return 0; 2842 out_free_caches: 2843 free(caches); 2844 return -1; 2845 } 2846 2847 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) 2848 { 2849 struct perf_session *session; 2850 u64 first_sample_time, last_sample_time; 2851 int ret; 2852 2853 session = container_of(ff->ph, struct perf_session, header); 2854 2855 ret = do_read_u64(ff, &first_sample_time); 2856 if (ret) 2857 return -1; 2858 2859 ret = do_read_u64(ff, &last_sample_time); 2860 if (ret) 2861 return -1; 2862 2863 session->evlist->first_sample_time = first_sample_time; 2864 session->evlist->last_sample_time = last_sample_time; 2865 return 0; 2866 } 2867 2868 static int process_mem_topology(struct feat_fd *ff, 2869 void *data __maybe_unused) 2870 { 2871 struct memory_node *nodes; 2872 u64 version, i, nr, bsize; 2873 int ret = -1; 2874 2875 if (do_read_u64(ff, &version)) 2876 return -1; 2877 2878 if (version != 1) 2879 return -1; 2880 2881 if (do_read_u64(ff, &bsize)) 2882 return -1; 2883 2884 if (do_read_u64(ff, &nr)) 2885 return -1; 2886 2887 nodes = zalloc(sizeof(*nodes) * nr); 2888 if (!nodes) 2889 return -1; 2890 2891 for (i = 0; i < nr; i++) { 2892 struct memory_node n; 2893 2894 #define _R(v) \ 2895 if (do_read_u64(ff, &n.v)) \ 2896 goto out; \ 2897 2898 _R(node) 2899 _R(size) 2900 2901 #undef _R 2902 2903 if (do_read_bitmap(ff, &n.set, &n.size)) 2904 goto out; 2905 2906 nodes[i] = n; 2907 } 2908 2909 ff->ph->env.memory_bsize = bsize; 2910 ff->ph->env.memory_nodes = nodes; 2911 ff->ph->env.nr_memory_nodes = nr; 2912 ret = 0; 2913 2914 out: 2915 if (ret) 2916 free(nodes); 2917 return ret; 2918 } 2919 2920 static int process_clockid(struct feat_fd *ff, 2921 void *data __maybe_unused) 2922 { 2923 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns)) 2924 return -1; 2925 2926 return 0; 2927 } 2928 2929 static int process_clock_data(struct feat_fd *ff, 2930 void *_data __maybe_unused) 2931 { 2932 u32 data32; 2933 u64 data64; 2934 2935 /* version */ 2936 if (do_read_u32(ff, &data32)) 2937 return -1; 2938 2939 if (data32 != 1) 2940 return -1; 2941 2942 /* clockid */ 2943 if (do_read_u32(ff, &data32)) 2944 return -1; 2945 2946 ff->ph->env.clock.clockid = data32; 2947 2948 /* TOD ref time */ 2949 if (do_read_u64(ff, &data64)) 2950 return -1; 2951 2952 ff->ph->env.clock.tod_ns = data64; 2953 2954 /* clockid ref time */ 2955 if (do_read_u64(ff, &data64)) 2956 return -1; 2957 2958 ff->ph->env.clock.clockid_ns = data64; 2959 ff->ph->env.clock.enabled = true; 2960 return 0; 2961 } 2962 2963 static int process_hybrid_topology(struct feat_fd *ff, 2964 void *data __maybe_unused) 2965 { 2966 struct hybrid_node *nodes, *n; 2967 u32 nr, i; 2968 2969 /* nr nodes */ 2970 if (do_read_u32(ff, &nr)) 2971 return -1; 2972 2973 nodes = zalloc(sizeof(*nodes) * nr); 2974 if (!nodes) 2975 return -ENOMEM; 2976 2977 for (i = 0; i < nr; i++) { 2978 n = &nodes[i]; 2979 2980 n->pmu_name = do_read_string(ff); 2981 if (!n->pmu_name) 2982 goto error; 2983 2984 n->cpus = do_read_string(ff); 2985 if (!n->cpus) 2986 goto error; 2987 } 2988 2989 ff->ph->env.nr_hybrid_nodes = nr; 2990 ff->ph->env.hybrid_nodes = nodes; 2991 return 0; 2992 2993 error: 2994 for (i = 0; i < nr; i++) { 2995 free(nodes[i].pmu_name); 2996 free(nodes[i].cpus); 2997 } 2998 2999 free(nodes); 3000 return -1; 3001 } 3002 3003 static int process_dir_format(struct feat_fd *ff, 3004 void *_data __maybe_unused) 3005 { 3006 struct perf_session *session; 3007 struct perf_data *data; 3008 3009 session = container_of(ff->ph, struct perf_session, header); 3010 data = session->data; 3011 3012 if (WARN_ON(!perf_data__is_dir(data))) 3013 return -1; 3014 3015 return do_read_u64(ff, &data->dir.version); 3016 } 3017 3018 #ifdef HAVE_LIBBPF_SUPPORT 3019 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused) 3020 { 3021 struct bpf_prog_info_linear *info_linear; 3022 struct bpf_prog_info_node *info_node; 3023 struct perf_env *env = &ff->ph->env; 3024 u32 count, i; 3025 int err = -1; 3026 3027 if (ff->ph->needs_swap) { 3028 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n"); 3029 return 0; 3030 } 3031 3032 if (do_read_u32(ff, &count)) 3033 return -1; 3034 3035 down_write(&env->bpf_progs.lock); 3036 3037 for (i = 0; i < count; ++i) { 3038 u32 info_len, data_len; 3039 3040 info_linear = NULL; 3041 info_node = NULL; 3042 if (do_read_u32(ff, &info_len)) 3043 goto out; 3044 if (do_read_u32(ff, &data_len)) 3045 goto out; 3046 3047 if (info_len > sizeof(struct bpf_prog_info)) { 3048 pr_warning("detected invalid bpf_prog_info\n"); 3049 goto out; 3050 } 3051 3052 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + 3053 data_len); 3054 if (!info_linear) 3055 goto out; 3056 info_linear->info_len = sizeof(struct bpf_prog_info); 3057 info_linear->data_len = data_len; 3058 if (do_read_u64(ff, (u64 *)(&info_linear->arrays))) 3059 goto out; 3060 if (__do_read(ff, &info_linear->info, info_len)) 3061 goto out; 3062 if (info_len < sizeof(struct bpf_prog_info)) 3063 memset(((void *)(&info_linear->info)) + info_len, 0, 