xref: /openbmc/linux/tools/perf/util/header.c (revision 5b628549)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "util.h"
5 #include "string2.h"
6 #include <sys/param.h>
7 #include <sys/types.h>
8 #include <byteswap.h>
9 #include <unistd.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/stringify.h>
17 #include <sys/stat.h>
18 #include <sys/utsname.h>
19 #include <linux/time64.h>
20 #include <dirent.h>
21 
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "header.h"
25 #include "memswap.h"
26 #include "../perf.h"
27 #include "trace-event.h"
28 #include "session.h"
29 #include "symbol.h"
30 #include "debug.h"
31 #include "cpumap.h"
32 #include "pmu.h"
33 #include "vdso.h"
34 #include "strbuf.h"
35 #include "build-id.h"
36 #include "data.h"
37 #include <api/fs/fs.h>
38 #include "asm/bug.h"
39 #include "tool.h"
40 #include "time-utils.h"
41 #include "units.h"
42 #include "cputopo.h"
43 
44 #include "sane_ctype.h"
45 
46 /*
47  * magic2 = "PERFILE2"
48  * must be a numerical value to let the endianness
49  * determine the memory layout. That way we are able
50  * to detect endianness when reading the perf.data file
51  * back.
52  *
53  * we check for legacy (PERFFILE) format.
54  */
55 static const char *__perf_magic1 = "PERFFILE";
56 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
57 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
58 
59 #define PERF_MAGIC	__perf_magic2
60 
61 const char perf_version_string[] = PERF_VERSION;
62 
63 struct perf_file_attr {
64 	struct perf_event_attr	attr;
65 	struct perf_file_section	ids;
66 };
67 
68 struct feat_fd {
69 	struct perf_header	*ph;
70 	int			fd;
71 	void			*buf;	/* Either buf != NULL or fd >= 0 */
72 	ssize_t			offset;
73 	size_t			size;
74 	struct perf_evsel	*events;
75 };
76 
77 void perf_header__set_feat(struct perf_header *header, int feat)
78 {
79 	set_bit(feat, header->adds_features);
80 }
81 
82 void perf_header__clear_feat(struct perf_header *header, int feat)
83 {
84 	clear_bit(feat, header->adds_features);
85 }
86 
87 bool perf_header__has_feat(const struct perf_header *header, int feat)
88 {
89 	return test_bit(feat, header->adds_features);
90 }
91 
92 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
93 {
94 	ssize_t ret = writen(ff->fd, buf, size);
95 
96 	if (ret != (ssize_t)size)
97 		return ret < 0 ? (int)ret : -1;
98 	return 0;
99 }
100 
101 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
102 {
103 	/* struct perf_event_header::size is u16 */
104 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
105 	size_t new_size = ff->size;
106 	void *addr;
107 
108 	if (size + ff->offset > max_size)
109 		return -E2BIG;
110 
111 	while (size > (new_size - ff->offset))
112 		new_size <<= 1;
113 	new_size = min(max_size, new_size);
114 
115 	if (ff->size < new_size) {
116 		addr = realloc(ff->buf, new_size);
117 		if (!addr)
118 			return -ENOMEM;
119 		ff->buf = addr;
120 		ff->size = new_size;
121 	}
122 
123 	memcpy(ff->buf + ff->offset, buf, size);
124 	ff->offset += size;
125 
126 	return 0;
127 }
128 
129 /* Return: 0 if succeded, -ERR if failed. */
130 int do_write(struct feat_fd *ff, const void *buf, size_t size)
131 {
132 	if (!ff->buf)
133 		return __do_write_fd(ff, buf, size);
134 	return __do_write_buf(ff, buf, size);
135 }
136 
137 /* Return: 0 if succeded, -ERR if failed. */
138 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
139 {
140 	u64 *p = (u64 *) set;
141 	int i, ret;
142 
143 	ret = do_write(ff, &size, sizeof(size));
144 	if (ret < 0)
145 		return ret;
146 
147 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
148 		ret = do_write(ff, p + i, sizeof(*p));
149 		if (ret < 0)
150 			return ret;
151 	}
152 
153 	return 0;
154 }
155 
156 /* Return: 0 if succeded, -ERR if failed. */
157 int write_padded(struct feat_fd *ff, const void *bf,
158 		 size_t count, size_t count_aligned)
159 {
160 	static const char zero_buf[NAME_ALIGN];
161 	int err = do_write(ff, bf, count);
162 
163 	if (!err)
164 		err = do_write(ff, zero_buf, count_aligned - count);
165 
166 	return err;
167 }
168 
169 #define string_size(str)						\
170 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
171 
172 /* Return: 0 if succeded, -ERR if failed. */
173 static int do_write_string(struct feat_fd *ff, const char *str)
174 {
175 	u32 len, olen;
176 	int ret;
177 
178 	olen = strlen(str) + 1;
179 	len = PERF_ALIGN(olen, NAME_ALIGN);
180 
181 	/* write len, incl. \0 */
182 	ret = do_write(ff, &len, sizeof(len));
183 	if (ret < 0)
184 		return ret;
185 
186 	return write_padded(ff, str, olen, len);
187 }
188 
189 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
190 {
191 	ssize_t ret = readn(ff->fd, addr, size);
192 
193 	if (ret != size)
194 		return ret < 0 ? (int)ret : -1;
195 	return 0;
196 }
197 
198 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
199 {
200 	if (size > (ssize_t)ff->size - ff->offset)
201 		return -1;
202 
203 	memcpy(addr, ff->buf + ff->offset, size);
204 	ff->offset += size;
205 
206 	return 0;
207 
208 }
209 
210 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
211 {
212 	if (!ff->buf)
213 		return __do_read_fd(ff, addr, size);
214 	return __do_read_buf(ff, addr, size);
215 }
216 
217 static int do_read_u32(struct feat_fd *ff, u32 *addr)
218 {
219 	int ret;
220 
221 	ret = __do_read(ff, addr, sizeof(*addr));
222 	if (ret)
223 		return ret;
224 
225 	if (ff->ph->needs_swap)
226 		*addr = bswap_32(*addr);
227 	return 0;
228 }
229 
230 static int do_read_u64(struct feat_fd *ff, u64 *addr)
231 {
232 	int ret;
233 
234 	ret = __do_read(ff, addr, sizeof(*addr));
235 	if (ret)
236 		return ret;
237 
238 	if (ff->ph->needs_swap)
239 		*addr = bswap_64(*addr);
240 	return 0;
241 }
242 
243 static char *do_read_string(struct feat_fd *ff)
244 {
245 	u32 len;
246 	char *buf;
247 
248 	if (do_read_u32(ff, &len))
249 		return NULL;
250 
251 	buf = malloc(len);
252 	if (!buf)
253 		return NULL;
254 
255 	if (!__do_read(ff, buf, len)) {
256 		/*
257 		 * strings are padded by zeroes
258 		 * thus the actual strlen of buf
259 		 * may be less than len
260 		 */
261 		return buf;
262 	}
263 
264 	free(buf);
265 	return NULL;
266 }
267 
268 /* Return: 0 if succeded, -ERR if failed. */
269 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
270 {
271 	unsigned long *set;
272 	u64 size, *p;
273 	int i, ret;
274 
275 	ret = do_read_u64(ff, &size);
276 	if (ret)
277 		return ret;
278 
279 	set = bitmap_alloc(size);
280 	if (!set)
281 		return -ENOMEM;
282 
283 	p = (u64 *) set;
284 
285 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
286 		ret = do_read_u64(ff, p + i);
287 		if (ret < 0) {
288 			free(set);
289 			return ret;
290 		}
291 	}
292 
293 	*pset  = set;
294 	*psize = size;
295 	return 0;
296 }
297 
298 static int write_tracing_data(struct feat_fd *ff,
299 			      struct perf_evlist *evlist)
300 {
301 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
302 		return -1;
303 
304 	return read_tracing_data(ff->fd, &evlist->entries);
305 }
306 
307 static int write_build_id(struct feat_fd *ff,
308 			  struct perf_evlist *evlist __maybe_unused)
309 {
310 	struct perf_session *session;
311 	int err;
312 
313 	session = container_of(ff->ph, struct perf_session, header);
314 
315 	if (!perf_session__read_build_ids(session, true))
316 		return -1;
317 
318 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
319 		return -1;
320 
321 	err = perf_session__write_buildid_table(session, ff);
322 	if (err < 0) {
323 		pr_debug("failed to write buildid table\n");
324 		return err;
325 	}
326 	perf_session__cache_build_ids(session);
327 
328 	return 0;
329 }
330 
331 static int write_hostname(struct feat_fd *ff,
332 			  struct perf_evlist *evlist __maybe_unused)
333 {
334 	struct utsname uts;
335 	int ret;
336 
337 	ret = uname(&uts);
338 	if (ret < 0)
339 		return -1;
340 
341 	return do_write_string(ff, uts.nodename);
342 }
343 
344 static int write_osrelease(struct feat_fd *ff,
345 			   struct perf_evlist *evlist __maybe_unused)
346 {
347 	struct utsname uts;
348 	int ret;
349 
350 	ret = uname(&uts);
351 	if (ret < 0)
352 		return -1;
353 
354 	return do_write_string(ff, uts.release);
355 }
356 
357 static int write_arch(struct feat_fd *ff,
358 		      struct perf_evlist *evlist __maybe_unused)
359 {
360 	struct utsname uts;
361 	int ret;
362 
363 	ret = uname(&uts);
364 	if (ret < 0)
365 		return -1;
366 
367 	return do_write_string(ff, uts.machine);
368 }
369 
370 static int write_version(struct feat_fd *ff,
371 			 struct perf_evlist *evlist __maybe_unused)
372 {
373 	return do_write_string(ff, perf_version_string);
374 }
375 
376 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
377 {
378 	FILE *file;
379 	char *buf = NULL;
380 	char *s, *p;
381 	const char *search = cpuinfo_proc;
382 	size_t len = 0;
383 	int ret = -1;
384 
385 	if (!search)
386 		return -1;
387 
388 	file = fopen("/proc/cpuinfo", "r");
389 	if (!file)
390 		return -1;
391 
392 	while (getline(&buf, &len, file) > 0) {
393 		ret = strncmp(buf, search, strlen(search));
394 		if (!ret)
395 			break;
396 	}
397 
398 	if (ret) {
399 		ret = -1;
400 		goto done;
401 	}
402 
403 	s = buf;
404 
405 	p = strchr(buf, ':');
406 	if (p && *(p+1) == ' ' && *(p+2))
407 		s = p + 2;
408 	p = strchr(s, '\n');
409 	if (p)
410 		*p = '\0';
411 
412 	/* squash extra space characters (branding string) */
413 	p = s;
414 	while (*p) {
415 		if (isspace(*p)) {
416 			char *r = p + 1;
417 			char *q = r;
418 			*p = ' ';
419 			while (*q && isspace(*q))
420 				q++;
421 			if (q != (p+1))
422 				while ((*r++ = *q++));
423 		}
424 		p++;
425 	}
426 	ret = do_write_string(ff, s);
427 done:
428 	free(buf);
429 	fclose(file);
430 	return ret;
431 }
432 
433 static int write_cpudesc(struct feat_fd *ff,
434 		       struct perf_evlist *evlist __maybe_unused)
435 {
436 	const char *cpuinfo_procs[] = CPUINFO_PROC;
437 	unsigned int i;
438 
439 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
440 		int ret;
441 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
442 		if (ret >= 0)
443 			return ret;
444 	}
445 	return -1;
446 }
447 
448 
449 static int write_nrcpus(struct feat_fd *ff,
450 			struct perf_evlist *evlist __maybe_unused)
451 {
452 	long nr;
453 	u32 nrc, nra;
454 	int ret;
455 
456 	nrc = cpu__max_present_cpu();
457 
458 	nr = sysconf(_SC_NPROCESSORS_ONLN);
459 	if (nr < 0)
460 		return -1;
461 
462 	nra = (u32)(nr & UINT_MAX);
463 
464 	ret = do_write(ff, &nrc, sizeof(nrc));
465 	if (ret < 0)
466 		return ret;
467 
468 	return do_write(ff, &nra, sizeof(nra));
469 }
470 
471 static int write_event_desc(struct feat_fd *ff,
472 			    struct perf_evlist *evlist)
473 {
474 	struct perf_evsel *evsel;
475 	u32 nre, nri, sz;
476 	int ret;
477 
478 	nre = evlist->nr_entries;
479 
480 	/*
481 	 * write number of events
482 	 */
483 	ret = do_write(ff, &nre, sizeof(nre));
484 	if (ret < 0)
485 		return ret;
486 
487 	/*
488 	 * size of perf_event_attr struct
489 	 */
490 	sz = (u32)sizeof(evsel->attr);
491 	ret = do_write(ff, &sz, sizeof(sz));
492 	if (ret < 0)
493 		return ret;
494 
495 	evlist__for_each_entry(evlist, evsel) {
496 		ret = do_write(ff, &evsel->attr, sz);
497 		if (ret < 0)
498 			return ret;
499 		/*
500 		 * write number of unique id per event
501 		 * there is one id per instance of an event
502 		 *
503 		 * copy into an nri to be independent of the
504 		 * type of ids,
505 		 */
506 		nri = evsel->ids;
507 		ret = do_write(ff, &nri, sizeof(nri));
508 		if (ret < 0)
509 			return ret;
510 
511 		/*
512 		 * write event string as passed on cmdline
513 		 */
514 		ret = do_write_string(ff, perf_evsel__name(evsel));
515 		if (ret < 0)
516 			return ret;
517 		/*
518 		 * write unique ids for this event
519 		 */
520 		ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
521 		if (ret < 0)
522 			return ret;
523 	}
524 	return 0;
525 }
526 
527 static int write_cmdline(struct feat_fd *ff,
528 			 struct perf_evlist *evlist __maybe_unused)
529 {
530 	char pbuf[MAXPATHLEN], *buf;
531 	int i, ret, n;
532 
533 	/* actual path to perf binary */
534 	buf = perf_exe(pbuf, MAXPATHLEN);
535 
536 	/* account for binary path */
537 	n = perf_env.nr_cmdline + 1;
538 
539 	ret = do_write(ff, &n, sizeof(n));
540 	if (ret < 0)
541 		return ret;
542 
543 	ret = do_write_string(ff, buf);
544 	if (ret < 0)
545 		return ret;
546 
547 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
548 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
549 		if (ret < 0)
550 			return ret;
551 	}
552 	return 0;
553 }
554 
555 
556 static int write_cpu_topology(struct feat_fd *ff,
557 			      struct perf_evlist *evlist __maybe_unused)
558 {
559 	struct cpu_topology *tp;
560 	u32 i;
561 	int ret, j;
562 
563 	tp = cpu_topology__new();
564 	if (!tp)
565 		return -1;
566 
567 	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
568 	if (ret < 0)
569 		goto done;
570 
571 	for (i = 0; i < tp->core_sib; i++) {
572 		ret = do_write_string(ff, tp->core_siblings[i]);
573 		if (ret < 0)
574 			goto done;
575 	}
576 	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
577 	if (ret < 0)
578 		goto done;
579 
580 	for (i = 0; i < tp->thread_sib; i++) {
581 		ret = do_write_string(ff, tp->thread_siblings[i]);
582 		if (ret < 0)
583 			break;
584 	}
585 
586 	ret = perf_env__read_cpu_topology_map(&perf_env);
587 	if (ret < 0)
588 		goto done;
589 
590 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
