xref: /openbmc/linux/tools/perf/util/header.c (revision 34facb04)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #include <bpf/libbpf.h>
23 #include <perf/cpumap.h>
24 
25 #include "dso.h"
26 #include "evlist.h"
27 #include "evsel.h"
28 #include "util/evsel_fprintf.h"
29 #include "header.h"
30 #include "memswap.h"
31 #include "trace-event.h"
32 #include "session.h"
33 #include "symbol.h"
34 #include "debug.h"
35 #include "cpumap.h"
36 #include "pmu.h"
37 #include "vdso.h"
38 #include "strbuf.h"
39 #include "build-id.h"
40 #include "data.h"
41 #include <api/fs/fs.h>
42 #include "asm/bug.h"
43 #include "tool.h"
44 #include "time-utils.h"
45 #include "units.h"
46 #include "util/util.h" // perf_exe()
47 #include "cputopo.h"
48 #include "bpf-event.h"
49 
50 #include <linux/ctype.h>
51 #include <internal/lib.h>
52 
53 /*
54  * magic2 = "PERFILE2"
55  * must be a numerical value to let the endianness
56  * determine the memory layout. That way we are able
57  * to detect endianness when reading the perf.data file
58  * back.
59  *
60  * we check for legacy (PERFFILE) format.
61  */
62 static const char *__perf_magic1 = "PERFFILE";
63 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
64 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
65 
66 #define PERF_MAGIC	__perf_magic2
67 
68 const char perf_version_string[] = PERF_VERSION;
69 
70 struct perf_file_attr {
71 	struct perf_event_attr	attr;
72 	struct perf_file_section	ids;
73 };
74 
75 void perf_header__set_feat(struct perf_header *header, int feat)
76 {
77 	set_bit(feat, header->adds_features);
78 }
79 
80 void perf_header__clear_feat(struct perf_header *header, int feat)
81 {
82 	clear_bit(feat, header->adds_features);
83 }
84 
85 bool perf_header__has_feat(const struct perf_header *header, int feat)
86 {
87 	return test_bit(feat, header->adds_features);
88 }
89 
90 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
91 {
92 	ssize_t ret = writen(ff->fd, buf, size);
93 
94 	if (ret != (ssize_t)size)
95 		return ret < 0 ? (int)ret : -1;
96 	return 0;
97 }
98 
99 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
100 {
101 	/* struct perf_event_header::size is u16 */
102 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
103 	size_t new_size = ff->size;
104 	void *addr;
105 
106 	if (size + ff->offset > max_size)
107 		return -E2BIG;
108 
109 	while (size > (new_size - ff->offset))
110 		new_size <<= 1;
111 	new_size = min(max_size, new_size);
112 
113 	if (ff->size < new_size) {
114 		addr = realloc(ff->buf, new_size);
115 		if (!addr)
116 			return -ENOMEM;
117 		ff->buf = addr;
118 		ff->size = new_size;
119 	}
120 
121 	memcpy(ff->buf + ff->offset, buf, size);
122 	ff->offset += size;
123 
124 	return 0;
125 }
126 
127 /* Return: 0 if succeded, -ERR if failed. */
128 int do_write(struct feat_fd *ff, const void *buf, size_t size)
129 {
130 	if (!ff->buf)
131 		return __do_write_fd(ff, buf, size);
132 	return __do_write_buf(ff, buf, size);
133 }
134 
135 /* Return: 0 if succeded, -ERR if failed. */
136 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
137 {
138 	u64 *p = (u64 *) set;
139 	int i, ret;
140 
141 	ret = do_write(ff, &size, sizeof(size));
142 	if (ret < 0)
143 		return ret;
144 
145 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
146 		ret = do_write(ff, p + i, sizeof(*p));
147 		if (ret < 0)
148 			return ret;
149 	}
150 
151 	return 0;
152 }
153 
154 /* Return: 0 if succeded, -ERR if failed. */
155 int write_padded(struct feat_fd *ff, const void *bf,
156 		 size_t count, size_t count_aligned)
157 {
158 	static const char zero_buf[NAME_ALIGN];
159 	int err = do_write(ff, bf, count);
160 
161 	if (!err)
162 		err = do_write(ff, zero_buf, count_aligned - count);
163 
164 	return err;
165 }
166 
167 #define string_size(str)						\
168 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
169 
170 /* Return: 0 if succeded, -ERR if failed. */
171 static int do_write_string(struct feat_fd *ff, const char *str)
172 {
173 	u32 len, olen;
174 	int ret;
175 
176 	olen = strlen(str) + 1;
177 	len = PERF_ALIGN(olen, NAME_ALIGN);
178 
179 	/* write len, incl. \0 */
180 	ret = do_write(ff, &len, sizeof(len));
181 	if (ret < 0)
182 		return ret;
183 
184 	return write_padded(ff, str, olen, len);
185 }
186 
187 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
188 {
189 	ssize_t ret = readn(ff->fd, addr, size);
190 
191 	if (ret != size)
192 		return ret < 0 ? (int)ret : -1;
193 	return 0;
194 }
195 
196 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
197 {
198 	if (size > (ssize_t)ff->size - ff->offset)
199 		return -1;
200 
201 	memcpy(addr, ff->buf + ff->offset, size);
202 	ff->offset += size;
203 
204 	return 0;
205 
206 }
207 
208 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
209 {
210 	if (!ff->buf)
211 		return __do_read_fd(ff, addr, size);
212 	return __do_read_buf(ff, addr, size);
213 }
214 
215 static int do_read_u32(struct feat_fd *ff, u32 *addr)
216 {
217 	int ret;
218 
219 	ret = __do_read(ff, addr, sizeof(*addr));
220 	if (ret)
221 		return ret;
222 
223 	if (ff->ph->needs_swap)
224 		*addr = bswap_32(*addr);
225 	return 0;
226 }
227 
228 static int do_read_u64(struct feat_fd *ff, u64 *addr)
229 {
230 	int ret;
231 
232 	ret = __do_read(ff, addr, sizeof(*addr));
233 	if (ret)
234 		return ret;
235 
236 	if (ff->ph->needs_swap)
237 		*addr = bswap_64(*addr);
238 	return 0;
239 }
240 
241 static char *do_read_string(struct feat_fd *ff)
242 {
243 	u32 len;
244 	char *buf;
245 
246 	if (do_read_u32(ff, &len))
247 		return NULL;
248 
249 	buf = malloc(len);
250 	if (!buf)
251 		return NULL;
252 
253 	if (!__do_read(ff, buf, len)) {
254 		/*
255 		 * strings are padded by zeroes
256 		 * thus the actual strlen of buf
257 		 * may be less than len
258 		 */
259 		return buf;
260 	}
261 
262 	free(buf);
263 	return NULL;
264 }
265 
266 /* Return: 0 if succeded, -ERR if failed. */
267 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
268 {
269 	unsigned long *set;
270 	u64 size, *p;
271 	int i, ret;
272 
273 	ret = do_read_u64(ff, &size);
274 	if (ret)
275 		return ret;
276 
277 	set = bitmap_alloc(size);
278 	if (!set)
279 		return -ENOMEM;
280 
281 	p = (u64 *) set;
282 
283 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
284 		ret = do_read_u64(ff, p + i);
285 		if (ret < 0) {
286 			free(set);
287 			return ret;
288 		}
289 	}
290 
291 	*pset  = set;
292 	*psize = size;
293 	return 0;
294 }
295 
296 static int write_tracing_data(struct feat_fd *ff,
297 			      struct evlist *evlist)
298 {
299 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
300 		return -1;
301 
302 	return read_tracing_data(ff->fd, &evlist->core.entries);
303 }
304 
305 static int write_build_id(struct feat_fd *ff,
306 			  struct evlist *evlist __maybe_unused)
307 {
308 	struct perf_session *session;
309 	int err;
310 
311 	session = container_of(ff->ph, struct perf_session, header);
312 
313 	if (!perf_session__read_build_ids(session, true))
314 		return -1;
315 
316 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
317 		return -1;
318 
319 	err = perf_session__write_buildid_table(session, ff);
320 	if (err < 0) {
321 		pr_debug("failed to write buildid table\n");
322 		return err;
323 	}
324 	perf_session__cache_build_ids(session);
325 
326 	return 0;
327 }
328 
329 static int write_hostname(struct feat_fd *ff,
330 			  struct evlist *evlist __maybe_unused)
331 {
332 	struct utsname uts;
333 	int ret;
334 
335 	ret = uname(&uts);
336 	if (ret < 0)
337 		return -1;
338 
339 	return do_write_string(ff, uts.nodename);
340 }
341 
342 static int write_osrelease(struct feat_fd *ff,
343 			   struct evlist *evlist __maybe_unused)
344 {
345 	struct utsname uts;
346 	int ret;
347 
348 	ret = uname(&uts);
349 	if (ret < 0)
350 		return -1;
351 
352 	return do_write_string(ff, uts.release);
353 }
354 
355 static int write_arch(struct feat_fd *ff,
356 		      struct evlist *evlist __maybe_unused)
357 {
358 	struct utsname uts;
359 	int ret;
360 
361 	ret = uname(&uts);
362 	if (ret < 0)
363 		return -1;
364 
365 	return do_write_string(ff, uts.machine);
366 }
367 
368 static int write_version(struct feat_fd *ff,
369 			 struct evlist *evlist __maybe_unused)
370 {
371 	return do_write_string(ff, perf_version_string);
372 }
373 
374 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
375 {
376 	FILE *file;
377 	char *buf = NULL;
378 	char *s, *p;
379 	const char *search = cpuinfo_proc;
380 	size_t len = 0;
381 	int ret = -1;
382 
383 	if (!search)
384 		return -1;
385 
386 	file = fopen("/proc/cpuinfo", "r");
387 	if (!file)
388 		return -1;
389 
390 	while (getline(&buf, &len, file) > 0) {
391 		ret = strncmp(buf, search, strlen(search));
392 		if (!ret)
393 			break;
394 	}
395 
396 	if (ret) {
397 		ret = -1;
398 		goto done;
399 	}
400 
401 	s = buf;
402 
403 	p = strchr(buf, ':');
404 	if (p && *(p+1) == ' ' && *(p+2))
405 		s = p + 2;
406 	p = strchr(s, '\n');
407 	if (p)
408 		*p = '\0';
409 
410 	/* squash extra space characters (branding string) */
411 	p = s;
412 	while (*p) {
413 		if (isspace(*p)) {
414 			char *r = p + 1;
415 			char *q = skip_spaces(r);
416 			*p = ' ';
417 			if (q != (p+1))
418 				while ((*r++ = *q++));
419 		}
420 		p++;
421 	}
422 	ret = do_write_string(ff, s);
423 done:
424 	free(buf);
425 	fclose(file);
426 	return ret;
427 }
428 
429 static int write_cpudesc(struct feat_fd *ff,
430 		       struct evlist *evlist __maybe_unused)
431 {
432 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
433 #define CPUINFO_PROC	{ "cpu", }
434 #elif defined(__s390__)
435 #define CPUINFO_PROC	{ "vendor_id", }
436 #elif defined(__sh__)
437 #define CPUINFO_PROC	{ "cpu type", }
438 #elif defined(__alpha__) || defined(__mips__)
439 #define CPUINFO_PROC	{ "cpu model", }
440 #elif defined(__arm__)
441 #define CPUINFO_PROC	{ "model name", "Processor", }
442 #elif defined(__arc__)
443 #define CPUINFO_PROC	{ "Processor", }
444 #elif defined(__xtensa__)
445 #define CPUINFO_PROC	{ "core ID", }
446 #else
447 #define CPUINFO_PROC	{ "model name", }
448 #endif
449 	const char *cpuinfo_procs[] = CPUINFO_PROC;
450 #undef CPUINFO_PROC
451 	unsigned int i;
452 
453 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
454 		int ret;
455 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
456 		if (ret >= 0)
457 			return ret;
458 	}
459 	return -1;
460 }
461 
462 
463 static int write_nrcpus(struct feat_fd *ff,
464 			struct evlist *evlist __maybe_unused)
465 {
466 	long nr;
467 	u32 nrc, nra;
468 	int ret;
469 
470 	nrc = cpu__max_present_cpu();
471 
472 	nr = sysconf(_SC_NPROCESSORS_ONLN);
473 	if (nr < 0)
474 		return -1;
475 
476 	nra = (u32)(nr & UINT_MAX);
477 
478 	ret = do_write(ff, &nrc, sizeof(nrc));
479 	if (ret < 0)
480 		return ret;
481 
482 	return do_write(ff, &nra, sizeof(nra));
483 }
484 
485 static int write_event_desc(struct feat_fd *ff,
486 			    struct evlist *evlist)
487 {
488 	struct evsel *evsel;
489 	u32 nre, nri, sz;
490 	int ret;
491 
492 	nre = evlist->core.nr_entries;
493 
