xref: /openbmc/linux/tools/perf/util/header.c (revision 49f3806d89e4cf9e330b6f2e39db1c913a8fd25a)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <regex.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/string.h>
17 #include <linux/stringify.h>
18 #include <linux/zalloc.h>
19 #include <sys/stat.h>
20 #include <sys/utsname.h>
21 #include <linux/time64.h>
22 #include <dirent.h>
23 #ifdef HAVE_LIBBPF_SUPPORT
24 #include <bpf/libbpf.h>
25 #endif
26 #include <perf/cpumap.h>
27 #include <tools/libc_compat.h> // reallocarray
28 
29 #include "dso.h"
30 #include "evlist.h"
31 #include "evsel.h"
32 #include "util/evsel_fprintf.h"
33 #include "header.h"
34 #include "memswap.h"
35 #include "trace-event.h"
36 #include "session.h"
37 #include "symbol.h"
38 #include "debug.h"
39 #include "cpumap.h"
40 #include "pmu.h"
41 #include "pmus.h"
42 #include "vdso.h"
43 #include "strbuf.h"
44 #include "build-id.h"
45 #include "data.h"
46 #include <api/fs/fs.h>
47 #include "asm/bug.h"
48 #include "tool.h"
49 #include "time-utils.h"
50 #include "units.h"
51 #include "util/util.h" // perf_exe()
52 #include "cputopo.h"
53 #include "bpf-event.h"
54 #include "bpf-utils.h"
55 #include "clockid.h"
56 
57 #include <linux/ctype.h>
58 #include <internal/lib.h>
59 
60 #ifdef HAVE_LIBTRACEEVENT
61 #include <traceevent/event-parse.h>
62 #endif
63 
64 /*
65  * magic2 = "PERFILE2"
66  * must be a numerical value to let the endianness
67  * determine the memory layout. That way we are able
68  * to detect endianness when reading the perf.data file
69  * back.
70  *
71  * we check for legacy (PERFFILE) format.
72  */
73 static const char *__perf_magic1 = "PERFFILE";
74 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
75 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
76 
77 #define PERF_MAGIC	__perf_magic2
78 
79 const char perf_version_string[] = PERF_VERSION;
80 
81 struct perf_file_attr {
82 	struct perf_event_attr	attr;
83 	struct perf_file_section	ids;
84 };
85 
86 void perf_header__set_feat(struct perf_header *header, int feat)
87 {
88 	__set_bit(feat, header->adds_features);
89 }
90 
91 void perf_header__clear_feat(struct perf_header *header, int feat)
92 {
93 	__clear_bit(feat, header->adds_features);
94 }
95 
96 bool perf_header__has_feat(const struct perf_header *header, int feat)
97 {
98 	return test_bit(feat, header->adds_features);
99 }
100 
101 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
102 {
103 	ssize_t ret = writen(ff->fd, buf, size);
104 
105 	if (ret != (ssize_t)size)
106 		return ret < 0 ? (int)ret : -1;
107 	return 0;
108 }
109 
110 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
111 {
112 	/* struct perf_event_header::size is u16 */
113 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
114 	size_t new_size = ff->size;
115 	void *addr;
116 
117 	if (size + ff->offset > max_size)
118 		return -E2BIG;
119 
120 	while (size > (new_size - ff->offset))
121 		new_size <<= 1;
122 	new_size = min(max_size, new_size);
123 
124 	if (ff->size < new_size) {
125 		addr = realloc(ff->buf, new_size);
126 		if (!addr)
127 			return -ENOMEM;
128 		ff->buf = addr;
129 		ff->size = new_size;
130 	}
131 
132 	memcpy(ff->buf + ff->offset, buf, size);
133 	ff->offset += size;
134 
135 	return 0;
136 }
137 
138 /* Return: 0 if succeeded, -ERR if failed. */
139 int do_write(struct feat_fd *ff, const void *buf, size_t size)
140 {
141 	if (!ff->buf)
142 		return __do_write_fd(ff, buf, size);
143 	return __do_write_buf(ff, buf, size);
144 }
145 
146 /* Return: 0 if succeeded, -ERR if failed. */
147 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
148 {
149 	u64 *p = (u64 *) set;
150 	int i, ret;
151 
152 	ret = do_write(ff, &size, sizeof(size));
153 	if (ret < 0)
154 		return ret;
155 
156 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
157 		ret = do_write(ff, p + i, sizeof(*p));
158 		if (ret < 0)
159 			return ret;
160 	}
161 
162 	return 0;
163 }
164 
165 /* Return: 0 if succeeded, -ERR if failed. */
166 int write_padded(struct feat_fd *ff, const void *bf,
167 		 size_t count, size_t count_aligned)
168 {
169 	static const char zero_buf[NAME_ALIGN];
170 	int err = do_write(ff, bf, count);
171 
172 	if (!err)
173 		err = do_write(ff, zero_buf, count_aligned - count);
174 
175 	return err;
176 }
177 
178 #define string_size(str)						\
179 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
180 
181 /* Return: 0 if succeeded, -ERR if failed. */
182 static int do_write_string(struct feat_fd *ff, const char *str)
183 {
184 	u32 len, olen;
185 	int ret;
186 
187 	olen = strlen(str) + 1;
188 	len = PERF_ALIGN(olen, NAME_ALIGN);
189 
190 	/* write len, incl. \0 */
191 	ret = do_write(ff, &len, sizeof(len));
192 	if (ret < 0)
193 		return ret;
194 
195 	return write_padded(ff, str, olen, len);
196 }
197 
198 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
199 {
200 	ssize_t ret = readn(ff->fd, addr, size);
201 
202 	if (ret != size)
203 		return ret < 0 ? (int)ret : -1;
204 	return 0;
205 }
206 
207 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
208 {
209 	if (size > (ssize_t)ff->size - ff->offset)
210 		return -1;
211 
212 	memcpy(addr, ff->buf + ff->offset, size);
213 	ff->offset += size;
214 
215 	return 0;
216 
217 }
218 
219 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
220 {
221 	if (!ff->buf)
222 		return __do_read_fd(ff, addr, size);
223 	return __do_read_buf(ff, addr, size);
224 }
225 
226 static int do_read_u32(struct feat_fd *ff, u32 *addr)
227 {
228 	int ret;
229 
230 	ret = __do_read(ff, addr, sizeof(*addr));
231 	if (ret)
232 		return ret;
233 
234 	if (ff->ph->needs_swap)
235 		*addr = bswap_32(*addr);
236 	return 0;
237 }
238 
239 static int do_read_u64(struct feat_fd *ff, u64 *addr)
240 {
241 	int ret;
242 
243 	ret = __do_read(ff, addr, sizeof(*addr));
244 	if (ret)
245 		return ret;
246 
247 	if (ff->ph->needs_swap)
248 		*addr = bswap_64(*addr);
249 	return 0;
250 }
251 
252 static char *do_read_string(struct feat_fd *ff)
253 {
254 	u32 len;
255 	char *buf;
256 
257 	if (do_read_u32(ff, &len))
258 		return NULL;
259 
260 	buf = malloc(len);
261 	if (!buf)
262 		return NULL;
263 
264 	if (!__do_read(ff, buf, len)) {
265 		/*
266 		 * strings are padded by zeroes
267 		 * thus the actual strlen of buf
268 		 * may be less than len
269 		 */
270 		return buf;
271 	}
272 
273 	free(buf);
274 	return NULL;
275 }
276 
277 /* Return: 0 if succeeded, -ERR if failed. */
278 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
279 {
280 	unsigned long *set;
281 	u64 size, *p;
282 	int i, ret;
283 
284 	ret = do_read_u64(ff, &size);
285 	if (ret)
286 		return ret;
287 
288 	set = bitmap_zalloc(size);
289 	if (!set)
290 		return -ENOMEM;
291 
292 	p = (u64 *) set;
293 
294 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
295 		ret = do_read_u64(ff, p + i);
296 		if (ret < 0) {
297 			free(set);
298 			return ret;
299 		}
300 	}
301 
302 	*pset  = set;
303 	*psize = size;
304 	return 0;
305 }
306 
307 #ifdef HAVE_LIBTRACEEVENT
308 static int write_tracing_data(struct feat_fd *ff,
309 			      struct evlist *evlist)
310 {
311 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
312 		return -1;
313 
314 	return read_tracing_data(ff->fd, &evlist->core.entries);
315 }
316 #endif
317 
318 static int write_build_id(struct feat_fd *ff,
319 			  struct evlist *evlist __maybe_unused)
320 {
321 	struct perf_session *session;
322 	int err;
323 
324 	session = container_of(ff->ph, struct perf_session, header);
325 
326 	if (!perf_session__read_build_ids(session, true))
327 		return -1;
328 
329 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
330 		return -1;
331 
332 	err = perf_session__write_buildid_table(session, ff);
333 	if (err < 0) {
334 		pr_debug("failed to write buildid table\n");
335 		return err;
336 	}
337 	perf_session__cache_build_ids(session);
338 
339 	return 0;
340 }
341 
342 static int write_hostname(struct feat_fd *ff,
343 			  struct evlist *evlist __maybe_unused)
344 {
345 	struct utsname uts;
346 	int ret;
347 
348 	ret = uname(&uts);
349 	if (ret < 0)
350 		return -1;
351 
352 	return do_write_string(ff, uts.nodename);
353 }
354 
355 static int write_osrelease(struct feat_fd *ff,
356 			   struct evlist *evlist __maybe_unused)
357 {
358 	struct utsname uts;
359 	int ret;
360 
361 	ret = uname(&uts);
362 	if (ret < 0)
363 		return -1;
364 
365 	return do_write_string(ff, uts.release);
366 }
367 
368 static int write_arch(struct feat_fd *ff,
369 		      struct evlist *evlist __maybe_unused)
370 {
371 	struct utsname uts;
372 	int ret;
373 
374 	ret = uname(&uts);
375 	if (ret < 0)
376 		return -1;
377 
378 	return do_write_string(ff, uts.machine);
379 }
380 
381 static int write_version(struct feat_fd *ff,
382 			 struct evlist *evlist __maybe_unused)
383 {
384 	return do_write_string(ff, perf_version_string);
385 }
386 
387 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
388 {
389 	FILE *file;
390 	char *buf = NULL;
391 	char *s, *p;
392 	const char *search = cpuinfo_proc;
393 	size_t len = 0;
394 	int ret = -1;
395 
396 	if (!search)
397 		return -1;
398 
399 	file = fopen("/proc/cpuinfo", "r");
400 	if (!file)
401 		return -1;
402 
403 	while (getline(&buf, &len, file) > 0) {
404 		ret = strncmp(buf, search, strlen(search));
405 		if (!ret)
406 			break;
407 	}
408 
409 	if (ret) {
410 		ret = -1;
411 		goto done;
412 	}
413 
414 	s = buf;
415 
416 	p = strchr(buf, ':');
417 	if (p && *(p+1) == ' ' && *(p+2))
418 		s = p + 2;
419 	p = strchr(s, '\n');
420 	if (p)
421 		*p = '\0';
422 
423 	/* squash extra space characters (branding string) */
424 	p = s;
425 	while (*p) {
426 		if (isspace(*p)) {
427 			char *r = p + 1;
428 			char *q = skip_spaces(r);
429 			*p = ' ';
430 			if (q != (p+1))
431 				while ((*r++ = *q++));
432 		}
433 		p++;
434 	}
435 	ret = do_write_string(ff, s);
436 done:
437 	free(buf);
438 	fclose(file);
439 	return ret;
440 }
441 
442 static int write_cpudesc(struct feat_fd *ff,
443 		       struct evlist *evlist __maybe_unused)
444 {
445 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
446 #define CPUINFO_PROC	{ "cpu", }
447 #elif defined(__s390__)
448 #define CPUINFO_PROC	{ "vendor_id", }
449 #elif defined(__sh__)
450 #define CPUINFO_PROC	{ "cpu type", }
451 #elif defined(__alpha__) || defined(__mips__)
452 #define CPUINFO_PROC	{ "cpu model", }
453 #elif defined(__arm__)
454 #define CPUINFO_PROC	{ "model name", "Processor", }
455 #elif defined(__arc__)
456 #define CPUINFO_PROC	{ "Processor", }
457 #elif defined(__xtensa__)
458 #define CPUINFO_PROC	{ "core ID", }
459 #else
460 #define CPUINFO_PROC	{ "model name", }
461 #endif
462 	const char *cpuinfo_procs[] = CPUINFO_PROC;
463 #undef CPUINFO_PROC
464 	unsigned int i;
465 
466 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
467 		int ret;
468 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
469 		if (ret >= 0)
470 			return ret;
471 	}
472 	return -1;
473 }
474 
475 
476 static int write_nrcpus(struct feat_fd *ff,
477 			struct evlist *evlist __maybe_unused)
478 {
479 	long nr;
480 	u32 nrc, nra;
481 	int ret;
482 
483 	nrc = cpu__max_present_cpu().cpu;
484 
485 	nr = sysconf(_SC_NPROCESSORS_ONLN);
486 	if (nr < 0)
487 		return -1;
488 
489 	nra = (u32)(nr & UINT_MAX);
490 
491 	ret = do_write(ff, &nrc, sizeof(nrc));
492 	if (ret < 0)
493 		return ret;
494 
495 	return do_write(ff, &nra, sizeof(nra));
496 }
497 
498 static int write_event_desc(struct feat_fd *ff,
499 			    struct evlist *evlist)
500 {
501 	struct evsel *evsel;
502 	u32 nre, nri, sz;
503 	int ret;
504 
505 	nre = evlist->core.nr_entries;
506 
507 	/*
508 	 * write number of events
509 	 */
510 	ret = do_write(ff, &nre, sizeof(nre));
511 	if (ret < 0)
512 		return ret;
513 
514 	/*
515 	 * size of perf_event_attr struct
516 	 */
517 	sz = (u32)sizeof(evsel->core.attr);
518 	ret = do_write(ff, &sz, sizeof(sz));
519 	if (ret < 0)
520 		return ret;
521 
522 	evlist__for_each_entry(evlist, evsel) {
523 		ret = do_write(ff, &evsel->core.attr, sz);
524 		if (ret < 0)
525 			return ret;
526 		/*
527 		 * write number of unique id per event
528 		 * there is one id per instance of an event
529 		 *
530 		 * copy into an nri to be independent of the
531 		 * type of ids,
532 		 */
533 		nri = evsel->core.ids;
534 		ret = do_write(ff, &nri, sizeof(nri));
535 		if (ret < 0)
536 			return ret;
537 
538 		/*
539 		 * write event string as passed on cmdline
540 		 */
541 		ret = do_write_string(ff, evsel__name(evsel));
542 		if (ret < 0)
543 			return ret;
544 		/*
545 		 * write unique ids for this event
546 		 */
547 		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
548 		if (ret < 0)
549 			return ret;
550 	}
551 	return 0;
552 }
553 
554 static int write_cmdline(struct feat_fd *ff,
555 			 struct evlist *evlist __maybe_unused)
556 {
557 	char pbuf[MAXPATHLEN], *buf;
558 	int i, ret, n;
559 
560 	/* actual path to perf binary */
561 	buf = perf_exe(pbuf, MAXPATHLEN);
562 
563 	/* account for binary path */
564 	n = perf_env.nr_cmdline + 1;
565 
566 	ret = do_write(ff, &n, sizeof(n));
567 	if (ret < 0)
568 		return ret;
569 
570 	ret = do_write_string(ff, buf);
571 	if (ret < 0)
572 		return ret;
573 
574 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
575 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
576 		if (ret < 0)
577 			return ret;
578 	}
579 	return 0;
580 }
581 
582 
583 static int write_cpu_topology(struct feat_fd *ff,
584 			      struct evlist *evlist __maybe_unused)
585 {
586 	struct cpu_topology *tp;
587 	u32 i;
588 	int ret, j;
589 
590 	tp = cpu_topology__new();
591 	if (!tp)
592 		return -1;
593 
594 	ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
595 	if (ret < 0)
596 		goto done;
597 
598 	for (i = 0; i < tp->package_cpus_lists; i++) {
599 		ret = do_write_string(ff, tp->package_cpus_list[i]);
600 		if (ret < 0)
601 			goto done;
602 	}
603 	ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
604 	if (ret < 0)
605 		goto done;
606 
607 	for (i = 0; i < tp->core_cpus_lists; i++) {
608 		ret = do_write_string(ff, tp->core_cpus_list[i]);
609 		if (ret < 0)
610 			break;
611 	}
612 
613 	ret = perf_env__read_cpu_topology_map(&perf_env);
614 	if (ret < 0)
615 		goto done;
616 
617 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
618 		ret = do_write(ff, &perf_env.cpu[j].core_id,
619 			       sizeof(perf_env.cpu[j].core_id));
620 		if (ret < 0)
621 			return ret;
622 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
623 			       sizeof(perf_env.cpu[j].socket_id));
624 		if (ret < 0)
625 			return ret;
626 	}
627 
628 	if (!tp->die_cpus_lists)
629 		goto done;
630 
631 	ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
632 	if (ret < 0)
633 		goto done;
634 
635 	for (i = 0; i < tp->die_cpus_lists; i++) {
636 		ret = do_write_string(ff, tp->die_cpus_list[i]);
637 		if (ret < 0)
638 			goto done;
639 	}
640 
641 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
642 		ret = do_write(ff, &perf_env.cpu[j].die_id,
643 			       sizeof(perf_env.cpu[j].die_id));
644 		if (ret < 0)
645 			return ret;
646 	}
647 
648 done:
649 	cpu_topology__delete(tp);
650 	return ret;
651 }
652 
653 
654 
655 static int write_total_mem(struct feat_fd *ff,
656 			   struct evlist *evlist __maybe_unused)
657 {
658 	char *buf = NULL;
659 	FILE *fp;
660 	size_t len = 0;
661 	int ret = -1, n;
662 	uint64_t mem;
663 
664 	fp = fopen("/proc/meminfo", "r");
665 	if (!fp)
666 		return -1;
667 
668 	while (getline(&buf, &len, fp) > 0) {
669 		ret = strncmp(buf, "MemTotal:", 9);
670 		if (!ret)
671 			break;
672 	}
673 	if (!ret) {
674 		n = sscanf(buf, "%*s %"PRIu64, &mem);
675 		if (n == 1)
676 			ret = do_write(ff, &mem, sizeof(mem));
677 	} else
678 		ret = -1;
679 	free(buf);
680 	fclose(fp);
681 	return ret;
682 }
683 
684 static int write_numa_topology(struct feat_fd *ff,
685 			       struct evlist *evlist __maybe_unused)
686 {
687 	struct numa_topology *tp;
688 	int ret = -1;
689 	u32 i;
690 
691 	tp = numa_topology__new();
692 	if (!tp)
693 		return -ENOMEM;
694 
695 	ret = do_write(ff, &tp->nr, sizeof(u32));
696 	if (ret < 0)
697 		goto err;
698 
699 	for (i = 0; i < tp->nr; i++) {
700 		struct numa_topology_node *n = &tp->nodes[i];
701 
702 		ret = do_write(ff, &n->node, sizeof(u32));
703 		if (ret < 0)
704 			goto err;
705 
706 		ret = do_write(ff, &n->mem_total, sizeof(u64));
707 		if (ret)
708 			goto err;
709 
710 		ret = do_write(ff, &n->mem_free, sizeof(u64));
711 		if (ret)
712 			goto err;
713 
714 		ret = do_write_string(ff, n->cpus);
715 		if (ret < 0)
716 			goto err;
717 	}
718 
719 	ret = 0;
720 
721 err:
722 	numa_topology__delete(tp);
723 	return ret;
724 }
725 
726 /*
727  * File format:
728  *
729  * struct pmu_mappings {
730  *	u32	pmu_num;
731  *	struct pmu_map {
732  *		u32	type;
733  *		char	name[];
734  *	}[pmu_num];
735  * };
736  */
737 
738 static int write_pmu_mappings(struct feat_fd *ff,
739 			      struct evlist *evlist __maybe_unused)
740 {
741 	struct perf_pmu *pmu = NULL;
742 	u32 pmu_num = 0;
743 	int ret;
744 
745 	/*
746 	 * Do a first pass to count number of pmu to avoid lseek so this
747 	 * works in pipe mode as well.