591 		ret = do_write(ff, &perf_env.cpu[j].core_id,
592 			       sizeof(perf_env.cpu[j].core_id));
593 		if (ret < 0)
594 			return ret;
595 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
596 			       sizeof(perf_env.cpu[j].socket_id));
597 		if (ret < 0)
598 			return ret;
599 	}
600 done:
601 	cpu_topology__delete(tp);
602 	return ret;
603 }
604 
605 
606 
607 static int write_total_mem(struct feat_fd *ff,
608 			   struct perf_evlist *evlist __maybe_unused)
609 {
610 	char *buf = NULL;
611 	FILE *fp;
612 	size_t len = 0;
613 	int ret = -1, n;
614 	uint64_t mem;
615 
616 	fp = fopen("/proc/meminfo", "r");
617 	if (!fp)
618 		return -1;
619 
620 	while (getline(&buf, &len, fp) > 0) {
621 		ret = strncmp(buf, "MemTotal:", 9);
622 		if (!ret)
623 			break;
624 	}
625 	if (!ret) {
626 		n = sscanf(buf, "%*s %"PRIu64, &mem);
627 		if (n == 1)
628 			ret = do_write(ff, &mem, sizeof(mem));
629 	} else
630 		ret = -1;
631 	free(buf);
632 	fclose(fp);
633 	return ret;
634 }
635 
636 static int write_numa_topology(struct feat_fd *ff,
637 			       struct perf_evlist *evlist __maybe_unused)
638 {
639 	struct numa_topology *tp;
640 	int ret = -1;
641 	u32 i;
642 
643 	tp = numa_topology__new();
644 	if (!tp)
645 		return -ENOMEM;
646 
647 	ret = do_write(ff, &tp->nr, sizeof(u32));
648 	if (ret < 0)
649 		goto err;
650 
651 	for (i = 0; i < tp->nr; i++) {
652 		struct numa_topology_node *n = &tp->nodes[i];
653 
654 		ret = do_write(ff, &n->node, sizeof(u32));
655 		if (ret < 0)
656 			goto err;
657 
658 		ret = do_write(ff, &n->mem_total, sizeof(u64));
659 		if (ret)
660 			goto err;
661 
662 		ret = do_write(ff, &n->mem_free, sizeof(u64));
663 		if (ret)
664 			goto err;
665 
666 		ret = do_write_string(ff, n->cpus);
667 		if (ret < 0)
668 			goto err;
669 	}
670 
671 	ret = 0;
672 
673 err:
674 	numa_topology__delete(tp);
675 	return ret;
676 }
677 
678 /*
679  * File format:
680  *
681  * struct pmu_mappings {
682  *	u32	pmu_num;
683  *	struct pmu_map {
684  *		u32	type;
685  *		char	name[];
686  *	}[pmu_num];
687  * };
688  */
689 
690 static int write_pmu_mappings(struct feat_fd *ff,
691 			      struct perf_evlist *evlist __maybe_unused)
692 {
693 	struct perf_pmu *pmu = NULL;
694 	u32 pmu_num = 0;
695 	int ret;
696 
697 	/*
698 	 * Do a first pass to count number of pmu to avoid lseek so this
699 	 * works in pipe mode as well.
700 	 */
701 	while ((pmu = perf_pmu__scan(pmu))) {
702 		if (!pmu->name)
703 			continue;
704 		pmu_num++;
705 	}
706 
707 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
708 	if (ret < 0)
709 		return ret;
710 
711 	while ((pmu = perf_pmu__scan(pmu))) {
712 		if (!pmu->name)
713 			continue;
714 
715 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
716 		if (ret < 0)
717 			return ret;
718 
719 		ret = do_write_string(ff, pmu->name);
720 		if (ret < 0)
721 			return ret;
722 	}
723 
724 	return 0;
725 }
726 
727 /*
728  * File format:
729  *
730  * struct group_descs {
731  *	u32	nr_groups;
732  *	struct group_desc {
733  *		char	name[];
734  *		u32	leader_idx;
735  *		u32	nr_members;
736  *	}[nr_groups];
737  * };
738  */
739 static int write_group_desc(struct feat_fd *ff,
740 			    struct perf_evlist *evlist)
741 {
742 	u32 nr_groups = evlist->nr_groups;
743 	struct perf_evsel *evsel;
744 	int ret;
745 
746 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
747 	if (ret < 0)
748 		return ret;
749 
750 	evlist__for_each_entry(evlist, evsel) {
751 		if (perf_evsel__is_group_leader(evsel) &&
752 		    evsel->nr_members > 1) {
753 			const char *name = evsel->group_name ?: "{anon_group}";
754 			u32 leader_idx = evsel->idx;
755 			u32 nr_members = evsel->nr_members;
756 
757 			ret = do_write_string(ff, name);
758 			if (ret < 0)
759 				return ret;
760 
761 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
762 			if (ret < 0)
763 				return ret;
764 
765 			ret = do_write(ff, &nr_members, sizeof(nr_members));
766 			if (ret < 0)
767 				return ret;
768 		}
769 	}
770 	return 0;
771 }
772 
773 /*
774  * Return the CPU id as a raw string.
775  *
776  * Each architecture should provide a more precise id string that
777  * can be use to match the architecture's "mapfile".
778  */
779 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
780 {
781 	return NULL;
782 }
783 
784 /* Return zero when the cpuid from the mapfile.csv matches the
785  * cpuid string generated on this platform.
786  * Otherwise return non-zero.
787  */
788 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
789 {
790 	regex_t re;
791 	regmatch_t pmatch[1];
792 	int match;
793 
794 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
795 		/* Warn unable to generate match particular string. */
796 		pr_info("Invalid regular expression %s\n", mapcpuid);
797 		return 1;
798 	}
799 
800 	match = !regexec(&re, cpuid, 1, pmatch, 0);
801 	regfree(&re);
802 	if (match) {
803 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
804 
805 		/* Verify the entire string matched. */
806 		if (match_len == strlen(cpuid))
807 			return 0;
808 	}
809 	return 1;
810 }
811 
812 /*
813  * default get_cpuid(): nothing gets recorded
814  * actual implementation must be in arch/$(SRCARCH)/util/header.c
815  */
816 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
817 {
818 	return -1;
819 }
820 
821 static int write_cpuid(struct feat_fd *ff,
822 		       struct perf_evlist *evlist __maybe_unused)
823 {
824 	char buffer[64];
825 	int ret;
826 
827 	ret = get_cpuid(buffer, sizeof(buffer));
828 	if (ret)
829 		return -1;
830 
831 	return do_write_string(ff, buffer);
832 }
833 
834 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
835 			      struct perf_evlist *evlist __maybe_unused)
836 {
837 	return 0;
838 }
839 
840 static int write_auxtrace(struct feat_fd *ff,
841 			  struct perf_evlist *evlist __maybe_unused)
842 {
843 	struct perf_session *session;
844 	int err;
845 
846 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
847 		return -1;
848 
849 	session = container_of(ff->ph, struct perf_session, header);
850 
851 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
852 	if (err < 0)
853 		pr_err("Failed to write auxtrace index\n");
854 	return err;
855 }
856 
857 static int write_clockid(struct feat_fd *ff,
858 			 struct perf_evlist *evlist __maybe_unused)
859 {
860 	return do_write(ff, &ff->ph->env.clockid_res_ns,
861 			sizeof(ff->ph->env.clockid_res_ns));
862 }
863 
864 static int cpu_cache_level__sort(const void *a, const void *b)
865 {
866 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
867 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
868 
869 	return cache_a->level - cache_b->level;
870 }
871 
872 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
873 {
874 	if (a->level != b->level)
875 		return false;
876 
877 	if (a->line_size != b->line_size)
878 		return false;
879 
880 	if (a->sets != b->sets)
881 		return false;
882 
883 	if (a->ways != b->ways)
884 		return false;
885 
886 	if (strcmp(a->type, b->type))
887 		return false;
888 
889 	if (strcmp(a->size, b->size))
890 		return false;
891 
892 	if (strcmp(a->map, b->map))
893 		return false;
894 
895 	return true;
896 }
897 
898 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
899 {
900 	char path[PATH_MAX], file[PATH_MAX];
901 	struct stat st;
902 	size_t len;
903 
904 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
905 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
906 
907 	if (stat(file, &st))
908 		return 1;
909 
910 	scnprintf(file, PATH_MAX, "%s/level", path);
911 	if (sysfs__read_int(file, (int *) &cache->level))
912 		return -1;
913 
914 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
915 	if (sysfs__read_int(file, (int *) &cache->line_size))
916 		return -1;
917 
918 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
919 	if (sysfs__read_int(file, (int *) &cache->sets))
920 		return -1;
921 
922 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
923 	if (sysfs__read_int(file, (int *) &cache->ways))
924 		return -1;
925 
926 	scnprintf(file, PATH_MAX, "%s/type", path);
927 	if (sysfs__read_str(file, &cache->type, &len))
928 		return -1;
929 
930 	cache->type[len] = 0;
931 	cache->type = rtrim(cache->type);
932 
933 	scnprintf(file, PATH_MAX, "%s/size", path);
934 	if (sysfs__read_str(file, &cache->size, &len)) {
935 		free(cache->type);
936 		return -1;
937 	}
938 
939 	cache->size[len] = 0;
940 	cache->size = rtrim(cache->size);
941 
942 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
943 	if (sysfs__read_str(file, &cache->map, &len)) {
944 		free(cache->map);
945 		free(cache->type);
946 		return -1;
947 	}
948 
949 	cache->map[len] = 0;
950 	cache->map = rtrim(cache->map);
951 	return 0;
952 }
953 
954 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
955 {
956 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
957 }
958 
959 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
960 {
961 	u32 i, cnt = 0;
962 	long ncpus;
963 	u32 nr, cpu;
964 	u16 level;
965 
966 	ncpus = sysconf(_SC_NPROCESSORS_CONF);
967 	if (ncpus < 0)
968 		return -1;
969 
970 	nr = (u32)(ncpus & UINT_MAX);
971 
972 	for (cpu = 0; cpu < nr; cpu++) {
973 		for (level = 0; level < 10; level++) {
974 			struct cpu_cache_level c;
975 			int err;
976 
977 			err = cpu_cache_level__read(&c, cpu, level);
978 			if (err < 0)
979 				return err;
980 
981 			if (err == 1)
982 				break;
983 
984 			for (i = 0; i < cnt; i++) {
985 				if (cpu_cache_level__cmp(&c, &caches[i]))
986 					break;
987 			}
988 
989 			if (i == cnt)
990 				caches[cnt++] = c;
991 			else
992 				cpu_cache_level__free(&c);
993 
994 			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
995 				goto out;
996 		}
997 	}
998  out:
999 	*cntp = cnt;
1000 	return 0;
1001 }
1002 
1003 #define MAX_CACHES 2000
1004 
1005 static int write_cache(struct feat_fd *ff,
1006 		       struct perf_evlist *evlist __maybe_unused)
1007 {
1008 	struct cpu_cache_level caches[MAX_CACHES];
1009 	u32 cnt = 0, i, version = 1;
1010 	int ret;
1011 
1012 	ret = build_caches(caches, MAX_CACHES, &cnt);
1013 	if (ret)
1014 		goto out;
1015 
1016 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1017 
1018 	ret = do_write(ff, &version, sizeof(u32));
1019 	if (ret < 0)
1020 		goto out;
1021 
1022 	ret = do_write(ff, &cnt, sizeof(u32));
1023 	if (ret < 0)
1024 		goto out;
1025 
1026 	for (i = 0; i < cnt; i++) {
1027 		struct cpu_cache_level *c = &caches[i];
1028 
1029 		#define _W(v)					\
1030 			ret = do_write(ff, &c->v, sizeof(u32));	\
1031 			if (ret < 0)				\
1032 				goto out;
1033 
1034 		_W(level)
1035 		_W(line_size)
1036 		_W(sets)
1037 		_W(ways)
1038 		#undef _W
1039 
1040 		#define _W(v)						\
1041 			ret = do_write_string(ff, (const char *) c->v);	\
1042 			if (ret < 0)					\
1043 				goto out;
1044 
1045 		_W(type)
1046 		_W(size)
1047 		_W(map)
1048 		#undef _W
1049 	}
1050 
1051 out:
1052 	for (i = 0; i < cnt; i++)
1053 		cpu_cache_level__free(&caches[i]);
1054 	return ret;
1055 }
1056 
1057 static int write_stat(struct feat_fd *ff __maybe_unused,
1058 		      struct perf_evlist *evlist __maybe_unused)
1059 {
1060 	return 0;
1061 }
1062 
1063 static int write_sample_time(struct feat_fd *ff,
1064 			     struct perf_evlist *evlist)
1065 {
1066 	int ret;
1067 
1068 	ret = do_write(ff, &evlist->first_sample_time,
1069 		       sizeof(evlist->first_sample_time));
1070 	if (ret < 0)
1071 		return ret;
1072 
1073 	return do_write(ff, &evlist->last_sample_time,
1074 			sizeof(evlist->last_sample_time));
1075 }
1076 
1077 
1078 static int memory_node__read(struct memory_node *n, unsigned long idx)
1079 {
1080 	unsigned int phys, size = 0;
1081 	char path[PATH_MAX];
1082 	struct dirent *ent;
1083 	DIR *dir;
1084 
1085 #define for_each_memory(mem, dir)					\
1086 	while ((ent = readdir(dir)))					\
1087 		if (strcmp(ent->d_name, ".") &&				\
1088 		    strcmp(ent->d_name, "..") &&			\
1089 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1090 
1091 	scnprintf(path, PATH_MAX,
1092 		  "%s/devices/system/node/node%lu",
1093 		  sysfs__mountpoint(), idx);
1094 
1095 	dir = opendir(path);
1096 	if (!dir) {
1097 		pr_warning("failed: cant' open memory sysfs data\n");
1098 		return -1;
1099 	}
1100 
1101 	for_each_memory(phys, dir) {
1102 		size = max(phys, size);
1103 	}
1104 
1105 	size++;
1106 
1107 	n->set = bitmap_alloc(size);
1108 	if (!n->set) {
1109 		closedir(dir);
1110 		return -ENOMEM;
1111 	}
1112 
1113 	n->node = idx;
1114 	n->size = size;
1115 
1116 	rewinddir(dir);
1117 
1118 	for_each_memory(phys, dir) {
1119 		set_bit(phys, n->set);
1120 	}
1121 
1122 	closedir(dir);
1123 	return 0;
1124 }
1125 
1126 static int memory_node__sort(const void *a, const void *b)
1127 {
1128 	const struct memory_node *na = a;
1129 	const struct memory_node *nb = b;
1130 
1131 	return na->node - nb->node;
1132 }
1133 
1134 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1135 {
1136 	char path[PATH_MAX];
1137 	struct dirent *ent;
1138 	DIR *dir;
1139 	u64 cnt = 0;
1140 	int ret = 0;
1141 
1142 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1143 		  sysfs__mountpoint());
1144 
1145 	dir = opendir(path);
1146 	if (!dir) {
1147 		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1148 			  __func__, path);
1149 		return -1;
1150 	}
1151 
1152 	while (!ret && (ent = readdir(dir))) {
1153 		unsigned int idx;
1154 		int r;
1155 
1156 		if (!strcmp(ent->d_name, ".") ||
1157 		    !strcmp(ent->d_name, ".."))
