xref: /openbmc/linux/tools/perf/util/header.c (revision 2e6ae11dd0d1c37f44cec51a58fb2092e55ed0f5)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "util.h"
5 #include "string2.h"
6 #include <sys/param.h>
7 #include <sys/types.h>
8 #include <byteswap.h>
9 #include <unistd.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/stringify.h>
17 #include <sys/stat.h>
18 #include <sys/utsname.h>
19 #include <linux/time64.h>
20 #include <dirent.h>
21 
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "header.h"
25 #include "memswap.h"
26 #include "../perf.h"
27 #include "trace-event.h"
28 #include "session.h"
29 #include "symbol.h"
30 #include "debug.h"
31 #include "cpumap.h"
32 #include "pmu.h"
33 #include "vdso.h"
34 #include "strbuf.h"
35 #include "build-id.h"
36 #include "data.h"
37 #include <api/fs/fs.h>
38 #include "asm/bug.h"
39 #include "tool.h"
40 #include "time-utils.h"
41 #include "units.h"
42 
43 #include "sane_ctype.h"
44 
45 /*
46  * magic2 = "PERFILE2"
47  * must be a numerical value to let the endianness
48  * determine the memory layout. That way we are able
49  * to detect endianness when reading the perf.data file
50  * back.
51  *
52  * we check for legacy (PERFFILE) format.
53  */
54 static const char *__perf_magic1 = "PERFFILE";
55 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
56 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
57 
58 #define PERF_MAGIC	__perf_magic2
59 
60 const char perf_version_string[] = PERF_VERSION;
61 
62 struct perf_file_attr {
63 	struct perf_event_attr	attr;
64 	struct perf_file_section	ids;
65 };
66 
67 struct feat_fd {
68 	struct perf_header	*ph;
69 	int			fd;
70 	void			*buf;	/* Either buf != NULL or fd >= 0 */
71 	ssize_t			offset;
72 	size_t			size;
73 	struct perf_evsel	*events;
74 };
75 
76 void perf_header__set_feat(struct perf_header *header, int feat)
77 {
78 	set_bit(feat, header->adds_features);
79 }
80 
81 void perf_header__clear_feat(struct perf_header *header, int feat)
82 {
83 	clear_bit(feat, header->adds_features);
84 }
85 
86 bool perf_header__has_feat(const struct perf_header *header, int feat)
87 {
88 	return test_bit(feat, header->adds_features);
89 }
90 
91 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
92 {
93 	ssize_t ret = writen(ff->fd, buf, size);
94 
95 	if (ret != (ssize_t)size)
96 		return ret < 0 ? (int)ret : -1;
97 	return 0;
98 }
99 
100 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
101 {
102 	/* struct perf_event_header::size is u16 */
103 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
104 	size_t new_size = ff->size;
105 	void *addr;
106 
107 	if (size + ff->offset > max_size)
108 		return -E2BIG;
109 
110 	while (size > (new_size - ff->offset))
111 		new_size <<= 1;
112 	new_size = min(max_size, new_size);
113 
114 	if (ff->size < new_size) {
115 		addr = realloc(ff->buf, new_size);
116 		if (!addr)
117 			return -ENOMEM;
118 		ff->buf = addr;
119 		ff->size = new_size;
120 	}
121 
122 	memcpy(ff->buf + ff->offset, buf, size);
123 	ff->offset += size;
124 
125 	return 0;
126 }
127 
128 /* Return: 0 if succeded, -ERR if failed. */
129 int do_write(struct feat_fd *ff, const void *buf, size_t size)
130 {
131 	if (!ff->buf)
132 		return __do_write_fd(ff, buf, size);
133 	return __do_write_buf(ff, buf, size);
134 }
135 
136 /* Return: 0 if succeded, -ERR if failed. */
137 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
138 {
139 	u64 *p = (u64 *) set;
140 	int i, ret;
141 
142 	ret = do_write(ff, &size, sizeof(size));
143 	if (ret < 0)
144 		return ret;
145 
146 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
147 		ret = do_write(ff, p + i, sizeof(*p));
148 		if (ret < 0)
149 			return ret;
150 	}
151 
152 	return 0;
153 }
154 
155 /* Return: 0 if succeded, -ERR if failed. */
156 int write_padded(struct feat_fd *ff, const void *bf,
157 		 size_t count, size_t count_aligned)
158 {
159 	static const char zero_buf[NAME_ALIGN];
160 	int err = do_write(ff, bf, count);
161 
162 	if (!err)
163 		err = do_write(ff, zero_buf, count_aligned - count);
164 
165 	return err;
166 }
