1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <inttypes.h> 4 #include "string2.h" 5 #include <sys/param.h> 6 #include <sys/types.h> 7 #include <byteswap.h> 8 #include <unistd.h> 9 #include <regex.h> 10 #include <stdio.h> 11 #include <stdlib.h> 12 #include <linux/compiler.h> 13 #include <linux/list.h> 14 #include <linux/kernel.h> 15 #include <linux/bitops.h> 16 #include <linux/string.h> 17 #include <linux/stringify.h> 18 #include <linux/zalloc.h> 19 #include <sys/stat.h> 20 #include <sys/utsname.h> 21 #include <linux/time64.h> 22 #include <dirent.h> 23 #ifdef HAVE_LIBBPF_SUPPORT 24 #include <bpf/libbpf.h> 25 #endif 26 #include <perf/cpumap.h> 27 #include <tools/libc_compat.h> // reallocarray 28 29 #include "dso.h" 30 #include "evlist.h" 31 #include "evsel.h" 32 #include "util/evsel_fprintf.h" 33 #include "header.h" 34 #include "memswap.h" 35 #include "trace-event.h" 36 #include "session.h" 37 #include "symbol.h" 38 #include "debug.h" 39 #include "cpumap.h" 40 #include "pmu.h" 41 #include "pmus.h" 42 #include "vdso.h" 43 #include "strbuf.h" 44 #include "build-id.h" 45 #include "data.h" 46 #include <api/fs/fs.h> 47 #include "asm/bug.h" 48 #include "tool.h" 49 #include "time-utils.h" 50 #include "units.h" 51 #include "util/util.h" // perf_exe() 52 #include "cputopo.h" 53 #include "bpf-event.h" 54 #include "bpf-utils.h" 55 #include "clockid.h" 56 57 #include <linux/ctype.h> 58 #include <internal/lib.h> 59 60 #ifdef HAVE_LIBTRACEEVENT 61 #include <traceevent/event-parse.h> 62 #endif 63 64 /* 65 * magic2 = "PERFILE2" 66 * must be a numerical value to let the endianness 67 * determine the memory layout. That way we are able 68 * to detect endianness when reading the perf.data file 69 * back. 70 * 71 * we check for legacy (PERFFILE) format. 72 */ 73 static const char *__perf_magic1 = "PERFFILE"; 74 static const u64 __perf_magic2 = 0x32454c4946524550ULL; 75 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; 76 77 #define PERF_MAGIC __perf_magic2 78 79 const char perf_version_string[] = PERF_VERSION; 80 81 struct perf_file_attr { 82 struct perf_event_attr attr; 83 struct perf_file_section ids; 84 }; 85 86 void perf_header__set_feat(struct perf_header *header, int feat) 87 { 88 __set_bit(feat, header->adds_features); 89 } 90 91 void perf_header__clear_feat(struct perf_header *header, int feat) 92 { 93 __clear_bit(feat, header->adds_features); 94 } 95 96 bool perf_header__has_feat(const struct perf_header *header, int feat) 97 { 98 return test_bit(feat, header->adds_features); 99 } 100 101 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) 102 { 103 ssize_t ret = writen(ff->fd, buf, size); 104 105 if (ret != (ssize_t)size) 106 return ret < 0 ? (int)ret : -1; 107 return 0; 108 } 109 110 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) 111 { 112 /* struct perf_event_header::size is u16 */ 113 const size_t max_size = 0xffff - sizeof(struct perf_event_header); 114 size_t new_size = ff->size; 115 void *addr; 116 117 if (size + ff->offset > max_size) 118 return -E2BIG; 119 120 while (size > (new_size - ff->offset)) 121 new_size <<= 1; 122 new_size = min(max_size, new_size); 123 124 if (ff->size < new_size) { 125 addr = realloc(ff->buf, new_size); 126 if (!addr) 127 return -ENOMEM; 128 ff->buf = addr; 129 ff->size = new_size; 130 } 131 132 memcpy(ff->buf + ff->offset, buf, size); 133 ff->offset += size; 134 135 return 0; 136 } 137 138 /* Return: 0 if succeeded, -ERR if failed. */ 139 int do_write(struct feat_fd *ff, const void *buf, size_t size) 140 { 141 if (!ff->buf) 142 return __do_write_fd(ff, buf, size); 143 return __do_write_buf(ff, buf, size); 144 } 145 146 /* Return: 0 if succeeded, -ERR if failed. */ 147 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) 148 { 149 u64 *p = (u64 *) set; 150 int i, ret; 151 152 ret = do_write(ff, &size, sizeof(size)); 153 if (ret < 0) 154 return ret; 155 156 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 157 ret = do_write(ff, p + i, sizeof(*p)); 158 if (ret < 0) 159 return ret; 160 } 161 162 return 0; 163 } 164 165 /* Return: 0 if succeeded, -ERR if failed. */ 166 int write_padded(struct feat_fd *ff, const void *bf, 167 size_t count, size_t count_aligned) 168 { 169 static const char zero_buf[NAME_ALIGN]; 170 int err = do_write(ff, bf, count); 171 172 if (!err) 173 err = do_write(ff, zero_buf, count_aligned - count); 174 175 return err; 176 } 177 178 #define string_size(str) \ 179 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) 180 181 /* Return: 0 if succeeded, -ERR if failed. */ 182 static int do_write_string(struct feat_fd *ff, const char *str) 183 { 184 u32 len, olen; 185 int ret; 186 187 olen = strlen(str) + 1; 188 len = PERF_ALIGN(olen, NAME_ALIGN); 189 190 /* write len, incl. \0 */ 191 ret = do_write(ff, &len, sizeof(len)); 192 if (ret < 0) 193 return ret; 194 195 return write_padded(ff, str, olen, len); 196 } 197 198 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) 199 { 200 ssize_t ret = readn(ff->fd, addr, size); 201 202 if (ret != size) 203 return ret < 0 ? (int)ret : -1; 204 return 0; 205 } 206 207 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) 208 { 209 if (size > (ssize_t)ff->size - ff->offset) 210 return -1; 211 212 memcpy(addr, ff->buf + ff->offset, size); 213 ff->offset += size; 214 215 return 0; 216 217 } 218 219 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) 220 { 221 if (!ff->buf) 222 return __do_read_fd(ff, addr, size); 223 return __do_read_buf(ff, addr, size); 224 } 225 226 static int do_read_u32(struct feat_fd *ff, u32 *addr) 227 { 228 int ret; 229 230 ret = __do_read(ff, addr, sizeof(*addr)); 231 if (ret) 232 return ret; 233 234 if (ff->ph->needs_swap) 235 *addr = bswap_32(*addr); 236 return 0; 237 } 238 239 static int do_read_u64(struct feat_fd *ff, u64 *addr) 240 { 241 int ret; 242 243 ret = __do_read(ff, addr, sizeof(*addr)); 244 if (ret) 245 return ret; 246 247 if (ff->ph->needs_swap) 248 *addr = bswap_64(*addr); 249 return 0; 250 } 251 252 static char *do_read_string(struct feat_fd *ff) 253 { 254 u32 len; 255 char *buf; 256 257 if (do_read_u32(ff, &len)) 258 return NULL; 259 260 buf = malloc(len); 261 if (!buf) 262 return NULL; 263 264 if (!__do_read(ff, buf, len)) { 265 /* 266 * strings are padded by zeroes 267 * thus the actual strlen of buf 268 * may be less than len 269 */ 270 return buf; 271 } 272 273 free(buf); 274 return NULL; 275 } 276 277 /* Return: 0 if succeeded, -ERR if failed. */ 278 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) 279 { 280 unsigned long *set; 281 u64 size, *p; 282 int i, ret; 283 284 ret = do_read_u64(ff, &size); 285 if (ret) 286 return ret; 287 288 set = bitmap_zalloc(size); 289 if (!set) 290 return -ENOMEM; 291 292 p = (u64 *) set; 293 294 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 295 ret = do_read_u64(ff, p + i); 296 if (ret < 0) { 297 free(set); 298 return ret; 299 } 300 } 301 302 *pset = set; 303 *psize = size; 304 return 0; 305 } 306 307 #ifdef HAVE_LIBTRACEEVENT 308 static int write_tracing_data(struct feat_fd *ff, 309 struct evlist *evlist) 310 { 311 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 312 return -1; 313 314 return read_tracing_data(ff->fd, &evlist->core.entries); 315 } 316 #endif 317 318 static int write_build_id(struct feat_fd *ff, 319 struct evlist *evlist __maybe_unused) 320 { 321 struct perf_session *session; 322 int err; 323 324 session = container_of(ff->ph, struct perf_session, header); 325 326 if (!perf_session__read_build_ids(session, true)) 327 return -1; 328 329 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 330 return -1; 331 332 err = perf_session__write_buildid_table(session, ff); 333 if (err < 0) { 334 pr_debug("failed to write buildid table\n"); 335 return err; 336 } 337 perf_session__cache_build_ids(session); 338 339 return 0; 340 } 341 342 static int write_hostname(struct feat_fd *ff, 343 struct evlist *evlist __maybe_unused) 344 { 345 struct utsname uts; 346 int ret; 347 348 ret = uname(&uts); 349 if (ret < 0) 350 return -1; 351 352 return do_write_string(ff, uts.nodename); 353 } 354 355 static int write_osrelease(struct feat_fd *ff, 356 struct evlist *evlist __maybe_unused) 357 { 358 struct utsname uts; 359 int ret; 360 361 ret = uname(&uts); 362 if (ret < 0) 363 return -1; 364 365 return do_write_string(ff, uts.release); 366 } 367 368 static int write_arch(struct feat_fd *ff, 369 struct evlist *evlist __maybe_unused) 370 { 371 struct utsname uts; 372 int ret; 373 374 ret = uname(&uts); 375 if (ret < 0) 376 return -1; 377 378 return do_write_string(ff, uts.machine); 379 } 380 381 static int write_version(struct feat_fd *ff, 382 struct evlist *evlist __maybe_unused) 383 { 384 return do_write_string(ff, perf_version_string); 385 } 386 387 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) 388 { 389 FILE *file; 390 char *buf = NULL; 391 char *s, *p; 392 const char *search = cpuinfo_proc; 393 size_t len = 0; 394 int ret = -1; 395 396 if (!search) 397 return -1; 398 399 file = fopen("/proc/cpuinfo", "r"); 400 if (!file) 401 return -1; 402 403 while (getline(&buf, &len, file) > 0) { 404 ret = strncmp(buf, search, strlen(search)); 405 if (!ret) 406 break; 407 } 408 409 if (ret) { 410 ret = -1; 411 goto done; 412 } 413 414 s = buf; 415 416 p = strchr(buf, ':'); 417 if (p && *(p+1) == ' ' && *(p+2)) 418 s = p + 2; 419 p = strchr(s, '\n'); 420 if (p) 421 *p = '\0'; 422 423 /* squash extra space characters (branding string) */ 424 p = s; 425 while (*p) { 426 if (isspace(*p)) { 427 char *r = p + 1; 428 char *q = skip_spaces(r); 429 *p = ' '; 430 if (q != (p+1)) 431 while ((*r++ = *q++)); 432 } 433 p++; 434 } 435 ret = do_write_string(ff, s); 436 done: 437 free(buf); 438 fclose(file); 439 return ret; 440 } 441 442 static int write_cpudesc(struct feat_fd *ff, 443 struct evlist *evlist __maybe_unused) 444 { 445 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__) 446 #define CPUINFO_PROC { "cpu", } 447 #elif defined(__s390__) 448 #define CPUINFO_PROC { "vendor_id", } 449 #elif defined(__sh__) 450 #define CPUINFO_PROC { "cpu type", } 451 #elif defined(__alpha__) || defined(__mips__) 452 #define CPUINFO_PROC { "cpu model", } 453 #elif defined(__arm__) 454 #define CPUINFO_PROC { "model name", "Processor", } 455 #elif defined(__arc__) 456 #define CPUINFO_PROC { "Processor", } 457 #elif defined(__xtensa__) 458 #define CPUINFO_PROC { "core ID", } 459 #else 460 #define CPUINFO_PROC { "model name", } 461 #endif 462 const char *cpuinfo_procs[] = CPUINFO_PROC; 463 #undef CPUINFO_PROC 464 unsigned int i; 465 466 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { 467 int ret; 468 ret = __write_cpudesc(ff, cpuinfo_procs[i]); 469 if (ret >= 0) 470 return ret; 471 } 472 return -1; 473 } 474 475 476 static int write_nrcpus(struct feat_fd *ff, 477 struct evlist *evlist __maybe_unused) 478 { 479 long nr; 480 u32 nrc, nra; 481 int ret; 482 483 nrc = cpu__max_present_cpu().cpu; 484 485 nr = sysconf(_SC_NPROCESSORS_ONLN); 486 if (nr < 0) 487 return -1; 488 489 nra = (u32)(nr & UINT_MAX); 490 491 ret = do_write(ff, &nrc, sizeof(nrc)); 492 if (ret < 0) 493 return ret; 494 495 return do_write(ff, &nra, sizeof(nra)); 496 } 497 498 static int write_event_desc(struct feat_fd *ff, 499 struct evlist *evlist) 500 { 501 struct evsel *evsel; 502 u32 nre, nri, sz; 503 int ret; 504 505 nre = evlist->core.nr_entries; 506 507 /* 508 * write number of events 509 */ 510 ret = do_write(ff, &nre, sizeof(nre)); 511 if (ret < 0) 512 return ret; 513 514 /* 515 * size of perf_event_attr struct 516 */ 517 sz = (u32)sizeof(evsel->core.attr); 518 ret = do_write(ff, &sz, sizeof(sz)); 519 if (ret < 0) 520 return ret; 521 522 evlist__for_each_entry(evlist, evsel) { 523 ret = do_write(ff, &evsel->core.attr, sz); 524 if (ret < 0) 525 return ret; 526 /* 527 * write number of unique id per event 528 * there is one id per instance of an event 529 * 530 * copy into an nri to be independent of the 531 * type of ids, 532 */ 533 nri = evsel->core.ids; 534 ret = do_write(ff, &nri, sizeof(nri)); 535 if (ret < 0) 536 return ret; 537 538 /* 539 * write event string as passed on cmdline 540 */ 541 ret = do_write_string(ff, evsel__name(evsel)); 542 if (ret < 0) 543 return ret; 544 /* 545 * write unique ids for this event 546 */ 547 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 548 if (ret < 0) 549 return ret; 550 } 551 return 0; 552 } 553 554 static int write_cmdline(struct feat_fd *ff, 555 struct evlist *evlist __maybe_unused) 556 { 557 char pbuf[MAXPATHLEN], *buf; 558 int i, ret, n; 559 560 /* actual path to perf binary */ 561 buf = perf_exe(pbuf, MAXPATHLEN); 562 563 /* account for binary path */ 564 n = perf_env.nr_cmdline + 1; 565 566 ret = do_write(ff, &n, sizeof(n)); 567 if (ret < 0) 568 return ret; 569 570 ret = do_write_string(ff, buf); 571 if (ret < 0) 572 return ret; 573 574 for (i = 0 ; i < perf_env.nr_cmdline; i++) { 575 ret = do_write_string(ff, perf_env.cmdline_argv[i]); 576 if (ret < 0) 577 return ret; 578 } 579 return 0; 580 } 581 582 583 static int write_cpu_topology(struct feat_fd *ff, 584 struct evlist *evlist __maybe_unused) 585 { 586 struct cpu_topology *tp; 587 u32 i; 588 int ret, j; 589 590 tp = cpu_topology__new(); 591 if (!tp) 592 return -1; 593 594 ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists)); 595 if (ret < 0) 596 goto done; 597 598 for (i = 0; i < tp->package_cpus_lists; i++) { 599 ret = do_write_string(ff, tp->package_cpus_list[i]); 600 if (ret < 0) 601 goto done; 602 } 603 ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists)); 604 if (ret < 0) 605 goto done; 606 607 for (i = 0; i < tp->core_cpus_lists; i++) { 608 ret = do_write_string(ff, tp->core_cpus_list[i]); 609 if (ret < 0) 610 break; 611 } 612 613 ret = perf_env__read_cpu_topology_map(&perf_env); 614 if (ret < 0) 615 goto done; 616 617 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 618 ret = do_write(ff, &perf_env.cpu[j].core_id, 619 sizeof(perf_env.cpu[j].core_id)); 620 if (ret < 0) 621 return ret; 622 ret = do_write(ff, &perf_env.cpu[j].socket_id, 623 sizeof(perf_env.cpu[j].socket_id)); 