1158 			continue;
1159 
1160 		r = sscanf(ent->d_name, "node%u", &idx);
1161 		if (r != 1)
1162 			continue;
1163 
1164 		if (WARN_ONCE(cnt >= size,
1165 			      "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1166 			return -1;
1167 
1168 		ret = memory_node__read(&nodes[cnt++], idx);
1169 	}
1170 
1171 	*cntp = cnt;
1172 	closedir(dir);
1173 
1174 	if (!ret)
1175 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1176 
1177 	return ret;
1178 }
1179 
1180 #define MAX_MEMORY_NODES 2000
1181 
1182 /*
1183  * The MEM_TOPOLOGY holds physical memory map for every
1184  * node in system. The format of data is as follows:
1185  *
1186  *  0 - version          | for future changes
1187  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1188  * 16 - count            | number of nodes
1189  *
1190  * For each node we store map of physical indexes for
1191  * each node:
1192  *
1193  * 32 - node id          | node index
1194  * 40 - size             | size of bitmap
1195  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1196  */
1197 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1198 			      struct perf_evlist *evlist __maybe_unused)
1199 {
1200 	static struct memory_node nodes[MAX_MEMORY_NODES];
1201 	u64 bsize, version = 1, i, nr;
1202 	int ret;
1203 
1204 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1205 			      (unsigned long long *) &bsize);
1206 	if (ret)
1207 		return ret;
1208 
1209 	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1210 	if (ret)
1211 		return ret;
1212 
1213 	ret = do_write(ff, &version, sizeof(version));
1214 	if (ret < 0)
1215 		goto out;
1216 
1217 	ret = do_write(ff, &bsize, sizeof(bsize));
1218 	if (ret < 0)
1219 		goto out;
1220 
1221 	ret = do_write(ff, &nr, sizeof(nr));
1222 	if (ret < 0)
1223 		goto out;
1224 
1225 	for (i = 0; i < nr; i++) {
1226 		struct memory_node *n = &nodes[i];
1227 
1228 		#define _W(v)						\
1229 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1230 			if (ret < 0)					\
1231 				goto out;
1232 
1233 		_W(node)
1234 		_W(size)
1235 
1236 		#undef _W
1237 
1238 		ret = do_write_bitmap(ff, n->set, n->size);
1239 		if (ret < 0)
1240 			goto out;
1241 	}
1242 
1243 out:
1244 	return ret;
1245 }
1246 
1247 static void print_hostname(struct feat_fd *ff, FILE *fp)
1248 {
1249 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1250 }
1251 
1252 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1253 {
1254 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1255 }
1256 
1257 static void print_arch(struct feat_fd *ff, FILE *fp)
1258 {
1259 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1260 }
1261 
1262 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1263 {
1264 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1265 }
1266 
1267 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1268 {
1269 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1270 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1271 }
1272 
1273 static void print_version(struct feat_fd *ff, FILE *fp)
1274 {
1275 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1276 }
1277 
1278 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1279 {
1280 	int nr, i;
1281 
1282 	nr = ff->ph->env.nr_cmdline;
1283 
1284 	fprintf(fp, "# cmdline : ");
1285 
1286 	for (i = 0; i < nr; i++) {
1287 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1288 		if (!argv_i) {
1289 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1290 		} else {
1291 			char *mem = argv_i;
1292 			do {
1293 				char *quote = strchr(argv_i, '\'');
1294 				if (!quote)
1295 					break;
1296 				*quote++ = '\0';
1297 				fprintf(fp, "%s\\\'", argv_i);
1298 				argv_i = quote;
1299 			} while (1);
1300 			fprintf(fp, "%s ", argv_i);
1301 			free(mem);
1302 		}
1303 	}
1304 	fputc('\n', fp);
1305 }
1306 
1307 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1308 {
1309 	struct perf_header *ph = ff->ph;
1310 	int cpu_nr = ph->env.nr_cpus_avail;
1311 	int nr, i;
1312 	char *str;
1313 
1314 	nr = ph->env.nr_sibling_cores;
1315 	str = ph->env.sibling_cores;
1316 
1317 	for (i = 0; i < nr; i++) {
1318 		fprintf(fp, "# sibling cores   : %s\n", str);
1319 		str += strlen(str) + 1;
1320 	}
1321 
1322 	nr = ph->env.nr_sibling_threads;
1323 	str = ph->env.sibling_threads;
1324 
1325 	for (i = 0; i < nr; i++) {
1326 		fprintf(fp, "# sibling threads : %s\n", str);
1327 		str += strlen(str) + 1;
1328 	}
1329 
1330 	if (ph->env.cpu != NULL) {
1331 		for (i = 0; i < cpu_nr; i++)
1332 			fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i,
1333 				ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id);
1334 	} else
1335 		fprintf(fp, "# Core ID and Socket ID information is not available\n");
1336 }
1337 
1338 static void print_clockid(struct feat_fd *ff, FILE *fp)
1339 {
1340 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1341 		ff->ph->env.clockid_res_ns * 1000);
1342 }
1343 
1344 static void free_event_desc(struct perf_evsel *events)
1345 {
1346 	struct perf_evsel *evsel;
1347 
1348 	if (!events)
1349 		return;
1350 
1351 	for (evsel = events; evsel->attr.size; evsel++) {
1352 		zfree(&evsel->name);
1353 		zfree(&evsel->id);
1354 	}
1355 
1356 	free(events);
1357 }
1358 
1359 static struct perf_evsel *read_event_desc(struct feat_fd *ff)
1360 {
1361 	struct perf_evsel *evsel, *events = NULL;
1362 	u64 *id;
1363 	void *buf = NULL;
1364 	u32 nre, sz, nr, i, j;
1365 	size_t msz;
1366 
1367 	/* number of events */
1368 	if (do_read_u32(ff, &nre))
1369 		goto error;
1370 
1371 	if (do_read_u32(ff, &sz))
1372 		goto error;
1373 
1374 	/* buffer to hold on file attr struct */
1375 	buf = malloc(sz);
1376 	if (!buf)
1377 		goto error;
1378 
1379 	/* the last event terminates with evsel->attr.size == 0: */
1380 	events = calloc(nre + 1, sizeof(*events));
1381 	if (!events)
1382 		goto error;
1383 
1384 	msz = sizeof(evsel->attr);
1385 	if (sz < msz)
1386 		msz = sz;
1387 
1388 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1389 		evsel->idx = i;
1390 
1391 		/*
1392 		 * must read entire on-file attr struct to
1393 		 * sync up with layout.