748 	 */
749 	while ((pmu = perf_pmus__scan(pmu))) {
750 		if (!pmu->name)
751 			continue;
752 		pmu_num++;
753 	}
754 
755 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
756 	if (ret < 0)
757 		return ret;
758 
759 	while ((pmu = perf_pmus__scan(pmu))) {
760 		if (!pmu->name)
761 			continue;
762 
763 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
764 		if (ret < 0)
765 			return ret;
766 
767 		ret = do_write_string(ff, pmu->name);
768 		if (ret < 0)
769 			return ret;
770 	}
771 
772 	return 0;
773 }
774 
775 /*
776  * File format:
777  *
778  * struct group_descs {
779  *	u32	nr_groups;
780  *	struct group_desc {
781  *		char	name[];
782  *		u32	leader_idx;
783  *		u32	nr_members;
784  *	}[nr_groups];
785  * };
786  */
787 static int write_group_desc(struct feat_fd *ff,
788 			    struct evlist *evlist)
789 {
790 	u32 nr_groups = evlist__nr_groups(evlist);
791 	struct evsel *evsel;
792 	int ret;
793 
794 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
795 	if (ret < 0)
796 		return ret;
797 
798 	evlist__for_each_entry(evlist, evsel) {
799 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
800 			const char *name = evsel->group_name ?: "{anon_group}";
801 			u32 leader_idx = evsel->core.idx;
802 			u32 nr_members = evsel->core.nr_members;
803 
804 			ret = do_write_string(ff, name);
805 			if (ret < 0)
806 				return ret;
807 
808 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
809 			if (ret < 0)
810 				return ret;
811 
812 			ret = do_write(ff, &nr_members, sizeof(nr_members));
813 			if (ret < 0)
814 				return ret;
815 		}
816 	}
817 	return 0;
818 }
819 
820 /*
821  * Return the CPU id as a raw string.
822  *
823  * Each architecture should provide a more precise id string that
824  * can be use to match the architecture's "mapfile".
825  */
826 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
827 {
828 	return NULL;
829 }
830 
831 /* Return zero when the cpuid from the mapfile.csv matches the
832  * cpuid string generated on this platform.
833  * Otherwise return non-zero.
834  */
835 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
836 {
837 	regex_t re;
838 	regmatch_t pmatch[1];
839 	int match;
840 
841 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
842 		/* Warn unable to generate match particular string. */
843 		pr_info("Invalid regular expression %s\n", mapcpuid);
844 		return 1;
845 	}
846 
847 	match = !regexec(&re, cpuid, 1, pmatch, 0);
848 	regfree(&re);
849 	if (match) {
850 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
851 
852 		/* Verify the entire string matched. */
853 		if (match_len == strlen(cpuid))
854 			return 0;
855 	}
856 	return 1;
857 }
858 
859 /*
860  * default get_cpuid(): nothing gets recorded
861  * actual implementation must be in arch/$(SRCARCH)/util/header.c
862  */
863 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
864 {
865 	return ENOSYS; /* Not implemented */
866 }
867 
868 static int write_cpuid(struct feat_fd *ff,
869 		       struct evlist *evlist __maybe_unused)
870 {
871 	char buffer[64];
872 	int ret;
873 
874 	ret = get_cpuid(buffer, sizeof(buffer));
875 	if (ret)
876 		return -1;
877 
878 	return do_write_string(ff, buffer);
879 }
880 
881 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
882 			      struct evlist *evlist __maybe_unused)
883 {
884 	return 0;
885 }
886 
887 static int write_auxtrace(struct feat_fd *ff,
888 			  struct evlist *evlist __maybe_unused)
889 {
890 	struct perf_session *session;
891 	int err;
892 
893 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
894 		return -1;
895 
896 	session = container_of(ff->ph, struct perf_session, header);
897 
898 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
899 	if (err < 0)
900 		pr_err("Failed to write auxtrace index\n");
901 	return err;
902 }
903 
904 static int write_clockid(struct feat_fd *ff,
905 			 struct evlist *evlist __maybe_unused)
906 {
907 	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
908 			sizeof(ff->ph->env.clock.clockid_res_ns));
909 }
910 
911 static int write_clock_data(struct feat_fd *ff,
912 			    struct evlist *evlist __maybe_unused)
913 {
914 	u64 *data64;
915 	u32 data32;
916 	int ret;
917 
918 	/* version */
919 	data32 = 1;
920 
921 	ret = do_write(ff, &data32, sizeof(data32));
922 	if (ret < 0)
923 		return ret;
924 
925 	/* clockid */
926 	data32 = ff->ph->env.clock.clockid;
927 
928 	ret = do_write(ff, &data32, sizeof(data32));
929 	if (ret < 0)
930 		return ret;
931 
932 	/* TOD ref time */
933 	data64 = &ff->ph->env.clock.tod_ns;
934 
935 	ret = do_write(ff, data64, sizeof(*data64));
936 	if (ret < 0)
937 		return ret;
938 
939 	/* clockid ref time */
940 	data64 = &ff->ph->env.clock.clockid_ns;
941 
942 	return do_write(ff, data64, sizeof(*data64));
943 }
944 
945 static int write_hybrid_topology(struct feat_fd *ff,
946 				 struct evlist *evlist __maybe_unused)
947 {
948 	struct hybrid_topology *tp;
949 	int ret;
950 	u32 i;
951 
952 	tp = hybrid_topology__new();
953 	if (!tp)
954 		return -ENOENT;
955 
956 	ret = do_write(ff, &tp->nr, sizeof(u32));
957 	if (ret < 0)
958 		goto err;
959 
960 	for (i = 0; i < tp->nr; i++) {
961 		struct hybrid_topology_node *n = &tp->nodes[i];
962 
963 		ret = do_write_string(ff, n->pmu_name);
964 		if (ret < 0)
965 			goto err;
966 
967 		ret = do_write_string(ff, n->cpus);
968 		if (ret < 0)
969 			goto err;
970 	}
971 
972 	ret = 0;
973 
974 err:
975 	hybrid_topology__delete(tp);
976 	return ret;
977 }
978 
979 static int write_dir_format(struct feat_fd *ff,
980 			    struct evlist *evlist __maybe_unused)
981 {
982 	struct perf_session *session;
983 	struct perf_data *data;
984 
985 	session = container_of(ff->ph, struct perf_session, header);
986 	data = session->data;
987 
988 	if (WARN_ON(!perf_data__is_dir(data)))
989 		return -1;
990 
991 	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
992 }
993 
994 /*
995  * Check whether a CPU is online
996  *
997  * Returns:
998  *     1 -> if CPU is online
999  *     0 -> if CPU is offline
1000  *    -1 -> error case
1001  */
1002 int is_cpu_online(unsigned int cpu)
1003 {
1004 	char *str;
1005 	size_t strlen;
1006 	char buf[256];
1007 	int status = -1;
1008 	struct stat statbuf;
1009 
1010 	snprintf(buf, sizeof(buf),
1011 		"/sys/devices/system/cpu/cpu%d", cpu);
1012 	if (stat(buf, &statbuf) != 0)
1013 		return 0;
1014 
1015 	/*
1016 	 * Check if /sys/devices/system/cpu/cpux/online file
1017 	 * exists. Some cases cpu0 won't have online file since
1018 	 * it is not expected to be turned off generally.
1019 	 * In kernels without CONFIG_HOTPLUG_CPU, this
1020 	 * file won't exist
1021 	 */
1022 	snprintf(buf, sizeof(buf),
1023 		"/sys/devices/system/cpu/cpu%d/online", cpu);
1024 	if (stat(buf, &statbuf) != 0)
1025 		return 1;
1026 
1027 	/*
1028 	 * Read online file using sysfs__read_str.
1029 	 * If read or open fails, return -1.
1030 	 * If read succeeds, return value from file
1031 	 * which gets stored in "str"
1032 	 */
1033 	snprintf(buf, sizeof(buf),
1034 		"devices/system/cpu/cpu%d/online", cpu);
1035 
1036 	if (sysfs__read_str(buf, &str, &strlen) < 0)
1037 		return status;
1038 
1039 	status = atoi(str);
1040 
1041 	free(str);
1042 	return status;
1043 }
1044 
1045 #ifdef HAVE_LIBBPF_SUPPORT
1046 static int write_bpf_prog_info(struct feat_fd *ff,
1047 			       struct evlist *evlist __maybe_unused)
1048 {
1049 	struct perf_env *env = &ff->ph->env;
1050 	struct rb_root *root;
1051 	struct rb_node *next;
1052 	int ret;
1053 
1054 	down_read(&env->bpf_progs.lock);
1055 
1056 	ret = do_write(ff, &env->bpf_progs.infos_cnt,
1057 		       sizeof(env->bpf_progs.infos_cnt));
1058 	if (ret < 0)
1059 		goto out;
1060 
1061 	root = &env->bpf_progs.infos;
1062 	next = rb_first(root);
1063 	while (next) {
1064 		struct bpf_prog_info_node *node;
1065 		size_t len;
1066 
1067 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1068 		next = rb_next(&node->rb_node);
1069 		len = sizeof(struct perf_bpil) +
1070 			node->info_linear->data_len;
1071 
1072 		/* before writing to file, translate address to offset */
1073 		bpil_addr_to_offs(node->info_linear);
1074 		ret = do_write(ff, node->info_linear, len);
1075 		/*
1076 		 * translate back to address even when do_write() fails,
1077 		 * so that this function never changes the data.
1078 		 */
1079 		bpil_offs_to_addr(node->info_linear);
1080 		if (ret < 0)
1081 			goto out;
1082 	}
1083 out:
1084 	up_read(&env->bpf_progs.lock);
1085 	return ret;
1086 }
1087 
1088 static int write_bpf_btf(struct feat_fd *ff,
1089 			 struct evlist *evlist __maybe_unused)
1090 {
1091 	struct perf_env *env = &ff->ph->env;
1092 	struct rb_root *root;
1093 	struct rb_node *next;
1094 	int ret;
1095 
1096 	down_read(&env->bpf_progs.lock);
1097 
1098 	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1099 		       sizeof(env->bpf_progs.btfs_cnt));
1100 
1101 	if (ret < 0)
1102 		goto out;
1103 
1104 	root = &env->bpf_progs.btfs;
1105 	next = rb_first(root);
1106 	while (next) {
1107 		struct btf_node *node;
1108 
1109 		node = rb_entry(next, struct btf_node, rb_node);
1110 		next = rb_next(&node->rb_node);
1111 		ret = do_write(ff, &node->id,
1112 			       sizeof(u32) * 2 + node->data_size);
1113 		if (ret < 0)
1114 			goto out;
1115 	}
1116 out:
1117 	up_read(&env->bpf_progs.lock);
1118 	return ret;
1119 }
1120 #endif // HAVE_LIBBPF_SUPPORT
1121 
1122 static int cpu_cache_level__sort(const void *a, const void *b)
1123 {
1124 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1125 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1126 
1127 	return cache_a->level - cache_b->level;
1128 }
1129 
1130 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1131 {
1132 	if (a->level != b->level)
1133 		return false;
1134 
1135 	if (a->line_size != b->line_size)
1136 		return false;
1137 
1138 	if (a->sets != b->sets)
1139 		return false;
1140 
1141 	if (a->ways != b->ways)
1142 		return false;
1143 
1144 	if (strcmp(a->type, b->type))
1145 		return false;
1146 
1147 	if (strcmp(a->size, b->size))
1148 		return false;
1149 
1150 	if (strcmp(a->map, b->map))
1151 		return false;
1152 
1153 	return true;
1154 }
1155 
1156 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1157 {
1158 	char path[PATH_MAX], file[PATH_MAX];
1159 	struct stat st;
1160 	size_t len;
1161 
1162 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1163 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1164 
1165 	if (stat(file, &st))
1166 		return 1;
1167 
1168 	scnprintf(file, PATH_MAX, "%s/level", path);
1169 	if (sysfs__read_int(file, (int *) &cache->level))
1170 		return -1;
1171 
1172 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1173 	if (sysfs__read_int(file, (int *) &cache->line_size))
1174 		return -1;
1175 
1176 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1177 	if (sysfs__read_int(file, (int *) &cache->sets))
1178 		return -1;
1179 
1180 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1181 	if (sysfs__read_int(file, (int *) &cache->ways))
1182 		return -1;
1183 
1184 	scnprintf(file, PATH_MAX, "%s/type", path);
1185 	if (sysfs__read_str(file, &cache->type, &len))
1186 		return -1;
1187 
1188 	cache->type[len] = 0;
1189 	cache->type = strim(cache->type);
1190 
1191 	scnprintf(file, PATH_MAX, "%s/size", path);
1192 	if (sysfs__read_str(file, &cache->size, &len)) {
1193 		zfree(&cache->type);
1194 		return -1;
1195 	}
1196 
1197 	cache->size[len] = 0;
1198 	cache->size = strim(cache->size);
1199 
1200 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1201 	if (sysfs__read_str(file, &cache->map, &len)) {
1202 		zfree(&cache->size);
1203 		zfree(&cache->type);
1204 		return -1;
1205 	}
1206 
1207 	cache->map[len] = 0;
1208 	cache->map = strim(cache->map);
1209 	return 0;
1210 }
1211 
1212 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1213 {
1214 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1215 }
1216 
1217 /*
1218  * Build caches levels for a particular CPU from the data in
1219  * /sys/devices/system/cpu/cpu<cpu>/cache/
1220  * The cache level data is stored in caches[] from index at
1221  * *cntp.