624 if (ret < 0) 625 return ret; 626 } 627 628 if (!tp->die_cpus_lists) 629 goto done; 630 631 ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists)); 632 if (ret < 0) 633 goto done; 634 635 for (i = 0; i < tp->die_cpus_lists; i++) { 636 ret = do_write_string(ff, tp->die_cpus_list[i]); 637 if (ret < 0) 638 goto done; 639 } 640 641 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 642 ret = do_write(ff, &perf_env.cpu[j].die_id, 643 sizeof(perf_env.cpu[j].die_id)); 644 if (ret < 0) 645 return ret; 646 } 647 648 done: 649 cpu_topology__delete(tp); 650 return ret; 651 } 652 653 654 655 static int write_total_mem(struct feat_fd *ff, 656 struct evlist *evlist __maybe_unused) 657 { 658 char *buf = NULL; 659 FILE *fp; 660 size_t len = 0; 661 int ret = -1, n; 662 uint64_t mem; 663 664 fp = fopen("/proc/meminfo", "r"); 665 if (!fp) 666 return -1; 667 668 while (getline(&buf, &len, fp) > 0) { 669 ret = strncmp(buf, "MemTotal:", 9); 670 if (!ret) 671 break; 672 } 673 if (!ret) { 674 n = sscanf(buf, "%*s %"PRIu64, &mem); 675 if (n == 1) 676 ret = do_write(ff, &mem, sizeof(mem)); 677 } else 678 ret = -1; 679 free(buf); 680 fclose(fp); 681 return ret; 682 } 683 684 static int write_numa_topology(struct feat_fd *ff, 685 struct evlist *evlist __maybe_unused) 686 { 687 struct numa_topology *tp; 688 int ret = -1; 689 u32 i; 690 691 tp = numa_topology__new(); 692 if (!tp) 693 return -ENOMEM; 694 695 ret = do_write(ff, &tp->nr, sizeof(u32)); 696 if (ret < 0) 697 goto err; 698 699 for (i = 0; i < tp->nr; i++) { 700 struct numa_topology_node *n = &tp->nodes[i]; 701 702 ret = do_write(ff, &n->node, sizeof(u32)); 703 if (ret < 0) 704 goto err; 705 706 ret = do_write(ff, &n->mem_total, sizeof(u64)); 707 if (ret) 708 goto err; 709 710 ret = do_write(ff, &n->mem_free, sizeof(u64)); 711 if (ret) 712 goto err; 713 714 ret = do_write_string(ff, n->cpus); 715 if (ret < 0) 716 goto err; 717 } 718 719 ret = 0; 720 721 err: 722 numa_topology__delete(tp); 723 return ret; 724 } 725 726 /* 727 * File format: 728 * 729 * struct pmu_mappings { 730 * u32 pmu_num; 731 * struct pmu_map { 732 * u32 type; 733 * char name[]; 734 * }[pmu_num]; 735 * }; 736 */ 737 738 static int write_pmu_mappings(struct feat_fd *ff, 739 struct evlist *evlist __maybe_unused) 740 { 741 struct perf_pmu *pmu = NULL; 742 u32 pmu_num = 0; 743 int ret; 744 745 /* 746 * Do a first pass to count number of pmu to avoid lseek so this 747 * works in pipe mode as well. 748 */ 749 while ((pmu = perf_pmus__scan(pmu))) { 750 if (!pmu->name) 751 continue; 752 pmu_num++; 753 } 754 755 ret = do_write(ff, &pmu_num, sizeof(pmu_num)); 756 if (ret < 0) 757 return ret; 758 759 while ((pmu = perf_pmus__scan(pmu))) { 760 if (!pmu->name) 761 continue; 762 763 ret = do_write(ff, &pmu->type, sizeof(pmu->type)); 764 if (ret < 0) 765 return ret; 766 767 ret = do_write_string(ff, pmu->name); 768 if (ret < 0) 769 return ret; 770 } 771 772 return 0; 773 } 774 775 /* 776 * File format: 777 * 778 * struct group_descs { 779 * u32 nr_groups; 780 * struct group_desc { 781 * char name[]; 782 * u32 leader_idx; 783 * u32 nr_members; 784 * }[nr_groups]; 785 * }; 786 */ 787 static int write_group_desc(struct feat_fd *ff, 788 struct evlist *evlist) 789 { 790 u32 nr_groups = evlist__nr_groups(evlist); 791 struct evsel *evsel; 792 int ret; 793 794 ret = do_write(ff, &nr_groups, sizeof(nr_groups)); 795 if (ret < 0) 796 return ret; 797 798 evlist__for_each_entry(evlist, evsel) { 799 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 800 const char *name = evsel->group_name ?: "{anon_group}"; 801 u32 leader_idx = evsel->core.idx; 802 u32 nr_members = evsel->core.nr_members; 803 804 ret = do_write_string(ff, name); 805 if (ret < 0) 806 return ret; 807 808 ret = do_write(ff, &leader_idx, sizeof(leader_idx)); 809 if (ret < 0) 810 return ret; 811 812 ret = do_write(ff, &nr_members, sizeof(nr_members)); 813 if (ret < 0) 814 return ret; 815 } 816 } 817 return 0; 818 } 819 820 /* 821 * Return the CPU id as a raw string. 822 * 823 * Each architecture should provide a more precise id string that 824 * can be use to match the architecture's "mapfile". 825 */ 826 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused) 827 { 828 return NULL; 829 } 830 831 /* Return zero when the cpuid from the mapfile.csv matches the 832 * cpuid string generated on this platform. 833 * Otherwise return non-zero. 834 */ 835 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid) 836 { 837 regex_t re; 838 regmatch_t pmatch[1]; 839 int match; 840 841 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) { 842 /* Warn unable to generate match particular string. */ 843 pr_info("Invalid regular expression %s\n", mapcpuid); 844 return 1; 845 } 846 847 match = !regexec(&re, cpuid, 1, pmatch, 0); 848 regfree(&re); 849 if (match) { 850 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so); 851 852 /* Verify the entire string matched. */ 853 if (match_len == strlen(cpuid)) 854 return 0; 855 } 856 return 1; 857 } 858 859 /* 860 * default get_cpuid(): nothing gets recorded 861 * actual implementation must be in arch/$(SRCARCH)/util/header.c 862 */ 863 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused) 864 { 865 return ENOSYS; /* Not implemented */ 866 } 867 868 static int write_cpuid(struct feat_fd *ff, 869 struct evlist *evlist __maybe_unused) 870 { 871 char buffer[64]; 872 int ret; 873 874 ret = get_cpuid(buffer, sizeof(buffer)); 875 if (ret) 876 return -1; 877 878 return do_write_string(ff, buffer); 879 } 880 881 static int write_branch_stack(struct feat_fd *ff __maybe_unused, 882 struct evlist *evlist __maybe_unused) 883 { 884 return 0; 885 } 886 887 static int write_auxtrace(struct feat_fd *ff, 888 struct evlist *evlist __maybe_unused) 889 { 890 struct perf_session *session; 891 int err; 892 893 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 894 return -1; 895 896 session = container_of(ff->ph, struct perf_session, header); 897 898 err = auxtrace_index__write(ff->fd, &session->auxtrace_index); 899 if (err < 0) 900 pr_err("Failed to write auxtrace index\n"); 901 return err; 902 } 903 904 static int write_clockid(struct feat_fd *ff, 905 struct evlist *evlist __maybe_unused) 906 { 907 return do_write(ff, &ff->ph->env.clock.clockid_res_ns, 908 sizeof(ff->ph->env.clock.clockid_res_ns)); 909 } 910 911 static int write_clock_data(struct feat_fd *ff, 912 struct evlist *evlist __maybe_unused) 913 { 914 u64 *data64; 915 u32 data32; 916 int ret; 917 918 /* version */ 919 data32 = 1; 920 921 ret = do_write(ff, &data32, sizeof(data32)); 922 if (ret < 0) 923 return ret; 924 925 /* clockid */ 926 data32 = ff->ph->env.clock.clockid; 927 928 ret = do_write(ff, &data32, sizeof(data32)); 929 if (ret < 0) 930 return ret; 931 932 /* TOD ref time */ 933 data64 = &ff->ph->env.clock.tod_ns; 934 935 ret = do_write(ff, data64, sizeof(*data64)); 936 if (ret < 0) 937 return ret; 938 939 /* clockid ref time */ 940 data64 = &ff->ph->env.clock.clockid_ns; 941 942 return do_write(ff, data64, sizeof(*data64)); 943 } 944 945 static int write_hybrid_topology(struct feat_fd *ff, 946 struct evlist *evlist __maybe_unused) 947 { 948 struct hybrid_topology *tp; 949 int ret; 950 u32 i; 951 952 tp = hybrid_topology__new(); 953 if (!tp) 954 return -ENOENT; 955 956 ret = do_write(ff, &tp->nr, sizeof(u32)); 957 if (ret < 0) 958 goto err; 959 960 for (i = 0; i < tp->nr; i++) { 961 struct hybrid_topology_node *n = &tp->nodes[i]; 962 963 ret = do_write_string(ff, n->pmu_name); 964 if (ret < 0) 965 goto err; 966 967 ret = do_write_string(ff, n->cpus); 968 if (ret < 0) 969 goto err; 970 } 971 972 ret = 0; 973 974 err: 975 hybrid_topology__delete(tp); 976 return ret; 977 } 978 979 static int write_dir_format(struct feat_fd *ff, 980 struct evlist *evlist __maybe_unused) 981 { 982 struct perf_session *session; 983 struct perf_data *data; 984 985 session = container_of(ff->ph, struct perf_session, header); 986 data = session->data; 987 988 if (WARN_ON(!perf_data__is_dir(data))) 989 return -1; 990 991 return do_write(ff, &data->dir.version, sizeof(data->dir.version)); 992 } 993 994 /* 995 * Check whether a CPU is online 996 * 997 * Returns: 998 * 1 -> if CPU is online 999 * 0 -> if CPU is offline 1000 * -1 -> error case 1001 */ 1002 int is_cpu_online(unsigned int cpu) 1003 { 1004 char *str; 1005 size_t strlen; 1006 char buf[256]; 1007 int status = -1; 1008 struct stat statbuf; 1009 1010 snprintf(buf, sizeof(buf), 1011 "/sys/devices/system/cpu/cpu%d", cpu); 1012 if (stat(buf, &statbuf) != 0) 1013 return 0; 1014 1015 /* 1016 * Check if /sys/devices/system/cpu/cpux/online file 1017 * exists. Some cases cpu0 won't have online file since 1018 * it is not expected to be turned off generally. 1019 * In kernels without CONFIG_HOTPLUG_CPU, this 1020 * file won't exist 1021 */ 1022 snprintf(buf, sizeof(buf), 1023 "/sys/devices/system/cpu/cpu%d/online", cpu); 1024 if (stat(buf, &statbuf) != 0) 1025 return 1; 1026 1027 /* 1028 * Read online file using sysfs__read_str. 1029 * If read or open fails, return -1. 1030 * If read succeeds, return value from file 1031 * which gets stored in "str" 1032 */ 1033 snprintf(buf, sizeof(buf), 1034 "devices/system/cpu/cpu%d/online", cpu); 1035 1036 if (sysfs__read_str(buf, &str, &strlen) < 0) 1037 return status; 1038 1039 status = atoi(str); 1040 1041 free(str); 1042 return status; 1043 } 1044 1045 #ifdef HAVE_LIBBPF_SUPPORT 1046 static int write_bpf_prog_info(struct feat_fd *ff, 1047 struct evlist *evlist __maybe_unused) 1048 { 1049 struct perf_env *env = &ff->ph->env; 1050 struct rb_root *root; 1051 struct rb_node *next; 1052 int ret; 1053 1054 down_read(&env->bpf_progs.lock); 1055 1056 ret = do_write(ff, &env->bpf_progs.infos_cnt, 1057 sizeof(env->bpf_progs.infos_cnt)); 1058 if (ret < 0) 1059 goto out; 1060 1061 root = &env->bpf_progs.infos; 1062 next = rb_first(root); 1063 while (next) { 1064 struct bpf_prog_info_node *node; 1065 size_t len; 1066 1067 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1068 next = rb_next(&node->rb_node); 1069 len = sizeof(struct perf_bpil) + 1070 node->info_linear->data_len; 1071 1072 /* before writing to file, translate address to offset */ 1073 bpil_addr_to_offs(node->info_linear); 1074 ret = do_write(ff, node->info_linear, len); 1075 /* 1076 * translate back to address even when do_write() fails, 1077 * so that this function never changes the data. 1078 */ 1079 bpil_offs_to_addr(node->info_linear); 1080 if (ret < 0) 1081 goto out; 1082 } 1083 out: 1084 up_read(&env->bpf_progs.lock); 1085 return ret; 1086 } 1087 1088 static int write_bpf_btf(struct feat_fd *ff, 1089 struct evlist *evlist __maybe_unused) 1090 { 1091 struct perf_env *env = &ff->ph->env; 1092 struct rb_root *root; 1093 struct rb_node *next; 1094 int ret; 1095 1096 down_read(&env->bpf_progs.lock); 1097 1098 ret = do_write(ff, &env->bpf_progs.btfs_cnt, 1099 sizeof(env->bpf_progs.btfs_cnt)); 1100 1101 if (ret < 0) 1102 goto out; 1103 1104 root = &env->bpf_progs.btfs; 1105 next = rb_first(root); 1106 while (next) { 1107 struct btf_node *node; 1108 1109 node = rb_entry(next, struct btf_node, rb_node); 1110 next = rb_next(&node->rb_node); 1111 ret = do_write(ff, &node->id, 1112 sizeof(u32) * 2 + node->data_size); 1113 if (ret < 0) 1114 goto out; 1115 } 1116 out: 1117 up_read(&env->bpf_progs.lock); 1118 return ret; 1119 } 1120 #endif // HAVE_LIBBPF_SUPPORT 1121 1122 static int cpu_cache_level__sort(const void *a, const void *b) 1123 { 1124 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; 1125 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; 1126 1127 return cache_a->level - cache_b->level; 1128 } 1129 1130 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) 1131 { 1132 if (a->level != b->level) 1133 return false; 1134 1135 if (a->line_size != b->line_size) 1136 return false; 1137 1138 if (a->sets != b->sets) 1139 return false; 1140 1141 if (a->ways != b->ways) 1142 return false; 1143 1144 if (strcmp(a->type, b->type)) 1145 return false; 1146 1147 if (strcmp(a->size, b->size)) 1148 return false; 1149 1150 if (strcmp(a->map, b->map)) 1151 return false; 1152 1153 return true; 1154 } 1155 1156 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) 1157 { 1158 char path[PATH_MAX], file[PATH_MAX]; 1159 struct stat st; 1160 size_t len; 1161 1162 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); 1163 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); 1164 1165 if (stat(file, &st)) 1166 return 1; 1167 1168 scnprintf(file, PATH_MAX, "%s/level", path); 1169 if (sysfs__read_int(file, (int *) &cache->level)) 1170 return -1; 1171 1172 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); 1173 if (sysfs__read_int(file, (int *) &cache->line_size)) 1174 return -1; 1175 1176 scnprintf(file, PATH_MAX, "%s/number_of_sets", path); 1177 if (sysfs__read_int(file, (int *) &cache->sets)) 1178 return -1; 1179 1180 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); 1181 if (sysfs__read_int(file, (int *) &cache->ways)) 1182 return -1; 1183 1184 scnprintf(file, PATH_MAX, "%s/type", path); 1185 if (sysfs__read_str(file, &cache->type, &len)) 1186 return -1; 1187 1188 cache->type[len] = 0; 1189 cache->type = strim(cache->type); 1190 1191 scnprintf(file, PATH_MAX, "%s/size", path); 1192 if (sysfs__read_str(file, &cache->size, &len)) { 1193 zfree(&cache->type); 1194 return -1; 1195 } 1196 1197 cache->size[len] = 0; 1198 cache->size = strim(cache->size); 1199 1200 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); 1201 if (sysfs__read_str(file, &cache->map, &len)) { 1202 zfree(&cache->size); 1203 zfree(&cache->type); 1204 return -1; 1205 } 1206 1207 cache->map[len] = 0; 1208 cache->map = strim(cache->map); 1209 return 0; 1210 } 1211 1212 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) 1213 { 1214 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); 1215 } 1216 1217 /* 1218 * Build caches levels for a particular CPU from the data in 1219 * /sys/devices/system/cpu/cpu<cpu>/cache/ 1220 * The cache level data is stored in caches[] from index at 1221 * *cntp. 1222 */ 1223 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp) 1224 { 1225 u16 level; 1226 1227 for (level = 0; level < MAX_CACHE_LVL; level++) { 1228 struct cpu_cache_level c; 1229 int err; 1230 u32 i; 1231 1232 err = cpu_cache_level__read(&c, cpu, level); 1233 if (err < 0) 1234 return err; 1235 1236 if (err == 1) 1237 break; 1238 1239 for (i = 0; i < *cntp; i++) { 1240 if (cpu_cache_level__cmp(&c, &caches[i])) 1241 break; 1242 } 1243 1244 if (i == *cntp) { 1245 caches[*cntp] = c; 1246 *cntp = *cntp + 1; 1247 } else 1248 cpu_cache_level__free(&c); 1249 } 1250 1251 return 0; 1252 } 1253 1254 static int build_caches(struct cpu_cache_level caches[], u32 *cntp) 1255 { 1256 u32 nr, cpu, cnt = 0; 1257 1258 nr = cpu__max_cpu().cpu; 1259 1260 for (cpu = 0; cpu < nr; cpu++) { 1261 int ret = build_caches_for_cpu(cpu, caches, &cnt); 1262 1263 if (ret) 1264 return ret; 1265 } 1266 *cntp = cnt; 1267 return 0; 1268 } 1269 1270 static int write_cache(struct feat_fd *ff, 1271 struct evlist *evlist __maybe_unused) 1272 { 1273 u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL; 1274 struct cpu_cache_level caches[max_caches]; 1275 u32 cnt = 0, i, version = 1; 1276 int ret; 1277 1278 ret = build_caches(caches, &cnt); 1279 if (ret) 1280 goto out; 1281 1282 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); 1283 1284 ret = do_write(ff, &version, sizeof(u32)); 1285 if (ret < 0) 1286 goto out; 1287 1288 ret = do_write(ff, &cnt, sizeof(u32)); 1289 if (ret < 0) 1290 goto out; 1291 1292 for (i = 0; i < cnt; i++) { 1293 struct cpu_cache_level *c = &caches[i]; 1294 1295 #define _W(v) \ 1296 ret = do_write(ff, &c->v, sizeof(u32)); \ 1297 if (ret < 0) \ 1298 goto out; 1299 1300 _W(level) 1301 _W(line_size) 1302 _W(sets) 1303 _W(ways) 1304 #undef _W 1305 1306 #define _W(v) \ 1307 ret = do_write_string(ff, (const char *) c->v); \ 1308 if (ret < 0) \ 1309 goto out; 1310 1311 _W(type) 1312 _W(size) 1313 _W(map) 1314 #undef _W 1315 } 1316 1317 out: 1318 for (i = 0; i < cnt; i++) 1319 cpu_cache_level__free(&caches[i]); 1320 return ret; 1321 } 1322 1323 static int write_stat(struct feat_fd *ff __maybe_unused, 1324 struct evlist *evlist __maybe_unused) 1325 { 1326 return 0; 1327 } 1328 1329 static int write_sample_time(struct feat_fd *ff, 1330 struct evlist *evlist) 1331 { 1332 int ret; 1333 1334 ret = do_write(ff, &evlist->first_sample_time, 1335 sizeof(evlist->first_sample_time)); 1336 if (ret < 0) 1337 return ret; 1338 1339 return do_write(ff, &evlist->last_sample_time, 1340 sizeof(evlist->last_sample_time)); 1341 } 1342 1343 1344 static int memory_node__read(struct memory_node *n, unsigned long idx) 1345 { 1346 unsigned int phys, size = 0; 1347 char path[PATH_MAX]; 1348 struct dirent *ent; 1349 DIR *dir; 1350 1351 #define for_each_memory(mem, dir) \ 1352 while ((ent = readdir(dir))) \ 1353 if (strcmp(ent->d_name, ".") && \ 1354 strcmp(ent->d_name, "..") && \ 1355 sscanf(ent->d_name, "memory%u", &mem) == 1) 1356 1357 scnprintf(path, PATH_MAX, 1358 "%s/devices/system/node/node%lu", 1359 sysfs__mountpoint(), idx); 1360 1361 dir = opendir(path); 1362 if (!dir) { 1363 pr_warning("failed: can't open memory sysfs data\n"); 1364 return -1; 1365 } 1366 1367 for_each_memory(phys, dir) { 1368 size = max(phys, size); 1369 } 1370 1371 size++; 1372 1373 n->set = bitmap_zalloc(size); 1374 if (!n->set) { 1375 closedir(dir); 1376 return -ENOMEM; 1377 } 1378 1379 n->node = idx; 1380 n->size = size; 1381 1382 rewinddir(dir); 1383 1384 for_each_memory(phys, dir) { 1385 __set_bit(phys, n->set); 1386 } 1387 1388 closedir(dir); 1389 return 0; 1390 } 1391 1392 static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt) 1393 { 1394 for (u64 i = 0; i < cnt; i++) 1395 bitmap_free(nodesp[i].set); 1396 1397 free(nodesp); 1398 } 1399 1400 static int memory_node__sort(const void *a, const void *b) 1401 { 1402 const struct memory_node *na = a; 1403 const struct memory_node *nb = b; 1404 1405 return na->node - nb->node; 1406 } 1407 1408 static int build_mem_topology(struct memory_node **nodesp, u64 *cntp) 1409 { 1410 char path[PATH_MAX]; 1411 struct dirent *ent; 1412 DIR *dir; 1413 int ret = 0; 1414 size_t cnt = 0, size = 0; 1415 struct memory_node *nodes = NULL; 1416 1417 scnprintf(path, PATH_MAX, "%s/devices/system/node/", 1418 sysfs__mountpoint()); 1419 1420 dir = opendir(path); 1421 if (!dir) { 1422 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n", 1423 __func__, path); 1424 return -1; 1425 } 1426 1427 while (!ret && (ent = readdir(dir))) { 1428 unsigned int idx; 1429 int r; 1430 1431 if (!strcmp(ent->d_name, ".") || 1432 !strcmp(ent->d_name, "..")) 1433 continue; 1434 1435 r = sscanf(ent->d_name, "node%u", &idx); 1436 if (r != 1) 1437 continue; 1438 1439 if (cnt >= size) { 1440 struct memory_node *new_nodes = 1441 reallocarray(nodes, cnt + 4, sizeof(*nodes)); 1442 1443 if (!new_nodes) { 1444 pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size); 1445 ret = -ENOMEM; 1446 goto out; 1447 } 1448 nodes = new_nodes; 1449 size += 4; 1450 } 1451 ret = memory_node__read(&nodes[cnt++], idx); 1452 } 1453 out: 1454 closedir(dir); 1455 if (!ret) { 1456 *cntp = cnt; 1457 *nodesp = nodes; 1458 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); 1459 } else 1460 memory_node__delete_nodes(nodes, cnt); 1461 1462 return ret; 1463 } 1464 1465 /* 1466 * The MEM_TOPOLOGY holds physical memory map for every 1467 * node in system. The format of data is as follows: 1468 * 1469 * 0 - version | for future changes 1470 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes 1471 * 16 - count | number of nodes 1472 * 1473 * For each node we store map of physical indexes for 1474 * each node: 1475 * 1476 * 32 - node id | node index 1477 * 40 - size | size of bitmap 1478 * 48 - bitmap | bitmap of memory indexes that belongs to node 1479 */ 1480 static int write_mem_topology(struct feat_fd *ff __maybe_unused, 1481 struct evlist *evlist __maybe_unused) 1482 { 1483 struct memory_node *nodes = NULL; 1484 u64 bsize, version = 1, i, nr = 0; 1485 int ret; 1486 1487 ret = sysfs__read_xll("devices/system/memory/block_size_bytes", 1488 (unsigned long long *) &bsize); 1489 if (ret) 1490 return ret; 1491 1492 ret = build_mem_topology(&nodes, &nr); 1493 if (ret) 1494 return ret; 1495 1496 ret = do_write(ff, &version, sizeof(version)); 1497 if (ret < 0) 1498 goto out; 1499 1500 ret = do_write(ff, &bsize, sizeof(bsize)); 1501 if (ret < 0) 1502 goto out; 1503 1504 ret = do_write(ff, &nr, sizeof(nr)); 1505 if (ret < 0) 1506 goto out; 1507 1508 for (i = 0; i < nr; i++) { 1509 struct memory_node *n = &nodes[i]; 1510 1511 #define _W(v) \ 1512 ret = do_write(ff, &n->v, sizeof(n->v)); \ 1513 if (ret < 0) \ 1514 goto out; 1515 1516 _W(node) 1517 _W(size) 1518 1519 #undef _W 1520 1521 ret = do_write_bitmap(ff, n->set, n->size); 1522 if (ret < 0) 1523 goto out; 1524 } 1525 1526 out: 1527 memory_node__delete_nodes(nodes, nr); 1528 return ret; 1529 } 1530 1531 static int write_compressed(struct feat_fd *ff __maybe_unused, 1532 struct evlist *evlist __maybe_unused) 1533 { 1534 int ret; 1535 1536 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver)); 1537 if (ret) 1538 return ret; 1539 1540 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type)); 1541 if (ret) 1542 return ret; 1543 1544 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level)); 1545 if (ret) 1546 return ret; 1547 1548 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio)); 1549 if (ret) 1550 return ret; 1551 1552 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len)); 1553 } 1554 1555 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu, 1556 bool write_pmu) 1557 { 1558 struct perf_pmu_caps *caps = NULL; 1559 int ret; 1560 1561 ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps)); 1562 if (ret < 0) 1563 return ret; 1564 1565 list_for_each_entry(caps, &pmu->caps, list) { 1566 ret = do_write_string(ff, caps->name); 1567 if (ret < 0) 1568 return ret; 1569 1570 ret = do_write_string(ff, caps->value); 1571 if (ret < 0) 1572 return ret; 1573 } 1574 1575 if (write_pmu) { 1576 ret = do_write_string(ff, pmu->name); 1577 if (ret < 0) 1578 return ret; 1579 } 1580 1581 return ret; 1582 } 1583 1584 static int write_cpu_pmu_caps(struct feat_fd *ff, 1585 struct evlist *evlist __maybe_unused) 1586 { 1587 struct perf_pmu *cpu_pmu = perf_pmus__find("cpu"); 1588 int ret; 1589 1590 if (!cpu_pmu) 1591 return -ENOENT; 1592 1593 ret = perf_pmu__caps_parse(cpu_pmu); 1594 if (ret < 0) 1595 return ret; 1596 1597 return __write_pmu_caps(ff, cpu_pmu, false); 1598 } 1599 1600 static int write_pmu_caps(struct feat_fd *ff, 1601 struct evlist *evlist __maybe_unused) 1602 { 1603 struct perf_pmu *pmu = NULL; 1604 int nr_pmu = 0; 1605 int ret; 1606 1607 while ((pmu = perf_pmus__scan(pmu))) { 1608 if (!pmu->name || !strcmp(pmu->name, "cpu") || 1609 perf_pmu__caps_parse(pmu) <= 0) 1610 continue; 1611 nr_pmu++; 1612 } 1613 1614 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu)); 1615 if (ret < 0) 1616 return ret; 1617 1618 if (!nr_pmu) 1619 return 0; 1620 1621 /* 1622 * Write hybrid pmu caps first to maintain compatibility with 1623 * older perf tool. 1624 */ 1625 if (perf_pmus__num_core_pmus() > 1) { 1626 pmu = NULL; 1627 while ((pmu = perf_pmus__scan_core(pmu))) { 1628 ret = __write_pmu_caps(ff, pmu, true); 1629 if (ret < 0) 1630 return ret; 1631 } 1632 } 1633 1634 pmu = NULL; 1635 while ((pmu = perf_pmus__scan(pmu))) { 1636 if (pmu->is_core || !pmu->nr_caps) 1637 continue; 1638 1639 ret = __write_pmu_caps(ff, pmu, true); 1640 if (ret < 0) 1641 return ret; 1642 } 1643 return 0; 1644 } 1645 1646 static void print_hostname(struct feat_fd *ff, FILE *fp) 1647 { 1648 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); 1649 } 1650 1651 static void print_osrelease(struct feat_fd *ff, FILE *fp) 1652 { 1653 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); 1654 } 1655 1656 static void print_arch(struct feat_fd *ff, FILE *fp) 1657 { 1658 fprintf(fp, "# arch : %s\n", ff->ph->env.arch); 1659 } 1660 1661 static void print_cpudesc(struct feat_fd *ff, FILE *fp) 1662 { 1663 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); 1664 } 1665 1666 static void print_nrcpus(struct feat_fd *ff, FILE *fp) 1667 { 1668 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); 1669 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); 1670 } 1671 1672 static void print_version(struct feat_fd *ff, FILE *fp) 1673 { 1674 fprintf(fp, "# perf version : %s\n", ff->ph->env.version); 1675 } 1676 1677 static void print_cmdline(struct feat_fd *ff, FILE *fp) 1678 { 1679 int nr, i; 1680 1681 nr = ff->ph->env.nr_cmdline; 1682 1683 fprintf(fp, "# cmdline : "); 1684 1685 for (i = 0; i < nr; i++) { 1686 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); 1687 if (!argv_i) { 1688 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); 1689 } else { 1690 char *mem = argv_i; 1691 do { 1692 char *quote = strchr(argv_i, '\''); 1693 if (!quote) 1694 break; 1695 *quote++ = '\0'; 1696 fprintf(fp, "%s\\\'", argv_i); 1697 argv_i = quote; 1698 } while (1); 1699 fprintf(fp, "%s ", argv_i); 1700 free(mem); 1701 } 1702 } 1703 fputc('\n', fp); 1704 } 1705 1706 static void print_cpu_topology(struct feat_fd *ff, FILE *fp) 1707 { 1708 struct perf_header *ph = ff->ph; 1709 int cpu_nr = ph->env.nr_cpus_avail; 1710 int nr, i; 1711 char *str; 1712 1713 nr = ph->env.nr_sibling_cores; 1714 str = ph->env.sibling_cores; 1715 1716 for (i = 0; i < nr; i++) { 1717 fprintf(fp, "# sibling sockets : %s\n", str); 1718 str += strlen(str) + 1; 1719 } 1720 1721 if (ph->env.nr_sibling_dies) { 1722 nr = ph->env.nr_sibling_dies; 1723 str = ph->env.sibling_dies; 1724 1725 for (i = 0; i < nr; i++) { 1726 fprintf(fp, "# sibling dies : %s\n", str); 1727 str += strlen(str) + 1; 1728 } 1729 } 1730 1731 nr = ph->env.nr_sibling_threads; 1732 str = ph->env.sibling_threads; 1733 1734 for (i = 0; i < nr; i++) { 1735 fprintf(fp, "# sibling threads : %s\n", str); 1736 str += strlen(str) + 1; 1737 } 1738 1739 if (ph->env.nr_sibling_dies) { 1740 if (ph->env.cpu != NULL) { 1741 for (i = 0; i < cpu_nr; i++) 1742 fprintf(fp, "# CPU %d: Core ID %d, " 1743 "Die ID %d, Socket ID %d\n", 1744 i, ph->env.cpu[i].core_id, 1745 ph->env.cpu[i].die_id, 1746 ph->env.cpu[i].socket_id); 1747 } else 1748 fprintf(fp, "# Core ID, Die ID and Socket ID " 1749 "information is not available\n"); 1750 } else { 1751 if (ph->env.cpu != NULL) { 1752 for (i = 0; i < cpu_nr; i++) 1753 fprintf(fp, "# CPU %d: Core ID %d, " 1754 "Socket ID %d\n", 1755 i, ph->env.cpu[i].core_id, 1756 ph->env.cpu[i].socket_id); 1757 } else 1758 fprintf(fp, "# Core ID and Socket ID " 1759 "information is not available\n"); 1760 } 1761 } 1762 1763 static void print_clockid(struct feat_fd *ff, FILE *fp) 1764 { 1765 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", 1766 ff->ph->env.clock.clockid_res_ns * 1000); 1767 } 1768 1769 static void print_clock_data(struct feat_fd *ff, FILE *fp) 1770 { 1771 struct timespec clockid_ns; 1772 char tstr[64], date[64]; 1773 struct timeval tod_ns; 1774 clockid_t clockid; 1775 struct tm ltime; 1776 u64 ref; 1777 1778 if (!ff->ph->env.clock.enabled) { 1779 fprintf(fp, "# reference time disabled\n"); 1780 return; 1781 } 1782 1783 /* Compute TOD time. */ 1784 ref = ff->ph->env.clock.tod_ns; 1785 tod_ns.tv_sec = ref / NSEC_PER_SEC; 1786 ref -= tod_ns.tv_sec * NSEC_PER_SEC; 1787 tod_ns.tv_usec = ref / NSEC_PER_USEC; 1788 1789 /* Compute clockid time. */ 1790 ref = ff->ph->env.clock.clockid_ns; 1791 clockid_ns.tv_sec = ref / NSEC_PER_SEC; 1792 ref -= clockid_ns.tv_sec * NSEC_PER_SEC; 1793 clockid_ns.tv_nsec = ref; 1794 1795 clockid = ff->ph->env.clock.clockid; 1796 1797 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL) 1798 snprintf(tstr, sizeof(tstr), "<error>"); 1799 else { 1800 strftime(date, sizeof(date), "%F %T", <ime); 1801 scnprintf(tstr, sizeof(tstr), "%s.