1394 		 */
1395 		if (__do_read(ff, buf, sz))
1396 			goto error;
1397 
1398 		if (ff->ph->needs_swap)
1399 			perf_event__attr_swap(buf);
1400 
1401 		memcpy(&evsel->attr, buf, msz);
1402 
1403 		if (do_read_u32(ff, &nr))
1404 			goto error;
1405 
1406 		if (ff->ph->needs_swap)
1407 			evsel->needs_swap = true;
1408 
1409 		evsel->name = do_read_string(ff);
1410 		if (!evsel->name)
1411 			goto error;
1412 
1413 		if (!nr)
1414 			continue;
1415 
1416 		id = calloc(nr, sizeof(*id));
1417 		if (!id)
1418 			goto error;
1419 		evsel->ids = nr;
1420 		evsel->id = id;
1421 
1422 		for (j = 0 ; j < nr; j++) {
1423 			if (do_read_u64(ff, id))
1424 				goto error;
1425 			id++;
1426 		}
1427 	}
1428 out:
1429 	free(buf);
1430 	return events;
1431 error:
1432 	free_event_desc(events);
1433 	events = NULL;
1434 	goto out;
1435 }
1436 
1437 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1438 				void *priv __maybe_unused)
1439 {
1440 	return fprintf(fp, ", %s = %s", name, val);
1441 }
1442 
1443 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1444 {
1445 	struct perf_evsel *evsel, *events;
1446 	u32 j;
1447 	u64 *id;
1448 
1449 	if (ff->events)
1450 		events = ff->events;
1451 	else
1452 		events = read_event_desc(ff);
1453 
1454 	if (!events) {
1455 		fprintf(fp, "# event desc: not available or unable to read\n");
1456 		return;
1457 	}
1458 
1459 	for (evsel = events; evsel->attr.size; evsel++) {
1460 		fprintf(fp, "# event : name = %s, ", evsel->name);
1461 
1462 		if (evsel->ids) {
1463 			fprintf(fp, ", id = {");
1464 			for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1465 				if (j)
1466 					fputc(',', fp);
1467 				fprintf(fp, " %"PRIu64, *id);
1468 			}
1469 			fprintf(fp, " }");
1470 		}
1471 
1472 		perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1473 
1474 		fputc('\n', fp);
1475 	}
1476 
1477 	free_event_desc(events);
1478 	ff->events = NULL;
1479 }
1480 
1481 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1482 {
1483 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1484 }
1485 
1486 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1487 {
1488 	int i;
1489 	struct numa_node *n;
1490 
1491 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1492 		n = &ff->ph->env.numa_nodes[i];
1493 
1494 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1495 			    " free = %"PRIu64" kB\n",
1496 			n->node, n->mem_total, n->mem_free);
1497 
1498 		fprintf(fp, "# node%u cpu list : ", n->node);
1499 		cpu_map__fprintf(n->map, fp);
1500 	}
1501 }
1502 
1503 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1504 {
1505 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1506 }
1507 
1508 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1509 {
1510 	fprintf(fp, "# contains samples with branch stack\n");
1511 }
1512 
1513 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1514 {
1515 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1516 }
1517 
1518 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1519 {
1520 	fprintf(fp, "# contains stat data\n");
1521 }
1522 
1523 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1524 {
1525 	int i;
1526 
1527 	fprintf(fp, "# CPU cache info:\n");
1528 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1529 		fprintf(fp, "#  ");
1530 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1531 	}
1532 }
1533 
1534 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1535 {
1536 	const char *delimiter = "# pmu mappings: ";
1537 	char *str, *tmp;
1538 	u32 pmu_num;
1539 	u32 type;
1540 
1541 	pmu_num = ff->ph->env.nr_pmu_mappings;
1542 	if (!pmu_num) {
1543 		fprintf(fp, "# pmu mappings: not available\n");
1544 		return;
1545 	}
1546 
1547 	str = ff->ph->env.pmu_mappings;
1548 
1549 	while (pmu_num) {
1550 		type = strtoul(str, &tmp, 0);
1551 		if (*tmp != ':')
1552 			goto error;
1553 
1554 		str = tmp + 1;
1555 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1556 
1557 		delimiter = ", ";
1558 		str += strlen(str) + 1;
1559 		pmu_num--;
1560 	}
1561 
1562 	fprintf(fp, "\n");
1563 
1564 	if (!pmu_num)
1565 		return;
1566 error:
1567 	fprintf(fp, "# pmu mappings: unable to read\n");
1568 }
1569 
1570 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1571 {
1572 	struct perf_session *session;
1573 	struct perf_evsel *evsel;
1574 	u32 nr = 0;
1575 
1576 	session = container_of(ff->ph, struct perf_session, header);
1577 
1578 	evlist__for_each_entry(session->evlist, evsel) {
1579 		if (perf_evsel__is_group_leader(evsel) &&
1580 		    evsel->nr_members > 1) {
1581 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1582 				perf_evsel__name(evsel));
1583 
1584 			nr = evsel->nr_members - 1;
1585 		} else if (nr) {
1586 			fprintf(fp, ",%s", perf_evsel__name(evsel));
1587 
1588 			if (--nr == 0)
1589 				fprintf(fp, "}\n");
1590 		}
1591 	}
1592 }
1593 
1594 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1595 {
1596 	struct perf_session *session;
1597 	char time_buf[32];
1598 	double d;
1599 
1600 	session = container_of(ff->ph, struct perf_session, header);
1601 
1602 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
1603 				  time_buf, sizeof(time_buf));
1604 	fprintf(fp, "# time of first sample : %s\n", time_buf);
1605 
1606 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
1607 				  time_buf, sizeof(time_buf));
1608 	fprintf(fp, "# time of last sample : %s\n", time_buf);
1609 
1610 	d = (double)(session->evlist->last_sample_time -
1611 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
1612 
1613 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
1614 }
1615 
1616 static void memory_node__fprintf(struct memory_node *n,
1617 				 unsigned long long bsize, FILE *fp)
1618 {
1619 	char buf_map[100], buf_size[50];
1620 	unsigned long long size;
1621 
1622 	size = bsize * bitmap_weight(n->set, n->size);
1623 	unit_number__scnprintf(buf_size, 50, size);
1624 
1625 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
1626 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1627 }
1628 
1629 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1630 {
1631 	struct memory_node *nodes;
1632 	int i, nr;
1633 
1634 	nodes = ff->ph->env.memory_nodes;
1635 	nr    = ff->ph->env.nr_memory_nodes;
1636 
1637 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1638 		nr, ff->ph->env.memory_bsize);
1639 
1640 	for (i = 0; i < nr; i++) {
1641 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1642 	}
1643 }
1644 
1645 static int __event_process_build_id(struct build_id_event *bev,
1646 				    char *filename,
1647 				    struct perf_session *session)
1648 {
1649 	int err = -1;
1650 	struct machine *machine;
1651 	u16 cpumode;
1652 	struct dso *dso;
1653 	enum dso_kernel_type dso_type;
1654 
1655 	machine = perf_session__findnew_machine(session, bev->pid);
1656 	if (!machine)
1657 		goto out;
1658 
1659 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1660 
1661 	switch (cpumode) {
1662 	case PERF_RECORD_MISC_KERNEL:
1663 		dso_type = DSO_TYPE_KERNEL;
1664 		break;
1665 	case PERF_RECORD_MISC_GUEST_KERNEL:
1666 		dso_type = DSO_TYPE_GUEST_KERNEL;
1667 		break;
1668 	case PERF_RECORD_MISC_USER:
1669 	case PERF_RECORD_MISC_GUEST_USER:
1670 		dso_type = DSO_TYPE_USER;
1671 		break;
1672 	default:
1673 		goto out;
1674 	}
1675 
1676 	dso = machine__findnew_dso(machine, filename);
1677 	if (dso != NULL) {
1678 		char sbuild_id[SBUILD_ID_SIZE];
1679 
1680 		dso__set_build_id(dso, &bev->build_id);
1681 
1682 		if (dso_type != DSO_TYPE_USER) {
1683 			struct kmod_path m = { .name = NULL, };
1684 
1685 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1686 				dso__set_module_info(dso, &m, machine);
1687 			else
1688 				dso->kernel = dso_type;
1689 
1690 			free(m.name);
1691 		}
1692 
1693 		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1694 				  sbuild_id);
1695 		pr_debug("build id event received for %s: %s\n",
1696 			 dso->long_name, sbuild_id);
1697 		dso__put(dso);
1698 	}
1699 
1700 	err = 0;
1701 out:
1702 	return err;
1703 }
1704 
1705 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1706 						 int input, u64 offset, u64 size)
1707 {
1708 	struct perf_session *session = container_of(header, struct perf_session, header);
1709 	struct {
1710 		struct perf_event_header   header;
1711 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1712 		char			   filename[0];
1713 	} old_bev;
1714 	struct build_id_event bev;
1715 	char filename[PATH_MAX];
1716 	u64 limit = offset + size;
1717 
1718 	while (offset < limit) {
1719 		ssize_t len;
1720 
1721 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1722 			return -1;
1723 
1724 		if (header->needs_swap)
1725 			perf_event_header__bswap(&old_bev.header);
1726 
1727 		len = old_bev.header.size - sizeof(old_bev);
1728 		if (readn(input, filename, len) != len)
1729 			return -1;
1730 
1731 		bev.header = old_bev.header;
1732 
1733 		/*
1734 		 * As the pid is the missing value, we need to fill
1735 		 * it properly. The header.misc value give us nice hint.
1736 		 */
1737 		bev.pid	= HOST_KERNEL_ID;
1738 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1739 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1740 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
1741 
1742 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1743 		__event_process_build_id(&bev, filename, session);
1744 
1745 		offset += bev.header.size;
1746 	}
1747 
1748 	return 0;
1749 }
1750 
1751 static int perf_header__read_build_ids(struct perf_header *header,
1752 				       int input, u64 offset, u64 size)
1753 {
1754 	struct perf_session *session = container_of(header, struct perf_session, header);
1755 	struct build_id_event bev;
1756 	char filename[PATH_MAX];
1757 	u64 limit = offset + size, orig_offset = offset;
1758 	int err = -1;
1759 
1760 	while (offset < limit) {
1761 		ssize_t len;
1762 
1763 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1764 			goto out;
1765 
1766 		if (header->needs_swap)
1767 			perf_event_header__bswap(&bev.header);
1768 
1769 		len = bev.header.size - sizeof(bev);
1770 		if (readn(input, filename, len) != len)
1771 			goto out;
1772 		/*
1773 		 * The a1645ce1 changeset:
1774 		 *
1775 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
1776 		 *
1777 		 * Added a field to struct build_id_event that broke the file
1778 		 * format.
1779 		 *
1780 		 * Since the kernel build-id is the first entry, process the
1781 		 * table using the old format if the well known
1782 		 * '[kernel.kallsyms]' string for the kernel build-id has the
1783 		 * first 4 characters chopped off (where the pid_t sits).
1784 		 */
1785 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
1786 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
1787 				return -1;
1788 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
1789 		}
1790 
1791 		__event_process_build_id(&bev, filename, session);
1792 
1793 		offset += bev.header.size;
1794 	}
1795 	err = 0;
1796 out:
1797 	return err;
1798 }
1799 
1800 /* Macro for features that simply need to read and store a string. */
1801 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
1802 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
1803 {\
1804 	ff->ph->env.__feat_env = do_read_string(ff); \
1805 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
1806 }
1807 
1808 FEAT_PROCESS_STR_FUN(hostname, hostname);
1809 FEAT_PROCESS_STR_FUN(osrelease, os_release);
1810 FEAT_PROCESS_STR_FUN(version, version);
1811 FEAT_PROCESS_STR_FUN(arch, arch);
1812 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
1813 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
1814 
1815 static int process_tracing_data(struct feat_fd *ff, void *data)
1816 {
1817 	ssize_t ret = trace_report(ff->fd, data, false);
1818 
1819 	return ret < 0 ? -1 : 0;
1820 }
1821 
1822 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
1823 {
1824 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
1825 		pr_debug("Failed to read buildids, continuing...\n");
1826 	return 0;
1827 }
1828 
1829 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
1830 {
1831 	int ret;
1832 	u32 nr_cpus_avail, nr_cpus_online;
1833 
1834 	ret = do_read_u32(ff, &nr_cpus_avail);
1835 	if (ret)
1836 		return ret;
1837 
1838 	ret = do_read_u32(ff, &nr_cpus_online);
1839 	if (ret)
1840 		return ret;
1841 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
1842 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
1843 	return 0;
1844 }
1845 
1846 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
1847 {
1848 	u64 total_mem;
1849 	int ret;
1850 
1851 	ret = do_read_u64(ff, &total_mem);
1852 	if (ret)
1853 		return -1;
1854 	ff->ph->env.total_mem = (unsigned long long)total_mem;
1855 	return 0;
1856 }
1857 
1858 static struct perf_evsel *
1859 perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
1860 {
1861 	struct perf_evsel *evsel;
1862 
1863 	evlist__for_each_entry(evlist, evsel) {
1864 		if (evsel->idx == idx)
1865 			return evsel;
1866 	}
1867 
1868 	return NULL;
1869 }
1870 
1871 static void
1872 perf_evlist__set_event_name(struct perf_evlist *evlist,
1873 			    struct perf_evsel *event)
1874 {
1875 	struct perf_evsel *evsel;
1876 
1877 	if (!event->name)
1878 		return;
1879 
1880 	evsel = perf_evlist__find_by_index(evlist, event->idx);
1881 	if (!evsel)
1882 		return;
1883 
1884 	if (evsel->name)
1885 		return;
1886 
1887 	evsel->name = strdup(event->name);
1888 }
1889 
1890 static int
1891 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
1892 {
1893 	struct perf_session *session;
1894 	struct perf_evsel *evsel, *events = read_event_desc(ff);
1895 
1896 	if (!events)
1897 		return 0;
1898 
1899 	session = container_of(ff->ph, struct perf_session, header);
1900 
1901 	if (session->data->is_pipe) {
1902 		/* Save events for reading later by print_event_desc,
1903 		 * since they can't be read again in pipe mode. */
1904 		ff->events = events;
1905 	}
1906 
1907 	for (evsel = events; evsel->attr.size; evsel++)
1908 		perf_evlist__set_event_name(session->evlist, evsel);
1909 
1910 	if (!session->data->is_pipe)
1911 		free_event_desc(events);
1912 
1913 	return 0;
1914 }
1915 
1916 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
1917 {
1918 	char *str, *cmdline = NULL, **argv = NULL;
1919 	u32 nr, i, len = 0;
1920 
1921 	if (do_read_u32(ff, &nr))
1922 		return -1;
1923 
1924 	ff->ph->env.nr_cmdline = nr;
1925 
1926 	cmdline = zalloc(ff->size + nr + 1);
1927 	if (!cmdline)
1928 		return -1;
1929 
1930 	argv = zalloc(sizeof(char *) * (nr + 1));
1931 	if (!argv)
1932 		goto error;
1933 
1934 	for (i = 0; i < nr; i++) {
1935 		str = do_read_string(ff);
1936 		if (!str)
1937 			goto error;
1938 
1939 		argv[i] = cmdline + len;
1940 		memcpy(argv[i], str, strlen(str) + 1);
1941 		len += strlen(str) + 1;
1942 		free(str);
1943 	}
1944 	ff->ph->env.cmdline = cmdline;
1945 	ff->ph->env.cmdline_argv = (const char **) argv;
1946 	return 0;
1947 
1948 error:
1949 	free(argv);
1950 	free(cmdline);
1951 	return -1;
1952 }
1953 
1954 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
1955 {
1956 	u32 nr, i;
1957 	char *str;
1958 	struct strbuf sb;
1959 	int cpu_nr = ff->ph->env.nr_cpus_avail;
1960 	u64 size = 0;
1961 	struct perf_header *ph = ff->ph;
1962 	bool do_core_id_test = true;
1963 
1964 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
1965 	if (!ph->env.cpu)
1966 		return -1;
1967 
1968 	if (do_read_u32(ff, &nr))
1969 		goto free_cpu;
1970 
1971 	ph->env.nr_sibling_cores = nr;
1972 	size += sizeof(u32);
1973 	if (strbuf_init(&sb, 128) < 0)
1974 		goto free_cpu;
1975 
1976 	for (i = 0; i < nr; i++) {
1977 		str = do_read_string(ff);
1978 		if (!str)
1979 			goto error;
1980 
1981 		/* include a NULL character at the end */
1982 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
1983 			goto error;
1984 		size += string_size(str);
1985 		free(str);
1986 	}
1987 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
1988 
1989 	if (do_read_u32(ff, &nr))
1990 		return -1;
1991 
1992 	ph->env.nr_sibling_threads = nr;
1993 	size += sizeof(u32);
1994 
1995 	for (i = 0; i < nr; i++) {
1996 		str = do_read_string(ff);
1997 		if (!str)
1998 			goto error;
1999 
2000 		/* include a NULL character at the end */
2001 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2002 			goto error;
2003 		size += string_size(str);
2004 		free(str);
2005 	}
2006 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2007 
2008 	/*
2009 	 * The header may be from old perf,
2010 	 * which doesn't include core id and socket id information.
2011 	 */
2012 	if (ff->size <= size) {
2013 		zfree(&ph->env.cpu);
2014 		return 0;
2015 	}
2016 
2017 	/* On s390 the socket_id number is not related to the numbers of cpus.
2018 	 * The socket_id number might be higher than the numbers of cpus.
2019 	 * This depends on the configuration.
2020 	 */
2021 	if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4))
2022 		do_core_id_test = false;
2023 
2024 	for (i = 0; i < (u32)cpu_nr; i++) {
2025 		if (do_read_u32(ff, &nr))
2026 			goto free_cpu;
2027 
2028 		ph->env.cpu[i].core_id = nr;
2029 
2030 		if (do_read_u32(ff, &nr))
2031 			goto free_cpu;
2032 
2033 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2034 			pr_debug("socket_id number is too big."