1222  */
1223 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp)
1224 {
1225 	u16 level;
1226 
1227 	for (level = 0; level < MAX_CACHE_LVL; level++) {
1228 		struct cpu_cache_level c;
1229 		int err;
1230 		u32 i;
1231 
1232 		err = cpu_cache_level__read(&c, cpu, level);
1233 		if (err < 0)
1234 			return err;
1235 
1236 		if (err == 1)
1237 			break;
1238 
1239 		for (i = 0; i < *cntp; i++) {
1240 			if (cpu_cache_level__cmp(&c, &caches[i]))
1241 				break;
1242 		}
1243 
1244 		if (i == *cntp) {
1245 			caches[*cntp] = c;
1246 			*cntp = *cntp + 1;
1247 		} else
1248 			cpu_cache_level__free(&c);
1249 	}
1250 
1251 	return 0;
1252 }
1253 
1254 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1255 {
1256 	u32 nr, cpu, cnt = 0;
1257 
1258 	nr = cpu__max_cpu().cpu;
1259 
1260 	for (cpu = 0; cpu < nr; cpu++) {
1261 		int ret = build_caches_for_cpu(cpu, caches, &cnt);
1262 
1263 		if (ret)
1264 			return ret;
1265 	}
1266 	*cntp = cnt;
1267 	return 0;
1268 }
1269 
1270 static int write_cache(struct feat_fd *ff,
1271 		       struct evlist *evlist __maybe_unused)
1272 {
1273 	u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1274 	struct cpu_cache_level caches[max_caches];
1275 	u32 cnt = 0, i, version = 1;
1276 	int ret;
1277 
1278 	ret = build_caches(caches, &cnt);
1279 	if (ret)
1280 		goto out;
1281 
1282 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1283 
1284 	ret = do_write(ff, &version, sizeof(u32));
1285 	if (ret < 0)
1286 		goto out;
1287 
1288 	ret = do_write(ff, &cnt, sizeof(u32));
1289 	if (ret < 0)
1290 		goto out;
1291 
1292 	for (i = 0; i < cnt; i++) {
1293 		struct cpu_cache_level *c = &caches[i];
1294 
1295 		#define _W(v)					\
1296 			ret = do_write(ff, &c->v, sizeof(u32));	\
1297 			if (ret < 0)				\
1298 				goto out;
1299 
1300 		_W(level)
1301 		_W(line_size)
1302 		_W(sets)
1303 		_W(ways)
1304 		#undef _W
1305 
1306 		#define _W(v)						\
1307 			ret = do_write_string(ff, (const char *) c->v);	\
1308 			if (ret < 0)					\
1309 				goto out;
1310 
1311 		_W(type)
1312 		_W(size)
1313 		_W(map)
1314 		#undef _W
1315 	}
1316 
1317 out:
1318 	for (i = 0; i < cnt; i++)
1319 		cpu_cache_level__free(&caches[i]);
1320 	return ret;
1321 }
1322 
1323 static int write_stat(struct feat_fd *ff __maybe_unused,
1324 		      struct evlist *evlist __maybe_unused)
1325 {
1326 	return 0;
1327 }
1328 
1329 static int write_sample_time(struct feat_fd *ff,
1330 			     struct evlist *evlist)
1331 {
1332 	int ret;
1333 
1334 	ret = do_write(ff, &evlist->first_sample_time,
1335 		       sizeof(evlist->first_sample_time));
1336 	if (ret < 0)
1337 		return ret;
1338 
1339 	return do_write(ff, &evlist->last_sample_time,
1340 			sizeof(evlist->last_sample_time));
1341 }
1342 
1343 
1344 static int memory_node__read(struct memory_node *n, unsigned long idx)
1345 {
1346 	unsigned int phys, size = 0;
1347 	char path[PATH_MAX];
1348 	struct dirent *ent;
1349 	DIR *dir;
1350 
1351 #define for_each_memory(mem, dir)					\
1352 	while ((ent = readdir(dir)))					\
1353 		if (strcmp(ent->d_name, ".") &&				\
1354 		    strcmp(ent->d_name, "..") &&			\
1355 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1356 
1357 	scnprintf(path, PATH_MAX,
1358 		  "%s/devices/system/node/node%lu",
1359 		  sysfs__mountpoint(), idx);
1360 
1361 	dir = opendir(path);
1362 	if (!dir) {
1363 		pr_warning("failed: can't open memory sysfs data\n");
1364 		return -1;
1365 	}
1366 
1367 	for_each_memory(phys, dir) {
1368 		size = max(phys, size);
1369 	}
1370 
1371 	size++;
1372 
1373 	n->set = bitmap_zalloc(size);
1374 	if (!n->set) {
1375 		closedir(dir);
1376 		return -ENOMEM;
1377 	}
1378 
1379 	n->node = idx;
1380 	n->size = size;
1381 
1382 	rewinddir(dir);
1383 
1384 	for_each_memory(phys, dir) {
1385 		__set_bit(phys, n->set);
1386 	}
1387 
1388 	closedir(dir);
1389 	return 0;
1390 }
1391 
1392 static int memory_node__sort(const void *a, const void *b)
1393 {
1394 	const struct memory_node *na = a;
1395 	const struct memory_node *nb = b;
1396 
1397 	return na->node - nb->node;
1398 }
1399 
1400 static int build_mem_topology(struct memory_node **nodesp, u64 *cntp)
1401 {
1402 	char path[PATH_MAX];
1403 	struct dirent *ent;
1404 	DIR *dir;
1405 	int ret = 0;
1406 	size_t cnt = 0, size = 0;
1407 	struct memory_node *nodes = NULL;
1408 
1409 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1410 		  sysfs__mountpoint());
1411 
1412 	dir = opendir(path);
1413 	if (!dir) {
1414 		pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1415 			  __func__, path);
1416 		return -1;
1417 	}
1418 
1419 	while (!ret && (ent = readdir(dir))) {
1420 		unsigned int idx;
1421 		int r;
1422 
1423 		if (!strcmp(ent->d_name, ".") ||
1424 		    !strcmp(ent->d_name, ".."))
1425 			continue;
1426 
1427 		r = sscanf(ent->d_name, "node%u", &idx);
1428 		if (r != 1)
1429 			continue;
1430 
1431 		if (cnt >= size) {
1432 			struct memory_node *new_nodes =
1433 				reallocarray(nodes, cnt + 4, sizeof(*nodes));
1434 
1435 			if (!new_nodes) {
1436 				pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size);
1437 				ret = -ENOMEM;
1438 				goto out;
1439 			}
1440 			nodes = new_nodes;
1441 			size += 4;
1442 		}
1443 		ret = memory_node__read(&nodes[cnt++], idx);
1444 	}
1445 out:
1446 	closedir(dir);
1447 	if (!ret) {
1448 		*cntp = cnt;
1449 		*nodesp = nodes;
1450 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1451 	} else
1452 		free(nodes);
1453 
1454 	return ret;
1455 }
1456 
1457 /*
1458  * The MEM_TOPOLOGY holds physical memory map for every
1459  * node in system. The format of data is as follows:
1460  *
1461  *  0 - version          | for future changes
1462  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1463  * 16 - count            | number of nodes
1464  *
1465  * For each node we store map of physical indexes for
1466  * each node:
1467  *
1468  * 32 - node id          | node index
1469  * 40 - size             | size of bitmap
1470  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1471  */
1472 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1473 			      struct evlist *evlist __maybe_unused)
1474 {
1475 	struct memory_node *nodes = NULL;
1476 	u64 bsize, version = 1, i, nr = 0;
1477 	int ret;
1478 
1479 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1480 			      (unsigned long long *) &bsize);
1481 	if (ret)
1482 		return ret;
1483 
1484 	ret = build_mem_topology(&nodes, &nr);
1485 	if (ret)
1486 		return ret;
1487 
1488 	ret = do_write(ff, &version, sizeof(version));
1489 	if (ret < 0)
1490 		goto out;
1491 
1492 	ret = do_write(ff, &bsize, sizeof(bsize));
1493 	if (ret < 0)
1494 		goto out;
1495 
1496 	ret = do_write(ff, &nr, sizeof(nr));
1497 	if (ret < 0)
1498 		goto out;
1499 
1500 	for (i = 0; i < nr; i++) {
1501 		struct memory_node *n = &nodes[i];
1502 
1503 		#define _W(v)						\
1504 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1505 			if (ret < 0)					\
1506 				goto out;
1507 
1508 		_W(node)
1509 		_W(size)
1510 
1511 		#undef _W
1512 
1513 		ret = do_write_bitmap(ff, n->set, n->size);
1514 		if (ret < 0)
1515 			goto out;
1516 	}
1517 
1518 out:
1519 	free(nodes);
1520 	return ret;
1521 }
1522 
1523 static int write_compressed(struct feat_fd *ff __maybe_unused,
1524 			    struct evlist *evlist __maybe_unused)
1525 {
1526 	int ret;
1527 
1528 	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1529 	if (ret)
1530 		return ret;
1531 
1532 	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1533 	if (ret)
1534 		return ret;
1535 
1536 	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1537 	if (ret)
1538 		return ret;
1539 
1540 	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1541 	if (ret)
1542 		return ret;
1543 
1544 	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1545 }
1546 
1547 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1548 			    bool write_pmu)
1549 {
1550 	struct perf_pmu_caps *caps = NULL;
1551 	int ret;
1552 
1553 	ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1554 	if (ret < 0)
1555 		return ret;
1556 
1557 	list_for_each_entry(caps, &pmu->caps, list) {
1558 		ret = do_write_string(ff, caps->name);
1559 		if (ret < 0)
1560 			return ret;
1561 
1562 		ret = do_write_string(ff, caps->value);
1563 		if (ret < 0)
1564 			return ret;
1565 	}
1566 
1567 	if (write_pmu) {
1568 		ret = do_write_string(ff, pmu->name);
1569 		if (ret < 0)
1570 			return ret;
1571 	}
1572 
1573 	return ret;
1574 }
1575 
1576 static int write_cpu_pmu_caps(struct feat_fd *ff,
1577 			      struct evlist *evlist __maybe_unused)
1578 {
1579 	struct perf_pmu *cpu_pmu = perf_pmus__find("cpu");
1580 	int ret;
1581 
1582 	if (!cpu_pmu)
1583 		return -ENOENT;
1584 
1585 	ret = perf_pmu__caps_parse(cpu_pmu);
1586 	if (ret < 0)
1587 		return ret;
1588 
1589 	return __write_pmu_caps(ff, cpu_pmu, false);
1590 }
1591 
1592 static int write_pmu_caps(struct feat_fd *ff,
1593 			  struct evlist *evlist __maybe_unused)
1594 {
1595 	struct perf_pmu *pmu = NULL;
1596 	int nr_pmu = 0;
1597 	int ret;
1598 
1599 	while ((pmu = perf_pmus__scan(pmu))) {
1600 		if (!pmu->name || !strcmp(pmu->name, "cpu") ||
1601 		    perf_pmu__caps_parse(pmu) <= 0)
1602 			continue;
1603 		nr_pmu++;
1604 	}
1605 
1606 	ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1607 	if (ret < 0)
1608 		return ret;
1609 
1610 	if (!nr_pmu)
1611 		return 0;
1612 
1613 	/*
1614 	 * Write hybrid pmu caps first to maintain compatibility with
1615 	 * older perf tool.