494 	/*
495 	 * write number of events
496 	 */
497 	ret = do_write(ff, &nre, sizeof(nre));
498 	if (ret < 0)
499 		return ret;
500 
501 	/*
502 	 * size of perf_event_attr struct
503 	 */
504 	sz = (u32)sizeof(evsel->core.attr);
505 	ret = do_write(ff, &sz, sizeof(sz));
506 	if (ret < 0)
507 		return ret;
508 
509 	evlist__for_each_entry(evlist, evsel) {
510 		ret = do_write(ff, &evsel->core.attr, sz);
511 		if (ret < 0)
512 			return ret;
513 		/*
514 		 * write number of unique id per event
515 		 * there is one id per instance of an event
516 		 *
517 		 * copy into an nri to be independent of the
518 		 * type of ids,
519 		 */
520 		nri = evsel->core.ids;
521 		ret = do_write(ff, &nri, sizeof(nri));
522 		if (ret < 0)
523 			return ret;
524 
525 		/*
526 		 * write event string as passed on cmdline
527 		 */
528 		ret = do_write_string(ff, evsel__name(evsel));
529 		if (ret < 0)
530 			return ret;
531 		/*
532 		 * write unique ids for this event
533 		 */
534 		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
535 		if (ret < 0)
536 			return ret;
537 	}
538 	return 0;
539 }
540 
541 static int write_cmdline(struct feat_fd *ff,
542 			 struct evlist *evlist __maybe_unused)
543 {
544 	char pbuf[MAXPATHLEN], *buf;
545 	int i, ret, n;
546 
547 	/* actual path to perf binary */
548 	buf = perf_exe(pbuf, MAXPATHLEN);
549 
550 	/* account for binary path */
551 	n = perf_env.nr_cmdline + 1;
552 
553 	ret = do_write(ff, &n, sizeof(n));
554 	if (ret < 0)
555 		return ret;
556 
557 	ret = do_write_string(ff, buf);
558 	if (ret < 0)
559 		return ret;
560 
561 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
562 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
563 		if (ret < 0)
564 			return ret;
565 	}
566 	return 0;
567 }
568 
569 
570 static int write_cpu_topology(struct feat_fd *ff,
571 			      struct evlist *evlist __maybe_unused)
572 {
573 	struct cpu_topology *tp;
574 	u32 i;
575 	int ret, j;
576 
577 	tp = cpu_topology__new();
578 	if (!tp)
579 		return -1;
580 
581 	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
582 	if (ret < 0)
583 		goto done;
584 
585 	for (i = 0; i < tp->core_sib; i++) {
586 		ret = do_write_string(ff, tp->core_siblings[i]);
587 		if (ret < 0)
588 			goto done;
589 	}
590 	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
591 	if (ret < 0)
592 		goto done;
593 
594 	for (i = 0; i < tp->thread_sib; i++) {
595 		ret = do_write_string(ff, tp->thread_siblings[i]);
596 		if (ret < 0)
597 			break;
598 	}
599 
600 	ret = perf_env__read_cpu_topology_map(&perf_env);
601 	if (ret < 0)
602 		goto done;
603 
604 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
605 		ret = do_write(ff, &perf_env.cpu[j].core_id,
606 			       sizeof(perf_env.cpu[j].core_id));
607 		if (ret < 0)
608 			return ret;
609 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
610 			       sizeof(perf_env.cpu[j].socket_id));
611 		if (ret < 0)
612 			return ret;
613 	}
614 
615 	if (!tp->die_sib)
616 		goto done;
617 
618 	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
619 	if (ret < 0)
620 		goto done;
621 
622 	for (i = 0; i < tp->die_sib; i++) {
623 		ret = do_write_string(ff, tp->die_siblings[i]);
624 		if (ret < 0)
625 			goto done;
626 	}
627 
628 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
629 		ret = do_write(ff, &perf_env.cpu[j].die_id,
630 			       sizeof(perf_env.cpu[j].die_id));
631 		if (ret < 0)
632 			return ret;
633 	}
634 
635 done:
636 	cpu_topology__delete(tp);
637 	return ret;
638 }
639 
640 
641 
642 static int write_total_mem(struct feat_fd *ff,
643 			   struct evlist *evlist __maybe_unused)
644 {
645 	char *buf = NULL;
646 	FILE *fp;
647 	size_t len = 0;
648 	int ret = -1, n;
649 	uint64_t mem;
650 
651 	fp = fopen("/proc/meminfo", "r");
652 	if (!fp)
653 		return -1;
654 
655 	while (getline(&buf, &len, fp) > 0) {
656 		ret = strncmp(buf, "MemTotal:", 9);
657 		if (!ret)
658 			break;
659 	}
660 	if (!ret) {
661 		n = sscanf(buf, "%*s %"PRIu64, &mem);
662 		if (n == 1)
663 			ret = do_write(ff, &mem, sizeof(mem));
664 	} else
665 		ret = -1;
666 	free(buf);
667 	fclose(fp);
668 	return ret;
669 }
670 
671 static int write_numa_topology(struct feat_fd *ff,
672 			       struct evlist *evlist __maybe_unused)
673 {
674 	struct numa_topology *tp;
675 	int ret = -1;
676 	u32 i;
677 
678 	tp = numa_topology__new();
679 	if (!tp)
680 		return -ENOMEM;
681 
682 	ret = do_write(ff, &tp->nr, sizeof(u32));
683 	if (ret < 0)
684 		goto err;
685 
686 	for (i = 0; i < tp->nr; i++) {
687 		struct numa_topology_node *n = &tp->nodes[i];
688 
689 		ret = do_write(ff, &n->node, sizeof(u32));
690 		if (ret < 0)
691 			goto err;
692 
693 		ret = do_write(ff, &n->mem_total, sizeof(u64));
694 		if (ret)
695 			goto err;
696 
697 		ret = do_write(ff, &n->mem_free, sizeof(u64));
698 		if (ret)
699 			goto err;
700 
701 		ret = do_write_string(ff, n->cpus);
702 		if (ret < 0)
703 			goto err;
704 	}
705 
706 	ret = 0;
707 
708 err:
709 	numa_topology__delete(tp);
710 	return ret;
711 }
712 
713 /*
714  * File format:
715  *
716  * struct pmu_mappings {
717  *	u32	pmu_num;
718  *	struct pmu_map {
719  *		u32	type;
720  *		char	name[];
721  *	}[pmu_num];
722  * };
723  */
724 
725 static int write_pmu_mappings(struct feat_fd *ff,
726 			      struct evlist *evlist __maybe_unused)
727 {
728 	struct perf_pmu *pmu = NULL;
729 	u32 pmu_num = 0;
730 	int ret;
731 
732 	/*
733 	 * Do a first pass to count number of pmu to avoid lseek so this
734 	 * works in pipe mode as well.
735 	 */
736 	while ((pmu = perf_pmu__scan(pmu))) {
737 		if (!pmu->name)
738 			continue;
739 		pmu_num++;
740 	}
741 
742 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
743 	if (ret < 0)
744 		return ret;
745 
746 	while ((pmu = perf_pmu__scan(pmu))) {
747 		if (!pmu->name)
748 			continue;
749 
750 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
751 		if (ret < 0)
752 			return ret;
753 
754 		ret = do_write_string(ff, pmu->name);
755 		if (ret < 0)
756 			return ret;
757 	}
758 
759 	return 0;
760 }
761 
762 /*
763  * File format:
764  *
765  * struct group_descs {
766  *	u32	nr_groups;
767  *	struct group_desc {
768  *		char	name[];
769  *		u32	leader_idx;
770  *		u32	nr_members;
771  *	}[nr_groups];
772  * };
773  */
774 static int write_group_desc(struct feat_fd *ff,
775 			    struct evlist *evlist)
776 {
777 	u32 nr_groups = evlist->nr_groups;
778 	struct evsel *evsel;
779 	int ret;
780 
781 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
782 	if (ret < 0)
783 		return ret;
784 
785 	evlist__for_each_entry(evlist, evsel) {
786 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
787 			const char *name = evsel->group_name ?: "{anon_group}";
788 			u32 leader_idx = evsel->idx;
789 			u32 nr_members = evsel->core.nr_members;
790 
791 			ret = do_write_string(ff, name);
792 			if (ret < 0)
793 				return ret;
794 
795 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
796 			if (ret < 0)
797 				return ret;
798 
799 			ret = do_write(ff, &nr_members, sizeof(nr_members));
800 			if (ret < 0)
801 				return ret;
802 		}
803 	}
804 	return 0;
805 }
806 
807 /*
808  * Return the CPU id as a raw string.
809  *
810  * Each architecture should provide a more precise id string that
811  * can be use to match the architecture's "mapfile".
812  */
813 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
814 {
815 	return NULL;
816 }
817 
818 /* Return zero when the cpuid from the mapfile.csv matches the
819  * cpuid string generated on this platform.
820  * Otherwise return non-zero.
821  */
822 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
823 {
824 	regex_t re;
825 	regmatch_t pmatch[1];
826 	int match;
827 
828 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
829 		/* Warn unable to generate match particular string. */
830 		pr_info("Invalid regular expression %s\n", mapcpuid);
831 		return 1;
832 	}
833 
834 	match = !regexec(&re, cpuid, 1, pmatch, 0);
835 	regfree(&re);
836 	if (match) {
837 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
838 
839 		/* Verify the entire string matched. */
840 		if (match_len == strlen(cpuid))
841 			return 0;
842 	}
843 	return 1;
844 }
845 
846 /*
847  * default get_cpuid(): nothing gets recorded
848  * actual implementation must be in arch/$(SRCARCH)/util/header.c
849  */
850 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
851 {
852 	return ENOSYS; /* Not implemented */
853 }
854 
855 static int write_cpuid(struct feat_fd *ff,
856 		       struct evlist *evlist __maybe_unused)
857 {
858 	char buffer[64];
859 	int ret;
860 
861 	ret = get_cpuid(buffer, sizeof(buffer));
862 	if (ret)
863 		return -1;
864 
865 	return do_write_string(ff, buffer);
866 }
867 
868 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
869 			      struct evlist *evlist __maybe_unused)
870 {
871 	return 0;
872 }
873 
874 static int write_auxtrace(struct feat_fd *ff,
875 			  struct evlist *evlist __maybe_unused)
876 {
877 	struct perf_session *session;
878 	int err;
879 
880 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
881 		return -1;
882 
883 	session = container_of(ff->ph, struct perf_session, header);
884 
885 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
886 	if (err < 0)
887 		pr_err("Failed to write auxtrace index\n");
888 	return err;
889 }
890 
891 static int write_clockid(struct feat_fd *ff,
892 			 struct evlist *evlist __maybe_unused)
893 {
894 	return do_write(ff, &ff->ph->env.clockid_res_ns,
895 			sizeof(ff->ph->env.clockid_res_ns));
896 }
897 
898 static int write_dir_format(struct feat_fd *ff,
899 			    struct evlist *evlist __maybe_unused)
900 {
901 	struct perf_session *session;
902 	struct perf_data *data;
903 
904 	session = container_of(ff->ph, struct perf_session, header);
905 	data = session->data;
906 
907 	if (WARN_ON(!perf_data__is_dir(data)))
908 		return -1;
909 
910 	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
911 }
912 
913 #ifdef HAVE_LIBBPF_SUPPORT
914 static int write_bpf_prog_info(struct feat_fd *ff,
915 			       struct evlist *evlist __maybe_unused)
916 {
917 	struct perf_env *env = &ff->ph->env;
918 	struct rb_root *root;
919 	struct rb_node *next;
920 	int ret;
921 
922 	down_read(&env->bpf_progs.lock);
923 
924 	ret = do_write(ff, &env->bpf_progs.infos_cnt,
925 		       sizeof(env->bpf_progs.infos_cnt));
926 	if (ret < 0)
927 		goto out;
928 
929 	root = &env->bpf_progs.infos;
930 	next = rb_first(root);
931 	while (next) {
932 		struct bpf_prog_info_node *node;
933 		size_t len;
934 
935 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
936 		next = rb_next(&node->rb_node);
937 		len = sizeof(struct bpf_prog_info_linear) +
938 			node->info_linear->data_len;
939 
940 		/* before writing to file, translate address to offset */
941 		bpf_program__bpil_addr_to_offs(node->info_linear);
942 		ret = do_write(ff, node->info_linear, len);
943 		/*
944 		 * translate back to address even when do_write() fails,
945 		 * so that this function never changes the data.