%06d", 1802 date, (int) tod_ns.tv_usec); 1803 } 1804 1805 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid); 1806 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n", 1807 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec, 1808 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec, 1809 clockid_name(clockid)); 1810 } 1811 1812 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp) 1813 { 1814 int i; 1815 struct hybrid_node *n; 1816 1817 fprintf(fp, "# hybrid cpu system:\n"); 1818 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) { 1819 n = &ff->ph->env.hybrid_nodes[i]; 1820 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus); 1821 } 1822 } 1823 1824 static void print_dir_format(struct feat_fd *ff, FILE *fp) 1825 { 1826 struct perf_session *session; 1827 struct perf_data *data; 1828 1829 session = container_of(ff->ph, struct perf_session, header); 1830 data = session->data; 1831 1832 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version); 1833 } 1834 1835 #ifdef HAVE_LIBBPF_SUPPORT 1836 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp) 1837 { 1838 struct perf_env *env = &ff->ph->env; 1839 struct rb_root *root; 1840 struct rb_node *next; 1841 1842 down_read(&env->bpf_progs.lock); 1843 1844 root = &env->bpf_progs.infos; 1845 next = rb_first(root); 1846 1847 while (next) { 1848 struct bpf_prog_info_node *node; 1849 1850 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1851 next = rb_next(&node->rb_node); 1852 1853 bpf_event__print_bpf_prog_info(&node->info_linear->info, 1854 env, fp); 1855 } 1856 1857 up_read(&env->bpf_progs.lock); 1858 } 1859 1860 static void print_bpf_btf(struct feat_fd *ff, FILE *fp) 1861 { 1862 struct perf_env *env = &ff->ph->env; 1863 struct rb_root *root; 1864 struct rb_node *next; 1865 1866 down_read(&env->bpf_progs.lock); 1867 1868 root = &env->bpf_progs.btfs; 1869 next = rb_first(root); 1870 1871 while (next) { 1872 struct btf_node *node; 1873 1874 node = rb_entry(next, struct btf_node, rb_node); 1875 next = rb_next(&node->rb_node); 1876 fprintf(fp, "# btf info of id %u\n", node->id); 1877 } 1878 1879 up_read(&env->bpf_progs.lock); 1880 } 1881 #endif // HAVE_LIBBPF_SUPPORT 1882 1883 static void free_event_desc(struct evsel *events) 1884 { 1885 struct evsel *evsel; 1886 1887 if (!events) 1888 return; 1889 1890 for (evsel = events; evsel->core.attr.size; evsel++) { 1891 zfree(&evsel->name); 1892 zfree(&evsel->core.id); 1893 } 1894 1895 free(events); 1896 } 1897 1898 static bool perf_attr_check(struct perf_event_attr *attr) 1899 { 1900 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) { 1901 pr_warning("Reserved bits are set unexpectedly. " 1902 "Please update perf tool.\n"); 1903 return false; 1904 } 1905 1906 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) { 1907 pr_warning("Unknown sample type (0x%llx) is detected. " 1908 "Please update perf tool.\n", 1909 attr->sample_type); 1910 return false; 1911 } 1912 1913 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) { 1914 pr_warning("Unknown read format (0x%llx) is detected. " 1915 "Please update perf tool.\n", 1916 attr->read_format); 1917 return false; 1918 } 1919 1920 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) && 1921 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) { 1922 pr_warning("Unknown branch sample type (0x%llx) is detected. " 1923 "Please update perf tool.\n", 1924 attr->branch_sample_type); 1925 1926 return false; 1927 } 1928 1929 return true; 1930 } 1931 1932 static struct evsel *read_event_desc(struct feat_fd *ff) 1933 { 1934 struct evsel *evsel, *events = NULL; 1935 u64 *id; 1936 void *buf = NULL; 1937 u32 nre, sz, nr, i, j; 1938 size_t msz; 1939 1940 /* number of events */ 1941 if (do_read_u32(ff, &nre)) 1942 goto error; 1943 1944 if (do_read_u32(ff, &sz)) 1945 goto error; 1946 1947 /* buffer to hold on file attr struct */ 1948 buf = malloc(sz); 1949 if (!buf) 1950 goto error; 1951 1952 /* the last event terminates with evsel->core.attr.size == 0: */ 1953 events = calloc(nre + 1, sizeof(*events)); 1954 if (!events) 1955 goto error; 1956 1957 msz = sizeof(evsel->core.attr); 1958 if (sz < msz) 1959 msz = sz; 1960 1961 for (i = 0, evsel = events; i < nre; evsel++, i++) { 1962 evsel->core.idx = i; 1963 1964 /* 1965 * must read entire on-file attr struct to 1966 * sync up with layout. 1967 */ 1968 if (__do_read(ff, buf, sz)) 1969 goto error; 1970 1971 if (ff->ph->needs_swap) 1972 perf_event__attr_swap(buf); 1973 1974 memcpy(&evsel->core.attr, buf, msz); 1975 1976 if (!perf_attr_check(&evsel->core.attr)) 1977 goto error; 1978 1979 if (do_read_u32(ff, &nr)) 1980 goto error; 1981 1982 if (ff->ph->needs_swap) 1983 evsel->needs_swap = true; 1984 1985 evsel->name = do_read_string(ff); 1986 if (!evsel->name) 1987 goto error; 1988 1989 if (!nr) 1990 continue; 1991 1992 id = calloc(nr, sizeof(*id)); 1993 if (!id) 1994 goto error; 1995 evsel->core.ids = nr; 1996 evsel->core.id = id; 1997 1998 for (j = 0 ; j < nr; j++) { 1999 if (do_read_u64(ff, id)) 2000 goto error; 2001 id++; 2002 } 2003 } 2004 out: 2005 free(buf); 2006 return events; 2007 error: 2008 free_event_desc(events); 2009 events = NULL; 2010 goto out; 2011 } 2012 2013 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, 2014 void *priv __maybe_unused) 2015 { 2016 return fprintf(fp, ", %s = %s", name, val); 2017 } 2018 2019 static void print_event_desc(struct feat_fd *ff, FILE *fp) 2020 { 2021 struct evsel *evsel, *events; 2022 u32 j; 2023 u64 *id; 2024 2025 if (ff->events) 2026 events = ff->events; 2027 else 2028 events = read_event_desc(ff); 2029 2030 if (!events) { 2031 fprintf(fp, "# event desc: not available or unable to read\n"); 2032 return; 2033 } 2034 2035 for (evsel = events; evsel->core.attr.size; evsel++) { 2036 fprintf(fp, "# event : name = %s, ", evsel->name); 2037 2038 if (evsel->core.ids) { 2039 fprintf(fp, ", id = {"); 2040 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) { 2041 if (j) 2042 fputc(',', fp); 2043 fprintf(fp, " %"PRIu64, *id); 2044 } 2045 fprintf(fp, " }"); 2046 } 2047 2048 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL); 2049 2050 fputc('\n', fp); 2051 } 2052 2053 free_event_desc(events); 2054 ff->events = NULL; 2055 } 2056 2057 static void print_total_mem(struct feat_fd *ff, FILE *fp) 2058 { 2059 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); 2060 } 2061 2062 static void print_numa_topology(struct feat_fd *ff, FILE *fp) 2063 { 2064 int i; 2065 struct numa_node *n; 2066 2067 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { 2068 n = &ff->ph->env.numa_nodes[i]; 2069 2070 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," 2071 " free = %"PRIu64" kB\n", 2072 n->node, n->mem_total, n->mem_free); 2073 2074 fprintf(fp, "# node%u cpu list : ", n->node); 2075 cpu_map__fprintf(n->map, fp); 2076 } 2077 } 2078 2079 static void print_cpuid(struct feat_fd *ff, FILE *fp) 2080 { 2081 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); 2082 } 2083 2084 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) 2085 { 2086 fprintf(fp, "# contains samples with branch stack\n"); 2087 } 2088 2089 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) 2090 { 2091 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); 2092 } 2093 2094 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) 2095 { 2096 fprintf(fp, "# contains stat data\n"); 2097 } 2098 2099 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) 2100 { 2101 int i; 2102 2103 fprintf(fp, "# CPU cache info:\n"); 2104 for (i = 0; i < ff->ph->env.caches_cnt; i++) { 2105 fprintf(fp, "# "); 2106 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); 2107 } 2108 } 2109 2110 static void print_compressed(struct feat_fd *ff, FILE *fp) 2111 { 2112 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n", 2113 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown", 2114 ff->ph->env.comp_level, ff->ph->env.comp_ratio); 2115 } 2116 2117 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name) 2118 { 2119 const char *delimiter = ""; 2120 int i; 2121 2122 if (!nr_caps) { 2123 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name); 2124 return; 2125 } 2126 2127 fprintf(fp, "# %s pmu capabilities: ", pmu_name); 2128 for (i = 0; i < nr_caps; i++) { 2129 fprintf(fp, "%s%s", delimiter, caps[i]); 2130 delimiter = ", "; 2131 } 2132 2133 fprintf(fp, "\n"); 2134 } 2135 2136 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp) 2137 { 2138 __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps, 2139 ff->ph->env.cpu_pmu_caps, (char *)"cpu"); 2140 } 2141 2142 static void print_pmu_caps(struct feat_fd *ff, FILE *fp) 2143 { 2144 struct pmu_caps *pmu_caps; 2145 2146 for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) { 2147 pmu_caps = &ff->ph->env.pmu_caps[i]; 2148 __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps, 2149 pmu_caps->pmu_name); 2150 } 2151 } 2152 2153 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) 2154 { 2155 const char *delimiter = "# pmu mappings: "; 2156 char *str, *tmp; 2157 u32 pmu_num; 2158 u32 type; 2159 2160 pmu_num = ff->ph->env.nr_pmu_mappings; 2161 if (!pmu_num) { 2162 fprintf(fp, "# pmu mappings: not available\n"); 2163 return; 2164 } 2165 2166 str = ff->ph->env.pmu_mappings; 2167 2168 while (pmu_num) { 2169 type = strtoul(str, &tmp, 0); 2170 if (*tmp != ':') 2171 goto error; 2172 2173 str = tmp + 1; 2174 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); 2175 2176 delimiter = ", "; 2177 str += strlen(str) + 1; 2178 pmu_num--; 2179 } 2180 2181 fprintf(fp, "\n"); 2182 2183 if (!pmu_num) 2184 return; 2185 error: 2186 fprintf(fp, "# pmu mappings: unable to read\n"); 2187 } 2188 2189 static void print_group_desc(struct feat_fd *ff, FILE *fp) 2190 { 2191 struct perf_session *session; 2192 struct evsel *evsel; 2193 u32 nr = 0; 2194 2195 session = container_of(ff->ph, struct perf_session, header); 2196 2197 evlist__for_each_entry(session->evlist, evsel) { 2198 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { 2199 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel)); 2200 2201 nr = evsel->core.nr_members - 1; 2202 } else if (nr) { 2203 fprintf(fp, ",%s", evsel__name(evsel)); 2204 2205 if (--nr == 0) 2206 fprintf(fp, "}\n"); 2207 } 2208 } 2209 } 2210 2211 static void print_sample_time(struct feat_fd *ff, FILE *fp) 2212 { 2213 struct perf_session *session; 2214 char time_buf[32]; 2215 double d; 2216 2217 session = container_of(ff->ph, struct perf_session, header); 2218 2219 timestamp__scnprintf_usec(session->evlist->first_sample_time, 2220 time_buf, sizeof(time_buf)); 2221 fprintf(fp, "# time of first sample : %s\n", time_buf); 2222 2223 timestamp__scnprintf_usec(session->evlist->last_sample_time, 2224 time_buf, sizeof(time_buf)); 2225 fprintf(fp, "# time of last sample : %s\n", time_buf); 2226 2227 d = (double)(session->evlist->last_sample_time - 2228 session->evlist->first_sample_time) / NSEC_PER_MSEC; 2229 2230 fprintf(fp, "# sample duration : %10.3f ms\n", d); 2231 } 2232 2233 static void memory_node__fprintf(struct memory_node *n, 2234 unsigned long long bsize, FILE *fp) 2235 { 2236 char buf_map[100], buf_size[50]; 2237 unsigned long long size; 2238 2239 size = bsize * bitmap_weight(n->set, n->size); 2240 unit_number__scnprintf(buf_size, 50, size); 2241 2242 bitmap_scnprintf(n->set, n->size, buf_map, 100); 2243 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); 2244 } 2245 2246 static void print_mem_topology(struct feat_fd *ff, FILE *fp) 2247 { 2248 struct memory_node *nodes; 2249 int i, nr; 2250 2251 nodes = ff->ph->env.memory_nodes; 2252 nr = ff->ph->env.nr_memory_nodes; 2253 2254 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", 2255 nr, ff->ph->env.memory_bsize); 2256 2257 for (i = 0; i < nr; i++) { 2258 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp); 2259 } 2260 } 2261 2262 static int __event_process_build_id(struct perf_record_header_build_id *bev, 2263 char *filename, 2264 struct perf_session *session) 2265 { 2266 int err = -1; 2267 struct machine *machine; 2268 u16 cpumode; 2269 struct dso *dso; 2270 enum dso_space_type dso_space; 2271 2272 machine = perf_session__findnew_machine(session, bev->pid); 2273 if (!machine) 2274 goto out; 2275 2276 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2277 2278 switch (cpumode) { 2279 case PERF_RECORD_MISC_KERNEL: 2280 dso_space = DSO_SPACE__KERNEL; 2281 break; 2282 case PERF_RECORD_MISC_GUEST_KERNEL: 2283 dso_space = DSO_SPACE__KERNEL_GUEST; 2284 break; 2285 case PERF_RECORD_MISC_USER: 2286 case PERF_RECORD_MISC_GUEST_USER: 2287 dso_space = DSO_SPACE__USER; 2288 break; 2289 default: 2290 goto out; 2291 } 2292 2293 dso = machine__findnew_dso(machine, filename); 2294 if (dso != NULL) { 2295 char sbuild_id[SBUILD_ID_SIZE]; 2296 struct build_id bid; 2297 size_t size = BUILD_ID_SIZE; 2298 2299 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE) 2300 size = bev->size; 2301 2302 build_id__init(&bid, bev->data, size); 2303 dso__set_build_id(dso, &bid); 2304 dso->header_build_id = 1; 2305 2306 if (dso_space != DSO_SPACE__USER) { 2307 struct kmod_path m = { .name = NULL, }; 2308 2309 if (!kmod_path__parse_name(&m, filename) && m.kmod) 2310 dso__set_module_info(dso, &m, machine); 2311 2312 dso->kernel = dso_space; 2313 free(m.name); 2314 } 2315 2316 build_id__sprintf(&dso->bid, sbuild_id); 2317 pr_debug("build id event received for %s: %s [%zu]\n", 2318 dso->long_name, sbuild_id, size); 2319 dso__put(dso); 2320 } 2321 2322 err = 0; 2323 out: 2324 return err; 2325 } 2326 2327 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, 2328 int input, u64 offset, u64 size) 2329 { 2330 struct perf_session *session = container_of(header, struct perf_session, header); 2331 struct { 2332 struct perf_event_header header; 2333 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; 2334 char filename[0]; 2335 } old_bev; 2336 struct perf_record_header_build_id bev; 2337 char filename[PATH_MAX]; 2338 u64 limit = offset + size; 2339 2340 while (offset < limit) { 2341 ssize_t len; 2342 2343 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) 2344 return -1; 2345 2346 if (header->needs_swap) 2347 perf_event_header__bswap(&old_bev.header); 2348 2349 len = old_bev.header.size - sizeof(old_bev); 2350 if (readn(input, filename, len) != len) 2351 return -1; 2352 2353 bev.header = old_bev.header; 2354 2355 /* 2356 * As the pid is the missing value, we need to fill 2357 * it properly. The header.misc value give us nice hint. 2358 */ 2359 bev.pid = HOST_KERNEL_ID; 2360 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || 2361 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) 2362 bev.pid = DEFAULT_GUEST_KERNEL_ID; 2363 2364 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); 2365 __event_process_build_id(&bev, filename, session); 2366 2367 offset += bev.header.size; 2368 } 2369 2370 return 0; 2371 } 2372 2373 static int perf_header__read_build_ids(struct perf_header *header, 2374 int input, u64 offset, u64 size) 2375 { 2376 struct perf_session *session = container_of(header, struct perf_session, header); 2377 struct perf_record_header_build_id bev; 2378 char filename[PATH_MAX]; 2379 u64 limit = offset + size, orig_offset = offset; 2380 int err = -1; 2381 2382 while (offset < limit) { 2383 ssize_t len; 2384 2385 if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) 2386 goto out; 2387 2388 if (header->needs_swap) 2389 perf_event_header__bswap(&bev.header); 2390 2391 len = bev.header.size - sizeof(bev); 2392 if (readn(input, filename, len) != len) 2393 goto out; 2394 /* 2395 * The a1645ce1 changeset: 2396 * 2397 * "perf: 'perf kvm' tool for monitoring guest performance from host" 2398 * 2399 * Added a field to struct perf_record_header_build_id that broke the file 2400 * format. 