1616 	 */
1617 	if (perf_pmus__num_core_pmus() > 1) {
1618 		pmu = NULL;
1619 		while ((pmu = perf_pmus__scan_core(pmu))) {
1620 			ret = __write_pmu_caps(ff, pmu, true);
1621 			if (ret < 0)
1622 				return ret;
1623 		}
1624 	}
1625 
1626 	pmu = NULL;
1627 	while ((pmu = perf_pmus__scan(pmu))) {
1628 		if (pmu->is_core || !pmu->nr_caps)
1629 			continue;
1630 
1631 		ret = __write_pmu_caps(ff, pmu, true);
1632 		if (ret < 0)
1633 			return ret;
1634 	}
1635 	return 0;
1636 }
1637 
1638 static void print_hostname(struct feat_fd *ff, FILE *fp)
1639 {
1640 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1641 }
1642 
1643 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1644 {
1645 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1646 }
1647 
1648 static void print_arch(struct feat_fd *ff, FILE *fp)
1649 {
1650 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1651 }
1652 
1653 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1654 {
1655 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1656 }
1657 
1658 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1659 {
1660 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1661 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1662 }
1663 
1664 static void print_version(struct feat_fd *ff, FILE *fp)
1665 {
1666 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1667 }
1668 
1669 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1670 {
1671 	int nr, i;
1672 
1673 	nr = ff->ph->env.nr_cmdline;
1674 
1675 	fprintf(fp, "# cmdline : ");
1676 
1677 	for (i = 0; i < nr; i++) {
1678 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1679 		if (!argv_i) {
1680 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1681 		} else {
1682 			char *mem = argv_i;
1683 			do {
1684 				char *quote = strchr(argv_i, '\'');
1685 				if (!quote)
1686 					break;
1687 				*quote++ = '\0';
1688 				fprintf(fp, "%s\\\'", argv_i);
1689 				argv_i = quote;
1690 			} while (1);
1691 			fprintf(fp, "%s ", argv_i);
1692 			free(mem);
1693 		}
1694 	}
1695 	fputc('\n', fp);
1696 }
1697 
1698 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1699 {
1700 	struct perf_header *ph = ff->ph;
1701 	int cpu_nr = ph->env.nr_cpus_avail;
1702 	int nr, i;
1703 	char *str;
1704 
1705 	nr = ph->env.nr_sibling_cores;
1706 	str = ph->env.sibling_cores;
1707 
1708 	for (i = 0; i < nr; i++) {
1709 		fprintf(fp, "# sibling sockets : %s\n", str);
1710 		str += strlen(str) + 1;
1711 	}
1712 
1713 	if (ph->env.nr_sibling_dies) {
1714 		nr = ph->env.nr_sibling_dies;
1715 		str = ph->env.sibling_dies;
1716 
1717 		for (i = 0; i < nr; i++) {
1718 			fprintf(fp, "# sibling dies    : %s\n", str);
1719 			str += strlen(str) + 1;
1720 		}
1721 	}
1722 
1723 	nr = ph->env.nr_sibling_threads;
1724 	str = ph->env.sibling_threads;
1725 
1726 	for (i = 0; i < nr; i++) {
1727 		fprintf(fp, "# sibling threads : %s\n", str);
1728 		str += strlen(str) + 1;
1729 	}
1730 
1731 	if (ph->env.nr_sibling_dies) {
1732 		if (ph->env.cpu != NULL) {
1733 			for (i = 0; i < cpu_nr; i++)
1734 				fprintf(fp, "# CPU %d: Core ID %d, "
1735 					    "Die ID %d, Socket ID %d\n",
1736 					    i, ph->env.cpu[i].core_id,
1737 					    ph->env.cpu[i].die_id,
1738 					    ph->env.cpu[i].socket_id);
1739 		} else
1740 			fprintf(fp, "# Core ID, Die ID and Socket ID "
1741 				    "information is not available\n");
1742 	} else {
1743 		if (ph->env.cpu != NULL) {
1744 			for (i = 0; i < cpu_nr; i++)
1745 				fprintf(fp, "# CPU %d: Core ID %d, "
1746 					    "Socket ID %d\n",
1747 					    i, ph->env.cpu[i].core_id,
1748 					    ph->env.cpu[i].socket_id);
1749 		} else
1750 			fprintf(fp, "# Core ID and Socket ID "
1751 				    "information is not available\n");
1752 	}
1753 }
1754 
1755 static void print_clockid(struct feat_fd *ff, FILE *fp)
1756 {
1757 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1758 		ff->ph->env.clock.clockid_res_ns * 1000);
1759 }
1760 
1761 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1762 {
1763 	struct timespec clockid_ns;
1764 	char tstr[64], date[64];
1765 	struct timeval tod_ns;
1766 	clockid_t clockid;
1767 	struct tm ltime;
1768 	u64 ref;
1769 
1770 	if (!ff->ph->env.clock.enabled) {
1771 		fprintf(fp, "# reference time disabled\n");
1772 		return;
1773 	}
1774 
1775 	/* Compute TOD time. */
1776 	ref = ff->ph->env.clock.tod_ns;
1777 	tod_ns.tv_sec = ref / NSEC_PER_SEC;
1778 	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1779 	tod_ns.tv_usec = ref / NSEC_PER_USEC;
1780 
1781 	/* Compute clockid time. */
1782 	ref = ff->ph->env.clock.clockid_ns;
1783 	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1784 	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1785 	clockid_ns.tv_nsec = ref;
1786 
1787 	clockid = ff->ph->env.clock.clockid;
1788 
1789 	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1790 		snprintf(tstr, sizeof(tstr), "<error>");
1791 	else {
1792 		strftime(date, sizeof(date), "%F %T", &ltime);
1793 		scnprintf(tstr, sizeof(tstr), "%s.%06d",
1794 			  date, (int) tod_ns.tv_usec);
1795 	}
1796 
1797 	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1798 	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1799 		    tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1800 		    (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1801 		    clockid_name(clockid));
1802 }
1803 
1804 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1805 {
1806 	int i;
1807 	struct hybrid_node *n;
1808 
1809 	fprintf(fp, "# hybrid cpu system:\n");
1810 	for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1811 		n = &ff->ph->env.hybrid_nodes[i];
1812 		fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1813 	}
1814 }
1815 
1816 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1817 {
1818 	struct perf_session *session;
1819 	struct perf_data *data;
1820 
1821 	session = container_of(ff->ph, struct perf_session, header);
1822 	data = session->data;
1823 
1824 	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1825 }
1826 
1827 #ifdef HAVE_LIBBPF_SUPPORT
1828 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1829 {
1830 	struct perf_env *env = &ff->ph->env;
1831 	struct rb_root *root;
1832 	struct rb_node *next;
1833 
1834 	down_read(&env->bpf_progs.lock);
1835 
1836 	root = &env->bpf_progs.infos;
1837 	next = rb_first(root);
1838 
1839 	while (next) {
1840 		struct bpf_prog_info_node *node;
1841 
1842 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1843 		next = rb_next(&node->rb_node);
1844 
1845 		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1846 					       env, fp);
1847 	}
1848 
1849 	up_read(&env->bpf_progs.lock);
1850 }
1851 
1852 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1853 {
1854 	struct perf_env *env = &ff->ph->env;
1855 	struct rb_root *root;
1856 	struct rb_node *next;
1857 
1858 	down_read(&env->bpf_progs.lock);
1859 
1860 	root = &env->bpf_progs.btfs;
1861 	next = rb_first(root);
1862 
1863 	while (next) {
1864 		struct btf_node *node;
1865 
1866 		node = rb_entry(next, struct btf_node, rb_node);
1867 		next = rb_next(&node->rb_node);
1868 		fprintf(fp, "# btf info of id %u\n", node->id);
1869 	}
1870 
1871 	up_read(&env->bpf_progs.lock);
1872 }
1873 #endif // HAVE_LIBBPF_SUPPORT
1874 
1875 static void free_event_desc(struct evsel *events)
1876 {
1877 	struct evsel *evsel;
1878 
1879 	if (!events)
1880 		return;
1881 
1882 	for (evsel = events; evsel->core.attr.size; evsel++) {
1883 		zfree(&evsel->name);
1884 		zfree(&evsel->core.id);
1885 	}
1886 
1887 	free(events);
1888 }
1889 
1890 static bool perf_attr_check(struct perf_event_attr *attr)
1891 {
1892 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1893 		pr_warning("Reserved bits are set unexpectedly. "
1894 			   "Please update perf tool.\n");
1895 		return false;
1896 	}
1897 
1898 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1899 		pr_warning("Unknown sample type (0x%llx) is detected. "
1900 			   "Please update perf tool.\n",
1901 			   attr->sample_type);
1902 		return false;
1903 	}
1904 
1905 	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1906 		pr_warning("Unknown read format (0x%llx) is detected. "
1907 			   "Please update perf tool.\n",
1908 			   attr->read_format);
1909 		return false;
1910 	}
1911 
1912 	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1913 	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1914 		pr_warning("Unknown branch sample type (0x%llx) is detected. "
1915 			   "Please update perf tool.\n",
1916 			   attr->branch_sample_type);
1917 
1918 		return false;
1919 	}
1920 
1921 	return true;
1922 }
1923 
1924 static struct evsel *read_event_desc(struct feat_fd *ff)
1925 {
1926 	struct evsel *evsel, *events = NULL;
1927 	u64 *id;
1928 	void *buf = NULL;
1929 	u32 nre, sz, nr, i, j;
1930 	size_t msz;
1931 
1932 	/* number of events */
1933 	if (do_read_u32(ff, &nre))
1934 		goto error;
1935 
1936 	if (do_read_u32(ff, &sz))
1937 		goto error;
1938 
1939 	/* buffer to hold on file attr struct */
1940 	buf = malloc(sz);
1941 	if (!buf)
1942 		goto error;
1943 
1944 	/* the last event terminates with evsel->core.attr.size == 0: */
1945 	events = calloc(nre + 1, sizeof(*events));
1946 	if (!events)
1947 		goto error;
1948 
1949 	msz = sizeof(evsel->core.attr);
1950 	if (sz < msz)
1951 		msz = sz;
1952 
1953 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1954 		evsel->core.idx = i;
1955 
1956 		/*
1957 		 * must read entire on-file attr struct to
1958 		 * sync up with layout.
1959 		 */
1960 		if (__do_read(ff, buf, sz))
1961 			goto error;
1962 
1963 		if (ff->ph->needs_swap)
1964 			perf_event__attr_swap(buf);
1965 
1966 		memcpy(&evsel->core.attr, buf, msz);
1967 
1968 		if (!perf_attr_check(&evsel->core.attr))
1969 			goto error;
1970 
1971 		if (do_read_u32(ff, &nr))
1972 			goto error;
1973 
1974 		if (ff->ph->needs_swap)
1975 			evsel->needs_swap = true;
1976 
1977 		evsel->name = do_read_string(ff);
1978 		if (!evsel->name)
1979 			goto error;
1980 
1981 		if (!nr)
1982 			continue;
1983 
1984 		id = calloc(nr, sizeof(*id));
1985 		if (!id)
1986 			goto error;
1987 		evsel->core.ids = nr;
1988 		evsel->core.id = id;
1989 
1990 		for (j = 0 ; j < nr; j++) {
1991 			if (do_read_u64(ff, id))
1992 				goto error;
1993 			id++;
1994 		}
1995 	}
1996 out:
1997 	free(buf);
1998 	return events;
1999 error:
2000 	free_event_desc(events);
2001 	events = NULL;
2002 	goto out;
2003 }
2004 
2005 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
2006 				void *priv __maybe_unused)
2007 {
2008 	return fprintf(fp, ", %s = %s", name, val);
2009 }
2010 
2011 static void print_event_desc(struct feat_fd *ff, FILE *fp)
2012 {
2013 	struct evsel *evsel, *events;
2014 	u32 j;
2015 	u64 *id;
2016 
2017 	if (ff->events)
2018 		events = ff->events;
2019 	else
2020 		events = read_event_desc(ff);
2021 
2022 	if (!events) {
2023 		fprintf(fp, "# event desc: not available or unable to read\n");
2024 		return;
2025 	}
2026 
2027 	for (evsel = events; evsel->core.attr.size; evsel++) {
2028 		fprintf(fp, "# event : name = %s, ", evsel->name);
2029 
2030 		if (evsel->core.ids) {
2031 			fprintf(fp, ", id = {");
2032 			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2033 				if (j)
2034 					fputc(',', fp);
2035 				fprintf(fp, " %"PRIu64, *id);
2036 			}
2037 			fprintf(fp, " }");
2038 		}
2039 
2040 		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2041 
2042 		fputc('\n', fp);
2043 	}
2044 
2045 	free_event_desc(events);
2046 	ff->events = NULL;
2047 }
2048 
2049 static void print_total_mem(struct feat_fd *ff, FILE *fp)
2050 {
2051 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2052 }
2053 
2054 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2055 {
2056 	int i;
2057 	struct numa_node *n;
2058 
2059 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2060 		n = &ff->ph->env.numa_nodes[i];
2061 
2062 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
2063 			    " free = %"PRIu64" kB\n",
2064 			n->node, n->mem_total, n->mem_free);
2065 
2066 		fprintf(fp, "# node%u cpu list : ", n->node);
2067 		cpu_map__fprintf(n->map, fp);
2068 	}
2069 }
2070 
2071 static void print_cpuid(struct feat_fd *ff, FILE *fp)
2072 {
2073 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2074 }
2075 
2076 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2077 {
2078 	fprintf(fp, "# contains samples with branch stack\n");
2079 }
2080 
2081 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2082 {
2083 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2084 }
2085 
2086 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2087 {
2088 	fprintf(fp, "# contains stat data\n");
2089 }
2090 
2091 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2092 {
2093 	int i;
2094 
2095 	fprintf(fp, "# CPU cache info:\n");
2096 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2097 		fprintf(fp, "#  ");
2098 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2099 	}
2100 }
2101 
2102 static void print_compressed(struct feat_fd *ff, FILE *fp)
2103 {
2104 	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2105 		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2106 		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2107 }
2108 
2109 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2110 {
2111 	const char *delimiter = "";
2112 	int i;
2113 
2114 	if (!nr_caps) {
2115 		fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2116 		return;
2117 	}
2118 
2119 	fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2120 	for (i = 0; i < nr_caps; i++) {
2121 		fprintf(fp, "%s%s", delimiter, caps[i]);
2122 		delimiter = ", ";
2123 	}
2124 
2125 	fprintf(fp, "\n");
2126 }
2127 
2128 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2129 {
2130 	__print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2131 			 ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2132 }
2133 
2134 static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2135 {
2136 	struct pmu_caps *pmu_caps;
2137 
2138 	for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) {
2139 		pmu_caps = &ff->ph->env.pmu_caps[i];
2140 		__print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2141 				 pmu_caps->pmu_name);
2142 	}
2143 }
2144 
2145 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2146 {
2147 	const char *delimiter = "# pmu mappings: ";
2148 	char *str, *tmp;
2149 	u32 pmu_num;
2150 	u32 type;
2151 
2152 	pmu_num = ff->ph->env.nr_pmu_mappings;
2153 	if (!pmu_num) {
2154 		fprintf(fp, "# pmu mappings: not available\n");
2155 		return;
2156 	}
2157 
2158 	str = ff->ph->env.pmu_mappings;
2159 
2160 	while (pmu_num) {
2161 		type = strtoul(str, &tmp, 0);
2162 		if (*tmp != ':')
2163 			goto error;
2164 
2165 		str = tmp + 1;
2166 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2167 
2168 		delimiter = ", ";
2169 		str += strlen(str) + 1;
2170 		pmu_num--;
2171 	}
2172 
2173 	fprintf(fp, "\n");
2174 
2175 	if (!pmu_num)
2176 		return;
2177 error:
2178 	fprintf(fp, "# pmu mappings: unable to read\n");
2179 }
2180 
2181 static void print_group_desc(struct feat_fd *ff, FILE *fp)
2182 {
2183 	struct perf_session *session;
2184 	struct evsel *evsel;
2185 	u32 nr = 0;
2186 
2187 	session = container_of(ff->ph, struct perf_session, header);
2188 
2189 	evlist__for_each_entry(session->evlist, evsel) {
2190 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2191 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2192 
2193 			nr = evsel->core.nr_members - 1;
2194 		} else if (nr) {
2195 			fprintf(fp, ",%s", evsel__name(evsel));
2196 
2197 			if (--nr == 0)
2198 				fprintf(fp, "}\n");
2199 		}
2200 	}
2201 }
2202 
2203 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2204 {
2205 	struct perf_session *session;
2206 	char time_buf[32];
2207 	double d;
2208 
2209 	session = container_of(ff->ph, struct perf_session, header);
2210 
2211 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
2212 				  time_buf, sizeof(time_buf));
2213 	fprintf(fp, "# time of first sample : %s\n", time_buf);
2214 
2215 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
2216 				  time_buf, sizeof(time_buf));
2217 	fprintf(fp, "# time of last sample : %s\n", time_buf);
2218 
2219 	d = (double)(session->evlist->last_sample_time -
2220 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
2221 
2222 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
2223 }
2224 
2225 static void memory_node__fprintf(struct memory_node *n,
2226 				 unsigned long long bsize, FILE *fp)
2227 {
2228 	char buf_map[100], buf_size[50];
2229 	unsigned long long size;
2230 
2231 	size = bsize * bitmap_weight(n->set, n->size);
2232 	unit_number__scnprintf(buf_size, 50, size);
2233 
2234 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
2235 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2236 }
2237 
2238 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2239 {
2240 	struct memory_node *nodes;
2241 	int i, nr;
2242 
2243 	nodes = ff->ph->env.memory_nodes;
2244 	nr    = ff->ph->env.nr_memory_nodes;
2245 
2246 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2247 		nr, ff->ph->env.memory_bsize);
2248 
2249 	for (i = 0; i < nr; i++) {
2250 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2251 	}
2252 }
2253 
2254 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2255 				    char *filename,
2256 				    struct perf_session *session)
2257 {
2258 	int err = -1;
2259 	struct machine *machine;
2260 	u16 cpumode;
2261 	struct dso *dso;
2262 	enum dso_space_type dso_space;
2263 
2264 	machine = perf_session__findnew_machine(session, bev->pid);
2265 	if (!machine)
2266 		goto out;
2267 
2268 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2269 
2270 	switch (cpumode) {
2271 	case PERF_RECORD_MISC_KERNEL:
2272 		dso_space = DSO_SPACE__KERNEL;
2273 		break;
2274 	case PERF_RECORD_MISC_GUEST_KERNEL:
2275 		dso_space = DSO_SPACE__KERNEL_GUEST;
2276 		break;
2277 	case PERF_RECORD_MISC_USER:
2278 	case PERF_RECORD_MISC_GUEST_USER:
2279 		dso_space = DSO_SPACE__USER;
2280 		break;
2281 	default:
2282 		goto out;
2283 	}
2284 
2285 	dso = machine__findnew_dso(machine, filename);
2286 	if (dso != NULL) {
2287 		char sbuild_id[SBUILD_ID_SIZE];
2288 		struct build_id bid;
2289 		size_t size = BUILD_ID_SIZE;
2290 
2291 		if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2292 			size = bev->size;
2293 
2294 		build_id__init(&bid, bev->data, size);
2295 		dso__set_build_id(dso, &bid);
2296 		dso->header_build_id = 1;
2297 
2298 		if (dso_space != DSO_SPACE__USER) {
2299 			struct kmod_path m = { .name = NULL, };
2300 
2301 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2302 				dso__set_module_info(dso, &m, machine);
2303 
2304 			dso->kernel = dso_space;
2305 			free(m.name);
2306 		}
2307 
2308 		build_id__sprintf(&dso->bid, sbuild_id);
2309 		pr_debug("build id event received for %s: %s [%zu]\n",
2310 			 dso->long_name, sbuild_id, size);
2311 		dso__put(dso);
2312 	}
2313 
2314 	err = 0;
2315 out:
2316 	return err;
2317 }
2318 
2319 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2320 						 int input, u64 offset, u64 size)
2321 {
2322 	struct perf_session *session = container_of(header, struct perf_session, header);
2323 	struct {
2324 		struct perf_event_header   header;
2325 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2326 		char			   filename[0];
2327 	} old_bev;
2328 	struct perf_record_header_build_id bev;
2329 	char filename[PATH_MAX];
2330 	u64 limit = offset + size;
2331 
2332 	while (offset < limit) {
2333 		ssize_t len;
2334 
2335 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2336 			return -1;
2337 
2338 		if (header->needs_swap)
2339 			perf_event_header__bswap(&old_bev.header);
2340 
2341 		len = old_bev.header.size - sizeof(old_bev);
2342 		if (readn(input, filename, len) != len)
2343 			return -1;
2344 
2345 		bev.header = old_bev.header;
2346 
2347 		/*
2348 		 * As the pid is the missing value, we need to fill
2349 		 * it properly. The header.misc value give us nice hint.
