xref: /openbmc/linux/tools/perf/util/header.c (revision 6ac2230b55d392e6294ea9f406619ed39fd9050f)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <regex.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/string.h>
17 #include <linux/stringify.h>
18 #include <linux/zalloc.h>
19 #include <sys/stat.h>
20 #include <sys/utsname.h>
21 #include <linux/time64.h>
22 #include <dirent.h>
23 #ifdef HAVE_LIBBPF_SUPPORT
24 #include <bpf/libbpf.h>
25 #endif
26 #include <perf/cpumap.h>
27 
28 #include "dso.h"
29 #include "evlist.h"
30 #include "evsel.h"
31 #include "util/evsel_fprintf.h"
32 #include "header.h"
33 #include "memswap.h"
34 #include "trace-event.h"
35 #include "session.h"
36 #include "symbol.h"
37 #include "debug.h"
38 #include "cpumap.h"
39 #include "pmu.h"
40 #include "vdso.h"
41 #include "strbuf.h"
42 #include "build-id.h"
43 #include "data.h"
44 #include <api/fs/fs.h>
45 #include "asm/bug.h"
46 #include "tool.h"
47 #include "time-utils.h"
48 #include "units.h"
49 #include "util/util.h" // perf_exe()
50 #include "cputopo.h"
51 #include "bpf-event.h"
52 #include "bpf-utils.h"
53 #include "clockid.h"
54 #include "pmu-hybrid.h"
55 
56 #include <linux/ctype.h>
57 #include <internal/lib.h>
58 
59 #ifdef HAVE_LIBTRACEEVENT
60 #include <traceevent/event-parse.h>
61 #endif
62 
63 /*
64  * magic2 = "PERFILE2"
65  * must be a numerical value to let the endianness
66  * determine the memory layout. That way we are able
67  * to detect endianness when reading the perf.data file
68  * back.
69  *
70  * we check for legacy (PERFFILE) format.
71  */
72 static const char *__perf_magic1 = "PERFFILE";
73 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
74 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
75 
76 #define PERF_MAGIC	__perf_magic2
77 
78 const char perf_version_string[] = PERF_VERSION;
79 
80 struct perf_file_attr {
81 	struct perf_event_attr	attr;
82 	struct perf_file_section	ids;
83 };
84 
85 void perf_header__set_feat(struct perf_header *header, int feat)
86 {
87 	__set_bit(feat, header->adds_features);
88 }
89 
90 void perf_header__clear_feat(struct perf_header *header, int feat)
91 {
92 	__clear_bit(feat, header->adds_features);
93 }
94 
95 bool perf_header__has_feat(const struct perf_header *header, int feat)
96 {
97 	return test_bit(feat, header->adds_features);
98 }
99 
100 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
101 {
102 	ssize_t ret = writen(ff->fd, buf, size);
103 
104 	if (ret != (ssize_t)size)
105 		return ret < 0 ? (int)ret : -1;
106 	return 0;
107 }
108 
109 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
110 {
111 	/* struct perf_event_header::size is u16 */
112 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
113 	size_t new_size = ff->size;
114 	void *addr;
115 
116 	if (size + ff->offset > max_size)
117 		return -E2BIG;
118 
119 	while (size > (new_size - ff->offset))
120 		new_size <<= 1;
121 	new_size = min(max_size, new_size);
122 
123 	if (ff->size < new_size) {
124 		addr = realloc(ff->buf, new_size);
125 		if (!addr)
126 			return -ENOMEM;
127 		ff->buf = addr;
128 		ff->size = new_size;
129 	}
130 
131 	memcpy(ff->buf + ff->offset, buf, size);
132 	ff->offset += size;
133 
134 	return 0;
135 }
136 
137 /* Return: 0 if succeeded, -ERR if failed. */
138 int do_write(struct feat_fd *ff, const void *buf, size_t size)
139 {
140 	if (!ff->buf)
141 		return __do_write_fd(ff, buf, size);
142 	return __do_write_buf(ff, buf, size);
143 }
144 
145 /* Return: 0 if succeeded, -ERR if failed. */
146 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
147 {
148 	u64 *p = (u64 *) set;
149 	int i, ret;
150 
151 	ret = do_write(ff, &size, sizeof(size));
152 	if (ret < 0)
153 		return ret;
154 
155 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
156 		ret = do_write(ff, p + i, sizeof(*p));
157 		if (ret < 0)
158 			return ret;
159 	}
160 
161 	return 0;
162 }
163 
164 /* Return: 0 if succeeded, -ERR if failed. */
165 int write_padded(struct feat_fd *ff, const void *bf,
166 		 size_t count, size_t count_aligned)
167 {
168 	static const char zero_buf[NAME_ALIGN];
169 	int err = do_write(ff, bf, count);
170 
171 	if (!err)
172 		err = do_write(ff, zero_buf, count_aligned - count);
173 
174 	return err;
175 }
176 
177 #define string_size(str)						\
178 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
179 
180 /* Return: 0 if succeeded, -ERR if failed. */
181 static int do_write_string(struct feat_fd *ff, const char *str)
182 {
183 	u32 len, olen;
184 	int ret;
185 
186 	olen = strlen(str) + 1;
187 	len = PERF_ALIGN(olen, NAME_ALIGN);
188 
189 	/* write len, incl. \0 */
190 	ret = do_write(ff, &len, sizeof(len));
191 	if (ret < 0)
192 		return ret;
193 
194 	return write_padded(ff, str, olen, len);
195 }
196 
197 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
198 {
199 	ssize_t ret = readn(ff->fd, addr, size);
200 
201 	if (ret != size)
202 		return ret < 0 ? (int)ret : -1;
203 	return 0;
204 }
205 
206 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
207 {
208 	if (size > (ssize_t)ff->size - ff->offset)
209 		return -1;
210 
211 	memcpy(addr, ff->buf + ff->offset, size);
212 	ff->offset += size;
213 
214 	return 0;
215 
216 }
217 
218 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
219 {
220 	if (!ff->buf)
221 		return __do_read_fd(ff, addr, size);
222 	return __do_read_buf(ff, addr, size);
223 }
224 
225 static int do_read_u32(struct feat_fd *ff, u32 *addr)
226 {
227 	int ret;
228 
229 	ret = __do_read(ff, addr, sizeof(*addr));
230 	if (ret)
231 		return ret;
232 
233 	if (ff->ph->needs_swap)
234 		*addr = bswap_32(*addr);
235 	return 0;
236 }
237 
238 static int do_read_u64(struct feat_fd *ff, u64 *addr)
239 {
240 	int ret;
241 
242 	ret = __do_read(ff, addr, sizeof(*addr));
243 	if (ret)
244 		return ret;
245 
246 	if (ff->ph->needs_swap)
247 		*addr = bswap_64(*addr);
248 	return 0;
249 }
250 
251 static char *do_read_string(struct feat_fd *ff)
252 {
253 	u32 len;
254 	char *buf;
255 
256 	if (do_read_u32(ff, &len))
257 		return NULL;
258 
259 	buf = malloc(len);
260 	if (!buf)
261 		return NULL;
262 
263 	if (!__do_read(ff, buf, len)) {
264 		/*
265 		 * strings are padded by zeroes
266 		 * thus the actual strlen of buf
267 		 * may be less than len
268 		 */
269 		return buf;
270 	}
271 
272 	free(buf);
273 	return NULL;
274 }
275 
276 /* Return: 0 if succeeded, -ERR if failed. */
277 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
278 {
279 	unsigned long *set;
280 	u64 size, *p;
281 	int i, ret;
282 
283 	ret = do_read_u64(ff, &size);
284 	if (ret)
285 		return ret;
286 
287 	set = bitmap_zalloc(size);
288 	if (!set)
289 		return -ENOMEM;
290 
291 	p = (u64 *) set;
292 
293 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
294 		ret = do_read_u64(ff, p + i);
295 		if (ret < 0) {
296 			free(set);
297 			return ret;
298 		}
299 	}
300 
301 	*pset  = set;
302 	*psize = size;
303 	return 0;
304 }
305 
306 #ifdef HAVE_LIBTRACEEVENT
307 static int write_tracing_data(struct feat_fd *ff,
308 			      struct evlist *evlist)
309 {
310 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
311 		return -1;
312 
313 	return read_tracing_data(ff->fd, &evlist->core.entries);
314 }
315 #endif
316 
317 static int write_build_id(struct feat_fd *ff,
318 			  struct evlist *evlist __maybe_unused)
319 {
320 	struct perf_session *session;
321 	int err;
322 
323 	session = container_of(ff->ph, struct perf_session, header);
324 
325 	if (!perf_session__read_build_ids(session, true))
326 		return -1;
327 
328 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
329 		return -1;
330 
331 	err = perf_session__write_buildid_table(session, ff);
332 	if (err < 0) {
333 		pr_debug("failed to write buildid table\n");
334 		return err;
335 	}
336 	perf_session__cache_build_ids(session);
337 
338 	return 0;
339 }
340 
341 static int write_hostname(struct feat_fd *ff,
342 			  struct evlist *evlist __maybe_unused)
343 {
344 	struct utsname uts;
345 	int ret;
346 
347 	ret = uname(&uts);
348 	if (ret < 0)
349 		return -1;
350 
351 	return do_write_string(ff, uts.nodename);
352 }
353 
354 static int write_osrelease(struct feat_fd *ff,
355 			   struct evlist *evlist __maybe_unused)
356 {
357 	struct utsname uts;
358 	int ret;
359 
360 	ret = uname(&uts);
361 	if (ret < 0)
362 		return -1;
363 
364 	return do_write_string(ff, uts.release);
365 }
366 
367 static int write_arch(struct feat_fd *ff,
368 		      struct evlist *evlist __maybe_unused)
369 {
370 	struct utsname uts;
371 	int ret;
372 
373 	ret = uname(&uts);
374 	if (ret < 0)
375 		return -1;
376 
377 	return do_write_string(ff, uts.machine);
378 }
379 
380 static int write_version(struct feat_fd *ff,
381 			 struct evlist *evlist __maybe_unused)
382 {
383 	return do_write_string(ff, perf_version_string);
384 }
385 
386 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
387 {
388 	FILE *file;
389 	char *buf = NULL;
390 	char *s, *p;
391 	const char *search = cpuinfo_proc;
392 	size_t len = 0;
393 	int ret = -1;
394 
395 	if (!search)
396 		return -1;
397 
398 	file = fopen("/proc/cpuinfo", "r");
399 	if (!file)
400 		return -1;
401 
402 	while (getline(&buf, &len, file) > 0) {
403 		ret = strncmp(buf, search, strlen(search));
404 		if (!ret)
405 			break;
406 	}
407 
408 	if (ret) {
409 		ret = -1;
410 		goto done;
411 	}
412 
413 	s = buf;
414 
415 	p = strchr(buf, ':');
416 	if (p && *(p+1) == ' ' && *(p+2))
417 		s = p + 2;
418 	p = strchr(s, '\n');
419 	if (p)
420 		*p = '\0';
421 
422 	/* squash extra space characters (branding string) */
423 	p = s;
424 	while (*p) {
425 		if (isspace(*p)) {
426 			char *r = p + 1;
427 			char *q = skip_spaces(r);
428 			*p = ' ';
429 			if (q != (p+1))
430 				while ((*r++ = *q++));
431 		}
432 		p++;
433 	}
434 	ret = do_write_string(ff, s);
435 done:
436 	free(buf);
437 	fclose(file);
438 	return ret;
439 }
440 
441 static int write_cpudesc(struct feat_fd *ff,
442 		       struct evlist *evlist __maybe_unused)
443 {
444 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
445 #define CPUINFO_PROC	{ "cpu", }
446 #elif defined(__s390__)
447 #define CPUINFO_PROC	{ "vendor_id", }
448 #elif defined(__sh__)
449 #define CPUINFO_PROC	{ "cpu type", }
450 #elif defined(__alpha__) || defined(__mips__)
451 #define CPUINFO_PROC	{ "cpu model", }
452 #elif defined(__arm__)
453 #define CPUINFO_PROC	{ "model name", "Processor", }
454 #elif defined(__arc__)
455 #define CPUINFO_PROC	{ "Processor", }
456 #elif defined(__xtensa__)
457 #define CPUINFO_PROC	{ "core ID", }
458 #else
459 #define CPUINFO_PROC	{ "model name", }
460 #endif
461 	const char *cpuinfo_procs[] = CPUINFO_PROC;
462 #undef CPUINFO_PROC
463 	unsigned int i;
464 
465 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
466 		int ret;
467 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
468 		if (ret >= 0)
469 			return ret;
470 	}
471 	return -1;
472 }
473 
474 
475 static int write_nrcpus(struct feat_fd *ff,
476 			struct evlist *evlist __maybe_unused)
477 {
478 	long nr;
479 	u32 nrc, nra;
480 	int ret;
481 
482 	nrc = cpu__max_present_cpu().cpu;
483 
484 	nr = sysconf(_SC_NPROCESSORS_ONLN);
485 	if (nr < 0)
486 		return -1;
487 
488 	nra = (u32)(nr & UINT_MAX);
489 
490 	ret = do_write(ff, &nrc, sizeof(nrc));
491 	if (ret < 0)
492 		return ret;
493 
494 	return do_write(ff, &nra, sizeof(nra));
495 }
496 
497 static int write_event_desc(struct feat_fd *ff,
498 			    struct evlist *evlist)
499 {
500 	struct evsel *evsel;
501 	u32 nre, nri, sz;
502 	int ret;
503 
504 	nre = evlist->core.nr_entries;
505 
506 	/*
507 	 * write number of events
508 	 */
509 	ret = do_write(ff, &nre, sizeof(nre));
510 	if (ret < 0)
511 		return ret;
512 
513 	/*
514 	 * size of perf_event_attr struct
515 	 */
516 	sz = (u32)sizeof(evsel->core.attr);
517 	ret = do_write(ff, &sz, sizeof(sz));
518 	if (ret < 0)
519 		return ret;
520 
521 	evlist__for_each_entry(evlist, evsel) {
522 		ret = do_write(ff, &evsel->core.attr, sz);
523 		if (ret < 0)
524 			return ret;
525 		/*
526 		 * write number of unique id per event
527 		 * there is one id per instance of an event
528 		 *
529 		 * copy into an nri to be independent of the
530 		 * type of ids,
531 		 */
532 		nri = evsel->core.ids;
533 		ret = do_write(ff, &nri, sizeof(nri));
534 		if (ret < 0)
535 			return ret;
536 
537 		/*
538 		 * write event string as passed on cmdline
539 		 */
540 		ret = do_write_string(ff, evsel__name(evsel));
541 		if (ret < 0)
542 			return ret;
543 		/*
544 		 * write unique ids for this event
545 		 */
546 		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
547 		if (ret < 0)
548 			return ret;
549 	}
550 	return 0;
551 }
552 
553 static int write_cmdline(struct feat_fd *ff,
554 			 struct evlist *evlist __maybe_unused)
555 {
556 	char pbuf[MAXPATHLEN], *buf;
557 	int i, ret, n;
558 
559 	/* actual path to perf binary */
560 	buf = perf_exe(pbuf, MAXPATHLEN);
561 
562 	/* account for binary path */
563 	n = perf_env.nr_cmdline + 1;
564 
565 	ret = do_write(ff, &n, sizeof(n));
566 	if (ret < 0)
567 		return ret;
568 
569 	ret = do_write_string(ff, buf);
570 	if (ret < 0)
571 		return ret;
572 
573 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
574 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
575 		if (ret < 0)
576 			return ret;
577 	}
578 	return 0;
579 }
580 
581 
582 static int write_cpu_topology(struct feat_fd *ff,
583 			      struct evlist *evlist __maybe_unused)
584 {
585 	struct cpu_topology *tp;
586 	u32 i;
587 	int ret, j;
588 
589 	tp = cpu_topology__new();
590 	if (!tp)
591 		return -1;
592 
593 	ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
594 	if (ret < 0)
595 		goto done;
596 
597 	for (i = 0; i < tp->package_cpus_lists; i++) {
598 		ret = do_write_string(ff, tp->package_cpus_list[i]);
599 		if (ret < 0)
600 			goto done;
601 	}
602 	ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
603 	if (ret < 0)
604 		goto done;
605 
606 	for (i = 0; i < tp->core_cpus_lists; i++) {
607 		ret = do_write_string(ff, tp->core_cpus_list[i]);
608 		if (ret < 0)
609 			break;
610 	}
611 
612 	ret = perf_env__read_cpu_topology_map(&perf_env);
613 	if (ret < 0)
614 		goto done;
615 
616 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
617 		ret = do_write(ff, &perf_env.cpu[j].core_id,
618 			       sizeof(perf_env.cpu[j].core_id));
619 		if (ret < 0)
620 			return ret;
621 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
622 			       sizeof(perf_env.cpu[j].socket_id));
623 		if (ret < 0)
624 			return ret;
625 	}
626 
627 	if (!tp->die_cpus_lists)
628 		goto done;
629 
630 	ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
631 	if (ret < 0)
632 		goto done;
633 
634 	for (i = 0; i < tp->die_cpus_lists; i++) {
635 		ret = do_write_string(ff, tp->die_cpus_list[i]);
636 		if (ret < 0)
637 			goto done;
638 	}
639 
640 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
641 		ret = do_write(ff, &perf_env.cpu[j].die_id,
642 			       sizeof(perf_env.cpu[j].die_id));
643 		if (ret < 0)
644 			return ret;
645 	}
646 
647 done:
648 	cpu_topology__delete(tp);
649 	return ret;
650 }
651 
652 
653 
654 static int write_total_mem(struct feat_fd *ff,
655 			   struct evlist *evlist __maybe_unused)
656 {
657 	char *buf = NULL;
658 	FILE *fp;
659 	size_t len = 0;
660 	int ret = -1, n;
661 	uint64_t mem;
662 
663 	fp = fopen("/proc/meminfo", "r");
664 	if (!fp)
665 		return -1;
666 
667 	while (getline(&buf, &len, fp) > 0) {
668 		ret = strncmp(buf, "MemTotal:", 9);
669 		if (!ret)
670 			break;
671 	}
672 	if (!ret) {
673 		n = sscanf(buf, "%*s %"PRIu64, &mem);
674 		if (n == 1)
675 			ret = do_write(ff, &mem, sizeof(mem));
676 	} else
677 		ret = -1;
678 	free(buf);
679 	fclose(fp);
680 	return ret;
681 }
682 
683 static int write_numa_topology(struct feat_fd *ff,
684 			       struct evlist *evlist __maybe_unused)
685 {
686 	struct numa_topology *tp;
687 	int ret = -1;
688 	u32 i;
689 
690 	tp = numa_topology__new();
691 	if (!tp)
692 		return -ENOMEM;
693 
694 	ret = do_write(ff, &tp->nr, sizeof(u32));
695 	if (ret < 0)
696 		goto err;
697 
698 	for (i = 0; i < tp->nr; i++) {
699 		struct numa_topology_node *n = &tp->nodes[i];
700 
701 		ret = do_write(ff, &n->node, sizeof(u32));
702 		if (ret < 0)
703 			goto err;
704 
705 		ret = do_write(ff, &n->mem_total, sizeof(u64));
706 		if (ret)
707 			goto err;
708 
709 		ret = do_write(ff, &n->mem_free, sizeof(u64));
710 		if (ret)
711 			goto err;
712 
713 		ret = do_write_string(ff, n->cpus);
714 		if (ret < 0)
715 			goto err;
716 	}
717 
718 	ret = 0;
719 
720 err:
721 	numa_topology__delete(tp);
722 	return ret;
723 }
724 
725 /*
726  * File format:
727  *
728  * struct pmu_mappings {
729  *	u32	pmu_num;
730  *	struct pmu_map {
731  *		u32	type;
732  *		char	name[];
733  *	}[pmu_num];
734  * };
735  */
736 
737 static int write_pmu_mappings(struct feat_fd *ff,
738 			      struct evlist *evlist __maybe_unused)
739 {
740 	struct perf_pmu *pmu = NULL;
741 	u32 pmu_num = 0;
742 	int ret;
743 
744 	/*
745 	 * Do a first pass to count number of pmu to avoid lseek so this
746 	 * works in pipe mode as well.
