1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <inttypes.h> 4 #include "string2.h" 5 #include <sys/param.h> 6 #include <sys/types.h> 7 #include <byteswap.h> 8 #include <unistd.h> 9 #include <regex.h> 10 #include <stdio.h> 11 #include <stdlib.h> 12 #include <linux/compiler.h> 13 #include <linux/list.h> 14 #include <linux/kernel.h> 15 #include <linux/bitops.h> 16 #include <linux/string.h> 17 #include <linux/stringify.h> 18 #include <linux/zalloc.h> 19 #include <sys/stat.h> 20 #include <sys/utsname.h> 21 #include <linux/time64.h> 22 #include <dirent.h> 23 #ifdef HAVE_LIBBPF_SUPPORT 24 #include <bpf/libbpf.h> 25 #endif 26 #include <perf/cpumap.h> 27 28 #include "dso.h" 29 #include "evlist.h" 30 #include "evsel.h" 31 #include "util/evsel_fprintf.h" 32 #include "header.h" 33 #include "memswap.h" 34 #include "trace-event.h" 35 #include "session.h" 36 #include "symbol.h" 37 #include "debug.h" 38 #include "cpumap.h" 39 #include "pmu.h" 40 #include "vdso.h" 41 #include "strbuf.h" 42 #include "build-id.h" 43 #include "data.h" 44 #include <api/fs/fs.h> 45 #include "asm/bug.h" 46 #include "tool.h" 47 #include "time-utils.h" 48 #include "units.h" 49 #include "util/util.h" // perf_exe() 50 #include "cputopo.h" 51 #include "bpf-event.h" 52 #include "bpf-utils.h" 53 #include "clockid.h" 54 #include "pmu-hybrid.h" 55 56 #include <linux/ctype.h> 57 #include <internal/lib.h> 58 59 #ifdef HAVE_LIBTRACEEVENT 60 #include <traceevent/event-parse.h> 61 #endif 62 63 /* 64 * magic2 = "PERFILE2" 65 * must be a numerical value to let the endianness 66 * determine the memory layout. That way we are able 67 * to detect endianness when reading the perf.data file 68 * back. 69 * 70 * we check for legacy (PERFFILE) format. 71 */ 72 static const char *__perf_magic1 = "PERFFILE"; 73 static const u64 __perf_magic2 = 0x32454c4946524550ULL; 74 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; 75 76 #define PERF_MAGIC __perf_magic2 77 78 const char perf_version_string[] = PERF_VERSION; 79 80 struct perf_file_attr { 81 struct perf_event_attr attr; 82 struct perf_file_section ids; 83 }; 84 85 void perf_header__set_feat(struct perf_header *header, int feat) 86 { 87 __set_bit(feat, header->adds_features); 88 } 89 90 void perf_header__clear_feat(struct perf_header *header, int feat) 91 { 92 __clear_bit(feat, header->adds_features); 93 } 94 95 bool perf_header__has_feat(const struct perf_header *header, int feat) 96 { 97 return test_bit(feat, header->adds_features); 98 } 99 100 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) 101 { 102 ssize_t ret = writen(ff->fd, buf, size); 103 104 if (ret != (ssize_t)size) 105 return ret < 0 ? (int)ret : -1; 106 return 0; 107 } 108 109 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) 110 { 111 /* struct perf_event_header::size is u16 */ 112 const size_t max_size = 0xffff - sizeof(struct perf_event_header); 113 size_t new_size = ff->size; 114 void *addr; 115 116 if (size + ff->offset > max_size) 117 return -E2BIG; 118 119 while (size > (new_size - ff->offset)) 120 new_size <<= 1; 121 new_size = min(max_size, new_size); 122 123 if (ff->size < new_size) { 124 addr = realloc(ff->buf, new_size); 125 if (!addr) 126 return -ENOMEM; 127 ff->buf = addr; 128 ff->size = new_size; 129 } 130 131 memcpy(ff->buf + ff->offset, buf, size); 132 ff->offset += size; 133 134 return 0; 135 } 136 137 /* Return: 0 if succeeded, -ERR if failed. */ 138 int do_write(struct feat_fd *ff, const void *buf, size_t size) 139 { 140 if (!ff->buf) 141 return __do_write_fd(ff, buf, size); 142 return __do_write_buf(ff, buf, size); 143 } 144 145 /* Return: 0 if succeeded, -ERR if failed. */ 146 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) 147 { 148 u64 *p = (u64 *) set; 149 int i, ret; 150 151 ret = do_write(ff, &size, sizeof(size)); 152 if (ret < 0) 153 return ret; 154 155 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 156 ret = do_write(ff, p + i, sizeof(*p)); 157 if (ret < 0) 158 return ret; 159 } 160 161 return 0; 162 } 163 164 /* Return: 0 if succeeded, -ERR if failed. */ 165 int write_padded(struct feat_fd *ff, const void *bf, 166 size_t count, size_t count_aligned) 167 { 168 static const char zero_buf[NAME_ALIGN]; 169 int err = do_write(ff, bf, count); 170 171 if (!err) 172 err = do_write(ff, zero_buf, count_aligned - count); 173 174 return err; 175 } 176 177 #define string_size(str) \ 178 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) 179 180 /* Return: 0 if succeeded, -ERR if failed. */ 181 static int do_write_string(struct feat_fd *ff, const char *str) 182 { 183 u32 len, olen; 184 int ret; 185 186 olen = strlen(str) + 1; 187 len = PERF_ALIGN(olen, NAME_ALIGN); 188 189 /* write len, incl. \0 */ 190 ret = do_write(ff, &len, sizeof(len)); 191 if (ret < 0) 192 return ret; 193 194 return write_padded(ff, str, olen, len); 195 } 196 197 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) 198 { 199 ssize_t ret = readn(ff->fd, addr, size); 200 201 if (ret != size) 202 return ret < 0 ? (int)ret : -1; 203 return 0; 204 } 205 206 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) 207 { 208 if (size > (ssize_t)ff->size - ff->offset) 209 return -1; 210 211 memcpy(addr, ff->buf + ff->offset, size); 212 ff->offset += size; 213 214 return 0; 215 216 } 217 218 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) 219 { 220 if (!ff->buf) 221 return __do_read_fd(ff, addr, size); 222 return __do_read_buf(ff, addr, size); 223 } 224 225 static int do_read_u32(struct feat_fd *ff, u32 *addr) 226 { 227 int ret; 228 229 ret = __do_read(ff, addr, sizeof(*addr)); 230 if (ret) 231 return ret; 232 233 if (ff->ph->needs_swap) 234 *addr = bswap_32(*addr); 235 return 0; 236 } 237 238 static int do_read_u64(struct feat_fd *ff, u64 *addr) 239 { 240 int ret; 241 242 ret = __do_read(ff, addr, sizeof(*addr)); 243 if (ret) 244 return ret; 245 246 if (ff->ph->needs_swap) 247 *addr = bswap_64(*addr); 248 return 0; 249 } 250 251 static char *do_read_string(struct feat_fd *ff) 252 { 253 u32 len; 254 char *buf; 255 256 if (do_read_u32(ff, &len)) 257 return NULL; 258 259 buf = malloc(len); 260 if (!buf) 261 return NULL; 262 263 if (!__do_read(ff, buf, len)) { 264 /* 265 * strings are padded by zeroes 266 * thus the actual strlen of buf 267 * may be less than len 268 */ 269 return buf; 270 } 271 272 free(buf); 273 return NULL; 274 } 275 276 /* Return: 0 if succeeded, -ERR if failed. */ 277 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) 278 { 279 unsigned long *set; 280 u64 size, *p; 281 int i, ret; 282 283 ret = do_read_u64(ff, &size); 284 if (ret) 285 return ret; 286 287 set = bitmap_zalloc(size); 288 if (!set) 289 return -ENOMEM; 290 291 p = (u64 *) set; 292 293 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 294 ret = do_read_u64(ff, p + i); 295 if (ret < 0) { 296 free(set); 297 return ret; 298 } 299 } 300 301 *pset = set; 302 *psize = size; 303 return 0; 304 } 305 306 #ifdef HAVE_LIBTRACEEVENT 307 static int write_tracing_data(struct feat_fd *ff, 308 struct evlist *evlist) 309 { 310 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 311 return -1; 312 313 return read_tracing_data(ff->fd, &evlist->core.entries); 314 } 315 #endif 316 317 static int write_build_id(struct feat_fd *ff, 318 struct evlist *evlist __maybe_unused) 319 { 320 struct perf_session *session; 321 int err; 322 323 session = container_of(ff->ph, struct perf_session, header); 324 325 if (!perf_session__read_build_ids(session, true)) 326 return -1; 327 328 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 329 return -1; 330 331 err = perf_session__write_buildid_table(session, ff); 332 if (err < 0) { 333 pr_debug("failed to write buildid table\n"); 334 return err; 335 } 336 perf_session__cache_build_ids(session); 337 338 return 0; 339 } 340 341 static int write_hostname(struct feat_fd *ff, 342 struct evlist *evlist __maybe_unused) 343 { 344 struct utsname uts; 345 int ret; 346 347 ret = uname(&uts); 348 if (ret < 0) 349 return -1; 350 351 return do_write_string(ff, uts.nodename); 352 } 353 354 static int write_osrelease(struct feat_fd *ff, 355 struct evlist *evlist __maybe_unused) 356 { 357 struct utsname uts; 358 int ret; 359 360 ret = uname(&uts); 361 if (ret < 0) 362 return -1; 363 364 return do_write_string(ff, uts.release); 365 } 366 367 static int write_arch(struct feat_fd *ff, 368 struct evlist *evlist __maybe_unused) 369 { 370 struct utsname uts; 371 int ret; 372 373 ret = uname(&uts); 374 if (ret < 0) 375 return -1; 376 377 return do_write_string(ff, uts.machine); 378 } 379 380 static int write_version(struct feat_fd *ff, 381 struct evlist *evlist __maybe_unused) 382 { 383 return do_write_string(ff, perf_version_string); 384 } 385 386 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) 387 { 388 FILE *file; 389 char *buf = NULL; 390 char *s, *p; 391 const char *search = cpuinfo_proc; 392 size_t len = 0; 393 int ret = -1; 394 395 if (!search) 396 return -1; 397 398 file = fopen("/proc/cpuinfo", "r"); 399 if (!file) 400 return -1; 401 402 while (getline(&buf, &len, file) > 0) { 403 ret = strncmp(buf, search, strlen(search)); 404 if (!ret) 405 break; 406 } 407 408 if (ret) { 409 ret = -1; 410 goto done; 411 } 412 413 s = buf; 414 415 p = strchr(buf, ':'); 416 if (p && *(p+1) == ' ' && *(p+2)) 417 s = p + 2; 418 p = strchr(s, '\n'); 419 if (p) 420 *p = '\0'; 421 422 /* squash extra space characters (branding string) */ 423 p = s; 424 while (*p) { 425 if (isspace(*p)) { 426 char *r = p + 1; 427 char *q = skip_spaces(r); 428 *p = ' '; 429 if (q != (p+1)) 430 while ((*r++ = *q++)); 431 } 432 p++; 433 } 434 ret = do_write_string(ff, s); 435 done: 436 free(buf); 437 fclose(file); 438 return ret; 439 } 440 441 static int write_cpudesc(struct feat_fd *ff, 442 struct evlist *evlist __maybe_unused) 443 { 444 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__) 445 #define CPUINFO_PROC { "cpu", } 446 #elif defined(__s390__) 447 #define CPUINFO_PROC { "vendor_id", } 448 #elif defined(__sh__) 449 #define CPUINFO_PROC { "cpu type", } 450 #elif defined(__alpha__) || defined(__mips__) 451 #define CPUINFO_PROC { "cpu model", } 452 #elif defined(__arm__) 453 #define CPUINFO_PROC { "model name", "Processor", } 454 #elif defined(__arc__) 455 #define CPUINFO_PROC { "Processor", } 456 #elif defined(__xtensa__) 457 #define CPUINFO_PROC { "core ID", } 458 #else 459 #define CPUINFO_PROC { "model name", } 460 #endif 461 const char *cpuinfo_procs[] = CPUINFO_PROC; 462 #undef CPUINFO_PROC 463 unsigned int i; 464 465 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { 466 int ret; 467 ret = __write_cpudesc(ff, cpuinfo_procs[i]); 468 if (ret >= 0) 469 return ret; 470 } 471 return -1; 472 } 473 474 475 static int write_nrcpus(struct feat_fd *ff, 476 struct evlist *evlist __maybe_unused) 477 { 478 long nr; 479 u32 nrc, nra; 480 int ret; 481 482 nrc = cpu__max_present_cpu().cpu; 483 484 nr = sysconf(_SC_NPROCESSORS_ONLN); 485 if (nr < 0) 486 return -1; 487 488 nra = (u32)(nr & UINT_MAX); 489 490 ret = do_write(ff, &nrc, sizeof(nrc)); 491 if (ret < 0) 492 return ret; 493 494 return do_write(ff, &nra, sizeof(nra)); 495 } 496 497 static int write_event_desc(struct feat_fd *ff, 498 struct evlist *evlist) 499 { 500 struct evsel *evsel; 501 u32 nre, nri, sz; 502 int ret; 503 504 nre = evlist->core.nr_entries; 505 506 /* 507 * write number of events 508 */ 509 ret = do_write(ff, &nre, sizeof(nre)); 510 if (ret < 0) 511 return ret; 512 513 /* 514 * size of perf_event_attr struct 515 */ 516 sz = (u32)sizeof(evsel->core.attr); 517 ret = do_write(ff, &sz, sizeof(sz)); 518 if (ret < 0) 519 return ret; 520 521 evlist__for_each_entry(evlist, evsel) { 522 ret = do_write(ff, &evsel->core.attr, sz); 523 if (ret < 0) 524 return ret; 525 /* 526 * write number of unique id per event 527 * there is one id per instance of an event 528 * 529 * copy into an nri to be independent of the 530 * type of ids, 531 */ 532 nri = evsel->core.ids; 533 ret = do_write(ff, &nri, sizeof(nri)); 534 if (ret < 0) 535 return ret; 536 537 /* 538 * write event string as passed on cmdline 539 */ 540 ret = do_write_string(ff, evsel__name(evsel)); 541 if (ret < 0) 542 return ret; 543 /* 544 * write unique ids for this event 545 */ 546 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 547 if (ret < 0) 548 return ret; 549 } 550 return 0; 551 } 552 553 static int write_cmdline(struct feat_fd *ff, 554 struct evlist *evlist __maybe_unused) 555 { 556 char pbuf[MAXPATHLEN], *buf; 557 int i, ret, n; 558 559 /* actual path to perf binary */ 560 buf = perf_exe(pbuf, MAXPATHLEN); 561 562 /* account for binary path */ 563 n = perf_env.nr_cmdline + 1; 564 565 ret = do_write(ff, &n, sizeof(n)); 566 if (ret < 0) 567 return ret; 568 569 ret = do_write_string(ff, buf); 570 if (ret < 0) 571 return ret; 572 573 for (i = 0 ; i < perf_env.nr_cmdline; i++) { 574 ret = do_write_string(ff, perf_env.cmdline_argv[i]); 575 if (ret < 0) 576 return ret; 577 } 578 return 0; 579 } 580 581 582 static int write_cpu_topology(struct feat_fd *ff, 583 struct evlist *evlist __maybe_unused) 584 { 585 struct cpu_topology *tp; 586 u32 i; 587 int ret, j; 588 589 tp = cpu_topology__new(); 590 if (!tp) 591 return -1; 592 593 ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists)); 594 if (ret < 0) 595 goto done; 596 597 for (i = 0; i < tp->package_cpus_lists; i++) { 598 ret = do_write_string(ff, tp->package_cpus_list[i]); 599 if (ret < 0) 600 goto done; 601 } 602 ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists)); 603 if (ret < 0) 604 goto done; 605 606 for (i = 0; i < tp->core_cpus_lists; i++) { 607 ret = do_write_string(ff, tp->core_cpus_list[i]); 608 if (ret < 0) 609 break; 610 } 611 612 ret = perf_env__read_cpu_topology_map(&perf_env); 613 if (ret < 0) 614 goto done; 615 616 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 617 ret = do_write(ff, &perf_env.cpu[j].core_id, 618 sizeof(perf_env.cpu[j].core_id)); 619 if (ret < 0) 620 return ret; 621 ret = do_write(ff, &perf_env.cpu[j].socket_id, 622 