2350 		 */
2351 		bev.pid	= HOST_KERNEL_ID;
2352 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2353 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2354 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
2355 
2356 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2357 		__event_process_build_id(&bev, filename, session);
2358 
2359 		offset += bev.header.size;
2360 	}
2361 
2362 	return 0;
2363 }
2364 
2365 static int perf_header__read_build_ids(struct perf_header *header,
2366 				       int input, u64 offset, u64 size)
2367 {
2368 	struct perf_session *session = container_of(header, struct perf_session, header);
2369 	struct perf_record_header_build_id bev;
2370 	char filename[PATH_MAX];
2371 	u64 limit = offset + size, orig_offset = offset;
2372 	int err = -1;
2373 
2374 	while (offset < limit) {
2375 		ssize_t len;
2376 
2377 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2378 			goto out;
2379 
2380 		if (header->needs_swap)
2381 			perf_event_header__bswap(&bev.header);
2382 
2383 		len = bev.header.size - sizeof(bev);
2384 		if (readn(input, filename, len) != len)
2385 			goto out;
2386 		/*
2387 		 * The a1645ce1 changeset:
2388 		 *
2389 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2390 		 *
2391 		 * Added a field to struct perf_record_header_build_id that broke the file
2392 		 * format.
2393 		 *
2394 		 * Since the kernel build-id is the first entry, process the
2395 		 * table using the old format if the well known
2396 		 * '[kernel.kallsyms]' string for the kernel build-id has the
2397 		 * first 4 characters chopped off (where the pid_t sits).
2398 		 */
2399 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2400 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2401 				return -1;
2402 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2403 		}
2404 
2405 		__event_process_build_id(&bev, filename, session);
2406 
2407 		offset += bev.header.size;
2408 	}
2409 	err = 0;
2410 out:
2411 	return err;
2412 }
2413 
2414 /* Macro for features that simply need to read and store a string. */
2415 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2416 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2417 {\
2418 	free(ff->ph->env.__feat_env);		     \
2419 	ff->ph->env.__feat_env = do_read_string(ff); \
2420 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2421 }
2422 
2423 FEAT_PROCESS_STR_FUN(hostname, hostname);
2424 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2425 FEAT_PROCESS_STR_FUN(version, version);
2426 FEAT_PROCESS_STR_FUN(arch, arch);
2427 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2428 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2429 
2430 #ifdef HAVE_LIBTRACEEVENT
2431 static int process_tracing_data(struct feat_fd *ff, void *data)
2432 {
2433 	ssize_t ret = trace_report(ff->fd, data, false);
2434 
2435 	return ret < 0 ? -1 : 0;
2436 }
2437 #endif
2438 
2439 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2440 {
2441 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2442 		pr_debug("Failed to read buildids, continuing...\n");
2443 	return 0;
2444 }
2445 
2446 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2447 {
2448 	int ret;
2449 	u32 nr_cpus_avail, nr_cpus_online;
2450 
2451 	ret = do_read_u32(ff, &nr_cpus_avail);
2452 	if (ret)
2453 		return ret;
2454 
2455 	ret = do_read_u32(ff, &nr_cpus_online);
2456 	if (ret)
2457 		return ret;
2458 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2459 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2460 	return 0;
2461 }
2462 
2463 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2464 {
2465 	u64 total_mem;
2466 	int ret;
2467 
2468 	ret = do_read_u64(ff, &total_mem);
2469 	if (ret)
2470 		return -1;
2471 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2472 	return 0;
2473 }
2474 
2475 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2476 {
2477 	struct evsel *evsel;
2478 
2479 	evlist__for_each_entry(evlist, evsel) {
2480 		if (evsel->core.idx == idx)
2481 			return evsel;
2482 	}
2483 
2484 	return NULL;
2485 }
2486 
2487 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2488 {
2489 	struct evsel *evsel;
2490 
2491 	if (!event->name)
2492 		return;
2493 
2494 	evsel = evlist__find_by_index(evlist, event->core.idx);
2495 	if (!evsel)
2496 		return;
2497 
2498 	if (evsel->name)
2499 		return;
2500 
2501 	evsel->name = strdup(event->name);
2502 }
2503 
2504 static int
2505 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2506 {
2507 	struct perf_session *session;
2508 	struct evsel *evsel, *events = read_event_desc(ff);
2509 
2510 	if (!events)
2511 		return 0;
2512 
2513 	session = container_of(ff->ph, struct perf_session, header);
2514 
2515 	if (session->data->is_pipe) {
2516 		/* Save events for reading later by print_event_desc,
2517 		 * since they can't be read again in pipe mode. */
2518 		ff->events = events;
2519 	}
2520 
2521 	for (evsel = events; evsel->core.attr.size; evsel++)
2522 		evlist__set_event_name(session->evlist, evsel);
2523 
2524 	if (!session->data->is_pipe)
2525 		free_event_desc(events);
2526 
2527 	return 0;
2528 }
2529 
2530 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2531 {
2532 	char *str, *cmdline = NULL, **argv = NULL;
2533 	u32 nr, i, len = 0;
2534 
2535 	if (do_read_u32(ff, &nr))
2536 		return -1;
2537 
2538 	ff->ph->env.nr_cmdline = nr;
2539 
2540 	cmdline = zalloc(ff->size + nr + 1);
2541 	if (!cmdline)
2542 		return -1;
2543 
2544 	argv = zalloc(sizeof(char *) * (nr + 1));
2545 	if (!argv)
2546 		goto error;
2547 
2548 	for (i = 0; i < nr; i++) {
2549 		str = do_read_string(ff);
2550 		if (!str)
2551 			goto error;
2552 
2553 		argv[i] = cmdline + len;
2554 		memcpy(argv[i], str, strlen(str) + 1);
2555 		len += strlen(str) + 1;
2556 		free(str);
2557 	}
2558 	ff->ph->env.cmdline = cmdline;
2559 	ff->ph->env.cmdline_argv = (const char **) argv;
2560 	return 0;
2561 
2562 error:
2563 	free(argv);
2564 	free(cmdline);
2565 	return -1;
2566 }
2567 
2568 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2569 {
2570 	u32 nr, i;
2571 	char *str;
2572 	struct strbuf sb;
2573 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2574 	u64 size = 0;
2575 	struct perf_header *ph = ff->ph;
2576 	bool do_core_id_test = true;
2577 
2578 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2579 	if (!ph->env.cpu)
2580 		return -1;
2581 
2582 	if (do_read_u32(ff, &nr))
2583 		goto free_cpu;
2584 
2585 	ph->env.nr_sibling_cores = nr;
2586 	size += sizeof(u32);
2587 	if (strbuf_init(&sb, 128) < 0)
2588 		goto free_cpu;
2589 
2590 	for (i = 0; i < nr; i++) {
2591 		str = do_read_string(ff);
2592 		if (!str)
2593 			goto error;
2594 
2595 		/* include a NULL character at the end */
2596 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2597 			goto error;
2598 		size += string_size(str);
2599 		free(str);
2600 	}
2601 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2602 
2603 	if (do_read_u32(ff, &nr))
2604 		return -1;
2605 
2606 	ph->env.nr_sibling_threads = nr;
2607 	size += sizeof(u32);
2608 
2609 	for (i = 0; i < nr; i++) {
2610 		str = do_read_string(ff);
2611 		if (!str)
2612 			goto error;
2613 
2614 		/* include a NULL character at the end */
2615 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2616 			goto error;
2617 		size += string_size(str);
2618 		free(str);
2619 	}
2620 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2621 
2622 	/*
2623 	 * The header may be from old perf,
2624 	 * which doesn't include core id and socket id information.
2625 	 */
2626 	if (ff->size <= size) {
2627 		zfree(&ph->env.cpu);
2628 		return 0;
2629 	}
2630 
2631 	/* On s390 the socket_id number is not related to the numbers of cpus.
2632 	 * The socket_id number might be higher than the numbers of cpus.
2633 	 * This depends on the configuration.
2634 	 * AArch64 is the same.
2635 	 */
2636 	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2637 			  || !strncmp(ph->env.arch, "aarch64", 7)))
2638 		do_core_id_test = false;
2639 
2640 	for (i = 0; i < (u32)cpu_nr; i++) {
2641 		if (do_read_u32(ff, &nr))
2642 			goto free_cpu;
2643 
2644 		ph->env.cpu[i].core_id = nr;
2645 		size += sizeof(u32);
2646 
2647 		if (do_read_u32(ff, &nr))
2648 			goto free_cpu;
2649 
2650 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2651 			pr_debug("socket_id number is too big."
2652 				 "You may need to upgrade the perf tool.\n");
2653 			goto free_cpu;
2654 		}
2655 
2656 		ph->env.cpu[i].socket_id = nr;
2657 		size += sizeof(u32);
2658 	}
2659 
2660 	/*
2661 	 * The header may be from old perf,
2662 	 * which doesn't include die information.
2663 	 */
2664 	if (ff->size <= size)
2665 		return 0;
2666 
2667 	if (do_read_u32(ff, &nr))
2668 		return -1;
2669 
2670 	ph->env.nr_sibling_dies = nr;
2671 	size += sizeof(u32);
2672 
2673 	for (i = 0; i < nr; i++) {
2674 		str = do_read_string(ff);
2675 		if (!str)
2676 			goto error;
2677 
2678 		/* include a NULL character at the end */
2679 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2680 			goto error;
2681 		size += string_size(str);
2682 		free(str);
2683 	}
2684 	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2685 
2686 	for (i = 0; i < (u32)cpu_nr; i++) {
2687 		if (do_read_u32(ff, &nr))
2688 			goto free_cpu;
2689 
2690 		ph->env.cpu[i].die_id = nr;
2691 	}
2692 
2693 	return 0;
2694 
2695 error:
2696 	strbuf_release(&sb);
2697 free_cpu:
2698 	zfree(&ph->env.cpu);
2699 	return -1;
2700 }
2701 
2702 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2703 {
2704 	struct numa_node *nodes, *n;
2705 	u32 nr, i;
2706 	char *str;
2707 
2708 	/* nr nodes */
2709 	if (do_read_u32(ff, &nr))
2710 		return -1;
2711 
2712 	nodes = zalloc(sizeof(*nodes) * nr);
2713 	if (!nodes)
2714 		return -ENOMEM;
2715 
2716 	for (i = 0; i < nr; i++) {
2717 		n = &nodes[i];
2718 
2719 		/* node number */
2720 		if (do_read_u32(ff, &n->node))
2721 			goto error;
2722 
2723 		if (do_read_u64(ff, &n->mem_total))
2724 			goto error;
2725 
2726 		if (do_read_u64(ff, &n->mem_free))
2727 			goto error;
2728 
2729 		str = do_read_string(ff);
2730 		if (!str)
2731 			goto error;
2732 
2733 		n->map = perf_cpu_map__new(str);
2734 		if (!n->map)
2735 			goto error;
2736 
2737 		free(str);
2738 	}
2739 	ff->ph->env.nr_numa_nodes = nr;
2740 	ff->ph->env.numa_nodes = nodes;
2741 	return 0;
2742 
2743 error:
2744 	free(nodes);
2745 	return -1;
2746 }
2747 
2748 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2749 {
2750 	char *name;
2751 	u32 pmu_num;
2752 	u32 type;
2753 	struct strbuf sb;
2754 
2755 	if (do_read_u32(ff, &pmu_num))
2756 		return -1;
2757 
2758 	if (!pmu_num) {
2759 		pr_debug("pmu mappings not available\n");
2760 		return 0;
2761 	}
2762 
2763 	ff->ph->env.nr_pmu_mappings = pmu_num;
2764 	if (strbuf_init(&sb, 128) < 0)
2765 		return -1;
2766 
2767 	while (pmu_num) {
2768 		if (do_read_u32(ff, &type))
2769 			goto error;
2770 
2771 		name = do_read_string(ff);
2772 		if (!name)
2773 			goto error;
2774 
2775 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2776 			goto error;
2777 		/* include a NULL character at the end */
2778 		if (strbuf_add(&sb, "", 1) < 0)
2779 			goto error;
2780 
2781 		if (!strcmp(name, "msr"))
2782 			ff->ph->env.msr_pmu_type = type;
2783 
2784 		free(name);
2785 		pmu_num--;
2786 	}
2787 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2788 	return 0;
2789 
2790 error:
2791 	strbuf_release(&sb);
2792 	return -1;
2793 }
2794 
2795 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2796 {
2797 	size_t ret = -1;
2798 	u32 i, nr, nr_groups;
2799 	struct perf_session *session;
2800 	struct evsel *evsel, *leader = NULL;
2801 	struct group_desc {
2802 		char *name;
2803 		u32 leader_idx;
2804 		u32 nr_members;
2805 	} *desc;
2806 
2807 	if (do_read_u32(ff, &nr_groups))
2808 		return -1;
2809 
2810 	ff->ph->env.nr_groups = nr_groups;
2811 	if (!nr_groups) {
2812 		pr_debug("group desc not available\n");
2813 		return 0;
2814 	}
2815 
2816 	desc = calloc(nr_groups, sizeof(*desc));
2817 	if (!desc)
2818 		return -1;
2819 
2820 	for (i = 0; i < nr_groups; i++) {
2821 		desc[i].name = do_read_string(ff);
2822 		if (!desc[i].name)
2823 			goto out_free;
2824 
2825 		if (do_read_u32(ff, &desc[i].leader_idx))
2826 			goto out_free;
2827 
2828 		if (do_read_u32(ff, &desc[i].nr_members))
2829 			goto out_free;
2830 	}
2831 
2832 	/*
2833 	 * Rebuild group relationship based on the group_desc
2834 	 */
2835 	session = container_of(ff->ph, struct perf_session, header);
2836 
2837 	i = nr = 0;
2838 	evlist__for_each_entry(session->evlist, evsel) {
2839 		if (evsel->core.idx == (int) desc[i].leader_idx) {
2840 			evsel__set_leader(evsel, evsel);
2841 			/* {anon_group} is a dummy name */
2842 			if (strcmp(desc[i].name, "{anon_group}")) {
2843 				evsel->group_name = desc[i].name;
2844 				desc[i].name = NULL;
2845 			}
2846 			evsel->core.nr_members = desc[i].nr_members;
2847 
2848 			if (i >= nr_groups || nr > 0) {
2849 				pr_debug("invalid group desc\n");
2850 				goto out_free;
2851 			}
2852 
2853 			leader = evsel;
2854 			nr = evsel->core.nr_members - 1;
2855 			i++;
2856 		} else if (nr) {
2857 			/* This is a group member */
2858 			evsel__set_leader(evsel, leader);
2859 
2860 			nr--;
2861 		}
2862 	}
2863 
2864 	if (i != nr_groups || nr != 0) {
2865 		pr_debug("invalid group desc\n");
2866 		goto out_free;
2867 	}
2868 
2869 	ret = 0;
2870 out_free:
2871 	for (i = 0; i < nr_groups; i++)
2872 		zfree(&desc[i].name);
2873 	free(desc);
2874 
2875 	return ret;
2876 }
2877 
2878 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2879 {
2880 	struct perf_session *session;
2881 	int err;
2882 
2883 	session = container_of(ff->ph, struct perf_session, header);
2884 
2885 	err = auxtrace_index__process(ff->fd, ff->size, session,
2886 				      ff->ph->needs_swap);
2887 	if (err < 0)
2888 		pr_err("Failed to process auxtrace index\n");
2889 	return err;
2890 }
2891 
2892 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2893 {
2894 	struct cpu_cache_level *caches;
2895 	u32 cnt, i, version;
2896 
2897 	if (do_read_u32(ff, &version))
2898 		return -1;
2899 
2900 	if (version != 1)
2901 		return -1;
2902 
2903 	if (do_read_u32(ff, &cnt))
2904 		return -1;
2905 
2906 	caches = zalloc(sizeof(*caches) * cnt);
2907 	if (!caches)
2908 		return -1;
2909 
2910 	for (i = 0; i < cnt; i++) {
2911 		struct cpu_cache_level c;
2912 
2913 		#define _R(v)						\
2914 			if (do_read_u32(ff, &c.v))\
2915 				goto out_free_caches;			\
2916 
2917 		_R(level)
2918 		_R(line_size)
2919 		_R(sets)
2920 		_R(ways)
2921 		#undef _R
2922 
2923 		#define _R(v)					\
2924 			c.v = do_read_string(ff);		\
2925 			if (!c.v)				\
2926 				goto out_free_caches;
2927 
2928 		_R(type)
2929 		_R(size)
2930 		_R(map)
2931 		#undef _R
2932 
2933 		caches[i] = c;
2934 	}
2935 
2936 	ff->ph->env.caches = caches;
2937 	ff->ph->env.caches_cnt = cnt;
2938 	return 0;
2939 out_free_caches:
2940 	free(caches);
2941 	return -1;
2942 }
2943 
2944 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2945 {
2946 	struct perf_session *session;
2947 	u64 first_sample_time, last_sample_time;
2948 	int ret;
2949 
2950 	session = container_of(ff->ph, struct perf_session, header);
2951 
2952 	ret = do_read_u64(ff, &first_sample_time);
2953 	if (ret)
2954 		return -1;
2955 
2956 	ret = do_read_u64(ff, &last_sample_time);
2957 	if (ret)
2958 		return -1;
2959 
2960 	session->evlist->first_sample_time = first_sample_time;