747 	 */
748 	while ((pmu = perf_pmu__scan(pmu))) {
749 		if (!pmu->name)
750 			continue;
751 		pmu_num++;
752 	}
753 
754 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
755 	if (ret < 0)
756 		return ret;
757 
758 	while ((pmu = perf_pmu__scan(pmu))) {
759 		if (!pmu->name)
760 			continue;
761 
762 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
763 		if (ret < 0)
764 			return ret;
765 
766 		ret = do_write_string(ff, pmu->name);
767 		if (ret < 0)
768 			return ret;
769 	}
770 
771 	return 0;
772 }
773 
774 /*
775  * File format:
776  *
777  * struct group_descs {
778  *	u32	nr_groups;
779  *	struct group_desc {
780  *		char	name[];
781  *		u32	leader_idx;
782  *		u32	nr_members;
783  *	}[nr_groups];
784  * };
785  */
786 static int write_group_desc(struct feat_fd *ff,
787 			    struct evlist *evlist)
788 {
789 	u32 nr_groups = evlist__nr_groups(evlist);
790 	struct evsel *evsel;
791 	int ret;
792 
793 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
794 	if (ret < 0)
795 		return ret;
796 
797 	evlist__for_each_entry(evlist, evsel) {
798 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
799 			const char *name = evsel->group_name ?: "{anon_group}";
800 			u32 leader_idx = evsel->core.idx;
801 			u32 nr_members = evsel->core.nr_members;
802 
803 			ret = do_write_string(ff, name);
804 			if (ret < 0)
805 				return ret;
806 
807 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
808 			if (ret < 0)
809 				return ret;
810 
811 			ret = do_write(ff, &nr_members, sizeof(nr_members));
812 			if (ret < 0)
813 				return ret;
814 		}
815 	}
816 	return 0;
817 }
818 
819 /*
820  * Return the CPU id as a raw string.
821  *
822  * Each architecture should provide a more precise id string that
823  * can be use to match the architecture's "mapfile".
824  */
825 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
826 {
827 	return NULL;
828 }
829 
830 /* Return zero when the cpuid from the mapfile.csv matches the
831  * cpuid string generated on this platform.
832  * Otherwise return non-zero.
833  */
834 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
835 {
836 	regex_t re;
837 	regmatch_t pmatch[1];
838 	int match;
839 
840 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
841 		/* Warn unable to generate match particular string. */
842 		pr_info("Invalid regular expression %s\n", mapcpuid);
843 		return 1;
844 	}
845 
846 	match = !regexec(&re, cpuid, 1, pmatch, 0);
847 	regfree(&re);
848 	if (match) {
849 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
850 
851 		/* Verify the entire string matched. */
852 		if (match_len == strlen(cpuid))
853 			return 0;
854 	}
855 	return 1;
856 }
857 
858 /*
859  * default get_cpuid(): nothing gets recorded
860  * actual implementation must be in arch/$(SRCARCH)/util/header.c
861  */
862 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
863 {
864 	return ENOSYS; /* Not implemented */
865 }
866 
867 static int write_cpuid(struct feat_fd *ff,
868 		       struct evlist *evlist __maybe_unused)
869 {
870 	char buffer[64];
871 	int ret;
872 
873 	ret = get_cpuid(buffer, sizeof(buffer));
874 	if (ret)
875 		return -1;
876 
877 	return do_write_string(ff, buffer);
878 }
879 
880 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
881 			      struct evlist *evlist __maybe_unused)
882 {
883 	return 0;
884 }
885 
886 static int write_auxtrace(struct feat_fd *ff,
887 			  struct evlist *evlist __maybe_unused)
888 {
889 	struct perf_session *session;
890 	int err;
891 
892 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
893 		return -1;
894 
895 	session = container_of(ff->ph, struct perf_session, header);
896 
897 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
898 	if (err < 0)
899 		pr_err("Failed to write auxtrace index\n");
900 	return err;
901 }
902 
903 static int write_clockid(struct feat_fd *ff,
904 			 struct evlist *evlist __maybe_unused)
905 {
906 	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
907 			sizeof(ff->ph->env.clock.clockid_res_ns));
908 }
909 
910 static int write_clock_data(struct feat_fd *ff,
911 			    struct evlist *evlist __maybe_unused)
912 {
913 	u64 *data64;
914 	u32 data32;
915 	int ret;
916 
917 	/* version */
918 	data32 = 1;
919 
920 	ret = do_write(ff, &data32, sizeof(data32));
921 	if (ret < 0)
922 		return ret;
923 
924 	/* clockid */
925 	data32 = ff->ph->env.clock.clockid;
926 
927 	ret = do_write(ff, &data32, sizeof(data32));
928 	if (ret < 0)
929 		return ret;
930 
931 	/* TOD ref time */
932 	data64 = &ff->ph->env.clock.tod_ns;
933 
934 	ret = do_write(ff, data64, sizeof(*data64));
935 	if (ret < 0)
936 		return ret;
937 
938 	/* clockid ref time */
939 	data64 = &ff->ph->env.clock.clockid_ns;
940 
941 	return do_write(ff, data64, sizeof(*data64));
942 }
943 
944 static int write_hybrid_topology(struct feat_fd *ff,
945 				 struct evlist *evlist __maybe_unused)
946 {
947 	struct hybrid_topology *tp;
948 	int ret;
949 	u32 i;
950 
951 	tp = hybrid_topology__new();
952 	if (!tp)
953 		return -ENOENT;
954 
955 	ret = do_write(ff, &tp->nr, sizeof(u32));
956 	if (ret < 0)
957 		goto err;
958 
959 	for (i = 0; i < tp->nr; i++) {
960 		struct hybrid_topology_node *n = &tp->nodes[i];
961 
962 		ret = do_write_string(ff, n->pmu_name);
963 		if (ret < 0)
964 			goto err;
965 
966 		ret = do_write_string(ff, n->cpus);
967 		if (ret < 0)
968 			goto err;
969 	}
970 
971 	ret = 0;
972 
973 err:
974 	hybrid_topology__delete(tp);
975 	return ret;
976 }
977 
978 static int write_dir_format(struct feat_fd *ff,
979 			    struct evlist *evlist __maybe_unused)
980 {
981 	struct perf_session *session;
982 	struct perf_data *data;
983 
984 	session = container_of(ff->ph, struct perf_session, header);
985 	data = session->data;
986 
987 	if (WARN_ON(!perf_data__is_dir(data)))
988 		return -1;
989 
990 	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
991 }
992 
993 /*
994  * Check whether a CPU is online
995  *
996  * Returns:
997  *     1 -> if CPU is online
998  *     0 -> if CPU is offline
999  *    -1 -> error case
1000  */
1001 int is_cpu_online(unsigned int cpu)
1002 {
1003 	char *str;
1004 	size_t strlen;
1005 	char buf[256];
1006 	int status = -1;
1007 	struct stat statbuf;
1008 
1009 	snprintf(buf, sizeof(buf),
1010 		"/sys/devices/system/cpu/cpu%d", cpu);
1011 	if (stat(buf, &statbuf) != 0)
1012 		return 0;
1013 
1014 	/*
1015 	 * Check if /sys/devices/system/cpu/cpux/online file
1016 	 * exists. Some cases cpu0 won't have online file since
1017 	 * it is not expected to be turned off generally.
1018 	 * In kernels without CONFIG_HOTPLUG_CPU, this
1019 	 * file won't exist
1020 	 */
1021 	snprintf(buf, sizeof(buf),
1022 		"/sys/devices/system/cpu/cpu%d/online", cpu);
1023 	if (stat(buf, &statbuf) != 0)
1024 		return 1;
1025 
1026 	/*
1027 	 * Read online file using sysfs__read_str.
1028 	 * If read or open fails, return -1.
1029 	 * If read succeeds, return value from file
1030 	 * which gets stored in "str"
1031 	 */
1032 	snprintf(buf, sizeof(buf),
1033 		"devices/system/cpu/cpu%d/online", cpu);
1034 
1035 	if (sysfs__read_str(buf, &str, &strlen) < 0)
1036 		return status;
1037 
1038 	status = atoi(str);
1039 
1040 	free(str);
1041 	return status;
1042 }
1043 
1044 #ifdef HAVE_LIBBPF_SUPPORT
1045 static int write_bpf_prog_info(struct feat_fd *ff,
1046 			       struct evlist *evlist __maybe_unused)
1047 {
1048 	struct perf_env *env = &ff->ph->env;
1049 	struct rb_root *root;
1050 	struct rb_node *next;
1051 	int ret;
1052 
1053 	down_read(&env->bpf_progs.lock);
1054 
1055 	ret = do_write(ff, &env->bpf_progs.infos_cnt,
1056 		       sizeof(env->bpf_progs.infos_cnt));
1057 	if (ret < 0)
1058 		goto out;
1059 
1060 	root = &env->bpf_progs.infos;
1061 	next = rb_first(root);
1062 	while (next) {
1063 		struct bpf_prog_info_node *node;
1064 		size_t len;
1065 
1066 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1067 		next = rb_next(&node->rb_node);
1068 		len = sizeof(struct perf_bpil) +
1069 			node->info_linear->data_len;
1070 
1071 		/* before writing to file, translate address to offset */
1072 		bpil_addr_to_offs(node->info_linear);
1073 		ret = do_write(ff, node->info_linear, len);
1074 		/*
1075 		 * translate back to address even when do_write() fails,
1076 		 * so that this function never changes the data.
1077 		 */
1078 		bpil_offs_to_addr(node->info_linear);
1079 		if (ret < 0)
1080 			goto out;
1081 	}
1082 out:
1083 	up_read(&env->bpf_progs.lock);
1084 	return ret;
1085 }
1086 
1087 static int write_bpf_btf(struct feat_fd *ff,
1088 			 struct evlist *evlist __maybe_unused)
1089 {
1090 	struct perf_env *env = &ff->ph->env;
1091 	struct rb_root *root;
1092 	struct rb_node *next;
1093 	int ret;
1094 
1095 	down_read(&env->bpf_progs.lock);
1096 
1097 	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1098 		       sizeof(env->bpf_progs.btfs_cnt));
1099 
1100 	if (ret < 0)
1101 		goto out;
1102 
1103 	root = &env->bpf_progs.btfs;
1104 	next = rb_first(root);
1105 	while (next) {
1106 		struct btf_node *node;
1107 
1108 		node = rb_entry(next, struct btf_node, rb_node);
1109 		next = rb_next(&node->rb_node);
1110 		ret = do_write(ff, &node->id,
1111 			       sizeof(u32) * 2 + node->data_size);
1112 		if (ret < 0)
1113 			goto out;
1114 	}
1115 out:
1116 	up_read(&env->bpf_progs.lock);
1117 	return ret;
1118 }
1119 #endif // HAVE_LIBBPF_SUPPORT
1120 
1121 static int cpu_cache_level__sort(const void *a, const void *b)
1122 {
1123 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1124 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1125 
1126 	return cache_a->level - cache_b->level;
1127 }
1128 
1129 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1130 {
1131 	if (a->level != b->level)
1132 		return false;
1133 
1134 	if (a->line_size != b->line_size)
1135 		return false;
1136 
1137 	if (a->sets != b->sets)
1138 		return false;
1139 
1140 	if (a->ways != b->ways)
1141 		return false;
1142 
1143 	if (strcmp(a->type, b->type))
1144 		return false;
1145 
1146 	if (strcmp(a->size, b->size))
1147 		return false;
1148 
1149 	if (strcmp(a->map, b->map))
1150 		return false;
1151 
1152 	return true;
1153 }
1154 
1155 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1156 {
1157 	char path[PATH_MAX], file[PATH_MAX];
1158 	struct stat st;
1159 	size_t len;
1160 
1161 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1162 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1163 
1164 	if (stat(file, &st))
1165 		return 1;
1166 
1167 	scnprintf(file, PATH_MAX, "%s/level", path);
1168 	if (sysfs__read_int(file, (int *) &cache->level))
1169 		return -1;
1170 
1171 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1172 	if (sysfs__read_int(file, (int *) &cache->line_size))
1173 		return -1;
1174 
1175 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1176 	if (sysfs__read_int(file, (int *) &cache->sets))
1177 		return -1;
1178 
1179 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1180 	if (sysfs__read_int(file, (int *) &cache->ways))
1181 		return -1;
1182 
1183 	scnprintf(file, PATH_MAX, "%s/type", path);
1184 	if (sysfs__read_str(file, &cache->type, &len))
1185 		return -1;
1186 
1187 	cache->type[len] = 0;
1188 	cache->type = strim(cache->type);
1189 
1190 	scnprintf(file, PATH_MAX, "%s/size", path);
1191 	if (sysfs__read_str(file, &cache->size, &len)) {
1192 		zfree(&cache->type);
1193 		return -1;
1194 	}
1195 
1196 	cache->size[len] = 0;
1197 	cache->size = strim(cache->size);
1198 
1199 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1200 	if (sysfs__read_str(file, &cache->map, &len)) {
1201 		zfree(&cache->size);
1202 		zfree(&cache->type);
1203 		return -1;
1204 	}
1205 
1206 	cache->map[len] = 0;
1207 	cache->map = strim(cache->map);
1208 	return 0;
1209 }
1210 
1211 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1212 {
1213 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1214 }
1215 
1216 /*
1217  * Build caches levels for a particular CPU from the data in
1218  * /sys/devices/system/cpu/cpu<cpu>/cache/
1219  * The cache level data is stored in caches[] from index at
1220  * *cntp.