3064 sizeof(struct bpf_prog_info) - info_len); 3065 3066 if (__do_read(ff, info_linear->data, data_len)) 3067 goto out; 3068 3069 info_node = malloc(sizeof(struct bpf_prog_info_node)); 3070 if (!info_node) 3071 goto out; 3072 3073 /* after reading from file, translate offset to address */ 3074 bpf_program__bpil_offs_to_addr(info_linear); 3075 info_node->info_linear = info_linear; 3076 perf_env__insert_bpf_prog_info(env, info_node); 3077 } 3078 3079 up_write(&env->bpf_progs.lock); 3080 return 0; 3081 out: 3082 free(info_linear); 3083 free(info_node); 3084 up_write(&env->bpf_progs.lock); 3085 return err; 3086 } 3087 3088 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused) 3089 { 3090 struct perf_env *env = &ff->ph->env; 3091 struct btf_node *node = NULL; 3092 u32 count, i; 3093 int err = -1; 3094 3095 if (ff->ph->needs_swap) { 3096 pr_warning("interpreting btf from systems with endianness is not yet supported\n"); 3097 return 0; 3098 } 3099 3100 if (do_read_u32(ff, &count)) 3101 return -1; 3102 3103 down_write(&env->bpf_progs.lock); 3104 3105 for (i = 0; i < count; ++i) { 3106 u32 id, data_size; 3107 3108 if (do_read_u32(ff, &id)) 3109 goto out; 3110 if (do_read_u32(ff, &data_size)) 3111 goto out; 3112 3113 node = malloc(sizeof(struct btf_node) + data_size); 3114 if (!node) 3115 goto out; 3116 3117 node->id = id; 3118 node->data_size = data_size; 3119 3120 if (__do_read(ff, node->data, data_size)) 3121 goto out; 3122 3123 perf_env__insert_btf(env, node); 3124 node = NULL; 3125 } 3126 3127 err = 0; 3128 out: 3129 up_write(&env->bpf_progs.lock); 3130 free(node); 3131 return err; 3132 } 3133 #endif // HAVE_LIBBPF_SUPPORT 3134 3135 static int process_compressed(struct feat_fd *ff, 3136 void *data __maybe_unused) 3137 { 3138 if (do_read_u32(ff, &(ff->ph->env.comp_ver))) 3139 return -1; 3140 3141 if (do_read_u32(ff, &(ff->ph->env.comp_type))) 3142 return -1; 3143 3144 if (do_read_u32(ff, &(ff->ph->env.comp_level))) 3145 return -1; 3146 3147 if (do_read_u32(ff, &(ff->ph->env.comp_ratio))) 3148 return -1; 3149 3150 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len))) 3151 return -1; 3152 3153 return 0; 3154 } 3155 3156 static int process_per_cpu_pmu_caps(struct feat_fd *ff, int *nr_cpu_pmu_caps, 3157 char **cpu_pmu_caps, 3158 unsigned int *max_branches) 3159 { 3160 char *name, *value; 3161 struct strbuf sb; 3162 u32 nr_caps; 3163 3164 if (do_read_u32(ff, &nr_caps)) 3165 return -1; 3166 3167 if (!nr_caps) { 3168 pr_debug("cpu pmu capabilities not available\n"); 3169 return 0; 3170 } 3171 3172 *nr_cpu_pmu_caps = nr_caps; 3173 3174 if (strbuf_init(&sb, 128) < 0) 3175 return -1; 3176 3177 while (nr_caps--) { 3178 name = do_read_string(ff); 3179 if (!name) 3180 goto error; 3181 3182 value = do_read_string(ff); 3183 if (!value) 3184 goto free_name; 3185 3186 if (strbuf_addf(&sb, "%s=%s", name, value) < 0) 3187 goto free_value; 3188 3189 /* include a NULL character at the end */ 3190 if (strbuf_add(&sb, "", 1) < 0) 3191 goto free_value; 3192 3193 if (!strcmp(name, "branches")) 3194 *max_branches = atoi(value); 3195 3196 free(value); 3197 free(name); 3198 } 3199 *cpu_pmu_caps = strbuf_detach(&sb, NULL); 3200 return 0; 3201 3202 free_value: 3203 free(value); 3204 free_name: 3205 free(name); 3206 error: 3207 strbuf_release(&sb); 3208 return -1; 3209 } 3210 3211 static int process_cpu_pmu_caps(struct feat_fd *ff, 3212 void *data __maybe_unused) 3213 { 3214 return process_per_cpu_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps, 3215 &ff->ph->env.cpu_pmu_caps, 3216 &ff->ph->env.max_branches); 3217 } 3218 3219 static int process_hybrid_cpu_pmu_caps(struct feat_fd *ff, 3220 void *data __maybe_unused) 3221 { 3222 struct hybrid_cpc_node *nodes; 3223 u32 nr_pmu, i; 3224 int ret; 3225 3226 if (do_read_u32(ff, &nr_pmu)) 3227 return -1; 3228 3229 if (!nr_pmu) { 3230 pr_debug("hybrid cpu pmu capabilities not available\n"); 3231 return 0; 3232 } 3233 3234 nodes = zalloc(sizeof(*nodes) * nr_pmu); 3235 if (!nodes) 3236 return -ENOMEM; 3237 3238 for (i = 0; i < nr_pmu; i++) { 3239 struct hybrid_cpc_node *n = &nodes[i]; 3240 3241 ret = process_per_cpu_pmu_caps(ff, &n->nr_cpu_pmu_caps, 3242 &n->cpu_pmu_caps, 3243 &n->max_branches); 3244 if (ret) 3245 goto err; 3246 3247 n->pmu_name = do_read_string(ff); 3248 if (!n->pmu_name) { 3249 ret = -1; 3250 goto err; 3251 } 3252 } 3253 3254 ff->ph->env.nr_hybrid_cpc_nodes = nr_pmu; 3255 ff->ph->env.hybrid_cpc_nodes = nodes; 3256 return 0; 3257 3258 err: 3259 for (i = 0; i < nr_pmu; i++) { 3260 free(nodes[i].cpu_pmu_caps); 3261 free(nodes[i].pmu_name); 3262 } 3263 3264 free(nodes); 3265 return ret; 3266 } 3267 3268 #define FEAT_OPR(n, func, __full_only) \ 3269 [HEADER_##n] = { \ 3270 .name = __stringify(n), \ 3271 .write = write_##func, \ 3272 .print = print_##func, \ 3273 .full_only = __full_only, \ 3274 .process = process_##func, \ 3275 .synthesize = true \ 3276 } 3277 3278 #define FEAT_OPN(n, func, __full_only) \ 3279 [HEADER_##n] = { \ 3280 .name = __stringify(n), \ 3281 .write = write_##func, \ 3282 .print = print_##func, \ 3283 .full_only = __full_only, \ 3284 .process = process_##func \ 3285 } 3286 3287 /* feature_ops not implemented: */ 3288 #define print_tracing_data NULL 3289 #define print_build_id NULL 3290 3291 #define process_branch_stack NULL 3292 #define process_stat NULL 3293 3294 // Only used in util/synthetic-events.c 3295 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE]; 3296 3297 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = { 3298 FEAT_OPN(TRACING_DATA, tracing_data, false), 3299 FEAT_OPN(BUILD_ID, build_id, false), 3300 FEAT_OPR(HOSTNAME, hostname, false), 3301 FEAT_OPR(OSRELEASE, osrelease, false), 3302 FEAT_OPR(VERSION, version, false), 3303 FEAT_OPR(ARCH, arch, false), 3304 FEAT_OPR(NRCPUS, nrcpus, false), 3305 FEAT_OPR(CPUDESC, cpudesc, false), 3306 FEAT_OPR(CPUID, cpuid, false), 3307 FEAT_OPR(TOTAL_MEM, total_mem, false), 3308 FEAT_OPR(EVENT_DESC, event_desc, false), 3309 FEAT_OPR(CMDLINE, cmdline, false), 3310 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), 3311 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), 3312 FEAT_OPN(BRANCH_STACK, branch_stack, false), 3313 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), 3314 FEAT_OPR(GROUP_DESC, group_desc, false), 3315 FEAT_OPN(AUXTRACE, auxtrace, false), 3316 FEAT_OPN(STAT, stat, false), 3317 FEAT_OPN(CACHE, cache, true), 3318 FEAT_OPR(SAMPLE_TIME, sample_time, false), 3319 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), 3320 FEAT_OPR(CLOCKID, clockid, false), 3321 FEAT_OPN(DIR_FORMAT, dir_format, false), 3322 #ifdef HAVE_LIBBPF_SUPPORT 3323 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false), 3324 FEAT_OPR(BPF_BTF, bpf_btf, false), 3325 #endif 3326 FEAT_OPR(COMPRESSED, compressed, false), 3327 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false), 3328 FEAT_OPR(CLOCK_DATA, clock_data, false), 3329 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true), 3330 FEAT_OPR(HYBRID_CPU_PMU_CAPS, hybrid_cpu_pmu_caps, false), 3331 }; 3332 3333 struct header_print_data { 3334 FILE *fp; 3335 bool full; /* extended list of headers */ 3336 }; 3337 3338 static int perf_file_section__fprintf_info(struct perf_file_section *section, 3339 struct perf_header *ph, 3340 int feat, int fd, void *data) 3341 { 3342 struct header_print_data *hd = data; 3343 struct feat_fd ff; 3344 3345 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3346 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3347 "%d, continuing...\n", section->offset, feat); 3348 return 0; 3349 } 3350 if (feat >= HEADER_LAST_FEATURE) { 3351 pr_warning("unknown feature %d\n", feat); 3352 return 0; 3353 } 3354 if (!feat_ops[feat].print) 3355 return 0; 3356 3357 ff = (struct feat_fd) { 3358 .fd = fd, 3359 .ph = ph, 3360 }; 3361 3362 if (!feat_ops[feat].full_only || hd->full) 3363 feat_ops[feat].print(&ff, hd->fp); 3364 else 3365 fprintf(hd->fp, "# %s info available, use -I to display\n", 3366 feat_ops[feat].name); 3367 3368 return 0; 3369 } 3370 3371 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) 3372 { 3373 struct header_print_data hd; 3374 struct perf_header *header = &session->header; 3375 int fd = perf_data__fd(session->data); 3376 struct stat st; 3377 time_t stctime; 3378 int ret, bit; 3379 3380 hd.fp = fp; 3381 hd.full = full; 3382 3383 ret = fstat(fd, &st); 3384 if (ret == -1) 3385 return -1; 3386 3387 stctime = st.st_mtime; 3388 fprintf(fp, "# captured on : %s", ctime(&stctime)); 3389 3390 fprintf(fp, "# header version : %u\n", header->version); 3391 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); 3392 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); 3393 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); 3394 3395 perf_header__process_sections(header, fd, &hd, 3396 perf_file_section__fprintf_info); 3397 3398 if (session->data->is_pipe) 3399 return 0; 3400 3401 fprintf(fp, "# missing features: "); 3402 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { 3403 if (bit) 3404 fprintf(fp, "%s ", feat_ops[bit].name); 3405 } 3406 3407 fprintf(fp, "\n"); 3408 return 0; 3409 } 3410 3411 static int do_write_feat(struct feat_fd *ff, int type, 3412 struct perf_file_section **p, 3413 struct evlist *evlist) 3414 { 3415 int err; 3416 int ret = 0; 3417 3418 if (perf_header__has_feat(ff->ph, type)) { 3419 if (!feat_ops[type].write) 3420 return -1; 3421 3422 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 3423 return -1; 3424 3425 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); 3426 3427 err = feat_ops[type].write(ff, evlist); 3428 if (err < 0) { 3429 pr_debug("failed to write feature %s\n", feat_ops[type].name); 3430 3431 /* undo anything written */ 3432 lseek(ff->fd, (*p)->offset, SEEK_SET); 3433 3434 return -1; 3435 } 3436 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; 3437 (*p)++; 3438 } 3439 return ret; 3440 } 3441 3442 static int perf_header__adds_write(struct perf_header *header, 3443 struct evlist *evlist, int fd) 3444 { 3445 int nr_sections; 3446 