2961 	session->evlist->last_sample_time = last_sample_time;
2962 	return 0;
2963 }
2964 
2965 static int process_mem_topology(struct feat_fd *ff,
2966 				void *data __maybe_unused)
2967 {
2968 	struct memory_node *nodes;
2969 	u64 version, i, nr, bsize;
2970 	int ret = -1;
2971 
2972 	if (do_read_u64(ff, &version))
2973 		return -1;
2974 
2975 	if (version != 1)
2976 		return -1;
2977 
2978 	if (do_read_u64(ff, &bsize))
2979 		return -1;
2980 
2981 	if (do_read_u64(ff, &nr))
2982 		return -1;
2983 
2984 	nodes = zalloc(sizeof(*nodes) * nr);
2985 	if (!nodes)
2986 		return -1;
2987 
2988 	for (i = 0; i < nr; i++) {
2989 		struct memory_node n;
2990 
2991 		#define _R(v)				\
2992 			if (do_read_u64(ff, &n.v))	\
2993 				goto out;		\
2994 
2995 		_R(node)
2996 		_R(size)
2997 
2998 		#undef _R
2999 
3000 		if (do_read_bitmap(ff, &n.set, &n.size))
3001 			goto out;
3002 
3003 		nodes[i] = n;
3004 	}
3005 
3006 	ff->ph->env.memory_bsize    = bsize;
3007 	ff->ph->env.memory_nodes    = nodes;
3008 	ff->ph->env.nr_memory_nodes = nr;
3009 	ret = 0;
3010 
3011 out:
3012 	if (ret)
3013 		free(nodes);
3014 	return ret;
3015 }
3016 
3017 static int process_clockid(struct feat_fd *ff,
3018 			   void *data __maybe_unused)
3019 {
3020 	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
3021 		return -1;
3022 
3023 	return 0;
3024 }
3025 
3026 static int process_clock_data(struct feat_fd *ff,
3027 			      void *_data __maybe_unused)
3028 {
3029 	u32 data32;
3030 	u64 data64;
3031 
3032 	/* version */
3033 	if (do_read_u32(ff, &data32))
3034 		return -1;
3035 
3036 	if (data32 != 1)
3037 		return -1;
3038 
3039 	/* clockid */
3040 	if (do_read_u32(ff, &data32))
3041 		return -1;
3042 
3043 	ff->ph->env.clock.clockid = data32;
3044 
3045 	/* TOD ref time */
3046 	if (do_read_u64(ff, &data64))
3047 		return -1;
3048 
3049 	ff->ph->env.clock.tod_ns = data64;
3050 
3051 	/* clockid ref time */
3052 	if (do_read_u64(ff, &data64))
3053 		return -1;
3054 
3055 	ff->ph->env.clock.clockid_ns = data64;
3056 	ff->ph->env.clock.enabled = true;
3057 	return 0;
3058 }
3059 
3060 static int process_hybrid_topology(struct feat_fd *ff,
3061 				   void *data __maybe_unused)
3062 {
3063 	struct hybrid_node *nodes, *n;
3064 	u32 nr, i;
3065 
3066 	/* nr nodes */
3067 	if (do_read_u32(ff, &nr))
3068 		return -1;
3069 
3070 	nodes = zalloc(sizeof(*nodes) * nr);
3071 	if (!nodes)
3072 		return -ENOMEM;
3073 
3074 	for (i = 0; i < nr; i++) {
3075 		n = &nodes[i];
3076 
3077 		n->pmu_name = do_read_string(ff);
3078 		if (!n->pmu_name)
3079 			goto error;
3080 
3081 		n->cpus = do_read_string(ff);
3082 		if (!n->cpus)
3083 			goto error;
3084 	}
3085 
3086 	ff->ph->env.nr_hybrid_nodes = nr;
3087 	ff->ph->env.hybrid_nodes = nodes;
3088 	return 0;
3089 
3090 error:
3091 	for (i = 0; i < nr; i++) {
3092 		free(nodes[i].pmu_name);
3093 		free(nodes[i].cpus);
3094 	}
3095 
3096 	free(nodes);
3097 	return -1;
3098 }
3099 
3100 static int process_dir_format(struct feat_fd *ff,
3101 			      void *_data __maybe_unused)
3102 {
3103 	struct perf_session *session;
3104 	struct perf_data *data;
3105 
3106 	session = container_of(ff->ph, struct perf_session, header);
3107 	data = session->data;
3108 
3109 	if (WARN_ON(!perf_data__is_dir(data)))
3110 		return -1;
3111 
3112 	return do_read_u64(ff, &data->dir.version);
3113 }
3114 
3115 #ifdef HAVE_LIBBPF_SUPPORT
3116 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3117 {
3118 	struct bpf_prog_info_node *info_node;
3119 	struct perf_env *env = &ff->ph->env;
3120 	struct perf_bpil *info_linear;
3121 	u32 count, i;
3122 	int err = -1;
3123 
3124 	if (ff->ph->needs_swap) {
3125 		pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3126 		return 0;
3127 	}
3128 
3129 	if (do_read_u32(ff, &count))
3130 		return -1;
3131 
3132 	down_write(&env->bpf_progs.lock);
3133 
3134 	for (i = 0; i < count; ++i) {
3135 		u32 info_len, data_len;
3136 
3137 		info_linear = NULL;
3138 		info_node = NULL;
3139 		if (do_read_u32(ff, &info_len))
3140 			goto out;
3141 		if (do_read_u32(ff, &data_len))
3142 			goto out;
3143 
3144 		if (info_len > sizeof(struct bpf_prog_info)) {
3145 			pr_warning("detected invalid bpf_prog_info\n");
3146 			goto out;
3147 		}
3148 
3149 		info_linear = malloc(sizeof(struct perf_bpil) +
3150 				     data_len);
3151 		if (!info_linear)
3152 			goto out;
3153 		info_linear->info_len = sizeof(struct bpf_prog_info);
3154 		info_linear->data_len = data_len;
3155 		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3156 			goto out;
3157 		if (__do_read(ff, &info_linear->info, info_len))
3158 			goto out;
3159 		if (info_len < sizeof(struct bpf_prog_info))
3160 			memset(((void *)(&info_linear->info)) + info_len, 0,
3161 			       sizeof(struct bpf_prog_info) - info_len);
3162 
3163 		if (__do_read(ff, info_linear->data, data_len))
3164 			goto out;
3165 
3166 		info_node = malloc(sizeof(struct bpf_prog_info_node));
3167 		if (!info_node)
3168 			goto out;
3169 
3170 		/* after reading from file, translate offset to address */
3171 		bpil_offs_to_addr(info_linear);
3172 		info_node->info_linear = info_linear;
3173 		perf_env__insert_bpf_prog_info(env, info_node);
3174 	}
3175 
3176 	up_write(&env->bpf_progs.lock);
3177 	return 0;
3178 out:
3179 	free(info_linear);
3180 	free(info_node);
3181 	up_write(&env->bpf_progs.lock);
3182 	return err;
3183 }
3184 
3185 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3186 {
3187 	struct perf_env *env = &ff->ph->env;
3188 	struct btf_node *node = NULL;
3189 	u32 count, i;
3190 	int err = -1;
3191 
3192 	if (ff->ph->needs_swap) {
3193 		pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3194 		return 0;
3195 	}
3196 
3197 	if (do_read_u32(ff, &count))
3198 		return -1;
3199 
3200 	down_write(&env->bpf_progs.lock);
3201 
3202 	for (i = 0; i < count; ++i) {
3203 		u32 id, data_size;
3204 
3205 		if (do_read_u32(ff, &id))
3206 			goto out;
3207 		if (do_read_u32(ff, &data_size))
3208 			goto out;
3209 
3210 		node = malloc(sizeof(struct btf_node) + data_size);
3211 		if (!node)
3212 			goto out;
3213 
3214 		node->id = id;
3215 		node->data_size = data_size;
3216 
3217 		if (__do_read(ff, node->data, data_size))
3218 			goto out;
3219 
3220 		perf_env__insert_btf(env, node);
3221 		node = NULL;
3222 	}
3223 
3224 	err = 0;
3225 out:
3226 	up_write(&env->bpf_progs.lock);
3227 	free(node);
3228 	return err;
3229 }
3230 #endif // HAVE_LIBBPF_SUPPORT
3231 
3232 static int process_compressed(struct feat_fd *ff,
3233 			      void *data __maybe_unused)
3234 {
3235 	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3236 		return -1;
3237 
3238 	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3239 		return -1;
3240 
3241 	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3242 		return -1;
3243 
3244 	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3245 		return -1;
3246 
3247 	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3248 		return -1;
3249 
3250 	return 0;
3251 }
3252 
3253 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3254 			      char ***caps, unsigned int *max_branches)
3255 {
3256 	char *name, *value, *ptr;
3257 	u32 nr_pmu_caps, i;
3258 
3259 	*nr_caps = 0;
3260 	*caps = NULL;
3261 
3262 	if (do_read_u32(ff, &nr_pmu_caps))
3263 		return -1;
3264 
3265 	if (!nr_pmu_caps)
3266 		return 0;
3267 
3268 	*caps = zalloc(sizeof(char *) * nr_pmu_caps);
3269 	if (!*caps)
3270 		return -1;
3271 
3272 	for (i = 0; i < nr_pmu_caps; i++) {
3273 		name = do_read_string(ff);
3274 		if (!name)
3275 			goto error;
3276 
3277 		value = do_read_string(ff);
3278 		if (!value)
3279 			goto free_name;
3280 
3281 		if (asprintf(&ptr, "%s=%s", name, value) < 0)
3282 			goto free_value;
3283 
3284 		(*caps)[i] = ptr;
3285 
3286 		if (!strcmp(name, "branches"))
3287 			*max_branches = atoi(value);
3288 
3289 		free(value);
3290 		free(name);
3291 	}
3292 	*nr_caps = nr_pmu_caps;
3293 	return 0;
3294 
3295 free_value:
3296 	free(value);
3297 free_name:
3298 	free(name);
3299 error:
3300 	for (; i > 0; i--)
3301 		free((*caps)[i - 1]);
3302 	free(*caps);
3303 	*caps = NULL;
3304 	*nr_caps = 0;
3305 	return -1;
3306 }
3307 
3308 static int process_cpu_pmu_caps(struct feat_fd *ff,
3309 				void *data __maybe_unused)
3310 {
3311 	int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3312 				     &ff->ph->env.cpu_pmu_caps,
3313 				     &ff->ph->env.max_branches);
3314 
3315 	if (!ret && !ff->ph->env.cpu_pmu_caps)
3316 		pr_debug("cpu pmu capabilities not available\n");
3317 	return ret;
3318 }
3319 
3320 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3321 {
3322 	struct pmu_caps *pmu_caps;
3323 	u32 nr_pmu, i;
3324 	int ret;
3325 	int j;
3326 
3327 	if (do_read_u32(ff, &nr_pmu))
3328 		return -1;
3329 
3330 	if (!nr_pmu) {
3331 		pr_debug("pmu capabilities not available\n");
3332 		return 0;
3333 	}
3334 
3335 	pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3336 	if (!pmu_caps)
3337 		return -ENOMEM;
3338 
3339 	for (i = 0; i < nr_pmu; i++) {
3340 		ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3341 					 &pmu_caps[i].caps,
3342 					 &pmu_caps[i].max_branches);
3343 		if (ret)
3344 			goto err;
3345 
3346 		pmu_caps[i].pmu_name = do_read_string(ff);
3347 		if (!pmu_caps[i].pmu_name) {
3348 			ret = -1;
3349 			goto err;
3350 		}
3351 		if (!pmu_caps[i].nr_caps) {
3352 			pr_debug("%s pmu capabilities not available\n",
3353 				 pmu_caps[i].pmu_name);
3354 		}
3355 	}
3356 
3357 	ff->ph->env.nr_pmus_with_caps = nr_pmu;
3358 	ff->ph->env.pmu_caps = pmu_caps;
3359 	return 0;
3360 
3361 err:
3362 	for (i = 0; i < nr_pmu; i++) {
3363 		for (j = 0; j < pmu_caps[i].nr_caps; j++)
3364 			free(pmu_caps[i].caps[j]);
3365 		free(pmu_caps[i].caps);
3366 		free(pmu_caps[i].pmu_name);
3367 	}
3368 
3369 	free(pmu_caps);
3370 	return ret;
3371 }
3372 
3373 #define FEAT_OPR(n, func, __full_only) \
3374 	[HEADER_##n] = {					\
3375 		.name	    = __stringify(n),			\
3376 		.write	    = write_##func,			\
3377 		.print	    = print_##func,			\
3378 		.full_only  = __full_only,			\
3379 		.process    = process_##func,			\
3380 		.synthesize = true				\
3381 	}
3382 
3383 #define FEAT_OPN(n, func, __full_only) \
3384 	[HEADER_##n] = {					\
3385 		.name	    = __stringify(n),			\
3386 		.write	    = write_##func,			\
3387 		.print	    = print_##func,			\
3388 		.full_only  = __full_only,			\
3389 		.process    = process_##func			\
3390 	}
3391 
3392 /* feature_ops not implemented: */
3393 #define print_tracing_data	NULL
3394 #define print_build_id		NULL
3395 
3396 #define process_branch_stack	NULL
3397 #define process_stat		NULL
3398 
3399 // Only used in util/synthetic-events.c
3400 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3401 
3402 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3403 #ifdef HAVE_LIBTRACEEVENT
3404 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
3405 #endif
3406 	FEAT_OPN(BUILD_ID,	build_id,	false),
3407 	FEAT_OPR(HOSTNAME,	hostname,	false),
3408 	FEAT_OPR(OSRELEASE,	osrelease,	false),
3409 	FEAT_OPR(VERSION,	version,	false),
3410 	FEAT_OPR(ARCH,		arch,		false),
3411 	FEAT_OPR(NRCPUS,	nrcpus,		false),
3412 	FEAT_OPR(CPUDESC,	cpudesc,	false),
3413 	FEAT_OPR(CPUID,		cpuid,		false),
3414 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
3415 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
3416 	FEAT_OPR(CMDLINE,	cmdline,	false),
3417 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
3418 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
3419 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
3420 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3421 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3422 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
3423 	FEAT_OPN(STAT,		stat,		false),
3424 	FEAT_OPN(CACHE,		cache,		true),
3425 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3426 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3427 	FEAT_OPR(CLOCKID,	clockid,	false),
3428 	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3429 #ifdef HAVE_LIBBPF_SUPPORT
3430 	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3431 	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3432 #endif
3433 	FEAT_OPR(COMPRESSED,	compressed,	false),
3434 	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3435 	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3436 	FEAT_OPN(HYBRID_TOPOLOGY,	hybrid_topology,	true),
3437 	FEAT_OPR(PMU_CAPS,	pmu_caps,	false),
3438 };
3439 
3440 struct header_print_data {
3441 	FILE *fp;
3442 	bool full; /* extended list of headers */
3443 };
3444 
3445 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3446 					   struct perf_header *ph,
3447 					   int feat, int fd, void *data)
3448 {
3449 	struct header_print_data *hd = data;
3450 	struct feat_fd ff;
3451 
3452 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3453 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3454 				"%d, continuing...\n", section->offset, feat);
3455 		return 0;
3456 	}
3457 	if (feat >= HEADER_LAST_FEATURE) {
3458 		pr_warning("unknown feature %d\n", feat);
3459 		return 0;
3460 	}
3461 	if (!feat_ops[feat].print)
3462 		return 0;
3463 
3464 	ff = (struct  feat_fd) {
3465 		.fd = fd,
3466 		.ph = ph,
3467 	};
3468 
3469 	if (!feat_ops[feat].full_only || hd->full)
3470 		feat_ops[feat].print(&ff, hd->fp);
3471 	else
3472 		fprintf(hd->fp, "# %s info available, use -I to display\n",
3473 			feat_ops[feat].name);
3474 
3475 	return 0;
3476 }
3477 
3478 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3479 {
3480 	struct header_print_data hd;
3481 	struct perf_header *header = &session->header;
3482 	int fd = perf_data__fd(session->data);
3483 	struct stat st;
3484 	time_t stctime;
3485 	int ret, bit;
3486 
3487 	hd.fp = fp;
3488 	hd.full = full;
3489 
3490 	ret = fstat(fd, &st);
3491 	if (ret == -1)
3492 		return -1;
3493 
3494 	stctime = st.st_mtime;
3495 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3496 
3497 	fprintf(fp, "# header version : %u\n", header->version);
3498 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3499 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3500 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3501 
3502 	perf_header__process_sections(header, fd, &hd,
3503 				      perf_file_section__fprintf_info);
3504 
3505 	if (session->data->is_pipe)
3506 		return 0;
3507 
3508 	fprintf(fp, "# missing features: ");
3509 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3510 		if (bit)
3511 			fprintf(fp, "%s ", feat_ops[bit].name);
3512 	}
3513 
3514 	fprintf(fp, "\n");
3515 	return 0;
3516 }
3517 
3518 struct header_fw {
3519 	struct feat_writer	fw;
3520 	struct feat_fd		*ff;
3521 };
3522 
3523 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3524 {
3525 	struct header_fw *h = container_of(fw, struct header_fw, fw);
3526 
3527 	return do_write(h->ff, buf, sz);
3528 }
3529 
3530 static int do_write_feat(struct feat_fd *ff, int type,
3531 			 struct perf_file_section **p,
3532 			 struct evlist *evlist,
3533 			 struct feat_copier *fc)
3534 {
3535 	int err;
3536 	int ret = 0;
3537 
3538 	if (perf_header__has_feat(ff->ph, type)) {
3539 		if (!feat_ops[type].write)
3540 			return -1;
3541 
3542 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3543 			return -1;
3544 
3545 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3546 
3547 		/*
3548 		 * Hook to let perf inject copy features sections from the input
3549 		 * file.