167 
168 #define string_size(str)						\
169 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
170 
171 /* Return: 0 if succeded, -ERR if failed. */
172 static int do_write_string(struct feat_fd *ff, const char *str)
173 {
174 	u32 len, olen;
175 	int ret;
176 
177 	olen = strlen(str) + 1;
178 	len = PERF_ALIGN(olen, NAME_ALIGN);
179 
180 	/* write len, incl. \0 */
181 	ret = do_write(ff, &len, sizeof(len));
182 	if (ret < 0)
183 		return ret;
184 
185 	return write_padded(ff, str, olen, len);
186 }
187 
188 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
189 {
190 	ssize_t ret = readn(ff->fd, addr, size);
191 
192 	if (ret != size)
193 		return ret < 0 ? (int)ret : -1;
194 	return 0;
195 }
196 
197 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
198 {
199 	if (size > (ssize_t)ff->size - ff->offset)
200 		return -1;
201 
202 	memcpy(addr, ff->buf + ff->offset, size);
203 	ff->offset += size;
204 
205 	return 0;
206 
207 }
208 
209 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
210 {
211 	if (!ff->buf)
212 		return __do_read_fd(ff, addr, size);
213 	return __do_read_buf(ff, addr, size);
214 }
215 
216 static int do_read_u32(struct feat_fd *ff, u32 *addr)
217 {
218 	int ret;
219 
220 	ret = __do_read(ff, addr, sizeof(*addr));
221 	if (ret)
222 		return ret;
223 
224 	if (ff->ph->needs_swap)
225 		*addr = bswap_32(*addr);
226 	return 0;
227 }
228 
229 static int do_read_u64(struct feat_fd *ff, u64 *addr)
230 {
231 	int ret;
232 
233 	ret = __do_read(ff, addr, sizeof(*addr));
234 	if (ret)
235 		return ret;
236 
237 	if (ff->ph->needs_swap)
238 		*addr = bswap_64(*addr);
239 	return 0;
240 }
241 
242 static char *do_read_string(struct feat_fd *ff)
243 {
244 	u32 len;
245 	char *buf;
246 
247 	if (do_read_u32(ff, &len))
248 		return NULL;
249 
250 	buf = malloc(len);
251 	if (!buf)
252 		return NULL;
253 
254 	if (!__do_read(ff, buf, len)) {
255 		/*
256 		 * strings are padded by zeroes
257 		 * thus the actual strlen of buf
258 		 * may be less than len
259 		 */
260 		return buf;
261 	}
262 
263 	free(buf);
264 	return NULL;
265 }
266 
267 /* Return: 0 if succeded, -ERR if failed. */
268 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
269 {
270 	unsigned long *set;
271 	u64 size, *p;
272 	int i, ret;
273 
274 	ret = do_read_u64(ff, &size);
275 	if (ret)
276 		return ret;
277 
278 	set = bitmap_alloc(size);
279 	if (!set)
280 		return -ENOMEM;
281 
282 	p = (u64 *) set;
283 
284 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
285 		ret = do_read_u64(ff, p + i);
286 		if (ret < 0) {
287 			free(set);
288 			return ret;
289 		}
290 	}
291 
292 	*pset  = set;
293 	*psize = size;
294 	return 0;
295 }
296 
297 static int write_tracing_data(struct feat_fd *ff,
298 			      struct perf_evlist *evlist)
299 {
300 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
301 		return -1;
302 
303 	return read_tracing_data(ff->fd, &evlist->entries);
304 }
305 
306 static int write_build_id(struct feat_fd *ff,
307 			  struct perf_evlist *evlist __maybe_unused)
308 {
309 	struct perf_session *session;
310 	int err;
311 
312 	session = container_of(ff->ph, struct perf_session, header);
313 
314 	if (!perf_session__read_build_ids(session, true))
315 		return -1;
316 
317 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
318 		return -1;
319 
320 	err = perf_session__write_buildid_table(session, ff);
321 	if (err < 0) {
322 		pr_debug("failed to write buildid table\n");
323 		return err;
324 	}
325 	perf_session__cache_build_ids(session);
326 
327 	return 0;
328 }
329 
330 static int write_hostname(struct feat_fd *ff,
331 			  struct perf_evlist *evlist __maybe_unused)
332 {
333 	struct utsname uts;
334 	int ret;
335 
336 	ret = uname(&uts);
337 	if (ret < 0)
338 		return -1;
339 
340 	return do_write_string(ff, uts.nodename);
341 }
342 
343 static int write_osrelease(struct feat_fd *ff,
344 			   struct perf_evlist *evlist __maybe_unused)
345 {
346 	struct utsname uts;
347 	int ret;
348 
349 	ret = uname(&uts);
350 	if (ret < 0)
351 		return -1;
352 
353 	return do_write_string(ff, uts.release);