sizeof(perf_env.cpu[j].socket_id)); 623 if (ret < 0) 624 return ret; 625 } 626 627 if (!tp->die_cpus_lists) 628 goto done; 629 630 ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists)); 631 if (ret < 0) 632 goto done; 633 634 for (i = 0; i < tp->die_cpus_lists; i++) { 635 ret = do_write_string(ff, tp->die_cpus_list[i]); 636 if (ret < 0) 637 goto done; 638 } 639 640 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 641 ret = do_write(ff, &perf_env.cpu[j].die_id, 642 sizeof(perf_env.cpu[j].die_id)); 643 if (ret < 0) 644 return ret; 645 } 646 647 done: 648 cpu_topology__delete(tp); 649 return ret; 650 } 651 652 653 654 static int write_total_mem(struct feat_fd *ff, 655 struct evlist *evlist __maybe_unused) 656 { 657 char *buf = NULL; 658 FILE *fp; 659 size_t len = 0; 660 int ret = -1, n; 661 uint64_t mem; 662 663 fp = fopen("/proc/meminfo", "r"); 664 if (!fp) 665 return -1; 666 667 while (getline(&buf, &len, fp) > 0) { 668 ret = strncmp(buf, "MemTotal:", 9); 669 if (!ret) 670 break; 671 } 672 if (!ret) { 673 n = sscanf(buf, "%*s %"PRIu64, &mem); 674 if (n == 1) 675 ret = do_write(ff, &mem, sizeof(mem)); 676 } else 677 ret = -1; 678 free(buf); 679 fclose(fp); 680 return ret; 681 } 682 683 static int write_numa_topology(struct feat_fd *ff, 684 struct evlist *evlist __maybe_unused) 685 { 686 struct numa_topology *tp; 687 int ret = -1; 688 u32 i; 689 690 tp = numa_topology__new(); 691 if (!tp) 692 return -ENOMEM; 693 694 ret = do_write(ff, &tp->nr, sizeof(u32)); 695 if (ret < 0) 696 goto err; 697 698 for (i = 0; i < tp->nr; i++) { 699 struct numa_topology_node *n = &tp->nodes[i]; 700 701 ret = do_write(ff, &n->node, sizeof(u32)); 702 if (ret < 0) 703 goto err; 704 705 ret = do_write(ff, &n->mem_total, sizeof(u64)); 706 if (ret) 707 goto err; 708 709 ret = do_write(ff, &n->mem_free, sizeof(u64)); 710 if (ret) 711 goto err; 712 713 ret = do_write_string(ff, n->cpus); 714 if (ret < 0) 715 goto err; 716 } 717 718 ret = 0; 719 720 err: 721 numa_topology__delete(tp); 722 return ret; 723 } 724 725 /* 726 * File format: 727 * 728 * struct pmu_mappings { 729 * u32 pmu_num; 730 * struct pmu_map { 731 * u32 type; 732 * char name[]; 733 * }[pmu_num]; 734 * }; 735 */ 736 737 static int write_pmu_mappings(struct feat_fd *ff, 738 struct evlist *evlist __maybe_unused) 739 { 740 struct perf_pmu *pmu = NULL; 741 u32 pmu_num = 0; 742 int ret; 743 744 /* 745 * Do a first pass to count number of pmu to avoid lseek so this 746 * works in pipe mode as well. 747 */ 748 while ((pmu = perf_pmu__scan(pmu))) { 749 if (!pmu->name) 750 continue; 751 pmu_num++; 752 } 753 754 ret = do_write(ff, &pmu_num, sizeof(pmu_num)); 755 if (ret < 0) 756 return ret; 757 758 while ((pmu = perf_pmu__scan(pmu))) { 759 if (!pmu->name) 760 continue; 761 762 ret = do_write(ff, &pmu->type, sizeof(pmu->type)); 763 if (ret < 0) 764 return ret; 765 766 ret = do_write_string(ff, pmu->name); 767 if (ret < 0) 768 return ret; 769 } 770 771 return 0; 772 } 773 774 /* 775 * File format: 776 * 777 * struct group_descs { 778 * u32 nr_groups; 779 * struct group_desc { 780 * char name[]; 781 * u32 leader_idx; 782 * u32 nr_members; 783 * }[nr_groups]; 784 * }; 785 */ 786 static int write_group_desc(struct feat_fd *ff, 787 struct evlist *evlist) 788 { 789 u32 nr_groups = evlist__nr_groups(evlist); 790 struct evsel *evsel; 791 int ret; 792 793 ret = do_write(ff, &nr_groups, sizeof(nr_groups)); 794 if (ret < 0) 795 return ret; 796 797 evlist__for_each_entry(evlist, evsel) { 798 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 799 const char *name = evsel->group_name ?: "{anon_group}"; 800 u32 leader_idx = evsel->core.idx; 801 u32 nr_members = evsel->core.nr_members; 802 803 ret = do_write_string(ff, name); 804 if (ret < 0) 805 return ret; 806 807 ret = do_write(ff, &leader_idx, sizeof(leader_idx)); 808 if (ret < 0) 809 return ret; 810 811 ret = do_write(ff, &nr_members, sizeof(nr_members)); 812 if (ret < 0) 813 return ret; 814 } 815 } 816 return 0; 817 } 818 819 /* 820 * Return the CPU id as a raw string. 821 * 822 * Each architecture should provide a more precise id string that 823 * can be use to match the architecture's "mapfile". 824 */ 825 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused) 826 { 827 return NULL; 828 } 829 830 /* Return zero when the cpuid from the mapfile.csv matches the 831 * cpuid string generated on this platform. 832 * Otherwise return non-zero. 833 */ 834 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid) 835 { 836 regex_t re; 837 regmatch_t pmatch[1]; 838 int match; 839 840 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) { 841 /* Warn unable to generate match particular string. */ 842 pr_info("Invalid regular expression %s\n", mapcpuid); 843 return 1; 844 } 845 846 match = !regexec(&re, cpuid, 1, pmatch, 0); 847 regfree(&re); 848 if (match) { 849 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so); 850 851 /* Verify the entire string matched. */ 852 if (match_len == strlen(cpuid)) 853 return 0; 854 } 855 return 1; 856 } 857 858 /* 859 * default get_cpuid(): nothing gets recorded 860 * actual implementation must be in arch/$(SRCARCH)/util/header.c 861 */ 862 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused) 863 { 864 return ENOSYS; /* Not implemented */ 865 } 866 867 static int write_cpuid(struct feat_fd *ff, 868 struct evlist *evlist __maybe_unused) 869 { 870 char buffer[64]; 871 int ret; 872 873 ret = get_cpuid(buffer, sizeof(buffer)); 874 if (ret) 875 return -1; 876 877 return do_write_string(ff, buffer); 878 } 879 880 static int write_branch_stack(struct feat_fd *ff __maybe_unused, 881 struct evlist *evlist __maybe_unused) 882 { 883 return 0; 884 } 885 886 static int write_auxtrace(struct feat_fd *ff, 887 struct evlist *evlist __maybe_unused) 888 { 889 struct perf_session *session; 890 int err; 891 892 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 893 return -1; 894 895 session = container_of(ff->ph, struct perf_session, header); 896 897 err = auxtrace_index__write(ff->fd, &session->auxtrace_index); 898 if (err < 0) 899 pr_err("Failed to write auxtrace index\n"); 900 return err; 901 } 902 903 static int write_clockid(struct feat_fd *ff, 904 struct evlist *evlist __maybe_unused) 905 { 906 return do_write(ff, &ff->ph->env.clock.clockid_res_ns, 907 sizeof(ff->ph->env.clock.clockid_res_ns)); 908 } 909 910 static int write_clock_data(struct feat_fd *ff, 911 struct evlist *evlist __maybe_unused) 912 { 913 u64 *data64; 914 u32 data32; 915 int ret; 916 917 /* version */ 918 data32 = 1; 919 920 ret = do_write(ff, &data32, sizeof(data32)); 921 if (ret < 0) 922 return ret; 923 924 /* clockid */ 925 data32 = ff->ph->env.clock.clockid; 926 927 ret = do_write(ff, &data32, sizeof(data32)); 928 if (ret < 0) 929 return ret; 930 931 /* TOD ref time */ 932 data64 = &ff->ph->env.clock.tod_ns; 933 934 ret = do_write(ff, data64, sizeof(*data64)); 935 if (ret < 0) 936 return ret; 937 938 /* clockid ref time */ 939 data64 = &ff->ph->env.clock.clockid_ns; 940 941 return do_write(ff, data64, sizeof(*data64)); 942 } 943 944 static int write_hybrid_topology(struct feat_fd *ff, 945 struct evlist *evlist __maybe_unused) 946 { 947 struct hybrid_topology *tp; 948 int ret; 949 u32 i; 950 951 tp = hybrid_topology__new(); 952 if (!tp) 953 return -ENOENT; 954 955 ret = do_write(ff, &tp->nr, sizeof(u32)); 956 if (ret < 0) 957 goto err; 958 959 for (i = 0; i < tp->nr; i++) { 960 struct hybrid_topology_node *n = &tp->nodes[i]; 961 962 ret = do_write_string(ff, n->pmu_name); 963 if (ret < 0) 964 goto err; 965 966 ret = do_write_string(ff, n->cpus); 967 if (ret < 0) 968 goto err; 969 } 970 971 ret = 0; 972 973 err: 974 hybrid_topology__delete(tp); 975 return ret; 976 } 977 978 static int write_dir_format(struct feat_fd *ff, 979 struct evlist *evlist __maybe_unused) 980 { 981 struct perf_session *session; 982 struct perf_data *data; 983 984 session = container_of(ff->ph, struct perf_session, header); 985 data = session->data; 986 987 if (WARN_ON(!perf_data__is_dir(data))) 988 return -1; 989 990 return do_write(ff, &data->dir.version, sizeof(data->dir.version)); 991 } 992 993 /* 994 * Check whether a CPU is online 995 * 996 * Returns: 997 * 1 -> if CPU is online 998 * 0 -> if CPU is offline 999 * -1 -> error case 1000 */ 1001 int is_cpu_online(unsigned int cpu) 1002 { 1003 char *str; 1004 size_t strlen; 1005 char buf[256]; 1006 int status = -1; 1007 struct stat statbuf; 1008 1009 snprintf(buf, sizeof(buf), 1010 "/sys/devices/system/cpu/cpu%d", cpu); 1011 if (stat(buf, &statbuf) != 0) 1012 return 0; 1013 1014 /* 1015 * Check if /sys/devices/system/cpu/cpux/online file 1016 * exists. Some cases cpu0 won't have online file since 1017 * it is not expected to be turned off generally. 1018 * In kernels without CONFIG_HOTPLUG_CPU, this 1019 * file won't exist 1020 */ 1021 snprintf(buf, sizeof(buf), 1022 "/sys/devices/system/cpu/cpu%d/online", cpu); 1023 if (stat(buf, &statbuf) != 0) 1024 return 1; 1025 1026 /* 1027 * Read online file using sysfs__read_str. 1028 * If read or open fails, return -1. 1029 * If read succeeds, return value from file 1030 * which gets stored in "str" 1031 */ 1032 snprintf(buf, sizeof(buf), 1033 "devices/system/cpu/cpu%d/online", cpu); 1034 1035 if (sysfs__read_str(buf, &str, &strlen) < 0) 1036 return status; 1037 1038 status = atoi(str); 1039 1040 free(str); 1041 return status; 1042 } 1043 1044 #ifdef HAVE_LIBBPF_SUPPORT 1045 static int write_bpf_prog_info(struct feat_fd *ff, 1046 struct evlist *evlist __maybe_unused) 1047 { 1048 struct perf_env *env = &ff->ph->env; 1049 struct rb_root *root; 1050 struct rb_node *next; 1051 int ret; 1052 1053 down_read(&env->bpf_progs.lock); 1054 1055 ret = do_write(ff, &env->bpf_progs.infos_cnt, 1056 sizeof(env->bpf_progs.infos_cnt)); 1057 if (ret < 0) 1058 goto out; 1059 1060 root = &env->bpf_progs.infos; 1061 next = rb_first(root); 1062 while (next) { 1063 struct bpf_prog_info_node *node; 1064 size_t len; 1065 1066 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1067 next = rb_next(&node->rb_node); 1068 len = sizeof(struct perf_bpil) + 1069 node->info_linear->data_len; 1070 1071 /* before writing to file, translate address to offset */ 1072 bpil_addr_to_offs(node->info_linear); 1073 ret = do_write(ff, node->info_linear, len); 1074 /* 1075 * translate back to address even when do_write() fails, 1076 * so that this function never changes the data. 1077 */ 1078 bpil_offs_to_addr(node->info_linear); 1079 if (ret < 0) 1080 goto out; 1081 } 1082 out: 1083 up_read(&env->bpf_progs.lock); 1084 return ret; 1085 } 1086 1087 static int write_bpf_btf(struct feat_fd *ff, 1088 struct evlist *evlist __maybe_unused) 1089 { 1090 struct perf_env *env = &ff->ph->env; 1091 struct rb_root *root; 1092 struct rb_node *next; 1093 int ret; 1094 1095 down_read(&env->bpf_progs.lock); 1096 1097 ret = do_write(ff, &env->bpf_progs.btfs_cnt, 1098 sizeof(env->bpf_progs.btfs_cnt)); 1099 1100 if (ret < 0) 1101 goto out; 1102 1103 root = &env->bpf_progs.btfs; 1104 next = rb_first(root); 1105 while (next) { 1106 struct btf_node *node; 1107 1108 node = rb_entry(next, struct btf_node, rb_node); 1109 next = rb_next(&node->rb_node); 1110 ret = do_write(ff, &node->id, 1111 sizeof(u32) * 2 + node->data_size); 1112 if (ret < 0) 1113 goto out; 1114 } 1115 out: 1116 up_read(&env->bpf_progs.lock); 1117 return ret; 1118 } 1119 #endif // HAVE_LIBBPF_SUPPORT 1120 1121 static int cpu_cache_level__sort(const void *a, const void *b) 1122 { 1123 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; 1124 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; 1125 1126 return cache_a->level - cache_b->level; 1127 } 1128 1129 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) 1130 { 1131 if (a->level != b->level) 1132 return false; 1133 1134 if (a->line_size != b->line_size) 1135 return false; 1136 1137 if (a->sets != b->sets) 1138 return false; 1139 1140 if (a->ways != b->ways) 1141 return false; 1142 1143 if (strcmp(a->type, b->type)) 1144 return false; 1145 1146 if (strcmp(a->size, b->size)) 1147 return false; 1148 1149 if (strcmp(a->map, b->map)) 1150 return false; 1151 1152 return true; 1153 } 1154 1155 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) 1156 { 1157 char path[PATH_MAX], file[PATH_MAX]; 1158 struct stat st; 1159 size_t len; 1160 1161 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); 1162 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); 1163 1164 if (stat(file, &st)) 1165 return 1; 1166 1167 scnprintf(file, PATH_MAX, "%s/level", path); 1168 if (sysfs__read_int(file, (int *) &cache->level)) 1169 return -1; 1170 1171 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); 1172 if (sysfs__read_int(file, (int *) &cache->line_size)) 1173 return -1; 1174 1175 scnprintf(file, PATH_MAX, "%s/number_of_sets", path); 1176 if (sysfs__read_int(file, (int *) &cache->sets)) 1177 return -1; 1178 1179 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); 1180 if (sysfs__read_int(file, (int *) &cache->ways)) 1181 return -1; 1182 1183 scnprintf(file, PATH_MAX, "%s/type", path); 1184 if (sysfs__read_str(file, &cache->type, &len)) 1185 return -1; 1186 1187 cache->type[len] = 0; 1188 cache->type = strim(cache->type); 1189 1190 scnprintf(file, PATH_MAX, "%s/size", path); 1191 if (sysfs__read_str(file, &cache->size, &len)) { 1192 zfree(&cache->type); 1193 return -1; 1194 } 1195 1196 cache->size[len] = 0; 1197 cache->size = strim(cache->size); 1198 1199 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); 1200 if (sysfs__read_str(file, &cache->map, &len)) { 1201 zfree(&cache->size); 1202 zfree(&cache->type); 1203 return -1; 1204 } 1205 1206 cache->map[len] = 0; 1207 cache->map = strim(cache->map); 1208 return 0; 1209 } 1210 1211 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) 1212 { 1213 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); 1214 } 1215 1216 /* 1217 * Build caches levels for a particular CPU from the data in 1218 * /sys/devices/system/cpu/cpu<cpu>/cache/ 1219 * The cache level data is stored in caches[] from index at 1220 * *cntp. 1221 */ 1222 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp) 1223 { 1224 u16 level; 1225 1226 for (level = 0; level < MAX_CACHE_LVL; level++) { 1227 struct cpu_cache_level c; 1228 int err; 1229 u32 i; 1230 1231 err = cpu_cache_level__read(&c, cpu, level); 1232 if (err < 0) 1233 return err; 1234 1235 if (err == 1) 1236 break; 1237 1238 for (i = 0; i < *cntp; i++) { 1239 if (cpu_cache_level__cmp(&c, &caches[i])) 1240 break; 1241 } 1242 1243 if (i == *cntp) { 1244 caches[*cntp] = c; 1245 *cntp = *cntp + 1; 1246 } else 1247 cpu_cache_level__free(&c); 1248 } 1249 1250 return 0; 1251 } 1252 1253 static int build_caches(struct cpu_cache_level caches[], u32 *cntp) 1254 { 1255 u32 nr, cpu, cnt = 0; 1256 1257 nr = cpu__max_cpu().cpu; 1258 1259 for (cpu = 0; cpu < nr; cpu++) { 1260 int ret = build_caches_for_cpu(cpu, caches, &cnt); 1261 1262 if (ret) 1263 return ret; 1264 } 1265 *cntp = cnt; 1266 return 0; 1267 } 1268 1269 static int write_cache(struct feat_fd *ff, 1270 struct evlist *evlist __maybe_unused) 1271 { 1272 u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL; 1273 struct cpu_cache_level caches[max_caches]; 1274 u32 cnt = 0, i, version = 1; 1275 int ret; 1276 1277 ret = build_caches(caches, &cnt); 1278 if (ret) 1279 goto out; 1280 1281 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); 1282 1283 ret = do_write(ff, &version, sizeof(u32)); 1284 if (ret < 0) 1285 goto out; 1286 1287 ret = do_write(ff, &cnt, sizeof(u32)); 1288 if (ret < 0) 1289 goto out; 1290 1291 for (i = 0; i < cnt; i++) { 1292 struct cpu_cache_level *c = &caches[i]; 1293 1294 #define _W(v) \ 1295 ret = do_write(ff, &c->v, sizeof(u32)); \ 1296 if (ret < 0) \ 1297 goto out; 1298 1299 _W(level) 1300 _W(line_size) 1301 _W(sets) 1302 _W(ways) 1303 #undef _W 1304 1305 #define _W(v) \ 1306 ret = do_write_string(ff, (const char *) c->v); \ 1307 if (ret < 0) \ 1308 goto out; 1309 1310 _W(type) 1311 _W(size) 1312 _W(map) 1313 #undef _W 1314 } 1315 1316 out: 1317 for (i = 0; i < cnt; i++) 1318 cpu_cache_level__free(&caches[i]); 1319 return ret; 1320 } 1321 1322 static int write_stat(struct feat_fd *ff __maybe_unused, 1323 struct evlist *evlist __maybe_unused) 1324 { 1325 return 0; 1326 } 1327 1328 static int write_sample_time(struct feat_fd *ff, 1329 struct evlist *evlist) 1330 { 1331 int ret; 1332 1333 ret = do_write(ff, &evlist->first_sample_time, 1334 sizeof(evlist->first_sample_time)); 1335 if (ret < 0) 1336 return ret; 1337 1338 return do_write(ff, &evlist->last_sample_time, 1339 sizeof(evlist->last_sample_time)); 1340 } 1341 1342 1343 static int memory_node__read(struct memory_node *n, unsigned long idx) 1344 { 1345 unsigned int phys, size = 0; 1346 char path[PATH_MAX]; 1347 struct dirent *ent; 1348 DIR *dir; 1349 1350 #define for_each_memory(mem, dir) \ 1351 while ((ent = readdir(dir))) \ 1352 if (strcmp(ent->d_name, ".") && \ 1353 strcmp(ent->d_name, "..") && \ 1354 sscanf(ent->d_name, "memory%u", &mem) == 1) 1355 1356 scnprintf(path, PATH_MAX, 1357 "%s/devices/system/node/node%lu", 1358 sysfs__mountpoint(), idx); 1359 1360 dir = opendir(path); 1361 if (!dir) { 1362 pr_warning("failed: can't open memory sysfs data\n"); 1363 return -1; 1364 } 1365 1366 for_each_memory(phys, dir) { 1367 size = max(phys, size); 1368 } 1369 1370 size++; 1371 1372 n->set = bitmap_zalloc(size); 1373 if (!n->set) { 1374 closedir(dir); 1375 return -ENOMEM; 1376 } 1377 1378 n->node = idx; 1379 n->size = size; 1380 1381 rewinddir(dir); 1382 1383 for_each_memory(phys, dir) { 1384 __set_bit(phys, n->set); 1385 } 1386 1387 closedir(dir); 1388 return 0; 1389 } 1390 1391 static int memory_node__sort(const void *a, const void *b) 1392 { 1393 const struct memory_node *na = a; 1394 const struct memory_node *nb = b; 1395 1396 return na->node - nb->node; 1397 } 1398 1399 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp) 1400 { 1401 char path[PATH_MAX]; 1402 struct dirent *ent; 1403 DIR *dir; 1404 u64 cnt = 0; 1405 int ret = 0; 1406 1407 scnprintf(path, PATH_MAX, "%s/devices/system/node/", 1408 sysfs__mountpoint()); 1409 1410 dir = opendir(path); 1411 if (!dir) { 1412 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n", 1413 __func__, path); 1414 return -1; 1415 } 1416 1417 while (!ret && (ent = readdir(dir))) { 1418 unsigned int idx; 1419 int r; 1420 1421 if (!strcmp(ent->d_name, ".") || 1422 !strcmp(ent->d_name, "..")) 1423 continue; 1424 1425 r = sscanf(ent->d_name, "node%u", &idx); 1426 if (r != 1) 1427 continue; 1428 1429 if (WARN_ONCE(cnt >= size, 1430 "failed to write MEM_TOPOLOGY, way too many nodes\n")) { 1431 closedir(dir); 1432 return -1; 1433 } 1434 1435 ret = memory_node__read(&nodes[cnt++], idx); 1436 } 1437 1438 *cntp = cnt; 1439 closedir(dir); 1440 1441 if (!ret) 1442 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); 1443 1444 return ret; 1445 } 1446 1447 #define MAX_MEMORY_NODES 2000 1448 1449 /* 1450 * The MEM_TOPOLOGY holds physical memory map for every 1451 * node in system. The format of data is as follows: 1452 * 1453 * 0 - version | for future changes 1454 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes 1455 * 16 - count | number of nodes 1456 * 1457 * For each node we store map of physical indexes for 1458 * each node: 1459 * 1460 * 32 - node id | node index 1461 * 40 - size | size of bitmap 1462 * 48 - bitmap | bitmap of memory indexes that belongs to node 1463 */ 1464 static int write_mem_topology(struct feat_fd *ff __maybe_unused, 1465 struct evlist *evlist __maybe_unused) 1466 { 1467 static struct memory_node nodes[MAX_MEMORY_NODES]; 1468 u64 bsize, version = 1, i, nr; 1469 int ret; 1470 1471 ret = sysfs__read_xll("devices/system/memory/block_size_bytes", 1472 (unsigned long long *) &bsize); 1473 if (ret) 1474 return ret; 1475 1476 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr); 1477 if (ret) 1478 return ret; 1479 1480 ret = do_write(ff, &version, sizeof(version)); 1481 if (ret < 0) 1482 goto out; 1483 1484 ret = do_write(ff, &bsize, sizeof(bsize)); 1485 if (ret < 0) 1486 goto out; 1487 1488 ret = do_write(ff, &nr, sizeof(nr)); 1489 if (ret < 0) 1490 goto out; 1491 1492 for (i = 0; i < nr; i++) { 1493 struct memory_node *n = &nodes[i]; 1494 1495 #define _W(v) \ 1496 ret = do_write(ff, &n->v, sizeof(n->v)); \ 1497 if (ret < 0) \ 1498 goto out; 1499 1500 _W(node) 1501 _W(size) 1502 1503 #undef _W 1504 1505 ret = do_write_bitmap(ff, n->set, n->size); 1506 if (ret < 0) 1507 goto out; 1508 } 1509 1510 out: 1511 return ret; 1512 } 1513 1514 static int write_compressed(struct feat_fd *ff __maybe_unused, 1515 struct evlist *evlist __maybe_unused) 1516 { 1517 int ret; 1518 1519 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver)); 1520 if (ret) 1521 return ret; 1522 1523 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type)); 1524 if (ret) 1525 return ret; 1526 1527 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level)); 1528 if (ret) 1529 return ret; 1530 1531 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio)); 1532 if (ret) 1533 return ret; 1534 1535 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len)); 1536 } 1537 1538 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu, 1539 bool write_pmu) 1540 { 1541 struct perf_pmu_caps *caps = NULL; 1542 int ret; 1543 1544 ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps)); 1545 if (ret < 0) 1546 return ret; 1547 1548 list_for_each_entry(caps, &pmu->caps, list) { 1549 ret = do_write_string(ff, caps->name); 1550 if (ret < 0) 1551 return ret; 1552 1553 ret = do_write_string(ff, caps->value); 1554 if (ret < 0) 1555 return ret; 1556 } 1557 1558 if (write_pmu) { 1559 ret = do_write_string(ff, pmu->name); 1560 if (ret < 0) 1561 return ret; 1562 } 1563 1564 return ret; 1565 } 1566 1567 static int write_cpu_pmu_caps(struct feat_fd *ff, 1568 struct evlist *evlist __maybe_unused) 1569 { 1570 struct perf_pmu *cpu_pmu = perf_pmu__find("cpu"); 1571 int ret; 1572 1573 if (!cpu_pmu) 1574 return -ENOENT; 1575 1576 ret = perf_pmu__caps_parse(cpu_pmu); 1577 if (ret < 0) 1578 return ret; 1579 1580 return __write_pmu_caps(ff, cpu_pmu, false); 1581 } 1582 1583 static int write_pmu_caps(struct feat_fd *ff, 1584 struct evlist *evlist __maybe_unused) 1585 { 1586 struct perf_pmu *pmu = NULL; 1587 int nr_pmu = 0; 1588 int ret; 1589 1590 while ((pmu = perf_pmu__scan(pmu))) { 1591 if (!pmu->name || !strcmp(pmu->name, "cpu") || 1592 perf_pmu__caps_parse(pmu) <= 0) 1593 continue; 1594 nr_pmu++; 1595 } 1596 1597 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu)); 1598 if (ret < 0) 1599 return ret; 1600 1601 if (!nr_pmu) 1602 return 0; 1603 1604 /* 1605 * Write hybrid pmu caps first to maintain compatibility with 1606 * older perf tool. 1607 */ 1608 pmu = NULL; 1609 perf_pmu__for_each_hybrid_pmu(pmu) { 1610 ret = __write_pmu_caps(ff, pmu, true); 1611 if (ret < 0) 1612 return ret; 1613 } 1614 1615 pmu = NULL; 1616 while ((pmu = perf_pmu__scan(pmu))) { 1617 if (!pmu->name || !strcmp(pmu->name, "cpu") || 1618 !pmu->nr_caps || perf_pmu__is_hybrid(pmu->name)) 1619 continue; 1620 1621 ret = __write_pmu_caps(ff, pmu, true); 1622 if (ret < 0) 1623 return ret; 1624 } 1625 return 0; 1626 } 1627 1628 static void print_hostname(struct feat_fd *ff, FILE *fp) 1629 { 1630 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); 1631 } 1632 1633 static void print_osrelease(struct feat_fd *ff, FILE *fp) 1634 { 1635 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); 1636 } 1637 1638 static void print_arch(struct feat_fd *ff, FILE *fp) 1639 { 1640 fprintf(fp, "# arch : %s\n", ff->ph->env.arch); 1641 } 1642 1643 static void print_cpudesc(struct feat_fd *ff, FILE *fp) 1644 { 1645 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); 1646 } 1647 1648 static void print_nrcpus(struct feat_fd *ff, FILE *fp) 1649 { 1650 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); 1651 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); 1652 } 1653 1654 static void print_version(struct feat_fd *ff, FILE *fp) 1655 { 1656 fprintf(fp, "# perf version : %s\n", ff->ph->env.version); 1657 } 1658 1659 static void print_cmdline(struct feat_fd *ff, FILE *fp) 1660 { 1661 int nr, i; 1662 1663 nr = ff->ph->env.nr_cmdline; 1664 1665 fprintf(fp, "# cmdline : "); 1666 1667 for (i = 0; i < nr; i++) { 1668 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); 1669 if (!argv_i) { 1670 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); 1671 } else { 1672 char *mem = argv_i; 1673 do { 1674 char *quote = strchr(argv_i, '\''); 1675 if (!quote) 1676 break; 1677 *quote++ = '\0'; 1678 fprintf(fp, "%s\\\'", argv_i); 1679 argv_i = quote; 1680 } while (1); 1681 fprintf(fp, "%s ", argv_i); 1682 free(mem); 1683 } 1684 } 1685 fputc('\n', fp); 1686 } 1687 1688 static void print_cpu_topology(struct feat_fd *ff, FILE *fp) 1689 { 1690 struct perf_header *ph = ff->ph; 1691 int cpu_nr = ph->env.nr_cpus_avail; 1692 int nr, i; 1693 char *str; 1694 1695 nr = ph->env.nr_sibling_cores; 1696 str = ph->env.sibling_cores; 1697 1698 for (i = 0; i < nr; i++) { 1699 fprintf(fp, "# sibling sockets : %s\n", str); 1700 str += strlen(str) + 1; 1701 } 1702 1703 if (ph->env.nr_sibling_dies) { 1704 nr = ph->env.nr_sibling_dies; 1705 str = ph->env.sibling_dies; 1706 1707 for (i = 0; i < nr; i++) { 1708 fprintf(fp, "# sibling dies : %s\n", str); 1709 str += strlen(str) + 1; 1710 } 1711 } 1712 1713 nr = ph->env.nr_sibling_threads; 1714 str = ph->env.sibling_threads; 1715 1716 for (i = 0; i < nr; i++) { 1717 fprintf(fp, "# sibling threads : %s\n", str); 1718 str += strlen(str) + 1; 1719 } 1720 1721 if (ph->env.nr_sibling_dies) { 1722 if (ph->env.cpu != NULL) { 1723 for (i = 0; i < cpu_nr; i++) 1724 fprintf(fp, "# CPU %d: Core ID %d, " 1725 "Die ID %d, Socket ID %d\n", 1726 i, ph->env.cpu[i].core_id, 1727 ph->env.cpu[i].die_id, 1728 ph->env.cpu[i].socket_id); 1729 } else 1730 fprintf(fp, "# Core ID, Die ID and Socket ID " 1731 "information is not available\n"); 1732 } else { 1733 if (ph->env.cpu != NULL) { 1734 for (i = 0; i < cpu_nr; i++) 1735 fprintf(fp, "# CPU %d: Core ID %d, " 1736 "Socket ID %d\n", 1737 i, ph->env.cpu[i].core_id, 1738 ph->env.cpu[i].socket_id); 1739 } else 1740 fprintf(fp, "# Core ID and Socket ID " 1741 "information is not available\n"); 1742 } 1743 } 1744 1745 static void print_clockid(struct feat_fd *ff, FILE *fp) 1746 { 1747 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", 1748 ff->ph->env.clock.clockid_res_ns * 1000); 1749 } 1750 1751 static void print_clock_data(struct feat_fd *ff, FILE *fp) 1752 { 1753 struct timespec clockid_ns; 1754 char tstr[64], date[64]; 1755 struct timeval tod_ns; 1756 clockid_t clockid; 1757 struct tm ltime; 1758 u64 ref; 1759 1760 if (!ff->ph->env.clock.enabled) { 1761 fprintf(fp, "# reference time disabled\n"); 1762 return; 1763 } 1764 1765 /* Compute TOD time. */ 1766 ref = ff->ph->env.clock.tod_ns; 1767 tod_ns.tv_sec = ref / NSEC_PER_SEC; 1768 ref -= tod_ns.tv_sec * NSEC_PER_SEC; 1769 tod_ns.tv_usec = ref / NSEC_PER_USEC; 1770 1771 /* Compute clockid time. */ 1772 ref = ff->ph->env.clock.clockid_ns; 1773 clockid_ns.tv_sec = ref / NSEC_PER_SEC; 1774 ref -= clockid_ns.tv_sec * NSEC_PER_SEC; 1775 clockid_ns.tv_nsec = ref; 1776 1777 clockid = ff->ph->env.clock.clockid; 1778 1779 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL) 1780 snprintf(tstr, sizeof(tstr), "<error>"); 1781 else { 1782 strftime(date, sizeof(date), "%F %T", <ime); 1783 scnprintf(tstr, sizeof(tstr), "%s.