struct feat_fd ff; 3447 struct perf_file_section *feat_sec, *p; 3448 int sec_size; 3449 u64 sec_start; 3450 int feat; 3451 int err; 3452 3453 ff = (struct feat_fd){ 3454 .fd = fd, 3455 .ph = header, 3456 }; 3457 3458 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3459 if (!nr_sections) 3460 return 0; 3461 3462 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); 3463 if (feat_sec == NULL) 3464 return -ENOMEM; 3465 3466 sec_size = sizeof(*feat_sec) * nr_sections; 3467 3468 sec_start = header->feat_offset; 3469 lseek(fd, sec_start + sec_size, SEEK_SET); 3470 3471 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3472 if (do_write_feat(&ff, feat, &p, evlist)) 3473 perf_header__clear_feat(header, feat); 3474 } 3475 3476 lseek(fd, sec_start, SEEK_SET); 3477 /* 3478 * may write more than needed due to dropped feature, but 3479 * this is okay, reader will skip the missing entries 3480 */ 3481 err = do_write(&ff, feat_sec, sec_size); 3482 if (err < 0) 3483 pr_debug("failed to write feature section\n"); 3484 free(feat_sec); 3485 return err; 3486 } 3487 3488 int perf_header__write_pipe(int fd) 3489 { 3490 struct perf_pipe_file_header f_header; 3491 struct feat_fd ff; 3492 int err; 3493 3494 ff = (struct feat_fd){ .fd = fd }; 3495 3496 f_header = (struct perf_pipe_file_header){ 3497 .magic = PERF_MAGIC, 3498 .size = sizeof(f_header), 3499 }; 3500 3501 err = do_write(&ff, &f_header, sizeof(f_header)); 3502 if (err < 0) { 3503 pr_debug("failed to write perf pipe header\n"); 3504 return err; 3505 } 3506 3507 return 0; 3508 } 3509 3510 int perf_session__write_header(struct perf_session *session, 3511 struct evlist *evlist, 3512 int fd, bool at_exit) 3513 { 3514 struct perf_file_header f_header; 3515 struct perf_file_attr f_attr; 3516 struct perf_header *header = &session->header; 3517 struct evsel *evsel; 3518 struct feat_fd ff; 3519 u64 attr_offset; 3520 int err; 3521 3522 ff = (struct feat_fd){ .fd = fd}; 3523 lseek(fd, sizeof(f_header), SEEK_SET); 3524 3525 evlist__for_each_entry(session->evlist, evsel) { 3526 evsel->id_offset = lseek(fd, 0, SEEK_CUR); 3527 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 3528 if (err < 0) { 3529 pr_debug("failed to write perf header\n"); 3530 return err; 3531 } 3532 } 3533 3534 attr_offset = lseek(ff.fd, 0, SEEK_CUR); 3535 3536 evlist__for_each_entry(evlist, evsel) { 3537 if (evsel->core.attr.size < sizeof(evsel->core.attr)) { 3538 /* 3539 * We are likely in "perf inject" and have read 3540 * from an older file. Update attr size so that 3541 * reader gets the right offset to the ids. 3542 */ 3543 evsel->core.attr.size = sizeof(evsel->core.attr); 3544 } 3545 f_attr = (struct perf_file_attr){ 3546 .attr = evsel->core.attr, 3547 .ids = { 3548 .offset = evsel->id_offset, 3549 .size = evsel->core.ids * sizeof(u64), 3550 } 3551 }; 3552 err = do_write(&ff, &f_attr, sizeof(f_attr)); 3553 if (err < 0) { 3554 pr_debug("failed to write perf header attribute\n"); 3555 return err; 3556 } 3557 } 3558 3559 if (!header->data_offset) 3560 header->data_offset = lseek(fd, 0, SEEK_CUR); 3561 header->feat_offset = header->data_offset + header->data_size; 3562 3563 if (at_exit) { 3564 err = perf_header__adds_write(header, evlist, fd); 3565 if (err < 0) 3566 return err; 3567 } 3568 3569 f_header = (struct perf_file_header){ 3570 .magic = PERF_MAGIC, 3571 .size = sizeof(f_header), 3572 .attr_size = sizeof(f_attr), 3573 .attrs = { 3574 .offset = attr_offset, 3575 .size = evlist->core.nr_entries * sizeof(f_attr), 3576 }, 3577 .data = { 3578 .offset = header->data_offset, 3579 .size = header->data_size, 3580 }, 3581 /* event_types is ignored, store zeros */ 3582 }; 3583 3584 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); 3585 3586 lseek(fd, 0, SEEK_SET); 3587 err = do_write(&ff, &f_header, sizeof(f_header)); 3588 if (err < 0) { 3589 pr_debug("failed to write perf header\n"); 3590 return err; 3591 } 3592 lseek(fd, header->data_offset + header->data_size, SEEK_SET); 3593 3594 return 0; 3595 } 3596 3597 static int perf_header__getbuffer64(struct perf_header *header, 3598 int fd, void *buf, size_t size) 3599 { 3600 if (readn(fd, buf, size) <= 0) 3601 return -1; 3602 3603 if (header->needs_swap) 3604 mem_bswap_64(buf, size); 3605 3606 return 0; 3607 } 3608 3609 int perf_header__process_sections(struct perf_header *header, int fd, 3610 void *data, 3611 int (*process)(struct perf_file_section *section, 3612 struct perf_header *ph, 3613 int feat, int fd, void *data)) 3614 { 3615 struct perf_file_section *feat_sec, *sec; 3616 int nr_sections; 3617 int sec_size; 3618 int feat; 3619 int err; 3620 3621 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3622 if (!nr_sections) 3623 return 0; 3624 3625 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); 3626 if (!feat_sec) 3627 return -1; 3628 3629 sec_size = sizeof(*feat_sec) * nr_sections; 3630 3631 lseek(fd, header->feat_offset, SEEK_SET); 3632 3633 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); 3634 if (err < 0) 3635 goto out_free; 3636 3637 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { 3638 err = process(sec++, header, feat, fd, data); 3639 if (err < 0) 3640 goto out_free; 3641 } 3642 err = 0; 3643 out_free: 3644 free(feat_sec); 3645 return err; 3646 } 3647 3648 static const int attr_file_abi_sizes[] = { 3649 [0] = PERF_ATTR_SIZE_VER0, 3650 [1] = PERF_ATTR_SIZE_VER1, 3651 [2] = PERF_ATTR_SIZE_VER2, 3652 [3] = PERF_ATTR_SIZE_VER3, 3653 [4] = PERF_ATTR_SIZE_VER4, 3654 0, 3655 }; 3656 3657 /* 3658 * In the legacy file format, the magic number is not used to encode endianness. 