1221  */
1222 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp)
1223 {
1224 	u16 level;
1225 
1226 	for (level = 0; level < MAX_CACHE_LVL; level++) {
1227 		struct cpu_cache_level c;
1228 		int err;
1229 		u32 i;
1230 
1231 		err = cpu_cache_level__read(&c, cpu, level);
1232 		if (err < 0)
1233 			return err;
1234 
1235 		if (err == 1)
1236 			break;
1237 
1238 		for (i = 0; i < *cntp; i++) {
1239 			if (cpu_cache_level__cmp(&c, &caches[i]))
1240 				break;
1241 		}
1242 
1243 		if (i == *cntp) {
1244 			caches[*cntp] = c;
1245 			*cntp = *cntp + 1;
1246 		} else
1247 			cpu_cache_level__free(&c);
1248 	}
1249 
1250 	return 0;
1251 }
1252 
1253 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1254 {
1255 	u32 nr, cpu, cnt = 0;
1256 
1257 	nr = cpu__max_cpu().cpu;
1258 
1259 	for (cpu = 0; cpu < nr; cpu++) {
1260 		int ret = build_caches_for_cpu(cpu, caches, &cnt);
1261 
1262 		if (ret)
1263 			return ret;
1264 	}
1265 	*cntp = cnt;
1266 	return 0;
1267 }
1268 
1269 static int write_cache(struct feat_fd *ff,
1270 		       struct evlist *evlist __maybe_unused)
1271 {
1272 	u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1273 	struct cpu_cache_level caches[max_caches];
1274 	u32 cnt = 0, i, version = 1;
1275 	int ret;
1276 
1277 	ret = build_caches(caches, &cnt);
1278 	if (ret)
1279 		goto out;
1280 
1281 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1282 
1283 	ret = do_write(ff, &version, sizeof(u32));
1284 	if (ret < 0)
1285 		goto out;
1286 
1287 	ret = do_write(ff, &cnt, sizeof(u32));
1288 	if (ret < 0)
1289 		goto out;
1290 
1291 	for (i = 0; i < cnt; i++) {
1292 		struct cpu_cache_level *c = &caches[i];
1293 
1294 		#define _W(v)					\
1295 			ret = do_write(ff, &c->v, sizeof(u32));	\
1296 			if (ret < 0)				\
1297 				goto out;
1298 
1299 		_W(level)
1300 		_W(line_size)
1301 		_W(sets)
1302 		_W(ways)
1303 		#undef _W
1304 
1305 		#define _W(v)						\
1306 			ret = do_write_string(ff, (const char *) c->v);	\
1307 			if (ret < 0)					\
1308 				goto out;
1309 
1310 		_W(type)
1311 		_W(size)
1312 		_W(map)
1313 		#undef _W
1314 	}
1315 
1316 out:
1317 	for (i = 0; i < cnt; i++)
1318 		cpu_cache_level__free(&caches[i]);
1319 	return ret;
1320 }
1321 
1322 static int write_stat(struct feat_fd *ff __maybe_unused,
1323 		      struct evlist *evlist __maybe_unused)
1324 {
1325 	return 0;
1326 }
1327 
1328 static int write_sample_time(struct feat_fd *ff,
1329 			     struct evlist *evlist)
1330 {
1331 	int ret;
1332 
1333 	ret = do_write(ff, &evlist->first_sample_time,
1334 		       sizeof(evlist->first_sample_time));
1335 	if (ret < 0)
1336 		return ret;
1337 
1338 	return do_write(ff, &evlist->last_sample_time,
1339 			sizeof(evlist->last_sample_time));
1340 }
1341 
1342 
1343 static int memory_node__read(struct memory_node *n, unsigned long idx)
1344 {
1345 	unsigned int phys, size = 0;
1346 	char path[PATH_MAX];
1347 	struct dirent *ent;
1348 	DIR *dir;
1349 
1350 #define for_each_memory(mem, dir)					\
1351 	while ((ent = readdir(dir)))					\
1352 		if (strcmp(ent->d_name, ".") &&				\
1353 		    strcmp(ent->d_name, "..") &&			\
1354 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1355 
1356 	scnprintf(path, PATH_MAX,
1357 		  "%s/devices/system/node/node%lu",
1358 		  sysfs__mountpoint(), idx);
1359 
1360 	dir = opendir(path);
1361 	if (!dir) {
1362 		pr_warning("failed: can't open memory sysfs data\n");
1363 		return -1;
1364 	}
1365 
1366 	for_each_memory(phys, dir) {
1367 		size = max(phys, size);
1368 	}
1369 
1370 	size++;
1371 
1372 	n->set = bitmap_zalloc(size);
1373 	if (!n->set) {
1374 		closedir(dir);
1375 		return -ENOMEM;
1376 	}
1377 
1378 	n->node = idx;
1379 	n->size = size;
1380 
1381 	rewinddir(dir);
1382 
1383 	for_each_memory(phys, dir) {
1384 		__set_bit(phys, n->set);
1385 	}
1386 
1387 	closedir(dir);
1388 	return 0;
1389 }
1390 
1391 static int memory_node__sort(const void *a, const void *b)
1392 {
1393 	const struct memory_node *na = a;
1394 	const struct memory_node *nb = b;
1395 
1396 	return na->node - nb->node;
1397 }
1398 
1399 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1400 {
1401 	char path[PATH_MAX];
1402 	struct dirent *ent;
1403 	DIR *dir;
1404 	u64 cnt = 0;
1405 	int ret = 0;
1406 
1407 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1408 		  sysfs__mountpoint());
1409 
1410 	dir = opendir(path);
1411 	if (!dir) {
1412 		pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1413 			  __func__, path);
1414 		return -1;
1415 	}
1416 
1417 	while (!ret && (ent = readdir(dir))) {
1418 		unsigned int idx;
1419 		int r;
1420 
1421 		if (!strcmp(ent->d_name, ".") ||
1422 		    !strcmp(ent->d_name, ".."))
1423 			continue;
1424 
1425 		r = sscanf(ent->d_name, "node%u", &idx);
1426 		if (r != 1)
1427 			continue;
1428 
1429 		if (WARN_ONCE(cnt >= size,
1430 			"failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1431 			closedir(dir);
1432 			return -1;
1433 		}
1434 
1435 		ret = memory_node__read(&nodes[cnt++], idx);
1436 	}
1437 
1438 	*cntp = cnt;
1439 	closedir(dir);
1440 
1441 	if (!ret)
1442 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1443 
1444 	return ret;
1445 }
1446 
1447 #define MAX_MEMORY_NODES 2000
1448 
1449 /*
1450  * The MEM_TOPOLOGY holds physical memory map for every
1451  * node in system. The format of data is as follows:
1452  *
1453  *  0 - version          | for future changes
1454  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1455  * 16 - count            | number of nodes
1456  *
1457  * For each node we store map of physical indexes for
1458  * each node:
1459  *
1460  * 32 - node id          | node index
1461  * 40 - size             | size of bitmap
1462  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1463  */
1464 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1465 			      struct evlist *evlist __maybe_unused)
1466 {
1467 	static struct memory_node nodes[MAX_MEMORY_NODES];
1468 	u64 bsize, version = 1, i, nr;
1469 	int ret;
1470 
1471 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1472 			      (unsigned long long *) &bsize);
1473 	if (ret)
1474 		return ret;
1475 
1476 	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1477 	if (ret)
1478 		return ret;
1479 
1480 	ret = do_write(ff, &version, sizeof(version));
1481 	if (ret < 0)
1482 		goto out;
1483 
1484 	ret = do_write(ff, &bsize, sizeof(bsize));
1485 	if (ret < 0)
1486 		goto out;
1487 
1488 	ret = do_write(ff, &nr, sizeof(nr));
1489 	if (ret < 0)
1490 		goto out;
1491 
1492 	for (i = 0; i < nr; i++) {
1493 		struct memory_node *n = &nodes[i];
1494 
1495 		#define _W(v)						\
1496 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1497 			if (ret < 0)					\
1498 				goto out;
1499 
1500 		_W(node)
1501 		_W(size)
1502 
1503 		#undef _W
1504 
1505 		ret = do_write_bitmap(ff, n->set, n->size);
1506 		if (ret < 0)
1507 			goto out;
1508 	}
1509 
1510 out:
1511 	return ret;
1512 }
1513 
1514 static int write_compressed(struct feat_fd *ff __maybe_unused,
1515 			    struct evlist *evlist __maybe_unused)
1516 {
1517 	int ret;
1518 
1519 	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1520 	if (ret)
1521 		return ret;
1522 
1523 	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1524 	if (ret)
1525 		return ret;
1526 
1527 	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1528 	if (ret)
1529 		return ret;
1530 
1531 	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1532 	if (ret)
1533 		return ret;
1534 
1535 	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1536 }
1537 
1538 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1539 			    bool write_pmu)
1540 {
1541 	struct perf_pmu_caps *caps = NULL;
1542 	int ret;
1543 
1544 	ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1545 	if (ret < 0)
1546 		return ret;
1547 
1548 	list_for_each_entry(caps, &pmu->caps, list) {
1549 		ret = do_write_string(ff, caps->name);
1550 		if (ret < 0)
1551 			return ret;
1552 
1553 		ret = do_write_string(ff, caps->value);
1554 		if (ret < 0)
1555 			return ret;
1556 	}
1557 
1558 	if (write_pmu) {
1559 		ret = do_write_string(ff, pmu->name);
1560 		if (ret < 0)
1561 			return ret;
1562 	}
1563 
1564 	return ret;
1565 }
1566 
1567 static int write_cpu_pmu_caps(struct feat_fd *ff,
1568 			      struct evlist *evlist __maybe_unused)
1569 {
1570 	struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1571 	int ret;
1572 
1573 	if (!cpu_pmu)
1574 		return -ENOENT;
1575 
1576 	ret = perf_pmu__caps_parse(cpu_pmu);
1577 	if (ret < 0)
1578 		return ret;
1579 
1580 	return __write_pmu_caps(ff, cpu_pmu, false);
1581 }
1582 
1583 static int write_pmu_caps(struct feat_fd *ff,
1584 			  struct evlist *evlist __maybe_unused)
1585 {
1586 	struct perf_pmu *pmu = NULL;
1587 	int nr_pmu = 0;
1588 	int ret;
1589 
1590 	while ((pmu = perf_pmu__scan(pmu))) {
1591 		if (!pmu->name || !strcmp(pmu->name, "cpu") ||
1592 		    perf_pmu__caps_parse(pmu) <= 0)
1593 			continue;
1594 		nr_pmu++;
1595 	}
1596 
1597 	ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1598 	if (ret < 0)
1599 		return ret;
1600 
1601 	if (!nr_pmu)
1602 		return 0;
1603 
1604 	/*
1605 	 * Write hybrid pmu caps first to maintain compatibility with
1606 	 * older perf tool.