%06d", 1784 date, (int) tod_ns.tv_usec); 1785 } 1786 1787 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid); 1788 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n", 1789 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec, 1790 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec, 1791 clockid_name(clockid)); 1792 } 1793 1794 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp) 1795 { 1796 int i; 1797 struct hybrid_node *n; 1798 1799 fprintf(fp, "# hybrid cpu system:\n"); 1800 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) { 1801 n = &ff->ph->env.hybrid_nodes[i]; 1802 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus); 1803 } 1804 } 1805 1806 static void print_dir_format(struct feat_fd *ff, FILE *fp) 1807 { 1808 struct perf_session *session; 1809 struct perf_data *data; 1810 1811 session = container_of(ff->ph, struct perf_session, header); 1812 data = session->data; 1813 1814 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version); 1815 } 1816 1817 #ifdef HAVE_LIBBPF_SUPPORT 1818 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp) 1819 { 1820 struct perf_env *env = &ff->ph->env; 1821 struct rb_root *root; 1822 struct rb_node *next; 1823 1824 down_read(&env->bpf_progs.lock); 1825 1826 root = &env->bpf_progs.infos; 1827 next = rb_first(root); 1828 1829 while (next) { 1830 struct bpf_prog_info_node *node; 1831 1832 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1833 next = rb_next(&node->rb_node); 1834 1835 bpf_event__print_bpf_prog_info(&node->info_linear->info, 1836 env, fp); 1837 } 1838 1839 up_read(&env->bpf_progs.lock); 1840 } 1841 1842 static void print_bpf_btf(struct feat_fd *ff, FILE *fp) 1843 { 1844 struct perf_env *env = &ff->ph->env; 1845 struct rb_root *root; 1846 struct rb_node *next; 1847 1848 down_read(&env->bpf_progs.lock); 1849 1850 root = &env->bpf_progs.btfs; 1851 next = rb_first(root); 1852 1853 while (next) { 1854 struct btf_node *node; 1855 1856 node = rb_entry(next, struct btf_node, rb_node); 1857 next = rb_next(&node->rb_node); 1858 fprintf(fp, "# btf info of id %u\n", node->id); 1859 } 1860 1861 up_read(&env->bpf_progs.lock); 1862 } 1863 #endif // HAVE_LIBBPF_SUPPORT 1864 1865 static void free_event_desc(struct evsel *events) 1866 { 1867 struct evsel *evsel; 1868 1869 if (!events) 1870 return; 1871 1872 for (evsel = events; evsel->core.attr.size; evsel++) { 1873 zfree(&evsel->name); 1874 zfree(&evsel->core.id); 1875 } 1876 1877 free(events); 1878 } 1879 1880 static bool perf_attr_check(struct perf_event_attr *attr) 1881 { 1882 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) { 1883 pr_warning("Reserved bits are set unexpectedly. " 1884 "Please update perf tool.\n"); 1885 return false; 1886 } 1887 1888 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) { 1889 pr_warning("Unknown sample type (0x%llx) is detected. " 1890 "Please update perf tool.\n", 1891 attr->sample_type); 1892 return false; 1893 } 1894 1895 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) { 1896 pr_warning("Unknown read format (0x%llx) is detected. " 1897 "Please update perf tool.\n", 1898 attr->read_format); 1899 return false; 1900 } 1901 1902 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) && 1903 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) { 1904 pr_warning("Unknown branch sample type (0x%llx) is detected. " 1905 "Please update perf tool.\n", 1906 attr->branch_sample_type); 1907 1908 return false; 1909 } 1910 1911 return true; 1912 } 1913 1914 static struct evsel *read_event_desc(struct feat_fd *ff) 1915 { 1916 struct evsel *evsel, *events = NULL; 1917 u64 *id; 1918 void *buf = NULL; 1919 u32 nre, sz, nr, i, j; 1920 size_t msz; 1921 1922 /* number of events */ 1923 if (do_read_u32(ff, &nre)) 1924 goto error; 1925 1926 if (do_read_u32(ff, &sz)) 1927 goto error; 1928 1929 /* buffer to hold on file attr struct */ 1930 buf = malloc(sz); 1931 if (!buf) 1932 goto error; 1933 1934 /* the last event terminates with evsel->core.attr.size == 0: */ 1935 events = calloc(nre + 1, sizeof(*events)); 1936 if (!events) 1937 goto error; 1938 1939 msz = sizeof(evsel->core.attr); 1940 if (sz < msz) 1941 msz = sz; 1942 1943 for (i = 0, evsel = events; i < nre; evsel++, i++) { 1944 evsel->core.idx = i; 1945 1946 /* 1947 * must read entire on-file attr struct to 1948 * sync up with layout. 1949 */ 1950 if (__do_read(ff, buf, sz)) 1951 goto error; 1952 1953 if (ff->ph->needs_swap) 1954 perf_event__attr_swap(buf); 1955 1956 memcpy(&evsel->core.attr, buf, msz); 1957 1958 if (!perf_attr_check(&evsel->core.attr)) 1959 goto error; 1960 1961 if (do_read_u32(ff, &nr)) 1962 goto error; 1963 1964 if (ff->ph->needs_swap) 1965 evsel->needs_swap = true; 1966 1967 evsel->name = do_read_string(ff); 1968 if (!evsel->name) 1969 goto error; 1970 1971 if (!nr) 1972 continue; 1973 1974 id = calloc(nr, sizeof(*id)); 1975 if (!id) 1976 goto error; 1977 evsel->core.ids = nr; 1978 evsel->core.id = id; 1979 1980 for (j = 0 ; j < nr; j++) { 1981 if (do_read_u64(ff, id)) 1982 goto error; 1983 id++; 1984 } 1985 } 1986 out: 1987 free(buf); 1988 return events; 1989 error: 1990 free_event_desc(events); 1991 events = NULL; 1992 goto out; 1993 } 1994 1995 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, 1996 void *priv __maybe_unused) 1997 { 1998 return fprintf(fp, ", %s = %s", name, val); 1999 } 2000 2001 static void print_event_desc(struct feat_fd *ff, FILE *fp) 2002 { 2003 struct evsel *evsel, *events; 2004 u32 j; 2005 u64 *id; 2006 2007 if (ff->events) 2008 events = ff->events; 2009 else 2010 events = read_event_desc(ff); 2011 2012 if (!events) { 2013 fprintf(fp, "# event desc: not available or unable to read\n"); 2014 return; 2015 } 2016 2017 for (evsel = events; evsel->core.attr.size; evsel++) { 2018 fprintf(fp, "# event : name = %s, ", evsel->name); 2019 2020 if (evsel->core.ids) { 2021 fprintf(fp, ", id = {"); 2022 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) { 2023 if (j) 2024 fputc(',', fp); 2025 fprintf(fp, " %"PRIu64, *id); 2026 } 2027 fprintf(fp, " }"); 2028 } 2029 2030 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL); 2031 2032 fputc('\n', fp); 2033 } 2034 2035 free_event_desc(events); 2036 ff->events = NULL; 2037 } 2038 2039 static void print_total_mem(struct feat_fd *ff, FILE *fp) 2040 { 2041 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); 2042 } 2043 2044 static void print_numa_topology(struct feat_fd *ff, FILE *fp) 2045 { 2046 int i; 2047 struct numa_node *n; 2048 2049 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { 2050 n = &ff->ph->env.numa_nodes[i]; 2051 2052 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," 2053 " free = %"PRIu64" kB\n", 2054 n->node, n->mem_total, n->mem_free); 2055 2056 fprintf(fp, "# node%u cpu list : ", n->node); 2057 cpu_map__fprintf(n->map, fp); 2058 } 2059 } 2060 2061 static void print_cpuid(struct feat_fd *ff, FILE *fp) 2062 { 2063 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); 2064 } 2065 2066 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) 2067 { 2068 fprintf(fp, "# contains samples with branch stack\n"); 2069 } 2070 2071 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) 2072 { 2073 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); 2074 } 2075 2076 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) 2077 { 2078 fprintf(fp, "# contains stat data\n"); 2079 } 2080 2081 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) 2082 { 2083 int i; 2084 2085 fprintf(fp, "# CPU cache info:\n"); 2086 for (i = 0; i < ff->ph->env.caches_cnt; i++) { 2087 fprintf(fp, "# "); 2088 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); 2089 } 2090 } 2091 2092 static void print_compressed(struct feat_fd *ff, FILE *fp) 2093 { 2094 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n", 2095 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown", 2096 ff->ph->env.comp_level, ff->ph->env.comp_ratio); 2097 } 2098 2099 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name) 2100 { 2101 const char *delimiter = ""; 2102 int i; 2103 2104 if (!nr_caps) { 2105 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name); 2106 return; 2107 } 2108 2109 fprintf(fp, "# %s pmu capabilities: ", pmu_name); 2110 for (i = 0; i < nr_caps; i++) { 2111 fprintf(fp, "%s%s", delimiter, caps[i]); 2112 delimiter = ", "; 2113 } 2114 2115 fprintf(fp, "\n"); 2116 } 2117 2118 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp) 2119 { 2120 __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps, 2121 ff->ph->env.cpu_pmu_caps, (char *)"cpu"); 2122 } 2123 2124 static void print_pmu_caps(struct feat_fd *ff, FILE *fp) 2125 { 2126 struct pmu_caps *pmu_caps; 2127 2128 for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) { 2129 pmu_caps = &ff->ph->env.pmu_caps[i]; 2130 __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps, 2131 pmu_caps->pmu_name); 2132 } 2133 } 2134 2135 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) 2136 { 2137 const char *delimiter = "# pmu mappings: "; 2138 char *str, *tmp; 2139 u32 pmu_num; 2140 u32 type; 2141 2142 pmu_num = ff->ph->env.nr_pmu_mappings; 2143 if (!pmu_num) { 2144 fprintf(fp, "# pmu mappings: not available\n"); 2145 return; 2146 } 2147 2148 str = ff->ph->env.pmu_mappings; 2149 2150 while (pmu_num) { 2151 type = strtoul(str, &tmp, 0); 2152 if (*tmp != ':') 2153 goto error; 2154 2155 str = tmp + 1; 2156 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); 2157 2158 delimiter = ", "; 2159 str += strlen(str) + 1; 2160 pmu_num--; 2161 } 2162 2163 fprintf(fp, "\n"); 2164 2165 if (!pmu_num) 2166 return; 2167 error: 2168 fprintf(fp, "# pmu mappings: unable to read\n"); 2169 } 2170 2171 static void print_group_desc(struct feat_fd *ff, FILE *fp) 2172 { 2173 struct perf_session *session; 2174 struct evsel *evsel; 2175 u32 nr = 0; 2176 2177 session = container_of(ff->ph, struct perf_session, header); 2178 2179 evlist__for_each_entry(session->evlist, evsel) { 2180 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 2181 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel)); 2182 2183 nr = evsel->core.nr_members - 1; 2184 } else if (nr) { 2185 fprintf(fp, ",%s", evsel__name(evsel)); 2186 2187 if (--nr == 0) 2188 fprintf(fp, "}\n"); 2189 } 2190 } 2191 } 2192 2193 static void print_sample_time(struct feat_fd *ff, FILE *fp) 2194 { 2195 struct perf_session *session; 2196 char time_buf[32]; 2197 double d; 2198 2199 session = container_of(ff->ph, struct perf_session, header); 2200 2201 timestamp__scnprintf_usec(session->evlist->first_sample_time, 2202 time_buf, sizeof(time_buf)); 2203 fprintf(fp, "# time of first sample : %s\n", time_buf); 2204 2205 timestamp__scnprintf_usec(session->evlist->last_sample_time, 2206 time_buf, sizeof(time_buf)); 2207 fprintf(fp, "# time of last sample : %s\n", time_buf); 2208 2209 d = (double)(session->evlist->last_sample_time - 2210 session->evlist->first_sample_time) / NSEC_PER_MSEC; 2211 2212 fprintf(fp, "# sample duration : %10.3f ms\n", d); 2213 } 2214 2215 static void memory_node__fprintf(struct memory_node *n, 2216 unsigned long long bsize, FILE *fp) 2217 { 2218 char buf_map[100], buf_size[50]; 2219 unsigned long long size; 2220 2221 size = bsize * bitmap_weight(n->set, n->size); 2222 unit_number__scnprintf(buf_size, 50, size); 2223 2224 bitmap_scnprintf(n->set, n->size, buf_map, 100); 2225 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); 2226 } 2227 2228 static void print_mem_topology(struct feat_fd *ff, FILE *fp) 2229 { 2230 struct memory_node *nodes; 2231 int i, nr; 2232 2233 nodes = ff->ph->env.memory_nodes; 2234 nr = ff->ph->env.nr_memory_nodes; 2235 2236 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", 2237 nr, ff->ph->env.memory_bsize); 2238 2239 for (i = 0; i < nr; i++) { 2240 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp); 2241 } 2242 } 2243 2244 static int __event_process_build_id(struct perf_record_header_build_id *bev, 2245 char *filename, 2246 struct perf_session *session) 2247 { 2248 int err = -1; 2249 struct machine *machine; 2250 u16 cpumode; 2251 struct dso *dso; 2252 enum dso_space_type dso_space; 2253 2254 machine = perf_session__findnew_machine(session, bev->pid); 2255 if (!machine) 2256 goto out; 2257 2258 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2259 2260 switch (cpumode) { 2261 case PERF_RECORD_MISC_KERNEL: 2262 dso_space = DSO_SPACE__KERNEL; 2263 break; 2264 case PERF_RECORD_MISC_GUEST_KERNEL: 2265 dso_space = DSO_SPACE__KERNEL_GUEST; 2266 break; 2267 case PERF_RECORD_MISC_USER: 2268 case PERF_RECORD_MISC_GUEST_USER: 2269 dso_space = DSO_SPACE__USER; 2270 break; 2271 default: 2272 goto out; 2273 } 2274 2275 dso = machine__findnew_dso(machine, filename); 2276 if (dso != NULL) { 2277 char sbuild_id[SBUILD_ID_SIZE]; 2278 struct build_id bid; 2279 size_t size = BUILD_ID_SIZE; 2280 2281 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE) 2282 size = bev->size; 2283 2284 build_id__init(&bid, bev->data, size); 2285 dso__set_build_id(dso, &bid); 2286 dso->header_build_id = 1; 2287 2288 if (dso_space != DSO_SPACE__USER) { 2289 struct kmod_path m = { .name = NULL, }; 2290 2291 if (!kmod_path__parse_name(&m, filename) && m.kmod) 2292 dso__set_module_info(dso, &m, machine); 2293 2294 dso->kernel = dso_space; 2295 free(m.name); 2296 } 2297 2298 build_id__sprintf(&dso->bid, sbuild_id); 2299 pr_debug("build id event received for %s: %s [%zu]\n", 2300 dso->long_name, sbuild_id, size); 2301 dso__put(dso); 2302 } 2303 2304 err = 0; 2305 out: 2306 return err; 2307 } 2308 2309 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, 2310 int input, u64 offset, u64 size) 2311 { 2312 struct perf_session *session = container_of(header, struct perf_session, header); 2313 struct { 2314 struct perf_event_header header; 2315 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; 2316 char filename[0]; 2317 } old_bev; 2318 struct perf_record_header_build_id bev; 2319 char filename[PATH_MAX]; 2320 u64 limit = offset + size; 2321 2322 while (offset < limit) { 2323 ssize_t len; 2324 2325 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) 2326 return -1; 2327 2328 if (header->needs_swap) 2329 perf_event_header__bswap(&old_bev.header); 2330 2331 len = old_bev.header.size - sizeof(old_bev); 2332 if (readn(input, filename, len) != len) 2333 return -1; 2334 2335 bev.header = old_bev.header; 2336 2337 /* 2338 * As the pid is the missing value, we need to fill 2339 * it properly. The header.misc value give us nice hint. 2340 */ 2341 bev.pid = HOST_KERNEL_ID; 2342 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || 2343 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) 2344 bev.pid = DEFAULT_GUEST_KERNEL_ID; 2345 2346 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); 2347 __event_process_build_id(&bev, filename, session); 2348 2349 offset += bev.header.size; 2350 } 2351 2352 return 0; 2353 } 2354 2355 static int perf_header__read_build_ids(struct perf_header *header, 2356 int input, u64 offset, u64 size) 2357 { 2358 struct perf_session *session = container_of(header, struct perf_session, header); 2359 struct perf_record_header_build_id bev; 2360 char filename[PATH_MAX]; 2361 u64 limit = offset + size, orig_offset = offset; 2362 int err = -1; 2363 2364 while (offset < limit) { 2365 ssize_t len; 2366 2367 if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) 2368 goto out; 2369 2370 if (header->needs_swap) 2371 perf_event_header__bswap(&bev.header); 2372 2373 len = bev.header.size - sizeof(bev); 2374 if (readn(input, filename, len) != len) 2375 goto out; 2376 /* 2377 * The a1645ce1 changeset: 2378 * 2379 * "perf: 'perf kvm' tool for monitoring guest performance from host" 2380 * 2381 * Added a field to struct perf_record_header_build_id that broke the file 2382 * format. 