3659 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based 3660 * on ABI revisions, we need to try all combinations for all endianness to 3661 * detect the endianness. 3662 */ 3663 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) 3664 { 3665 uint64_t ref_size, attr_size; 3666 int i; 3667 3668 for (i = 0 ; attr_file_abi_sizes[i]; i++) { 3669 ref_size = attr_file_abi_sizes[i] 3670 + sizeof(struct perf_file_section); 3671 if (hdr_sz != ref_size) { 3672 attr_size = bswap_64(hdr_sz); 3673 if (attr_size != ref_size) 3674 continue; 3675 3676 ph->needs_swap = true; 3677 } 3678 pr_debug("ABI%d perf.data file detected, need_swap=%d\n", 3679 i, 3680 ph->needs_swap); 3681 return 0; 3682 } 3683 /* could not determine endianness */ 3684 return -1; 3685 } 3686 3687 #define PERF_PIPE_HDR_VER0 16 3688 3689 static const size_t attr_pipe_abi_sizes[] = { 3690 [0] = PERF_PIPE_HDR_VER0, 3691 0, 3692 }; 3693 3694 /* 3695 * In the legacy pipe format, there is an implicit assumption that endianness 3696 * between host recording the samples, and host parsing the samples is the 3697 * same. This is not always the case given that the pipe output may always be 3698 * redirected into a file and analyzed on a different machine with possibly a 3699 * different endianness and perf_event ABI revisions in the perf tool itself. 3700 */ 3701 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) 3702 { 3703 u64 attr_size; 3704 int i; 3705 3706 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { 3707 if (hdr_sz != attr_pipe_abi_sizes[i]) { 3708 attr_size = bswap_64(hdr_sz); 3709 if (attr_size != hdr_sz) 3710 continue; 3711 3712 ph->needs_swap = true; 3713 } 3714 pr_debug("Pipe ABI%d perf.data file detected\n", i); 3715 return 0; 3716 } 3717 return -1; 3718 } 3719 3720 bool is_perf_magic(u64 magic) 3721 { 3722 if (!memcmp(&magic, __perf_magic1, sizeof(magic)) 3723 || magic == __perf_magic2 3724 || magic == __perf_magic2_sw) 3725 return true; 3726 3727 return false; 3728 } 3729 3730 static int check_magic_endian(u64 magic, uint64_t hdr_sz, 3731 bool is_pipe, struct perf_header *ph) 3732 { 3733 int ret; 3734 3735 /* check for legacy format */ 3736 ret = memcmp(&magic, __perf_magic1, sizeof(magic)); 3737 if (ret == 0) { 3738 ph->version = PERF_HEADER_VERSION_1; 3739 pr_debug("legacy perf.data format\n"); 3740 if (is_pipe) 3741 return try_all_pipe_abis(hdr_sz, ph); 3742 3743 return try_all_file_abis(hdr_sz, ph); 3744 } 3745 /* 3746 * the new magic number serves two purposes: 3747 * - unique number to identify actual perf.data files 3748 * - encode endianness of file 3749 */ 3750 ph->version = PERF_HEADER_VERSION_2; 3751 3752 /* check magic number with one endianness */ 3753 if (magic == __perf_magic2) 3754 return 0; 3755 3756 /* check magic number with opposite endianness */ 3757 if (magic != __perf_magic2_sw) 3758 return -1; 3759 3760 ph->needs_swap = true; 3761 3762 return 0; 3763 } 3764 3765 int perf_file_header__read(struct perf_file_header *header, 3766 struct perf_header *ph, int fd) 3767 { 3768 ssize_t ret; 3769 3770 lseek(fd, 0, SEEK_SET); 3771 3772 ret = readn(fd, header, sizeof(*header)); 3773 if (ret <= 0) 3774 return -1; 3775 3776 if (check_magic_endian(header->magic, 3777 header->attr_size, false, ph) < 0) { 3778 pr_debug("magic/endian check failed\n"); 3779 return -1; 3780 } 3781 3782 if (ph->needs_swap) { 3783 mem_bswap_64(header, offsetof(struct perf_file_header, 3784 adds_features)); 3785 } 3786 3787 if (header->size != sizeof(*header)) { 3788 /* Support the previous format */ 3789 if (header->size == offsetof(typeof(*header), adds_features)) 3790 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3791 else 3792 return -1; 3793 } else if (ph->needs_swap) { 3794 /* 3795 * feature bitmap is declared as an array of unsigned longs -- 3796 * not good since its size can differ between the host that 3797 * generated the data file and the host analyzing the file. 3798 * 3799 * We need to handle endianness, but we don't know the size of 3800 * the unsigned long where the file was generated. Take a best 3801 * guess at determining it: try 64-bit swap first (ie., file 3802 * created on a 64-bit host), and check if the hostname feature 3803 * bit is set (this feature bit is forced on as of fbe96f2). 3804 * If the bit is not, undo the 64-bit swap and try a 32-bit 3805 * swap. If the hostname bit is still not set (e.g., older data 3806 * file), punt and fallback to the original behavior -- 3807 * clearing all feature bits and setting buildid. 