1607 	 */
1608 	pmu = NULL;
1609 	perf_pmu__for_each_hybrid_pmu(pmu) {
1610 		ret = __write_pmu_caps(ff, pmu, true);
1611 		if (ret < 0)
1612 			return ret;
1613 	}
1614 
1615 	pmu = NULL;
1616 	while ((pmu = perf_pmu__scan(pmu))) {
1617 		if (!pmu->name || !strcmp(pmu->name, "cpu") ||
1618 		    !pmu->nr_caps || perf_pmu__is_hybrid(pmu->name))
1619 			continue;
1620 
1621 		ret = __write_pmu_caps(ff, pmu, true);
1622 		if (ret < 0)
1623 			return ret;
1624 	}
1625 	return 0;
1626 }
1627 
1628 static void print_hostname(struct feat_fd *ff, FILE *fp)
1629 {
1630 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1631 }
1632 
1633 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1634 {
1635 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1636 }
1637 
1638 static void print_arch(struct feat_fd *ff, FILE *fp)
1639 {
1640 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1641 }
1642 
1643 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1644 {
1645 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1646 }
1647 
1648 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1649 {
1650 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1651 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1652 }
1653 
1654 static void print_version(struct feat_fd *ff, FILE *fp)
1655 {
1656 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1657 }
1658 
1659 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1660 {
1661 	int nr, i;
1662 
1663 	nr = ff->ph->env.nr_cmdline;
1664 
1665 	fprintf(fp, "# cmdline : ");
1666 
1667 	for (i = 0; i < nr; i++) {
1668 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1669 		if (!argv_i) {
1670 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1671 		} else {
1672 			char *mem = argv_i;
1673 			do {
1674 				char *quote = strchr(argv_i, '\'');
1675 				if (!quote)
1676 					break;
1677 				*quote++ = '\0';
1678 				fprintf(fp, "%s\\\'", argv_i);
1679 				argv_i = quote;
1680 			} while (1);
1681 			fprintf(fp, "%s ", argv_i);
1682 			free(mem);
1683 		}
1684 	}
1685 	fputc('\n', fp);
1686 }
1687 
1688 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1689 {
1690 	struct perf_header *ph = ff->ph;
1691 	int cpu_nr = ph->env.nr_cpus_avail;
1692 	int nr, i;
1693 	char *str;
1694 
1695 	nr = ph->env.nr_sibling_cores;
1696 	str = ph->env.sibling_cores;
1697 
1698 	for (i = 0; i < nr; i++) {
1699 		fprintf(fp, "# sibling sockets : %s\n", str);
1700 		str += strlen(str) + 1;
1701 	}
1702 
1703 	if (ph->env.nr_sibling_dies) {
1704 		nr = ph->env.nr_sibling_dies;
1705 		str = ph->env.sibling_dies;
1706 
1707 		for (i = 0; i < nr; i++) {
1708 			fprintf(fp, "# sibling dies    : %s\n", str);
1709 			str += strlen(str) + 1;
1710 		}
1711 	}
1712 
1713 	nr = ph->env.nr_sibling_threads;
1714 	str = ph->env.sibling_threads;
1715 
1716 	for (i = 0; i < nr; i++) {
1717 		fprintf(fp, "# sibling threads : %s\n", str);
1718 		str += strlen(str) + 1;
1719 	}
1720 
1721 	if (ph->env.nr_sibling_dies) {
1722 		if (ph->env.cpu != NULL) {
1723 			for (i = 0; i < cpu_nr; i++)
1724 				fprintf(fp, "# CPU %d: Core ID %d, "
1725 					    "Die ID %d, Socket ID %d\n",
1726 					    i, ph->env.cpu[i].core_id,
1727 					    ph->env.cpu[i].die_id,
1728 					    ph->env.cpu[i].socket_id);
1729 		} else
1730 			fprintf(fp, "# Core ID, Die ID and Socket ID "
1731 				    "information is not available\n");
1732 	} else {
1733 		if (ph->env.cpu != NULL) {
1734 			for (i = 0; i < cpu_nr; i++)
1735 				fprintf(fp, "# CPU %d: Core ID %d, "
1736 					    "Socket ID %d\n",
1737 					    i, ph->env.cpu[i].core_id,
1738 					    ph->env.cpu[i].socket_id);
1739 		} else
1740 			fprintf(fp, "# Core ID and Socket ID "
1741 				    "information is not available\n");
1742 	}
1743 }
1744 
1745 static void print_clockid(struct feat_fd *ff, FILE *fp)
1746 {
1747 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1748 		ff->ph->env.clock.clockid_res_ns * 1000);
1749 }
1750 
1751 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1752 {
1753 	struct timespec clockid_ns;
1754 	char tstr[64], date[64];
1755 	struct timeval tod_ns;
1756 	clockid_t clockid;
1757 	struct tm ltime;
1758 	u64 ref;
1759 
1760 	if (!ff->ph->env.clock.enabled) {
1761 		fprintf(fp, "# reference time disabled\n");
1762 		return;
1763 	}
1764 
1765 	/* Compute TOD time. */
1766 	ref = ff->ph->env.clock.tod_ns;
1767 	tod_ns.tv_sec = ref / NSEC_PER_SEC;
1768 	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1769 	tod_ns.tv_usec = ref / NSEC_PER_USEC;
1770 
1771 	/* Compute clockid time. */
1772 	ref = ff->ph->env.clock.clockid_ns;
1773 	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1774 	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1775 	clockid_ns.tv_nsec = ref;
1776 
1777 	clockid = ff->ph->env.clock.clockid;
1778 
1779 	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1780 		snprintf(tstr, sizeof(tstr), "<error>");
1781 	else {
1782 		strftime(date, sizeof(date), "%F %T", &ltime);
1783 		scnprintf(tstr, sizeof(tstr), "%s.%06d",
1784 			  date, (int) tod_ns.tv_usec);
1785 	}
1786 
1787 	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1788 	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1789 		    tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1790 		    (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1791 		    clockid_name(clockid));
1792 }
1793 
1794 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1795 {
1796 	int i;
1797 	struct hybrid_node *n;
1798 
1799 	fprintf(fp, "# hybrid cpu system:\n");
1800 	for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1801 		n = &ff->ph->env.hybrid_nodes[i];
1802 		fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1803 	}
1804 }
1805 
1806 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1807 {
1808 	struct perf_session *session;
1809 	struct perf_data *data;
1810 
1811 	session = container_of(ff->ph, struct perf_session, header);
1812 	data = session->data;
1813 
1814 	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1815 }
1816 
1817 #ifdef HAVE_LIBBPF_SUPPORT
1818 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1819 {
1820 	struct perf_env *env = &ff->ph->env;
1821 	struct rb_root *root;
1822 	struct rb_node *next;
1823 
1824 	down_read(&env->bpf_progs.lock);
1825 
1826 	root = &env->bpf_progs.infos;
1827 	next = rb_first(root);
1828 
1829 	while (next) {
1830 		struct bpf_prog_info_node *node;
1831 
1832 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1833 		next = rb_next(&node->rb_node);
1834 
1835 		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1836 					       env, fp);
1837 	}
1838 
1839 	up_read(&env->bpf_progs.lock);
1840 }
1841 
1842 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1843 {
1844 	struct perf_env *env = &ff->ph->env;
1845 	struct rb_root *root;
1846 	struct rb_node *next;
1847 
1848 	down_read(&env->bpf_progs.lock);
1849 
1850 	root = &env->bpf_progs.btfs;
1851 	next = rb_first(root);
1852 
1853 	while (next) {
1854 		struct btf_node *node;
1855 
1856 		node = rb_entry(next, struct btf_node, rb_node);
1857 		next = rb_next(&node->rb_node);
1858 		fprintf(fp, "# btf info of id %u\n", node->id);
1859 	}
1860 
1861 	up_read(&env->bpf_progs.lock);
1862 }
1863 #endif // HAVE_LIBBPF_SUPPORT
1864 
1865 static void free_event_desc(struct evsel *events)
1866 {
1867 	struct evsel *evsel;
1868 
1869 	if (!events)
1870 		return;
1871 
1872 	for (evsel = events; evsel->core.attr.size; evsel++) {
1873 		zfree(&evsel->name);
1874 		zfree(&evsel->core.id);
1875 	}
1876 
1877 	free(events);
1878 }
1879 
1880 static bool perf_attr_check(struct perf_event_attr *attr)
1881 {
1882 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1883 		pr_warning("Reserved bits are set unexpectedly. "
1884 			   "Please update perf tool.\n");
1885 		return false;
1886 	}
1887 
1888 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1889 		pr_warning("Unknown sample type (0x%llx) is detected. "
1890 			   "Please update perf tool.\n",
1891 			   attr->sample_type);
1892 		return false;
1893 	}
1894 
1895 	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1896 		pr_warning("Unknown read format (0x%llx) is detected. "
1897 			   "Please update perf tool.\n",
1898 			   attr->read_format);
1899 		return false;
1900 	}
1901 
1902 	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1903 	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1904 		pr_warning("Unknown branch sample type (0x%llx) is detected. "
1905 			   "Please update perf tool.\n",
1906 			   attr->branch_sample_type);
1907 
1908 		return false;
1909 	}
1910 
1911 	return true;
1912 }
1913 
1914 static struct evsel *read_event_desc(struct feat_fd *ff)
1915 {
1916 	struct evsel *evsel, *events = NULL;
1917 	u64 *id;
1918 	void *buf = NULL;
1919 	u32 nre, sz, nr, i, j;
1920 	size_t msz;
1921 
1922 	/* number of events */
1923 	if (do_read_u32(ff, &nre))
1924 		goto error;
1925 
1926 	if (do_read_u32(ff, &sz))
1927 		goto error;
1928 
1929 	/* buffer to hold on file attr struct */
1930 	buf = malloc(sz);
1931 	if (!buf)
1932 		goto error;
1933 
1934 	/* the last event terminates with evsel->core.attr.size == 0: */
1935 	events = calloc(nre + 1, sizeof(*events));
1936 	if (!events)
1937 		goto error;
1938 
1939 	msz = sizeof(evsel->core.attr);
1940 	if (sz < msz)
1941 		msz = sz;
1942 
1943 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1944 		evsel->core.idx = i;
1945 
1946 		/*
1947 		 * must read entire on-file attr struct to
1948 		 * sync up with layout.
1949 		 */
1950 		if (__do_read(ff, buf, sz))
1951 			goto error;
1952 
1953 		if (ff->ph->needs_swap)
1954 			perf_event__attr_swap(buf);
1955 
1956 		memcpy(&evsel->core.attr, buf, msz);
1957 
1958 		if (!perf_attr_check(&evsel->core.attr))
1959 			goto error;
1960 
1961 		if (do_read_u32(ff, &nr))
1962 			goto error;
1963 
1964 		if (ff->ph->needs_swap)
1965 			evsel->needs_swap = true;
1966 
1967 		evsel->name = do_read_string(ff);
1968 		if (!evsel->name)
1969 			goto error;
1970 
1971 		if (!nr)
1972 			continue;
1973 
1974 		id = calloc(nr, sizeof(*id));
1975 		if (!id)
1976 			goto error;
1977 		evsel->core.ids = nr;
1978 		evsel->core.id = id;
1979 
1980 		for (j = 0 ; j < nr; j++) {
1981 			if (do_read_u64(ff, id))
1982 				goto error;
1983 			id++;
1984 		}
1985 	}
1986 out:
1987 	free(buf);
1988 	return events;
1989 error:
1990 	free_event_desc(events);
1991 	events = NULL;
1992 	goto out;
1993 }
1994 
1995 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1996 				void *priv __maybe_unused)
1997 {
1998 	return fprintf(fp, ", %s = %s", name, val);
1999 }
2000 
2001 static void print_event_desc(struct feat_fd *ff, FILE *fp)
2002 {
2003 	struct evsel *evsel, *events;
2004 	u32 j;
2005 	u64 *id;
2006 
2007 	if (ff->events)
2008 		events = ff->events;
2009 	else
2010 		events = read_event_desc(ff);
2011 
2012 	if (!events) {
2013 		fprintf(fp, "# event desc: not available or unable to read\n");
2014 		return;
2015 	}
2016 
2017 	for (evsel = events; evsel->core.attr.size; evsel++) {
2018 		fprintf(fp, "# event : name = %s, ", evsel->name);
2019 
2020 		if (evsel->core.ids) {
2021 			fprintf(fp, ", id = {");
2022 			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2023 				if (j)
2024 					fputc(',', fp);
2025 				fprintf(fp, " %"PRIu64, *id);
2026 			}
2027 			fprintf(fp, " }");
2028 		}
2029 
2030 		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2031 
2032 		fputc('\n', fp);
2033 	}
2034 
2035 	free_event_desc(events);
2036 	ff->events = NULL;
2037 }
2038 
2039 static void print_total_mem(struct feat_fd *ff, FILE *fp)
2040 {
2041 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2042 }
2043 
2044 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2045 {
2046 	int i;
2047 	struct numa_node *n;
2048 
2049 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2050 		n = &ff->ph->env.numa_nodes[i];
2051 
2052 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
2053 			    " free = %"PRIu64" kB\n",
2054 			n->node, n->mem_total, n->mem_free);
2055 
2056 		fprintf(fp, "# node%u cpu list : ", n->node);
2057 		cpu_map__fprintf(n->map, fp);
2058 	}
2059 }
2060 
2061 static void print_cpuid(struct feat_fd *ff, FILE *fp)
2062 {
2063 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2064 }
2065 
2066 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2067 {
2068 	fprintf(fp, "# contains samples with branch stack\n");
2069 }
2070 
2071 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2072 {
2073 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2074 }
2075 
2076 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2077 {
2078 	fprintf(fp, "# contains stat data\n");
2079 }
2080 
2081 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2082 {
2083 	int i;
2084 
2085 	fprintf(fp, "# CPU cache info:\n");
2086 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2087 		fprintf(fp, "#  ");
2088 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2089 	}
2090 }
2091 
2092 static void print_compressed(struct feat_fd *ff, FILE *fp)
2093 {
2094 	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2095 		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2096 		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2097 }
2098 
2099 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2100 {
2101 	const char *delimiter = "";
2102 	int i;
2103 
2104 	if (!nr_caps) {
2105 		fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2106 		return;
2107 	}
2108 
2109 	fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2110 	for (i = 0; i < nr_caps; i++) {
2111 		fprintf(fp, "%s%s", delimiter, caps[i]);
2112 		delimiter = ", ";
2113 	}
2114 
2115 	fprintf(fp, "\n");
2116 }
2117 
2118 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2119 {
2120 	__print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2121 			 ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2122 }
2123 
2124 static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2125 {
2126 	struct pmu_caps *pmu_caps;
2127 
2128 	for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) {
2129 		pmu_caps = &ff->ph->env.pmu_caps[i];
2130 		__print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2131 				 pmu_caps->pmu_name);
2132 	}
2133 }
2134 
2135 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2136 {
2137 	const char *delimiter = "# pmu mappings: ";
2138 	char *str, *tmp;
2139 	u32 pmu_num;
2140 	u32 type;
2141 
2142 	pmu_num = ff->ph->env.nr_pmu_mappings;
2143 	if (!pmu_num) {
2144 		fprintf(fp, "# pmu mappings: not available\n");
2145 		return;
2146 	}
2147 
2148 	str = ff->ph->env.pmu_mappings;
2149 
2150 	while (pmu_num) {
2151 		type = strtoul(str, &tmp, 0);
2152 		if (*tmp != ':')
2153 			goto error;
2154 
2155 		str = tmp + 1;
2156 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2157 
2158 		delimiter = ", ";
2159 		str += strlen(str) + 1;
2160 		pmu_num--;
2161 	}
2162 
2163 	fprintf(fp, "\n");
2164 
2165 	if (!pmu_num)
2166 		return;
2167 error:
2168 	fprintf(fp, "# pmu mappings: unable to read\n");
2169 }
2170 
2171 static void print_group_desc(struct feat_fd *ff, FILE *fp)
2172 {
2173 	struct perf_session *session;
2174 	struct evsel *evsel;
2175 	u32 nr = 0;
2176 
2177 	session = container_of(ff->ph, struct perf_session, header);
2178 
2179 	evlist__for_each_entry(session->evlist, evsel) {
2180 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2181 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2182 
2183 			nr = evsel->core.nr_members - 1;
2184 		} else if (nr) {
2185 			fprintf(fp, ",%s", evsel__name(evsel));
2186 
2187 			if (--nr == 0)
2188 				fprintf(fp, "}\n");
2189 		}
2190 	}
2191 }
2192 
2193 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2194 {
2195 	struct perf_session *session;
2196 	char time_buf[32];
2197 	double d;
2198 
2199 	session = container_of(ff->ph, struct perf_session, header);
2200 
2201 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
2202 				  time_buf, sizeof(time_buf));
2203 	fprintf(fp, "# time of first sample : %s\n", time_buf);
2204 
2205 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
2206 				  time_buf, sizeof(time_buf));
2207 	fprintf(fp, "# time of last sample : %s\n", time_buf);
2208 
2209 	d = (double)(session->evlist->last_sample_time -
2210 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
2211 
2212 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
2213 }
2214 
2215 static void memory_node__fprintf(struct memory_node *n,
2216 				 unsigned long long bsize, FILE *fp)
2217 {
2218 	char buf_map[100], buf_size[50];
2219 	unsigned long long size;
2220 
2221 	size = bsize * bitmap_weight(n->set, n->size);
2222 	unit_number__scnprintf(buf_size, 50, size);
2223 
2224 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
2225 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2226 }
2227 
2228 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2229 {
2230 	struct memory_node *nodes;
2231 	int i, nr;
2232 
2233 	nodes = ff->ph->env.memory_nodes;
2234 	nr    = ff->ph->env.nr_memory_nodes;
2235 
2236 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2237 		nr, ff->ph->env.memory_bsize);
2238 
2239 	for (i = 0; i < nr; i++) {
2240 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2241 	}
2242 }
2243 
2244 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2245 				    char *filename,
2246 				    struct perf_session *session)
2247 {
2248 	int err = -1;
2249 	struct machine *machine;
2250 	u16 cpumode;
2251 	struct dso *dso;
2252 	enum dso_space_type dso_space;
2253 
2254 	machine = perf_session__findnew_machine(session, bev->pid);
2255 	if (!machine)
2256 		goto out;
2257 
2258 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2259 
2260 	switch (cpumode) {
2261 	case PERF_RECORD_MISC_KERNEL:
2262 		dso_space = DSO_SPACE__KERNEL;
2263 		break;
2264 	case PERF_RECORD_MISC_GUEST_KERNEL:
2265 		dso_space = DSO_SPACE__KERNEL_GUEST;
2266 		break;
2267 	case PERF_RECORD_MISC_USER:
2268 	case PERF_RECORD_MISC_GUEST_USER:
2269 		dso_space = DSO_SPACE__USER;
2270 		break;
2271 	default:
2272 		goto out;
2273 	}
2274 
2275 	dso = machine__findnew_dso(machine, filename);
2276 	if (dso != NULL) {
2277 		char sbuild_id[SBUILD_ID_SIZE];
2278 		struct build_id bid;
2279 		size_t size = BUILD_ID_SIZE;
2280 
2281 		if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2282 			size = bev->size;
2283 
2284 		build_id__init(&bid, bev->data, size);
2285 		dso__set_build_id(dso, &bid);
2286 		dso->header_build_id = 1;
2287 
2288 		if (dso_space != DSO_SPACE__USER) {
2289 			struct kmod_path m = { .name = NULL, };
2290 
2291 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2292 				dso__set_module_info(dso, &m, machine);
2293 
2294 			dso->kernel = dso_space;
2295 			free(m.name);
2296 		}
2297 
2298 		build_id__sprintf(&dso->bid, sbuild_id);
2299 		pr_debug("build id event received for %s: %s [%zu]\n",
2300 			 dso->long_name, sbuild_id, size);
2301 		dso__put(dso);
2302 	}
2303 
2304 	err = 0;
2305 out:
2306 	return err;
2307 }
2308 
2309 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2310 						 int input, u64 offset, u64 size)
2311 {
2312 	struct perf_session *session = container_of(header, struct perf_session, header);
2313 	struct {
2314 		struct perf_event_header   header;
2315 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2316 		char			   filename[0];
2317 	} old_bev;
2318 	struct perf_record_header_build_id bev;
2319 	char filename[PATH_MAX];
2320 	u64 limit = offset + size;
2321 
2322 	while (offset < limit) {
2323 		ssize_t len;
2324 
2325 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2326 			return -1;
2327 
2328 		if (header->needs_swap)
2329 			perf_event_header__bswap(&old_bev.header);
2330 
2331 		len = old_bev.header.size - sizeof(old_bev);
2332 		if (readn(input, filename, len) != len)
2333 			return -1;
2334 
2335 		bev.header = old_bev.header;
2336 
2337 		/*
2338 		 * As the pid is the missing value, we need to fill
2339 		 * it properly. The header.misc value give us nice hint.