946 		 */
947 		bpf_program__bpil_offs_to_addr(node->info_linear);
948 		if (ret < 0)
949 			goto out;
950 	}
951 out:
952 	up_read(&env->bpf_progs.lock);
953 	return ret;
954 }
955 #else // HAVE_LIBBPF_SUPPORT
956 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
957 			       struct evlist *evlist __maybe_unused)
958 {
959 	return 0;
960 }
961 #endif // HAVE_LIBBPF_SUPPORT
962 
963 static int write_bpf_btf(struct feat_fd *ff,
964 			 struct evlist *evlist __maybe_unused)
965 {
966 	struct perf_env *env = &ff->ph->env;
967 	struct rb_root *root;
968 	struct rb_node *next;
969 	int ret;
970 
971 	down_read(&env->bpf_progs.lock);
972 
973 	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
974 		       sizeof(env->bpf_progs.btfs_cnt));
975 
976 	if (ret < 0)
977 		goto out;
978 
979 	root = &env->bpf_progs.btfs;
980 	next = rb_first(root);
981 	while (next) {
982 		struct btf_node *node;
983 
984 		node = rb_entry(next, struct btf_node, rb_node);
985 		next = rb_next(&node->rb_node);
986 		ret = do_write(ff, &node->id,
987 			       sizeof(u32) * 2 + node->data_size);
988 		if (ret < 0)
989 			goto out;
990 	}
991 out:
992 	up_read(&env->bpf_progs.lock);
993 	return ret;
994 }
995 
996 static int cpu_cache_level__sort(const void *a, const void *b)
997 {
998 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
999 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1000 
1001 	return cache_a->level - cache_b->level;
1002 }
1003 
1004 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1005 {
1006 	if (a->level != b->level)
1007 		return false;
1008 
1009 	if (a->line_size != b->line_size)
1010 		return false;
1011 
1012 	if (a->sets != b->sets)
1013 		return false;
1014 
1015 	if (a->ways != b->ways)
1016 		return false;
1017 
1018 	if (strcmp(a->type, b->type))
1019 		return false;
1020 
1021 	if (strcmp(a->size, b->size))
1022 		return false;
1023 
1024 	if (strcmp(a->map, b->map))
1025 		return false;
1026 
1027 	return true;
1028 }
1029 
1030 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1031 {
1032 	char path[PATH_MAX], file[PATH_MAX];
1033 	struct stat st;
1034 	size_t len;
1035 
1036 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1037 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1038 
1039 	if (stat(file, &st))
1040 		return 1;
1041 
1042 	scnprintf(file, PATH_MAX, "%s/level", path);
1043 	if (sysfs__read_int(file, (int *) &cache->level))
1044 		return -1;
1045 
1046 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1047 	if (sysfs__read_int(file, (int *) &cache->line_size))
1048 		return -1;
1049 
1050 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1051 	if (sysfs__read_int(file, (int *) &cache->sets))
1052 		return -1;
1053 
1054 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1055 	if (sysfs__read_int(file, (int *) &cache->ways))
1056 		return -1;
1057 
1058 	scnprintf(file, PATH_MAX, "%s/type", path);
1059 	if (sysfs__read_str(file, &cache->type, &len))
1060 		return -1;
1061 
1062 	cache->type[len] = 0;
1063 	cache->type = strim(cache->type);
1064 
1065 	scnprintf(file, PATH_MAX, "%s/size", path);
1066 	if (sysfs__read_str(file, &cache->size, &len)) {
1067 		zfree(&cache->type);
1068 		return -1;
1069 	}
1070 
1071 	cache->size[len] = 0;
1072 	cache->size = strim(cache->size);
1073 
1074 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1075 	if (sysfs__read_str(file, &cache->map, &len)) {
1076 		zfree(&cache->size);
1077 		zfree(&cache->type);
1078 		return -1;
1079 	}
1080 
1081 	cache->map[len] = 0;
1082 	cache->map = strim(cache->map);
1083 	return 0;
1084 }
1085 
1086 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1087 {
1088 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1089 }
1090 
1091 #define MAX_CACHE_LVL 4
1092 
1093 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1094 {
1095 	u32 i, cnt = 0;
1096 	u32 nr, cpu;
1097 	u16 level;
1098 
1099 	nr = cpu__max_cpu();
1100 
1101 	for (cpu = 0; cpu < nr; cpu++) {
1102 		for (level = 0; level < MAX_CACHE_LVL; level++) {
1103 			struct cpu_cache_level c;
1104 			int err;
1105 
1106 			err = cpu_cache_level__read(&c, cpu, level);
1107 			if (err < 0)
1108 				return err;
1109 
1110 			if (err == 1)
1111 				break;
1112 
1113 			for (i = 0; i < cnt; i++) {
1114 				if (cpu_cache_level__cmp(&c, &caches[i]))
1115 					break;
1116 			}
1117 
1118 			if (i == cnt)
1119 				caches[cnt++] = c;
1120 			else
1121 				cpu_cache_level__free(&c);
1122 		}
1123 	}
1124 	*cntp = cnt;
1125 	return 0;
1126 }
1127 
1128 static int write_cache(struct feat_fd *ff,
1129 		       struct evlist *evlist __maybe_unused)
1130 {
1131 	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1132 	struct cpu_cache_level caches[max_caches];
1133 	u32 cnt = 0, i, version = 1;
1134 	int ret;
1135 
1136 	ret = build_caches(caches, &cnt);
1137 	if (ret)
1138 		goto out;
1139 
1140 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1141 
1142 	ret = do_write(ff, &version, sizeof(u32));
1143 	if (ret < 0)
1144 		goto out;
1145 
1146 	ret = do_write(ff, &cnt, sizeof(u32));
1147 	if (ret < 0)
1148 		goto out;
1149 
1150 	for (i = 0; i < cnt; i++) {
1151 		struct cpu_cache_level *c = &caches[i];
1152 
1153 		#define _W(v)					\
1154 			ret = do_write(ff, &c->v, sizeof(u32));	\
1155 			if (ret < 0)				\
1156 				goto out;
1157 
1158 		_W(level)
1159 		_W(line_size)
1160 		_W(sets)
1161 		_W(ways)
1162 		#undef _W
1163 
1164 		#define _W(v)						\
1165 			ret = do_write_string(ff, (const char *) c->v);	\
1166 			if (ret < 0)					\
1167 				goto out;
1168 
1169 		_W(type)
1170 		_W(size)
1171 		_W(map)
1172 		#undef _W
1173 	}
1174 
1175 out:
1176 	for (i = 0; i < cnt; i++)
1177 		cpu_cache_level__free(&caches[i]);
1178 	return ret;
1179 }
1180 
1181 static int write_stat(struct feat_fd *ff __maybe_unused,
1182 		      struct evlist *evlist __maybe_unused)
1183 {
1184 	return 0;
1185 }
1186 
1187 static int write_sample_time(struct feat_fd *ff,
1188 			     struct evlist *evlist)
1189 {
1190 	int ret;
1191 
1192 	ret = do_write(ff, &evlist->first_sample_time,
1193 		       sizeof(evlist->first_sample_time));
1194 	if (ret < 0)
1195 		return ret;
1196 
1197 	return do_write(ff, &evlist->last_sample_time,
1198 			sizeof(evlist->last_sample_time));
1199 }
1200 
1201 
1202 static int memory_node__read(struct memory_node *n, unsigned long idx)
1203 {
1204 	unsigned int phys, size = 0;
1205 	char path[PATH_MAX];
1206 	struct dirent *ent;
1207 	DIR *dir;
1208 
1209 #define for_each_memory(mem, dir)					\
1210 	while ((ent = readdir(dir)))					\
1211 		if (strcmp(ent->d_name, ".") &&				\
1212 		    strcmp(ent->d_name, "..") &&			\
1213 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1214 
1215 	scnprintf(path, PATH_MAX,
1216 		  "%s/devices/system/node/node%lu",
1217 		  sysfs__mountpoint(), idx);
1218 
1219 	dir = opendir(path);
1220 	if (!dir) {
1221 		pr_warning("failed: cant' open memory sysfs data\n");
1222 		return -1;
1223 	}
1224 
1225 	for_each_memory(phys, dir) {
1226 		size = max(phys, size);
1227 	}
1228 
1229 	size++;
1230 
1231 	n->set = bitmap_alloc(size);
1232 	if (!n->set) {
1233 		closedir(dir);
1234 		return -ENOMEM;
1235 	}
1236 
1237 	n->node = idx;
1238 	n->size = size;
1239 
1240 	rewinddir(dir);
1241 
1242 	for_each_memory(phys, dir) {
1243 		set_bit(phys, n->set);
1244 	}
1245 
1246 	closedir(dir);
1247 	return 0;
1248 }
1249 
1250 static int memory_node__sort(const void *a, const void *b)
1251 {
1252 	const struct memory_node *na = a;
1253 	const struct memory_node *nb = b;
1254 
1255 	return na->node - nb->node;
1256 }
1257 
1258 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1259 {
1260 	char path[PATH_MAX];
1261 	struct dirent *ent;
1262 	DIR *dir;
1263 	u64 cnt = 0;
1264 	int ret = 0;
1265 
1266 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1267 		  sysfs__mountpoint());
1268 
1269 	dir = opendir(path);
1270 	if (!dir) {
1271 		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1272 			  __func__, path);
1273 		return -1;
1274 	}
1275 
1276 	while (!ret && (ent = readdir(dir))) {
1277 		unsigned int idx;
1278 		int r;
1279 
1280 		if (!strcmp(ent->d_name, ".") ||
1281 		    !strcmp(ent->d_name, ".."))
1282 			continue;
1283 
1284 		r = sscanf(ent->d_name, "node%u", &idx);
1285 		if (r != 1)
1286 			continue;
1287 
1288 		if (WARN_ONCE(cnt >= size,
1289 			"failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1290 			closedir(dir);
1291 			return -1;
1292 		}
1293 
1294 		ret = memory_node__read(&nodes[cnt++], idx);
1295 	}
1296 
1297 	*cntp = cnt;
1298 	closedir(dir);
1299 
1300 	if (!ret)
1301 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1302 
1303 	return ret;
1304 }
1305 
1306 #define MAX_MEMORY_NODES 2000
1307 
1308 /*
1309  * The MEM_TOPOLOGY holds physical memory map for every
1310  * node in system. The format of data is as follows:
1311  *
1312  *  0 - version          | for future changes
1313  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1314  * 16 - count            | number of nodes
1315  *
1316  * For each node we store map of physical indexes for
1317  * each node:
1318  *
1319  * 32 - node id          | node index
1320  * 40 - size             | size of bitmap
1321  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1322  */
1323 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1324 			      struct evlist *evlist __maybe_unused)
1325 {
1326 	static struct memory_node nodes[MAX_MEMORY_NODES];
1327 	u64 bsize, version = 1, i, nr;
1328 	int ret;
1329 
1330 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1331 			      (unsigned long long *) &bsize);
1332 	if (ret)
1333 		return ret;
1334 
1335 	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1336 	if (ret)
1337 		return ret;
1338 
1339 	ret = do_write(ff, &version, sizeof(version));
1340 	if (ret < 0)
1341 		goto out;
1342 
1343 	ret = do_write(ff, &bsize, sizeof(bsize));
1344 	if (ret < 0)
1345 		goto out;
1346 
1347 	ret = do_write(ff, &nr, sizeof(nr));
1348 	if (ret < 0)
1349 		goto out;
1350 
1351 	for (i = 0; i < nr; i++) {
1352 		struct memory_node *n = &nodes[i];
1353 
1354 		#define _W(v)						\
1355 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1356 			if (ret < 0)					\
1357 				goto out;
1358 
1359 		_W(node)
1360 		_W(size)
1361 
1362 		#undef _W
1363 
1364 		ret = do_write_bitmap(ff, n->set, n->size);
1365 		if (ret < 0)
1366 			goto out;
1367 	}
1368 
1369 out:
1370 	return ret;
1371 }
1372 
1373 static int write_compressed(struct feat_fd *ff __maybe_unused,
1374 			    struct evlist *evlist __maybe_unused)
1375 {
1376 	int ret;
1377 
1378 	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1379 	if (ret)
1380 		return ret;
1381 
1382 	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1383 	if (ret)
1384 		return ret;
1385 
1386 	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1387 	if (ret)
1388 		return ret;
1389 
1390 	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1391 	if (ret)
1392 		return ret;
1393 
1394 	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1395 }
1396 
1397 static int write_cpu_pmu_caps(struct feat_fd *ff,
1398 			      struct evlist *evlist __maybe_unused)
1399 {
1400 	struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1401 	struct perf_pmu_caps *caps = NULL;
1402 	int nr_caps;
1403 	int ret;
1404 
1405 	if (!cpu_pmu)
1406 		return -ENOENT;
1407 
1408 	nr_caps = perf_pmu__caps_parse(cpu_pmu);
1409 	if (nr_caps < 0)
1410 		return nr_caps;
1411 
1412 	ret = do_write(ff, &nr_caps, sizeof(nr_caps));
1413 	if (ret < 0)
1414 		return ret;
1415 
1416 	list_for_each_entry(caps, &cpu_pmu->caps, list) {
1417 		ret = do_write_string(ff, caps->name);
1418 		if (ret < 0)
1419 			return ret;
1420 
1421 		ret = do_write_string(ff, caps->value);
1422 		if (ret < 0)
1423 			return ret;
1424 	}
1425 
1426 	return ret;
1427 }
1428 
1429 static void print_hostname(struct feat_fd *ff, FILE *fp)
1430 {
1431 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1432 }
1433 
1434 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1435 {
1436 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1437 }
1438 
1439 static void print_arch(struct feat_fd *ff, FILE *fp)
1440 {
1441 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1442 }
1443 
1444 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1445 {
1446 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1447 }
1448 
1449 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1450 {
1451 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1452 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1453 }
1454 
1455 static void print_version(struct feat_fd *ff, FILE *fp)
1456 {
1457 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1458 }
1459 
1460 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1461 {
1462 	int nr, i;
1463 
1464 	nr = ff->ph->env.nr_cmdline;
1465 
1466 	fprintf(fp, "# cmdline : ");
1467 
1468 	for (i = 0; i < nr; i++) {
1469 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1470 		if (!argv_i) {
1471 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1472 		} else {
1473 			char *mem = argv_i;
1474 			do {
1475 				char *quote = strchr(argv_i, '\'');
1476 				if (!quote)
1477 					break;
1478 				*quote++ = '\0';
1479 				fprintf(fp, "%s\\\'", argv_i);
1480 				argv_i = quote;
1481 			} while (1);
1482 			fprintf(fp, "%s ", argv_i);
1483 			free(mem);
1484 		}
1485 	}
1486 	fputc('\n', fp);
1487 }
1488 
1489 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1490 {
1491 	struct perf_header *ph = ff->ph;
1492 	int cpu_nr = ph->env.nr_cpus_avail;
1493 	int nr, i;
1494 	char *str;
1495 
1496 	nr = ph->env.nr_sibling_cores;
1497 	str = ph->env.sibling_cores;
1498 
1499 	for (i = 0; i < nr; i++) {
1500 		fprintf(fp, "# sibling sockets : %s\n", str);
1501 		str += strlen(str) + 1;
1502 	}
1503 
1504 	if (ph->env.nr_sibling_dies) {
1505 		nr = ph->env.nr_sibling_dies;
1506 		str = ph->env.sibling_dies;
1507 
1508 		for (i = 0; i < nr; i++) {
1509 			fprintf(fp, "# sibling dies    : %s\n", str);
1510 			str += strlen(str) + 1;
1511 		}
1512 	}
1513 
1514 	nr = ph->env.nr_sibling_threads;
1515 	str = ph->env.sibling_threads;
1516 
1517 	for (i = 0; i < nr; i++) {
1518 		fprintf(fp, "# sibling threads : %s\n", str);
1519 		str += strlen(str) + 1;
1520 	}
1521 
1522 	if (ph->env.nr_sibling_dies) {
1523 		if (ph->env.cpu != NULL) {
1524 			for (i = 0; i < cpu_nr; i++)
1525 				fprintf(fp, "# CPU %d: Core ID %d, "
1526 					    "Die ID %d, Socket ID %d\n",
1527 					    i, ph->env.cpu[i].core_id,
1528 					    ph->env.cpu[i].die_id,
1529 					    ph->env.cpu[i].socket_id);
1530 		} else
1531 			fprintf(fp, "# Core ID, Die ID and Socket ID "
1532 				    "information is not available\n");
1533 	} else {
1534 		if (ph->env.cpu != NULL) {
1535 			for (i = 0; i < cpu_nr; i++)
1536 				fprintf(fp, "# CPU %d: Core ID %d, "
1537 					    "Socket ID %d\n",
1538 					    i, ph->env.cpu[i].core_id,
1539 					    ph->env.cpu[i].socket_id);
1540 		} else
1541 			fprintf(fp, "# Core ID and Socket ID "
1542 				    "information is not available\n");
1543 	}
1544 }
1545 
1546 static void print_clockid(struct feat_fd *ff, FILE *fp)
1547 {
1548 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1549 		ff->ph->env.clockid_res_ns * 1000);
1550 }
1551 
1552 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1553 {
1554 	struct perf_session *session;
1555 	struct perf_data *data;
1556 
1557 	session = container_of(ff->ph, struct perf_session, header);
1558 	data = session->data;
1559 
1560 	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1561 }
1562 
1563 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1564 {
1565 	struct perf_env *env = &ff->ph->env;
1566 	struct rb_root *root;
1567 	struct rb_node *next;
1568 
1569 	down_read(&env->bpf_progs.lock);
1570 
1571 	root = &env->bpf_progs.infos;
1572 	next = rb_first(root);
1573 
1574 	while (next) {
1575 		struct bpf_prog_info_node *node;
1576 
1577 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1578 		next = rb_next(&node->rb_node);
1579 
1580 		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1581 					       env, fp);
1582 	}
1583 
1584 	up_read(&env->bpf_progs.lock);
1585 }
1586 
1587 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1588 {
1589 	struct perf_env *env = &ff->ph->env;
1590 	struct rb_root *root;
1591 	struct rb_node *next;
1592 
1593 	down_read(&env->bpf_progs.lock);
1594 
1595 	root = &env->bpf_progs.btfs;
1596 	next = rb_first(root);
1597 
1598 	while (next) {
1599 		struct btf_node *node;
1600 
1601 		node = rb_entry(next, struct btf_node, rb_node);
1602 		next = rb_next(&node->rb_node);
1603 		fprintf(fp, "# btf info of id %u\n", node->id);
1604 	}
1605 
1606 	up_read(&env->bpf_progs.lock);
1607 }
1608 
1609 static void free_event_desc(struct evsel *events)
1610 {
1611 	struct evsel *evsel;
1612 
1613 	if (!events)
1614 		return;
1615 
1616 	for (evsel = events; evsel->core.attr.size; evsel++) {
1617 		zfree(&evsel->name);
1618 		zfree(&evsel->core.id);
1619 	}
1620 
1621 	free(events);
1622 }
1623 
1624 static bool perf_attr_check(struct perf_event_attr *attr)
1625 {
1626 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1627 		pr_warning("Reserved bits are set unexpectedly. "
1628 			   "Please update perf tool.\n");
1629 		return false;
1630 	}
1631 
1632 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1633 		pr_warning("Unknown sample type (0x%llx) is detected. "
1634 			   "Please update perf tool.\n",
1635 			   attr->sample_type);
1636 		return false;
1637 	}
1638 
1639 	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1640 		pr_warning("Unknown read format (0x%llx) is detected. "
1641 			   "Please update perf tool.\n",
1642 			   attr->read_format);
1643 		return false;
1644 	}
1645 
1646 	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1647 	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1648 		pr_warning("Unknown branch sample type (0x%llx) is detected. "
1649 			   "Please update perf tool.\n",
1650 			   attr->branch_sample_type);
1651 
1652 		return false;
1653 	}
1654 
1655 	return true;
1656 }
1657 
1658 static struct evsel *read_event_desc(struct feat_fd *ff)
1659 {
1660 	struct evsel *evsel, *events = NULL;
1661 	u64 *id;
1662 	void *buf = NULL;
1663 	u32 nre, sz, nr, i, j;
1664 	size_t msz;
1665 
1666 	/* number of events */
1667 	if (do_read_u32(ff, &nre))
1668 		goto error;
1669 
1670 	if (do_read_u32(ff, &sz))
1671 		goto error;
1672 
1673 	/* buffer to hold on file attr struct */
1674 	buf = malloc(sz);
1675 	if (!buf)
1676 		goto error;
1677 
1678 	/* the last event terminates with evsel->core.attr.size == 0: */
1679 	events = calloc(nre + 1, sizeof(*events));
1680 	if (!events)
1681 		goto error;
1682 
1683 	msz = sizeof(evsel->core.attr);
1684 	if (sz < msz)
1685 		msz = sz;
1686 
1687 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1688 		evsel->idx = i;
1689 
1690 		/*
1691 		 * must read entire on-file attr struct to
1692 		 * sync up with layout.