2035 				 "You may need to upgrade the perf tool.\n");
2036 			goto free_cpu;
2037 		}
2038 
2039 		ph->env.cpu[i].socket_id = nr;
2040 	}
2041 
2042 	return 0;
2043 
2044 error:
2045 	strbuf_release(&sb);
2046 free_cpu:
2047 	zfree(&ph->env.cpu);
2048 	return -1;
2049 }
2050 
2051 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2052 {
2053 	struct numa_node *nodes, *n;
2054 	u32 nr, i;
2055 	char *str;
2056 
2057 	/* nr nodes */
2058 	if (do_read_u32(ff, &nr))
2059 		return -1;
2060 
2061 	nodes = zalloc(sizeof(*nodes) * nr);
2062 	if (!nodes)
2063 		return -ENOMEM;
2064 
2065 	for (i = 0; i < nr; i++) {
2066 		n = &nodes[i];
2067 
2068 		/* node number */
2069 		if (do_read_u32(ff, &n->node))
2070 			goto error;
2071 
2072 		if (do_read_u64(ff, &n->mem_total))
2073 			goto error;
2074 
2075 		if (do_read_u64(ff, &n->mem_free))
2076 			goto error;
2077 
2078 		str = do_read_string(ff);
2079 		if (!str)
2080 			goto error;
2081 
2082 		n->map = cpu_map__new(str);
2083 		if (!n->map)
2084 			goto error;
2085 
2086 		free(str);
2087 	}
2088 	ff->ph->env.nr_numa_nodes = nr;
2089 	ff->ph->env.numa_nodes = nodes;
2090 	return 0;
2091 
2092 error:
2093 	free(nodes);
2094 	return -1;
2095 }
2096 
2097 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2098 {
2099 	char *name;
2100 	u32 pmu_num;
2101 	u32 type;
2102 	struct strbuf sb;
2103 
2104 	if (do_read_u32(ff, &pmu_num))
2105 		return -1;
2106 
2107 	if (!pmu_num) {
2108 		pr_debug("pmu mappings not available\n");
2109 		return 0;
2110 	}
2111 
2112 	ff->ph->env.nr_pmu_mappings = pmu_num;
2113 	if (strbuf_init(&sb, 128) < 0)
2114 		return -1;
2115 
2116 	while (pmu_num) {
2117 		if (do_read_u32(ff, &type))
2118 			goto error;
2119 
2120 		name = do_read_string(ff);
2121 		if (!name)
2122 			goto error;
2123 
2124 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2125 			goto error;
2126 		/* include a NULL character at the end */
2127 		if (strbuf_add(&sb, "", 1) < 0)
2128 			goto error;
2129 
2130 		if (!strcmp(name, "msr"))
2131 			ff->ph->env.msr_pmu_type = type;
2132 
2133 		free(name);
2134 		pmu_num--;
2135 	}
2136 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2137 	return 0;
2138 
2139 error:
2140 	strbuf_release(&sb);
2141 	return -1;
2142 }
2143 
2144 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2145 {
2146 	size_t ret = -1;
2147 	u32 i, nr, nr_groups;
2148 	struct perf_session *session;
2149 	struct perf_evsel *evsel, *leader = NULL;
2150 	struct group_desc {
2151 		char *name;
2152 		u32 leader_idx;
2153 		u32 nr_members;
2154 	} *desc;
2155 
2156 	if (do_read_u32(ff, &nr_groups))
2157 		return -1;
2158 
2159 	ff->ph->env.nr_groups = nr_groups;
2160 	if (!nr_groups) {
2161 		pr_debug("group desc not available\n");
2162 		return 0;
2163 	}
2164 
2165 	desc = calloc(nr_groups, sizeof(*desc));
2166 	if (!desc)
2167 		return -1;
2168 
2169 	for (i = 0; i < nr_groups; i++) {
2170 		desc[i].name = do_read_string(ff);
2171 		if (!desc[i].name)
2172 			goto out_free;
2173 
2174 		if (do_read_u32(ff, &desc[i].leader_idx))
2175 			goto out_free;
2176 
2177 		if (do_read_u32(ff, &desc[i].nr_members))
2178 			goto out_free;
2179 	}
2180 
2181 	/*
2182 	 * Rebuild group relationship based on the group_desc
2183 	 */
2184 	session = container_of(ff->ph, struct perf_session, header);
2185 	session->evlist->nr_groups = nr_groups;
2186 
2187 	i = nr = 0;
2188 	evlist__for_each_entry(session->evlist, evsel) {
2189 		if (evsel->idx == (int) desc[i].leader_idx) {
2190 			evsel->leader = evsel;
2191 			/* {anon_group} is a dummy name */
2192 			if (strcmp(desc[i].name, "{anon_group}")) {
2193 				evsel->group_name = desc[i].name;
2194 				desc[i].name = NULL;
2195 			}
2196 			evsel->nr_members = desc[i].nr_members;
2197 
2198 			if (i >= nr_groups || nr > 0) {
2199 				pr_debug("invalid group desc\n");
2200 				goto out_free;
2201 			}
2202 
2203 			leader = evsel;
2204 			nr = evsel->nr_members - 1;
2205 			i++;
2206 		} else if (nr) {
2207 			/* This is a group member */
2208 			evsel->leader = leader;
2209 
2210 			nr--;
2211 		}
2212 	}
2213 
2214 	if (i != nr_groups || nr != 0) {
2215 		pr_debug("invalid group desc\n");
2216 		goto out_free;
2217 	}
2218 
2219 	ret = 0;
2220 out_free:
2221 	for (i = 0; i < nr_groups; i++)
2222 		zfree(&desc[i].name);
2223 	free(desc);
2224 
2225 	return ret;
2226 }
2227 
2228 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2229 {
2230 	struct perf_session *session;
2231 	int err;
2232 
2233 	session = container_of(ff->ph, struct perf_session, header);
2234 
2235 	err = auxtrace_index__process(ff->fd, ff->size, session,
2236 				      ff->ph->needs_swap);
2237 	if (err < 0)
2238 		pr_err("Failed to process auxtrace index\n");
2239 	return err;
2240 }
2241 
2242 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2243 {
2244 	struct cpu_cache_level *caches;
2245 	u32 cnt, i, version;
2246 
2247 	if (do_read_u32(ff, &version))
2248 		return -1;
2249 
2250 	if (version != 1)
2251 		return -1;
2252 
2253 	if (do_read_u32(ff, &cnt))
2254 		return -1;
2255 
2256 	caches = zalloc(sizeof(*caches) * cnt);
2257 	if (!caches)
2258 		return -1;
2259 
2260 	for (i = 0; i < cnt; i++) {
2261 		struct cpu_cache_level c;
2262 
2263 		#define _R(v)						\
2264 			if (do_read_u32(ff, &c.v))\
2265 				goto out_free_caches;			\
2266 
2267 		_R(level)
2268 		_R(line_size)
2269 		_R(sets)
2270 		_R(ways)
2271 		#undef _R
2272 
2273 		#define _R(v)					\
2274 			c.v = do_read_string(ff);		\
2275 			if (!c.v)				\
2276 				goto out_free_caches;
2277 
2278 		_R(type)
2279 		_R(size)
2280 		_R(map)
2281 		#undef _R
2282 
2283 		caches[i] = c;
2284 	}
2285 
2286 	ff->ph->env.caches = caches;
2287 	ff->ph->env.caches_cnt = cnt;
2288 	return 0;
2289 out_free_caches:
2290 	free(caches);
2291 	return -1;
2292 }
2293 
2294 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2295 {
2296 	struct perf_session *session;
2297 	u64 first_sample_time, last_sample_time;
2298 	int ret;
2299 
2300 	session = container_of(ff->ph, struct perf_session, header);
2301 
2302 	ret = do_read_u64(ff, &first_sample_time);
2303 	if (ret)
2304 		return -1;
2305 
2306 	ret = do_read_u64(ff, &last_sample_time);
2307 	if (ret)
2308 		return -1;
2309 
2310 	session->evlist->first_sample_time = first_sample_time;
2311 	session->evlist->last_sample_time = last_sample_time;
2312 	return 0;
2313 }
2314 
2315 static int process_mem_topology(struct feat_fd *ff,
2316 				void *data __maybe_unused)
2317 {
2318 	struct memory_node *nodes;
2319 	u64 version, i, nr, bsize;
2320 	int ret = -1;
2321 
2322 	if (do_read_u64(ff, &version))
2323 		return -1;
2324 
2325 	if (version != 1)
2326 		return -1;
2327 
2328 	if (do_read_u64(ff, &bsize))
2329 		return -1;
2330 
2331 	if (do_read_u64(ff, &nr))
2332 		return -1;
2333 
2334 	nodes = zalloc(sizeof(*nodes) * nr);
2335 	if (!nodes)
2336 		return -1;
2337 
2338 	for (i = 0; i < nr; i++) {
2339 		struct memory_node n;
2340 
2341 		#define _R(v)				\
2342 			if (do_read_u64(ff, &n.v))	\
2343 				goto out;		\
2344 
2345 		_R(node)
2346 		_R(size)
2347 
2348 		#undef _R
2349 
2350 		if (do_read_bitmap(ff, &n.set, &n.size))
2351 			goto out;
2352 
2353 		nodes[i] = n;
2354 	}
2355 
2356 	ff->ph->env.memory_bsize    = bsize;
2357 	ff->ph->env.memory_nodes    = nodes;
2358 	ff->ph->env.nr_memory_nodes = nr;
2359 	ret = 0;
2360 
2361 out:
2362 	if (ret)
2363 		free(nodes);
2364 	return ret;
2365 }
2366 
2367 static int process_clockid(struct feat_fd *ff,
2368 			   void *data __maybe_unused)
2369 {
2370 	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2371 		return -1;
2372 
2373 	return 0;
2374 }
2375 
2376 struct feature_ops {
2377 	int (*write)(struct feat_fd *ff, struct perf_evlist *evlist);
2378 	void (*print)(struct feat_fd *ff, FILE *fp);
2379 	int (*process)(struct feat_fd *ff, void *data);
2380 	const char *name;
2381 	bool full_only;
2382 	bool synthesize;
2383 };
2384 
2385 #define FEAT_OPR(n, func, __full_only) \
2386 	[HEADER_##n] = {					\
2387 		.name	    = __stringify(n),			\
2388 		.write	    = write_##func,			\
2389 		.print	    = print_##func,			\
2390 		.full_only  = __full_only,			\
2391 		.process    = process_##func,			\
2392 		.synthesize = true				\
2393 	}
2394 
2395 #define FEAT_OPN(n, func, __full_only) \
2396 	[HEADER_##n] = {					\
2397 		.name	    = __stringify(n),			\
2398 		.write	    = write_##func,			\
2399 		.print	    = print_##func,			\
2400 		.full_only  = __full_only,			\
2401 		.process    = process_##func			\
2402 	}
2403 
2404 /* feature_ops not implemented: */
2405 #define print_tracing_data	NULL
2406 #define print_build_id		NULL
2407 
2408 #define process_branch_stack	NULL
2409 #define process_stat		NULL
2410 
2411 
2412 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2413 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
2414 	FEAT_OPN(BUILD_ID,	build_id,	false),
2415 	FEAT_OPR(HOSTNAME,	hostname,	false),
2416 	FEAT_OPR(OSRELEASE,	osrelease,	false),
2417 	FEAT_OPR(VERSION,	version,	false),
2418 	FEAT_OPR(ARCH,		arch,		false),
2419 	FEAT_OPR(NRCPUS,	nrcpus,		false),
2420 	FEAT_OPR(CPUDESC,	cpudesc,	false),
2421 	FEAT_OPR(CPUID,		cpuid,		false),
2422 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
2423 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
2424 	FEAT_OPR(CMDLINE,	cmdline,	false),
2425 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
2426 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
2427 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
2428 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2429 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2430 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
2431 	FEAT_OPN(STAT,		stat,		false),
2432 	FEAT_OPN(CACHE,		cache,		true),
2433 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2434 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2435 	FEAT_OPR(CLOCKID,       clockid,        false)
2436 };
2437 
2438 struct header_print_data {
2439 	FILE *fp;
2440 	bool full; /* extended list of headers */
2441 };
2442 
2443 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2444 					   struct perf_header *ph,
2445 					   int feat, int fd, void *data)
2446 {
2447 	struct header_print_data *hd = data;
2448 	struct feat_fd ff;
2449 
2450 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2451 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2452 				"%d, continuing...\n", section->offset, feat);
2453 		return 0;
2454 	}
2455 	if (feat >= HEADER_LAST_FEATURE) {
2456 		pr_warning("unknown feature %d\n", feat);
2457 		return 0;
2458 	}
2459 	if (!feat_ops[feat].print)
2460 		return 0;
2461 
2462 	ff = (struct  feat_fd) {
2463 		.fd = fd,
2464 		.ph = ph,
2465 	};
2466 
2467 	if (!feat_ops[feat].full_only || hd->full)
2468 		feat_ops[feat].print(&ff, hd->fp);
2469 	else
2470 		fprintf(hd->fp, "# %s info available, use -I to display\n",
2471 			feat_ops[feat].name);
2472 
2473 	return 0;
2474 }
2475 
2476 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2477 {
2478 	struct header_print_data hd;
2479 	struct perf_header *header = &session->header;
2480 	int fd = perf_data__fd(session->data);
2481 	struct stat st;
2482 	time_t stctime;
2483 	int ret, bit;
2484 
2485 	hd.fp = fp;
2486 	hd.full = full;
2487 
2488 	ret = fstat(fd, &st);
2489 	if (ret == -1)
2490 		return -1;
2491 
2492 	stctime = st.st_ctime;
2493 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
2494 
2495 	fprintf(fp, "# header version : %u\n", header->version);
2496 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2497 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2498 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2499 