2340 		 */
2341 		bev.pid	= HOST_KERNEL_ID;
2342 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2343 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2344 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
2345 
2346 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2347 		__event_process_build_id(&bev, filename, session);
2348 
2349 		offset += bev.header.size;
2350 	}
2351 
2352 	return 0;
2353 }
2354 
2355 static int perf_header__read_build_ids(struct perf_header *header,
2356 				       int input, u64 offset, u64 size)
2357 {
2358 	struct perf_session *session = container_of(header, struct perf_session, header);
2359 	struct perf_record_header_build_id bev;
2360 	char filename[PATH_MAX];
2361 	u64 limit = offset + size, orig_offset = offset;
2362 	int err = -1;
2363 
2364 	while (offset < limit) {
2365 		ssize_t len;
2366 
2367 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2368 			goto out;
2369 
2370 		if (header->needs_swap)
2371 			perf_event_header__bswap(&bev.header);
2372 
2373 		len = bev.header.size - sizeof(bev);
2374 		if (readn(input, filename, len) != len)
2375 			goto out;
2376 		/*
2377 		 * The a1645ce1 changeset:
2378 		 *
2379 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2380 		 *
2381 		 * Added a field to struct perf_record_header_build_id that broke the file
2382 		 * format.
2383 		 *
2384 		 * Since the kernel build-id is the first entry, process the
2385 		 * table using the old format if the well known
2386 		 * '[kernel.kallsyms]' string for the kernel build-id has the
2387 		 * first 4 characters chopped off (where the pid_t sits).
2388 		 */
2389 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2390 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2391 				return -1;
2392 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2393 		}
2394 
2395 		__event_process_build_id(&bev, filename, session);
2396 
2397 		offset += bev.header.size;
2398 	}
2399 	err = 0;
2400 out:
2401 	return err;
2402 }
2403 
2404 /* Macro for features that simply need to read and store a string. */
2405 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2406 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2407 {\
2408 	free(ff->ph->env.__feat_env);		     \
2409 	ff->ph->env.__feat_env = do_read_string(ff); \
2410 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2411 }
2412 
2413 FEAT_PROCESS_STR_FUN(hostname, hostname);
2414 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2415 FEAT_PROCESS_STR_FUN(version, version);
2416 FEAT_PROCESS_STR_FUN(arch, arch);
2417 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2418 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2419 
2420 #ifdef HAVE_LIBTRACEEVENT
2421 static int process_tracing_data(struct feat_fd *ff, void *data)
2422 {
2423 	ssize_t ret = trace_report(ff->fd, data, false);
2424 
2425 	return ret < 0 ? -1 : 0;
2426 }
2427 #endif
2428 
2429 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2430 {
2431 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2432 		pr_debug("Failed to read buildids, continuing...\n");
2433 	return 0;
2434 }
2435 
2436 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2437 {
2438 	int ret;
2439 	u32 nr_cpus_avail, nr_cpus_online;
2440 
2441 	ret = do_read_u32(ff, &nr_cpus_avail);
2442 	if (ret)
2443 		return ret;
2444 
2445 	ret = do_read_u32(ff, &nr_cpus_online);
2446 	if (ret)
2447 		return ret;
2448 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2449 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2450 	return 0;
2451 }
2452 
2453 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2454 {
2455 	u64 total_mem;
2456 	int ret;
2457 
2458 	ret = do_read_u64(ff, &total_mem);
2459 	if (ret)
2460 		return -1;
2461 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2462 	return 0;
2463 }
2464 
2465 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2466 {
2467 	struct evsel *evsel;
2468 
2469 	evlist__for_each_entry(evlist, evsel) {
2470 		if (evsel->core.idx == idx)
2471 			return evsel;
2472 	}
2473 
2474 	return NULL;
2475 }
2476 
2477 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2478 {
2479 	struct evsel *evsel;
2480 
2481 	if (!event->name)
2482 		return;
2483 
2484 	evsel = evlist__find_by_index(evlist, event->core.idx);
2485 	if (!evsel)
2486 		return;
2487 
2488 	if (evsel->name)
2489 		return;
2490 
2491 	evsel->name = strdup(event->name);
2492 }
2493 
2494 static int
2495 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2496 {
2497 	struct perf_session *session;
2498 	struct evsel *evsel, *events = read_event_desc(ff);
2499 
2500 	if (!events)
2501 		return 0;
2502 
2503 	session = container_of(ff->ph, struct perf_session, header);
2504 
2505 	if (session->data->is_pipe) {
2506 		/* Save events for reading later by print_event_desc,
2507 		 * since they can't be read again in pipe mode. */
2508 		ff->events = events;
2509 	}
2510 
2511 	for (evsel = events; evsel->core.attr.size; evsel++)
2512 		evlist__set_event_name(session->evlist, evsel);
2513 
2514 	if (!session->data->is_pipe)
2515 		free_event_desc(events);
2516 
2517 	return 0;
2518 }
2519 
2520 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2521 {
2522 	char *str, *cmdline = NULL, **argv = NULL;
2523 	u32 nr, i, len = 0;
2524 
2525 	if (do_read_u32(ff, &nr))
2526 		return -1;
2527 
2528 	ff->ph->env.nr_cmdline = nr;
2529 
2530 	cmdline = zalloc(ff->size + nr + 1);
2531 	if (!cmdline)
2532 		return -1;
2533 
2534 	argv = zalloc(sizeof(char *) * (nr + 1));
2535 	if (!argv)
2536 		goto error;
2537 
2538 	for (i = 0; i < nr; i++) {
2539 		str = do_read_string(ff);
2540 		if (!str)
2541 			goto error;
2542 
2543 		argv[i] = cmdline + len;
2544 		memcpy(argv[i], str, strlen(str) + 1);
2545 		len += strlen(str) + 1;
2546 		free(str);
2547 	}
2548 	ff->ph->env.cmdline = cmdline;
2549 	ff->ph->env.cmdline_argv = (const char **) argv;
2550 	return 0;
2551 
2552 error:
2553 	free(argv);
2554 	free(cmdline);
2555 	return -1;
2556 }
2557 
2558 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2559 {
2560 	u32 nr, i;
2561 	char *str;
2562 	struct strbuf sb;
2563 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2564 	u64 size = 0;
2565 	struct perf_header *ph = ff->ph;
2566 	bool do_core_id_test = true;
2567 
2568 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2569 	if (!ph->env.cpu)
2570 		return -1;
2571 
2572 	if (do_read_u32(ff, &nr))
2573 		goto free_cpu;
2574 
2575 	ph->env.nr_sibling_cores = nr;
2576 	size += sizeof(u32);
2577 	if (strbuf_init(&sb, 128) < 0)
2578 		goto free_cpu;
2579 
2580 	for (i = 0; i < nr; i++) {
2581 		str = do_read_string(ff);
2582 		if (!str)
2583 			goto error;
2584 
2585 		/* include a NULL character at the end */
2586 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2587 			goto error;
2588 		size += string_size(str);
2589 		free(str);
2590 	}
2591 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2592 
2593 	if (do_read_u32(ff, &nr))
2594 		return -1;
2595 
2596 	ph->env.nr_sibling_threads = nr;
2597 	size += sizeof(u32);
2598 
2599 	for (i = 0; i < nr; i++) {
2600 		str = do_read_string(ff);
2601 		if (!str)
2602 			goto error;
2603 
2604 		/* include a NULL character at the end */
2605 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2606 			goto error;
2607 		size += string_size(str);
2608 		free(str);
2609 	}
2610 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2611 
2612 	/*
2613 	 * The header may be from old perf,
2614 	 * which doesn't include core id and socket id information.
2615 	 */
2616 	if (ff->size <= size) {
2617 		zfree(&ph->env.cpu);
2618 		return 0;
2619 	}
2620 
2621 	/* On s390 the socket_id number is not related to the numbers of cpus.
2622 	 * The socket_id number might be higher than the numbers of cpus.
2623 	 * This depends on the configuration.
2624 	 * AArch64 is the same.
2625 	 */
2626 	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2627 			  || !strncmp(ph->env.arch, "aarch64", 7)))
2628 		do_core_id_test = false;
2629 
2630 	for (i = 0; i < (u32)cpu_nr; i++) {
2631 		if (do_read_u32(ff, &nr))
2632 			goto free_cpu;
2633 
2634 		ph->env.cpu[i].core_id = nr;
2635 		size += sizeof(u32);
2636 
2637 		if (do_read_u32(ff, &nr))
2638 			goto free_cpu;
2639 
2640 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2641 			pr_debug("socket_id number is too big."
2642 				 "You may need to upgrade the perf tool.\n");
2643 			goto free_cpu;
2644 		}
2645 
2646 		ph->env.cpu[i].socket_id = nr;
2647 		size += sizeof(u32);
2648 	}
2649 
2650 	/*
2651 	 * The header may be from old perf,
2652 	 * which doesn't include die information.
2653 	 */
2654 	if (ff->size <= size)
2655 		return 0;
2656 
2657 	if (do_read_u32(ff, &nr))
2658 		return -1;
2659 
2660 	ph->env.nr_sibling_dies = nr;
2661 	size += sizeof(u32);
2662 
2663 	for (i = 0; i < nr; i++) {
2664 		str = do_read_string(ff);
2665 		if (!str)
2666 			goto error;
2667 
2668 		/* include a NULL character at the end */
2669 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2670 			goto error;
2671 		size += string_size(str);
2672 		free(str);
2673 	}
2674 	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2675 
2676 	for (i = 0; i < (u32)cpu_nr; i++) {
2677 		if (do_read_u32(ff, &nr))
2678 			goto free_cpu;
2679 
2680 		ph->env.cpu[i].die_id = nr;
2681 	}
2682 
2683 	return 0;
2684 
2685 error:
2686 	strbuf_release(&sb);
2687 free_cpu:
2688 	zfree(&ph->env.cpu);
2689 	return -1;
2690 }
2691 
2692 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2693 {
2694 	struct numa_node *nodes, *n;
2695 	u32 nr, i;
2696 	char *str;
2697 
2698 	/* nr nodes */
2699 	if (do_read_u32(ff, &nr))
2700 		return -1;
2701 
2702 	nodes = zalloc(sizeof(*nodes) * nr);
2703 	if (!nodes)
2704 		return -ENOMEM;
2705 
2706 	for (i = 0; i < nr; i++) {
2707 		n = &nodes[i];
2708 
2709 		/* node number */
2710 		if (do_read_u32(ff, &n->node))
2711 			goto error;
2712 
2713 		if (do_read_u64(ff, &n->mem_total))
2714 			goto error;
2715 
2716 		if (do_read_u64(ff, &n->mem_free))
2717 			goto error;
2718 
2719 		str = do_read_string(ff);
2720 		if (!str)
2721 			goto error;
2722 
2723 		n->map = perf_cpu_map__new(str);
2724 		if (!n->map)
2725 			goto error;
2726 
2727 		free(str);
2728 	}
2729 	ff->ph->env.nr_numa_nodes = nr;
2730 	ff->ph->env.numa_nodes = nodes;
2731 	return 0;
2732 
2733 error:
2734 	free(nodes);
2735 	return -1;
2736 }
2737 
2738 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2739 {
2740 	char *name;
2741 	u32 pmu_num;
2742 	u32 type;
2743 	struct strbuf sb;
2744 
2745 	if (do_read_u32(ff, &pmu_num))
2746 		return -1;
2747 
2748 	if (!pmu_num) {
2749 		pr_debug("pmu mappings not available\n");
2750 		return 0;
2751 	}
2752 
2753 	ff->ph->env.nr_pmu_mappings = pmu_num;
2754 	if (strbuf_init(&sb, 128) < 0)
2755 		return -1;
2756 
2757 	while (pmu_num) {
2758 		if (do_read_u32(ff, &type))
2759 			goto error;
2760 
2761 		name = do_read_string(ff);
2762 		if (!name)
2763 			goto error;
2764 
2765 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2766 			goto error;
2767 		/* include a NULL character at the end */
2768 		if (strbuf_add(&sb, "", 1) < 0)
2769 			goto error;
2770 
2771 		if (!strcmp(name, "msr"))
2772 			ff->ph->env.msr_pmu_type = type;
2773 
2774 		free(name);
2775 		pmu_num--;
2776 	}
2777 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2778 	return 0;
2779 
2780 error:
2781 	strbuf_release(&sb);
2782 	return -1;
2783 }
2784 
2785 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2786 {
2787 	size_t ret = -1;
2788 	u32 i, nr, nr_groups;
2789 	struct perf_session *session;
2790 	struct evsel *evsel, *leader = NULL;
2791 	struct group_desc {
2792 		char *name;
2793 		u32 leader_idx;
2794 		u32 nr_members;
2795 	} *desc;
2796 
2797 	if (do_read_u32(ff, &nr_groups))
2798 		return -1;
2799 
2800 	ff->ph->env.nr_groups = nr_groups;
2801 	if (!nr_groups) {
2802 		pr_debug("group desc not available\n");
2803 		return 0;
2804 	}
2805 
2806 	desc = calloc(nr_groups, sizeof(*desc));
2807 	if (!desc)
2808 		return -1;
2809 
2810 	for (i = 0; i < nr_groups; i++) {
2811 		desc[i].name = do_read_string(ff);
2812 		if (!desc[i].name)
2813 			goto out_free;
2814 
2815 		if (do_read_u32(ff, &desc[i].leader_idx))
2816 			goto out_free;
2817 
2818 		if (do_read_u32(ff, &desc[i].nr_members))
2819 			goto out_free;
2820 	}
2821 
2822 	/*
2823 	 * Rebuild group relationship based on the group_desc
2824 	 */
2825 	session = container_of(ff->ph, struct perf_session, header);
2826 
2827 	i = nr = 0;
2828 	evlist__for_each_entry(session->evlist, evsel) {
2829 		if (evsel->core.idx == (int) desc[i].leader_idx) {
2830 			evsel__set_leader(evsel, evsel);
2831 			/* {anon_group} is a dummy name */
2832 			if (strcmp(desc[i].name, "{anon_group}")) {
2833 				evsel->group_name = desc[i].name;
2834 				desc[i].name = NULL;
2835 			}
2836 			evsel->core.nr_members = desc[i].nr_members;
2837 
2838 			if (i >= nr_groups || nr > 0) {
2839 				pr_debug("invalid group desc\n");
2840 				goto out_free;
2841 			}
2842 
2843 			leader = evsel;
2844 			nr = evsel->core.nr_members - 1;
2845 			i++;
2846 		} else if (nr) {
2847 			/* This is a group member */
2848 			evsel__set_leader(evsel, leader);
2849 
2850 			nr--;
2851 		}
2852 	}
2853 
2854 	if (i != nr_groups || nr != 0) {
2855 		pr_debug("invalid group desc\n");
2856 		goto out_free;
2857 	}
2858 
2859 	ret = 0;
2860 out_free:
2861 	for (i = 0; i < nr_groups; i++)
2862 		zfree(&desc[i].name);
2863 	free(desc);
2864 
2865 	return ret;
2866 }
2867 
2868 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2869 {
2870 	struct perf_session *session;
2871 	int err;
2872 
2873 	session = container_of(ff->ph, struct perf_session, header);
2874 
2875 	err = auxtrace_index__process(ff->fd, ff->size, session,
2876 				      ff->ph->needs_swap);
2877 	if (err < 0)
2878 		pr_err("Failed to process auxtrace index\n");
2879 	return err;
2880 }
2881 
2882 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2883 {
2884 	struct cpu_cache_level *caches;
2885 	u32 cnt, i, version;
2886 
2887 	if (do_read_u32(ff, &version))
2888 		return -1;
2889 
2890 	if (version != 1)
2891 		return -1;
2892 
2893 	if (do_read_u32(ff, &cnt))
2894 		return -1;
2895 
2896 	caches = zalloc(sizeof(*caches) * cnt);
2897 	if (!caches)
2898 		return -1;
2899 
2900 	for (i = 0; i < cnt; i++) {
2901 		struct cpu_cache_level c;
2902 
2903 		#define _R(v)						\
2904 			if (do_read_u32(ff, &c.v))\
2905 				goto out_free_caches;			\
2906 
2907 		_R(level)
2908 		_R(line_size)
2909 		_R(sets)
2910 		_R(ways)
2911 		#undef _R
2912 
2913 		#define _R(v)					\
2914 			c.v = do_read_string(ff);		\
2915 			if (!c.v)				\
2916 				goto out_free_caches;
2917 
2918 		_R(type)
2919 		_R(size)
2920 		_R(map)
2921 		#undef _R
2922 
2923 		caches[i] = c;
2924 	}
2925 
2926 	ff->ph->env.caches = caches;
2927 	ff->ph->env.caches_cnt = cnt;
2928 	return 0;
2929 out_free_caches:
2930 	free(caches);
2931 	return -1;
2932 }
2933 
2934 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2935 {
2936 	struct perf_session *session;
2937 	u64 first_sample_time, last_sample_time;
2938 	int ret;
2939 
2940 	session = container_of(ff->ph, struct perf_session, header);
2941 
2942 	ret = do_read_u64(ff, &first_sample_time);
2943 	if (ret)
2944 		return -1;
2945 
2946 	ret = do_read_u64(ff, &last_sample_time);
2947 	if (ret)
2948 		return -1;
2949 
2950 	session->evlist->first_sample_time = first_sample_time;