1693 		 */
1694 		if (__do_read(ff, buf, sz))
1695 			goto error;
1696 
1697 		if (ff->ph->needs_swap)
1698 			perf_event__attr_swap(buf);
1699 
1700 		memcpy(&evsel->core.attr, buf, msz);
1701 
1702 		if (!perf_attr_check(&evsel->core.attr))
1703 			goto error;
1704 
1705 		if (do_read_u32(ff, &nr))
1706 			goto error;
1707 
1708 		if (ff->ph->needs_swap)
1709 			evsel->needs_swap = true;
1710 
1711 		evsel->name = do_read_string(ff);
1712 		if (!evsel->name)
1713 			goto error;
1714 
1715 		if (!nr)
1716 			continue;
1717 
1718 		id = calloc(nr, sizeof(*id));
1719 		if (!id)
1720 			goto error;
1721 		evsel->core.ids = nr;
1722 		evsel->core.id = id;
1723 
1724 		for (j = 0 ; j < nr; j++) {
1725 			if (do_read_u64(ff, id))
1726 				goto error;
1727 			id++;
1728 		}
1729 	}
1730 out:
1731 	free(buf);
1732 	return events;
1733 error:
1734 	free_event_desc(events);
1735 	events = NULL;
1736 	goto out;
1737 }
1738 
1739 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1740 				void *priv __maybe_unused)
1741 {
1742 	return fprintf(fp, ", %s = %s", name, val);
1743 }
1744 
1745 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1746 {
1747 	struct evsel *evsel, *events;
1748 	u32 j;
1749 	u64 *id;
1750 
1751 	if (ff->events)
1752 		events = ff->events;
1753 	else
1754 		events = read_event_desc(ff);
1755 
1756 	if (!events) {
1757 		fprintf(fp, "# event desc: not available or unable to read\n");
1758 		return;
1759 	}
1760 
1761 	for (evsel = events; evsel->core.attr.size; evsel++) {
1762 		fprintf(fp, "# event : name = %s, ", evsel->name);
1763 
1764 		if (evsel->core.ids) {
1765 			fprintf(fp, ", id = {");
1766 			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1767 				if (j)
1768 					fputc(',', fp);
1769 				fprintf(fp, " %"PRIu64, *id);
1770 			}
1771 			fprintf(fp, " }");
1772 		}
1773 
1774 		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1775 
1776 		fputc('\n', fp);
1777 	}
1778 
1779 	free_event_desc(events);
1780 	ff->events = NULL;
1781 }
1782 
1783 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1784 {
1785 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1786 }
1787 
1788 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1789 {
1790 	int i;
1791 	struct numa_node *n;
1792 
1793 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1794 		n = &ff->ph->env.numa_nodes[i];
1795 
1796 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1797 			    " free = %"PRIu64" kB\n",
1798 			n->node, n->mem_total, n->mem_free);
1799 
1800 		fprintf(fp, "# node%u cpu list : ", n->node);
1801 		cpu_map__fprintf(n->map, fp);
1802 	}
1803 }
1804 
1805 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1806 {
1807 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1808 }
1809 
1810 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1811 {
1812 	fprintf(fp, "# contains samples with branch stack\n");
1813 }
1814 
1815 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1816 {
1817 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1818 }
1819 
1820 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1821 {
1822 	fprintf(fp, "# contains stat data\n");
1823 }
1824 
1825 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1826 {
1827 	int i;
1828 
1829 	fprintf(fp, "# CPU cache info:\n");
1830 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1831 		fprintf(fp, "#  ");
1832 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1833 	}
1834 }
1835 
1836 static void print_compressed(struct feat_fd *ff, FILE *fp)
1837 {
1838 	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1839 		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1840 		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1841 }
1842 
1843 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
1844 {
1845 	const char *delimiter = "# cpu pmu capabilities: ";
1846 	u32 nr_caps = ff->ph->env.nr_cpu_pmu_caps;
1847 	char *str;
1848 
1849 	if (!nr_caps) {
1850 		fprintf(fp, "# cpu pmu capabilities: not available\n");
1851 		return;
1852 	}
1853 
1854 	str = ff->ph->env.cpu_pmu_caps;
1855 	while (nr_caps--) {
1856 		fprintf(fp, "%s%s", delimiter, str);
1857 		delimiter = ", ";
1858 		str += strlen(str) + 1;
1859 	}
1860 
1861 	fprintf(fp, "\n");
1862 }
1863 
1864 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1865 {
1866 	const char *delimiter = "# pmu mappings: ";
1867 	char *str, *tmp;
1868 	u32 pmu_num;
1869 	u32 type;
1870 
1871 	pmu_num = ff->ph->env.nr_pmu_mappings;
1872 	if (!pmu_num) {
1873 		fprintf(fp, "# pmu mappings: not available\n");
1874 		return;
1875 	}
1876 
1877 	str = ff->ph->env.pmu_mappings;
1878 
1879 	while (pmu_num) {
1880 		type = strtoul(str, &tmp, 0);
1881 		if (*tmp != ':')
1882 			goto error;
1883 
1884 		str = tmp + 1;
1885 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1886 
1887 		delimiter = ", ";
1888 		str += strlen(str) + 1;
1889 		pmu_num--;
1890 	}
1891 
1892 	fprintf(fp, "\n");
1893 
1894 	if (!pmu_num)
1895 		return;
1896 error:
1897 	fprintf(fp, "# pmu mappings: unable to read\n");
1898 }
1899 
1900 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1901 {
1902 	struct perf_session *session;
1903 	struct evsel *evsel;
1904 	u32 nr = 0;
1905 
1906 	session = container_of(ff->ph, struct perf_session, header);
1907 
1908 	evlist__for_each_entry(session->evlist, evsel) {
1909 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
1910 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
1911 
1912 			nr = evsel->core.nr_members - 1;
1913 		} else if (nr) {
1914 			fprintf(fp, ",%s", evsel__name(evsel));
1915 
1916 			if (--nr == 0)
1917 				fprintf(fp, "}\n");
1918 		}
1919 	}
1920 }
1921 
1922 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1923 {
1924 	struct perf_session *session;
1925 	char time_buf[32];
1926 	double d;
1927 
1928 	session = container_of(ff->ph, struct perf_session, header);
1929 
1930 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
1931 				  time_buf, sizeof(time_buf));
1932 	fprintf(fp, "# time of first sample : %s\n", time_buf);
1933 
1934 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
1935 				  time_buf, sizeof(time_buf));
1936 	fprintf(fp, "# time of last sample : %s\n", time_buf);
1937 
1938 	d = (double)(session->evlist->last_sample_time -
1939 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
1940 
1941 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
1942 }
1943 
1944 static void memory_node__fprintf(struct memory_node *n,
1945 				 unsigned long long bsize, FILE *fp)
1946 {
1947 	char buf_map[100], buf_size[50];
1948 	unsigned long long size;
1949 
1950 	size = bsize * bitmap_weight(n->set, n->size);
1951 	unit_number__scnprintf(buf_size, 50, size);
1952 
1953 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
1954 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1955 }
1956 
1957 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1958 {
1959 	struct memory_node *nodes;
1960 	int i, nr;
1961 
1962 	nodes = ff->ph->env.memory_nodes;
1963 	nr    = ff->ph->env.nr_memory_nodes;
1964 
1965 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1966 		nr, ff->ph->env.memory_bsize);
1967 
1968 	for (i = 0; i < nr; i++) {
1969 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1970 	}
1971 }
1972 
1973 static int __event_process_build_id(struct perf_record_header_build_id *bev,
1974 				    char *filename,
1975 				    struct perf_session *session)
1976 {
1977 	int err = -1;
1978 	struct machine *machine;
1979 	u16 cpumode;
1980 	struct dso *dso;
1981 	enum dso_kernel_type dso_type;
1982 
1983 	machine = perf_session__findnew_machine(session, bev->pid);
1984 	if (!machine)
1985 		goto out;
1986 
1987 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1988 
1989 	switch (cpumode) {
1990 	case PERF_RECORD_MISC_KERNEL:
1991 		dso_type = DSO_TYPE_KERNEL;
1992 		break;
1993 	case PERF_RECORD_MISC_GUEST_KERNEL:
1994 		dso_type = DSO_TYPE_GUEST_KERNEL;
1995 		break;
1996 	case PERF_RECORD_MISC_USER:
1997 	case PERF_RECORD_MISC_GUEST_USER:
1998 		dso_type = DSO_TYPE_USER;
1999 		break;
2000 	default:
2001 		goto out;
2002 	}
2003 
2004 	dso = machine__findnew_dso(machine, filename);
2005 	if (dso != NULL) {
2006 		char sbuild_id[SBUILD_ID_SIZE];
2007 
2008 		dso__set_build_id(dso, &bev->build_id);
2009 
2010 		if (dso_type != DSO_TYPE_USER) {
2011 			struct kmod_path m = { .name = NULL, };
2012 
2013 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2014 				dso__set_module_info(dso, &m, machine);
2015 			else
2016 				dso->kernel = dso_type;
2017 
2018 			free(m.name);
2019 		}
2020 
2021 		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
2022 				  sbuild_id);
2023 		pr_debug("build id event received for %s: %s\n",
2024 			 dso->long_name, sbuild_id);
2025 		dso__put(dso);
2026 	}
2027 
2028 	err = 0;
2029 out:
2030 	return err;
2031 }
2032 
2033 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2034 						 int input, u64 offset, u64 size)
2035 {
2036 	struct perf_session *session = container_of(header, struct perf_session, header);
2037 	struct {
2038 		struct perf_event_header   header;
2039 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2040 		char			   filename[0];
2041 	} old_bev;
2042 	struct perf_record_header_build_id bev;
2043 	char filename[PATH_MAX];
2044 	u64 limit = offset + size;
2045 
2046 	while (offset < limit) {
2047 		ssize_t len;
2048 
2049 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2050 			return -1;
2051 
2052 		if (header->needs_swap)
2053 			perf_event_header__bswap(&old_bev.header);
2054 
2055 		len = old_bev.header.size - sizeof(old_bev);
2056 		if (readn(input, filename, len) != len)
2057 			return -1;
2058 
2059 		bev.header = old_bev.header;
2060 
2061 		/*
2062 		 * As the pid is the missing value, we need to fill
2063 		 * it properly. The header.misc value give us nice hint.
2064 		 */
2065 		bev.pid	= HOST_KERNEL_ID;
2066 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2067 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2068 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
2069 
2070 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2071 		__event_process_build_id(&bev, filename, session);
2072 
2073 		offset += bev.header.size;
2074 	}
2075 
2076 	return 0;
2077 }
2078 
2079 static int perf_header__read_build_ids(struct perf_header *header,
2080 				       int input, u64 offset, u64 size)
2081 {
2082 	struct perf_session *session = container_of(header, struct perf_session, header);
2083 	struct perf_record_header_build_id bev;
2084 	char filename[PATH_MAX];
2085 	u64 limit = offset + size, orig_offset = offset;
2086 	int err = -1;
2087 
2088 	while (offset < limit) {
2089 		ssize_t len;
2090 
2091 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2092 			goto out;
2093 
2094 		if (header->needs_swap)
2095 			perf_event_header__bswap(&bev.header);
2096 
2097 		len = bev.header.size - sizeof(bev);
2098 		if (readn(input, filename, len) != len)
2099 			goto out;
2100 		/*
2101 		 * The a1645ce1 changeset:
2102 		 *
2103 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2104 		 *
2105 		 * Added a field to struct perf_record_header_build_id that broke the file
2106 		 * format.