3550 		 */
3551 		if (fc && fc->copy) {
3552 			struct header_fw h = {
3553 				.fw.write = feat_writer_cb,
3554 				.ff = ff,
3555 			};
3556 
3557 			/* ->copy() returns 0 if the feature was not copied */
3558 			err = fc->copy(fc, type, &h.fw);
3559 		} else {
3560 			err = 0;
3561 		}
3562 		if (!err)
3563 			err = feat_ops[type].write(ff, evlist);
3564 		if (err < 0) {
3565 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3566 
3567 			/* undo anything written */
3568 			lseek(ff->fd, (*p)->offset, SEEK_SET);
3569 
3570 			return -1;
3571 		}
3572 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3573 		(*p)++;
3574 	}
3575 	return ret;
3576 }
3577 
3578 static int perf_header__adds_write(struct perf_header *header,
3579 				   struct evlist *evlist, int fd,
3580 				   struct feat_copier *fc)
3581 {
3582 	int nr_sections;
3583 	struct feat_fd ff;
3584 	struct perf_file_section *feat_sec, *p;
3585 	int sec_size;
3586 	u64 sec_start;
3587 	int feat;
3588 	int err;
3589 
3590 	ff = (struct feat_fd){
3591 		.fd  = fd,
3592 		.ph = header,
3593 	};
3594 
3595 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3596 	if (!nr_sections)
3597 		return 0;
3598 
3599 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3600 	if (feat_sec == NULL)
3601 		return -ENOMEM;
3602 
3603 	sec_size = sizeof(*feat_sec) * nr_sections;
3604 
3605 	sec_start = header->feat_offset;
3606 	lseek(fd, sec_start + sec_size, SEEK_SET);
3607 
3608 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3609 		if (do_write_feat(&ff, feat, &p, evlist, fc))
3610 			perf_header__clear_feat(header, feat);
3611 	}
3612 
3613 	lseek(fd, sec_start, SEEK_SET);
3614 	/*
3615 	 * may write more than needed due to dropped feature, but
3616 	 * this is okay, reader will skip the missing entries
3617 	 */
3618 	err = do_write(&ff, feat_sec, sec_size);
3619 	if (err < 0)
3620 		pr_debug("failed to write feature section\n");
3621 	free(feat_sec);
3622 	return err;
3623 }
3624 
3625 int perf_header__write_pipe(int fd)
3626 {
3627 	struct perf_pipe_file_header f_header;
3628 	struct feat_fd ff;
3629 	int err;
3630 
3631 	ff = (struct feat_fd){ .fd = fd };
3632 
3633 	f_header = (struct perf_pipe_file_header){
3634 		.magic	   = PERF_MAGIC,
3635 		.size	   = sizeof(f_header),
3636 	};
3637 
3638 	err = do_write(&ff, &f_header, sizeof(f_header));
3639 	if (err < 0) {
3640 		pr_debug("failed to write perf pipe header\n");
3641 		return err;
3642 	}
3643 
3644 	return 0;
3645 }
3646 
3647 static int perf_session__do_write_header(struct perf_session *session,
3648 					 struct evlist *evlist,
3649 					 int fd, bool at_exit,
3650 					 struct feat_copier *fc)
3651 {
3652 	struct perf_file_header f_header;
3653 	struct perf_file_attr   f_attr;
3654 	struct perf_header *header = &session->header;
3655 	struct evsel *evsel;
3656 	struct feat_fd ff;
3657 	u64 attr_offset;
3658 	int err;
3659 
3660 	ff = (struct feat_fd){ .fd = fd};
3661 	lseek(fd, sizeof(f_header), SEEK_SET);
3662 
3663 	evlist__for_each_entry(session->evlist, evsel) {
3664 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3665 		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3666 		if (err < 0) {
3667 			pr_debug("failed to write perf header\n");
3668 			return err;
3669 		}
3670 	}
3671 
3672 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3673 
3674 	evlist__for_each_entry(evlist, evsel) {
3675 		if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3676 			/*
3677 			 * We are likely in "perf inject" and have read
3678 			 * from an older file. Update attr size so that
3679 			 * reader gets the right offset to the ids.
3680 			 */
3681 			evsel->core.attr.size = sizeof(evsel->core.attr);
3682 		}
3683 		f_attr = (struct perf_file_attr){
3684 			.attr = evsel->core.attr,
3685 			.ids  = {
3686 				.offset = evsel->id_offset,
3687 				.size   = evsel->core.ids * sizeof(u64),
3688 			}
3689 		};
3690 		err = do_write(&ff, &f_attr, sizeof(f_attr));
3691 		if (err < 0) {
3692 			pr_debug("failed to write perf header attribute\n");
3693 			return err;
3694 		}
3695 	}
3696 
3697 	if (!header->data_offset)
3698 		header->data_offset = lseek(fd, 0, SEEK_CUR);
3699 	header->feat_offset = header->data_offset + header->data_size;
3700 
3701 	if (at_exit) {
3702 		err = perf_header__adds_write(header, evlist, fd, fc);
3703 		if (err < 0)
3704 			return err;
3705 	}
3706 
3707 	f_header = (struct perf_file_header){
3708 		.magic	   = PERF_MAGIC,
3709 		.size	   = sizeof(f_header),
3710 		.attr_size = sizeof(f_attr),
3711 		.attrs = {
3712 			.offset = attr_offset,
3713 			.size   = evlist->core.nr_entries * sizeof(f_attr),
3714 		},
3715 		.data = {
3716 			.offset = header->data_offset,
3717 			.size	= header->data_size,
3718 		},
3719 		/* event_types is ignored, store zeros */
3720 	};
3721 
3722 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3723 
3724 	lseek(fd, 0, SEEK_SET);
3725 	err = do_write(&ff, &f_header, sizeof(f_header));
3726 	if (err < 0) {
3727 		pr_debug("failed to write perf header\n");
3728 		return err;
3729 	}
3730 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3731 
3732 	return 0;
3733 }
3734 
3735 int perf_session__write_header(struct perf_session *session,
3736 			       struct evlist *evlist,
3737 			       int fd, bool at_exit)
3738 {
3739 	return perf_session__do_write_header(session, evlist, fd, at_exit, NULL);
3740 }
3741 
3742 size_t perf_session__data_offset(const struct evlist *evlist)
3743 {
3744 	struct evsel *evsel;
3745 	size_t data_offset;
3746 
3747 	data_offset = sizeof(struct perf_file_header);
3748 	evlist__for_each_entry(evlist, evsel) {
3749 		data_offset += evsel->core.ids * sizeof(u64);
3750 	}
3751 	data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3752 
3753 	return data_offset;
3754 }
3755 
3756 int perf_session__inject_header(struct perf_session *session,
3757 				struct evlist *evlist,
3758 				int fd,
3759 				struct feat_copier *fc)
3760 {
3761 	return perf_session__do_write_header(session, evlist, fd, true, fc);
3762 }
3763 
3764 static int perf_header__getbuffer64(struct perf_header *header,
3765 				    int fd, void *buf, size_t size)
3766 {
3767 	if (readn(fd, buf, size) <= 0)
3768 		return -1;
3769 
3770 	if (header->needs_swap)
3771 		mem_bswap_64(buf, size);
3772 
3773 	return 0;
3774 }
3775 
3776 int perf_header__process_sections(struct perf_header *header, int fd,
3777 				  void *data,
3778 				  int (*process)(struct perf_file_section *section,
3779 						 struct perf_header *ph,
3780 						 int feat, int fd, void *data))
3781 {
3782 	struct perf_file_section *feat_sec, *sec;
3783 	int nr_sections;
3784 	int sec_size;
3785 	int feat;
3786 	int err;
3787 
3788 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3789 	if (!nr_sections)
3790 		return 0;
3791 
3792 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3793 	if (!feat_sec)
3794 		return -1;
3795 
3796 	sec_size = sizeof(*feat_sec) * nr_sections;
3797 
3798 	lseek(fd, header->feat_offset, SEEK_SET);
3799 
3800 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3801 	if (err < 0)
3802 		goto out_free;
3803 
3804 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3805 		err = process(sec++, header, feat, fd, data);
3806 		if (err < 0)
3807 			goto out_free;
3808 	}
3809 	err = 0;
3810 out_free:
3811 	free(feat_sec);
3812 	return err;
3813 }
3814 
3815 static const int attr_file_abi_sizes[] = {
3816 	[0] = PERF_ATTR_SIZE_VER0,
3817 	[1] = PERF_ATTR_SIZE_VER1,
3818 	[2] = PERF_ATTR_SIZE_VER2,
3819 	[3] = PERF_ATTR_SIZE_VER3,
3820 	[4] = PERF_ATTR_SIZE_VER4,
3821 	0,
3822 };
3823 
3824 /*
3825  * In the legacy file format, the magic number is not used to encode endianness.
3826  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3827  * on ABI revisions, we need to try all combinations for all endianness to
3828  * detect the endianness.
3829  */
3830 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3831 {
3832 	uint64_t ref_size, attr_size;
3833 	int i;
3834 
3835 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3836 		ref_size = attr_file_abi_sizes[i]
3837 			 + sizeof(struct perf_file_section);
3838 		if (hdr_sz != ref_size) {
3839 			attr_size = bswap_64(hdr_sz);
3840 			if (attr_size != ref_size)
3841 				continue;
3842 
3843 			ph->needs_swap = true;
3844 		}
3845 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3846 			 i,
3847 			 ph->needs_swap);
3848 		return 0;
3849 	}
3850 	/* could not determine endianness */
3851 	return -1;
3852 }
3853 
3854 #define PERF_PIPE_HDR_VER0	16
3855 
3856 static const size_t attr_pipe_abi_sizes[] = {
3857 	[0] = PERF_PIPE_HDR_VER0,
3858 	0,
3859 };
3860 
3861 /*
3862  * In the legacy pipe format, there is an implicit assumption that endianness
3863  * between host recording the samples, and host parsing the samples is the
3864  * same. This is not always the case given that the pipe output may always be
3865  * redirected into a file and analyzed on a different machine with possibly a
3866  * different endianness and perf_event ABI revisions in the perf tool itself.
3867  */
3868 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3869 {
3870 	u64 attr_size;
3871 	int i;
3872 
3873 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3874 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3875 			attr_size = bswap_64(hdr_sz);
3876 			if (attr_size != hdr_sz)
3877 				continue;
3878 
3879 			ph->needs_swap = true;
3880 		}
3881 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3882 		return 0;
3883 	}
3884 	return -1;
3885 }
3886 
3887 bool is_perf_magic(u64 magic)
3888 {
3889 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3890 		|| magic == __perf_magic2
3891 		|| magic == __perf_magic2_sw)
3892 		return true;
3893 
3894 	return false;
3895 }
3896 
3897 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3898 			      bool is_pipe, struct perf_header *ph)
3899 {
3900 	int ret;
3901 
3902 	/* check for legacy format */
3903 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3904 	if (ret == 0) {
3905 		ph->version = PERF_HEADER_VERSION_1;
3906 		pr_debug("legacy perf.data format\n");
3907 		if (is_pipe)
3908 			return try_all_pipe_abis(hdr_sz, ph);
3909 
3910 		return try_all_file_abis(hdr_sz, ph);
3911 	}
3912 	/*
3913 	 * the new magic number serves two purposes:
3914 	 * - unique number to identify actual perf.data files
3915 	 * - encode endianness of file
3916 	 */
3917 	ph->version = PERF_HEADER_VERSION_2;
3918 
3919 	/* check magic number with one endianness */
3920 	if (magic == __perf_magic2)
3921 		return 0;
3922 
3923 	/* check magic number with opposite endianness */
3924 	if (magic != __perf_magic2_sw)
3925 		return -1;
3926 
3927 	ph->needs_swap = true;
3928 
3929 	return 0;
3930 }
3931 
3932 int perf_file_header__read(struct perf_file_header *header,
3933 			   struct perf_header *ph, int fd)
3934 {
3935 	ssize_t ret;
3936 
3937 	lseek(fd, 0, SEEK_SET);
3938 
3939 	ret = readn(fd, header, sizeof(*header));
3940 	if (ret <= 0)
3941 		return -1;
3942 
3943 	if (check_magic_endian(header->magic,
3944 			       header->attr_size, false, ph) < 0) {
3945 		pr_debug("magic/endian check failed\n");
3946 		return -1;
3947 	}
3948 
3949 	if (ph->needs_swap) {
3950 		mem_bswap_64(header, offsetof(struct perf_file_header,
3951 			     adds_features));
3952 	}
3953 
3954 	if (header->size != sizeof(*header)) {
3955 		/* Support the previous format */
3956 		if (header->size == offsetof(typeof(*header), adds_features))
3957 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3958 		else
3959 			return -1;
3960 	} else if (ph->needs_swap) {
3961 		/*
3962 		 * feature bitmap is declared as an array of unsigned longs --
3963 		 * not good since its size can differ between the host that
3964 		 * generated the data file and the host analyzing the file.
3965 		 *
3966 		 * We need to handle endianness, but we don't know the size of
3967 		 * the unsigned long where the file was generated. Take a best
3968 		 * guess at determining it: try 64-bit swap first (ie., file
3969 		 * created on a 64-bit host), and check if the hostname feature
3970 		 * bit is set (this feature bit is forced on as of fbe96f2).
3971 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3972 		 * swap. If the hostname bit is still not set (e.g., older data
3973 		 * file), punt and fallback to the original behavior --
3974 		 * clearing all feature bits and setting buildid.