2951 	session->evlist->last_sample_time = last_sample_time;
2952 	return 0;
2953 }
2954 
2955 static int process_mem_topology(struct feat_fd *ff,
2956 				void *data __maybe_unused)
2957 {
2958 	struct memory_node *nodes;
2959 	u64 version, i, nr, bsize;
2960 	int ret = -1;
2961 
2962 	if (do_read_u64(ff, &version))
2963 		return -1;
2964 
2965 	if (version != 1)
2966 		return -1;
2967 
2968 	if (do_read_u64(ff, &bsize))
2969 		return -1;
2970 
2971 	if (do_read_u64(ff, &nr))
2972 		return -1;
2973 
2974 	nodes = zalloc(sizeof(*nodes) * nr);
2975 	if (!nodes)
2976 		return -1;
2977 
2978 	for (i = 0; i < nr; i++) {
2979 		struct memory_node n;
2980 
2981 		#define _R(v)				\
2982 			if (do_read_u64(ff, &n.v))	\
2983 				goto out;		\
2984 
2985 		_R(node)
2986 		_R(size)
2987 
2988 		#undef _R
2989 
2990 		if (do_read_bitmap(ff, &n.set, &n.size))
2991 			goto out;
2992 
2993 		nodes[i] = n;
2994 	}
2995 
2996 	ff->ph->env.memory_bsize    = bsize;
2997 	ff->ph->env.memory_nodes    = nodes;
2998 	ff->ph->env.nr_memory_nodes = nr;
2999 	ret = 0;
3000 
3001 out:
3002 	if (ret)
3003 		free(nodes);
3004 	return ret;
3005 }
3006 
3007 static int process_clockid(struct feat_fd *ff,
3008 			   void *data __maybe_unused)
3009 {
3010 	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
3011 		return -1;
3012 
3013 	return 0;
3014 }
3015 
3016 static int process_clock_data(struct feat_fd *ff,
3017 			      void *_data __maybe_unused)
3018 {
3019 	u32 data32;
3020 	u64 data64;
3021 
3022 	/* version */
3023 	if (do_read_u32(ff, &data32))
3024 		return -1;
3025 
3026 	if (data32 != 1)
3027 		return -1;
3028 
3029 	/* clockid */
3030 	if (do_read_u32(ff, &data32))
3031 		return -1;
3032 
3033 	ff->ph->env.clock.clockid = data32;
3034 
3035 	/* TOD ref time */
3036 	if (do_read_u64(ff, &data64))
3037 		return -1;
3038 
3039 	ff->ph->env.clock.tod_ns = data64;
3040 
3041 	/* clockid ref time */
3042 	if (do_read_u64(ff, &data64))
3043 		return -1;
3044 
3045 	ff->ph->env.clock.clockid_ns = data64;
3046 	ff->ph->env.clock.enabled = true;
3047 	return 0;
3048 }
3049 
3050 static int process_hybrid_topology(struct feat_fd *ff,
3051 				   void *data __maybe_unused)
3052 {
3053 	struct hybrid_node *nodes, *n;
3054 	u32 nr, i;
3055 
3056 	/* nr nodes */
3057 	if (do_read_u32(ff, &nr))
3058 		return -1;
3059 
3060 	nodes = zalloc(sizeof(*nodes) * nr);
3061 	if (!nodes)
3062 		return -ENOMEM;
3063 
3064 	for (i = 0; i < nr; i++) {
3065 		n = &nodes[i];
3066 
3067 		n->pmu_name = do_read_string(ff);
3068 		if (!n->pmu_name)
3069 			goto error;
3070 
3071 		n->cpus = do_read_string(ff);
3072 		if (!n->cpus)
3073 			goto error;
3074 	}
3075 
3076 	ff->ph->env.nr_hybrid_nodes = nr;
3077 	ff->ph->env.hybrid_nodes = nodes;
3078 	return 0;
3079 
3080 error:
3081 	for (i = 0; i < nr; i++) {
3082 		free(nodes[i].pmu_name);
3083 		free(nodes[i].cpus);
3084 	}
3085 
3086 	free(nodes);
3087 	return -1;
3088 }
3089 
3090 static int process_dir_format(struct feat_fd *ff,
3091 			      void *_data __maybe_unused)
3092 {
3093 	struct perf_session *session;
3094 	struct perf_data *data;
3095 
3096 	session = container_of(ff->ph, struct perf_session, header);
3097 	data = session->data;
3098 
3099 	if (WARN_ON(!perf_data__is_dir(data)))
3100 		return -1;
3101 
3102 	return do_read_u64(ff, &data->dir.version);
3103 }
3104 
3105 #ifdef HAVE_LIBBPF_SUPPORT
3106 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3107 {
3108 	struct bpf_prog_info_node *info_node;
3109 	struct perf_env *env = &ff->ph->env;
3110 	struct perf_bpil *info_linear;
3111 	u32 count, i;
3112 	int err = -1;
3113 
3114 	if (ff->ph->needs_swap) {
3115 		pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3116 		return 0;
3117 	}
3118 
3119 	if (do_read_u32(ff, &count))
3120 		return -1;
3121 
3122 	down_write(&env->bpf_progs.lock);
3123 
3124 	for (i = 0; i < count; ++i) {
3125 		u32 info_len, data_len;
3126 
3127 		info_linear = NULL;
3128 		info_node = NULL;
3129 		if (do_read_u32(ff, &info_len))
3130 			goto out;
3131 		if (do_read_u32(ff, &data_len))
3132 			goto out;
3133 
3134 		if (info_len > sizeof(struct bpf_prog_info)) {
3135 			pr_warning("detected invalid bpf_prog_info\n");
3136 			goto out;
3137 		}
3138 
3139 		info_linear = malloc(sizeof(struct perf_bpil) +
3140 				     data_len);
3141 		if (!info_linear)
3142 			goto out;
3143 		info_linear->info_len = sizeof(struct bpf_prog_info);
3144 		info_linear->data_len = data_len;
3145 		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3146 			goto out;
3147 		if (__do_read(ff, &info_linear->info, info_len))
3148 			goto out;
3149 		if (info_len < sizeof(struct bpf_prog_info))
3150 			memset(((void *)(&info_linear->info)) + info_len, 0,
3151 			       sizeof(struct bpf_prog_info) - info_len);
3152 
3153 		if (__do_read(ff, info_linear->data, data_len))
3154 			goto out;
3155 
3156 		info_node = malloc(sizeof(struct bpf_prog_info_node));
3157 		if (!info_node)
3158 			goto out;
3159 
3160 		/* after reading from file, translate offset to address */
3161 		bpil_offs_to_addr(info_linear);
3162 		info_node->info_linear = info_linear;
3163 		perf_env__insert_bpf_prog_info(env, info_node);
3164 	}
3165 
3166 	up_write(&env->bpf_progs.lock);
3167 	return 0;
3168 out:
3169 	free(info_linear);
3170 	free(info_node);
3171 	up_write(&env->bpf_progs.lock);
3172 	return err;
3173 }
3174 
3175 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3176 {
3177 	struct perf_env *env = &ff->ph->env;
3178 	struct btf_node *node = NULL;
3179 	u32 count, i;
3180 	int err = -1;
3181 
3182 	if (ff->ph->needs_swap) {
3183 		pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3184 		return 0;
3185 	}
3186 
3187 	if (do_read_u32(ff, &count))
3188 		return -1;
3189 
3190 	down_write(&env->bpf_progs.lock);
3191 
3192 	for (i = 0; i < count; ++i) {
3193 		u32 id, data_size;
3194 
3195 		if (do_read_u32(ff, &id))
3196 			goto out;
3197 		if (do_read_u32(ff, &data_size))
3198 			goto out;
3199 
3200 		node = malloc(sizeof(struct btf_node) + data_size);
3201 		if (!node)
3202 			goto out;
3203 
3204 		node->id = id;
3205 		node->data_size = data_size;
3206 
3207 		if (__do_read(ff, node->data, data_size))
3208 			goto out;
3209 
3210 		perf_env__insert_btf(env, node);
3211 		node = NULL;
3212 	}
3213 
3214 	err = 0;
3215 out:
3216 	up_write(&env->bpf_progs.lock);
3217 	free(node);
3218 	return err;
3219 }
3220 #endif // HAVE_LIBBPF_SUPPORT
3221 
3222 static int process_compressed(struct feat_fd *ff,
3223 			      void *data __maybe_unused)
3224 {
3225 	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3226 		return -1;
3227 
3228 	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3229 		return -1;
3230 
3231 	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3232 		return -1;
3233 
3234 	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3235 		return -1;
3236 
3237 	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3238 		return -1;
3239 
3240 	return 0;
3241 }
3242 
3243 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3244 			      char ***caps, unsigned int *max_branches)
3245 {
3246 	char *name, *value, *ptr;
3247 	u32 nr_pmu_caps, i;
3248 
3249 	*nr_caps = 0;
3250 	*caps = NULL;
3251 
3252 	if (do_read_u32(ff, &nr_pmu_caps))
3253 		return -1;
3254 
3255 	if (!nr_pmu_caps)
3256 		return 0;
3257 
3258 	*caps = zalloc(sizeof(char *) * nr_pmu_caps);
3259 	if (!*caps)
3260 		return -1;
3261 
3262 	for (i = 0; i < nr_pmu_caps; i++) {
3263 		name = do_read_string(ff);
3264 		if (!name)
3265 			goto error;
3266 
3267 		value = do_read_string(ff);
3268 		if (!value)
3269 			goto free_name;
3270 
3271 		if (asprintf(&ptr, "%s=%s", name, value) < 0)
3272 			goto free_value;
3273 
3274 		(*caps)[i] = ptr;
3275 
3276 		if (!strcmp(name, "branches"))
3277 			*max_branches = atoi(value);
3278 
3279 		free(value);
3280 		free(name);
3281 	}
3282 	*nr_caps = nr_pmu_caps;
3283 	return 0;
3284 
3285 free_value:
3286 	free(value);
3287 free_name:
3288 	free(name);
3289 error:
3290 	for (; i > 0; i--)
3291 		free((*caps)[i - 1]);
3292 	free(*caps);
3293 	*caps = NULL;
3294 	*nr_caps = 0;
3295 	return -1;
3296 }
3297 
3298 static int process_cpu_pmu_caps(struct feat_fd *ff,
3299 				void *data __maybe_unused)
3300 {
3301 	int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3302 				     &ff->ph->env.cpu_pmu_caps,
3303 				     &ff->ph->env.max_branches);
3304 
3305 	if (!ret && !ff->ph->env.cpu_pmu_caps)
3306 		pr_debug("cpu pmu capabilities not available\n");
3307 	return ret;
3308 }
3309 
3310 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3311 {
3312 	struct pmu_caps *pmu_caps;
3313 	u32 nr_pmu, i;
3314 	int ret;
3315 	int j;
3316 
3317 	if (do_read_u32(ff, &nr_pmu))
3318 		return -1;
3319 
3320 	if (!nr_pmu) {
3321 		pr_debug("pmu capabilities not available\n");
3322 		return 0;
3323 	}
3324 
3325 	pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3326 	if (!pmu_caps)
3327 		return -ENOMEM;
3328 
3329 	for (i = 0; i < nr_pmu; i++) {
3330 		ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3331 					 &pmu_caps[i].caps,
3332 					 &pmu_caps[i].max_branches);
3333 		if (ret)
3334 			goto err;
3335 
3336 		pmu_caps[i].pmu_name = do_read_string(ff);
3337 		if (!pmu_caps[i].pmu_name) {
3338 			ret = -1;
3339 			goto err;
3340 		}
3341 		if (!pmu_caps[i].nr_caps) {
3342 			pr_debug("%s pmu capabilities not available\n",
3343 				 pmu_caps[i].pmu_name);
3344 		}
3345 	}
3346 
3347 	ff->ph->env.nr_pmus_with_caps = nr_pmu;
3348 	ff->ph->env.pmu_caps = pmu_caps;
3349 	return 0;
3350 
3351 err:
3352 	for (i = 0; i < nr_pmu; i++) {
3353 		for (j = 0; j < pmu_caps[i].nr_caps; j++)
3354 			free(pmu_caps[i].caps[j]);
3355 		free(pmu_caps[i].caps);
3356 		free(pmu_caps[i].pmu_name);
3357 	}
3358 
3359 	free(pmu_caps);
3360 	return ret;
3361 }
3362 
3363 #define FEAT_OPR(n, func, __full_only) \
3364 	[HEADER_##n] = {					\
3365 		.name	    = __stringify(n),			\
3366 		.write	    = write_##func,			\
3367 		.print	    = print_##func,			\
3368 		.full_only  = __full_only,			\
3369 		.process    = process_##func,			\
3370 		.synthesize = true				\
3371 	}
3372 
3373 #define FEAT_OPN(n, func, __full_only) \
3374 	[HEADER_##n] = {					\
3375 		.name	    = __stringify(n),			\
3376 		.write	    = write_##func,			\
3377 		.print	    = print_##func,			\
3378 		.full_only  = __full_only,			\
3379 		.process    = process_##func			\
3380 	}
3381 
3382 /* feature_ops not implemented: */
3383 #define print_tracing_data	NULL
3384 #define print_build_id		NULL
3385 
3386 #define process_branch_stack	NULL
3387 #define process_stat		NULL
3388 
3389 // Only used in util/synthetic-events.c
3390 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3391 
3392 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3393 #ifdef HAVE_LIBTRACEEVENT
3394 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
3395 #endif
3396 	FEAT_OPN(BUILD_ID,	build_id,	false),
3397 	FEAT_OPR(HOSTNAME,	hostname,	false),
3398 	FEAT_OPR(OSRELEASE,	osrelease,	false),
3399 	FEAT_OPR(VERSION,	version,	false),
3400 	FEAT_OPR(ARCH,		arch,		false),
3401 	FEAT_OPR(NRCPUS,	nrcpus,		false),
3402 	FEAT_OPR(CPUDESC,	cpudesc,	false),
3403 	FEAT_OPR(CPUID,		cpuid,		false),
3404 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
3405 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
3406 	FEAT_OPR(CMDLINE,	cmdline,	false),
3407 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
3408 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
3409 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
3410 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3411 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3412 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
3413 	FEAT_OPN(STAT,		stat,		false),
3414 	FEAT_OPN(CACHE,		cache,		true),
3415 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3416 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3417 	FEAT_OPR(CLOCKID,	clockid,	false),
3418 	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3419 #ifdef HAVE_LIBBPF_SUPPORT
3420 	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3421 	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3422 #endif
3423 	FEAT_OPR(COMPRESSED,	compressed,	false),
3424 	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3425 	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3426 	FEAT_OPN(HYBRID_TOPOLOGY,	hybrid_topology,	true),
3427 	FEAT_OPR(PMU_CAPS,	pmu_caps,	false),
3428 };
3429 
3430 struct header_print_data {
3431 	FILE *fp;
3432 	bool full; /* extended list of headers */
3433 };
3434 
3435 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3436 					   struct perf_header *ph,
3437 					   int feat, int fd, void *data)
3438 {
3439 	struct header_print_data *hd = data;
3440 	struct feat_fd ff;
3441 
3442 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3443 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3444 				"%d, continuing...\n", section->offset, feat);
3445 		return 0;
3446 	}
3447 	if (feat >= HEADER_LAST_FEATURE) {
3448 		pr_warning("unknown feature %d\n", feat);
3449 		return 0;
3450 	}
3451 	if (!feat_ops[feat].print)
3452 		return 0;
3453 
3454 	ff = (struct  feat_fd) {
3455 		.fd = fd,
3456 		.ph = ph,
3457 	};
3458 
3459 	if (!feat_ops[feat].full_only || hd->full)
3460 		feat_ops[feat].print(&ff, hd->fp);
3461 	else
3462 		fprintf(hd->fp, "# %s info available, use -I to display\n",
3463 			feat_ops[feat].name);
3464 
3465 	return 0;
3466 }
3467 
3468 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3469 {
3470 	struct header_print_data hd;
3471 	struct perf_header *header = &session->header;
3472 	int fd = perf_data__fd(session->data);
3473 	struct stat st;
3474 	time_t stctime;
3475 	int ret, bit;
3476 
3477 	hd.fp = fp;
3478 	hd.full = full;
3479 
3480 	ret = fstat(fd, &st);
3481 	if (ret == -1)
3482 		return -1;
3483 
3484 	stctime = st.st_mtime;
3485 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3486 
3487 	fprintf(fp, "# header version : %u\n", header->version);
3488 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3489 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3490 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3491 
3492 	perf_header__process_sections(header, fd, &hd,
3493 				      perf_file_section__fprintf_info);
3494 
3495 	if (session->data->is_pipe)
3496 		return 0;
3497 
3498 	fprintf(fp, "# missing features: ");
3499 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3500 		if (bit)
3501 			fprintf(fp, "%s ", feat_ops[bit].name);
3502 	}
3503 
3504 	fprintf(fp, "\n");
3505 	return 0;
3506 }
3507 
3508 struct header_fw {
3509 	struct feat_writer	fw;
3510 	struct feat_fd		*ff;
3511 };
3512 
3513 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3514 {
3515 	struct header_fw *h = container_of(fw, struct header_fw, fw);
3516 
3517 	return do_write(h->ff, buf, sz);
3518 }
3519 
3520 static int do_write_feat(struct feat_fd *ff, int type,
3521 			 struct perf_file_section **p,
3522 			 struct evlist *evlist,
3523 			 struct feat_copier *fc)
3524 {
3525 	int err;
3526 	int ret = 0;
3527 
3528 	if (perf_header__has_feat(ff->ph, type)) {
3529 		if (!feat_ops[type].write)
3530 			return -1;
3531 
3532 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3533 			return -1;
3534 
3535 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3536 
3537 		/*
3538 		 * Hook to let perf inject copy features sections from the input
3539 		 * file.