2401 * 2402 * Since the kernel build-id is the first entry, process the 2403 * table using the old format if the well known 2404 * '[kernel.kallsyms]' string for the kernel build-id has the 2405 * first 4 characters chopped off (where the pid_t sits). 2406 */ 2407 if (memcmp(filename, "nel.kallsyms]", 13) == 0) { 2408 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) 2409 return -1; 2410 return perf_header__read_build_ids_abi_quirk(header, input, offset, size); 2411 } 2412 2413 __event_process_build_id(&bev, filename, session); 2414 2415 offset += bev.header.size; 2416 } 2417 err = 0; 2418 out: 2419 return err; 2420 } 2421 2422 /* Macro for features that simply need to read and store a string. */ 2423 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ 2424 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ 2425 {\ 2426 free(ff->ph->env.__feat_env); \ 2427 ff->ph->env.__feat_env = do_read_string(ff); \ 2428 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ 2429 } 2430 2431 FEAT_PROCESS_STR_FUN(hostname, hostname); 2432 FEAT_PROCESS_STR_FUN(osrelease, os_release); 2433 FEAT_PROCESS_STR_FUN(version, version); 2434 FEAT_PROCESS_STR_FUN(arch, arch); 2435 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); 2436 FEAT_PROCESS_STR_FUN(cpuid, cpuid); 2437 2438 #ifdef HAVE_LIBTRACEEVENT 2439 static int process_tracing_data(struct feat_fd *ff, void *data) 2440 { 2441 ssize_t ret = trace_report(ff->fd, data, false); 2442 2443 return ret < 0 ? -1 : 0; 2444 } 2445 #endif 2446 2447 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) 2448 { 2449 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) 2450 pr_debug("Failed to read buildids, continuing...\n"); 2451 return 0; 2452 } 2453 2454 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) 2455 { 2456 int ret; 2457 u32 nr_cpus_avail, nr_cpus_online; 2458 2459 ret = do_read_u32(ff, &nr_cpus_avail); 2460 if (ret) 2461 return ret; 2462 2463 ret = do_read_u32(ff, &nr_cpus_online); 2464 if (ret) 2465 return ret; 2466 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail; 2467 ff->ph->env.nr_cpus_online = (int)nr_cpus_online; 2468 return 0; 2469 } 2470 2471 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) 2472 { 2473 u64 total_mem; 2474 int ret; 2475 2476 ret = do_read_u64(ff, &total_mem); 2477 if (ret) 2478 return -1; 2479 ff->ph->env.total_mem = (unsigned long long)total_mem; 2480 return 0; 2481 } 2482 2483 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx) 2484 { 2485 struct evsel *evsel; 2486 2487 evlist__for_each_entry(evlist, evsel) { 2488 if (evsel->core.idx == idx) 2489 return evsel; 2490 } 2491 2492 return NULL; 2493 } 2494 2495 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event) 2496 { 2497 struct evsel *evsel; 2498 2499 if (!event->name) 2500 return; 2501 2502 evsel = evlist__find_by_index(evlist, event->core.idx); 2503 if (!evsel) 2504 return; 2505 2506 if (evsel->name) 2507 return; 2508 2509 evsel->name = strdup(event->name); 2510 } 2511 2512 static int 2513 process_event_desc(struct feat_fd *ff, void *data __maybe_unused) 2514 { 2515 struct perf_session *session; 2516 struct evsel *evsel, *events = read_event_desc(ff); 2517 2518 if (!events) 2519 return 0; 2520 2521 session = container_of(ff->ph, struct perf_session, header); 2522 2523 if (session->data->is_pipe) { 2524 /* Save events for reading later by print_event_desc, 2525 * since they can't be read again in pipe mode. */ 2526 ff->events = events; 2527 } 2528 2529 for (evsel = events; evsel->core.attr.size; evsel++) 2530 evlist__set_event_name(session->evlist, evsel); 2531 2532 if (!session->data->is_pipe) 2533 free_event_desc(events); 2534 2535 return 0; 2536 } 2537 2538 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) 2539 { 2540 char *str, *cmdline = NULL, **argv = NULL; 2541 u32 nr, i, len = 0; 2542 2543 if (do_read_u32(ff, &nr)) 2544 return -1; 2545 2546 ff->ph->env.nr_cmdline = nr; 2547 2548 cmdline = zalloc(ff->size + nr + 1); 2549 if (!cmdline) 2550 return -1; 2551 2552 argv = zalloc(sizeof(char *) * (nr + 1)); 2553 if (!argv) 2554 goto error; 2555 2556 for (i = 0; i < nr; i++) { 2557 str = do_read_string(ff); 2558 if (!str) 2559 goto error; 2560 2561 argv[i] = cmdline + len; 2562 memcpy(argv[i], str, strlen(str) + 1); 2563 len += strlen(str) + 1; 2564 free(str); 2565 } 2566 ff->ph->env.cmdline = cmdline; 2567 ff->ph->env.cmdline_argv = (const char **) argv; 2568 return 0; 2569 2570 error: 2571 free(argv); 2572 free(cmdline); 2573 return -1; 2574 } 2575 2576 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) 2577 { 2578 u32 nr, i; 2579 char *str; 2580 struct strbuf sb; 2581 int cpu_nr = ff->ph->env.nr_cpus_avail; 2582 u64 size = 0; 2583 struct perf_header *ph = ff->ph; 2584 bool do_core_id_test = true; 2585 2586 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu)); 2587 if (!ph->env.cpu) 2588 return -1; 2589 2590 if (do_read_u32(ff, &nr)) 2591 goto free_cpu; 2592 2593 ph->env.nr_sibling_cores = nr; 2594 size += sizeof(u32); 2595 if (strbuf_init(&sb, 128) < 0) 2596 goto free_cpu; 2597 2598 for (i = 0; i < nr; i++) { 2599 str = do_read_string(ff); 2600 if (!str) 2601 goto error; 2602 2603 /* include a NULL character at the end */ 2604 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2605 goto error; 2606 size += string_size(str); 2607 free(str); 2608 } 2609 ph->env.sibling_cores = strbuf_detach(&sb, NULL); 2610 2611 if (do_read_u32(ff, &nr)) 2612 return -1; 2613 2614 ph->env.nr_sibling_threads = nr; 2615 size += sizeof(u32); 2616 2617 for (i = 0; i < nr; i++) { 2618 str = do_read_string(ff); 2619 if (!str) 2620 goto error; 2621 2622 /* include a NULL character at the end */ 2623 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2624 goto error; 2625 size += string_size(str); 2626 free(str); 2627 } 2628 ph->env.sibling_threads = strbuf_detach(&sb, NULL); 2629 2630 /* 2631 * The header may be from old perf, 2632 * which doesn't include core id and socket id information. 2633 */ 2634 if (ff->size <= size) { 2635 zfree(&ph->env.cpu); 2636 return 0; 2637 } 2638 2639 /* On s390 the socket_id number is not related to the numbers of cpus. 2640 * The socket_id number might be higher than the numbers of cpus. 2641 * This depends on the configuration. 2642 * AArch64 is the same. 2643 */ 2644 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4) 2645 || !strncmp(ph->env.arch, "aarch64", 7))) 2646 do_core_id_test = false; 2647 2648 for (i = 0; i < (u32)cpu_nr; i++) { 2649 if (do_read_u32(ff, &nr)) 2650 goto free_cpu; 2651 2652 ph->env.cpu[i].core_id = nr; 2653 size += sizeof(u32); 2654 2655 if (do_read_u32(ff, &nr)) 2656 goto free_cpu; 2657 2658 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) { 2659 pr_debug("socket_id number is too big." 2660 "You may need to upgrade the perf tool.\n"); 2661 goto free_cpu; 2662 } 2663 2664 ph->env.cpu[i].socket_id = nr; 2665 size += sizeof(u32); 2666 } 2667 2668 /* 2669 * The header may be from old perf, 2670 * which doesn't include die information. 2671 */ 2672 if (ff->size <= size) 2673 return 0; 2674 2675 if (do_read_u32(ff, &nr)) 2676 return -1; 2677 2678 ph->env.nr_sibling_dies = nr; 2679 size += sizeof(u32); 2680 2681 for (i = 0; i < nr; i++) { 2682 str = do_read_string(ff); 2683 if (!str) 2684 goto error; 2685 2686 /* include a NULL character at the end */ 2687 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2688 goto error; 2689 size += string_size(str); 2690 free(str); 2691 } 2692 ph->env.sibling_dies = strbuf_detach(&sb, NULL); 2693 2694 for (i = 0; i < (u32)cpu_nr; i++) { 2695 if (do_read_u32(ff, &nr)) 2696 goto free_cpu; 2697 2698 ph->env.cpu[i].die_id = nr; 2699 } 2700 2701 return 0; 2702 2703 error: 2704 strbuf_release(&sb); 2705 free_cpu: 2706 zfree(&ph->env.cpu); 2707 return -1; 2708 } 2709 2710 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) 2711 { 2712 struct numa_node *nodes, *n; 2713 u32 nr, i; 2714 char *str; 2715 2716 /* nr nodes */ 2717 if (do_read_u32(ff, &nr)) 2718 return -1; 2719 2720 nodes = zalloc(sizeof(*nodes) * nr); 2721 if (!nodes) 2722 return -ENOMEM; 2723 2724 for (i = 0; i < nr; i++) { 2725 n = &nodes[i]; 2726 2727 /* node number */ 2728 if (do_read_u32(ff, &n->node)) 2729 goto error; 2730 2731 if (do_read_u64(ff, &n->mem_total)) 2732 goto error; 2733 2734 if (do_read_u64(ff, &n->mem_free)) 2735 goto error; 2736 2737 str = do_read_string(ff); 2738 if (!str) 2739 goto error; 2740 2741 n->map = perf_cpu_map__new(str); 2742 if (!n->map) 2743 goto error; 2744 2745 free(str); 2746 } 2747 ff->ph->env.nr_numa_nodes = nr; 2748 ff->ph->env.numa_nodes = nodes; 2749 return 0; 2750 2751 error: 2752 free(nodes); 2753 return -1; 2754 } 2755 2756 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) 2757 { 2758 char *name; 2759 u32 pmu_num; 2760 u32 type; 2761 struct strbuf sb; 2762 2763 if (do_read_u32(ff, &pmu_num)) 2764 return -1; 2765 2766 if (!pmu_num) { 2767 pr_debug("pmu mappings not available\n"); 2768 return 0; 2769 } 2770 2771 ff->ph->env.nr_pmu_mappings = pmu_num; 2772 if (strbuf_init(&sb, 128) < 0) 2773 return -1; 2774 2775 while (pmu_num) { 2776 if (do_read_u32(ff, &type)) 2777 goto error; 2778 2779 name = do_read_string(ff); 2780 if (!name) 2781 goto error; 2782 2783 if (strbuf_addf(&sb, "%u:%s", type, name) < 0) 2784 goto error; 2785 /* include a NULL character at the end */ 2786 if (strbuf_add(&sb, "", 1) < 0) 2787 goto error; 2788 2789 if (!strcmp(name, "msr")) 2790 ff->ph->env.msr_pmu_type = type; 2791 2792 free(name); 2793 pmu_num--; 2794 } 2795 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL); 2796 return 0; 2797 2798 error: 2799 strbuf_release(&sb); 2800 return -1; 2801 } 2802 2803 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) 2804 { 2805 size_t ret = -1; 2806 u32 i, nr, nr_groups; 2807 struct perf_session *session; 2808 struct evsel *evsel, *leader = NULL; 2809 struct group_desc { 2810 char *name; 2811 u32 leader_idx; 2812 u32 nr_members; 2813 } *desc; 2814 2815 if (do_read_u32(ff, &nr_groups)) 2816 return -1; 2817 2818 ff->ph->env.nr_groups = nr_groups; 2819 if (!nr_groups) { 2820 pr_debug("group desc not available\n"); 2821 return 0; 2822 } 2823 2824 desc = calloc(nr_groups, sizeof(*desc)); 2825 if (!desc) 2826 return -1; 2827 2828 for (i = 0; i < nr_groups; i++) { 2829 desc[i].name = do_read_string(ff); 2830 if (!desc[i].name) 2831 goto out_free; 2832 2833 if (do_read_u32(ff, &desc[i].leader_idx)) 2834 goto out_free; 2835 2836 if (do_read_u32(ff, &desc[i].nr_members)) 2837 goto out_free; 2838 } 2839 2840 /* 2841 * Rebuild group relationship based on the group_desc 2842 */ 2843 session = container_of(ff->ph, struct perf_session, header); 2844 2845 i = nr = 0; 2846 evlist__for_each_entry(session->evlist, evsel) { 2847 if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) { 2848 evsel__set_leader(evsel, evsel); 2849 /* {anon_group} is a dummy name */ 2850 if (strcmp(desc[i].name, "{anon_group}")) { 2851 evsel->group_name = desc[i].name; 2852 desc[i].name = NULL; 2853 } 2854 evsel->core.nr_members = desc[i].nr_members; 2855 2856 if (i >= nr_groups || nr > 0) { 2857 pr_debug("invalid group desc\n"); 2858 goto out_free; 2859 } 2860 2861 leader = evsel; 2862 nr = evsel->core.nr_members - 1; 2863 i++; 2864 } else if (nr) { 2865 /* This is a group member */ 2866 evsel__set_leader(evsel, leader); 2867 2868 nr--; 2869 } 2870 } 2871 2872 if (i != nr_groups || nr != 0) { 2873 pr_debug("invalid group desc\n"); 2874 goto out_free; 2875 } 2876 2877 ret = 0; 2878 out_free: 2879 for (i = 0; i < nr_groups; i++) 2880 zfree(&desc[i].name); 2881 free(desc); 2882 2883 return ret; 2884 } 2885 2886 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) 2887 { 2888 struct perf_session *session; 2889 int err; 2890 2891 session = container_of(ff->ph, struct perf_session, header); 2892 2893 err = auxtrace_index__process(ff->fd, ff->size, session, 2894 ff->ph->needs_swap); 2895 if (err < 0) 2896 pr_err("Failed to process auxtrace index\n"); 2897 return err; 2898 } 2899 2900 static int process_cache(struct feat_fd *ff, void *data __maybe_unused) 2901 { 2902 struct cpu_cache_level *caches; 2903 u32 cnt, i, version; 2904 2905 if (do_read_u32(ff, &version)) 2906 return -1; 2907 2908 if (version != 1) 2909 return -1; 2910 2911 if (do_read_u32(ff, &cnt)) 2912 return -1; 2913 2914 caches = zalloc(sizeof(*caches) * cnt); 2915 if (!caches) 2916 return -1; 2917 2918 for (i = 0; i < cnt; i++) { 2919 struct cpu_cache_level c; 2920 2921 #define _R(v) \ 2922 if (do_read_u32(ff, &c.v))\ 2923 goto out_free_caches; \ 2924 2925 _R(level) 2926 _R(line_size) 2927 _R(sets) 2928 _R(ways) 2929 #undef _R 2930 2931 #define _R(v) \ 2932 c.v = do_read_string(ff); \ 2933 if (!c.v) \ 2934 goto out_free_caches; 2935 2936 _R(type) 2937 _R(size) 2938 _R(map) 2939 #undef _R 2940 2941 caches[i] = c; 2942 } 2943 2944 ff->ph->env.caches = caches; 2945 ff->ph->env.caches_cnt = cnt; 2946 return 0; 2947 out_free_caches: 2948 free(caches); 2949 return -1; 2950 } 2951 2952 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) 2953 { 2954 struct perf_session *session; 2955 u64 first_sample_time, last_sample_time; 2956 int ret; 2957 2958 session = container_of(ff->ph, struct perf_session, header); 2959 2960 ret = do_read_u64(ff, &first_sample_time); 2961 if (ret) 2962 return -1; 2963 2964 ret = do_read_u64(ff, &last_sample_time); 2965 if (ret) 2966 return -1; 2967 2968 session->evlist->first_sample_time = first_sample_time; 2969 session->evlist->last_sample_time = last_sample_time; 2970 return 0; 2971 } 2972 2973 static int process_mem_topology(struct feat_fd *ff, 2974 void *data __maybe_unused) 2975 { 2976 struct memory_node *nodes; 2977 u64 version, i, nr, bsize; 2978 int ret = -1; 2979 2980 if (do_read_u64(ff, &version)) 2981 return -1; 2982 2983 if (version != 1) 2984 return -1; 2985 2986 if (do_read_u64(ff, &bsize)) 2987 return -1; 2988 2989 if (do_read_u64(ff, &nr)) 2990 return -1; 2991 2992 nodes = zalloc(sizeof(*nodes) * nr); 2993 if (!nodes) 2994 return -1; 2995 2996 for (i = 0; i < nr; i++) { 2997 struct memory_node n; 2998 2999 #define _R(v) \ 3000 if (do_read_u64(ff, &n.v)) \ 3001 goto out; \ 3002 3003 _R(node) 3004 _R(size) 3005 3006 #undef _R 3007 3008 if (do_read_bitmap(ff, &n.set, &n.size)) 3009 goto out; 3010 3011 nodes[i] = n; 3012 } 3013 3014 ff->ph->env.memory_bsize = bsize; 3015 ff->ph->env.memory_nodes = nodes; 3016 ff->ph->env.nr_memory_nodes = nr; 3017 ret = 0; 3018 3019 out: 3020 if (ret) 3021 free(nodes); 3022 return ret; 3023 } 3024 3025 static int process_clockid(struct feat_fd *ff, 3026 void *data __maybe_unused) 3027 { 3028 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns)) 3029 return -1; 3030 3031 return 0; 3032 } 3033 3034 static int process_clock_data(struct feat_fd *ff, 3035 void *_data __maybe_unused) 3036 { 3037 u32 data32; 3038 u64 data64; 3039 3040 /* version */ 3041 if (do_read_u32(ff, &data32)) 3042 return -1; 3043 3044 if (data32 != 1) 3045 return -1; 3046 3047 /* clockid */ 3048 if (do_read_u32(ff, &data32)) 3049 return -1; 3050 3051 ff->ph->env.clock.clockid = data32; 3052 3053 /* TOD ref time */ 3054 if (do_read_u64(ff, &data64)) 3055 return -1; 3056 3057 ff->ph->env.clock.tod_ns = data64; 3058 3059 /* clockid ref time */ 3060 if (do_read_u64(ff, &data64)) 3061 return -1; 3062 3063 ff->ph->env.clock.clockid_ns = data64; 3064 ff->ph->env.clock.enabled = true; 3065 return 0; 3066 } 3067 3068 static int process_hybrid_topology(struct feat_fd *ff, 3069 void *data __maybe_unused) 3070 { 3071 struct hybrid_node *nodes, *n; 3072 u32 nr, i; 3073 3074 /* nr nodes */ 3075 if (do_read_u32(ff, &nr)) 3076 return -1; 3077 3078 nodes = zalloc(sizeof(*nodes) * nr); 3079 if (!nodes) 3080 return -ENOMEM; 3081 3082 for (i = 0; i < nr; i++) { 3083 n = &nodes[i]; 3084 3085 n->pmu_name = do_read_string(ff); 3086 if (!n->pmu_name) 3087 goto error; 3088 3089 n->cpus = do_read_string(ff); 3090 if (!n->cpus) 3091 goto error; 3092 } 3093 3094 ff->ph->env.nr_hybrid_nodes = nr; 3095 ff->ph->env.hybrid_nodes = nodes; 3096 return 0; 3097 3098 error: 3099 for (i = 0; i < nr; i++) { 3100 free(nodes[i].pmu_name); 3101 free(nodes[i].cpus); 3102 } 3103 3104 free(nodes); 3105 return -1; 3106 } 3107 3108 static int process_dir_format(struct feat_fd *ff, 3109 void *_data __maybe_unused) 3110 { 3111 struct perf_session *session; 3112 struct perf_data *data; 3113 3114 session = container_of(ff->ph, struct perf_session, header); 3115 data = session->data; 3116 3117 if (WARN_ON(!perf_data__is_dir(data))) 3118 return -1; 3119 3120 return do_read_u64(ff, &data->dir.version); 3121 } 3122 3123 #ifdef HAVE_LIBBPF_SUPPORT 3124 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused) 3125 { 3126 struct bpf_prog_info_node *info_node; 3127 struct perf_env *env = &ff->ph->env; 3128 struct perf_bpil *info_linear; 3129 u32 count, i; 3130 int err = -1; 3131 3132 if (ff->ph->needs_swap) { 3133 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n"); 3134 return 0; 3135 } 3136 3137 if (do_read_u32(ff, &count)) 3138 return -1; 3139 3140 down_write(&env->bpf_progs.lock); 3141 3142 for (i = 0; i < count; ++i) { 3143 u32 info_len, data_len; 3144 3145 info_linear = NULL; 3146 info_node = NULL; 3147 if (do_read_u32(ff, &info_len)) 3148 goto out; 3149 if (do_read_u32(ff, &data_len)) 3150 goto out; 3151 3152 if (info_len > sizeof(struct bpf_prog_info)) { 3153 pr_warning("detected invalid bpf_prog_info\n"); 3154 goto out; 3155 } 3156 3157 info_linear = malloc(sizeof(struct perf_bpil) + 3158 data_len); 3159 if (!info_linear) 3160 goto out; 3161 info_linear->info_len = sizeof(struct bpf_prog_info); 3162 info_linear->data_len = data_len; 3163 if (do_read_u64(ff, (u64 *)(&info_linear->arrays))) 3164 goto out; 3165 if (__do_read(ff, &info_linear->info, info_len)) 3166 goto out; 3167 if (info_len < sizeof(struct bpf_prog_info)) 3168 memset(((void *)(&info_linear->info)) + info_len, 0, 3169 sizeof(struct bpf_prog_info) - info_len); 3170 3171 if (__do_read(ff, info_linear->data, data_len)) 3172 goto out; 3173 3174 info_node = malloc(sizeof(struct bpf_prog_info_node)); 3175 if (!info_node) 3176 goto out; 3177 3178 /* after reading from file, translate offset to address */ 3179 bpil_offs_to_addr(info_linear); 3180 info_node->info_linear = info_linear; 3181 perf_env__insert_bpf_prog_info(env, info_node); 3182 } 3183 3184 up_write(&env->bpf_progs.lock); 3185 return 0; 3186 out: 3187 free(info_linear); 3188 free(info_node); 3189 up_write(&env->bpf_progs.lock); 3190 return err; 3191 } 3192 3193 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused) 3194 { 3195 struct perf_env *env = &ff->ph->env; 3196 struct btf_node *node = NULL; 3197 u32 count, i; 3198 int err = -1; 3199 3200 if (ff->ph->needs_swap) { 3201 pr_warning("interpreting btf from systems with endianness is not yet supported\n"); 3202 return 0; 3203 } 3204 3205 if (do_read_u32(ff, &count)) 3206 return -1; 3207 3208 down_write(&env->bpf_progs.lock); 3209 3210 for (i = 0; i < count; ++i) { 3211 u32 id, data_size; 3212 3213 if (do_read_u32(ff, &id)) 3214 goto out; 3215 if (do_read_u32(ff, &data_size)) 3216 goto out; 3217 3218 node = malloc(sizeof(struct btf_node) + data_size); 3219 if (!node) 3220 goto out; 3221 3222 node->id = id; 3223 node->data_size = data_size; 3224 3225 if (__do_read(ff, node->data, data_size)) 3226 goto out; 3227 3228 perf_env__insert_btf(env, node); 3229 node = NULL; 3230 } 3231 3232 err = 0; 3233 out: 3234 up_write(&env->bpf_progs.lock); 3235 free(node); 3236 return err; 3237 } 3238 #endif // HAVE_LIBBPF_SUPPORT 3239 3240 static int process_compressed(struct feat_fd *ff, 3241 void *data __maybe_unused) 3242 { 3243 if (do_read_u32(ff, &(ff->ph->env.comp_ver))) 3244 return -1; 3245 3246 if (do_read_u32(ff, &(ff->ph->env.comp_type))) 3247 return -1; 3248 3249 if (do_read_u32(ff, &(ff->ph->env.comp_level))) 3250 return -1; 3251 3252 if (do_read_u32(ff, &(ff->ph->env.comp_ratio))) 3253 return -1; 3254 3255 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len))) 3256 return -1; 3257 3258 return 0; 3259 } 3260 3261 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps, 3262 char ***caps, unsigned int *max_branches) 3263 { 3264 char *name, *value, *ptr; 3265 u32 nr_pmu_caps, i; 3266 3267 *nr_caps = 0; 3268 *caps = NULL; 3269 3270 if (do_read_u32(ff, &nr_pmu_caps)) 3271 return -1; 3272 3273 if (!nr_pmu_caps) 3274 return 0; 3275 3276 *caps = zalloc(sizeof(char *) * nr_pmu_caps); 3277 if (!*caps) 3278 return -1; 3279 3280 for (i = 0; i < nr_pmu_caps; i++) { 3281 name = do_read_string(ff); 3282 if (!name) 3283 goto error; 3284 3285 value = do_read_string(ff); 3286 if (!value) 3287 goto free_name; 3288 3289 if (asprintf(&ptr, "%s=%s", name, value) < 0) 3290 goto free_value; 3291 3292 (*caps)[i] = ptr; 3293 3294 if (!strcmp(name, "branches")) 3295 *max_branches = atoi(value); 3296 3297 free(value); 3298 free(name); 3299 } 3300 *nr_caps = nr_pmu_caps; 3301 return 0; 3302 3303 free_value: 3304 free(value); 3305 free_name: 3306 free(name); 3307 error: 3308 for (; i > 0; i--) 3309 free((*caps)[i - 1]); 3310 free(*caps); 3311 *caps = NULL; 3312 *nr_caps = 0; 3313 return -1; 3314 } 3315 3316 static int process_cpu_pmu_caps(struct feat_fd *ff, 3317 void *data __maybe_unused) 3318 { 3319 int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps, 3320 &ff->ph->env.cpu_pmu_caps, 3321 &ff->ph->env.max_branches); 3322 3323 if (!ret && !ff->ph->env.cpu_pmu_caps) 3324 pr_debug("cpu pmu capabilities not available\n"); 3325 return ret; 3326 } 3327 3328 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused) 3329 { 3330 struct pmu_caps *pmu_caps; 3331 u32 nr_pmu, i; 3332 int ret; 3333 int j; 3334 3335 if (do_read_u32(ff, &nr_pmu)) 3336 return -1; 3337 3338 if (!nr_pmu) { 3339 pr_debug("pmu capabilities not available\n"); 3340 return 0; 3341 } 3342 3343 pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu); 3344 if (!pmu_caps) 3345 return -ENOMEM; 3346 3347 for (i = 0; i < nr_pmu; i++) { 3348 ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps, 3349 &pmu_caps[i].caps, 3350 &pmu_caps[i].max_branches); 3351 if (ret) 3352 goto err; 3353 3354 pmu_caps[i].pmu_name = do_read_string(ff); 3355 if (!pmu_caps[i].pmu_name) { 3356 ret = -1; 3357 goto err; 3358 } 3359 if (!pmu_caps[i].nr_caps) { 3360 pr_debug("%s pmu capabilities not available\n", 3361 pmu_caps[i].pmu_name); 3362 } 3363 } 3364 3365 ff->ph->env.nr_pmus_with_caps = nr_pmu; 3366 ff->ph->env.pmu_caps = pmu_caps; 3367 return 0; 3368 3369 err: 3370 for (i = 0; i < nr_pmu; i++) { 3371 for (j = 0; j < pmu_caps[i].nr_caps; j++) 3372 free(pmu_caps[i].caps[j]); 3373 free(pmu_caps[i].caps); 3374 free(pmu_caps[i].pmu_name); 3375 } 3376 3377 free(pmu_caps); 3378 return ret; 3379 } 3380 3381 #define FEAT_OPR(n, func, __full_only) \ 3382 [HEADER_##n] = { \ 3383 .name = __stringify(n), \ 3384 .write = write_##func, \ 3385 .print = print_##func, \ 3386 .full_only = __full_only, \ 3387 .process = process_##func, \ 3388 .synthesize = true \ 3389 } 3390 3391 #define FEAT_OPN(n, func, __full_only) \ 3392 [HEADER_##n] = { \ 3393 .name = __stringify(n), \ 3394 .write = write_##func, \ 3395 .print = print_##func, \ 3396 .full_only = __full_only, \ 3397 .process = process_##func \ 3398 } 3399 3400 /* feature_ops not implemented: */ 3401 #define print_tracing_data NULL 3402 #define print_build_id NULL 3403 3404 #define process_branch_stack NULL 3405 #define process_stat NULL 3406 3407 // Only used in util/synthetic-events.c 3408 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE]; 3409 3410 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = { 3411 #ifdef HAVE_LIBTRACEEVENT 3412 FEAT_OPN(TRACING_DATA, tracing_data, false), 3413 #endif 3414 FEAT_OPN(BUILD_ID, build_id, false), 3415 FEAT_OPR(HOSTNAME, hostname, false), 3416 FEAT_OPR(OSRELEASE, osrelease, false), 3417 FEAT_OPR(VERSION, version, false), 3418 FEAT_OPR(ARCH, arch, false), 3419 FEAT_OPR(NRCPUS, nrcpus, false), 3420 FEAT_OPR(CPUDESC, cpudesc, false), 3421 FEAT_OPR(CPUID, cpuid, false), 3422 FEAT_OPR(TOTAL_MEM, total_mem, false), 3423 FEAT_OPR(EVENT_DESC, event_desc, false), 3424 FEAT_OPR(CMDLINE, cmdline, false), 3425 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), 3426 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), 3427 FEAT_OPN(BRANCH_STACK, branch_stack, false), 3428 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), 3429 FEAT_OPR(GROUP_DESC, group_desc, false), 3430 FEAT_OPN(AUXTRACE, auxtrace, false), 3431 FEAT_OPN(STAT, stat, false), 3432 FEAT_OPN(CACHE, cache, true), 3433 FEAT_OPR(SAMPLE_TIME, sample_time, false), 3434 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), 3435 FEAT_OPR(CLOCKID, clockid, false), 3436 FEAT_OPN(DIR_FORMAT, dir_format, false), 3437 #ifdef HAVE_LIBBPF_SUPPORT 3438 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false), 3439 FEAT_OPR(BPF_BTF, bpf_btf, false), 3440 #endif 3441 FEAT_OPR(COMPRESSED, compressed, false), 3442 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false), 3443 FEAT_OPR(CLOCK_DATA, clock_data, false), 3444 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true), 3445 FEAT_OPR(PMU_CAPS, pmu_caps, false), 3446 }; 3447 3448 struct header_print_data { 3449 FILE *fp; 3450 bool full; /* extended list of headers */ 3451 }; 3452 3453 static int perf_file_section__fprintf_info(struct perf_file_section *section, 3454 struct perf_header *ph, 3455 int feat, int fd, void *data) 3456 { 3457 struct header_print_data *hd = data; 3458 struct feat_fd ff; 3459 3460 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3461 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3462 "%d, continuing...