2107 		 *
2108 		 * Since the kernel build-id is the first entry, process the
2109 		 * table using the old format if the well known
2110 		 * '[kernel.kallsyms]' string for the kernel build-id has the
2111 		 * first 4 characters chopped off (where the pid_t sits).
2112 		 */
2113 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2114 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2115 				return -1;
2116 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2117 		}
2118 
2119 		__event_process_build_id(&bev, filename, session);
2120 
2121 		offset += bev.header.size;
2122 	}
2123 	err = 0;
2124 out:
2125 	return err;
2126 }
2127 
2128 /* Macro for features that simply need to read and store a string. */
2129 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2130 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2131 {\
2132 	ff->ph->env.__feat_env = do_read_string(ff); \
2133 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2134 }
2135 
2136 FEAT_PROCESS_STR_FUN(hostname, hostname);
2137 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2138 FEAT_PROCESS_STR_FUN(version, version);
2139 FEAT_PROCESS_STR_FUN(arch, arch);
2140 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2141 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2142 
2143 static int process_tracing_data(struct feat_fd *ff, void *data)
2144 {
2145 	ssize_t ret = trace_report(ff->fd, data, false);
2146 
2147 	return ret < 0 ? -1 : 0;
2148 }
2149 
2150 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2151 {
2152 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2153 		pr_debug("Failed to read buildids, continuing...\n");
2154 	return 0;
2155 }
2156 
2157 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2158 {
2159 	int ret;
2160 	u32 nr_cpus_avail, nr_cpus_online;
2161 
2162 	ret = do_read_u32(ff, &nr_cpus_avail);
2163 	if (ret)
2164 		return ret;
2165 
2166 	ret = do_read_u32(ff, &nr_cpus_online);
2167 	if (ret)
2168 		return ret;
2169 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2170 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2171 	return 0;
2172 }
2173 
2174 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2175 {
2176 	u64 total_mem;
2177 	int ret;
2178 
2179 	ret = do_read_u64(ff, &total_mem);
2180 	if (ret)
2181 		return -1;
2182 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2183 	return 0;
2184 }
2185 
2186 static struct evsel *
2187 perf_evlist__find_by_index(struct evlist *evlist, int idx)
2188 {
2189 	struct evsel *evsel;
2190 
2191 	evlist__for_each_entry(evlist, evsel) {
2192 		if (evsel->idx == idx)
2193 			return evsel;
2194 	}
2195 
2196 	return NULL;
2197 }
2198 
2199 static void
2200 perf_evlist__set_event_name(struct evlist *evlist,
2201 			    struct evsel *event)
2202 {
2203 	struct evsel *evsel;
2204 
2205 	if (!event->name)
2206 		return;
2207 
2208 	evsel = perf_evlist__find_by_index(evlist, event->idx);
2209 	if (!evsel)
2210 		return;
2211 
2212 	if (evsel->name)
2213 		return;
2214 
2215 	evsel->name = strdup(event->name);
2216 }
2217 
2218 static int
2219 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2220 {
2221 	struct perf_session *session;
2222 	struct evsel *evsel, *events = read_event_desc(ff);
2223 
2224 	if (!events)
2225 		return 0;
2226 
2227 	session = container_of(ff->ph, struct perf_session, header);
2228 
2229 	if (session->data->is_pipe) {
2230 		/* Save events for reading later by print_event_desc,
2231 		 * since they can't be read again in pipe mode. */
2232 		ff->events = events;
2233 	}
2234 
2235 	for (evsel = events; evsel->core.attr.size; evsel++)
2236 		perf_evlist__set_event_name(session->evlist, evsel);
2237 
2238 	if (!session->data->is_pipe)
2239 		free_event_desc(events);
2240 
2241 	return 0;
2242 }
2243 
2244 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2245 {
2246 	char *str, *cmdline = NULL, **argv = NULL;
2247 	u32 nr, i, len = 0;
2248 
2249 	if (do_read_u32(ff, &nr))
2250 		return -1;
2251 
2252 	ff->ph->env.nr_cmdline = nr;
2253 
2254 	cmdline = zalloc(ff->size + nr + 1);
2255 	if (!cmdline)
2256 		return -1;
2257 
2258 	argv = zalloc(sizeof(char *) * (nr + 1));
2259 	if (!argv)
2260 		goto error;
2261 
2262 	for (i = 0; i < nr; i++) {
2263 		str = do_read_string(ff);
2264 		if (!str)
2265 			goto error;
2266 
2267 		argv[i] = cmdline + len;
2268 		memcpy(argv[i], str, strlen(str) + 1);
2269 		len += strlen(str) + 1;
2270 		free(str);
2271 	}
2272 	ff->ph->env.cmdline = cmdline;
2273 	ff->ph->env.cmdline_argv = (const char **) argv;
2274 	return 0;
2275 
2276 error:
2277 	free(argv);
2278 	free(cmdline);
2279 	return -1;
2280 }
2281 
2282 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2283 {
2284 	u32 nr, i;
2285 	char *str;
2286 	struct strbuf sb;
2287 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2288 	u64 size = 0;
2289 	struct perf_header *ph = ff->ph;
2290 	bool do_core_id_test = true;
2291 
2292 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2293 	if (!ph->env.cpu)
2294 		return -1;
2295 
2296 	if (do_read_u32(ff, &nr))
2297 		goto free_cpu;
2298 
2299 	ph->env.nr_sibling_cores = nr;
2300 	size += sizeof(u32);
2301 	if (strbuf_init(&sb, 128) < 0)
2302 		goto free_cpu;
2303 
2304 	for (i = 0; i < nr; i++) {
2305 		str = do_read_string(ff);
2306 		if (!str)
2307 			goto error;
2308 
2309 		/* include a NULL character at the end */
2310 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2311 			goto error;
2312 		size += string_size(str);
2313 		free(str);
2314 	}
2315 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2316 
2317 	if (do_read_u32(ff, &nr))
2318 		return -1;
2319 
2320 	ph->env.nr_sibling_threads = nr;
2321 	size += sizeof(u32);
2322 
2323 	for (i = 0; i < nr; i++) {
2324 		str = do_read_string(ff);
2325 		if (!str)
2326 			goto error;
2327 
2328 		/* include a NULL character at the end */
2329 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2330 			goto error;
2331 		size += string_size(str);
2332 		free(str);
2333 	}
2334 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2335 
2336 	/*
2337 	 * The header may be from old perf,
2338 	 * which doesn't include core id and socket id information.
2339 	 */
2340 	if (ff->size <= size) {
2341 		zfree(&ph->env.cpu);
2342 		return 0;
2343 	}
2344 
2345 	/* On s390 the socket_id number is not related to the numbers of cpus.
2346 	 * The socket_id number might be higher than the numbers of cpus.
2347 	 * This depends on the configuration.
2348 	 * AArch64 is the same.
2349 	 */
2350 	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2351 			  || !strncmp(ph->env.arch, "aarch64", 7)))
2352 		do_core_id_test = false;
2353 
2354 	for (i = 0; i < (u32)cpu_nr; i++) {
2355 		if (do_read_u32(ff, &nr))
2356 			goto free_cpu;
2357 
2358 		ph->env.cpu[i].core_id = nr;
2359 		size += sizeof(u32);
2360 
2361 		if (do_read_u32(ff, &nr))
2362 			goto free_cpu;
2363 
2364 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2365 			pr_debug("socket_id number is too big."
2366 				 "You may need to upgrade the perf tool.\n");
2367 			goto free_cpu;
2368 		}
2369 
2370 		ph->env.cpu[i].socket_id = nr;
2371 		size += sizeof(u32);
2372 	}
2373 
2374 	/*
2375 	 * The header may be from old perf,
2376 	 * which doesn't include die information.
2377 	 */
2378 	if (ff->size <= size)
2379 		return 0;
2380 
2381 	if (do_read_u32(ff, &nr))
2382 		return -1;
2383 
2384 	ph->env.nr_sibling_dies = nr;
2385 	size += sizeof(u32);
2386 
2387 	for (i = 0; i < nr; i++) {
2388 		str = do_read_string(ff);
2389 		if (!str)
2390 			goto error;
2391 
2392 		/* include a NULL character at the end */
2393 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2394 			goto error;
2395 		size += string_size(str);
2396 		free(str);
2397 	}
2398 	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2399 
2400 	for (i = 0; i < (u32)cpu_nr; i++) {
2401 		if (do_read_u32(ff, &nr))
2402 			goto free_cpu;
2403 
2404 		ph->env.cpu[i].die_id = nr;
2405 	}
2406 
2407 	return 0;
2408 
2409 error:
2410 	strbuf_release(&sb);
2411 free_cpu:
2412 	zfree(&ph->env.cpu);
2413 	return -1;
2414 }
2415 
2416 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2417 {
2418 	struct numa_node *nodes, *n;
2419 	u32 nr, i;
2420 	char *str;
2421 
2422 	/* nr nodes */
2423 	if (do_read_u32(ff, &nr))
2424 		return -1;
2425 
2426 	nodes = zalloc(sizeof(*nodes) * nr);
2427 	if (!nodes)
2428 		return -ENOMEM;
2429 
2430 	for (i = 0; i < nr; i++) {
2431 		n = &nodes[i];
2432 
2433 		/* node number */
2434 		if (do_read_u32(ff, &n->node))
2435 			goto error;
2436 
2437 		if (do_read_u64(ff, &n->mem_total))
2438 			goto error;
2439 
2440 		if (do_read_u64(ff, &n->mem_free))
2441 			goto error;
2442 
2443 		str = do_read_string(ff);
2444 		if (!str)
2445 			goto error;
2446 
2447 		n->map = perf_cpu_map__new(str);
2448 		if (!n->map)
2449 			goto error;
2450 
2451 		free(str);
2452 	}
2453 	ff->ph->env.nr_numa_nodes = nr;
2454 	ff->ph->env.numa_nodes = nodes;
2455 	return 0;
2456 
2457 error:
2458 	free(nodes);
2459 	return -1;
2460 }
2461 
2462 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2463 {
2464 	char *name;
2465 	u32 pmu_num;
2466 	u32 type;
2467 	struct strbuf sb;
2468 
2469 	if (do_read_u32(ff, &pmu_num))
2470 		return -1;
2471 
2472 	if (!pmu_num) {
2473 		pr_debug("pmu mappings not available\n");
2474 		return 0;
2475 	}
2476 
2477 	ff->ph->env.nr_pmu_mappings = pmu_num;
2478 	if (strbuf_init(&sb, 128) < 0)
2479 		return -1;
2480 
2481 	while (pmu_num) {
2482 		if (do_read_u32(ff, &type))
2483 			goto error;
2484 
2485 		name = do_read_string(ff);
2486 		if (!name)
2487 			goto error;
2488 
2489 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2490 			goto error;
2491 		/* include a NULL character at the end */
2492 		if (strbuf_add(&sb, "", 1) < 0)
2493 			goto error;
2494 
2495 		if (!strcmp(name, "msr"))
2496 			ff->ph->env.msr_pmu_type = type;
2497 
2498 		free(name);
2499 		pmu_num--;
2500 	}
2501 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2502 	return 0;
2503 
2504 error:
2505 	strbuf_release(&sb);
2506 	return -1;
2507 }
2508 
2509 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2510 {
2511 	size_t ret = -1;
2512 	u32 i, nr, nr_groups;
2513 	struct perf_session *session;
2514 	struct evsel *evsel, *leader = NULL;
2515 	struct group_desc {
2516 		char *name;
2517 		u32 leader_idx;
2518 		u32 nr_members;
2519 	} *desc;
2520 
2521 	if (do_read_u32(ff, &nr_groups))
2522 		return -1;
2523 
2524 	ff->ph->env.nr_groups = nr_groups;
2525 	if (!nr_groups) {
2526 		pr_debug("group desc not available\n");
2527 		return 0;
2528 	}
2529 
2530 	desc = calloc(nr_groups, sizeof(*desc));
2531 	if (!desc)
2532 		return -1;
2533 
2534 	for (i = 0; i < nr_groups; i++) {
2535 		desc[i].name = do_read_string(ff);
2536 		if (!desc[i].name)
2537 			goto out_free;
2538 
2539 		if (do_read_u32(ff, &desc[i].leader_idx))
2540 			goto out_free;
2541 
2542 		if (do_read_u32(ff, &desc[i].nr_members))
2543 			goto out_free;
2544 	}
2545 
2546 	/*
2547 	 * Rebuild group relationship based on the group_desc
2548 	 */
2549 	session = container_of(ff->ph, struct perf_session, header);
2550 	session->evlist->nr_groups = nr_groups;
2551 
2552 	i = nr = 0;
2553 	evlist__for_each_entry(session->evlist, evsel) {
2554 		if (evsel->idx == (int) desc[i].leader_idx) {
2555 			evsel->leader = evsel;
2556 			/* {anon_group} is a dummy name */
2557 			if (strcmp(desc[i].name, "{anon_group}")) {
2558 				evsel->group_name = desc[i].name;
2559 				desc[i].name = NULL;
2560 			}
2561 			evsel->core.nr_members = desc[i].nr_members;
2562 
2563 			if (i >= nr_groups || nr > 0) {
2564 				pr_debug("invalid group desc\n");
2565 				goto out_free;
2566 			}
2567 
2568 			leader = evsel;
2569 			nr = evsel->core.nr_members - 1;
2570 			i++;
2571 		} else if (nr) {
2572 			/* This is a group member */
2573 			evsel->leader = leader;
2574 
2575 			nr--;
2576 		}
2577 	}
2578 
2579 	if (i != nr_groups || nr != 0) {
2580 		pr_debug("invalid group desc\n");
2581 		goto out_free;
2582 	}
2583 
2584 	ret = 0;
2585 out_free:
2586 	for (i = 0; i < nr_groups; i++)
2587 		zfree(&desc[i].name);
2588 	free(desc);
2589 
2590 	return ret;
2591 }
2592 
2593 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2594 {