3808 */ 3809 mem_bswap_64(&header->adds_features, 3810 BITS_TO_U64(HEADER_FEAT_BITS)); 3811 3812 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3813 /* unswap as u64 */ 3814 mem_bswap_64(&header->adds_features, 3815 BITS_TO_U64(HEADER_FEAT_BITS)); 3816 3817 /* unswap as u32 */ 3818 mem_bswap_32(&header->adds_features, 3819 BITS_TO_U32(HEADER_FEAT_BITS)); 3820 } 3821 3822 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3823 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3824 set_bit(HEADER_BUILD_ID, header->adds_features); 3825 } 3826 } 3827 3828 memcpy(&ph->adds_features, &header->adds_features, 3829 sizeof(ph->adds_features)); 3830 3831 ph->data_offset = header->data.offset; 3832 ph->data_size = header->data.size; 3833 ph->feat_offset = header->data.offset + header->data.size; 3834 return 0; 3835 } 3836 3837 static int perf_file_section__process(struct perf_file_section *section, 3838 struct perf_header *ph, 3839 int feat, int fd, void *data) 3840 { 3841 struct feat_fd fdd = { 3842 .fd = fd, 3843 .ph = ph, 3844 .size = section->size, 3845 .offset = section->offset, 3846 }; 3847 3848 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3849 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3850 "%d, continuing...\n", section->offset, feat); 3851 return 0; 3852 } 3853 3854 if (feat >= HEADER_LAST_FEATURE) { 3855 pr_debug("unknown feature %d, continuing...\n", feat); 3856 return 0; 3857 } 3858 3859 if (!feat_ops[feat].process) 3860 return 0; 3861 3862 return feat_ops[feat].process(&fdd, data); 3863 } 3864 3865 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, 3866 struct perf_header *ph, 3867 struct perf_data* data, 3868 bool repipe, int repipe_fd) 3869 { 3870 struct feat_fd ff = { 3871 .fd = repipe_fd, 3872 .ph = ph, 3873 }; 3874 ssize_t ret; 3875 3876 ret = perf_data__read(data, header, sizeof(*header)); 3877 if (ret <= 0) 3878 return -1; 3879 3880 if (check_magic_endian(header->magic, header->size, true, ph) < 0) { 3881 pr_debug("endian/magic failed\n"); 3882 return -1; 3883 } 3884 3885 if (ph->needs_swap) 3886 header->size = bswap_64(header->size); 3887 3888 if (repipe && do_write(&ff, header, sizeof(*header)) < 0) 3889 return -1; 3890 3891 return 0; 3892 } 3893 3894 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd) 3895 { 3896 struct perf_header *header = &session->header; 3897 struct perf_pipe_file_header f_header; 3898 3899 if (perf_file_header__read_pipe(&f_header, header, session->data, 3900 session->repipe, repipe_fd) < 0) { 3901 pr_debug("incompatible file format\n"); 3902 return -EINVAL; 3903 } 3904 3905 return f_header.size == sizeof(f_header) ? 0 : -1; 3906 } 3907 3908 static int read_attr(int fd, struct perf_header *ph, 3909 struct perf_file_attr *f_attr) 3910 { 3911 struct perf_event_attr *attr = &f_attr->attr; 3912 size_t sz, left; 3913 size_t our_sz = sizeof(f_attr->attr); 3914 ssize_t ret; 3915 3916 memset(f_attr, 0, sizeof(*f_attr)); 3917 3918 /* read minimal guaranteed structure */ 3919 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); 3920 if (ret <= 0) { 3921 pr_debug("cannot read %d bytes of header attr\n", 3922 PERF_ATTR_SIZE_VER0); 3923 return -1; 3924 } 3925 3926 /* on file perf_event_attr size */ 3927 sz = attr->size; 3928 3929 if (ph->needs_swap) 3930 sz = bswap_32(sz); 3931 3932 if (sz == 0) { 3933 /* assume ABI0 */ 3934 sz = PERF_ATTR_SIZE_VER0; 3935 } else if (sz > our_sz) { 3936 pr_debug("file uses a more recent and unsupported ABI" 3937 " (%zu bytes extra)\n", sz - our_sz); 3938 return -1; 3939 } 3940 /* what we have not yet read and that we know about */ 3941 left = sz - PERF_ATTR_SIZE_VER0; 3942 if (left) { 3943 void *ptr = attr; 3944 ptr += PERF_ATTR_SIZE_VER0; 3945 3946 ret = readn(fd, ptr, left); 3947 } 3948 /* read perf_file_section, ids are read in caller */ 3949 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); 3950 3951 return ret <= 0 ? -1 : 0; 3952 } 3953 3954 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent) 3955 { 3956 struct tep_event *event; 3957 char bf[128]; 3958 3959 /* already prepared */ 3960 if (evsel->tp_format) 3961 return 0; 3962 3963 if (pevent == NULL) { 3964 pr_debug("broken or missing trace data\n"); 3965 return -1; 3966 } 3967 3968 event = tep_find_event(pevent, evsel->core.attr.config); 3969 if (event == NULL) { 3970 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config); 3971 return -1; 3972 } 3973 3974 if (!evsel->name) { 3975 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); 3976 evsel->name = strdup(bf); 3977 if (evsel->name == NULL) 3978 return -1; 3979 } 3980 3981 evsel->tp_format = event; 3982 return 0; 3983 } 3984 3985 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent) 3986 { 3987 struct evsel *pos; 3988 3989 evlist__for_each_entry(evlist, pos) { 3990 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT && 3991 evsel__prepare_tracepoint_event(pos, pevent)) 3992 return -1; 3993 } 3994 3995 return 0; 3996 } 3997 3998 int perf_session__read_header(struct perf_session *session, int repipe_fd) 3999 { 4000 struct perf_data *data = session->data; 4001 struct perf_header *header = &session->header; 4002 struct perf_file_header f_header; 4003 struct perf_file_attr f_attr; 4004 u64 f_id; 4005 int nr_attrs, nr_ids, i, j, err; 4006 int fd = perf_data__fd(data); 4007 4008 session->evlist = evlist__new(); 4009 if (session->evlist == NULL) 4010 return -ENOMEM; 4011 4012 session->evlist->env = &header->env; 4013 session->machines.host.env = &header->env; 4014 4015 /* 4016 * We can read 'pipe' data event from regular file, 4017 * check for the pipe header regardless of source. 