2500 	perf_header__process_sections(header, fd, &hd,
2501 				      perf_file_section__fprintf_info);
2502 
2503 	if (session->data->is_pipe)
2504 		return 0;
2505 
2506 	fprintf(fp, "# missing features: ");
2507 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2508 		if (bit)
2509 			fprintf(fp, "%s ", feat_ops[bit].name);
2510 	}
2511 
2512 	fprintf(fp, "\n");
2513 	return 0;
2514 }
2515 
2516 static int do_write_feat(struct feat_fd *ff, int type,
2517 			 struct perf_file_section **p,
2518 			 struct perf_evlist *evlist)
2519 {
2520 	int err;
2521 	int ret = 0;
2522 
2523 	if (perf_header__has_feat(ff->ph, type)) {
2524 		if (!feat_ops[type].write)
2525 			return -1;
2526 
2527 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2528 			return -1;
2529 
2530 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2531 
2532 		err = feat_ops[type].write(ff, evlist);
2533 		if (err < 0) {
2534 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2535 
2536 			/* undo anything written */
2537 			lseek(ff->fd, (*p)->offset, SEEK_SET);
2538 
2539 			return -1;
2540 		}
2541 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2542 		(*p)++;
2543 	}
2544 	return ret;
2545 }
2546 
2547 static int perf_header__adds_write(struct perf_header *header,
2548 				   struct perf_evlist *evlist, int fd)
2549 {
2550 	int nr_sections;
2551 	struct feat_fd ff;
2552 	struct perf_file_section *feat_sec, *p;
2553 	int sec_size;
2554 	u64 sec_start;
2555 	int feat;
2556 	int err;
2557 
2558 	ff = (struct feat_fd){
2559 		.fd  = fd,
2560 		.ph = header,
2561 	};
2562 
2563 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2564 	if (!nr_sections)
2565 		return 0;
2566 
2567 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2568 	if (feat_sec == NULL)
2569 		return -ENOMEM;
2570 
2571 	sec_size = sizeof(*feat_sec) * nr_sections;
2572 
2573 	sec_start = header->feat_offset;
2574 	lseek(fd, sec_start + sec_size, SEEK_SET);
2575 
2576 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
2577 		if (do_write_feat(&ff, feat, &p, evlist))
2578 			perf_header__clear_feat(header, feat);
2579 	}
2580 
2581 	lseek(fd, sec_start, SEEK_SET);
2582 	/*
2583 	 * may write more than needed due to dropped feature, but
2584 	 * this is okay, reader will skip the missing entries
2585 	 */
2586 	err = do_write(&ff, feat_sec, sec_size);
2587 	if (err < 0)
2588 		pr_debug("failed to write feature section\n");
2589 	free(feat_sec);
2590 	return err;
2591 }
2592 
2593 int perf_header__write_pipe(int fd)
2594 {
2595 	struct perf_pipe_file_header f_header;
2596 	struct feat_fd ff;
2597 	int err;
2598 
2599 	ff = (struct feat_fd){ .fd = fd };
2600 
2601 	f_header = (struct perf_pipe_file_header){
2602 		.magic	   = PERF_MAGIC,
2603 		.size	   = sizeof(f_header),
2604 	};
2605 
2606 	err = do_write(&ff, &f_header, sizeof(f_header));
2607 	if (err < 0) {
2608 		pr_debug("failed to write perf pipe header\n");
2609 		return err;
2610 	}
2611 
2612 	return 0;
2613 }
2614 
2615 int perf_session__write_header(struct perf_session *session,
2616 			       struct perf_evlist *evlist,
2617 			       int fd, bool at_exit)
2618 {
2619 	struct perf_file_header f_header;
2620 	struct perf_file_attr   f_attr;
2621 	struct perf_header *header = &session->header;
2622 	struct perf_evsel *evsel;
2623 	struct feat_fd ff;
2624 	u64 attr_offset;
2625 	int err;
2626 
2627 	ff = (struct feat_fd){ .fd = fd};
2628 	lseek(fd, sizeof(f_header), SEEK_SET);
2629 
2630 	evlist__for_each_entry(session->evlist, evsel) {
2631 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
2632 		err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
2633 		if (err < 0) {
2634 			pr_debug("failed to write perf header\n");
2635 			return err;
2636 		}
2637 	}
2638 
2639 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
2640 
2641 	evlist__for_each_entry(evlist, evsel) {
2642 		f_attr = (struct perf_file_attr){
2643 			.attr = evsel->attr,
2644 			.ids  = {
2645 				.offset = evsel->id_offset,
2646 				.size   = evsel->ids * sizeof(u64),
2647 			}
2648 		};
2649 		err = do_write(&ff, &f_attr, sizeof(f_attr));
2650 		if (err < 0) {
2651 			pr_debug("failed to write perf header attribute\n");
2652 			return err;
2653 		}
2654 	}
2655 
2656 	if (!header->data_offset)
2657 		header->data_offset = lseek(fd, 0, SEEK_CUR);
2658 	header->feat_offset = header->data_offset + header->data_size;
2659 
2660 	if (at_exit) {
2661 		err = perf_header__adds_write(header, evlist, fd);
2662 		if (err < 0)
2663 			return err;
2664 	}
2665 
2666 	f_header = (struct perf_file_header){
2667 		.magic	   = PERF_MAGIC,
2668 		.size	   = sizeof(f_header),
2669 		.attr_size = sizeof(f_attr),
2670 		.attrs = {
2671 			.offset = attr_offset,
2672 			.size   = evlist->nr_entries * sizeof(f_attr),
2673 		},
2674 		.data = {
2675 			.offset = header->data_offset,
2676 			.size	= header->data_size,
2677 		},
2678 		/* event_types is ignored, store zeros */
2679 	};
2680 
2681 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
2682 
2683 	lseek(fd, 0, SEEK_SET);
2684 	err = do_write(&ff, &f_header, sizeof(f_header));
2685 	if (err < 0) {
2686 		pr_debug("failed to write perf header\n");
2687 		return err;
2688 	}
2689 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
2690 
2691 	return 0;
2692 }
2693 
2694 static int perf_header__getbuffer64(struct perf_header *header,
2695 				    int fd, void *buf, size_t size)
2696 {
2697 	if (readn(fd, buf, size) <= 0)
2698 		return -1;
2699 
2700 	if (header->needs_swap)
2701 		mem_bswap_64(buf, size);
2702 
2703 	return 0;
2704 }
2705 
2706 int perf_header__process_sections(struct perf_header *header, int fd,
2707 				  void *data,
2708 				  int (*process)(struct perf_file_section *section,
2709 						 struct perf_header *ph,
2710 						 int feat, int fd, void *data))
2711 {
2712 	struct perf_file_section *feat_sec, *sec;
2713 	int nr_sections;
2714 	int sec_size;
2715 	int feat;
2716 	int err;
2717 
2718 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2719 	if (!nr_sections)
2720 		return 0;
2721 
2722 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
2723 	if (!feat_sec)
2724 		return -1;
2725 
2726 	sec_size = sizeof(*feat_sec) * nr_sections;
2727 
2728 	lseek(fd, header->feat_offset, SEEK_SET);
2729 
2730 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
2731 	if (err < 0)
2732 		goto out_free;
2733 
2734 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
2735 		err = process(sec++, header, feat, fd, data);
2736 		if (err < 0)
2737 			goto out_free;
2738 	}
2739 	err = 0;
2740 out_free:
2741 	free(feat_sec);
2742 	return err;
2743 }
2744 
2745 static const int attr_file_abi_sizes[] = {
2746 	[0] = PERF_ATTR_SIZE_VER0,
2747 	[1] = PERF_ATTR_SIZE_VER1,
2748 	[2] = PERF_ATTR_SIZE_VER2,
2749 	[3] = PERF_ATTR_SIZE_VER3,
2750 	[4] = PERF_ATTR_SIZE_VER4,
2751 	0,
2752 };
2753 
2754 /*
2755  * In the legacy file format, the magic number is not used to encode endianness.
2756  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
2757  * on ABI revisions, we need to try all combinations for all endianness to
2758  * detect the endianness.
2759  */
2760 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
2761 {
2762 	uint64_t ref_size, attr_size;
2763 	int i;
2764 
2765 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
2766 		ref_size = attr_file_abi_sizes[i]
2767 			 + sizeof(struct perf_file_section);
2768 		if (hdr_sz != ref_size) {
2769 			attr_size = bswap_64(hdr_sz);
2770 			if (attr_size != ref_size)
2771 				continue;
2772 
2773 			ph->needs_swap = true;
2774 		}
2775 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
2776 			 i,
2777 			 ph->needs_swap);
2778 		return 0;
2779 	}
2780 	/* could not determine endianness */
2781 	return -1;
2782 }
2783 
2784 #define PERF_PIPE_HDR_VER0	16
2785 
2786 static const size_t attr_pipe_abi_sizes[] = {
2787 	[0] = PERF_PIPE_HDR_VER0,
2788 	0,
2789 };
2790 
2791 /*
2792  * In the legacy pipe format, there is an implicit assumption that endiannesss
2793  * between host recording the samples, and host parsing the samples is the
2794  * same. This is not always the case given that the pipe output may always be
2795  * redirected into a file and analyzed on a different machine with possibly a
2796  * different endianness and perf_event ABI revsions in the perf tool itself.
2797  */
2798 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
2799 {
2800 	u64 attr_size;
2801 	int i;
2802 
2803 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
2804 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
2805 			attr_size = bswap_64(hdr_sz);
2806 			if (attr_size != hdr_sz)
2807 				continue;
2808 
2809 			ph->needs_swap = true;
2810 		}
2811 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
2812 		return 0;
2813 	}
2814 	return -1;
2815 }
2816 
2817 bool is_perf_magic(u64 magic)
2818 {
2819 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
2820 		|| magic == __perf_magic2
2821 		|| magic == __perf_magic2_sw)
2822 		return true;
2823 
2824 	return false;
2825 }
2826 
2827 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
2828 			      bool is_pipe, struct perf_header *ph)
2829 {
2830 	int ret;
2831 
2832 	/* check for legacy format */
2833 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
2834 	if (ret == 0) {
2835 		ph->version = PERF_HEADER_VERSION_1;
2836 		pr_debug("legacy perf.data format\n");
2837 		if (is_pipe)
2838 			return try_all_pipe_abis(hdr_sz, ph);
2839 
2840 		return try_all_file_abis(hdr_sz, ph);
2841 	}
2842 	/*
2843 	 * the new magic number serves two purposes:
2844 	 * - unique number to identify actual perf.data files
2845 	 * - encode endianness of file
2846 	 */
2847 	ph->version = PERF_HEADER_VERSION_2;
2848 
2849 	/* check magic number with one endianness */
2850 	if (magic == __perf_magic2)
2851 		return 0;
2852 
2853 	/* check magic number with opposite endianness */
2854 	if (magic != __perf_magic2_sw)
2855 		return -1;
2856 
2857 	ph->needs_swap = true;
2858 
2859 	return 0;
2860 }
2861 
2862 int perf_file_header__read(struct perf_file_header *header,
2863 			   struct perf_header *ph, int fd)
2864 {
2865 	ssize_t ret;
2866 
2867 	lseek(fd, 0, SEEK_SET);
2868 
2869 	ret = readn(fd, header, sizeof(*header));
2870 	if (ret <= 0)
2871 		return -1;
2872 
2873 	if (check_magic_endian(header->magic,
2874 			       header->attr_size, false, ph) < 0) {
2875 		pr_debug("magic/endian check failed\n");
2876 		return -1;
2877 	}
2878 
2879 	if (ph->needs_swap) {
2880 		mem_bswap_64(header, offsetof(struct perf_file_header,
2881 			     adds_features));
2882 	}
2883 
2884 	if (header->size != sizeof(*header)) {
2885 		/* Support the previous format */
2886 		if (header->size == offsetof(typeof(*header), adds_features))
2887 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
2888 		else
2889 			return -1;
2890 	} else if (ph->needs_swap) {
2891 		/*
2892 		 * feature bitmap is declared as an array of unsigned longs --
2893 		 * not good since its size can differ between the host that
2894 		 * generated the data file and the host analyzing the file.
2895 		 *
2896 		 * We need to handle endianness, but we don't know the size of
2897 		 * the unsigned long where the file was generated. Take a best
2898 		 * guess at determining it: try 64-bit swap first (ie., file
2899 		 * created on a 64-bit host), and check if the hostname feature
2900 		 * bit is set (this feature bit is forced on as of fbe96f2).
2901 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
2902 		 * swap. If the hostname bit is still not set (e.g., older data
2903 		 * file), punt and fallback to the original behavior --
2904 		 * clearing all feature bits and setting buildid.