2595 	struct perf_session *session;
2596 	int err;
2597 
2598 	session = container_of(ff->ph, struct perf_session, header);
2599 
2600 	err = auxtrace_index__process(ff->fd, ff->size, session,
2601 				      ff->ph->needs_swap);
2602 	if (err < 0)
2603 		pr_err("Failed to process auxtrace index\n");
2604 	return err;
2605 }
2606 
2607 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2608 {
2609 	struct cpu_cache_level *caches;
2610 	u32 cnt, i, version;
2611 
2612 	if (do_read_u32(ff, &version))
2613 		return -1;
2614 
2615 	if (version != 1)
2616 		return -1;
2617 
2618 	if (do_read_u32(ff, &cnt))
2619 		return -1;
2620 
2621 	caches = zalloc(sizeof(*caches) * cnt);
2622 	if (!caches)
2623 		return -1;
2624 
2625 	for (i = 0; i < cnt; i++) {
2626 		struct cpu_cache_level c;
2627 
2628 		#define _R(v)						\
2629 			if (do_read_u32(ff, &c.v))\
2630 				goto out_free_caches;			\
2631 
2632 		_R(level)
2633 		_R(line_size)
2634 		_R(sets)
2635 		_R(ways)
2636 		#undef _R
2637 
2638 		#define _R(v)					\
2639 			c.v = do_read_string(ff);		\
2640 			if (!c.v)				\
2641 				goto out_free_caches;
2642 
2643 		_R(type)
2644 		_R(size)
2645 		_R(map)
2646 		#undef _R
2647 
2648 		caches[i] = c;
2649 	}
2650 
2651 	ff->ph->env.caches = caches;
2652 	ff->ph->env.caches_cnt = cnt;
2653 	return 0;
2654 out_free_caches:
2655 	free(caches);
2656 	return -1;
2657 }
2658 
2659 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2660 {
2661 	struct perf_session *session;
2662 	u64 first_sample_time, last_sample_time;
2663 	int ret;
2664 
2665 	session = container_of(ff->ph, struct perf_session, header);
2666 
2667 	ret = do_read_u64(ff, &first_sample_time);
2668 	if (ret)
2669 		return -1;
2670 
2671 	ret = do_read_u64(ff, &last_sample_time);
2672 	if (ret)
2673 		return -1;
2674 
2675 	session->evlist->first_sample_time = first_sample_time;
2676 	session->evlist->last_sample_time = last_sample_time;
2677 	return 0;
2678 }
2679 
2680 static int process_mem_topology(struct feat_fd *ff,
2681 				void *data __maybe_unused)
2682 {
2683 	struct memory_node *nodes;
2684 	u64 version, i, nr, bsize;
2685 	int ret = -1;
2686 
2687 	if (do_read_u64(ff, &version))
2688 		return -1;
2689 
2690 	if (version != 1)
2691 		return -1;
2692 
2693 	if (do_read_u64(ff, &bsize))
2694 		return -1;
2695 
2696 	if (do_read_u64(ff, &nr))
2697 		return -1;
2698 
2699 	nodes = zalloc(sizeof(*nodes) * nr);
2700 	if (!nodes)
2701 		return -1;
2702 
2703 	for (i = 0; i < nr; i++) {
2704 		struct memory_node n;
2705 
2706 		#define _R(v)				\
2707 			if (do_read_u64(ff, &n.v))	\
2708 				goto out;		\
2709 
2710 		_R(node)
2711 		_R(size)
2712 
2713 		#undef _R
2714 
2715 		if (do_read_bitmap(ff, &n.set, &n.size))
2716 			goto out;
2717 
2718 		nodes[i] = n;
2719 	}
2720 
2721 	ff->ph->env.memory_bsize    = bsize;
2722 	ff->ph->env.memory_nodes    = nodes;
2723 	ff->ph->env.nr_memory_nodes = nr;
2724 	ret = 0;
2725 
2726 out:
2727 	if (ret)
2728 		free(nodes);
2729 	return ret;
2730 }
2731 
2732 static int process_clockid(struct feat_fd *ff,
2733 			   void *data __maybe_unused)
2734 {
2735 	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2736 		return -1;
2737 
2738 	return 0;
2739 }
2740 
2741 static int process_dir_format(struct feat_fd *ff,
2742 			      void *_data __maybe_unused)
2743 {
2744 	struct perf_session *session;
2745 	struct perf_data *data;
2746 
2747 	session = container_of(ff->ph, struct perf_session, header);
2748 	data = session->data;
2749 
2750 	if (WARN_ON(!perf_data__is_dir(data)))
2751 		return -1;
2752 
2753 	return do_read_u64(ff, &data->dir.version);
2754 }
2755 
2756 #ifdef HAVE_LIBBPF_SUPPORT
2757 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2758 {
2759 	struct bpf_prog_info_linear *info_linear;
2760 	struct bpf_prog_info_node *info_node;
2761 	struct perf_env *env = &ff->ph->env;
2762 	u32 count, i;
2763 	int err = -1;
2764 
2765 	if (ff->ph->needs_swap) {
2766 		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2767 		return 0;
2768 	}
2769 
2770 	if (do_read_u32(ff, &count))
2771 		return -1;
2772 
2773 	down_write(&env->bpf_progs.lock);
2774 
2775 	for (i = 0; i < count; ++i) {
2776 		u32 info_len, data_len;
2777 
2778 		info_linear = NULL;
2779 		info_node = NULL;
2780 		if (do_read_u32(ff, &info_len))
2781 			goto out;
2782 		if (do_read_u32(ff, &data_len))
2783 			goto out;
2784 
2785 		if (info_len > sizeof(struct bpf_prog_info)) {
2786 			pr_warning("detected invalid bpf_prog_info\n");
2787 			goto out;
2788 		}
2789 
2790 		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2791 				     data_len);
2792 		if (!info_linear)
2793 			goto out;
2794 		info_linear->info_len = sizeof(struct bpf_prog_info);
2795 		info_linear->data_len = data_len;
2796 		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2797 			goto out;
2798 		if (__do_read(ff, &info_linear->info, info_len))
2799 			goto out;
2800 		if (info_len < sizeof(struct bpf_prog_info))
2801 			memset(((void *)(&info_linear->info)) + info_len, 0,
2802 			       sizeof(struct bpf_prog_info) - info_len);
2803 
2804 		if (__do_read(ff, info_linear->data, data_len))
2805 			goto out;
2806 
2807 		info_node = malloc(sizeof(struct bpf_prog_info_node));
2808 		if (!info_node)
2809 			goto out;
2810 
2811 		/* after reading from file, translate offset to address */
2812 		bpf_program__bpil_offs_to_addr(info_linear);
2813 		info_node->info_linear = info_linear;
2814 		perf_env__insert_bpf_prog_info(env, info_node);
2815 	}
2816 
2817 	up_write(&env->bpf_progs.lock);
2818 	return 0;
2819 out:
2820 	free(info_linear);
2821 	free(info_node);
2822 	up_write(&env->bpf_progs.lock);
2823 	return err;
2824 }
2825 #else // HAVE_LIBBPF_SUPPORT
2826 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2827 {
2828 	return 0;
2829 }
2830 #endif // HAVE_LIBBPF_SUPPORT
2831 
2832 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2833 {
2834 	struct perf_env *env = &ff->ph->env;
2835 	struct btf_node *node = NULL;
2836 	u32 count, i;
2837 	int err = -1;
2838 
2839 	if (ff->ph->needs_swap) {
2840 		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2841 		return 0;
2842 	}
2843 
2844 	if (do_read_u32(ff, &count))
2845 		return -1;
2846 
2847 	down_write(&env->bpf_progs.lock);
2848 
2849 	for (i = 0; i < count; ++i) {
2850 		u32 id, data_size;
2851 
2852 		if (do_read_u32(ff, &id))
2853 			goto out;
2854 		if (do_read_u32(ff, &data_size))
2855 			goto out;
2856 
2857 		node = malloc(sizeof(struct btf_node) + data_size);
2858 		if (!node)
2859 			goto out;
2860 
2861 		node->id = id;
2862 		node->data_size = data_size;
2863 
2864 		if (__do_read(ff, node->data, data_size))
2865 			goto out;
2866 
2867 		perf_env__insert_btf(env, node);
2868 		node = NULL;
2869 	}
2870 
2871 	err = 0;
2872 out:
2873 	up_write(&env->bpf_progs.lock);
2874 	free(node);
2875 	return err;
2876 }
2877 
2878 static int process_compressed(struct feat_fd *ff,
2879 			      void *data __maybe_unused)
2880 {
2881 	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2882 		return -1;
2883 
2884 	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2885 		return -1;
2886 
2887 	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2888 		return -1;
2889 
2890 	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2891 		return -1;
2892 
2893 	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2894 		return -1;
2895 
2896 	return 0;
2897 }
2898 
2899 static int process_cpu_pmu_caps(struct feat_fd *ff,
2900 				void *data __maybe_unused)
2901 {
2902 	char *name, *value;
2903 	struct strbuf sb;
2904 	u32 nr_caps;
2905 
2906 	if (do_read_u32(ff, &nr_caps))
2907 		return -1;
2908 
2909 	if (!nr_caps) {
2910 		pr_debug("cpu pmu capabilities not available\n");
2911 		return 0;
2912 	}
2913 
2914 	ff->ph->env.nr_cpu_pmu_caps = nr_caps;
2915 
2916 	if (strbuf_init(&sb, 128) < 0)
2917 		return -1;
2918 
2919 	while (nr_caps--) {
2920 		name = do_read_string(ff);
2921 		if (!name)
2922 			goto error;
2923 
2924 		value = do_read_string(ff);
2925 		if (!value)
2926 			goto free_name;
2927 
2928 		if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
2929 			goto free_value;
2930 
2931 		/* include a NULL character at the end */
2932 		if (strbuf_add(&sb, "", 1) < 0)
2933 			goto free_value;
2934 
2935 		if (!strcmp(name, "branches"))
2936 			ff->ph->env.max_branches = atoi(value);
2937 
2938 		free(value);
2939 		free(name);
2940 	}
2941 	ff->ph->env.cpu_pmu_caps = strbuf_detach(&sb, NULL);
2942 	return 0;
2943 
2944 free_value:
2945 	free(value);
2946 free_name:
2947 	free(name);
2948 error:
2949 	strbuf_release(&sb);
2950 	return -1;
2951 }
2952 
2953 #define FEAT_OPR(n, func, __full_only) \
2954 	[HEADER_##n] = {					\
2955 		.name	    = __stringify(n),			\
2956 		.write	    = write_##func,			\
2957 		.print	    = print_##func,			\
2958 		.full_only  = __full_only,			\
2959 		.process    = process_##func,			\
2960 		.synthesize = true				\
2961 	}
2962 
2963 #define FEAT_OPN(n, func, __full_only) \
2964 	[HEADER_##n] = {					\
2965 		.name	    = __stringify(n),			\
2966 		.write	    = write_##func,			\
2967 		.print	    = print_##func,			\
2968 		.full_only  = __full_only,			\
2969 		.process    = process_##func			\
2970 	}
2971 
2972 /* feature_ops not implemented: */
2973 #define print_tracing_data	NULL
2974 #define print_build_id		NULL
2975 
2976 #define process_branch_stack	NULL
2977 #define process_stat		NULL
2978 
2979 // Only used in util/synthetic-events.c
2980 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
2981 
2982 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2983 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
2984 	FEAT_OPN(BUILD_ID,	build_id,	false),
2985 	FEAT_OPR(HOSTNAME,	hostname,	false),
2986 	FEAT_OPR(OSRELEASE,	osrelease,	false),
2987 	FEAT_OPR(VERSION,	version,	false),
2988 	FEAT_OPR(ARCH,		arch,		false),
2989 	FEAT_OPR(NRCPUS,	nrcpus,		false),
2990 	FEAT_OPR(CPUDESC,	cpudesc,	false),
2991 	FEAT_OPR(CPUID,		cpuid,		false),
2992 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
2993 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
2994 	FEAT_OPR(CMDLINE,	cmdline,	false),
2995 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
2996 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
2997 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
2998 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2999 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3000 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
3001 	FEAT_OPN(STAT,		stat,		false),
3002 	FEAT_OPN(CACHE,		cache,		true),
3003 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3004 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3005 	FEAT_OPR(CLOCKID,	clockid,	false),
3006 	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3007 	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3008 	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3009 	FEAT_OPR(COMPRESSED,	compressed,	false),
3010 	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3011 };
3012 
3013 struct header_print_data {
3014 	FILE *fp;
3015 	bool full; /* extended list of headers */
3016 };
3017 
3018 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3019 					   struct perf_header *ph,
3020 					   int feat, int fd, void *data)
3021 {
3022 	struct header_print_data *hd = data;
3023 	struct feat_fd ff;
3024 
3025 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3026 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3027 				"%d, continuing...\n", section->offset, feat);
3028 		return 0;
3029 	}
3030 	if (feat >= HEADER_LAST_FEATURE) {
3031 		pr_warning("unknown feature %d\n", feat);
3032 		return 0;
3033 	}
3034 	if (!feat_ops[feat].print)
3035 		return 0;
3036 
3037 	ff = (struct  feat_fd) {
3038 		.fd = fd,
3039 		.ph = ph,
3040 	};
3041 
3042 	if (!feat_ops[feat].full_only || hd->full)
3043 		feat_ops[feat].print(&ff, hd->fp);
3044 	else
3045 		fprintf(hd->fp, "# %s info available, use -I to display\n",
3046 			feat_ops[feat].name);
3047 
3048 	return 0;
3049 }
3050 
3051 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3052 {
3053 	struct header_print_data hd;
3054 	struct perf_header *header = &session->header;