354 }
355 
356 static int write_arch(struct feat_fd *ff,
357 		      struct perf_evlist *evlist __maybe_unused)
358 {
359 	struct utsname uts;
360 	int ret;
361 
362 	ret = uname(&uts);
363 	if (ret < 0)
364 		return -1;
365 
366 	return do_write_string(ff, uts.machine);
367 }
368 
369 static int write_version(struct feat_fd *ff,
370 			 struct perf_evlist *evlist __maybe_unused)
371 {
372 	return do_write_string(ff, perf_version_string);
373 }
374 
375 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
376 {
377 	FILE *file;
378 	char *buf = NULL;
379 	char *s, *p;
380 	const char *search = cpuinfo_proc;
381 	size_t len = 0;
382 	int ret = -1;
383 
384 	if (!search)
385 		return -1;
386 
387 	file = fopen("/proc/cpuinfo", "r");
388 	if (!file)
389 		return -1;
390 
391 	while (getline(&buf, &len, file) > 0) {
392 		ret = strncmp(buf, search, strlen(search));
393 		if (!ret)
394 			break;
395 	}
396 
397 	if (ret) {
398 		ret = -1;
399 		goto done;
400 	}
401 
402 	s = buf;
403 
404 	p = strchr(buf, ':');
405 	if (p && *(p+1) == ' ' && *(p+2))
406 		s = p + 2;
407 	p = strchr(s, '\n');
408 	if (p)
409 		*p = '\0';
410 
411 	/* squash extra space characters (branding string) */
412 	p = s;
413 	while (*p) {
414 		if (isspace(*p)) {
415 			char *r = p + 1;
416 			char *q = r;
417 			*p = ' ';
418 			while (*q && isspace(*q))
419 				q++;
420 			if (q != (p+1))
421 				while ((*r++ = *q++));
422 		}
423 		p++;
424 	}
425 	ret = do_write_string(ff, s);
426 done:
427 	free(buf);
428 	fclose(file);
429 	return ret;
430 }
431 
432 static int write_cpudesc(struct feat_fd *ff,
433 		       struct perf_evlist *evlist __maybe_unused)
434 {
435 	const char *cpuinfo_procs[] = CPUINFO_PROC;
436 	unsigned int i;
437 
438 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
439 		int ret;
440 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
441 		if (ret >= 0)
442 			return ret;
443 	}
444 	return -1;
445 }
446 
447 
448 static int write_nrcpus(struct feat_fd *ff,
449 			struct perf_evlist *evlist __maybe_unused)
450 {
451 	long nr;
452 	u32 nrc, nra;
453 	int ret;
454 
455 	nrc = cpu__max_present_cpu();
456 
457 	nr = sysconf(_SC_NPROCESSORS_ONLN);
458 	if (nr < 0)
459 		return -1;
460 
461 	nra = (u32)(nr & UINT_MAX);
462 
463 	ret = do_write(ff, &nrc, sizeof(nrc));
464 	if (ret < 0)
465 		return ret;
466 
467 	return do_write(ff, &nra, sizeof(nra));
468 }
469 
470 static int write_event_desc(struct feat_fd *ff,
471 			    struct perf_evlist *evlist)
472 {
473 	struct perf_evsel *evsel;
474 	u32 nre, nri, sz;
475 	int ret;
476 
477 	nre = evlist->nr_entries;
478 
479 	/*
480 	 * write number of events
481 	 */
482 	ret = do_write(ff, &nre, sizeof(nre));
483 	if (ret < 0)
484 		return ret;
485 
486 	/*
487 	 * size of perf_event_attr struct
488 	 */
489 	sz = (u32)sizeof(evsel->attr);
490 	ret = do_write(ff, &sz, sizeof(sz));
491 	if (ret < 0)
492 		return ret;
493 
494 	evlist__for_each_entry(evlist, evsel) {
495 		ret = do_write(ff, &evsel->attr, sz);
496 		if (ret < 0)
497 			return ret;
498 		/*
499 		 * write number of unique id per event
500 		 * there is one id per instance of an event
501 		 *
502 		 * copy into an nri to be independent of the
503 		 * type of ids,
504 		 */
505 		nri = evsel->ids;
506 		ret = do_write(ff, &nri, sizeof(nri));
507 		if (ret < 0)
508 			return ret;
509 
510 		/*
511 		 * write event string as passed on cmdline
512 		 */
513 		ret = do_write_string(ff, perf_evsel__name(evsel));
514 		if (ret < 0)
515 			return ret;
516 		/*
517 		 * write unique ids for this event
518 		 */
519 		ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
520 		if (ret < 0)
521 			return ret;
522 	}
523 	return 0;
524 }
525 
526 static int write_cmdline(struct feat_fd *ff,
527 			 struct perf_evlist *evlist __maybe_unused)
528 {
529 	char buf[MAXPATHLEN];
530 	u32 n;
531 	int i, ret;
532 
533 	/* actual path to perf binary */
534 	ret = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
535 	if (ret <= 0)
536 		return -1;
537 
538 	/* readlink() does not add null termination */