2383 * 2384 * Since the kernel build-id is the first entry, process the 2385 * table using the old format if the well known 2386 * '[kernel.kallsyms]' string for the kernel build-id has the 2387 * first 4 characters chopped off (where the pid_t sits). 2388 */ 2389 if (memcmp(filename, "nel.kallsyms]", 13) == 0) { 2390 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) 2391 return -1; 2392 return perf_header__read_build_ids_abi_quirk(header, input, offset, size); 2393 } 2394 2395 __event_process_build_id(&bev, filename, session); 2396 2397 offset += bev.header.size; 2398 } 2399 err = 0; 2400 out: 2401 return err; 2402 } 2403 2404 /* Macro for features that simply need to read and store a string. */ 2405 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ 2406 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ 2407 {\ 2408 free(ff->ph->env.__feat_env); \ 2409 ff->ph->env.__feat_env = do_read_string(ff); \ 2410 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ 2411 } 2412 2413 FEAT_PROCESS_STR_FUN(hostname, hostname); 2414 FEAT_PROCESS_STR_FUN(osrelease, os_release); 2415 FEAT_PROCESS_STR_FUN(version, version); 2416 FEAT_PROCESS_STR_FUN(arch, arch); 2417 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); 2418 FEAT_PROCESS_STR_FUN(cpuid, cpuid); 2419 2420 #ifdef HAVE_LIBTRACEEVENT 2421 static int process_tracing_data(struct feat_fd *ff, void *data) 2422 { 2423 ssize_t ret = trace_report(ff->fd, data, false); 2424 2425 return ret < 0 ? -1 : 0; 2426 } 2427 #endif 2428 2429 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) 2430 { 2431 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) 2432 pr_debug("Failed to read buildids, continuing...\n"); 2433 return 0; 2434 } 2435 2436 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) 2437 { 2438 int ret; 2439 u32 nr_cpus_avail, nr_cpus_online; 2440 2441 ret = do_read_u32(ff, &nr_cpus_avail); 2442 if (ret) 2443 return ret; 2444 2445 ret = do_read_u32(ff, &nr_cpus_online); 2446 if (ret) 2447 return ret; 2448 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail; 2449 ff->ph->env.nr_cpus_online = (int)nr_cpus_online; 2450 return 0; 2451 } 2452 2453 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) 2454 { 2455 u64 total_mem; 2456 int ret; 2457 2458 ret = do_read_u64(ff, &total_mem); 2459 if (ret) 2460 return -1; 2461 ff->ph->env.total_mem = (unsigned long long)total_mem; 2462 return 0; 2463 } 2464 2465 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx) 2466 { 2467 struct evsel *evsel; 2468 2469 evlist__for_each_entry(evlist, evsel) { 2470 if (evsel->core.idx == idx) 2471 return evsel; 2472 } 2473 2474 return NULL; 2475 } 2476 2477 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event) 2478 { 2479 struct evsel *evsel; 2480 2481 if (!event->name) 2482 return; 2483 2484 evsel = evlist__find_by_index(evlist, event->core.idx); 2485 if (!evsel) 2486 return; 2487 2488 if (evsel->name) 2489 return; 2490 2491 evsel->name = strdup(event->name); 2492 } 2493 2494 static int 2495 process_event_desc(struct feat_fd *ff, void *data __maybe_unused) 2496 { 2497 struct perf_session *session; 2498 struct evsel *evsel, *events = read_event_desc(ff); 2499 2500 if (!events) 2501 return 0; 2502 2503 session = container_of(ff->ph, struct perf_session, header); 2504 2505 if (session->data->is_pipe) { 2506 /* Save events for reading later by print_event_desc, 2507 * since they can't be read again in pipe mode. */ 2508 ff->events = events; 2509 } 2510 2511 for (evsel = events; evsel->core.attr.size; evsel++) 2512 evlist__set_event_name(session->evlist, evsel); 2513 2514 if (!session->data->is_pipe) 2515 free_event_desc(events); 2516 2517 return 0; 2518 } 2519 2520 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) 2521 { 2522 char *str, *cmdline = NULL, **argv = NULL; 2523 u32 nr, i, len = 0; 2524 2525 if (do_read_u32(ff, &nr)) 2526 return -1; 2527 2528 ff->ph->env.nr_cmdline = nr; 2529 2530 cmdline = zalloc(ff->size + nr + 1); 2531 if (!cmdline) 2532 return -1; 2533 2534 argv = zalloc(sizeof(char *) * (nr + 1)); 2535 if (!argv) 2536 goto error; 2537 2538 for (i = 0; i < nr; i++) { 2539 str = do_read_string(ff); 2540 if (!str) 2541 goto error; 2542 2543 argv[i] = cmdline + len; 2544 memcpy(argv[i], str, strlen(str) + 1); 2545 len += strlen(str) + 1; 2546 free(str); 2547 } 2548 ff->ph->env.cmdline = cmdline; 2549 ff->ph->env.cmdline_argv = (const char **) argv; 2550 return 0; 2551 2552 error: 2553 free(argv); 2554 free(cmdline); 2555 return -1; 2556 } 2557 2558 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) 2559 { 2560 u32 nr, i; 2561 char *str; 2562 struct strbuf sb; 2563 int cpu_nr = ff->ph->env.nr_cpus_avail; 2564 u64 size = 0; 2565 struct perf_header *ph = ff->ph; 2566 bool do_core_id_test = true; 2567 2568 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu)); 2569 if (!ph->env.cpu) 2570 return -1; 2571 2572 if (do_read_u32(ff, &nr)) 2573 goto free_cpu; 2574 2575 ph->env.nr_sibling_cores = nr; 2576 size += sizeof(u32); 2577 if (strbuf_init(&sb, 128) < 0) 2578 goto free_cpu; 2579 2580 for (i = 0; i < nr; i++) { 2581 str = do_read_string(ff); 2582 if (!str) 2583 goto error; 2584 2585 /* include a NULL character at the end */ 2586 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2587 goto error; 2588 size += string_size(str); 2589 free(str); 2590 } 2591 ph->env.sibling_cores = strbuf_detach(&sb, NULL); 2592 2593 if (do_read_u32(ff, &nr)) 2594 return -1; 2595 2596 ph->env.nr_sibling_threads = nr; 2597 size += sizeof(u32); 2598 2599 for (i = 0; i < nr; i++) { 2600 str = do_read_string(ff); 2601 if (!str) 2602 goto error; 2603 2604 /* include a NULL character at the end */ 2605 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2606 goto error; 2607 size += string_size(str); 2608 free(str); 2609 } 2610 ph->env.sibling_threads = strbuf_detach(&sb, NULL); 2611 2612 /* 2613 * The header may be from old perf, 2614 * which doesn't include core id and socket id information. 2615 */ 2616 if (ff->size <= size) { 2617 zfree(&ph->env.cpu); 2618 return 0; 2619 } 2620 2621 /* On s390 the socket_id number is not related to the numbers of cpus. 2622 * The socket_id number might be higher than the numbers of cpus. 2623 * This depends on the configuration. 2624 * AArch64 is the same. 2625 */ 2626 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4) 2627 || !strncmp(ph->env.arch, "aarch64", 7))) 2628 do_core_id_test = false; 2629 2630 for (i = 0; i < (u32)cpu_nr; i++) { 2631 if (do_read_u32(ff, &nr)) 2632 goto free_cpu; 2633 2634 ph->env.cpu[i].core_id = nr; 2635 size += sizeof(u32); 2636 2637 if (do_read_u32(ff, &nr)) 2638 goto free_cpu; 2639 2640 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) { 2641 pr_debug("socket_id number is too big." 2642 "You may need to upgrade the perf tool.\n"); 2643 goto free_cpu; 2644 } 2645 2646 ph->env.cpu[i].socket_id = nr; 2647 size += sizeof(u32); 2648 } 2649 2650 /* 2651 * The header may be from old perf, 2652 * which doesn't include die information. 2653 */ 2654 if (ff->size <= size) 2655 return 0; 2656 2657 if (do_read_u32(ff, &nr)) 2658 return -1; 2659 2660 ph->env.nr_sibling_dies = nr; 2661 size += sizeof(u32); 2662 2663 for (i = 0; i < nr; i++) { 2664 str = do_read_string(ff); 2665 if (!str) 2666 goto error; 2667 2668 /* include a NULL character at the end */ 2669 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2670 goto error; 2671 size += string_size(str); 2672 free(str); 2673 } 2674 ph->env.sibling_dies = strbuf_detach(&sb, NULL); 2675 2676 for (i = 0; i < (u32)cpu_nr; i++) { 2677 if (do_read_u32(ff, &nr)) 2678 goto free_cpu; 2679 2680 ph->env.cpu[i].die_id = nr; 2681 } 2682 2683 return 0; 2684 2685 error: 2686 strbuf_release(&sb); 2687 free_cpu: 2688 zfree(&ph->env.cpu); 2689 return -1; 2690 } 2691 2692 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) 2693 { 2694 struct numa_node *nodes, *n; 2695 u32 nr, i; 2696 char *str; 2697 2698 /* nr nodes */ 2699 if (do_read_u32(ff, &nr)) 2700 return -1; 2701 2702 nodes = zalloc(sizeof(*nodes) * nr); 2703 if (!nodes) 2704 return -ENOMEM; 2705 2706 for (i = 0; i < nr; i++) { 2707 n = &nodes[i]; 2708 2709 /* node number */ 2710 if (do_read_u32(ff, &n->node)) 2711 goto error; 2712 2713 if (do_read_u64(ff, &n->mem_total)) 2714 goto error; 2715 2716 if (do_read_u64(ff, &n->mem_free)) 2717 goto error; 2718 2719 str = do_read_string(ff); 2720 if (!str) 2721 goto error; 2722 2723 n->map = perf_cpu_map__new(str); 2724 if (!n->map) 2725 goto error; 2726 2727 free(str); 2728 } 2729 ff->ph->env.nr_numa_nodes = nr; 2730 ff->ph->env.numa_nodes = nodes; 2731 return 0; 2732 2733 error: 2734 free(nodes); 2735 return -1; 2736 } 2737 2738 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) 2739 { 2740 char *name; 2741 u32 pmu_num; 2742 u32 type; 2743 struct strbuf sb; 2744 2745 if (do_read_u32(ff, &pmu_num)) 2746 return -1; 2747 2748 if (!pmu_num) { 2749 pr_debug("pmu mappings not available\n"); 2750 return 0; 2751 } 2752 2753 ff->ph->env.nr_pmu_mappings = pmu_num; 2754 if (strbuf_init(&sb, 128) < 0) 2755 return -1; 2756 2757 while (pmu_num) { 2758 if (do_read_u32(ff, &type)) 2759 goto error; 2760 2761 name = do_read_string(ff); 2762 if (!name) 2763 goto error; 2764 2765 if (strbuf_addf(&sb, "%u:%s", type, name) < 0) 2766 goto error; 2767 /* include a NULL character at the end */ 2768 if (strbuf_add(&sb, "", 1) < 0) 2769 goto error; 2770 2771 if (!strcmp(name, "msr")) 2772 ff->ph->env.msr_pmu_type = type; 2773 2774 free(name); 2775 pmu_num--; 2776 } 2777 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL); 2778 return 0; 2779 2780 error: 2781 strbuf_release(&sb); 2782 return -1; 2783 } 2784 2785 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) 2786 { 2787 size_t ret = -1; 2788 u32 i, nr, nr_groups; 2789 struct perf_session *session; 2790 struct evsel *evsel, *leader = NULL; 2791 struct group_desc { 2792 char *name; 2793 u32 leader_idx; 2794 u32 nr_members; 2795 } *desc; 2796 2797 if (do_read_u32(ff, &nr_groups)) 2798 return -1; 2799 2800 ff->ph->env.nr_groups = nr_groups; 2801 if (!nr_groups) { 2802 pr_debug("group desc not available\n"); 2803 return 0; 2804 } 2805 2806 desc = calloc(nr_groups, sizeof(*desc)); 2807 if (!desc) 2808 return -1; 2809 2810 for (i = 0; i < nr_groups; i++) { 2811 desc[i].name = do_read_string(ff); 2812 if (!desc[i].name) 2813 goto out_free; 2814 2815 if (do_read_u32(ff, &desc[i].leader_idx)) 2816 goto out_free; 2817 2818 if (do_read_u32(ff, &desc[i].nr_members)) 2819 goto out_free; 2820 } 2821 2822 /* 2823 * Rebuild group relationship based on the group_desc 2824 */ 2825 session = container_of(ff->ph, struct perf_session, header); 2826 2827 i = nr = 0; 2828 evlist__for_each_entry(session->evlist, evsel) { 2829 if (evsel->core.idx == (int) desc[i].leader_idx) { 2830 evsel__set_leader(evsel, evsel); 2831 /* {anon_group} is a dummy name */ 2832 if (strcmp(desc[i].name, "{anon_group}")) { 2833 evsel->group_name = desc[i].name; 2834 desc[i].name = NULL; 2835 } 2836 evsel->core.nr_members = desc[i].nr_members; 2837 2838 if (i >= nr_groups || nr > 0) { 2839 pr_debug("invalid group desc\n"); 2840 goto out_free; 2841 } 2842 2843 leader = evsel; 2844 nr = evsel->core.nr_members - 1; 2845 i++; 2846 } else if (nr) { 2847 /* This is a group member */ 2848 evsel__set_leader(evsel, leader); 2849 2850 nr--; 2851 } 2852 } 2853 2854 if (i != nr_groups || nr != 0) { 2855 pr_debug("invalid group desc\n"); 2856 goto out_free; 2857 } 2858 2859 ret = 0; 2860 out_free: 2861 for (i = 0; i < nr_groups; i++) 2862 zfree(&desc[i].name); 2863 free(desc); 2864 2865 return ret; 2866 } 2867 2868 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) 2869 { 2870 struct perf_session *session; 2871 int err; 2872 2873 session = container_of(ff->ph, struct perf_session, header); 2874 2875 err = auxtrace_index__process(ff->fd, ff->size, session, 2876 ff->ph->needs_swap); 2877 if (err < 0) 2878 pr_err("Failed to process auxtrace index\n"); 2879 return err; 2880 } 2881 2882 static int process_cache(struct feat_fd *ff, void *data __maybe_unused) 2883 { 2884 struct cpu_cache_level *caches; 2885 u32 cnt, i, version; 2886 2887 if (do_read_u32(ff, &version)) 2888 return -1; 2889 2890 if (version != 1) 2891 return -1; 2892 2893 if (do_read_u32(ff, &cnt)) 2894 return -1; 2895 2896 caches = zalloc(sizeof(*caches) * cnt); 2897 if (!caches) 2898 return -1; 2899 2900 for (i = 0; i < cnt; i++) { 2901 struct cpu_cache_level c; 2902 2903 #define _R(v) \ 2904 if (do_read_u32(ff, &c.v))\ 2905 goto out_free_caches; \ 2906 2907 _R(level) 2908 _R(line_size) 2909 _R(sets) 2910 _R(ways) 2911 #undef _R 2912 2913 #define _R(v) \ 2914 c.v = do_read_string(ff); \ 2915 if (!c.v) \ 2916 goto out_free_caches; 2917 2918 _R(type) 2919 _R(size) 2920 _R(map) 2921 #undef _R 2922 2923 caches[i] = c; 2924 } 2925 2926 ff->ph->env.caches = caches; 2927 ff->ph->env.caches_cnt = cnt; 2928 return 0; 2929 out_free_caches: 2930 free(caches); 2931 return -1; 2932 } 2933 2934 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) 2935 { 2936 struct perf_session *session; 2937 u64 first_sample_time, last_sample_time; 2938 int ret; 2939 2940 session = container_of(ff->ph, struct perf_session, header); 2941 2942 ret = do_read_u64(ff, &first_sample_time); 2943 if (ret) 2944 return -1; 2945 2946 ret = do_read_u64(ff, &last_sample_time); 2947 if (ret) 2948 return -1; 2949 2950 session->evlist->first_sample_time = first_sample_time; 2951 session->evlist->last_sample_time = last_sample_time; 2952 return 0; 2953 } 2954 2955 static int process_mem_topology(struct feat_fd *ff, 2956 void *data __maybe_unused) 2957 { 2958 struct memory_node *nodes; 2959 u64 version, i, nr, bsize; 2960 int ret = -1; 2961 2962 if (do_read_u64(ff, &version)) 2963 return -1; 2964 2965 if (version != 1) 2966 return -1; 2967 2968 if (do_read_u64(ff, &bsize)) 2969 return -1; 2970 2971 if (do_read_u64(ff, &nr)) 2972 return -1; 2973 2974 nodes = zalloc(sizeof(*nodes) * nr); 2975 if (!nodes) 2976 return -1; 2977 2978 for (i = 0; i < nr; i++) { 2979 struct memory_node n; 2980 2981 #define _R(v) \ 2982 if (do_read_u64(ff, &n.v)) \ 2983 goto out; \ 2984 2985 _R(node) 2986 _R(size) 2987 2988 #undef _R 2989 2990 if (do_read_bitmap(ff, &n.set, &n.size)) 2991 goto out; 2992 2993 nodes[i] = n; 2994 } 2995 2996 ff->ph->env.memory_bsize = bsize; 2997 ff->ph->env.memory_nodes = nodes; 2998 ff->ph->env.nr_memory_nodes = nr; 2999 ret = 0; 3000 3001 out: 3002 if (ret) 3003 free(nodes); 3004 return ret; 3005 } 3006 3007 static int process_clockid(struct feat_fd *ff, 3008 void *data __maybe_unused) 3009 { 3010 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns)) 3011 return -1; 3012 3013 return 0; 3014 } 3015 3016 static int process_clock_data(struct feat_fd *ff, 3017 void *_data __maybe_unused) 3018 { 3019 u32 data32; 3020 u64 data64; 3021 3022 /* version */ 3023 if (do_read_u32(ff, &data32)) 3024 return -1; 3025 3026 if (data32 != 1) 3027 return -1; 3028 3029 /* clockid */ 3030 if (do_read_u32(ff, &data32)) 3031 return -1; 3032 3033 ff->ph->env.clock.clockid = data32; 3034 3035 /* TOD ref time */ 3036 if (do_read_u64(ff, &data64)) 3037 return -1; 3038 3039 ff->ph->env.clock.tod_ns = data64; 3040 3041 /* clockid ref time */ 3042 if (do_read_u64(ff, &data64)) 3043 return -1; 3044 3045 ff->ph->env.clock.clockid_ns = data64; 3046 ff->ph->env.clock.enabled = true; 3047 return 0; 3048 } 3049 3050 static int process_hybrid_topology(struct feat_fd *ff, 3051 void *data __maybe_unused) 3052 { 3053 struct hybrid_node *nodes, *n; 3054 u32 nr, i; 3055 3056 /* nr nodes */ 3057 if (do_read_u32(ff, &nr)) 3058 return -1; 3059 3060 nodes = zalloc(sizeof(*nodes) * nr); 3061 if (!nodes) 3062 return -ENOMEM; 3063 3064 for (i = 0; i < nr; i++) { 3065 n = &nodes[i]; 3066 3067 n->pmu_name = do_read_string(ff); 3068 if (!n->pmu_name) 3069 goto error; 3070 3071 n->cpus = do_read_string(ff); 3072 if (!n->cpus) 3073 goto error; 3074 } 3075 3076 ff->ph->env.nr_hybrid_nodes = nr; 3077 ff->ph->env.hybrid_nodes = nodes; 3078 return 0; 3079 3080 error: 3081 for (i = 0; i < nr; i++) { 3082 free(nodes[i].pmu_name); 3083 free(nodes[i].cpus); 3084 } 3085 3086 free(nodes); 3087 return -1; 3088 } 3089 3090 static int process_dir_format(struct feat_fd *ff, 3091 void *_data __maybe_unused) 3092 { 3093 struct perf_session *session; 3094 struct perf_data *data; 3095 3096 session = container_of(ff->ph, struct perf_session, header); 3097 data = session->data; 3098 3099 if (WARN_ON(!perf_data__is_dir(data))) 3100 return -1; 3101 3102 return do_read_u64(ff, &data->dir.version); 3103 } 3104 3105 #ifdef HAVE_LIBBPF_SUPPORT 3106 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused) 3107 { 3108 struct bpf_prog_info_node *info_node; 3109 struct perf_env *env = &ff->ph->env; 3110 struct perf_bpil *info_linear; 3111 u32 count, i; 3112 int err = -1; 3113 3114 if (ff->ph->needs_swap) { 3115 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n"); 3116 return 0; 3117 } 3118 3119 if (do_read_u32(ff, &count)) 3120 return -1; 3121 3122 down_write(&env->bpf_progs.lock); 3123 3124 for (i = 0; i < count; ++i) { 3125 u32 info_len, data_len; 3126 3127 info_linear = NULL; 3128 info_node = NULL; 3129 if (do_read_u32(ff, &info_len)) 3130 goto out; 3131 if (do_read_u32(ff, &data_len)) 3132 goto out; 3133 3134 if (info_len > sizeof(struct bpf_prog_info)) { 3135 pr_warning("detected invalid bpf_prog_info\n"); 3136 goto out; 3137 } 3138 3139 info_linear = malloc(sizeof(struct perf_bpil) + 3140 data_len); 3141 if (!info_linear) 3142 goto out; 3143 info_linear->info_len = sizeof(struct bpf_prog_info); 3144 info_linear->data_len = data_len; 3145 if (do_read_u64(ff, (u64 *)(&info_linear->arrays))) 3146 goto out; 3147 if (__do_read(ff, &info_linear->info, info_len)) 3148 goto out; 3149 if (info_len < sizeof(struct bpf_prog_info)) 3150 memset(((void *)(&info_linear->info)) + info_len, 0, 3151 sizeof(struct bpf_prog_info) - info_len); 3152 3153 if (__do_read(ff, info_linear->data, data_len)) 3154 goto out; 3155 3156 info_node = malloc(sizeof(struct bpf_prog_info_node)); 3157 if (!info_node) 3158 goto out; 3159 3160 /* after reading from file, translate offset to address */ 3161 bpil_offs_to_addr(info_linear); 3162 info_node->info_linear = info_linear; 3163 perf_env__insert_bpf_prog_info(env, info_node); 3164 } 3165 3166 up_write(&env->bpf_progs.lock); 3167 return 0; 3168 out: 3169 free(info_linear); 3170 free(info_node); 3171 up_write(&env->bpf_progs.lock); 3172 return err; 3173 } 3174 3175 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused) 3176 { 3177 struct perf_env *env = &ff->ph->env; 3178 struct btf_node *node = NULL; 3179 u32 count, i; 3180 int err = -1; 3181 3182 if (ff->ph->needs_swap) { 3183 pr_warning("interpreting btf from systems with endianness is not yet supported\n"); 3184 return 0; 3185 } 3186 3187 if (do_read_u32(ff, &count)) 3188 return -1; 3189 3190 down_write(&env->bpf_progs.lock); 3191 3192 for (i = 0; i < count; ++i) { 3193 u32 id, data_size; 3194 3195 if (do_read_u32(ff, &id)) 3196 goto out; 3197 if (do_read_u32(ff, &data_size)) 3198 goto out; 3199 3200 node = malloc(sizeof(struct btf_node) + data_size); 3201 if (!node) 3202 goto out; 3203 3204 node->id = id; 3205 node->data_size = data_size; 3206 3207 if (__do_read(ff, node->data, data_size)) 3208 goto out; 3209 3210 perf_env__insert_btf(env, node); 3211 node = NULL; 3212 } 3213 3214 err = 0; 3215 out: 3216 up_write(&env->bpf_progs.lock); 3217 free(node); 3218 return err; 3219 } 3220 #endif // HAVE_LIBBPF_SUPPORT 3221 3222 static int process_compressed(struct feat_fd *ff, 3223 void *data __maybe_unused) 3224 { 3225 if (do_read_u32(ff, &(ff->ph->env.comp_ver))) 3226 return -1; 3227 3228 if (do_read_u32(ff, &(ff->ph->env.comp_type))) 3229 return -1; 3230 3231 if (do_read_u32(ff, &(ff->ph->env.comp_level))) 3232 return -1; 3233 3234 if (do_read_u32(ff, &(ff->ph->env.comp_ratio))) 3235 return -1; 3236 3237 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len))) 3238 return -1; 3239 3240 return 0; 3241 } 3242 3243 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps, 3244 char ***caps, unsigned int *max_branches) 3245 { 3246 char *name, *value, *ptr; 3247 u32 nr_pmu_caps, i; 3248 3249 *nr_caps = 0; 3250 *caps = NULL; 3251 3252 if (do_read_u32(ff, &nr_pmu_caps)) 3253 return -1; 3254 3255 if (!nr_pmu_caps) 3256 return 0; 3257 3258 *caps = zalloc(sizeof(char *) * nr_pmu_caps); 3259 if (!*caps) 3260 return -1; 3261 3262 for (i = 0; i < nr_pmu_caps; i++) { 3263 name = do_read_string(ff); 3264 if (!name) 3265 goto error; 3266 3267 value = do_read_string(ff); 3268 if (!value) 3269 goto free_name; 3270 3271 if (asprintf(&ptr, "%s=%s", name, value) < 0) 3272 goto free_value; 3273 3274 (*caps)[i] = ptr; 3275 3276 if (!strcmp(name, "branches")) 3277 *max_branches = atoi(value); 3278 3279 free(value); 3280 free(name); 3281 } 3282 *nr_caps = nr_pmu_caps; 3283 return 0; 3284 3285 free_value: 3286 free(value); 3287 free_name: 3288 free(name); 3289 error: 3290 for (; i > 0; i--) 3291 free((*caps)[i - 1]); 3292 free(*caps); 3293 *caps = NULL; 3294 *nr_caps = 0; 3295 return -1; 3296 } 3297 3298 static int process_cpu_pmu_caps(struct feat_fd *ff, 3299 void *data __maybe_unused) 3300 { 3301 int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps, 3302 &ff->ph->env.cpu_pmu_caps, 3303 &ff->ph->env.max_branches); 3304 3305 if (!ret && !ff->ph->env.cpu_pmu_caps) 3306 pr_debug("cpu pmu capabilities not available\n"); 3307 return ret; 3308 } 3309 3310 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused) 3311 { 3312 struct pmu_caps *pmu_caps; 3313 u32 nr_pmu, i; 3314 int ret; 3315 int j; 3316 3317 if (do_read_u32(ff, &nr_pmu)) 3318 return -1; 3319 3320 if (!nr_pmu) { 3321 pr_debug("pmu capabilities not available\n"); 3322 return 0; 3323 } 3324 3325 pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu); 3326 if (!pmu_caps) 3327 return -ENOMEM; 3328 3329 for (i = 0; i < nr_pmu; i++) { 3330 ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps, 3331 &pmu_caps[i].caps, 3332 &pmu_caps[i].max_branches); 3333 if (ret) 3334 goto err; 3335 3336 pmu_caps[i].pmu_name = do_read_string(ff); 3337 if (!pmu_caps[i].pmu_name) { 3338 ret = -1; 3339 goto err; 3340 } 3341 if (!pmu_caps[i].nr_caps) { 3342 pr_debug("%s pmu capabilities not available\n", 3343 pmu_caps[i].pmu_name); 3344 } 3345 } 3346 3347 ff->ph->env.nr_pmus_with_caps = nr_pmu; 3348 ff->ph->env.pmu_caps = pmu_caps; 3349 return 0; 3350 3351 err: 3352 for (i = 0; i < nr_pmu; i++) { 3353 for (j = 0; j < pmu_caps[i].nr_caps; j++) 3354 free(pmu_caps[i].caps[j]); 3355 free(pmu_caps[i].caps); 3356 free(pmu_caps[i].pmu_name); 3357 } 3358 3359 free(pmu_caps); 3360 return ret; 3361 } 3362 3363 #define FEAT_OPR(n, func, __full_only) \ 3364 [HEADER_##n] = { \ 3365 .name = __stringify(n), \ 3366 .write = write_##func, \ 3367 .print = print_##func, \ 3368 .full_only = __full_only, \ 3369 .process = process_##func, \ 3370 .synthesize = true \ 3371 } 3372 3373 #define FEAT_OPN(n, func, __full_only) \ 3374 [HEADER_##n] = { \ 3375 .name = __stringify(n), \ 3376 .write = write_##func, \ 3377 .print = print_##func, \ 3378 .full_only = __full_only, \ 3379 .process = process_##func \ 3380 } 3381 3382 /* feature_ops not implemented: */ 3383 #define print_tracing_data NULL 3384 #define print_build_id NULL 3385 3386 #define process_branch_stack NULL 3387 #define process_stat NULL 3388 3389 // Only used in util/synthetic-events.c 3390 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE]; 3391 3392 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = { 3393 #ifdef HAVE_LIBTRACEEVENT 3394 FEAT_OPN(TRACING_DATA, tracing_data, false), 3395 #endif 3396 FEAT_OPN(BUILD_ID, build_id, false), 3397 FEAT_OPR(HOSTNAME, hostname, false), 3398 FEAT_OPR(OSRELEASE, osrelease, false), 3399 FEAT_OPR(VERSION, version, false), 3400 FEAT_OPR(ARCH, arch, false), 3401 FEAT_OPR(NRCPUS, nrcpus, false), 3402 FEAT_OPR(CPUDESC, cpudesc, false), 3403 FEAT_OPR(CPUID, cpuid, false), 3404 FEAT_OPR(TOTAL_MEM, total_mem, false), 3405 FEAT_OPR(EVENT_DESC, event_desc, false), 3406 FEAT_OPR(CMDLINE, cmdline, false), 3407 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), 3408 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), 3409 FEAT_OPN(BRANCH_STACK, branch_stack, false), 3410 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), 3411 FEAT_OPR(GROUP_DESC, group_desc, false), 3412 FEAT_OPN(AUXTRACE, auxtrace, false), 3413 FEAT_OPN(STAT, stat, false), 3414 FEAT_OPN(CACHE, cache, true), 3415 FEAT_OPR(SAMPLE_TIME, sample_time, false), 3416 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), 3417 FEAT_OPR(CLOCKID, clockid, false), 3418 FEAT_OPN(DIR_FORMAT, dir_format, false), 3419 #ifdef HAVE_LIBBPF_SUPPORT 3420 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false), 3421 FEAT_OPR(BPF_BTF, bpf_btf, false), 3422 #endif 3423 FEAT_OPR(COMPRESSED, compressed, false), 3424 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false), 3425 FEAT_OPR(CLOCK_DATA, clock_data, false), 3426 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true), 3427 FEAT_OPR(PMU_CAPS, pmu_caps, false), 3428 }; 3429 3430 struct header_print_data { 3431 FILE *fp; 3432 bool full; /* extended list of headers */ 3433 }; 3434 3435 static int perf_file_section__fprintf_info(struct perf_file_section *section, 3436 struct perf_header *ph, 3437 int feat, int fd, void *data) 3438 { 3439 struct header_print_data *hd = data; 3440 struct feat_fd ff; 3441 3442 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3443 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3444 "%d, continuing...