3540 		 */
3541 		if (fc && fc->copy) {
3542 			struct header_fw h = {
3543 				.fw.write = feat_writer_cb,
3544 				.ff = ff,
3545 			};
3546 
3547 			/* ->copy() returns 0 if the feature was not copied */
3548 			err = fc->copy(fc, type, &h.fw);
3549 		} else {
3550 			err = 0;
3551 		}
3552 		if (!err)
3553 			err = feat_ops[type].write(ff, evlist);
3554 		if (err < 0) {
3555 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3556 
3557 			/* undo anything written */
3558 			lseek(ff->fd, (*p)->offset, SEEK_SET);
3559 
3560 			return -1;
3561 		}
3562 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3563 		(*p)++;
3564 	}
3565 	return ret;
3566 }
3567 
3568 static int perf_header__adds_write(struct perf_header *header,
3569 				   struct evlist *evlist, int fd,
3570 				   struct feat_copier *fc)
3571 {
3572 	int nr_sections;
3573 	struct feat_fd ff;
3574 	struct perf_file_section *feat_sec, *p;
3575 	int sec_size;
3576 	u64 sec_start;
3577 	int feat;
3578 	int err;
3579 
3580 	ff = (struct feat_fd){
3581 		.fd  = fd,
3582 		.ph = header,
3583 	};
3584 
3585 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3586 	if (!nr_sections)
3587 		return 0;
3588 
3589 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3590 	if (feat_sec == NULL)
3591 		return -ENOMEM;
3592 
3593 	sec_size = sizeof(*feat_sec) * nr_sections;
3594 
3595 	sec_start = header->feat_offset;
3596 	lseek(fd, sec_start + sec_size, SEEK_SET);
3597 
3598 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3599 		if (do_write_feat(&ff, feat, &p, evlist, fc))
3600 			perf_header__clear_feat(header, feat);
3601 	}
3602 
3603 	lseek(fd, sec_start, SEEK_SET);
3604 	/*
3605 	 * may write more than needed due to dropped feature, but
3606 	 * this is okay, reader will skip the missing entries
3607 	 */
3608 	err = do_write(&ff, feat_sec, sec_size);
3609 	if (err < 0)
3610 		pr_debug("failed to write feature section\n");
3611 	free(feat_sec);
3612 	return err;
3613 }
3614 
3615 int perf_header__write_pipe(int fd)
3616 {
3617 	struct perf_pipe_file_header f_header;
3618 	struct feat_fd ff;
3619 	int err;
3620 
3621 	ff = (struct feat_fd){ .fd = fd };
3622 
3623 	f_header = (struct perf_pipe_file_header){
3624 		.magic	   = PERF_MAGIC,
3625 		.size	   = sizeof(f_header),
3626 	};
3627 
3628 	err = do_write(&ff, &f_header, sizeof(f_header));
3629 	if (err < 0) {
3630 		pr_debug("failed to write perf pipe header\n");
3631 		return err;
3632 	}
3633 
3634 	return 0;
3635 }
3636 
3637 static int perf_session__do_write_header(struct perf_session *session,
3638 					 struct evlist *evlist,
3639 					 int fd, bool at_exit,
3640 					 struct feat_copier *fc)
3641 {
3642 	struct perf_file_header f_header;
3643 	struct perf_file_attr   f_attr;
3644 	struct perf_header *header = &session->header;
3645 	struct evsel *evsel;
3646 	struct feat_fd ff;
3647 	u64 attr_offset;
3648 	int err;
3649 
3650 	ff = (struct feat_fd){ .fd = fd};
3651 	lseek(fd, sizeof(f_header), SEEK_SET);
3652 
3653 	evlist__for_each_entry(session->evlist, evsel) {
3654 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3655 		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3656 		if (err < 0) {
3657 			pr_debug("failed to write perf header\n");
3658 			return err;
3659 		}
3660 	}
3661 
3662 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3663 
3664 	evlist__for_each_entry(evlist, evsel) {
3665 		if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3666 			/*
3667 			 * We are likely in "perf inject" and have read
3668 			 * from an older file. Update attr size so that
3669 			 * reader gets the right offset to the ids.
3670 			 */
3671 			evsel->core.attr.size = sizeof(evsel->core.attr);
3672 		}
3673 		f_attr = (struct perf_file_attr){
3674 			.attr = evsel->core.attr,
3675 			.ids  = {
3676 				.offset = evsel->id_offset,
3677 				.size   = evsel->core.ids * sizeof(u64),
3678 			}
3679 		};
3680 		err = do_write(&ff, &f_attr, sizeof(f_attr));
3681 		if (err < 0) {
3682 			pr_debug("failed to write perf header attribute\n");
3683 			return err;
3684 		}
3685 	}
3686 
3687 	if (!header->data_offset)
3688 		header->data_offset = lseek(fd, 0, SEEK_CUR);
3689 	header->feat_offset = header->data_offset + header->data_size;
3690 
3691 	if (at_exit) {
3692 		err = perf_header__adds_write(header, evlist, fd, fc);
3693 		if (err < 0)
3694 			return err;
3695 	}
3696 
3697 	f_header = (struct perf_file_header){
3698 		.magic	   = PERF_MAGIC,
3699 		.size	   = sizeof(f_header),
3700 		.attr_size = sizeof(f_attr),
3701 		.attrs = {
3702 			.offset = attr_offset,
3703 			.size   = evlist->core.nr_entries * sizeof(f_attr),
3704 		},
3705 		.data = {
3706 			.offset = header->data_offset,
3707 			.size	= header->data_size,
3708 		},
3709 		/* event_types is ignored, store zeros */
3710 	};
3711 
3712 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3713 
3714 	lseek(fd, 0, SEEK_SET);
3715 	err = do_write(&ff, &f_header, sizeof(f_header));
3716 	if (err < 0) {
3717 		pr_debug("failed to write perf header\n");
3718 		return err;
3719 	}
3720 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3721 
3722 	return 0;
3723 }
3724 
3725 int perf_session__write_header(struct perf_session *session,
3726 			       struct evlist *evlist,
3727 			       int fd, bool at_exit)
3728 {
3729 	return perf_session__do_write_header(session, evlist, fd, at_exit, NULL);
3730 }
3731 
3732 size_t perf_session__data_offset(const struct evlist *evlist)
3733 {
3734 	struct evsel *evsel;
3735 	size_t data_offset;
3736 
3737 	data_offset = sizeof(struct perf_file_header);
3738 	evlist__for_each_entry(evlist, evsel) {
3739 		data_offset += evsel->core.ids * sizeof(u64);
3740 	}
3741 	data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3742 
3743 	return data_offset;
3744 }
3745 
3746 int perf_session__inject_header(struct perf_session *session,
3747 				struct evlist *evlist,
3748 				int fd,
3749 				struct feat_copier *fc)
3750 {
3751 	return perf_session__do_write_header(session, evlist, fd, true, fc);
3752 }
3753 
3754 static int perf_header__getbuffer64(struct perf_header *header,
3755 				    int fd, void *buf, size_t size)
3756 {
3757 	if (readn(fd, buf, size) <= 0)
3758 		return -1;
3759 
3760 	if (header->needs_swap)
3761 		mem_bswap_64(buf, size);
3762 
3763 	return 0;
3764 }
3765 
3766 int perf_header__process_sections(struct perf_header *header, int fd,
3767 				  void *data,
3768 				  int (*process)(struct perf_file_section *section,
3769 						 struct perf_header *ph,
3770 						 int feat, int fd, void *data))
3771 {
3772 	struct perf_file_section *feat_sec, *sec;
3773 	int nr_sections;
3774 	int sec_size;
3775 	int feat;
3776 	int err;
3777 
3778 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3779 	if (!nr_sections)
3780 		return 0;
3781 
3782 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3783 	if (!feat_sec)
3784 		return -1;
3785 
3786 	sec_size = sizeof(*feat_sec) * nr_sections;
3787 
3788 	lseek(fd, header->feat_offset, SEEK_SET);
3789 
3790 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3791 	if (err < 0)
3792 		goto out_free;
3793 
3794 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3795 		err = process(sec++, header, feat, fd, data);
3796 		if (err < 0)
3797 			goto out_free;
3798 	}
3799 	err = 0;
3800 out_free:
3801 	free(feat_sec);
3802 	return err;
3803 }
3804 
3805 static const int attr_file_abi_sizes[] = {
3806 	[0] = PERF_ATTR_SIZE_VER0,
3807 	[1] = PERF_ATTR_SIZE_VER1,
3808 	[2] = PERF_ATTR_SIZE_VER2,
3809 	[3] = PERF_ATTR_SIZE_VER3,
3810 	[4] = PERF_ATTR_SIZE_VER4,
3811 	0,
3812 };
3813 
3814 /*
3815  * In the legacy file format, the magic number is not used to encode endianness.
3816  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3817  * on ABI revisions, we need to try all combinations for all endianness to
3818  * detect the endianness.
3819  */
3820 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3821 {
3822 	uint64_t ref_size, attr_size;
3823 	int i;
3824 
3825 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3826 		ref_size = attr_file_abi_sizes[i]
3827 			 + sizeof(struct perf_file_section);
3828 		if (hdr_sz != ref_size) {
3829 			attr_size = bswap_64(hdr_sz);
3830 			if (attr_size != ref_size)
3831 				continue;
3832 
3833 			ph->needs_swap = true;
3834 		}
3835 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3836 			 i,
3837 			 ph->needs_swap);
3838 		return 0;
3839 	}
3840 	/* could not determine endianness */
3841 	return -1;
3842 }
3843 
3844 #define PERF_PIPE_HDR_VER0	16
3845 
3846 static const size_t attr_pipe_abi_sizes[] = {
3847 	[0] = PERF_PIPE_HDR_VER0,
3848 	0,
3849 };
3850 
3851 /*
3852  * In the legacy pipe format, there is an implicit assumption that endianness
3853  * between host recording the samples, and host parsing the samples is the
3854  * same. This is not always the case given that the pipe output may always be
3855  * redirected into a file and analyzed on a different machine with possibly a
3856  * different endianness and perf_event ABI revisions in the perf tool itself.
3857  */
3858 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3859 {
3860 	u64 attr_size;
3861 	int i;
3862 
3863 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3864 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3865 			attr_size = bswap_64(hdr_sz);
3866 			if (attr_size != hdr_sz)
3867 				continue;
3868 
3869 			ph->needs_swap = true;
3870 		}
3871 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3872 		return 0;
3873 	}
3874 	return -1;
3875 }
3876 
3877 bool is_perf_magic(u64 magic)
3878 {
3879 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3880 		|| magic == __perf_magic2
3881 		|| magic == __perf_magic2_sw)
3882 		return true;
3883 
3884 	return false;
3885 }
3886 
3887 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3888 			      bool is_pipe, struct perf_header *ph)
3889 {
3890 	int ret;
3891 
3892 	/* check for legacy format */
3893 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3894 	if (ret == 0) {
3895 		ph->version = PERF_HEADER_VERSION_1;
3896 		pr_debug("legacy perf.data format\n");
3897 		if (is_pipe)
3898 			return try_all_pipe_abis(hdr_sz, ph);
3899 
3900 		return try_all_file_abis(hdr_sz, ph);
3901 	}
3902 	/*
3903 	 * the new magic number serves two purposes:
3904 	 * - unique number to identify actual perf.data files
3905 	 * - encode endianness of file
3906 	 */
3907 	ph->version = PERF_HEADER_VERSION_2;
3908 
3909 	/* check magic number with one endianness */
3910 	if (magic == __perf_magic2)
3911 		return 0;
3912 
3913 	/* check magic number with opposite endianness */
3914 	if (magic != __perf_magic2_sw)
3915 		return -1;
3916 
3917 	ph->needs_swap = true;
3918 
3919 	return 0;
3920 }
3921 
3922 int perf_file_header__read(struct perf_file_header *header,
3923 			   struct perf_header *ph, int fd)
3924 {
3925 	ssize_t ret;
3926 
3927 	lseek(fd, 0, SEEK_SET);
3928 
3929 	ret = readn(fd, header, sizeof(*header));
3930 	if (ret <= 0)
3931 		return -1;
3932 
3933 	if (check_magic_endian(header->magic,
3934 			       header->attr_size, false, ph) < 0) {
3935 		pr_debug("magic/endian check failed\n");
3936 		return -1;
3937 	}
3938 
3939 	if (ph->needs_swap) {
3940 		mem_bswap_64(header, offsetof(struct perf_file_header,
3941 			     adds_features));
3942 	}
3943 
3944 	if (header->size != sizeof(*header)) {
3945 		/* Support the previous format */
3946 		if (header->size == offsetof(typeof(*header), adds_features))
3947 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3948 		else
3949 			return -1;
3950 	} else if (ph->needs_swap) {
3951 		/*
3952 		 * feature bitmap is declared as an array of unsigned longs --
3953 		 * not good since its size can differ between the host that
3954 		 * generated the data file and the host analyzing the file.
3955 		 *
3956 		 * We need to handle endianness, but we don't know the size of
3957 		 * the unsigned long where the file was generated. Take a best
3958 		 * guess at determining it: try 64-bit swap first (ie., file
3959 		 * created on a 64-bit host), and check if the hostname feature
3960 		 * bit is set (this feature bit is forced on as of fbe96f2).
3961 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3962 		 * swap. If the hostname bit is still not set (e.g., older data
3963 		 * file), punt and fallback to the original behavior --
3964 		 * clearing all feature bits and setting buildid.