539 	buf[ret] = '\0';
540 
541 	/* account for binary path */
542 	n = perf_env.nr_cmdline + 1;
543 
544 	ret = do_write(ff, &n, sizeof(n));
545 	if (ret < 0)
546 		return ret;
547 
548 	ret = do_write_string(ff, buf);
549 	if (ret < 0)
550 		return ret;
551 
552 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
553 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
554 		if (ret < 0)
555 			return ret;
556 	}
557 	return 0;
558 }
559 
560 #define CORE_SIB_FMT \
561 	"/sys/devices/system/cpu/cpu%d/topology/core_siblings_list"
562 #define THRD_SIB_FMT \
563 	"/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list"
564 
565 struct cpu_topo {
566 	u32 cpu_nr;
567 	u32 core_sib;
568 	u32 thread_sib;
569 	char **core_siblings;
570 	char **thread_siblings;
571 };
572 
573 static int build_cpu_topo(struct cpu_topo *tp, int cpu)
574 {
575 	FILE *fp;
576 	char filename[MAXPATHLEN];
577 	char *buf = NULL, *p;
578 	size_t len = 0;
579 	ssize_t sret;
580 	u32 i = 0;
581 	int ret = -1;
582 
583 	sprintf(filename, CORE_SIB_FMT, cpu);
584 	fp = fopen(filename, "r");
585 	if (!fp)
586 		goto try_threads;
587 
588 	sret = getline(&buf, &len, fp);
589 	fclose(fp);
590 	if (sret <= 0)
591 		goto try_threads;
592 
593 	p = strchr(buf, '\n');
594 	if (p)
595 		*p = '\0';
596 
597 	for (i = 0; i < tp->core_sib; i++) {
598 		if (!strcmp(buf, tp->core_siblings[i]))
599 			break;
600 	}
601 	if (i == tp->core_sib) {
602 		tp->core_siblings[i] = buf;
603 		tp->core_sib++;
604 		buf = NULL;
605 		len = 0;
606 	}
607 	ret = 0;
608 
609 try_threads:
610 	sprintf(filename, THRD_SIB_FMT, cpu);
611 	fp = fopen(filename, "r");
612 	if (!fp)
613 		goto done;
614 
615 	if (getline(&buf, &len, fp) <= 0)
616 		goto done;
617 
618 	p = strchr(buf, '\n');
619 	if (p)
620 		*p = '\0';
621 
622 	for (i = 0; i < tp->thread_sib; i++) {
623 		if (!strcmp(buf, tp->thread_siblings[i]))
624 			break;
625 	}
626 	if (i == tp->thread_sib) {
627 		tp->thread_siblings[i] = buf;
628 		tp->thread_sib++;
629 		buf = NULL;
630 	}
631 	ret = 0;
632 done:
633 	if(fp)
634 		fclose(fp);
635 	free(buf);
636 	return ret;
637 }
638 
639 static void free_cpu_topo(struct cpu_topo *tp)
640 {
641 	u32 i;
642 
643 	if (!tp)
644 		return;
645 
646 	for (i = 0 ; i < tp->core_sib; i++)
647 		zfree(&tp->core_siblings[i]);
648 
649 	for (i = 0 ; i < tp->thread_sib; i++)
650 		zfree(&tp->thread_siblings[i]);
651 
652 	free(tp);
653 }
654 
655 static struct cpu_topo *build_cpu_topology(void)
656 {
657 	struct cpu_topo *tp = NULL;
658 	void *addr;
659 	u32 nr, i;
660 	size_t sz;
661 	long ncpus;
662 	int ret = -1;
663 	struct cpu_map *map;
664 
665 	ncpus = cpu__max_present_cpu();
666 
667 	/* build online CPU map */
668 	map = cpu_map__new(NULL);
669 	if (map == NULL) {
670 		pr_debug("failed to get system cpumap\n");
671 		return NULL;
672 	}
673 
674 	nr = (u32)(ncpus & UINT_MAX);
675 
676 	sz = nr * sizeof(char *);
677 	addr = calloc(1, sizeof(*tp) + 2 * sz);
678 	if (!addr)
679 		goto out_free;
680 
681 	tp = addr;
682 	tp->cpu_nr = nr;
683 	addr += sizeof(*tp);
684 	tp->core_siblings = addr;
685 	addr += sz;
686 	tp->thread_siblings = addr;
687 
688 	for (i = 0; i < nr; i++) {
689 		if (!cpu_map__has(map, i))
690 			continue;
691 
692 		ret = build_cpu_topo(tp, i);
693 		if (ret < 0)
694 			break;
695 	}
696 
697 out_free:
698 	cpu_map__put(map);
699 	if (ret) {
700 		free_cpu_topo(tp);
701 		tp = NULL;
702 	}
703 	return tp;
704 }
705 
706 static int write_cpu_topology(struct feat_fd *ff,
707 			      struct perf_evlist *evlist __maybe_unused)
708 {
709 	struct cpu_topo *tp;
710 	u32 i;
711 	int ret, j;
712 
713 	tp = build_cpu_topology();
714 	if (!tp)
715 		return -1;
716 
717 	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
718 	if (ret < 0)
719 		goto done;
720 
721 	for (i = 0; i < tp->core_sib; i++) {
722 		ret = do_write_string(ff, tp->core_siblings[i]);
723 		if (ret < 0)
724 			goto done;
725 	}
726 	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
727 	if (ret < 0)
728 		goto done;
729 
730 	for (i = 0; i < tp->thread_sib; i++) {