\n", section->offset, feat); 3445 return 0; 3446 } 3447 if (feat >= HEADER_LAST_FEATURE) { 3448 pr_warning("unknown feature %d\n", feat); 3449 return 0; 3450 } 3451 if (!feat_ops[feat].print) 3452 return 0; 3453 3454 ff = (struct feat_fd) { 3455 .fd = fd, 3456 .ph = ph, 3457 }; 3458 3459 if (!feat_ops[feat].full_only || hd->full) 3460 feat_ops[feat].print(&ff, hd->fp); 3461 else 3462 fprintf(hd->fp, "# %s info available, use -I to display\n", 3463 feat_ops[feat].name); 3464 3465 return 0; 3466 } 3467 3468 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) 3469 { 3470 struct header_print_data hd; 3471 struct perf_header *header = &session->header; 3472 int fd = perf_data__fd(session->data); 3473 struct stat st; 3474 time_t stctime; 3475 int ret, bit; 3476 3477 hd.fp = fp; 3478 hd.full = full; 3479 3480 ret = fstat(fd, &st); 3481 if (ret == -1) 3482 return -1; 3483 3484 stctime = st.st_mtime; 3485 fprintf(fp, "# captured on : %s", ctime(&stctime)); 3486 3487 fprintf(fp, "# header version : %u\n", header->version); 3488 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); 3489 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); 3490 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); 3491 3492 perf_header__process_sections(header, fd, &hd, 3493 perf_file_section__fprintf_info); 3494 3495 if (session->data->is_pipe) 3496 return 0; 3497 3498 fprintf(fp, "# missing features: "); 3499 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { 3500 if (bit) 3501 fprintf(fp, "%s ", feat_ops[bit].name); 3502 } 3503 3504 fprintf(fp, "\n"); 3505 return 0; 3506 } 3507 3508 struct header_fw { 3509 struct feat_writer fw; 3510 struct feat_fd *ff; 3511 }; 3512 3513 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz) 3514 { 3515 struct header_fw *h = container_of(fw, struct header_fw, fw); 3516 3517 return do_write(h->ff, buf, sz); 3518 } 3519 3520 static int do_write_feat(struct feat_fd *ff, int type, 3521 struct perf_file_section **p, 3522 struct evlist *evlist, 3523 struct feat_copier *fc) 3524 { 3525 int err; 3526 int ret = 0; 3527 3528 if (perf_header__has_feat(ff->ph, type)) { 3529 if (!feat_ops[type].write) 3530 return -1; 3531 3532 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 3533 return -1; 3534 3535 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); 3536 3537 /* 3538 * Hook to let perf inject copy features sections from the input 3539 * file. 3540 */ 3541 if (fc && fc->copy) { 3542 struct header_fw h = { 3543 .fw.write = feat_writer_cb, 3544 .ff = ff, 3545 }; 3546 3547 /* ->copy() returns 0 if the feature was not copied */ 3548 err = fc->copy(fc, type, &h.fw); 3549 } else { 3550 err = 0; 3551 } 3552 if (!err) 3553 err = feat_ops[type].write(ff, evlist); 3554 if (err < 0) { 3555 pr_debug("failed to write feature %s\n", feat_ops[type].name); 3556 3557 /* undo anything written */ 3558 lseek(ff->fd, (*p)->offset, SEEK_SET); 3559 3560 return -1; 3561 } 3562 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; 3563 (*p)++; 3564 } 3565 return ret; 3566 } 3567 3568 static int perf_header__adds_write(struct perf_header *header, 3569 struct evlist *evlist, int fd, 3570 struct feat_copier *fc) 3571 { 3572 int nr_sections; 3573 struct feat_fd ff; 3574 struct perf_file_section *feat_sec, *p; 3575 int sec_size; 3576 u64 sec_start; 3577 int feat; 3578 int err; 3579 3580 ff = (struct feat_fd){ 3581 .fd = fd, 3582 .ph = header, 3583 }; 3584 3585 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3586 if (!nr_sections) 3587 return 0; 3588 3589 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); 3590 if (feat_sec == NULL) 3591 return -ENOMEM; 3592 3593 sec_size = sizeof(*feat_sec) * nr_sections; 3594 3595 sec_start = header->feat_offset; 3596 lseek(fd, sec_start + sec_size, SEEK_SET); 3597 3598 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3599 if (do_write_feat(&ff, feat, &p, evlist, fc)) 3600 perf_header__clear_feat(header, feat); 3601 } 3602 3603 lseek(fd, sec_start, SEEK_SET); 3604 /* 3605 * may write more than needed due to dropped feature, but 3606 * this is okay, reader will skip the missing entries 3607 */ 3608 err = do_write(&ff, feat_sec, sec_size); 3609 if (err < 0) 3610 pr_debug("failed to write feature section\n"); 3611 free(feat_sec); 3612 return err; 3613 } 3614 3615 int perf_header__write_pipe(int fd) 3616 { 3617 struct perf_pipe_file_header f_header; 3618 struct feat_fd ff; 3619 int err; 3620 3621 ff = (struct feat_fd){ .fd = fd }; 3622 3623 f_header = (struct perf_pipe_file_header){ 3624 .magic = PERF_MAGIC, 3625 .size = sizeof(f_header), 3626 }; 3627 3628 err = do_write(&ff, &f_header, sizeof(f_header)); 3629 if (err < 0) { 3630 pr_debug("failed to write perf pipe header\n"); 3631 return err; 3632 } 3633 3634 return 0; 3635 } 3636 3637 static int perf_session__do_write_header(struct perf_session *session, 3638 struct evlist *evlist, 3639 int fd, bool at_exit, 3640 struct feat_copier *fc) 3641 { 3642 struct perf_file_header f_header; 3643 struct perf_file_attr f_attr; 3644 struct perf_header *header = &session->header; 3645 struct evsel *evsel; 3646 struct feat_fd ff; 3647 u64 attr_offset; 3648 int err; 3649 3650 ff = (struct feat_fd){ .fd = fd}; 3651 lseek(fd, sizeof(f_header), SEEK_SET); 3652 3653 evlist__for_each_entry(session->evlist, evsel) { 3654 evsel->id_offset = lseek(fd, 0, SEEK_CUR); 3655 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 3656 if (err < 0) { 3657 pr_debug("failed to write perf header\n"); 3658 return err; 3659 } 3660 } 3661 3662 attr_offset = lseek(ff.fd, 0, SEEK_CUR); 3663 3664 evlist__for_each_entry(evlist, evsel) { 3665 if (evsel->core.attr.size < sizeof(evsel->core.attr)) { 3666 /* 3667 * We are likely in "perf inject" and have read 3668 * from an older file. Update attr size so that 3669 * reader gets the right offset to the ids. 3670 */ 3671 evsel->core.attr.size = sizeof(evsel->core.attr); 3672 } 3673 f_attr = (struct perf_file_attr){ 3674 .attr = evsel->core.attr, 3675 .ids = { 3676 .offset = evsel->id_offset, 3677 .size = evsel->core.ids * sizeof(u64), 3678 } 3679 }; 3680 err = do_write(&ff, &f_attr, sizeof(f_attr)); 3681 if (err < 0) { 3682 pr_debug("failed to write perf header attribute\n"); 3683 return err; 3684 } 3685 } 3686 3687 if (!header->data_offset) 3688 header->data_offset = lseek(fd, 0, SEEK_CUR); 3689 header->feat_offset = header->data_offset + header->data_size; 3690 3691 if (at_exit) { 3692 err = perf_header__adds_write(header, evlist, fd, fc); 3693 if (err < 0) 3694 return err; 3695 } 3696 3697 f_header = (struct perf_file_header){ 3698 .magic = PERF_MAGIC, 3699 .size = sizeof(f_header), 3700 .attr_size = sizeof(f_attr), 3701 .attrs = { 3702 .offset = attr_offset, 3703 .size = evlist->core.nr_entries * sizeof(f_attr), 3704 }, 3705 .data = { 3706 .offset = header->data_offset, 3707 .size = header->data_size, 3708 }, 3709 /* event_types is ignored, store zeros */ 3710 }; 3711 3712 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); 3713 3714 lseek(fd, 0, SEEK_SET); 3715 err = do_write(&ff, &f_header, sizeof(f_header)); 3716 if (err < 0) { 3717 pr_debug("failed to write perf header\n"); 3718 return err; 3719 } 3720 lseek(fd, header->data_offset + header->data_size, SEEK_SET); 3721 3722 return 0; 3723 } 3724 3725 int perf_session__write_header(struct perf_session *session, 3726 struct evlist *evlist, 3727 int fd, bool at_exit) 3728 { 3729 return perf_session__do_write_header(session, evlist, fd, at_exit, NULL); 3730 } 3731 3732 size_t perf_session__data_offset(const struct evlist *evlist) 3733 { 3734 struct evsel *evsel; 3735 size_t data_offset; 3736 3737 data_offset = sizeof(struct perf_file_header); 3738 evlist__for_each_entry(evlist, evsel) { 3739 data_offset += evsel->core.ids * sizeof(u64); 3740 } 3741 data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr); 3742 3743 return data_offset; 3744 } 3745 3746 int perf_session__inject_header(struct perf_session *session, 3747 struct evlist *evlist, 3748 int fd, 3749 struct feat_copier *fc) 3750 { 3751 return perf_session__do_write_header(session, evlist, fd, true, fc); 3752 } 3753 3754 static int perf_header__getbuffer64(struct perf_header *header, 3755 int fd, void *buf, size_t size) 3756 { 3757 if (readn(fd, buf, size) <= 0) 3758 return -1; 3759 3760 if (header->needs_swap) 3761 mem_bswap_64(buf, size); 3762 3763 return 0; 3764 } 3765 3766 int perf_header__process_sections(struct perf_header *header, int fd, 3767 void *data, 3768 int (*process)(struct perf_file_section *section, 3769 struct perf_header *ph, 3770 int feat, int fd, void *data)) 3771 { 3772 struct perf_file_section *feat_sec, *sec; 3773 int nr_sections; 3774 int sec_size; 3775 int feat; 3776 int err; 3777 3778 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3779 if (!nr_sections) 3780 return 0; 3781 3782 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); 3783 if (!feat_sec) 3784 return -1; 3785 3786 sec_size = sizeof(*feat_sec) * nr_sections; 3787 3788 lseek(fd, header->feat_offset, SEEK_SET); 3789 3790 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); 3791 if (err < 0) 3792 goto out_free; 3793 3794 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { 3795 err = process(sec++, header, feat, fd, data); 3796 if (err < 0) 3797 goto out_free; 3798 } 3799 err = 0; 3800 out_free: 3801 free(feat_sec); 3802 return err; 3803 } 3804 3805 static const int attr_file_abi_sizes[] = { 3806 [0] = PERF_ATTR_SIZE_VER0, 3807 [1] = PERF_ATTR_SIZE_VER1, 3808 [2] = PERF_ATTR_SIZE_VER2, 3809 [3] = PERF_ATTR_SIZE_VER3, 3810 [4] = PERF_ATTR_SIZE_VER4, 3811 0, 3812 }; 3813 3814 /* 3815 * In the legacy file format, the magic number is not used to encode endianness. 3816 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based 3817 * on ABI revisions, we need to try all combinations for all endianness to 3818 * detect the endianness. 3819 */ 3820 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) 3821 { 3822 uint64_t ref_size, attr_size; 3823 int i; 3824 3825 for (i = 0 ; attr_file_abi_sizes[i]; i++) { 3826 ref_size = attr_file_abi_sizes[i] 3827 + sizeof(struct perf_file_section); 3828 if (hdr_sz != ref_size) { 3829 attr_size = bswap_64(hdr_sz); 3830 if (attr_size != ref_size) 3831 continue; 3832 3833 ph->needs_swap = true; 3834 } 3835 pr_debug("ABI%d perf.data file detected, need_swap=%d\n", 3836 i, 3837 ph->needs_swap); 3838 return 0; 3839 } 3840 /* could not determine endianness */ 3841 return -1; 3842 } 3843 3844 #define PERF_PIPE_HDR_VER0 16 3845 3846 static const size_t attr_pipe_abi_sizes[] = { 3847 [0] = PERF_PIPE_HDR_VER0, 3848 0, 3849 }; 3850 3851 /* 3852 * In the legacy pipe format, there is an implicit assumption that endianness 3853 * between host recording the samples, and host parsing the samples is the 3854 * same. This is not always the case given that the pipe output may always be 3855 * redirected into a file and analyzed on a different machine with possibly a 3856 * different endianness and perf_event ABI revisions in the perf tool itself. 3857 */ 3858 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) 3859 { 3860 u64 attr_size; 3861 int i; 3862 3863 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { 3864 if (hdr_sz != attr_pipe_abi_sizes[i]) { 3865 attr_size = bswap_64(hdr_sz); 3866 if (attr_size != hdr_sz) 3867 continue; 3868 3869 ph->needs_swap = true; 3870 } 3871 pr_debug("Pipe ABI%d perf.data file detected\n", i); 3872 return 0; 3873 } 3874 return -1; 3875 } 3876 3877 bool is_perf_magic(u64 magic) 3878 { 3879 if (!memcmp(&magic, __perf_magic1, sizeof(magic)) 3880 || magic == __perf_magic2 3881 || magic == __perf_magic2_sw) 3882 return true; 3883 3884 return false; 3885 } 3886 3887 static int check_magic_endian(u64 magic, uint64_t hdr_sz, 3888 bool is_pipe, struct perf_header *ph) 3889 { 3890 int ret; 3891 3892 /* check for legacy format */ 3893 ret = memcmp(&magic, __perf_magic1, sizeof(magic)); 3894 if (ret == 0) { 3895 ph->version = PERF_HEADER_VERSION_1; 3896 pr_debug("legacy perf.data format\n"); 3897 if (is_pipe) 3898 return try_all_pipe_abis(hdr_sz, ph); 3899 3900 return try_all_file_abis(hdr_sz, ph); 3901 } 3902 /* 3903 * the new magic number serves two purposes: 3904 * - unique number to identify actual perf.data files 3905 * - encode endianness of file 3906 */ 3907 ph->version = PERF_HEADER_VERSION_2; 3908 3909 /* check magic number with one endianness */ 3910 if (magic == __perf_magic2) 3911 return 0; 3912 3913 /* check magic number with opposite endianness */ 3914 if (magic != __perf_magic2_sw) 3915 return -1; 3916 3917 ph->needs_swap = true; 3918 3919 return 0; 3920 } 3921 3922 int perf_file_header__read(struct perf_file_header *header, 3923 struct perf_header *ph, int fd) 3924 { 3925 ssize_t ret; 3926 3927 lseek(fd, 0, SEEK_SET); 3928 3929 ret = readn(fd, header, sizeof(*header)); 3930 if (ret <= 0) 3931 return -1; 3932 3933 if (check_magic_endian(header->magic, 3934 header->attr_size, false, ph) < 0) { 3935 pr_debug("magic/endian check failed\n"); 3936 return -1; 3937 } 3938 3939 if (ph->needs_swap) { 3940 mem_bswap_64(header, offsetof(struct perf_file_header, 3941 adds_features)); 3942 } 3943 3944 if (header->size != sizeof(*header)) { 3945 /* Support the previous format */ 3946 if (header->size == offsetof(typeof(*header), adds_features)) 3947 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3948 else 3949 return -1; 3950 } else if (ph->needs_swap) { 3951 /* 3952 * feature bitmap is declared as an array of unsigned longs -- 3953 * not good since its size can differ between the host that 3954 * generated the data file and the host analyzing the file. 3955 * 3956 * We need to handle endianness, but we don't know the size of 3957 * the unsigned long where the file was generated. Take a best 3958 * guess at determining it: try 64-bit swap first (ie., file 3959 * created on a 64-bit host), and check if the hostname feature 3960 * bit is set (this feature bit is forced on as of fbe96f2). 3961 * If the bit is not, undo the 64-bit swap and try a 32-bit 3962 * swap. If the hostname bit is still not set (e.g., older data 3963 * file), punt and fallback to the original behavior -- 3964 * clearing all feature bits and setting buildid. 3965 */ 3966 mem_bswap_64(&header->adds_features, 3967 BITS_TO_U64(HEADER_FEAT_BITS)); 3968 3969 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3970 /* unswap as u64 */ 3971 mem_bswap_64(&header->adds_features, 3972 BITS_TO_U64(HEADER_FEAT_BITS)); 3973 3974 /* unswap as u32 */ 3975 mem_bswap_32(&header->adds_features, 3976 BITS_TO_U32(HEADER_FEAT_BITS)); 3977 } 3978 3979 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3980 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3981 __set_bit(HEADER_BUILD_ID, header->adds_features); 3982 } 3983 } 3984 3985 memcpy(&ph->adds_features, &header->adds_features, 3986 sizeof(ph->adds_features)); 3987 3988 ph->data_offset = header->data.offset; 3989 ph->data_size = header->data.size; 3990 ph->feat_offset = header->data.offset + header->data.size; 3991 return 0; 3992 } 3993 3994 static int perf_file_section__process(struct perf_file_section *section, 3995 struct perf_header *ph, 3996 int feat, int fd, void *data) 3997 { 3998 struct feat_fd fdd = { 3999 .fd = fd, 4000 .ph = ph, 4001 .size = section->size, 4002 .offset = section->offset, 4003 }; 4004 4005 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 4006 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 4007 "%d, continuing...