4018 */ 4019 err = perf_header__read_pipe(session, repipe_fd); 4020 if (!err || perf_data__is_pipe(data)) { 4021 data->is_pipe = true; 4022 return err; 4023 } 4024 4025 if (perf_file_header__read(&f_header, header, fd) < 0) 4026 return -EINVAL; 4027 4028 if (header->needs_swap && data->in_place_update) { 4029 pr_err("In-place update not supported when byte-swapping is required\n"); 4030 return -EINVAL; 4031 } 4032 4033 /* 4034 * Sanity check that perf.data was written cleanly; data size is 4035 * initialized to 0 and updated only if the on_exit function is run. 4036 * If data size is still 0 then the file contains only partial 4037 * information. Just warn user and process it as much as it can. 4038 */ 4039 if (f_header.data.size == 0) { 4040 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" 4041 "Was the 'perf record' command properly terminated?\n", 4042 data->file.path); 4043 } 4044 4045 if (f_header.attr_size == 0) { 4046 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n" 4047 "Was the 'perf record' command properly terminated?\n", 4048 data->file.path); 4049 return -EINVAL; 4050 } 4051 4052 nr_attrs = f_header.attrs.size / f_header.attr_size; 4053 lseek(fd, f_header.attrs.offset, SEEK_SET); 4054 4055 for (i = 0; i < nr_attrs; i++) { 4056 struct evsel *evsel; 4057 off_t tmp; 4058 4059 if (read_attr(fd, header, &f_attr) < 0) 4060 goto out_errno; 4061 4062 if (header->needs_swap) { 4063 f_attr.ids.size = bswap_64(f_attr.ids.size); 4064 f_attr.ids.offset = bswap_64(f_attr.ids.offset); 4065 perf_event__attr_swap(&f_attr.attr); 4066 } 4067 4068 tmp = lseek(fd, 0, SEEK_CUR); 4069 evsel = evsel__new(&f_attr.attr); 4070 4071 if (evsel == NULL) 4072 goto out_delete_evlist; 4073 4074 evsel->needs_swap = header->needs_swap; 4075 /* 4076 * Do it before so that if perf_evsel__alloc_id fails, this 4077 * entry gets purged too at evlist__delete(). 4078 */ 4079 evlist__add(session->evlist, evsel); 4080 4081 nr_ids = f_attr.ids.size / sizeof(u64); 4082 /* 4083 * We don't have the cpu and thread maps on the header, so 4084 * for allocating the perf_sample_id table we fake 1 cpu and 4085 * hattr->ids threads. 4086 */ 4087 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids)) 4088 goto out_delete_evlist; 4089 4090 lseek(fd, f_attr.ids.offset, SEEK_SET); 4091 4092 for (j = 0; j < nr_ids; j++) { 4093 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) 4094 goto out_errno; 4095 4096 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id); 4097 } 4098 4099 lseek(fd, tmp, SEEK_SET); 4100 } 4101 4102 perf_header__process_sections(header, fd, &session->tevent, 4103 perf_file_section__process); 4104 4105 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent)) 4106 goto out_delete_evlist; 4107 4108 return 0; 4109 out_errno: 4110 return -errno; 4111 4112 out_delete_evlist: 4113 evlist__delete(session->evlist); 4114 session->evlist = NULL; 4115 return -ENOMEM; 4116 } 4117 4118 int perf_event__process_feature(struct perf_session *session, 4119 union perf_event *event) 4120 { 4121 struct perf_tool *tool = session->tool; 4122 struct feat_fd ff = { .fd = 0 }; 4123 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event; 4124 int type = fe->header.type; 4125 u64 feat = fe->feat_id; 4126 4127 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { 4128 pr_warning("invalid record type %d in pipe-mode\n", type); 4129 return 0; 4130 } 4131 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { 4132 pr_warning("invalid record type %d in pipe-mode\n", type); 4133 return -1; 4134 } 4135 4136 if (!feat_ops[feat].process) 4137 return 0; 4138 4139 ff.buf = (void *)fe->data; 4140 ff.size = event->header.size - sizeof(*fe); 4141 ff.ph = &session->header; 4142 4143 if (feat_ops[feat].process(&ff, NULL)) 4144 return -1; 4145 4146 if (!feat_ops[feat].print || !tool->show_feat_hdr) 4147 return 0; 4148 4149 if (!feat_ops[feat].full_only || 4150 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { 4151 feat_ops[feat].print(&ff, stdout); 4152 } else { 4153 fprintf(stdout, "# %s info available, use -I to display\n", 4154 feat_ops[feat].name); 4155 } 4156 4157 return 0; 4158 } 4159 4160 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) 4161 { 4162 struct perf_record_event_update *ev = &event->event_update; 4163 struct perf_record_event_update_scale *ev_scale; 4164 struct perf_record_event_update_cpus *ev_cpus; 4165 struct perf_cpu_map *map; 4166 size_t ret; 4167 4168 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id); 4169 4170 switch (ev->type) { 4171 case PERF_EVENT_UPDATE__SCALE: 4172 ev_scale = (struct perf_record_event_update_scale *)ev->data; 4173 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale); 4174 break; 4175 case PERF_EVENT_UPDATE__UNIT: 4176 ret += fprintf(fp, "... unit: %s\n", ev->data); 4177 break; 4178 case PERF_EVENT_UPDATE__NAME: 4179 ret += fprintf(fp, "... name: %s\n", ev->data); 4180 break; 4181 case PERF_EVENT_UPDATE__CPUS: 4182 ev_cpus = (struct perf_record_event_update_cpus *)ev->data; 4183 ret += fprintf(fp, "... "); 4184 4185 map = cpu_map__new_data(&ev_cpus->cpus); 4186 if (map) 4187 ret += cpu_map__fprintf(map, fp); 4188 else 4189 ret += fprintf(fp, "failed to get cpus\n"); 4190 break; 4191 default: 4192 ret += fprintf(fp, "... unknown type\n"); 4193 break; 4194 } 4195 4196 return ret; 4197 } 4198 4199 int perf_event__process_attr(struct perf_tool *tool __maybe_unused, 4200 union perf_event *event, 4201 struct evlist **pevlist) 4202 { 4203 u32 i, ids, n_ids; 4204 struct evsel *evsel; 4205 struct evlist *evlist = *pevlist; 4206 4207 if (evlist == NULL) { 4208 *pevlist = evlist = evlist__new(); 4209 if (evlist == NULL) 4210 return -ENOMEM; 4211 } 4212 4213 evsel = evsel__new(&event->attr.attr); 4214 if (evsel == NULL) 4215 return -ENOMEM; 4216 4217 evlist__add(evlist, evsel); 4218 4219 ids = event->header.size; 4220 ids -= (void *)&event->attr.id - (void *)event; 4221 n_ids = ids / sizeof(u64); 4222 /* 4223 * We don't have the cpu and thread maps on the header, so 4224 * for allocating the perf_sample_id table we fake 1 cpu and 4225 * hattr->ids threads. 4226 */ 4227 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids)) 4228 return -ENOMEM; 4229 4230 for (i = 0; i < n_ids; i++) { 4231 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]); 4232 } 4233 4234 return 0; 4235 } 4236 4237 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused, 4238 union perf_event *event, 4239 struct evlist **pevlist) 4240 { 4241 struct perf_record_event_update *ev = &event->event_update; 4242 struct perf_record_event_update_scale *ev_scale; 4243 struct perf_record_event_update_cpus *ev_cpus; 4244 struct evlist *evlist; 4245 struct evsel *evsel; 4246 struct perf_cpu_map *map; 4247 4248 if (!pevlist || *pevlist == NULL) 4249 return -EINVAL; 4250 4251 evlist = *pevlist; 4252 4253 evsel = evlist__id2evsel(evlist, ev->id); 4254 if (evsel == NULL) 4255 return -EINVAL; 4256 4257 switch (ev->type) { 4258 case PERF_EVENT_UPDATE__UNIT: 4259 evsel->unit = strdup(ev->data); 4260 break; 4261 case PERF_EVENT_UPDATE__NAME: 4262 evsel->name = strdup(ev->data); 4263 break; 4264 case PERF_EVENT_UPDATE__SCALE: 4265 ev_scale = (struct perf_record_event_update_scale *)ev->data; 4266 evsel->scale = ev_scale->scale; 4267 break; 4268 case PERF_EVENT_UPDATE__CPUS: 4269 ev_cpus = (struct perf_record_event_update_cpus *)ev->data; 4270 4271 map = cpu_map__new_data(&ev_cpus->cpus); 4272 if (map) 4273 evsel->core.own_cpus = map; 4274 else 4275 pr_err("failed to get event_update cpus\n"); 4276 default: 4277 break; 4278 } 4279 4280 return 0; 4281 } 4282 4283 int perf_event__process_tracing_data(struct perf_session *session, 4284 union perf_event *event) 4285 { 4286 ssize_t size_read, padding, size = event->tracing_data.size; 4287 int fd = perf_data__fd(session->data); 4288 char buf[BUFSIZ]; 4289 4290 /* 4291 * The pipe fd is already in proper place and in any case 4292 * we can't move it, and we'd screw the case where we read 4293 * 'pipe' data from regular file. The trace_report reads 4294 * data from 'fd' so we need to set it directly behind the 4295 * event, where the tracing data starts. 4296 */ 4297 if (!perf_data__is_pipe(session->data)) { 4298 off_t offset = lseek(fd, 0, SEEK_CUR); 4299 4300 /* setup for reading amidst mmap */ 4301 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data), 4302 SEEK_SET); 4303 } 4304 4305 size_read = trace_report(fd, &session->tevent, 4306 session->repipe); 4307 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; 4308 4309 if (readn(fd, buf, padding) < 0) { 4310 pr_err("%s: reading input file", __func__); 4311 return -1; 4312 } 4313 if (session->repipe) { 4314 int retw = write(STDOUT_FILENO, buf, padding); 4315 if (retw <= 0 || retw != padding) { 4316 pr_err("%s: repiping tracing data padding", __func__); 4317 return -1; 4318 } 4319 } 4320 4321 if (size_read + padding != size) { 4322 pr_err("%s: tracing data size mismatch", __func__); 4323 return -1; 4324 } 4325 4326 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent); 4327 4328 return size_read + padding; 4329 } 4330 4331 int perf_event__process_build_id(struct perf_session *session, 4332 union perf_event *event) 4333 { 4334 __event_process_build_id(&event->build_id, 4335 event->build_id.filename, 4336 session); 4337 return 0; 4338 } 4339