731 		ret = do_write_string(ff, tp->thread_siblings[i]);
732 		if (ret < 0)
733 			break;
734 	}
735 
736 	ret = perf_env__read_cpu_topology_map(&perf_env);
737 	if (ret < 0)
738 		goto done;
739 
740 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
741 		ret = do_write(ff, &perf_env.cpu[j].core_id,
742 			       sizeof(perf_env.cpu[j].core_id));
743 		if (ret < 0)
744 			return ret;
745 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
746 			       sizeof(perf_env.cpu[j].socket_id));
747 		if (ret < 0)
748 			return ret;
749 	}
750 done:
751 	free_cpu_topo(tp);
752 	return ret;
753 }
754 
755 
756 
757 static int write_total_mem(struct feat_fd *ff,
758 			   struct perf_evlist *evlist __maybe_unused)
759 {
760 	char *buf = NULL;
761 	FILE *fp;
762 	size_t len = 0;
763 	int ret = -1, n;
764 	uint64_t mem;
765 
766 	fp = fopen("/proc/meminfo", "r");
767 	if (!fp)
768 		return -1;
769 
770 	while (getline(&buf, &len, fp) > 0) {
771 		ret = strncmp(buf, "MemTotal:", 9);
772 		if (!ret)
773 			break;
774 	}
775 	if (!ret) {
776 		n = sscanf(buf, "%*s %"PRIu64, &mem);
777 		if (n == 1)
778 			ret = do_write(ff, &mem, sizeof(mem));
779 	} else
780 		ret = -1;
781 	free(buf);
782 	fclose(fp);
783 	return ret;
784 }
785 
786 static int write_topo_node(struct feat_fd *ff, int node)
787 {
788 	char str[MAXPATHLEN];
789 	char field[32];
790 	char *buf = NULL, *p;
791 	size_t len = 0;
792 	FILE *fp;
793 	u64 mem_total, mem_free, mem;
794 	int ret = -1;
795 
796 	sprintf(str, "/sys/devices/system/node/node%d/meminfo", node);
797 	fp = fopen(str, "r");
798 	if (!fp)
799 		return -1;
800 
801 	while (getline(&buf, &len, fp) > 0) {
802 		/* skip over invalid lines */
803 		if (!strchr(buf, ':'))
804 			continue;
805 		if (sscanf(buf, "%*s %*d %31s %"PRIu64, field, &mem) != 2)
806 			goto done;
807 		if (!strcmp(field, "MemTotal:"))
808 			mem_total = mem;
809 		if (!strcmp(field, "MemFree:"))
810 			mem_free = mem;
811 	}
812 
813 	fclose(fp);
814 	fp = NULL;
815 
816 	ret = do_write(ff, &mem_total, sizeof(u64));
817 	if (ret)
818 		goto done;
819 
820 	ret = do_write(ff, &mem_free, sizeof(u64));
821 	if (ret)
822 		goto done;
823 
824 	ret = -1;
825 	sprintf(str, "/sys/devices/system/node/node%d/cpulist", node);
826 
827 	fp = fopen(str, "r");
828 	if (!fp)
829 		goto done;
830 
831 	if (getline(&buf, &len, fp) <= 0)
832 		goto done;
833 
834 	p = strchr(buf, '\n');
835 	if (p)
836 		*p = '\0';
837 
838 	ret = do_write_string(ff, buf);
839 done:
840 	free(buf);
841 	if (fp)
842 		fclose(fp);
843 	return ret;
844 }
845 
846 static int write_numa_topology(struct feat_fd *ff,
847 			       struct perf_evlist *evlist __maybe_unused)
848 {
849 	char *buf = NULL;
850 	size_t len = 0;
851 	FILE *fp;
852 	struct cpu_map *node_map = NULL;
853 	char *c;
854 	u32 nr, i, j;
855 	int ret = -1;
856 
857 	fp = fopen("/sys/devices/system/node/online", "r");
858 	if (!fp)
859 		return -1;
860 
861 	if (getline(&buf, &len, fp) <= 0)
862 		goto done;
863 
864 	c = strchr(buf, '\n');
865 	if (c)
866 		*c = '\0';
867 
868 	node_map = cpu_map__new(buf);
869 	if (!node_map)
870 		goto done;
871 
872 	nr = (u32)node_map->nr;
873 
874 	ret = do_write(ff, &nr, sizeof(nr));
875 	if (ret < 0)
876 		goto done;
877 
878 	for (i = 0; i < nr; i++) {
879 		j = (u32)node_map->map[i];
880 		ret = do_write(ff, &j, sizeof(j));
881 		if (ret < 0)
882 			break;
883 
884 		ret = write_topo_node(ff, i);
885 		if (ret < 0)
886 			break;
887 	}
888 done:
889 	free(buf);
890 	fclose(fp);
891 	cpu_map__put(node_map);
892 	return ret;
893 }
894 
895 /*
896  * File format:
897  *
898  * struct pmu_mappings {
899  *	u32	pmu_num;
900  *	struct pmu_map {
901  *		u32	type;
902  *		char	name[];
903  *	}[pmu_num];
904  * };
905  */
906 
907 static int write_pmu_mappings(struct feat_fd *ff,
908 			      struct perf_evlist *evlist __maybe_unused)
909 {
910 	struct perf_pmu *pmu = NULL;
911 	u32 pmu_num = 0;
912 	int ret;
913 
914 	/*
915 	 * Do a first pass to count number of pmu to avoid lseek so this
916 	 * works in pipe mode as well.