3975 		 */
3976 		mem_bswap_64(&header->adds_features,
3977 			    BITS_TO_U64(HEADER_FEAT_BITS));
3978 
3979 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3980 			/* unswap as u64 */
3981 			mem_bswap_64(&header->adds_features,
3982 				    BITS_TO_U64(HEADER_FEAT_BITS));
3983 
3984 			/* unswap as u32 */
3985 			mem_bswap_32(&header->adds_features,
3986 				    BITS_TO_U32(HEADER_FEAT_BITS));
3987 		}
3988 
3989 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3990 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3991 			__set_bit(HEADER_BUILD_ID, header->adds_features);
3992 		}
3993 	}
3994 
3995 	memcpy(&ph->adds_features, &header->adds_features,
3996 	       sizeof(ph->adds_features));
3997 
3998 	ph->data_offset  = header->data.offset;
3999 	ph->data_size	 = header->data.size;
4000 	ph->feat_offset  = header->data.offset + header->data.size;
4001 	return 0;
4002 }
4003 
4004 static int perf_file_section__process(struct perf_file_section *section,
4005 				      struct perf_header *ph,
4006 				      int feat, int fd, void *data)
4007 {
4008 	struct feat_fd fdd = {
4009 		.fd	= fd,
4010 		.ph	= ph,
4011 		.size	= section->size,
4012 		.offset	= section->offset,
4013 	};
4014 
4015 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
4016 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
4017 			  "%d, continuing...\n", section->offset, feat);
4018 		return 0;
4019 	}
4020 
4021 	if (feat >= HEADER_LAST_FEATURE) {
4022 		pr_debug("unknown feature %d, continuing...\n", feat);
4023 		return 0;
4024 	}
4025 
4026 	if (!feat_ops[feat].process)
4027 		return 0;
4028 
4029 	return feat_ops[feat].process(&fdd, data);
4030 }
4031 
4032 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
4033 				       struct perf_header *ph,
4034 				       struct perf_data* data,
4035 				       bool repipe, int repipe_fd)
4036 {
4037 	struct feat_fd ff = {
4038 		.fd = repipe_fd,
4039 		.ph = ph,
4040 	};
4041 	ssize_t ret;
4042 
4043 	ret = perf_data__read(data, header, sizeof(*header));
4044 	if (ret <= 0)
4045 		return -1;
4046 
4047 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4048 		pr_debug("endian/magic failed\n");
4049 		return -1;
4050 	}
4051 
4052 	if (ph->needs_swap)
4053 		header->size = bswap_64(header->size);
4054 
4055 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
4056 		return -1;
4057 
4058 	return 0;
4059 }
4060 
4061 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd)
4062 {
4063 	struct perf_header *header = &session->header;
4064 	struct perf_pipe_file_header f_header;
4065 
4066 	if (perf_file_header__read_pipe(&f_header, header, session->data,
4067 					session->repipe, repipe_fd) < 0) {
4068 		pr_debug("incompatible file format\n");
4069 		return -EINVAL;
4070 	}
4071 
4072 	return f_header.size == sizeof(f_header) ? 0 : -1;
4073 }
4074 
4075 static int read_attr(int fd, struct perf_header *ph,
4076 		     struct perf_file_attr *f_attr)
4077 {
4078 	struct perf_event_attr *attr = &f_attr->attr;
4079 	size_t sz, left;
4080 	size_t our_sz = sizeof(f_attr->attr);
4081 	ssize_t ret;
4082 
4083 	memset(f_attr, 0, sizeof(*f_attr));
4084 
4085 	/* read minimal guaranteed structure */
4086 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4087 	if (ret <= 0) {
4088 		pr_debug("cannot read %d bytes of header attr\n",
4089 			 PERF_ATTR_SIZE_VER0);
4090 		return -1;
4091 	}
4092 
4093 	/* on file perf_event_attr size */
4094 	sz = attr->size;
4095 
4096 	if (ph->needs_swap)
4097 		sz = bswap_32(sz);
4098 
4099 	if (sz == 0) {
4100 		/* assume ABI0 */
4101 		sz =  PERF_ATTR_SIZE_VER0;
4102 	} else if (sz > our_sz) {
4103 		pr_debug("file uses a more recent and unsupported ABI"
4104 			 " (%zu bytes extra)\n", sz - our_sz);
4105 		return -1;
4106 	}
4107 	/* what we have not yet read and that we know about */
4108 	left = sz - PERF_ATTR_SIZE_VER0;
4109 	if (left) {
4110 		void *ptr = attr;
4111 		ptr += PERF_ATTR_SIZE_VER0;
4112 
4113 		ret = readn(fd, ptr, left);
4114 	}
4115 	/* read perf_file_section, ids are read in caller */
4116 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4117 
4118 	return ret <= 0 ? -1 : 0;
4119 }
4120 
4121 #ifdef HAVE_LIBTRACEEVENT
4122 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4123 {
4124 	struct tep_event *event;
4125 	char bf[128];
4126 
4127 	/* already prepared */
4128 	if (evsel->tp_format)
4129 		return 0;
4130 
4131 	if (pevent == NULL) {
4132 		pr_debug("broken or missing trace data\n");
4133 		return -1;
4134 	}
4135 
4136 	event = tep_find_event(pevent, evsel->core.attr.config);
4137 	if (event == NULL) {
4138 		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4139 		return -1;
4140 	}
4141 
4142 	if (!evsel->name) {
4143 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4144 		evsel->name = strdup(bf);
4145 		if (evsel->name == NULL)
4146 			return -1;
4147 	}
4148 
4149 	evsel->tp_format = event;
4150 	return 0;
4151 }
4152 
4153 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4154 {
4155 	struct evsel *pos;
4156 
4157 	evlist__for_each_entry(evlist, pos) {
4158 		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4159 		    evsel__prepare_tracepoint_event(pos, pevent))
4160 			return -1;
4161 	}
4162 
4163 	return 0;
4164 }
4165 #endif
4166 
4167 int perf_session__read_header(struct perf_session *session, int repipe_fd)
4168 {
4169 	struct perf_data *data = session->data;
4170 	struct perf_header *header = &session->header;
4171 	struct perf_file_header	f_header;
4172 	struct perf_file_attr	f_attr;
4173 	u64			f_id;
4174 	int nr_attrs, nr_ids, i, j, err;
4175 	int fd = perf_data__fd(data);
4176 
4177 	session->evlist = evlist__new();
4178 	if (session->evlist == NULL)
4179 		return -ENOMEM;
4180 
4181 	session->evlist->env = &header->env;
4182 	session->machines.host.env = &header->env;
4183 
4184 	/*
4185 	 * We can read 'pipe' data event from regular file,
4186 	 * check for the pipe header regardless of source.
4187 	 */
4188 	err = perf_header__read_pipe(session, repipe_fd);
4189 	if (!err || perf_data__is_pipe(data)) {
4190 		data->is_pipe = true;
4191 		return err;
4192 	}
4193 
4194 	if (perf_file_header__read(&f_header, header, fd) < 0)
4195 		return -EINVAL;
4196 
4197 	if (header->needs_swap && data->in_place_update) {
4198 		pr_err("In-place update not supported when byte-swapping is required\n");
4199 		return -EINVAL;
4200 	}
4201 
4202 	/*
4203 	 * Sanity check that perf.data was written cleanly; data size is
4204 	 * initialized to 0 and updated only if the on_exit function is run.
4205 	 * If data size is still 0 then the file contains only partial
4206 	 * information.  Just warn user and process it as much as it can.
4207 	 */
4208 	if (f_header.data.size == 0) {
4209 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4210 			   "Was the 'perf record' command properly terminated?\n",
4211 			   data->file.path);
4212 	}
4213 
4214 	if (f_header.attr_size == 0) {
4215 		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4216 		       "Was the 'perf record' command properly terminated?\n",
4217 		       data->file.path);
4218 		return -EINVAL;
4219 	}
4220 
4221 	nr_attrs = f_header.attrs.size / f_header.attr_size;
4222 	lseek(fd, f_header.attrs.offset, SEEK_SET);
4223 
4224 	for (i = 0; i < nr_attrs; i++) {
4225 		struct evsel *evsel;
4226 		off_t tmp;
4227 
4228 		if (read_attr(fd, header, &f_attr) < 0)
4229 			goto out_errno;
4230 
4231 		if (header->needs_swap) {
4232 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
4233 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4234 			perf_event__attr_swap(&f_attr.attr);
4235 		}
4236 
4237 		tmp = lseek(fd, 0, SEEK_CUR);
4238 		evsel = evsel__new(&f_attr.attr);
4239 
4240 		if (evsel == NULL)
4241 			goto out_delete_evlist;
4242 
4243 		evsel->needs_swap = header->needs_swap;
4244 		/*
4245 		 * Do it before so that if perf_evsel__alloc_id fails, this
4246 		 * entry gets purged too at evlist__delete().
4247 		 */
4248 		evlist__add(session->evlist, evsel);
4249 
4250 		nr_ids = f_attr.ids.size / sizeof(u64);
4251 		/*
4252 		 * We don't have the cpu and thread maps on the header, so
4253 		 * for allocating the perf_sample_id table we fake 1 cpu and
4254 		 * hattr->ids threads.
4255 		 */
4256 		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4257 			goto out_delete_evlist;
4258 
4259 		lseek(fd, f_attr.ids.offset, SEEK_SET);
4260 
4261 		for (j = 0; j < nr_ids; j++) {
4262 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4263 				goto out_errno;
4264 
4265 			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4266 		}
4267 
4268 		lseek(fd, tmp, SEEK_SET);
4269 	}
4270 
4271 #ifdef HAVE_LIBTRACEEVENT
4272 	perf_header__process_sections(header, fd, &session->tevent,
4273 				      perf_file_section__process);
4274 
4275 	if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4276 		goto out_delete_evlist;
4277 #else
4278 	perf_header__process_sections(header, fd, NULL, perf_file_section__process);
4279 #endif
4280 
4281 	return 0;
4282 out_errno:
4283 	return -errno;
4284 
4285 out_delete_evlist:
4286 	evlist__delete(session->evlist);
4287 	session->evlist = NULL;
4288 	return -ENOMEM;
4289 }
4290 
4291 int perf_event__process_feature(struct perf_session *session,
4292 				union perf_event *event)
4293 {
4294 	struct perf_tool *tool = session->tool;
4295 	struct feat_fd ff = { .fd = 0 };
4296 	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4297 	int type = fe->header.type;
4298 	u64 feat = fe->feat_id;
4299 	int ret = 0;
4300 
4301 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4302 		pr_warning("invalid record type %d in pipe-mode\n", type);
4303 		return 0;
4304 	}
4305 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4306 		pr_warning("invalid record type %d in pipe-mode\n", type);
4307 		return -1;
4308 	}
4309 
4310 	if (!feat_ops[feat].process)
4311 		return 0;
4312 
4313 	ff.buf  = (void *)fe->data;
4314 	ff.size = event->header.size - sizeof(*fe);
4315 	ff.ph = &session->header;
4316 
4317 	if (feat_ops[feat].process(&ff, NULL)) {
4318 		ret = -1;
4319 		goto out;
4320 	}
4321 
4322 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
4323 		goto out;
4324 
4325 	if (!feat_ops[feat].full_only ||
4326 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4327 		feat_ops[feat].print(&ff, stdout);
4328 	} else {
4329 		fprintf(stdout, "# %s info available, use -I to display\n",
4330 			feat_ops[feat].name);
4331 	}
4332 out:
4333 	free_event_desc(ff.events);
4334 	return ret;
4335 }
4336 
4337 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4338 {
4339 	struct perf_record_event_update *ev = &event->event_update;
4340 	struct perf_cpu_map *map;
4341 	size_t ret;
4342 
4343 	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
4344 
4345 	switch (ev->type) {
4346 	case PERF_EVENT_UPDATE__SCALE:
4347 		ret += fprintf(fp, "... scale: %f\n", ev->scale.scale);
4348 		break;
4349 	case PERF_EVENT_UPDATE__UNIT:
4350 		ret += fprintf(fp, "... unit:  %s\n", ev->unit);
4351 		break;
4352 	case PERF_EVENT_UPDATE__NAME:
4353 		ret += fprintf(fp, "... name:  %s\n", ev->name);
4354 		break;
4355 	case PERF_EVENT_UPDATE__CPUS:
4356 		ret += fprintf(fp, "... ");
4357 
4358 		map = cpu_map__new_data(&ev->cpus.cpus);
4359 		if (map)
4360 			ret += cpu_map__fprintf(map, fp);
4361 		else
4362 			ret += fprintf(fp, "failed to get cpus\n");
4363 		break;
4364 	default:
4365 		ret += fprintf(fp, "... unknown type\n");
4366 		break;
4367 	}
4368 
4369 	return ret;
4370 }
4371 
4372 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4373 			     union perf_event *event,
4374 			     struct evlist **pevlist)
4375 {
4376 	u32 i, ids, n_ids;
4377 	struct evsel *evsel;
4378 	struct evlist *evlist = *pevlist;
4379 
4380 	if (evlist == NULL) {
4381 		*pevlist = evlist = evlist__new();
4382 		if (evlist == NULL)
4383 			return -ENOMEM;
4384 	}
4385 
4386 	evsel = evsel__new(&event->attr.attr);
4387 	if (evsel == NULL)
4388 		return -ENOMEM;
4389 
4390 	evlist__add(evlist, evsel);
4391 
4392 	ids = event->header.size;
4393 	ids -= (void *)&event->attr.id - (void *)event;
4394 	n_ids = ids / sizeof(u64);
4395 	/*
4396 	 * We don't have the cpu and thread maps on the header, so
4397 	 * for allocating the perf_sample_id table we fake 1 cpu and
4398 	 * hattr->ids threads.
4399 	 */
4400 	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4401 		return -ENOMEM;
4402 
4403 	for (i = 0; i < n_ids; i++) {
4404 		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4405 	}
4406 
4407 	return 0;
4408 }
4409 
4410 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4411 				     union perf_event *event,
4412 				     struct evlist **pevlist)
4413 {
4414 	struct perf_record_event_update *ev = &event->event_update;
4415 	struct evlist *evlist;
4416 	struct evsel *evsel;
4417 	struct perf_cpu_map *map;
4418 
4419 	if (dump_trace)
4420 		perf_event__fprintf_event_update(event, stdout);
4421 
4422 	if (!pevlist || *pevlist == NULL)
4423 		return -EINVAL;
4424 
4425 	evlist = *pevlist;
4426 
4427 	evsel = evlist__id2evsel(evlist, ev->id);
4428 	if (evsel == NULL)
4429 		return -EINVAL;
4430 
4431 	switch (ev->type) {
4432 	case PERF_EVENT_UPDATE__UNIT:
4433 		free((char *)evsel->unit);
4434 		evsel->unit = strdup(ev->unit);
4435 		break;
4436 	case PERF_EVENT_UPDATE__NAME:
4437 		free(evsel->name);
4438 		evsel->name = strdup(ev->name);
4439 		break;
4440 	case PERF_EVENT_UPDATE__SCALE:
4441 		evsel->scale = ev->scale.scale;
4442 		break;
4443 	case PERF_EVENT_UPDATE__CPUS:
4444 		map = cpu_map__new_data(&ev->cpus.cpus);
4445 		if (map) {
4446 			perf_cpu_map__put(evsel->core.own_cpus);
4447 			evsel->core.own_cpus = map;
4448 		} else
4449 			pr_err("failed to get event_update cpus\n");
4450 	default:
4451 		break;
4452 	}
4453 
4454 	return 0;
4455 }
4456 
4457 #ifdef HAVE_LIBTRACEEVENT
4458 int perf_event__process_tracing_data(struct perf_session *session,
4459 				     union perf_event *event)
4460 {
4461 	ssize_t size_read, padding, size = event->tracing_data.size;
4462 	int fd = perf_data__fd(session->data);
4463 	char buf[BUFSIZ];
4464 
4465 	/*
4466 	 * The pipe fd is already in proper place and in any case
4467 	 * we can't move it, and we'd screw the case where we read
4468 	 * 'pipe' data from regular file. The trace_report reads
4469 	 * data from 'fd' so we need to set it directly behind the
4470 	 * event, where the tracing data starts.
4471 	 */
4472 	if (!perf_data__is_pipe(session->data)) {
4473 		off_t offset = lseek(fd, 0, SEEK_CUR);
4474 
4475 		/* setup for reading amidst mmap */
4476 		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4477 		      SEEK_SET);
4478 	}
4479 
4480 	size_read = trace_report(fd, &session->tevent,
4481 				 session->repipe);
4482 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4483 
4484 	if (readn(fd, buf, padding) < 0) {
4485 		pr_err("%s: reading input file", __func__);
4486 		return -1;
4487 	}
4488 	if (session->repipe) {
4489 		int retw = write(STDOUT_FILENO, buf, padding);
4490 		if (retw <= 0 || retw != padding) {
4491 			pr_err("%s: repiping tracing data padding", __func__);
4492 			return -1;
4493 		}
4494 	}
4495 
4496 	if (size_read + padding != size) {
4497 		pr_err("%s: tracing data size mismatch", __func__);
4498 		return -1;
4499 	}
4500 
4501 	evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4502 
4503 	return size_read + padding;
4504 }
4505 #endif
4506 
4507 int perf_event__process_build_id(struct perf_session *session,
4508 				 union perf_event *event)
4509 {
4510 	__event_process_build_id(&event->build_id,
4511 				 event->build_id.filename,
4512 				 session);
4513 	return 0;
4514 }
4515