3055 	int fd = perf_data__fd(session->data);
3056 	struct stat st;
3057 	time_t stctime;
3058 	int ret, bit;
3059 
3060 	hd.fp = fp;
3061 	hd.full = full;
3062 
3063 	ret = fstat(fd, &st);
3064 	if (ret == -1)
3065 		return -1;
3066 
3067 	stctime = st.st_mtime;
3068 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3069 
3070 	fprintf(fp, "# header version : %u\n", header->version);
3071 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3072 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3073 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3074 
3075 	perf_header__process_sections(header, fd, &hd,
3076 				      perf_file_section__fprintf_info);
3077 
3078 	if (session->data->is_pipe)
3079 		return 0;
3080 
3081 	fprintf(fp, "# missing features: ");
3082 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3083 		if (bit)
3084 			fprintf(fp, "%s ", feat_ops[bit].name);
3085 	}
3086 
3087 	fprintf(fp, "\n");
3088 	return 0;
3089 }
3090 
3091 static int do_write_feat(struct feat_fd *ff, int type,
3092 			 struct perf_file_section **p,
3093 			 struct evlist *evlist)
3094 {
3095 	int err;
3096 	int ret = 0;
3097 
3098 	if (perf_header__has_feat(ff->ph, type)) {
3099 		if (!feat_ops[type].write)
3100 			return -1;
3101 
3102 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3103 			return -1;
3104 
3105 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3106 
3107 		err = feat_ops[type].write(ff, evlist);
3108 		if (err < 0) {
3109 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3110 
3111 			/* undo anything written */
3112 			lseek(ff->fd, (*p)->offset, SEEK_SET);
3113 
3114 			return -1;
3115 		}
3116 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3117 		(*p)++;
3118 	}
3119 	return ret;
3120 }
3121 
3122 static int perf_header__adds_write(struct perf_header *header,
3123 				   struct evlist *evlist, int fd)
3124 {
3125 	int nr_sections;
3126 	struct feat_fd ff;
3127 	struct perf_file_section *feat_sec, *p;
3128 	int sec_size;
3129 	u64 sec_start;
3130 	int feat;
3131 	int err;
3132 
3133 	ff = (struct feat_fd){
3134 		.fd  = fd,
3135 		.ph = header,
3136 	};
3137 
3138 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3139 	if (!nr_sections)
3140 		return 0;
3141 
3142 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3143 	if (feat_sec == NULL)
3144 		return -ENOMEM;
3145 
3146 	sec_size = sizeof(*feat_sec) * nr_sections;
3147 
3148 	sec_start = header->feat_offset;
3149 	lseek(fd, sec_start + sec_size, SEEK_SET);
3150 
3151 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3152 		if (do_write_feat(&ff, feat, &p, evlist))
3153 			perf_header__clear_feat(header, feat);
3154 	}
3155 
3156 	lseek(fd, sec_start, SEEK_SET);
3157 	/*
3158 	 * may write more than needed due to dropped feature, but
3159 	 * this is okay, reader will skip the missing entries
3160 	 */
3161 	err = do_write(&ff, feat_sec, sec_size);
3162 	if (err < 0)
3163 		pr_debug("failed to write feature section\n");
3164 	free(feat_sec);
3165 	return err;
3166 }
3167 
3168 int perf_header__write_pipe(int fd)
3169 {
3170 	struct perf_pipe_file_header f_header;
3171 	struct feat_fd ff;
3172 	int err;
3173 
3174 	ff = (struct feat_fd){ .fd = fd };
3175 
3176 	f_header = (struct perf_pipe_file_header){
3177 		.magic	   = PERF_MAGIC,
3178 		.size	   = sizeof(f_header),
3179 	};
3180 
3181 	err = do_write(&ff, &f_header, sizeof(f_header));
3182 	if (err < 0) {
3183 		pr_debug("failed to write perf pipe header\n");
3184 		return err;
3185 	}
3186 
3187 	return 0;
3188 }
3189 
3190 int perf_session__write_header(struct perf_session *session,
3191 			       struct evlist *evlist,
3192 			       int fd, bool at_exit)
3193 {
3194 	struct perf_file_header f_header;
3195 	struct perf_file_attr   f_attr;
3196 	struct perf_header *header = &session->header;
3197 	struct evsel *evsel;
3198 	struct feat_fd ff;
3199 	u64 attr_offset;
3200 	int err;
3201 
3202 	ff = (struct feat_fd){ .fd = fd};
3203 	lseek(fd, sizeof(f_header), SEEK_SET);
3204 
3205 	evlist__for_each_entry(session->evlist, evsel) {
3206 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3207 		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3208 		if (err < 0) {
3209 			pr_debug("failed to write perf header\n");
3210 			return err;
3211 		}
3212 	}
3213 
3214 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3215 
3216 	evlist__for_each_entry(evlist, evsel) {
3217 		f_attr = (struct perf_file_attr){
3218 			.attr = evsel->core.attr,
3219 			.ids  = {
3220 				.offset = evsel->id_offset,
3221 				.size   = evsel->core.ids * sizeof(u64),
3222 			}
3223 		};
3224 		err = do_write(&ff, &f_attr, sizeof(f_attr));
3225 		if (err < 0) {
3226 			pr_debug("failed to write perf header attribute\n");
3227 			return err;
3228 		}
3229 	}
3230 
3231 	if (!header->data_offset)
3232 		header->data_offset = lseek(fd, 0, SEEK_CUR);
3233 	header->feat_offset = header->data_offset + header->data_size;
3234 
3235 	if (at_exit) {
3236 		err = perf_header__adds_write(header, evlist, fd);
3237 		if (err < 0)
3238 			return err;
3239 	}
3240 
3241 	f_header = (struct perf_file_header){
3242 		.magic	   = PERF_MAGIC,
3243 		.size	   = sizeof(f_header),
3244 		.attr_size = sizeof(f_attr),
3245 		.attrs = {
3246 			.offset = attr_offset,
3247 			.size   = evlist->core.nr_entries * sizeof(f_attr),
3248 		},
3249 		.data = {
3250 			.offset = header->data_offset,
3251 			.size	= header->data_size,
3252 		},
3253 		/* event_types is ignored, store zeros */
3254 	};
3255 
3256 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3257 
3258 	lseek(fd, 0, SEEK_SET);
3259 	err = do_write(&ff, &f_header, sizeof(f_header));
3260 	if (err < 0) {
3261 		pr_debug("failed to write perf header\n");
3262 		return err;
3263 	}
3264 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3265 
3266 	return 0;
3267 }
3268 
3269 static int perf_header__getbuffer64(struct perf_header *header,
3270 				    int fd, void *buf, size_t size)
3271 {
3272 	if (readn(fd, buf, size) <= 0)
3273 		return -1;
3274 
3275 	if (header->needs_swap)
3276 		mem_bswap_64(buf, size);
3277 
3278 	return 0;
3279 }
3280 
3281 int perf_header__process_sections(struct perf_header *header, int fd,
3282 				  void *data,
3283 				  int (*process)(struct perf_file_section *section,
3284 						 struct perf_header *ph,
3285 						 int feat, int fd, void *data))
3286 {
3287 	struct perf_file_section *feat_sec, *sec;
3288 	int nr_sections;
3289 	int sec_size;
3290 	int feat;
3291 	int err;
3292 
3293 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3294 	if (!nr_sections)
3295 		return 0;
3296 
3297 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3298 	if (!feat_sec)
3299 		return -1;
3300 
3301 	sec_size = sizeof(*feat_sec) * nr_sections;
3302 
3303 	lseek(fd, header->feat_offset, SEEK_SET);
3304 
3305 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3306 	if (err < 0)
3307 		goto out_free;
3308 
3309 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3310 		err = process(sec++, header, feat, fd, data);
3311 		if (err < 0)
3312 			goto out_free;
3313 	}
3314 	err = 0;
3315 out_free:
3316 	free(feat_sec);
3317 	return err;
3318 }
3319 
3320 static const int attr_file_abi_sizes[] = {
3321 	[0] = PERF_ATTR_SIZE_VER0,
3322 	[1] = PERF_ATTR_SIZE_VER1,
3323 	[2] = PERF_ATTR_SIZE_VER2,
3324 	[3] = PERF_ATTR_SIZE_VER3,
3325 	[4] = PERF_ATTR_SIZE_VER4,
3326 	0,
3327 };
3328 
3329 /*
3330  * In the legacy file format, the magic number is not used to encode endianness.
3331  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3332  * on ABI revisions, we need to try all combinations for all endianness to
3333  * detect the endianness.
3334  */
3335 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3336 {
3337 	uint64_t ref_size, attr_size;
3338 	int i;
3339 
3340 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3341 		ref_size = attr_file_abi_sizes[i]
3342 			 + sizeof(struct perf_file_section);
3343 		if (hdr_sz != ref_size) {
3344 			attr_size = bswap_64(hdr_sz);
3345 			if (attr_size != ref_size)
3346 				continue;
3347 
3348 			ph->needs_swap = true;
3349 		}
3350 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3351 			 i,
3352 			 ph->needs_swap);
3353 		return 0;
3354 	}
3355 	/* could not determine endianness */
3356 	return -1;
3357 }
3358 
3359 #define PERF_PIPE_HDR_VER0	16
3360 
3361 static const size_t attr_pipe_abi_sizes[] = {
3362 	[0] = PERF_PIPE_HDR_VER0,
3363 	0,
3364 };
3365 
3366 /*
3367  * In the legacy pipe format, there is an implicit assumption that endiannesss
3368  * between host recording the samples, and host parsing the samples is the
3369  * same. This is not always the case given that the pipe output may always be
3370  * redirected into a file and analyzed on a different machine with possibly a
3371  * different endianness and perf_event ABI revsions in the perf tool itself.
3372  */
3373 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3374 {
3375 	u64 attr_size;
3376 	int i;
3377 
3378 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3379 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3380 			attr_size = bswap_64(hdr_sz);
3381 			if (attr_size != hdr_sz)
3382 				continue;
3383 
3384 			ph->needs_swap = true;
3385 		}
3386 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3387 		return 0;
3388 	}
3389 	return -1;
3390 }
3391 
3392 bool is_perf_magic(u64 magic)
3393 {
3394 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3395 		|| magic == __perf_magic2
3396 		|| magic == __perf_magic2_sw)
3397 		return true;
3398 
3399 	return false;
3400 }
3401 
3402 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3403 			      bool is_pipe, struct perf_header *ph)
3404 {
3405 	int ret;
3406 
3407 	/* check for legacy format */
3408 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3409 	if (ret == 0) {
3410 		ph->version = PERF_HEADER_VERSION_1;
3411 		pr_debug("legacy perf.data format\n");
3412 		if (is_pipe)
3413 			return try_all_pipe_abis(hdr_sz, ph);
3414 
3415 		return try_all_file_abis(hdr_sz, ph);
3416 	}
3417 	/*
3418 	 * the new magic number serves two purposes:
3419 	 * - unique number to identify actual perf.data files
3420 	 * - encode endianness of file
3421 	 */
3422 	ph->version = PERF_HEADER_VERSION_2;
3423 
3424 	/* check magic number with one endianness */
3425 	if (magic == __perf_magic2)
3426 		return 0;
3427 
3428 	/* check magic number with opposite endianness */
3429 	if (magic != __perf_magic2_sw)
3430 		return -1;
3431 
3432 	ph->needs_swap = true;
3433 
3434 	return 0;
3435 }
3436 
3437 int perf_file_header__read(struct perf_file_header *header,
3438 			   struct perf_header *ph, int fd)
3439 {
3440 	ssize_t ret;
3441 
3442 	lseek(fd, 0, SEEK_SET);
3443 
3444 	ret = readn(fd, header, sizeof(*header));
3445 	if (ret <= 0)
3446 		return -1;
3447 
3448 	if (check_magic_endian(header->magic,
3449 			       header->attr_size, false, ph) < 0) {
3450 		pr_debug("magic/endian check failed\n");
3451 		return -1;
3452 	}
3453 
3454 	if (ph->needs_swap) {
3455 		mem_bswap_64(header, offsetof(struct perf_file_header,
3456 			     adds_features));
3457 	}
3458 
3459 	if (header->size != sizeof(*header)) {
3460 		/* Support the previous format */
3461 		if (header->size == offsetof(typeof(*header), adds_features))
3462 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3463 		else
3464 			return -1;
3465 	} else if (ph->needs_swap) {
3466 		/*
3467 		 * feature bitmap is declared as an array of unsigned longs --
3468 		 * not good since its size can differ between the host that
3469 		 * generated the data file and the host analyzing the file.
3470 		 *
3471 		 * We need to handle endianness, but we don't know the size of
3472 		 * the unsigned long where the file was generated. Take a best
3473 		 * guess at determining it: try 64-bit swap first (ie., file
3474 		 * created on a 64-bit host), and check if the hostname feature
3475 		 * bit is set (this feature bit is forced on as of fbe96f2).
3476 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3477 		 * swap. If the hostname bit is still not set (e.g., older data
3478 		 * file), punt and fallback to the original behavior --
3479 		 * clearing all feature bits and setting buildid.