917 	 */
918 	while ((pmu = perf_pmu__scan(pmu))) {
919 		if (!pmu->name)
920 			continue;
921 		pmu_num++;
922 	}
923 
924 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
925 	if (ret < 0)
926 		return ret;
927 
928 	while ((pmu = perf_pmu__scan(pmu))) {
929 		if (!pmu->name)
930 			continue;
931 
932 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
933 		if (ret < 0)
934 			return ret;
935 
936 		ret = do_write_string(ff, pmu->name);
937 		if (ret < 0)
938 			return ret;
939 	}
940 
941 	return 0;
942 }
943 
944 /*
945  * File format:
946  *
947  * struct group_descs {
948  *	u32	nr_groups;
949  *	struct group_desc {
950  *		char	name[];
951  *		u32	leader_idx;
952  *		u32	nr_members;
953  *	}[nr_groups];
954  * };
955  */
956 static int write_group_desc(struct feat_fd *ff,
957 			    struct perf_evlist *evlist)
958 {
959 	u32 nr_groups = evlist->nr_groups;
960 	struct perf_evsel *evsel;
961 	int ret;
962 
963 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
964 	if (ret < 0)
965 		return ret;
966 
967 	evlist__for_each_entry(evlist, evsel) {
968 		if (perf_evsel__is_group_leader(evsel) &&
969 		    evsel->nr_members > 1) {
970 			const char *name = evsel->group_name ?: "{anon_group}";
971 			u32 leader_idx = evsel->idx;
972 			u32 nr_members = evsel->nr_members;
973 
974 			ret = do_write_string(ff, name);
975 			if (ret < 0)
976 				return ret;
977 
978 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
979 			if (ret < 0)
980 				return ret;
981 
982 			ret = do_write(ff, &nr_members, sizeof(nr_members));
983 			if (ret < 0)
984 				return ret;
985 		}
986 	}
987 	return 0;
988 }
989 
990 /*
991  * default get_cpuid(): nothing gets recorded
992  * actual implementation must be in arch/$(SRCARCH)/util/header.c
993  */
994 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
995 {
996 	return -1;
997 }
998 
999 static int write_cpuid(struct feat_fd *ff,
1000 		       struct perf_evlist *evlist __maybe_unused)
1001 {
1002 	char buffer[64];
1003 	int ret;
1004 
1005 	ret = get_cpuid(buffer, sizeof(buffer));
1006 	if (!ret)
1007 		goto write_it;
1008 
1009 	return -1;
1010 write_it:
1011 	return do_write_string(ff, buffer);
1012 }
1013 
1014 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
1015 			      struct perf_evlist *evlist __maybe_unused)
1016 {
1017 	return 0;
1018 }
1019 
1020 static int write_auxtrace(struct feat_fd *ff,
1021 			  struct perf_evlist *evlist __maybe_unused)
1022 {
1023 	struct perf_session *session;
1024 	int err;
1025 
1026 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
1027 		return -1;
1028 
1029 	session = container_of(ff->ph, struct perf_session, header);
1030 
1031 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
1032 	if (err < 0)
1033 		pr_err("Failed to write auxtrace index\n");
1034 	return err;
1035 }
1036 
1037 static int cpu_cache_level__sort(const void *a, const void *b)
1038 {
1039 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1040 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1041 
1042 	return cache_a->level - cache_b->level;
1043 }
1044 
1045 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1046 {
1047 	if (a->level != b->level)
1048 		return false;
1049 
1050 	if (a->line_size != b->line_size)
1051 		return false;
1052 
1053 	if (a->sets != b->sets)
1054 		return false;
1055 
1056 	if (a->ways != b->ways)
1057 		return false;
1058 
1059 	if (strcmp(a->type, b->type))
1060 		return false;
1061 
1062 	if (strcmp(a->size, b->size))
1063 		return false;
1064 
1065 	if (strcmp(a->map, b->map))
1066 		return false;
1067 
1068 	return true;
1069 }
1070 
1071 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1072 {
1073 	char path[PATH_MAX], file[PATH_MAX];
1074 	struct stat st;
1075 	size_t len;
1076 
1077 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1078 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1079 
1080 	if (stat(file, &st))
1081 		return 1;
1082 
1083 	scnprintf(file, PATH_MAX, "%s/level", path);
1084 	if (sysfs__read_int(file, (int *) &cache->level))
1085 		return -1;
1086 
1087 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1088 	if (sysfs__read_int(file, (int *) &cache->line_size))
1089 		return -1;
1090 
1091 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1092 	if (sysfs__read_int(file, (int *) &cache->sets))
1093 		return -1;
1094 
1095 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1096 	if (sysfs__read_int(file, (int *) &cache->ways))
1097 		return -1;
1098 
1099 	scnprintf(file, PATH_MAX, "%s/type", path);
1100 	if (sysfs__read_str(file, &cache->type, &len))
1101 		return -1;
1102 
1103 	cache->type[len] = 0;
1104 	cache->type = rtrim(cache->type);
1105 
1106 	scnprintf(file, PATH_MAX, "%s/size", path);
1107 	if (sysfs__read_str(file, &cache->size, &len)) {
1108 		free(cache->type);
1109 		return -1;
1110 	}
1111 
1112 	cache->size[len] = 0;
1113 	cache->size = rtrim(cache->size);
1114 
1115 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1116 	if (sysfs__read_str(file, &cache->map, &len)) {