2905 		 */
2906 		mem_bswap_64(&header->adds_features,
2907 			    BITS_TO_U64(HEADER_FEAT_BITS));
2908 
2909 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
2910 			/* unswap as u64 */
2911 			mem_bswap_64(&header->adds_features,
2912 				    BITS_TO_U64(HEADER_FEAT_BITS));
2913 
2914 			/* unswap as u32 */
2915 			mem_bswap_32(&header->adds_features,
2916 				    BITS_TO_U32(HEADER_FEAT_BITS));
2917 		}
2918 
2919 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
2920 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
2921 			set_bit(HEADER_BUILD_ID, header->adds_features);
2922 		}
2923 	}
2924 
2925 	memcpy(&ph->adds_features, &header->adds_features,
2926 	       sizeof(ph->adds_features));
2927 
2928 	ph->data_offset  = header->data.offset;
2929 	ph->data_size	 = header->data.size;
2930 	ph->feat_offset  = header->data.offset + header->data.size;
2931 	return 0;
2932 }
2933 
2934 static int perf_file_section__process(struct perf_file_section *section,
2935 				      struct perf_header *ph,
2936 				      int feat, int fd, void *data)
2937 {
2938 	struct feat_fd fdd = {
2939 		.fd	= fd,
2940 		.ph	= ph,
2941 		.size	= section->size,
2942 		.offset	= section->offset,
2943 	};
2944 
2945 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2946 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2947 			  "%d, continuing...\n", section->offset, feat);
2948 		return 0;
2949 	}
2950 
2951 	if (feat >= HEADER_LAST_FEATURE) {
2952 		pr_debug("unknown feature %d, continuing...\n", feat);
2953 		return 0;
2954 	}
2955 
2956 	if (!feat_ops[feat].process)
2957 		return 0;
2958 
2959 	return feat_ops[feat].process(&fdd, data);
2960 }
2961 
2962 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
2963 				       struct perf_header *ph, int fd,
2964 				       bool repipe)
2965 {
2966 	struct feat_fd ff = {
2967 		.fd = STDOUT_FILENO,
2968 		.ph = ph,
2969 	};
2970 	ssize_t ret;
2971 
2972 	ret = readn(fd, header, sizeof(*header));
2973 	if (ret <= 0)
2974 		return -1;
2975 
2976 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
2977 		pr_debug("endian/magic failed\n");
2978 		return -1;
2979 	}
2980 
2981 	if (ph->needs_swap)
2982 		header->size = bswap_64(header->size);
2983 
2984 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
2985 		return -1;
2986 
2987 	return 0;
2988 }
2989 
2990 static int perf_header__read_pipe(struct perf_session *session)
2991 {
2992 	struct perf_header *header = &session->header;
2993 	struct perf_pipe_file_header f_header;
2994 
2995 	if (perf_file_header__read_pipe(&f_header, header,
2996 					perf_data__fd(session->data),
2997 					session->repipe) < 0) {
2998 		pr_debug("incompatible file format\n");
2999 		return -EINVAL;
3000 	}
3001 
3002 	return 0;
3003 }
3004 
3005 static int read_attr(int fd, struct perf_header *ph,
3006 		     struct perf_file_attr *f_attr)
3007 {
3008 	struct perf_event_attr *attr = &f_attr->attr;
3009 	size_t sz, left;
3010 	size_t our_sz = sizeof(f_attr->attr);
3011 	ssize_t ret;
3012 
3013 	memset(f_attr, 0, sizeof(*f_attr));
3014 
3015 	/* read minimal guaranteed structure */
3016 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3017 	if (ret <= 0) {
3018 		pr_debug("cannot read %d bytes of header attr\n",
3019 			 PERF_ATTR_SIZE_VER0);
3020 		return -1;
3021 	}
3022 
3023 	/* on file perf_event_attr size */
3024 	sz = attr->size;
3025 
3026 	if (ph->needs_swap)
3027 		sz = bswap_32(sz);
3028 
3029 	if (sz == 0) {
3030 		/* assume ABI0 */
3031 		sz =  PERF_ATTR_SIZE_VER0;
3032 	} else if (sz > our_sz) {
3033 		pr_debug("file uses a more recent and unsupported ABI"
3034 			 " (%zu bytes extra)\n", sz - our_sz);
3035 		return -1;
3036 	}
3037 	/* what we have not yet read and that we know about */
3038 	left = sz - PERF_ATTR_SIZE_VER0;
3039 	if (left) {
3040 		void *ptr = attr;
3041 		ptr += PERF_ATTR_SIZE_VER0;
3042 
3043 		ret = readn(fd, ptr, left);
3044 	}
3045 	/* read perf_file_section, ids are read in caller */
3046 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3047 
3048 	return ret <= 0 ? -1 : 0;
3049 }
3050 
3051 static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
3052 						struct tep_handle *pevent)
3053 {
3054 	struct tep_event *event;
3055 	char bf[128];
3056 
3057 	/* already prepared */
3058 	if (evsel->tp_format)
3059 		return 0;
3060 
3061 	if (pevent == NULL) {
3062 		pr_debug("broken or missing trace data\n");
3063 		return -1;
3064 	}
3065 
3066 	event = tep_find_event(pevent, evsel->attr.config);
3067 	if (event == NULL) {
3068 		pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3069 		return -1;
3070 	}
3071 
3072 	if (!evsel->name) {
3073 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3074 		evsel->name = strdup(bf);
3075 		if (evsel->name == NULL)
3076 			return -1;
3077 	}
3078 
3079 	evsel->tp_format = event;
3080 	return 0;
3081 }
3082 
3083 static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
3084 						  struct tep_handle *pevent)
3085 {
3086 	struct perf_evsel *pos;
3087 
3088 	evlist__for_each_entry(evlist, pos) {
3089 		if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
3090 		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3091 			return -1;
3092 	}
3093 
3094 	return 0;
3095 }
3096 
3097 int perf_session__read_header(struct perf_session *session)
3098 {
3099 	struct perf_data *data = session->data;
3100 	struct perf_header *header = &session->header;
3101 	struct perf_file_header	f_header;
3102 	struct perf_file_attr	f_attr;
3103 	u64			f_id;
3104 	int nr_attrs, nr_ids, i, j;
3105 	int fd = perf_data__fd(data);
3106 
3107 	session->evlist = perf_evlist__new();
3108 	if (session->evlist == NULL)
3109 		return -ENOMEM;
3110 
3111 	session->evlist->env = &header->env;
3112 	session->machines.host.env = &header->env;
3113 	if (perf_data__is_pipe(data))
3114 		return perf_header__read_pipe(session);
3115 
3116 	if (perf_file_header__read(&f_header, header, fd) < 0)
3117 		return -EINVAL;
3118 
3119 	/*
3120 	 * Sanity check that perf.data was written cleanly; data size is
3121 	 * initialized to 0 and updated only if the on_exit function is run.
3122 	 * If data size is still 0 then the file contains only partial
3123 	 * information.  Just warn user and process it as much as it can.
3124 	 */
3125 	if (f_header.data.size == 0) {
3126 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3127 			   "Was the 'perf record' command properly terminated?\n",
3128 			   data->file.path);
3129 	}
3130 
3131 	nr_attrs = f_header.attrs.size / f_header.attr_size;
3132 	lseek(fd, f_header.attrs.offset, SEEK_SET);
3133 
3134 	for (i = 0; i < nr_attrs; i++) {
3135 		struct perf_evsel *evsel;
3136 		off_t tmp;
3137 
3138 		if (read_attr(fd, header, &f_attr) < 0)
3139 			goto out_errno;
3140 
3141 		if (header->needs_swap) {
3142 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3143 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3144 			perf_event__attr_swap(&f_attr.attr);
3145 		}
3146 
3147 		tmp = lseek(fd, 0, SEEK_CUR);
3148 		evsel = perf_evsel__new(&f_attr.attr);
3149 
3150 		if (evsel == NULL)
3151 			goto out_delete_evlist;
3152 
3153 		evsel->needs_swap = header->needs_swap;
3154 		/*
3155 		 * Do it before so that if perf_evsel__alloc_id fails, this
3156 		 * entry gets purged too at perf_evlist__delete().
3157 		 */
3158 		perf_evlist__add(session->evlist, evsel);
3159 
3160 		nr_ids = f_attr.ids.size / sizeof(u64);
3161 		/*
3162 		 * We don't have the cpu and thread maps on the header, so
3163 		 * for allocating the perf_sample_id table we fake 1 cpu and
3164 		 * hattr->ids threads.
3165 		 */
3166 		if (perf_evsel__alloc_id(evsel, 1, nr_ids))
3167 			goto out_delete_evlist;
3168 
3169 		lseek(fd, f_attr.ids.offset, SEEK_SET);
3170 
3171 		for (j = 0; j < nr_ids; j++) {
3172 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3173 				goto out_errno;
3174 
3175 			perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3176 		}
3177 
3178 		lseek(fd, tmp, SEEK_SET);
3179 	}
3180 
3181 	perf_header__process_sections(header, fd, &session->tevent,
3182 				      perf_file_section__process);
3183 
3184 	if (perf_evlist__prepare_tracepoint_events(session->evlist,
3185 						   session->tevent.pevent))
3186 		goto out_delete_evlist;
3187 
3188 	return 0;
3189 out_errno:
3190 	return -errno;
3191 
3192 out_delete_evlist:
3193 	perf_evlist__delete(session->evlist);
3194 	session->evlist = NULL;
3195 	return -ENOMEM;
3196 }
3197 
3198 int perf_event__synthesize_attr(struct perf_tool *tool,
3199 				struct perf_event_attr *attr, u32 ids, u64 *id,
3200 				perf_event__handler_t process)
3201 {
3202 	union perf_event *ev;
3203 	size_t size;
3204 	int err;
3205 
3206 	size = sizeof(struct perf_event_attr);
3207 	size = PERF_ALIGN(size, sizeof(u64));
3208 	size += sizeof(struct perf_event_header);
3209 	size += ids * sizeof(u64);
3210 
3211 	ev = malloc(size);
3212 
3213 	if (ev == NULL)
3214 		return -ENOMEM;
3215 
3216 	ev->attr.attr = *attr;
3217 	memcpy(ev->attr.id, id, ids * sizeof(u64));
3218 
3219 	ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3220 	ev->attr.header.size = (u16)size;
3221 
3222 	if (ev->attr.header.size == size)
3223 		err = process(tool, ev, NULL, NULL);
3224 	else
3225 		err = -E2BIG;
3226 
3227 	free(ev);
3228 
3229 	return err;
3230 }
3231 
3232 int perf_event__synthesize_features(struct perf_tool *tool,
3233 				    struct perf_session *session,
3234 				    struct perf_evlist *evlist,
3235 				    perf_event__handler_t process)
3236 {
3237 	struct perf_header *header = &session->header;
3238 	struct feat_fd ff;
3239 	struct feature_event *fe;
3240 	size_t sz, sz_hdr;
3241 	int feat, ret;
3242 
3243 	sz_hdr = sizeof(fe->header);
3244 	sz = sizeof(union perf_event);
3245 	/* get a nice alignment */
3246 	sz = PERF_ALIGN(sz, page_size);
3247 
3248 	memset(&ff, 0, sizeof(ff));
3249 
3250 	ff.buf = malloc(sz);
3251 	if (!ff.buf)
3252 		return -ENOMEM;
3253 
3254 	ff.size = sz - sz_hdr;
3255 
3256 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3257 		if (!feat_ops[feat].synthesize) {
3258 			pr_debug("No record header feature for header :%d\n", feat);
3259 			continue;
3260 		}
3261 
3262 		ff.offset = sizeof(*fe);
3263 
3264 		ret = feat_ops[feat].write(&ff, evlist);
3265 		if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
3266 			pr_debug("Error writing feature\n");
3267 			continue;
3268 		}
3269 		/* ff.buf may have changed due to realloc in do_write() */
3270 		fe = ff.buf;
3271 		memset(fe, 0, sizeof(*fe));
3272 
3273 		fe->feat_id = feat;
3274 		fe->header.type = PERF_RECORD_HEADER_FEATURE;
3275 		fe->header.size = ff.offset;
3276 
3277 		ret = process(tool, ff.buf, NULL, NULL);
3278 		if (ret) {
3279 			free(ff.buf);
3280 			return ret;
3281 		}
3282 	}
3283 
3284 	/* Send HEADER_LAST_FEATURE mark. */
3285 	fe = ff.buf;
3286 	fe->feat_id     = HEADER_LAST_FEATURE;
3287 	fe->header.type = PERF_RECORD_HEADER_FEATURE;
3288 	fe->header.size = sizeof(*fe);
3289 
3290 	ret = process(tool, ff.buf, NULL, NULL);
3291 
3292 	free(ff.buf);
3293 	return ret;
3294 }
3295 
3296 int perf_event__process_feature(struct perf_session *session,
3297 				union perf_event *event)
3298 {
3299 	struct perf_tool *tool = session->tool;
3300 	struct feat_fd ff = { .fd = 0 };
3301 	struct feature_event *fe = (struct feature_event *)event;
3302 	int type = fe->header.type;
3303 	u64 feat = fe->feat_id;
3304 
3305 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3306 		pr_warning("invalid record type %d in pipe-mode\n", type);
3307 		return 0;
3308 	}
3309 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3310 		pr_warning("invalid record type %d in pipe-mode\n", type);
3311 		return -1;
3312 	}
3313 
3314 	if (!feat_ops[feat].process)
3315 		return 0;
3316 
3317 	ff.buf  = (void *)fe->data;
3318 	ff.size = event->header.size - sizeof(event->header);
3319 	ff.ph = &session->header;
3320 
3321 	if (feat_ops[feat].process(&ff, NULL))
3322 		return -1;
3323 
3324 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3325 		return 0;
3326 
3327 	if (!feat_ops[feat].full_only ||
3328 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3329 		feat_ops[feat].print(&ff, stdout);
3330 	} else {
3331 		fprintf(stdout, "# %s info available, use -I to display\n",
3332 			feat_ops[feat].name);
3333 	}
3334 
3335 	return 0;
3336 }
3337 
3338 static struct event_update_event *
3339 event_update_event__new(size_t size, u64 type, u64 id)
3340 {
3341 	struct event_update_event *ev;
3342 