3480 		 */
3481 		mem_bswap_64(&header->adds_features,
3482 			    BITS_TO_U64(HEADER_FEAT_BITS));
3483 
3484 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3485 			/* unswap as u64 */
3486 			mem_bswap_64(&header->adds_features,
3487 				    BITS_TO_U64(HEADER_FEAT_BITS));
3488 
3489 			/* unswap as u32 */
3490 			mem_bswap_32(&header->adds_features,
3491 				    BITS_TO_U32(HEADER_FEAT_BITS));
3492 		}
3493 
3494 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3495 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3496 			set_bit(HEADER_BUILD_ID, header->adds_features);
3497 		}
3498 	}
3499 
3500 	memcpy(&ph->adds_features, &header->adds_features,
3501 	       sizeof(ph->adds_features));
3502 
3503 	ph->data_offset  = header->data.offset;
3504 	ph->data_size	 = header->data.size;
3505 	ph->feat_offset  = header->data.offset + header->data.size;
3506 	return 0;
3507 }
3508 
3509 static int perf_file_section__process(struct perf_file_section *section,
3510 				      struct perf_header *ph,
3511 				      int feat, int fd, void *data)
3512 {
3513 	struct feat_fd fdd = {
3514 		.fd	= fd,
3515 		.ph	= ph,
3516 		.size	= section->size,
3517 		.offset	= section->offset,
3518 	};
3519 
3520 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3521 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3522 			  "%d, continuing...\n", section->offset, feat);
3523 		return 0;
3524 	}
3525 
3526 	if (feat >= HEADER_LAST_FEATURE) {
3527 		pr_debug("unknown feature %d, continuing...\n", feat);
3528 		return 0;
3529 	}
3530 
3531 	if (!feat_ops[feat].process)
3532 		return 0;
3533 
3534 	return feat_ops[feat].process(&fdd, data);
3535 }
3536 
3537 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3538 				       struct perf_header *ph, int fd,
3539 				       bool repipe)
3540 {
3541 	struct feat_fd ff = {
3542 		.fd = STDOUT_FILENO,
3543 		.ph = ph,
3544 	};
3545 	ssize_t ret;
3546 
3547 	ret = readn(fd, header, sizeof(*header));
3548 	if (ret <= 0)
3549 		return -1;
3550 
3551 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3552 		pr_debug("endian/magic failed\n");
3553 		return -1;
3554 	}
3555 
3556 	if (ph->needs_swap)
3557 		header->size = bswap_64(header->size);
3558 
3559 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3560 		return -1;
3561 
3562 	return 0;
3563 }
3564 
3565 static int perf_header__read_pipe(struct perf_session *session)
3566 {
3567 	struct perf_header *header = &session->header;
3568 	struct perf_pipe_file_header f_header;
3569 
3570 	if (perf_file_header__read_pipe(&f_header, header,
3571 					perf_data__fd(session->data),
3572 					session->repipe) < 0) {
3573 		pr_debug("incompatible file format\n");
3574 		return -EINVAL;
3575 	}
3576 
3577 	return f_header.size == sizeof(f_header) ? 0 : -1;
3578 }
3579 
3580 static int read_attr(int fd, struct perf_header *ph,
3581 		     struct perf_file_attr *f_attr)
3582 {
3583 	struct perf_event_attr *attr = &f_attr->attr;
3584 	size_t sz, left;
3585 	size_t our_sz = sizeof(f_attr->attr);
3586 	ssize_t ret;
3587 
3588 	memset(f_attr, 0, sizeof(*f_attr));
3589 
3590 	/* read minimal guaranteed structure */
3591 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3592 	if (ret <= 0) {
3593 		pr_debug("cannot read %d bytes of header attr\n",
3594 			 PERF_ATTR_SIZE_VER0);
3595 		return -1;
3596 	}
3597 
3598 	/* on file perf_event_attr size */
3599 	sz = attr->size;
3600 
3601 	if (ph->needs_swap)
3602 		sz = bswap_32(sz);
3603 
3604 	if (sz == 0) {
3605 		/* assume ABI0 */
3606 		sz =  PERF_ATTR_SIZE_VER0;
3607 	} else if (sz > our_sz) {
3608 		pr_debug("file uses a more recent and unsupported ABI"
3609 			 " (%zu bytes extra)\n", sz - our_sz);
3610 		return -1;
3611 	}
3612 	/* what we have not yet read and that we know about */
3613 	left = sz - PERF_ATTR_SIZE_VER0;
3614 	if (left) {
3615 		void *ptr = attr;
3616 		ptr += PERF_ATTR_SIZE_VER0;
3617 
3618 		ret = readn(fd, ptr, left);
3619 	}
3620 	/* read perf_file_section, ids are read in caller */
3621 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3622 
3623 	return ret <= 0 ? -1 : 0;
3624 }
3625 
3626 static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3627 						struct tep_handle *pevent)
3628 {
3629 	struct tep_event *event;
3630 	char bf[128];
3631 
3632 	/* already prepared */
3633 	if (evsel->tp_format)
3634 		return 0;
3635 
3636 	if (pevent == NULL) {
3637 		pr_debug("broken or missing trace data\n");
3638 		return -1;
3639 	}
3640 
3641 	event = tep_find_event(pevent, evsel->core.attr.config);
3642 	if (event == NULL) {
3643 		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3644 		return -1;
3645 	}
3646 
3647 	if (!evsel->name) {
3648 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3649 		evsel->name = strdup(bf);
3650 		if (evsel->name == NULL)
3651 			return -1;
3652 	}
3653 
3654 	evsel->tp_format = event;
3655 	return 0;
3656 }
3657 
3658 static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3659 						  struct tep_handle *pevent)
3660 {
3661 	struct evsel *pos;
3662 
3663 	evlist__for_each_entry(evlist, pos) {
3664 		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3665 		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3666 			return -1;
3667 	}
3668 
3669 	return 0;
3670 }
3671 
3672 int perf_session__read_header(struct perf_session *session)
3673 {
3674 	struct perf_data *data = session->data;
3675 	struct perf_header *header = &session->header;
3676 	struct perf_file_header	f_header;
3677 	struct perf_file_attr	f_attr;
3678 	u64			f_id;
3679 	int nr_attrs, nr_ids, i, j, err;
3680 	int fd = perf_data__fd(data);
3681 
3682 	session->evlist = evlist__new();
3683 	if (session->evlist == NULL)
3684 		return -ENOMEM;
3685 
3686 	session->evlist->env = &header->env;
3687 	session->machines.host.env = &header->env;
3688 
3689 	/*
3690 	 * We can read 'pipe' data event from regular file,
3691 	 * check for the pipe header regardless of source.
3692 	 */
3693 	err = perf_header__read_pipe(session);
3694 	if (!err || (err && perf_data__is_pipe(data))) {
3695 		data->is_pipe = true;
3696 		return err;
3697 	}
3698 
3699 	if (perf_file_header__read(&f_header, header, fd) < 0)
3700 		return -EINVAL;
3701 
3702 	/*
3703 	 * Sanity check that perf.data was written cleanly; data size is
3704 	 * initialized to 0 and updated only if the on_exit function is run.
3705 	 * If data size is still 0 then the file contains only partial
3706 	 * information.  Just warn user and process it as much as it can.
3707 	 */
3708 	if (f_header.data.size == 0) {
3709 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3710 			   "Was the 'perf record' command properly terminated?\n",
3711 			   data->file.path);
3712 	}
3713 
3714 	if (f_header.attr_size == 0) {
3715 		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3716 		       "Was the 'perf record' command properly terminated?\n",
3717 		       data->file.path);
3718 		return -EINVAL;
3719 	}
3720 
3721 	nr_attrs = f_header.attrs.size / f_header.attr_size;
3722 	lseek(fd, f_header.attrs.offset, SEEK_SET);
3723 
3724 	for (i = 0; i < nr_attrs; i++) {
3725 		struct evsel *evsel;
3726 		off_t tmp;
3727 
3728 		if (read_attr(fd, header, &f_attr) < 0)
3729 			goto out_errno;
3730 
3731 		if (header->needs_swap) {
3732 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3733 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3734 			perf_event__attr_swap(&f_attr.attr);
3735 		}
3736 
3737 		tmp = lseek(fd, 0, SEEK_CUR);
3738 		evsel = evsel__new(&f_attr.attr);
3739 
3740 		if (evsel == NULL)
3741 			goto out_delete_evlist;
3742 
3743 		evsel->needs_swap = header->needs_swap;
3744 		/*
3745 		 * Do it before so that if perf_evsel__alloc_id fails, this
3746 		 * entry gets purged too at evlist__delete().
3747 		 */
3748 		evlist__add(session->evlist, evsel);
3749 
3750 		nr_ids = f_attr.ids.size / sizeof(u64);
3751 		/*
3752 		 * We don't have the cpu and thread maps on the header, so
3753 		 * for allocating the perf_sample_id table we fake 1 cpu and
3754 		 * hattr->ids threads.
3755 		 */
3756 		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3757 			goto out_delete_evlist;
3758 
3759 		lseek(fd, f_attr.ids.offset, SEEK_SET);
3760 
3761 		for (j = 0; j < nr_ids; j++) {
3762 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3763 				goto out_errno;
3764 
3765 			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3766 		}
3767 
3768 		lseek(fd, tmp, SEEK_SET);
3769 	}
3770 
3771 	perf_header__process_sections(header, fd, &session->tevent,
3772 				      perf_file_section__process);
3773 
3774 	if (perf_evlist__prepare_tracepoint_events(session->evlist,
3775 						   session->tevent.pevent))
3776 		goto out_delete_evlist;
3777 
3778 	return 0;
3779 out_errno:
3780 	return -errno;
3781 
3782 out_delete_evlist:
3783 	evlist__delete(session->evlist);
3784 	session->evlist = NULL;
3785 	return -ENOMEM;
3786 }
3787 
3788 int perf_event__process_feature(struct perf_session *session,
3789 				union perf_event *event)
3790 {
3791 	struct perf_tool *tool = session->tool;
3792 	struct feat_fd ff = { .fd = 0 };
3793 	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3794 	int type = fe->header.type;
3795 	u64 feat = fe->feat_id;
3796 
3797 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3798 		pr_warning("invalid record type %d in pipe-mode\n", type);
3799 		return 0;
3800 	}
3801 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3802 		pr_warning("invalid record type %d in pipe-mode\n", type);
3803 		return -1;
3804 	}
3805 
3806 	if (!feat_ops[feat].process)
3807 		return 0;
3808 
3809 	ff.buf  = (void *)fe->data;
3810 	ff.size = event->header.size - sizeof(*fe);
3811 	ff.ph = &session->header;
3812 
3813 	if (feat_ops[feat].process(&ff, NULL))
3814 		return -1;
3815 
3816 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3817 		return 0;
3818 
3819 	if (!feat_ops[feat].full_only ||
3820 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3821 		feat_ops[feat].print(&ff, stdout);
3822 	} else {
3823 		fprintf(stdout, "# %s info available, use -I to display\n",
3824 			feat_ops[feat].name);
3825 	}
3826 
3827 	return 0;
3828 }
3829 
3830 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3831 {
3832 	struct perf_record_event_update *ev = &event->event_update;
3833 	struct perf_record_event_update_scale *ev_scale;
3834 	struct perf_record_event_update_cpus *ev_cpus;
3835 	struct perf_cpu_map *map;
3836 	size_t ret;
3837 
3838 	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3839 
3840 	switch (ev->type) {
3841 	case PERF_EVENT_UPDATE__SCALE:
3842 		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3843 		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3844 		break;
3845 	case PERF_EVENT_UPDATE__UNIT:
3846 		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3847 		break;
3848 	case PERF_EVENT_UPDATE__NAME:
3849 		ret += fprintf(fp, "... name:  %s\n", ev->data);
3850 		break;
3851 	case PERF_EVENT_UPDATE__CPUS:
3852 		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3853 		ret += fprintf(fp, "... ");
3854 
3855 		map = cpu_map__new_data(&ev_cpus->cpus);
3856 		if (map)
3857 			ret += cpu_map__fprintf(map, fp);
3858 		else
3859 			ret += fprintf(fp, "failed to get cpus\n");
3860 		break;
3861 	default:
3862 		ret += fprintf(fp, "... unknown type\n");
3863 		break;
3864 	}
3865 
3866 	return ret;
3867 }
3868 
3869 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3870 			     union perf_event *event,
3871 			     struct evlist **pevlist)
3872 {
3873 	u32 i, ids, n_ids;
3874 	struct evsel *evsel;
3875 	struct evlist *evlist = *pevlist;
3876 
3877 	if (evlist == NULL) {
3878 		*pevlist = evlist = evlist__new();
3879 		if (evlist == NULL)
3880 			return -ENOMEM;
3881 	}
3882 
3883 	evsel = evsel__new(&event->attr.attr);
3884 	if (evsel == NULL)
3885 		return -ENOMEM;
3886 
3887 	evlist__add(evlist, evsel);
3888 
3889 	ids = event->header.size;
3890 	ids -= (void *)&event->attr.id - (void *)event;
3891 	n_ids = ids / sizeof(u64);
3892 	/*
3893 	 * We don't have the cpu and thread maps on the header, so
3894 	 * for allocating the perf_sample_id table we fake 1 cpu and
3895 	 * hattr->ids threads.
3896 	 */
3897 	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
3898 		return -ENOMEM;
3899 
3900 	for (i = 0; i < n_ids; i++) {
3901 		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
3902 	}
3903 
3904 	return 0;
3905 }
3906 
3907 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3908 				     union perf_event *event,
3909 				     struct evlist **pevlist)
3910 {
3911 	struct perf_record_event_update *ev = &event->event_update;
3912 	struct perf_record_event_update_scale *ev_scale;
3913 	struct perf_record_event_update_cpus *ev_cpus;
3914 	struct evlist *evlist;
3915 	struct evsel *evsel;
3916 	struct perf_cpu_map *map;
3917 
3918 	if (!pevlist || *pevlist == NULL)
3919 		return -EINVAL;
3920 
3921 	evlist = *pevlist;
3922 
3923 	evsel = perf_evlist__id2evsel(evlist, ev->id);
3924 	if (evsel == NULL)
3925 		return -EINVAL;
3926 
3927 	switch (ev->type) {
3928 	case PERF_EVENT_UPDATE__UNIT:
3929 		evsel->unit = strdup(ev->data);
3930 		break;
3931 	case PERF_EVENT_UPDATE__NAME:
3932 		evsel->name = strdup(ev->data);
3933 		break;
3934 	case PERF_EVENT_UPDATE__SCALE:
3935 		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3936 		evsel->scale = ev_scale->scale;
3937 		break;
3938 	case PERF_EVENT_UPDATE__CPUS:
3939 		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3940 
3941 		map = cpu_map__new_data(&ev_cpus->cpus);
3942 		if (map)
3943 			evsel->core.own_cpus = map;
3944 		else
3945 			pr_err("failed to get event_update cpus\n");
3946 	default:
3947 		break;
3948 	}
3949 
3950 	return 0;
3951 }
3952 
3953 int perf_event__process_tracing_data(struct perf_session *session,
3954 				     union perf_event *event)
3955 {
3956 	ssize_t size_read, padding, size = event->tracing_data.size;
3957 	int fd = perf_data__fd(session->data);
3958 	char buf[BUFSIZ];
3959 
3960 	/*
3961 	 * The pipe fd is already in proper place and in any case
3962 	 * we can't move it, and we'd screw the case where we read
3963 	 * 'pipe' data from regular file. The trace_report reads
3964 	 * data from 'fd' so we need to set it directly behind the
3965 	 * event, where the tracing data starts.
3966 	 */
3967 	if (!perf_data__is_pipe(session->data)) {
3968 		off_t offset = lseek(fd, 0, SEEK_CUR);
3969 
3970 		/* setup for reading amidst mmap */
3971 		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
3972 		      SEEK_SET);
3973 	}
3974 
3975 	size_read = trace_report(fd, &session->tevent,
3976 				 session->repipe);
3977 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3978 
3979 	if (readn(fd, buf, padding) < 0) {
3980 		pr_err("%s: reading input file", __func__);
3981 		return -1;
3982 	}
3983 	if (session->repipe) {
3984 		int retw = write(STDOUT_FILENO, buf, padding);
3985 		if (retw <= 0 || retw != padding) {
3986 			pr_err("%s: repiping tracing data padding", __func__);
3987 			return -1;
3988 		}
3989 	}
3990 
3991 	if (size_read + padding != size) {
3992 		pr_err("%s: tracing data size mismatch", __func__);
3993 		return -1;
3994 	}
3995 
3996 	perf_evlist__prepare_tracepoint_events(session->evlist,
3997 					       session->tevent.pevent);
3998 
3999 	return size_read + padding;
4000 }
4001 
4002 int perf_event__process_build_id(struct perf_session *session,
4003 				 union perf_event *event)
4004 {
4005 	__event_process_build_id(&event->build_id,
4006 				 event->build_id.filename,
4007 				 session);
4008 	return 0;
4009 }
4010