1117 		free(cache->map);
1118 		free(cache->type);
1119 		return -1;
1120 	}
1121 
1122 	cache->map[len] = 0;
1123 	cache->map = rtrim(cache->map);
1124 	return 0;
1125 }
1126 
1127 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1128 {
1129 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1130 }
1131 
1132 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1133 {
1134 	u32 i, cnt = 0;
1135 	long ncpus;
1136 	u32 nr, cpu;
1137 	u16 level;
1138 
1139 	ncpus = sysconf(_SC_NPROCESSORS_CONF);
1140 	if (ncpus < 0)
1141 		return -1;
1142 
1143 	nr = (u32)(ncpus & UINT_MAX);
1144 
1145 	for (cpu = 0; cpu < nr; cpu++) {
1146 		for (level = 0; level < 10; level++) {
1147 			struct cpu_cache_level c;
1148 			int err;
1149 
1150 			err = cpu_cache_level__read(&c, cpu, level);
1151 			if (err < 0)
1152 				return err;
1153 
1154 			if (err == 1)
1155 				break;
1156 
1157 			for (i = 0; i < cnt; i++) {
1158 				if (cpu_cache_level__cmp(&c, &caches[i]))
1159 					break;
1160 			}
1161 
1162 			if (i == cnt)
1163 				caches[cnt++] = c;
1164 			else
1165 				cpu_cache_level__free(&c);
1166 
1167 			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1168 				goto out;
1169 		}
1170 	}
1171  out:
1172 	*cntp = cnt;
1173 	return 0;
1174 }
1175 
1176 #define MAX_CACHES 2000
1177 
1178 static int write_cache(struct feat_fd *ff,
1179 		       struct perf_evlist *evlist __maybe_unused)
1180 {
1181 	struct cpu_cache_level caches[MAX_CACHES];
1182 	u32 cnt = 0, i, version = 1;
1183 	int ret;
1184 
1185 	ret = build_caches(caches, MAX_CACHES, &cnt);
1186 	if (ret)
1187 		goto out;
1188 
1189 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1190 
1191 	ret = do_write(ff, &version, sizeof(u32));
1192 	if (ret < 0)
1193 		goto out;
1194 
1195 	ret = do_write(ff, &cnt, sizeof(u32));
1196 	if (ret < 0)
1197 		goto out;
1198 
1199 	for (i = 0; i < cnt; i++) {
1200 		struct cpu_cache_level *c = &caches[i];
1201 
1202 		#define _W(v)					\
1203 			ret = do_write(ff, &c->v, sizeof(u32));	\
1204 			if (ret < 0)				\
1205 				goto out;
1206 
1207 		_W(level)
1208 		_W(line_size)
1209 		_W(sets)
1210 		_W(ways)
1211 		#undef _W
1212 
1213 		#define _W(v)						\
1214 			ret = do_write_string(ff, (const char *) c->v);	\
1215 			if (ret < 0)					\
1216 				goto out;
1217 
1218 		_W(type)
1219 		_W(size)
1220 		_W(map)
1221 		#undef _W
1222 	}
1223 
1224 out:
1225 	for (i = 0; i < cnt; i++)
1226 		cpu_cache_level__free(&caches[i]);
1227 	return ret;
1228 }
1229 
1230 static int write_stat(struct feat_fd *ff __maybe_unused,
1231 		      struct perf_evlist *evlist __maybe_unused)
1232 {
1233 	return 0;
1234 }
1235 
1236 static int write_sample_time(struct feat_fd *ff,
1237 			     struct perf_evlist *evlist)
1238 {
1239 	int ret;
1240 
1241 	ret = do_write(ff, &evlist->first_sample_time,
1242 		       sizeof(evlist->first_sample_time));
1243 	if (ret < 0)
1244 		return ret;
1245 
1246 	return do_write(ff, &evlist->last_sample_time,
1247 			sizeof(evlist->last_sample_time));
1248 }
1249 
1250 
1251 static int memory_node__read(struct memory_node *n, unsigned long idx)
1252 {
1253 	unsigned int phys, size = 0;
1254 	char path[PATH_MAX];
1255 	struct dirent *ent;
1256 	DIR *dir;
1257 
1258 #define for_each_memory(mem, dir)					\
1259 	while ((ent = readdir(dir)))					\
1260 		if (strcmp(ent->d_name, ".") &&				\
1261 		    strcmp(ent->d_name, "..") &&			\
1262 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1263 
1264 	scnprintf(path, PATH_MAX,
1265 		  "%s/devices/system/node/node%lu",
1266 		  sysfs__mountpoint(), idx);
1267 
1268 	dir = opendir(path);
1269 	if (!dir) {
1270 		pr_warning("failed: cant' open memory sysfs data\n");
1271 		return -1;
1272 	}
1273 
1274 	for_each_memory(phys, dir) {
1275 		size = max(phys, size);
1276 	}
1277 
1278 	size++;
1279 
1280 	n->set = bitmap_alloc(size);
1281 	if (!n->set) {
1282 		closedir(dir);
1283 		return -ENOMEM;
1284 	}
1285 
1286 	n->node = idx;
1287 	n->size = size;
1288 
1289 	rewinddir(dir);
1290 
1291 	for_each_memory(phys, dir) {
1292 		set_bit(phys, n->set);
1293 	}
1294 
1295 	closedir(dir);
1296 	return 0;
1297 }
1298 
1299 static int memory_node__sort(const void *a, const void *b)
1300 {
1301 	const struct memory_node *na = a;
1302 	const struct memory_node *nb = b;
1303 
1304 	return na->node - nb->node;
1305 }
1306 
1307 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1308 {
1309 	char path[PATH_MAX];
1310 	struct dirent *ent;
1311 	DIR *dir;
1312 	u64 cnt = 0;
1313 	int ret = 0;
1314 
1315 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1316 		  sysfs__mountpoint());
1317 
1318 	dir = opendir(path);
1319 	if (!dir) {
1320 		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1321 			  __func__, path);
1322 		return -1;
1323 	}
1324 
1325 	while (!ret && (ent = readdir(dir))) {
1326 		unsigned int idx;
1327 		int r;
1328 
1329 		if (!strcmp(ent->d_name, ".") ||
1330 		    !strcmp(ent->d_name, ".."))