3343 	size += sizeof(*ev);
3344 	size  = PERF_ALIGN(size, sizeof(u64));
3345 
3346 	ev = zalloc(size);
3347 	if (ev) {
3348 		ev->header.type = PERF_RECORD_EVENT_UPDATE;
3349 		ev->header.size = (u16)size;
3350 		ev->type = type;
3351 		ev->id = id;
3352 	}
3353 	return ev;
3354 }
3355 
3356 int
3357 perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3358 					 struct perf_evsel *evsel,
3359 					 perf_event__handler_t process)
3360 {
3361 	struct event_update_event *ev;
3362 	size_t size = strlen(evsel->unit);
3363 	int err;
3364 
3365 	ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3366 	if (ev == NULL)
3367 		return -ENOMEM;
3368 
3369 	strlcpy(ev->data, evsel->unit, size + 1);
3370 	err = process(tool, (union perf_event *)ev, NULL, NULL);
3371 	free(ev);
3372 	return err;
3373 }
3374 
3375 int
3376 perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3377 					  struct perf_evsel *evsel,
3378 					  perf_event__handler_t process)
3379 {
3380 	struct event_update_event *ev;
3381 	struct event_update_event_scale *ev_data;
3382 	int err;
3383 
3384 	ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3385 	if (ev == NULL)
3386 		return -ENOMEM;
3387 
3388 	ev_data = (struct event_update_event_scale *) ev->data;
3389 	ev_data->scale = evsel->scale;
3390 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3391 	free(ev);
3392 	return err;
3393 }
3394 
3395 int
3396 perf_event__synthesize_event_update_name(struct perf_tool *tool,
3397 					 struct perf_evsel *evsel,
3398 					 perf_event__handler_t process)
3399 {
3400 	struct event_update_event *ev;
3401 	size_t len = strlen(evsel->name);
3402 	int err;
3403 
3404 	ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3405 	if (ev == NULL)
3406 		return -ENOMEM;
3407 
3408 	strlcpy(ev->data, evsel->name, len + 1);
3409 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3410 	free(ev);
3411 	return err;
3412 }
3413 
3414 int
3415 perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3416 					struct perf_evsel *evsel,
3417 					perf_event__handler_t process)
3418 {
3419 	size_t size = sizeof(struct event_update_event);
3420 	struct event_update_event *ev;
3421 	int max, err;
3422 	u16 type;
3423 
3424 	if (!evsel->own_cpus)
3425 		return 0;
3426 
3427 	ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
3428 	if (!ev)
3429 		return -ENOMEM;
3430 
3431 	ev->header.type = PERF_RECORD_EVENT_UPDATE;
3432 	ev->header.size = (u16)size;
3433 	ev->type = PERF_EVENT_UPDATE__CPUS;
3434 	ev->id   = evsel->id[0];
3435 
3436 	cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3437 				 evsel->own_cpus,
3438 				 type, max);
3439 
3440 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3441 	free(ev);
3442 	return err;
3443 }
3444 
3445 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3446 {
3447 	struct event_update_event *ev = &event->event_update;
3448 	struct event_update_event_scale *ev_scale;
3449 	struct event_update_event_cpus *ev_cpus;
3450 	struct cpu_map *map;
3451 	size_t ret;
3452 
3453 	ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);
3454 
3455 	switch (ev->type) {
3456 	case PERF_EVENT_UPDATE__SCALE:
3457 		ev_scale = (struct event_update_event_scale *) ev->data;
3458 		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3459 		break;
3460 	case PERF_EVENT_UPDATE__UNIT:
3461 		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3462 		break;
3463 	case PERF_EVENT_UPDATE__NAME:
3464 		ret += fprintf(fp, "... name:  %s\n", ev->data);
3465 		break;
3466 	case PERF_EVENT_UPDATE__CPUS:
3467 		ev_cpus = (struct event_update_event_cpus *) ev->data;
3468 		ret += fprintf(fp, "... ");
3469 
3470 		map = cpu_map__new_data(&ev_cpus->cpus);
3471 		if (map)
3472 			ret += cpu_map__fprintf(map, fp);
3473 		else
3474 			ret += fprintf(fp, "failed to get cpus\n");
3475 		break;
3476 	default:
3477 		ret += fprintf(fp, "... unknown type\n");
3478 		break;
3479 	}
3480 
3481 	return ret;
3482 }
3483 
3484 int perf_event__synthesize_attrs(struct perf_tool *tool,
3485 				 struct perf_evlist *evlist,
3486 				 perf_event__handler_t process)
3487 {
3488 	struct perf_evsel *evsel;
3489 	int err = 0;
3490 
3491 	evlist__for_each_entry(evlist, evsel) {
3492 		err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
3493 						  evsel->id, process);
3494 		if (err) {
3495 			pr_debug("failed to create perf header attribute\n");
3496 			return err;
3497 		}
3498 	}
3499 
3500 	return err;
3501 }
3502 
3503 static bool has_unit(struct perf_evsel *counter)
3504 {
3505 	return counter->unit && *counter->unit;
3506 }
3507 
3508 static bool has_scale(struct perf_evsel *counter)
3509 {
3510 	return counter->scale != 1;
3511 }
3512 
3513 int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3514 				      struct perf_evlist *evsel_list,
3515 				      perf_event__handler_t process,
3516 				      bool is_pipe)
3517 {
3518 	struct perf_evsel *counter;
3519 	int err;
3520 
3521 	/*
3522 	 * Synthesize other events stuff not carried within
3523 	 * attr event - unit, scale, name
3524 	 */
3525 	evlist__for_each_entry(evsel_list, counter) {
3526 		if (!counter->supported)
3527 			continue;
3528 
3529 		/*
3530 		 * Synthesize unit and scale only if it's defined.
3531 		 */
3532 		if (has_unit(counter)) {
3533 			err = perf_event__synthesize_event_update_unit(tool, counter, process);
3534 			if (err < 0) {
3535 				pr_err("Couldn't synthesize evsel unit.\n");
3536 				return err;
3537 			}
3538 		}
3539 
3540 		if (has_scale(counter)) {
3541 			err = perf_event__synthesize_event_update_scale(tool, counter, process);
3542 			if (err < 0) {
3543 				pr_err("Couldn't synthesize evsel counter.\n");
3544 				return err;
3545 			}
3546 		}
3547 
3548 		if (counter->own_cpus) {
3549 			err = perf_event__synthesize_event_update_cpus(tool, counter, process);
3550 			if (err < 0) {
3551 				pr_err("Couldn't synthesize evsel cpus.\n");
3552 				return err;
3553 			}
3554 		}
3555 
3556 		/*
3557 		 * Name is needed only for pipe output,
3558 		 * perf.data carries event names.
3559 		 */
3560 		if (is_pipe) {
3561 			err = perf_event__synthesize_event_update_name(tool, counter, process);
3562 			if (err < 0) {
3563 				pr_err("Couldn't synthesize evsel name.\n");
3564 				return err;
3565 			}
3566 		}
3567 	}
3568 	return 0;
3569 }
3570 
3571 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3572 			     union perf_event *event,
3573 			     struct perf_evlist **pevlist)
3574 {
3575 	u32 i, ids, n_ids;
3576 	struct perf_evsel *evsel;
3577 	struct perf_evlist *evlist = *pevlist;
3578 
3579 	if (evlist == NULL) {
3580 		*pevlist = evlist = perf_evlist__new();
3581 		if (evlist == NULL)
3582 			return -ENOMEM;
3583 	}
3584 
3585 	evsel = perf_evsel__new(&event->attr.attr);
3586 	if (evsel == NULL)
3587 		return -ENOMEM;
3588 
3589 	perf_evlist__add(evlist, evsel);
3590 
3591 	ids = event->header.size;
3592 	ids -= (void *)&event->attr.id - (void *)event;
3593 	n_ids = ids / sizeof(u64);
3594 	/*
3595 	 * We don't have the cpu and thread maps on the header, so
3596 	 * for allocating the perf_sample_id table we fake 1 cpu and
3597 	 * hattr->ids threads.
3598 	 */
3599 	if (perf_evsel__alloc_id(evsel, 1, n_ids))
3600 		return -ENOMEM;
3601 
3602 	for (i = 0; i < n_ids; i++) {
3603 		perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
3604 	}
3605 
3606 	return 0;
3607 }
3608 
3609 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3610 				     union perf_event *event,
3611 				     struct perf_evlist **pevlist)
3612 {
3613 	struct event_update_event *ev = &event->event_update;
3614 	struct event_update_event_scale *ev_scale;
3615 	struct event_update_event_cpus *ev_cpus;
3616 	struct perf_evlist *evlist;
3617 	struct perf_evsel *evsel;
3618 	struct cpu_map *map;
3619 
3620 	if (!pevlist || *pevlist == NULL)
3621 		return -EINVAL;
3622 
3623 	evlist = *pevlist;
3624 
3625 	evsel = perf_evlist__id2evsel(evlist, ev->id);
3626 	if (evsel == NULL)
3627 		return -EINVAL;
3628 
3629 	switch (ev->type) {
3630 	case PERF_EVENT_UPDATE__UNIT:
3631 		evsel->unit = strdup(ev->data);
3632 		break;
3633 	case PERF_EVENT_UPDATE__NAME:
3634 		evsel->name = strdup(ev->data);
3635 		break;
3636 	case PERF_EVENT_UPDATE__SCALE:
3637 		ev_scale = (struct event_update_event_scale *) ev->data;
3638 		evsel->scale = ev_scale->scale;
3639 		break;
3640 	case PERF_EVENT_UPDATE__CPUS:
3641 		ev_cpus = (struct event_update_event_cpus *) ev->data;
3642 
3643 		map = cpu_map__new_data(&ev_cpus->cpus);
3644 		if (map)
3645 			evsel->own_cpus = map;
3646 		else
3647 			pr_err("failed to get event_update cpus\n");
3648 	default:
3649 		break;
3650 	}
3651 
3652 	return 0;
3653 }
3654 
3655 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
3656 					struct perf_evlist *evlist,
3657 					perf_event__handler_t process)
3658 {
3659 	union perf_event ev;
3660 	struct tracing_data *tdata;
3661 	ssize_t size = 0, aligned_size = 0, padding;
3662 	struct feat_fd ff;
3663 	int err __maybe_unused = 0;
3664 
3665 	/*
3666 	 * We are going to store the size of the data followed
3667 	 * by the data contents. Since the fd descriptor is a pipe,
3668 	 * we cannot seek back to store the size of the data once
3669 	 * we know it. Instead we:
3670 	 *
3671 	 * - write the tracing data to the temp file
3672 	 * - get/write the data size to pipe
3673 	 * - write the tracing data from the temp file
3674 	 *   to the pipe
3675 	 */
3676 	tdata = tracing_data_get(&evlist->entries, fd, true);
3677 	if (!tdata)
3678 		return -1;
3679 
3680 	memset(&ev, 0, sizeof(ev));
3681 
3682 	ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
3683 	size = tdata->size;
3684 	aligned_size = PERF_ALIGN(size, sizeof(u64));
3685 	padding = aligned_size - size;
3686 	ev.tracing_data.header.size = sizeof(ev.tracing_data);
3687 	ev.tracing_data.size = aligned_size;
3688 
3689 	process(tool, &ev, NULL, NULL);
3690 
3691 	/*
3692 	 * The put function will copy all the tracing data
3693 	 * stored in temp file to the pipe.
3694 	 */
3695 	tracing_data_put(tdata);
3696 
3697 	ff = (struct feat_fd){ .fd = fd };
3698 	if (write_padded(&ff, NULL, 0, padding))
3699 		return -1;
3700 
3701 	return aligned_size;
3702 }
3703 
3704 int perf_event__process_tracing_data(struct perf_session *session,
3705 				     union perf_event *event)
3706 {
3707 	ssize_t size_read, padding, size = event->tracing_data.size;
3708 	int fd = perf_data__fd(session->data);
3709 	off_t offset = lseek(fd, 0, SEEK_CUR);
3710 	char buf[BUFSIZ];
3711 
3712 	/* setup for reading amidst mmap */
3713 	lseek(fd, offset + sizeof(struct tracing_data_event),
3714 	      SEEK_SET);
3715 
3716 	size_read = trace_report(fd, &session->tevent,
3717 				 session->repipe);
3718 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3719 
3720 	if (readn(fd, buf, padding) < 0) {
3721 		pr_err("%s: reading input file", __func__);
3722 		return -1;
3723 	}
3724 	if (session->repipe) {
3725 		int retw = write(STDOUT_FILENO, buf, padding);
3726 		if (retw <= 0 || retw != padding) {
3727 			pr_err("%s: repiping tracing data padding", __func__);
3728 			return -1;
3729 		}
3730 	}
3731 
3732 	if (size_read + padding != size) {
3733 		pr_err("%s: tracing data size mismatch", __func__);
3734 		return -1;
3735 	}
3736 
3737 	perf_evlist__prepare_tracepoint_events(session->evlist,
3738 					       session->tevent.pevent);
3739 
3740 	return size_read + padding;
3741 }
3742 
3743 int perf_event__synthesize_build_id(struct perf_tool *tool,
3744 				    struct dso *pos, u16 misc,
3745 				    perf_event__handler_t process,
3746 				    struct machine *machine)
3747 {
3748 	union perf_event ev;
3749 	size_t len;
3750 	int err = 0;
3751 
3752 	if (!pos->hit)
3753 		return err;
3754 
3755 	memset(&ev, 0, sizeof(ev));
3756 
3757 	len = pos->long_name_len + 1;
3758 	len = PERF_ALIGN(len, NAME_ALIGN);
3759 	memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
3760 	ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
3761 	ev.build_id.header.misc = misc;
3762 	ev.build_id.pid = machine->pid;
3763 	ev.build_id.header.size = sizeof(ev.build_id) + len;
3764 	memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
3765 
3766 	err = process(tool, &ev, NULL, machine);
3767 
3768 	return err;
3769 }
3770 
3771 int perf_event__process_build_id(struct perf_session *session,
3772 				 union perf_event *event)
3773 {
3774 	__event_process_build_id(&event->build_id,
3775 				 event->build_id.filename,
3776 				 session);
3777 	return 0;
3778 }
3779