\n", section->offset, feat); 3463 return 0; 3464 } 3465 if (feat >= HEADER_LAST_FEATURE) { 3466 pr_warning("unknown feature %d\n", feat); 3467 return 0; 3468 } 3469 if (!feat_ops[feat].print) 3470 return 0; 3471 3472 ff = (struct feat_fd) { 3473 .fd = fd, 3474 .ph = ph, 3475 }; 3476 3477 if (!feat_ops[feat].full_only || hd->full) 3478 feat_ops[feat].print(&ff, hd->fp); 3479 else 3480 fprintf(hd->fp, "# %s info available, use -I to display\n", 3481 feat_ops[feat].name); 3482 3483 return 0; 3484 } 3485 3486 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) 3487 { 3488 struct header_print_data hd; 3489 struct perf_header *header = &session->header; 3490 int fd = perf_data__fd(session->data); 3491 struct stat st; 3492 time_t stctime; 3493 int ret, bit; 3494 3495 hd.fp = fp; 3496 hd.full = full; 3497 3498 ret = fstat(fd, &st); 3499 if (ret == -1) 3500 return -1; 3501 3502 stctime = st.st_mtime; 3503 fprintf(fp, "# captured on : %s", ctime(&stctime)); 3504 3505 fprintf(fp, "# header version : %u\n", header->version); 3506 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); 3507 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); 3508 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); 3509 3510 perf_header__process_sections(header, fd, &hd, 3511 perf_file_section__fprintf_info); 3512 3513 if (session->data->is_pipe) 3514 return 0; 3515 3516 fprintf(fp, "# missing features: "); 3517 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { 3518 if (bit) 3519 fprintf(fp, "%s ", feat_ops[bit].name); 3520 } 3521 3522 fprintf(fp, "\n"); 3523 return 0; 3524 } 3525 3526 struct header_fw { 3527 struct feat_writer fw; 3528 struct feat_fd *ff; 3529 }; 3530 3531 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz) 3532 { 3533 struct header_fw *h = container_of(fw, struct header_fw, fw); 3534 3535 return do_write(h->ff, buf, sz); 3536 } 3537 3538 static int do_write_feat(struct feat_fd *ff, int type, 3539 struct perf_file_section **p, 3540 struct evlist *evlist, 3541 struct feat_copier *fc) 3542 { 3543 int err; 3544 int ret = 0; 3545 3546 if (perf_header__has_feat(ff->ph, type)) { 3547 if (!feat_ops[type].write) 3548 return -1; 3549 3550 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 3551 return -1; 3552 3553 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); 3554 3555 /* 3556 * Hook to let perf inject copy features sections from the input 3557 * file. 3558 */ 3559 if (fc && fc->copy) { 3560 struct header_fw h = { 3561 .fw.write = feat_writer_cb, 3562 .ff = ff, 3563 }; 3564 3565 /* ->copy() returns 0 if the feature was not copied */ 3566 err = fc->copy(fc, type, &h.fw); 3567 } else { 3568 err = 0; 3569 } 3570 if (!err) 3571 err = feat_ops[type].write(ff, evlist); 3572 if (err < 0) { 3573 pr_debug("failed to write feature %s\n", feat_ops[type].name); 3574 3575 /* undo anything written */ 3576 lseek(ff->fd, (*p)->offset, SEEK_SET); 3577 3578 return -1; 3579 } 3580 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; 3581 (*p)++; 3582 } 3583 return ret; 3584 } 3585 3586 static int perf_header__adds_write(struct perf_header *header, 3587 struct evlist *evlist, int fd, 3588 struct feat_copier *fc) 3589 { 3590 int nr_sections; 3591 struct feat_fd ff; 3592 struct perf_file_section *feat_sec, *p; 3593 int sec_size; 3594 u64 sec_start; 3595 int feat; 3596 int err; 3597 3598 ff = (struct feat_fd){ 3599 .fd = fd, 3600 .ph = header, 3601 }; 3602 3603 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3604 if (!nr_sections) 3605 return 0; 3606 3607 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); 3608 if (feat_sec == NULL) 3609 return -ENOMEM; 3610 3611 sec_size = sizeof(*feat_sec) * nr_sections; 3612 3613 sec_start = header->feat_offset; 3614 lseek(fd, sec_start + sec_size, SEEK_SET); 3615 3616 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3617 if (do_write_feat(&ff, feat, &p, evlist, fc)) 3618 perf_header__clear_feat(header, feat); 3619 } 3620 3621 lseek(fd, sec_start, SEEK_SET); 3622 /* 3623 * may write more than needed due to dropped feature, but 3624 * this is okay, reader will skip the missing entries 3625 */ 3626 err = do_write(&ff, feat_sec, sec_size); 3627 if (err < 0) 3628 pr_debug("failed to write feature section\n"); 3629 free(feat_sec); 3630 return err; 3631 } 3632 3633 int perf_header__write_pipe(int fd) 3634 { 3635 struct perf_pipe_file_header f_header; 3636 struct feat_fd ff; 3637 int err; 3638 3639 ff = (struct feat_fd){ .fd = fd }; 3640 3641 f_header = (struct perf_pipe_file_header){ 3642 .magic = PERF_MAGIC, 3643 .size = sizeof(f_header), 3644 }; 3645 3646 err = do_write(&ff, &f_header, sizeof(f_header)); 3647 if (err < 0) { 3648 pr_debug("failed to write perf pipe header\n"); 3649 return err; 3650 } 3651 3652 return 0; 3653 } 3654 3655 static int perf_session__do_write_header(struct perf_session *session, 3656 struct evlist *evlist, 3657 int fd, bool at_exit, 3658 struct feat_copier *fc) 3659 { 3660 struct perf_file_header f_header; 3661 struct perf_file_attr f_attr; 3662 struct perf_header *header = &session->header; 3663 struct evsel *evsel; 3664 struct feat_fd ff; 3665 u64 attr_offset; 3666 int err; 3667 3668 ff = (struct feat_fd){ .fd = fd}; 3669 lseek(fd, sizeof(f_header), SEEK_SET); 3670 3671 evlist__for_each_entry(session->evlist, evsel) { 3672 evsel->id_offset = lseek(fd, 0, SEEK_CUR); 3673 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 3674 if (err < 0) { 3675 pr_debug("failed to write perf header\n"); 3676 return err; 3677 } 3678 } 3679 3680 attr_offset = lseek(ff.fd, 0, SEEK_CUR); 3681 3682 evlist__for_each_entry(evlist, evsel) { 3683 if (evsel->core.attr.size < sizeof(evsel->core.attr)) { 3684 /* 3685 * We are likely in "perf inject" and have read 3686 * from an older file. Update attr size so that 3687 * reader gets the right offset to the ids. 3688 */ 3689 evsel->core.attr.size = sizeof(evsel->core.attr); 3690 } 3691 f_attr = (struct perf_file_attr){ 3692 .attr = evsel->core.attr, 3693 .ids = { 3694 .offset = evsel->id_offset, 3695 .size = evsel->core.ids * sizeof(u64), 3696 } 3697 }; 3698 err = do_write(&ff, &f_attr, sizeof(f_attr)); 3699 if (err < 0) { 3700 pr_debug("failed to write perf header attribute\n"); 3701 return err; 3702 } 3703 } 3704 3705 if (!header->data_offset) 3706 header->data_offset = lseek(fd, 0, SEEK_CUR); 3707 header->feat_offset = header->data_offset + header->data_size; 3708 3709 if (at_exit) { 3710 err = perf_header__adds_write(header, evlist, fd, fc); 3711 if (err < 0) 3712 return err; 3713 } 3714 3715 f_header = (struct perf_file_header){ 3716 .magic = PERF_MAGIC, 3717 .size = sizeof(f_header), 3718 .attr_size = sizeof(f_attr), 3719 .attrs = { 3720 .offset = attr_offset, 3721 .size = evlist->core.nr_entries * sizeof(f_attr), 3722 }, 3723 .data = { 3724 .offset = header->data_offset, 3725 .size = header->data_size, 3726 }, 3727 /* event_types is ignored, store zeros */ 3728 }; 3729 3730 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); 3731 3732 lseek(fd, 0, SEEK_SET); 3733 err = do_write(&ff, &f_header, sizeof(f_header)); 3734 if (err < 0) { 3735 pr_debug("failed to write perf header\n"); 3736 return err; 3737 } 3738 lseek(fd, header->data_offset + header->data_size, SEEK_SET); 3739 3740 return 0; 3741 } 3742 3743 int perf_session__write_header(struct perf_session *session, 3744 struct evlist *evlist, 3745 int fd, bool at_exit) 3746 { 3747 return perf_session__do_write_header(session, evlist, fd, at_exit, NULL); 3748 } 3749 3750 size_t perf_session__data_offset(const struct evlist *evlist) 3751 { 3752 struct evsel *evsel; 3753 size_t data_offset; 3754 3755 data_offset = sizeof(struct perf_file_header); 3756 evlist__for_each_entry(evlist, evsel) { 3757 data_offset += evsel->core.ids * sizeof(u64); 3758 } 3759 data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr); 3760 3761 return data_offset; 3762 } 3763 3764 int perf_session__inject_header(struct perf_session *session, 3765 struct evlist *evlist, 3766 int fd, 3767 struct feat_copier *fc) 3768 { 3769 return perf_session__do_write_header(session, evlist, fd, true, fc); 3770 } 3771 3772 static int perf_header__getbuffer64(struct perf_header *header, 3773 int fd, void *buf, size_t size) 3774 { 3775 if (readn(fd, buf, size) <= 0) 3776 return -1; 3777 3778 if (header->needs_swap) 3779 mem_bswap_64(buf, size); 3780 3781 return 0; 3782 } 3783 3784 int perf_header__process_sections(struct perf_header *header, int fd, 3785 void *data, 3786 int (*process)(struct perf_file_section *section, 3787 struct perf_header *ph, 3788 int feat, int fd, void *data)) 3789 { 3790 struct perf_file_section *feat_sec, *sec; 3791 int nr_sections; 3792 int sec_size; 3793 int feat; 3794 int err; 3795 3796 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3797 if (!nr_sections) 3798 return 0; 3799 3800 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); 3801 if (!feat_sec) 3802 return -1; 3803 3804 sec_size = sizeof(*feat_sec) * nr_sections; 3805 3806 lseek(fd, header->feat_offset, SEEK_SET); 3807 3808 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); 3809 if (err < 0) 3810 goto out_free; 3811 3812 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { 3813 err = process(sec++, header, feat, fd, data); 3814 if (err < 0) 3815 goto out_free; 3816 } 3817 err = 0; 3818 out_free: 3819 free(feat_sec); 3820 return err; 3821 } 3822 3823 static const int attr_file_abi_sizes[] = { 3824 [0] = PERF_ATTR_SIZE_VER0, 3825 [1] = PERF_ATTR_SIZE_VER1, 3826 [2] = PERF_ATTR_SIZE_VER2, 3827 [3] = PERF_ATTR_SIZE_VER3, 3828 [4] = PERF_ATTR_SIZE_VER4, 3829 0, 3830 }; 3831 3832 /* 3833 * In the legacy file format, the magic number is not used to encode endianness. 3834 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based 3835 * on ABI revisions, we need to try all combinations for all endianness to 3836 * detect the endianness. 3837 */ 3838 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) 3839 { 3840 uint64_t ref_size, attr_size; 3841 int i; 3842 3843 for (i = 0 ; attr_file_abi_sizes[i]; i++) { 3844 ref_size = attr_file_abi_sizes[i] 3845 + sizeof(struct perf_file_section); 3846 if (hdr_sz != ref_size) { 3847 attr_size = bswap_64(hdr_sz); 3848 if (attr_size != ref_size) 3849 continue; 3850 3851 ph->needs_swap = true; 3852 } 3853 pr_debug("ABI%d perf.data file detected, need_swap=%d\n", 3854 i, 3855 ph->needs_swap); 3856 return 0; 3857 } 3858 /* could not determine endianness */ 3859 return -1; 3860 } 3861 3862 #define PERF_PIPE_HDR_VER0 16 3863 3864 static const size_t attr_pipe_abi_sizes[] = { 3865 [0] = PERF_PIPE_HDR_VER0, 3866 0, 3867 }; 3868 3869 /* 3870 * In the legacy pipe format, there is an implicit assumption that endianness 3871 * between host recording the samples, and host parsing the samples is the 3872 * same. This is not always the case given that the pipe output may always be 3873 * redirected into a file and analyzed on a different machine with possibly a 3874 * different endianness and perf_event ABI revisions in the perf tool itself. 3875 */ 3876 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) 3877 { 3878 u64 attr_size; 3879 int i; 3880 3881 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { 3882 if (hdr_sz != attr_pipe_abi_sizes[i]) { 3883 attr_size = bswap_64(hdr_sz); 3884 if (attr_size != hdr_sz) 3885 continue; 3886 3887 ph->needs_swap = true; 3888 } 3889 pr_debug("Pipe ABI%d perf.data file detected\n", i); 3890 return 0; 3891 } 3892 return -1; 3893 } 3894 3895 bool is_perf_magic(u64 magic) 3896 { 3897 if (!memcmp(&magic, __perf_magic1, sizeof(magic)) 3898 || magic == __perf_magic2 3899 || magic == __perf_magic2_sw) 3900 return true; 3901 3902 return false; 3903 } 3904 3905 static int check_magic_endian(u64 magic, uint64_t hdr_sz, 3906 bool is_pipe, struct perf_header *ph) 3907 { 3908 int ret; 3909 3910 /* check for legacy format */ 3911 ret = memcmp(&magic, __perf_magic1, sizeof(magic)); 3912 if (ret == 0) { 3913 ph->version = PERF_HEADER_VERSION_1; 3914 pr_debug("legacy perf.data format\n"); 3915 if (is_pipe) 3916 return try_all_pipe_abis(hdr_sz, ph); 3917 3918 return try_all_file_abis(hdr_sz, ph); 3919 } 3920 /* 3921 * the new magic number serves two purposes: 3922 * - unique number to identify actual perf.data files 3923 * - encode endianness of file 3924 */ 3925 ph->version = PERF_HEADER_VERSION_2; 3926 3927 /* check magic number with one endianness */ 3928 if (magic == __perf_magic2) 3929 return 0; 3930 3931 /* check magic number with opposite endianness */ 3932 if (magic != __perf_magic2_sw) 3933 return -1; 3934 3935 ph->needs_swap = true; 3936 3937 return 0; 3938 } 3939 3940 int perf_file_header__read(struct perf_file_header *header, 3941 struct perf_header *ph, int fd) 3942 { 3943 ssize_t ret; 3944 3945 lseek(fd, 0, SEEK_SET); 3946 3947 ret = readn(fd, header, sizeof(*header)); 3948 if (ret <= 0) 3949 return -1; 3950 3951 if (check_magic_endian(header->magic, 3952 header->attr_size, false, ph) < 0) { 3953 pr_debug("magic/endian check failed\n"); 3954 return -1; 3955 } 3956 3957 if (ph->needs_swap) { 3958 mem_bswap_64(header, offsetof(struct perf_file_header, 3959 adds_features)); 3960 } 3961 3962 if (header->size != sizeof(*header)) { 3963 /* Support the previous format */ 3964 if (header->size == offsetof(typeof(*header), adds_features)) 3965 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3966 else 3967 return -1; 3968 } else if (ph->needs_swap) { 3969 /* 3970 * feature bitmap is declared as an array of unsigned longs -- 3971 * not good since its size can differ between the host that 3972 * generated the data file and the host analyzing the file. 3973 * 3974 * We need to handle endianness, but we don't know the size of 3975 * the unsigned long where the file was generated. Take a best 3976 * guess at determining it: try 64-bit swap first (ie., file 3977 * created on a 64-bit host), and check if the hostname feature 3978 * bit is set (this feature bit is forced on as of fbe96f2). 3979 * If the bit is not, undo the 64-bit swap and try a 32-bit 3980 * swap. If the hostname bit is still not set (e.g., older data 3981 * file), punt and fallback to the original behavior -- 3982 * clearing all feature bits and setting buildid. 3983 */ 3984 mem_bswap_64(&header->adds_features, 3985 BITS_TO_U64(HEADER_FEAT_BITS)); 3986 3987 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3988 /* unswap as u64 */ 3989 mem_bswap_64(&header->adds_features, 3990 BITS_TO_U64(HEADER_FEAT_BITS)); 3991 3992 /* unswap as u32 */ 3993 mem_bswap_32(&header->adds_features, 3994 BITS_TO_U32(HEADER_FEAT_BITS)); 3995 } 3996 3997 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3998 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3999 __set_bit(HEADER_BUILD_ID, header->adds_features); 4000 } 4001 } 4002 4003 memcpy(&ph->adds_features, &header->adds_features, 4004 sizeof(ph->adds_features)); 4005 4006 ph->data_offset = header->data.offset; 4007 ph->data_size = header->data.size; 4008 ph->feat_offset = header->data.offset + header->data.size; 4009 return 0; 4010 } 4011 4012 static int perf_file_section__process(struct perf_file_section *section, 4013 struct perf_header *ph, 4014 int feat, int fd, void *data) 4015 { 4016 struct feat_fd fdd = { 4017 .fd = fd, 4018 .ph = ph, 4019 .size = section->size, 4020 .offset = section->offset, 4021 }; 4022 4023 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 4024 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 4025 "%d, continuing...