3965 		 */
3966 		mem_bswap_64(&header->adds_features,
3967 			    BITS_TO_U64(HEADER_FEAT_BITS));
3968 
3969 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3970 			/* unswap as u64 */
3971 			mem_bswap_64(&header->adds_features,
3972 				    BITS_TO_U64(HEADER_FEAT_BITS));
3973 
3974 			/* unswap as u32 */
3975 			mem_bswap_32(&header->adds_features,
3976 				    BITS_TO_U32(HEADER_FEAT_BITS));
3977 		}
3978 
3979 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3980 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3981 			__set_bit(HEADER_BUILD_ID, header->adds_features);
3982 		}
3983 	}
3984 
3985 	memcpy(&ph->adds_features, &header->adds_features,
3986 	       sizeof(ph->adds_features));
3987 
3988 	ph->data_offset  = header->data.offset;
3989 	ph->data_size	 = header->data.size;
3990 	ph->feat_offset  = header->data.offset + header->data.size;
3991 	return 0;
3992 }
3993 
3994 static int perf_file_section__process(struct perf_file_section *section,
3995 				      struct perf_header *ph,
3996 				      int feat, int fd, void *data)
3997 {
3998 	struct feat_fd fdd = {
3999 		.fd	= fd,
4000 		.ph	= ph,
4001 		.size	= section->size,
4002 		.offset	= section->offset,
4003 	};
4004 
4005 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
4006 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
4007 			  "%d, continuing...\n", section->offset, feat);
4008 		return 0;
4009 	}
4010 
4011 	if (feat >= HEADER_LAST_FEATURE) {
4012 		pr_debug("unknown feature %d, continuing...\n", feat);
4013 		return 0;
4014 	}
4015 
4016 	if (!feat_ops[feat].process)
4017 		return 0;
4018 
4019 	return feat_ops[feat].process(&fdd, data);
4020 }
4021 
4022 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
4023 				       struct perf_header *ph,
4024 				       struct perf_data* data,
4025 				       bool repipe, int repipe_fd)
4026 {
4027 	struct feat_fd ff = {
4028 		.fd = repipe_fd,
4029 		.ph = ph,
4030 	};
4031 	ssize_t ret;
4032 
4033 	ret = perf_data__read(data, header, sizeof(*header));
4034 	if (ret <= 0)
4035 		return -1;
4036 
4037 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4038 		pr_debug("endian/magic failed\n");
4039 		return -1;
4040 	}
4041 
4042 	if (ph->needs_swap)
4043 		header->size = bswap_64(header->size);
4044 
4045 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
4046 		return -1;
4047 
4048 	return 0;
4049 }
4050 
4051 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd)
4052 {
4053 	struct perf_header *header = &session->header;
4054 	struct perf_pipe_file_header f_header;
4055 
4056 	if (perf_file_header__read_pipe(&f_header, header, session->data,
4057 					session->repipe, repipe_fd) < 0) {
4058 		pr_debug("incompatible file format\n");
4059 		return -EINVAL;
4060 	}
4061 
4062 	return f_header.size == sizeof(f_header) ? 0 : -1;
4063 }
4064 
4065 static int read_attr(int fd, struct perf_header *ph,
4066 		     struct perf_file_attr *f_attr)
4067 {
4068 	struct perf_event_attr *attr = &f_attr->attr;
4069 	size_t sz, left;
4070 	size_t our_sz = sizeof(f_attr->attr);
4071 	ssize_t ret;
4072 
4073 	memset(f_attr, 0, sizeof(*f_attr));
4074 
4075 	/* read minimal guaranteed structure */
4076 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4077 	if (ret <= 0) {
4078 		pr_debug("cannot read %d bytes of header attr\n",
4079 			 PERF_ATTR_SIZE_VER0);
4080 		return -1;
4081 	}
4082 
4083 	/* on file perf_event_attr size */
4084 	sz = attr->size;
4085 
4086 	if (ph->needs_swap)
4087 		sz = bswap_32(sz);
4088 
4089 	if (sz == 0) {
4090 		/* assume ABI0 */
4091 		sz =  PERF_ATTR_SIZE_VER0;
4092 	} else if (sz > our_sz) {
4093 		pr_debug("file uses a more recent and unsupported ABI"
4094 			 " (%zu bytes extra)\n", sz - our_sz);
4095 		return -1;
4096 	}
4097 	/* what we have not yet read and that we know about */
4098 	left = sz - PERF_ATTR_SIZE_VER0;
4099 	if (left) {
4100 		void *ptr = attr;
4101 		ptr += PERF_ATTR_SIZE_VER0;
4102 
4103 		ret = readn(fd, ptr, left);
4104 	}
4105 	/* read perf_file_section, ids are read in caller */
4106 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4107 
4108 	return ret <= 0 ? -1 : 0;
4109 }
4110 
4111 #ifdef HAVE_LIBTRACEEVENT
4112 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4113 {
4114 	struct tep_event *event;
4115 	char bf[128];
4116 
4117 	/* already prepared */
4118 	if (evsel->tp_format)
4119 		return 0;
4120 
4121 	if (pevent == NULL) {
4122 		pr_debug("broken or missing trace data\n");
4123 		return -1;
4124 	}
4125 
4126 	event = tep_find_event(pevent, evsel->core.attr.config);
4127 	if (event == NULL) {
4128 		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4129 		return -1;
4130 	}
4131 
4132 	if (!evsel->name) {
4133 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4134 		evsel->name = strdup(bf);
4135 		if (evsel->name == NULL)
4136 			return -1;
4137 	}
4138 
4139 	evsel->tp_format = event;
4140 	return 0;
4141 }
4142 
4143 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4144 {
4145 	struct evsel *pos;
4146 
4147 	evlist__for_each_entry(evlist, pos) {
4148 		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4149 		    evsel__prepare_tracepoint_event(pos, pevent))
4150 			return -1;
4151 	}
4152 
4153 	return 0;
4154 }
4155 #endif
4156 
4157 int perf_session__read_header(struct perf_session *session, int repipe_fd)
4158 {
4159 	struct perf_data *data = session->data;
4160 	struct perf_header *header = &session->header;
4161 	struct perf_file_header	f_header;
4162 	struct perf_file_attr	f_attr;
4163 	u64			f_id;
4164 	int nr_attrs, nr_ids, i, j, err;
4165 	int fd = perf_data__fd(data);
4166 
4167 	session->evlist = evlist__new();
4168 	if (session->evlist == NULL)
4169 		return -ENOMEM;
4170 
4171 	session->evlist->env = &header->env;
4172 	session->machines.host.env = &header->env;
4173 
4174 	/*
4175 	 * We can read 'pipe' data event from regular file,
4176 	 * check for the pipe header regardless of source.
4177 	 */
4178 	err = perf_header__read_pipe(session, repipe_fd);
4179 	if (!err || perf_data__is_pipe(data)) {
4180 		data->is_pipe = true;
4181 		return err;
4182 	}
4183 
4184 	if (perf_file_header__read(&f_header, header, fd) < 0)
4185 		return -EINVAL;
4186 
4187 	if (header->needs_swap && data->in_place_update) {
4188 		pr_err("In-place update not supported when byte-swapping is required\n");
4189 		return -EINVAL;
4190 	}
4191 
4192 	/*
4193 	 * Sanity check that perf.data was written cleanly; data size is
4194 	 * initialized to 0 and updated only if the on_exit function is run.
4195 	 * If data size is still 0 then the file contains only partial
4196 	 * information.  Just warn user and process it as much as it can.
4197 	 */
4198 	if (f_header.data.size == 0) {
4199 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4200 			   "Was the 'perf record' command properly terminated?\n",
4201 			   data->file.path);
4202 	}
4203 
4204 	if (f_header.attr_size == 0) {
4205 		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4206 		       "Was the 'perf record' command properly terminated?\n",
4207 		       data->file.path);
4208 		return -EINVAL;
4209 	}
4210 
4211 	nr_attrs = f_header.attrs.size / f_header.attr_size;
4212 	lseek(fd, f_header.attrs.offset, SEEK_SET);
4213 
4214 	for (i = 0; i < nr_attrs; i++) {
4215 		struct evsel *evsel;
4216 		off_t tmp;
4217 
4218 		if (read_attr(fd, header, &f_attr) < 0)
4219 			goto out_errno;
4220 
4221 		if (header->needs_swap) {
4222 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
4223 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4224 			perf_event__attr_swap(&f_attr.attr);
4225 		}
4226 
4227 		tmp = lseek(fd, 0, SEEK_CUR);
4228 		evsel = evsel__new(&f_attr.attr);
4229 
4230 		if (evsel == NULL)
4231 			goto out_delete_evlist;
4232 
4233 		evsel->needs_swap = header->needs_swap;
4234 		/*
4235 		 * Do it before so that if perf_evsel__alloc_id fails, this
4236 		 * entry gets purged too at evlist__delete().
4237 		 */
4238 		evlist__add(session->evlist, evsel);
4239 
4240 		nr_ids = f_attr.ids.size / sizeof(u64);
4241 		/*
4242 		 * We don't have the cpu and thread maps on the header, so
4243 		 * for allocating the perf_sample_id table we fake 1 cpu and
4244 		 * hattr->ids threads.
4245 		 */
4246 		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4247 			goto out_delete_evlist;
4248 
4249 		lseek(fd, f_attr.ids.offset, SEEK_SET);
4250 
4251 		for (j = 0; j < nr_ids; j++) {
4252 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4253 				goto out_errno;
4254 
4255 			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4256 		}
4257 
4258 		lseek(fd, tmp, SEEK_SET);
4259 	}
4260 
4261 #ifdef HAVE_LIBTRACEEVENT
4262 	perf_header__process_sections(header, fd, &session->tevent,
4263 				      perf_file_section__process);
4264 
4265 	if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4266 		goto out_delete_evlist;
4267 #else
4268 	perf_header__process_sections(header, fd, NULL, perf_file_section__process);
4269 #endif
4270 
4271 	return 0;
4272 out_errno:
4273 	return -errno;
4274 
4275 out_delete_evlist:
4276 	evlist__delete(session->evlist);
4277 	session->evlist = NULL;
4278 	return -ENOMEM;
4279 }
4280 
4281 int perf_event__process_feature(struct perf_session *session,
4282 				union perf_event *event)
4283 {
4284 	struct perf_tool *tool = session->tool;
4285 	struct feat_fd ff = { .fd = 0 };
4286 	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4287 	int type = fe->header.type;
4288 	u64 feat = fe->feat_id;
4289 	int ret = 0;
4290 
4291 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4292 		pr_warning("invalid record type %d in pipe-mode\n", type);
4293 		return 0;
4294 	}
4295 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4296 		pr_warning("invalid record type %d in pipe-mode\n", type);
4297 		return -1;
4298 	}
4299 
4300 	if (!feat_ops[feat].process)
4301 		return 0;
4302 
4303 	ff.buf  = (void *)fe->data;
4304 	ff.size = event->header.size - sizeof(*fe);
4305 	ff.ph = &session->header;
4306 
4307 	if (feat_ops[feat].process(&ff, NULL)) {
4308 		ret = -1;
4309 		goto out;
4310 	}
4311 
4312 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
4313 		goto out;
4314 
4315 	if (!feat_ops[feat].full_only ||
4316 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4317 		feat_ops[feat].print(&ff, stdout);
4318 	} else {
4319 		fprintf(stdout, "# %s info available, use -I to display\n",
4320 			feat_ops[feat].name);
4321 	}
4322 out:
4323 	free_event_desc(ff.events);
4324 	return ret;
4325 }
4326 
4327 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4328 {
4329 	struct perf_record_event_update *ev = &event->event_update;
4330 	struct perf_cpu_map *map;
4331 	size_t ret;
4332 
4333 	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
4334 
4335 	switch (ev->type) {
4336 	case PERF_EVENT_UPDATE__SCALE:
4337 		ret += fprintf(fp, "... scale: %f\n", ev->scale.scale);
4338 		break;
4339 	case PERF_EVENT_UPDATE__UNIT:
4340 		ret += fprintf(fp, "... unit:  %s\n", ev->unit);
4341 		break;
4342 	case PERF_EVENT_UPDATE__NAME:
4343 		ret += fprintf(fp, "... name:  %s\n", ev->name);
4344 		break;
4345 	case PERF_EVENT_UPDATE__CPUS:
4346 		ret += fprintf(fp, "... ");
4347 
4348 		map = cpu_map__new_data(&ev->cpus.cpus);
4349 		if (map)
4350 			ret += cpu_map__fprintf(map, fp);
4351 		else
4352 			ret += fprintf(fp, "failed to get cpus\n");
4353 		break;
4354 	default:
4355 		ret += fprintf(fp, "... unknown type\n");
4356 		break;
4357 	}
4358 
4359 	return ret;
4360 }
4361 
4362 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4363 			     union perf_event *event,
4364 			     struct evlist **pevlist)
4365 {
4366 	u32 i, ids, n_ids;
4367 	struct evsel *evsel;
4368 	struct evlist *evlist = *pevlist;
4369 
4370 	if (evlist == NULL) {
4371 		*pevlist = evlist = evlist__new();
4372 		if (evlist == NULL)
4373 			return -ENOMEM;
4374 	}
4375 
4376 	evsel = evsel__new(&event->attr.attr);
4377 	if (evsel == NULL)
4378 		return -ENOMEM;
4379 
4380 	evlist__add(evlist, evsel);
4381 
4382 	ids = event->header.size;
4383 	ids -= (void *)&event->attr.id - (void *)event;
4384 	n_ids = ids / sizeof(u64);
4385 	/*
4386 	 * We don't have the cpu and thread maps on the header, so
4387 	 * for allocating the perf_sample_id table we fake 1 cpu and
4388 	 * hattr->ids threads.
4389 	 */
4390 	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4391 		return -ENOMEM;
4392 
4393 	for (i = 0; i < n_ids; i++) {
4394 		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4395 	}
4396 
4397 	return 0;
4398 }
4399 
4400 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4401 				     union perf_event *event,
4402 				     struct evlist **pevlist)
4403 {
4404 	struct perf_record_event_update *ev = &event->event_update;
4405 	struct evlist *evlist;
4406 	struct evsel *evsel;
4407 	struct perf_cpu_map *map;
4408 
4409 	if (dump_trace)
4410 		perf_event__fprintf_event_update(event, stdout);
4411 
4412 	if (!pevlist || *pevlist == NULL)
4413 		return -EINVAL;
4414 
4415 	evlist = *pevlist;
4416 
4417 	evsel = evlist__id2evsel(evlist, ev->id);
4418 	if (evsel == NULL)
4419 		return -EINVAL;
4420 
4421 	switch (ev->type) {
4422 	case PERF_EVENT_UPDATE__UNIT:
4423 		free((char *)evsel->unit);
4424 		evsel->unit = strdup(ev->unit);
4425 		break;
4426 	case PERF_EVENT_UPDATE__NAME:
4427 		free(evsel->name);
4428 		evsel->name = strdup(ev->name);
4429 		break;
4430 	case PERF_EVENT_UPDATE__SCALE:
4431 		evsel->scale = ev->scale.scale;
4432 		break;
4433 	case PERF_EVENT_UPDATE__CPUS:
4434 		map = cpu_map__new_data(&ev->cpus.cpus);
4435 		if (map) {
4436 			perf_cpu_map__put(evsel->core.own_cpus);
4437 			evsel->core.own_cpus = map;
4438 		} else
4439 			pr_err("failed to get event_update cpus\n");
4440 	default:
4441 		break;
4442 	}
4443 
4444 	return 0;
4445 }
4446 
4447 #ifdef HAVE_LIBTRACEEVENT
4448 int perf_event__process_tracing_data(struct perf_session *session,
4449 				     union perf_event *event)
4450 {
4451 	ssize_t size_read, padding, size = event->tracing_data.size;
4452 	int fd = perf_data__fd(session->data);
4453 	char buf[BUFSIZ];
4454 
4455 	/*
4456 	 * The pipe fd is already in proper place and in any case
4457 	 * we can't move it, and we'd screw the case where we read
4458 	 * 'pipe' data from regular file. The trace_report reads
4459 	 * data from 'fd' so we need to set it directly behind the
4460 	 * event, where the tracing data starts.
4461 	 */
4462 	if (!perf_data__is_pipe(session->data)) {
4463 		off_t offset = lseek(fd, 0, SEEK_CUR);
4464 
4465 		/* setup for reading amidst mmap */
4466 		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4467 		      SEEK_SET);
4468 	}
4469 
4470 	size_read = trace_report(fd, &session->tevent,
4471 				 session->repipe);
4472 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4473 
4474 	if (readn(fd, buf, padding) < 0) {
4475 		pr_err("%s: reading input file", __func__);
4476 		return -1;
4477 	}
4478 	if (session->repipe) {
4479 		int retw = write(STDOUT_FILENO, buf, padding);
4480 		if (retw <= 0 || retw != padding) {
4481 			pr_err("%s: repiping tracing data padding", __func__);
4482 			return -1;
4483 		}
4484 	}
4485 
4486 	if (size_read + padding != size) {
4487 		pr_err("%s: tracing data size mismatch", __func__);
4488 		return -1;
4489 	}
4490 
4491 	evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4492 
4493 	return size_read + padding;
4494 }
4495 #endif
4496 
4497 int perf_event__process_build_id(struct perf_session *session,
4498 				 union perf_event *event)
4499 {
4500 	__event_process_build_id(&event->build_id,
4501 				 event->build_id.filename,
4502 				 session);
4503 	return 0;
4504 }
4505