\n", section->offset, feat); 4008 return 0; 4009 } 4010 4011 if (feat >= HEADER_LAST_FEATURE) { 4012 pr_debug("unknown feature %d, continuing...\n", feat); 4013 return 0; 4014 } 4015 4016 if (!feat_ops[feat].process) 4017 return 0; 4018 4019 return feat_ops[feat].process(&fdd, data); 4020 } 4021 4022 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, 4023 struct perf_header *ph, 4024 struct perf_data* data, 4025 bool repipe, int repipe_fd) 4026 { 4027 struct feat_fd ff = { 4028 .fd = repipe_fd, 4029 .ph = ph, 4030 }; 4031 ssize_t ret; 4032 4033 ret = perf_data__read(data, header, sizeof(*header)); 4034 if (ret <= 0) 4035 return -1; 4036 4037 if (check_magic_endian(header->magic, header->size, true, ph) < 0) { 4038 pr_debug("endian/magic failed\n"); 4039 return -1; 4040 } 4041 4042 if (ph->needs_swap) 4043 header->size = bswap_64(header->size); 4044 4045 if (repipe && do_write(&ff, header, sizeof(*header)) < 0) 4046 return -1; 4047 4048 return 0; 4049 } 4050 4051 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd) 4052 { 4053 struct perf_header *header = &session->header; 4054 struct perf_pipe_file_header f_header; 4055 4056 if (perf_file_header__read_pipe(&f_header, header, session->data, 4057 session->repipe, repipe_fd) < 0) { 4058 pr_debug("incompatible file format\n"); 4059 return -EINVAL; 4060 } 4061 4062 return f_header.size == sizeof(f_header) ? 0 : -1; 4063 } 4064 4065 static int read_attr(int fd, struct perf_header *ph, 4066 struct perf_file_attr *f_attr) 4067 { 4068 struct perf_event_attr *attr = &f_attr->attr; 4069 size_t sz, left; 4070 size_t our_sz = sizeof(f_attr->attr); 4071 ssize_t ret; 4072 4073 memset(f_attr, 0, sizeof(*f_attr)); 4074 4075 /* read minimal guaranteed structure */ 4076 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); 4077 if (ret <= 0) { 4078 pr_debug("cannot read %d bytes of header attr\n", 4079 PERF_ATTR_SIZE_VER0); 4080 return -1; 4081 } 4082 4083 /* on file perf_event_attr size */ 4084 sz = attr->size; 4085 4086 if (ph->needs_swap) 4087 sz = bswap_32(sz); 4088 4089 if (sz == 0) { 4090 /* assume ABI0 */ 4091 sz = PERF_ATTR_SIZE_VER0; 4092 } else if (sz > our_sz) { 4093 pr_debug("file uses a more recent and unsupported ABI" 4094 " (%zu bytes extra)\n", sz - our_sz); 4095 return -1; 4096 } 4097 /* what we have not yet read and that we know about */ 4098 left = sz - PERF_ATTR_SIZE_VER0; 4099 if (left) { 4100 void *ptr = attr; 4101 ptr += PERF_ATTR_SIZE_VER0; 4102 4103 ret = readn(fd, ptr, left); 4104 } 4105 /* read perf_file_section, ids are read in caller */ 4106 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); 4107 4108 return ret <= 0 ? -1 : 0; 4109 } 4110 4111 #ifdef HAVE_LIBTRACEEVENT 4112 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent) 4113 { 4114 struct tep_event *event; 4115 char bf[128]; 4116 4117 /* already prepared */ 4118 if (evsel->tp_format) 4119 return 0; 4120 4121 if (pevent == NULL) { 4122 pr_debug("broken or missing trace data\n"); 4123 return -1; 4124 } 4125 4126 event = tep_find_event(pevent, evsel->core.attr.config); 4127 if (event == NULL) { 4128 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config); 4129 return -1; 4130 } 4131 4132 if (!evsel->name) { 4133 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); 4134 evsel->name = strdup(bf); 4135 if (evsel->name == NULL) 4136 return -1; 4137 } 4138 4139 evsel->tp_format = event; 4140 return 0; 4141 } 4142 4143 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent) 4144 { 4145 struct evsel *pos; 4146 4147 evlist__for_each_entry(evlist, pos) { 4148 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT && 4149 evsel__prepare_tracepoint_event(pos, pevent)) 4150 return -1; 4151 } 4152 4153 return 0; 4154 } 4155 #endif 4156 4157 int perf_session__read_header(struct perf_session *session, int repipe_fd) 4158 { 4159 struct perf_data *data = session->data; 4160 struct perf_header *header = &session->header; 4161 struct perf_file_header f_header; 4162 struct perf_file_attr f_attr; 4163 u64 f_id; 4164 int nr_attrs, nr_ids, i, j, err; 4165 int fd = perf_data__fd(data); 4166 4167 session->evlist = evlist__new(); 4168 if (session->evlist == NULL) 4169 return -ENOMEM; 4170 4171 session->evlist->env = &header->env; 4172 session->machines.host.env = &header->env; 4173 4174 /* 4175 * We can read 'pipe' data event from regular file, 4176 * check for the pipe header regardless of source. 4177 */ 4178 err = perf_header__read_pipe(session, repipe_fd); 4179 if (!err || perf_data__is_pipe(data)) { 4180 data->is_pipe = true; 4181 return err; 4182 } 4183 4184 if (perf_file_header__read(&f_header, header, fd) < 0) 4185 return -EINVAL; 4186 4187 if (header->needs_swap && data->in_place_update) { 4188 pr_err("In-place update not supported when byte-swapping is required\n"); 4189 return -EINVAL; 4190 } 4191 4192 /* 4193 * Sanity check that perf.data was written cleanly; data size is 4194 * initialized to 0 and updated only if the on_exit function is run. 4195 * If data size is still 0 then the file contains only partial 4196 * information. Just warn user and process it as much as it can. 4197 */ 4198 if (f_header.data.size == 0) { 4199 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" 4200 "Was the 'perf record' command properly terminated?\n", 4201 data->file.path); 4202 } 4203 4204 if (f_header.attr_size == 0) { 4205 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n" 4206 "Was the 'perf record' command properly terminated?\n", 4207 data->file.path); 4208 return -EINVAL; 4209 } 4210 4211 nr_attrs = f_header.attrs.size / f_header.attr_size; 4212 lseek(fd, f_header.attrs.offset, SEEK_SET); 4213 4214 for (i = 0; i < nr_attrs; i++) { 4215 struct evsel *evsel; 4216 off_t tmp; 4217 4218 if (read_attr(fd, header, &f_attr) < 0) 4219 goto out_errno; 4220 4221 if (header->needs_swap) { 4222 f_attr.ids.size = bswap_64(f_attr.ids.size); 4223 f_attr.ids.offset = bswap_64(f_attr.ids.offset); 4224 perf_event__attr_swap(&f_attr.attr); 4225 } 4226 4227 tmp = lseek(fd, 0, SEEK_CUR); 4228 evsel = evsel__new(&f_attr.attr); 4229 4230 if (evsel == NULL) 4231 goto out_delete_evlist; 4232 4233 evsel->needs_swap = header->needs_swap; 4234 /* 4235 * Do it before so that if perf_evsel__alloc_id fails, this 4236 * entry gets purged too at evlist__delete(). 4237 */ 4238 evlist__add(session->evlist, evsel); 4239 4240 nr_ids = f_attr.ids.size / sizeof(u64); 4241 /* 4242 * We don't have the cpu and thread maps on the header, so 4243 * for allocating the perf_sample_id table we fake 1 cpu and 4244 * hattr->ids threads. 4245 */ 4246 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids)) 4247 goto out_delete_evlist; 4248 4249 lseek(fd, f_attr.ids.offset, SEEK_SET); 4250 4251 for (j = 0; j < nr_ids; j++) { 4252 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) 4253 goto out_errno; 4254 4255 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id); 4256 } 4257 4258 lseek(fd, tmp, SEEK_SET); 4259 } 4260 4261 #ifdef HAVE_LIBTRACEEVENT 4262 perf_header__process_sections(header, fd, &session->tevent, 4263 perf_file_section__process); 4264 4265 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent)) 4266 goto out_delete_evlist; 4267 #else 4268 perf_header__process_sections(header, fd, NULL, perf_file_section__process); 4269 #endif 4270 4271 return 0; 4272 out_errno: 4273 return -errno; 4274 4275 out_delete_evlist: 4276 evlist__delete(session->evlist); 4277 session->evlist = NULL; 4278 return -ENOMEM; 4279 } 4280 4281 int perf_event__process_feature(struct perf_session *session, 4282 union perf_event *event) 4283 { 4284 struct perf_tool *tool = session->tool; 4285 struct feat_fd ff = { .fd = 0 }; 4286 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event; 4287 int type = fe->header.type; 4288 u64 feat = fe->feat_id; 4289 int ret = 0; 4290 4291 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { 4292 pr_warning("invalid record type %d in pipe-mode\n", type); 4293 return 0; 4294 } 4295 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { 4296 pr_warning("invalid record type %d in pipe-mode\n", type); 4297 return -1; 4298 } 4299 4300 if (!feat_ops[feat].process) 4301 return 0; 4302 4303 ff.buf = (void *)fe->data; 4304 ff.size = event->header.size - sizeof(*fe); 4305 ff.ph = &session->header; 4306 4307 if (feat_ops[feat].process(&ff, NULL)) { 4308 ret = -1; 4309 goto out; 4310 } 4311 4312 if (!feat_ops[feat].print || !tool->show_feat_hdr) 4313 goto out; 4314 4315 if (!feat_ops[feat].full_only || 4316 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { 4317 feat_ops[feat].print(&ff, stdout); 4318 } else { 4319 fprintf(stdout, "# %s info available, use -I to display\n", 4320 feat_ops[feat].name); 4321 } 4322 out: 4323 free_event_desc(ff.events); 4324 return ret; 4325 } 4326 4327 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) 4328 { 4329 struct perf_record_event_update *ev = &event->event_update; 4330 struct perf_cpu_map *map; 4331 size_t ret; 4332 4333 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id); 4334 4335 switch (ev->type) { 4336 case PERF_EVENT_UPDATE__SCALE: 4337 ret += fprintf(fp, "... scale: %f\n", ev->scale.scale); 4338 break; 4339 case PERF_EVENT_UPDATE__UNIT: 4340 ret += fprintf(fp, "... unit: %s\n", ev->unit); 4341 break; 4342 case PERF_EVENT_UPDATE__NAME: 4343 ret += fprintf(fp, "... name: %s\n", ev->name); 4344 break; 4345 case PERF_EVENT_UPDATE__CPUS: 4346 ret += fprintf(fp, "... "); 4347 4348 map = cpu_map__new_data(&ev->cpus.cpus); 4349 if (map) 4350 ret += cpu_map__fprintf(map, fp); 4351 else 4352 ret += fprintf(fp, "failed to get cpus\n"); 4353 break; 4354 default: 4355 ret += fprintf(fp, "... unknown type\n"); 4356 break; 4357 } 4358 4359 return ret; 4360 } 4361 4362 int perf_event__process_attr(struct perf_tool *tool __maybe_unused, 4363 union perf_event *event, 4364 struct evlist **pevlist) 4365 { 4366 u32 i, ids, n_ids; 4367 struct evsel *evsel; 4368 struct evlist *evlist = *pevlist; 4369 4370 if (evlist == NULL) { 4371 *pevlist = evlist = evlist__new(); 4372 if (evlist == NULL) 4373 return -ENOMEM; 4374 } 4375 4376 evsel = evsel__new(&event->attr.attr); 4377 if (evsel == NULL) 4378 return -ENOMEM; 4379 4380 evlist__add(evlist, evsel); 4381 4382 ids = event->header.size; 4383 ids -= (void *)&event->attr.id - (void *)event; 4384 n_ids = ids / sizeof(u64); 4385 /* 4386 * We don't have the cpu and thread maps on the header, so 4387 * for allocating the perf_sample_id table we fake 1 cpu and 4388 * hattr->ids threads. 4389 */ 4390 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids)) 4391 return -ENOMEM; 4392 4393 for (i = 0; i < n_ids; i++) { 4394 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]); 4395 } 4396 4397 return 0; 4398 } 4399 4400 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused, 4401 union perf_event *event, 4402 struct evlist **pevlist) 4403 { 4404 struct perf_record_event_update *ev = &event->event_update; 4405 struct evlist *evlist; 4406 struct evsel *evsel; 4407 struct perf_cpu_map *map; 4408 4409 if (dump_trace) 4410 perf_event__fprintf_event_update(event, stdout); 4411 4412 if (!pevlist || *pevlist == NULL) 4413 return -EINVAL; 4414 4415 evlist = *pevlist; 4416 4417 evsel = evlist__id2evsel(evlist, ev->id); 4418 if (evsel == NULL) 4419 return -EINVAL; 4420 4421 switch (ev->type) { 4422 case PERF_EVENT_UPDATE__UNIT: 4423 free((char *)evsel->unit); 4424 evsel->unit = strdup(ev->unit); 4425 break; 4426 case PERF_EVENT_UPDATE__NAME: 4427 free(evsel->name); 4428 evsel->name = strdup(ev->name); 4429 break; 4430 case PERF_EVENT_UPDATE__SCALE: 4431 evsel->scale = ev->scale.scale; 4432 break; 4433 case PERF_EVENT_UPDATE__CPUS: 4434 map = cpu_map__new_data(&ev->cpus.cpus); 4435 if (map) { 4436 perf_cpu_map__put(evsel->core.own_cpus); 4437 evsel->core.own_cpus = map; 4438 } else 4439 pr_err("failed to get event_update cpus\n"); 4440 default: 4441 break; 4442 } 4443 4444 return 0; 4445 } 4446 4447 #ifdef HAVE_LIBTRACEEVENT 4448 int perf_event__process_tracing_data(struct perf_session *session, 4449 union perf_event *event) 4450 { 4451 ssize_t size_read, padding, size = event->tracing_data.size; 4452 int fd = perf_data__fd(session->data); 4453 char buf[BUFSIZ]; 4454 4455 /* 4456 * The pipe fd is already in proper place and in any case 4457 * we can't move it, and we'd screw the case where we read 4458 * 'pipe' data from regular file. The trace_report reads 4459 * data from 'fd' so we need to set it directly behind the 4460 * event, where the tracing data starts. 4461 */ 4462 if (!perf_data__is_pipe(session->data)) { 4463 off_t offset = lseek(fd, 0, SEEK_CUR); 4464 4465 /* setup for reading amidst mmap */ 4466 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data), 4467 SEEK_SET); 4468 } 4469 4470 size_read = trace_report(fd, &session->tevent, 4471 session->repipe); 4472 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; 4473 4474 if (readn(fd, buf, padding) < 0) { 4475 pr_err("%s: reading input file", __func__); 4476 return -1; 4477 } 4478 if (session->repipe) { 4479 int retw = write(STDOUT_FILENO, buf, padding); 4480 if (retw <= 0 || retw != padding) { 4481 pr_err("%s: repiping tracing data padding", __func__); 4482 return -1; 4483 } 4484 } 4485 4486 if (size_read + padding != size) { 4487 pr_err("%s: tracing data size mismatch", __func__); 4488 return -1; 4489 } 4490 4491 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent); 4492 4493 return size_read + padding; 4494 } 4495 #endif 4496 4497 int perf_event__process_build_id(struct perf_session *session, 4498 union perf_event *event) 4499 { 4500 __event_process_build_id(&event->build_id, 4501 event->build_id.filename, 4502 session); 4503 return 0; 4504 } 4505