\n", section->offset, feat); 4026 return 0; 4027 } 4028 4029 if (feat >= HEADER_LAST_FEATURE) { 4030 pr_debug("unknown feature %d, continuing...\n", feat); 4031 return 0; 4032 } 4033 4034 if (!feat_ops[feat].process) 4035 return 0; 4036 4037 return feat_ops[feat].process(&fdd, data); 4038 } 4039 4040 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, 4041 struct perf_header *ph, 4042 struct perf_data* data, 4043 bool repipe, int repipe_fd) 4044 { 4045 struct feat_fd ff = { 4046 .fd = repipe_fd, 4047 .ph = ph, 4048 }; 4049 ssize_t ret; 4050 4051 ret = perf_data__read(data, header, sizeof(*header)); 4052 if (ret <= 0) 4053 return -1; 4054 4055 if (check_magic_endian(header->magic, header->size, true, ph) < 0) { 4056 pr_debug("endian/magic failed\n"); 4057 return -1; 4058 } 4059 4060 if (ph->needs_swap) 4061 header->size = bswap_64(header->size); 4062 4063 if (repipe && do_write(&ff, header, sizeof(*header)) < 0) 4064 return -1; 4065 4066 return 0; 4067 } 4068 4069 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd) 4070 { 4071 struct perf_header *header = &session->header; 4072 struct perf_pipe_file_header f_header; 4073 4074 if (perf_file_header__read_pipe(&f_header, header, session->data, 4075 session->repipe, repipe_fd) < 0) { 4076 pr_debug("incompatible file format\n"); 4077 return -EINVAL; 4078 } 4079 4080 return f_header.size == sizeof(f_header) ? 0 : -1; 4081 } 4082 4083 static int read_attr(int fd, struct perf_header *ph, 4084 struct perf_file_attr *f_attr) 4085 { 4086 struct perf_event_attr *attr = &f_attr->attr; 4087 size_t sz, left; 4088 size_t our_sz = sizeof(f_attr->attr); 4089 ssize_t ret; 4090 4091 memset(f_attr, 0, sizeof(*f_attr)); 4092 4093 /* read minimal guaranteed structure */ 4094 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); 4095 if (ret <= 0) { 4096 pr_debug("cannot read %d bytes of header attr\n", 4097 PERF_ATTR_SIZE_VER0); 4098 return -1; 4099 } 4100 4101 /* on file perf_event_attr size */ 4102 sz = attr->size; 4103 4104 if (ph->needs_swap) 4105 sz = bswap_32(sz); 4106 4107 if (sz == 0) { 4108 /* assume ABI0 */ 4109 sz = PERF_ATTR_SIZE_VER0; 4110 } else if (sz > our_sz) { 4111 pr_debug("file uses a more recent and unsupported ABI" 4112 " (%zu bytes extra)\n", sz - our_sz); 4113 return -1; 4114 } 4115 /* what we have not yet read and that we know about */ 4116 left = sz - PERF_ATTR_SIZE_VER0; 4117 if (left) { 4118 void *ptr = attr; 4119 ptr += PERF_ATTR_SIZE_VER0; 4120 4121 ret = readn(fd, ptr, left); 4122 } 4123 /* read perf_file_section, ids are read in caller */ 4124 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); 4125 4126 return ret <= 0 ? -1 : 0; 4127 } 4128 4129 #ifdef HAVE_LIBTRACEEVENT 4130 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent) 4131 { 4132 struct tep_event *event; 4133 char bf[128]; 4134 4135 /* already prepared */ 4136 if (evsel->tp_format) 4137 return 0; 4138 4139 if (pevent == NULL) { 4140 pr_debug("broken or missing trace data\n"); 4141 return -1; 4142 } 4143 4144 event = tep_find_event(pevent, evsel->core.attr.config); 4145 if (event == NULL) { 4146 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config); 4147 return -1; 4148 } 4149 4150 if (!evsel->name) { 4151 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); 4152 evsel->name = strdup(bf); 4153 if (evsel->name == NULL) 4154 return -1; 4155 } 4156 4157 evsel->tp_format = event; 4158 return 0; 4159 } 4160 4161 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent) 4162 { 4163 struct evsel *pos; 4164 4165 evlist__for_each_entry(evlist, pos) { 4166 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT && 4167 evsel__prepare_tracepoint_event(pos, pevent)) 4168 return -1; 4169 } 4170 4171 return 0; 4172 } 4173 #endif 4174 4175 int perf_session__read_header(struct perf_session *session, int repipe_fd) 4176 { 4177 struct perf_data *data = session->data; 4178 struct perf_header *header = &session->header; 4179 struct perf_file_header f_header; 4180 struct perf_file_attr f_attr; 4181 u64 f_id; 4182 int nr_attrs, nr_ids, i, j, err; 4183 int fd = perf_data__fd(data); 4184 4185 session->evlist = evlist__new(); 4186 if (session->evlist == NULL) 4187 return -ENOMEM; 4188 4189 session->evlist->env = &header->env; 4190 session->machines.host.env = &header->env; 4191 4192 /* 4193 * We can read 'pipe' data event from regular file, 4194 * check for the pipe header regardless of source. 4195 */ 4196 err = perf_header__read_pipe(session, repipe_fd); 4197 if (!err || perf_data__is_pipe(data)) { 4198 data->is_pipe = true; 4199 return err; 4200 } 4201 4202 if (perf_file_header__read(&f_header, header, fd) < 0) 4203 return -EINVAL; 4204 4205 if (header->needs_swap && data->in_place_update) { 4206 pr_err("In-place update not supported when byte-swapping is required\n"); 4207 return -EINVAL; 4208 } 4209 4210 /* 4211 * Sanity check that perf.data was written cleanly; data size is 4212 * initialized to 0 and updated only if the on_exit function is run. 4213 * If data size is still 0 then the file contains only partial 4214 * information. Just warn user and process it as much as it can. 4215 */ 4216 if (f_header.data.size == 0) { 4217 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" 4218 "Was the 'perf record' command properly terminated?\n", 4219 data->file.path); 4220 } 4221 4222 if (f_header.attr_size == 0) { 4223 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n" 4224 "Was the 'perf record' command properly terminated?\n", 4225 data->file.path); 4226 return -EINVAL; 4227 } 4228 4229 nr_attrs = f_header.attrs.size / f_header.attr_size; 4230 lseek(fd, f_header.attrs.offset, SEEK_SET); 4231 4232 for (i = 0; i < nr_attrs; i++) { 4233 struct evsel *evsel; 4234 off_t tmp; 4235 4236 if (read_attr(fd, header, &f_attr) < 0) 4237 goto out_errno; 4238 4239 if (header->needs_swap) { 4240 f_attr.ids.size = bswap_64(f_attr.ids.size); 4241 f_attr.ids.offset = bswap_64(f_attr.ids.offset); 4242 perf_event__attr_swap(&f_attr.attr); 4243 } 4244 4245 tmp = lseek(fd, 0, SEEK_CUR); 4246 evsel = evsel__new(&f_attr.attr); 4247 4248 if (evsel == NULL) 4249 goto out_delete_evlist; 4250 4251 evsel->needs_swap = header->needs_swap; 4252 /* 4253 * Do it before so that if perf_evsel__alloc_id fails, this 4254 * entry gets purged too at evlist__delete(). 4255 */ 4256 evlist__add(session->evlist, evsel); 4257 4258 nr_ids = f_attr.ids.size / sizeof(u64); 4259 /* 4260 * We don't have the cpu and thread maps on the header, so 4261 * for allocating the perf_sample_id table we fake 1 cpu and 4262 * hattr->ids threads. 4263 */ 4264 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids)) 4265 goto out_delete_evlist; 4266 4267 lseek(fd, f_attr.ids.offset, SEEK_SET); 4268 4269 for (j = 0; j < nr_ids; j++) { 4270 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) 4271 goto out_errno; 4272 4273 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id); 4274 } 4275 4276 lseek(fd, tmp, SEEK_SET); 4277 } 4278 4279 #ifdef HAVE_LIBTRACEEVENT 4280 perf_header__process_sections(header, fd, &session->tevent, 4281 perf_file_section__process); 4282 4283 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent)) 4284 goto out_delete_evlist; 4285 #else 4286 perf_header__process_sections(header, fd, NULL, perf_file_section__process); 4287 #endif 4288 4289 return 0; 4290 out_errno: 4291 return -errno; 4292 4293 out_delete_evlist: 4294 evlist__delete(session->evlist); 4295 session->evlist = NULL; 4296 return -ENOMEM; 4297 } 4298 4299 int perf_event__process_feature(struct perf_session *session, 4300 union perf_event *event) 4301 { 4302 struct perf_tool *tool = session->tool; 4303 struct feat_fd ff = { .fd = 0 }; 4304 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event; 4305 int type = fe->header.type; 4306 u64 feat = fe->feat_id; 4307 int ret = 0; 4308 4309 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { 4310 pr_warning("invalid record type %d in pipe-mode\n", type); 4311 return 0; 4312 } 4313 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { 4314 pr_warning("invalid record type %d in pipe-mode\n", type); 4315 return -1; 4316 } 4317 4318 if (!feat_ops[feat].process) 4319 return 0; 4320 4321 ff.buf = (void *)fe->data; 4322 ff.size = event->header.size - sizeof(*fe); 4323 ff.ph = &session->header; 4324 4325 if (feat_ops[feat].process(&ff, NULL)) { 4326 ret = -1; 4327 goto out; 4328 } 4329 4330 if (!feat_ops[feat].print || !tool->show_feat_hdr) 4331 goto out; 4332 4333 if (!feat_ops[feat].full_only || 4334 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { 4335 feat_ops[feat].print(&ff, stdout); 4336 } else { 4337 fprintf(stdout, "# %s info available, use -I to display\n", 4338 feat_ops[feat].name); 4339 } 4340 out: 4341 free_event_desc(ff.events); 4342 return ret; 4343 } 4344 4345 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) 4346 { 4347 struct perf_record_event_update *ev = &event->event_update; 4348 struct perf_cpu_map *map; 4349 size_t ret; 4350 4351 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id); 4352 4353 switch (ev->type) { 4354 case PERF_EVENT_UPDATE__SCALE: 4355 ret += fprintf(fp, "... scale: %f\n", ev->scale.scale); 4356 break; 4357 case PERF_EVENT_UPDATE__UNIT: 4358 ret += fprintf(fp, "... unit: %s\n", ev->unit); 4359 break; 4360 case PERF_EVENT_UPDATE__NAME: 4361 ret += fprintf(fp, "... name: %s\n", ev->name); 4362 break; 4363 case PERF_EVENT_UPDATE__CPUS: 4364 ret += fprintf(fp, "... "); 4365 4366 map = cpu_map__new_data(&ev->cpus.cpus); 4367 if (map) 4368 ret += cpu_map__fprintf(map, fp); 4369 else 4370 ret += fprintf(fp, "failed to get cpus\n"); 4371 break; 4372 default: 4373 ret += fprintf(fp, "... unknown type\n"); 4374 break; 4375 } 4376 4377 return ret; 4378 } 4379 4380 int perf_event__process_attr(struct perf_tool *tool __maybe_unused, 4381 union perf_event *event, 4382 struct evlist **pevlist) 4383 { 4384 u32 i, ids, n_ids; 4385 struct evsel *evsel; 4386 struct evlist *evlist = *pevlist; 4387 4388 if (evlist == NULL) { 4389 *pevlist = evlist = evlist__new(); 4390 if (evlist == NULL) 4391 return -ENOMEM; 4392 } 4393 4394 evsel = evsel__new(&event->attr.attr); 4395 if (evsel == NULL) 4396 return -ENOMEM; 4397 4398 evlist__add(evlist, evsel); 4399 4400 ids = event->header.size; 4401 ids -= (void *)&event->attr.id - (void *)event; 4402 n_ids = ids / sizeof(u64); 4403 /* 4404 * We don't have the cpu and thread maps on the header, so 4405 * for allocating the perf_sample_id table we fake 1 cpu and 4406 * hattr->ids threads. 4407 */ 4408 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids)) 4409 return -ENOMEM; 4410 4411 for (i = 0; i < n_ids; i++) { 4412 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]); 4413 } 4414 4415 return 0; 4416 } 4417 4418 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused, 4419 union perf_event *event, 4420 struct evlist **pevlist) 4421 { 4422 struct perf_record_event_update *ev = &event->event_update; 4423 struct evlist *evlist; 4424 struct evsel *evsel; 4425 struct perf_cpu_map *map; 4426 4427 if (dump_trace) 4428 perf_event__fprintf_event_update(event, stdout); 4429 4430 if (!pevlist || *pevlist == NULL) 4431 return -EINVAL; 4432 4433 evlist = *pevlist; 4434 4435 evsel = evlist__id2evsel(evlist, ev->id); 4436 if (evsel == NULL) 4437 return -EINVAL; 4438 4439 switch (ev->type) { 4440 case PERF_EVENT_UPDATE__UNIT: 4441 free((char *)evsel->unit); 4442 evsel->unit = strdup(ev->unit); 4443 break; 4444 case PERF_EVENT_UPDATE__NAME: 4445 free(evsel->name); 4446 evsel->name = strdup(ev->name); 4447 break; 4448 case PERF_EVENT_UPDATE__SCALE: 4449 evsel->scale = ev->scale.scale; 4450 break; 4451 case PERF_EVENT_UPDATE__CPUS: 4452 map = cpu_map__new_data(&ev->cpus.cpus); 4453 if (map) { 4454 perf_cpu_map__put(evsel->core.own_cpus); 4455 evsel->core.own_cpus = map; 4456 } else 4457 pr_err("failed to get event_update cpus\n"); 4458 default: 4459 break; 4460 } 4461 4462 return 0; 4463 } 4464 4465 #ifdef HAVE_LIBTRACEEVENT 4466 int perf_event__process_tracing_data(struct perf_session *session, 4467 union perf_event *event) 4468 { 4469 ssize_t size_read, padding, size = event->tracing_data.size; 4470 int fd = perf_data__fd(session->data); 4471 char buf[BUFSIZ]; 4472 4473 /* 4474 * The pipe fd is already in proper place and in any case 4475 * we can't move it, and we'd screw the case where we read 4476 * 'pipe' data from regular file. The trace_report reads 4477 * data from 'fd' so we need to set it directly behind the 4478 * event, where the tracing data starts. 4479 */ 4480 if (!perf_data__is_pipe(session->data)) { 4481 off_t offset = lseek(fd, 0, SEEK_CUR); 4482 4483 /* setup for reading amidst mmap */ 4484 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data), 4485 SEEK_SET); 4486 } 4487 4488 size_read = trace_report(fd, &session->tevent, 4489 session->repipe); 4490 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; 4491 4492 if (readn(fd, buf, padding) < 0) { 4493 pr_err("%s: reading input file", __func__); 4494 return -1; 4495 } 4496 if (session->repipe) { 4497 int retw = write(STDOUT_FILENO, buf, padding); 4498 if (retw <= 0 || retw != padding) { 4499 pr_err("%s: repiping tracing data padding", __func__); 4500 return -1; 4501 } 4502 } 4503 4504 if (size_read + padding != size) { 4505 pr_err("%s: tracing data size mismatch", __func__); 4506 return -1; 4507 } 4508 4509 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent); 4510 4511 return size_read + padding; 4512 } 4513 #endif 4514 4515 int perf_event__process_build_id(struct perf_session *session, 4516 union perf_event *event) 4517 { 4518 __event_process_build_id(&event->build_id, 4519 event->build_id.filename, 4520 session); 4521 return 0; 4522 } 4523