1331 			continue;
1332 
1333 		r = sscanf(ent->d_name, "node%u", &idx);
1334 		if (r != 1)
1335 			continue;
1336 
1337 		if (WARN_ONCE(cnt >= size,
1338 			      "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1339 			return -1;
1340 
1341 		ret = memory_node__read(&nodes[cnt++], idx);
1342 	}
1343 
1344 	*cntp = cnt;
1345 	closedir(dir);
1346 
1347 	if (!ret)
1348 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1349 
1350 	return ret;
1351 }
1352 
1353 #define MAX_MEMORY_NODES 2000
1354 
1355 /*
1356  * The MEM_TOPOLOGY holds physical memory map for every
1357  * node in system. The format of data is as follows:
1358  *
1359  *  0 - version          | for future changes
1360  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1361  * 16 - count            | number of nodes
1362  *
1363  * For each node we store map of physical indexes for
1364  * each node:
1365  *
1366  * 32 - node id          | node index
1367  * 40 - size             | size of bitmap
1368  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1369  */
1370 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1371 			      struct perf_evlist *evlist __maybe_unused)
1372 {
1373 	static struct memory_node nodes[MAX_MEMORY_NODES];
1374 	u64 bsize, version = 1, i, nr;
1375 	int ret;
1376 
1377 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1378 			      (unsigned long long *) &bsize);
1379 	if (ret)
1380 		return ret;
1381 
1382 	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1383 	if (ret)
1384 		return ret;
1385 
1386 	ret = do_write(ff, &version, sizeof(version));
1387 	if (ret < 0)
1388 		goto out;
1389 
1390 	ret = do_write(ff, &bsize, sizeof(bsize));
1391 	if (ret < 0)
1392 		goto out;
1393 
1394 	ret = do_write(ff, &nr, sizeof(nr));
1395 	if (ret < 0)
1396 		goto out;
1397 
1398 	for (i = 0; i < nr; i++) {
1399 		struct memory_node *n = &nodes[i];
1400 
1401 		#define _W(v)						\
1402 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1403 			if (ret < 0)					\
1404 				goto out;
1405 
1406 		_W(node)
1407 		_W(size)
1408 
1409 		#undef _W
1410 
1411 		ret = do_write_bitmap(ff, n->set, n->size);
1412 		if (ret < 0)
1413 			goto out;
1414 	}
1415 
1416 out:
1417 	return ret;
1418 }
1419 
1420 static void print_hostname(struct feat_fd *ff, FILE *fp)
1421 {
1422 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1423 }
1424 
1425 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1426 {
1427 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1428 }
1429 
1430 static void print_arch(struct feat_fd *ff, FILE *fp)
1431 {
1432 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1433 }
1434 
1435 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1436 {
1437 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1438 }
1439 
1440 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1441 {
1442 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1443 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1444 }
1445 
1446 static void print_version(struct feat_fd *ff, FILE *fp)
1447 {
1448 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1449 }
1450 
1451 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1452 {
1453 	int nr, i;
1454 
1455 	nr = ff->ph->env.nr_cmdline;
1456 
1457 	fprintf(fp, "# cmdline : ");
1458 
1459 	for (i = 0; i < nr; i++) {
1460 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1461 		if (!argv_i) {
1462 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1463 		} else {
1464 			char *mem = argv_i;
1465 			do {
1466 				char *quote = strchr(argv_i, '\'');
1467 				if (!quote)
1468 					break;
1469 				*quote++ = '\0';
1470 				fprintf(fp, "%s\\\'", argv_i);
1471 				argv_i = quote;
1472 			} while (1);
1473 			fprintf(fp, "%s ", argv_i);
1474 			free(mem);
1475 		}
1476 	}
1477 	fputc('\n', fp);
1478 }
1479 
1480 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1481 {
1482 	struct perf_header *ph = ff->ph;
1483 	int cpu_nr = ph->env.nr_cpus_avail;
1484 	int nr, i;
1485 	char *str;
1486 
1487 	nr = ph->env.nr_sibling_cores;
1488 	str = ph->env.sibling_cores;
1489 
1490 	for (i = 0; i < nr; i++) {
1491 		fprintf(fp, "# sibling cores   : %s\n", str);
1492 		str += strlen(str) + 1;
1493 	}
1494 
1495 	nr = ph->env.nr_sibling_threads;
1496 	str = ph->env.sibling_threads;
1497 
1498 	for (i = 0; i < nr; i++) {
1499 		fprintf(fp, "# sibling threads : %s\n", str);
1500 		str += strlen(str) + 1;
1501 	}
1502 
1503 	if (ph->env.cpu != NULL) {
1504 		for (i = 0; i < cpu_nr; i++)
1505 			fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i,
1506 				ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id);
1507 	} else
1508 		fprintf(fp, "# Core ID and Socket ID information is not available\n");
1509 }
1510 
1511 static void free_event_desc(struct perf_evsel *events)
1512 {
1513 	struct perf_evsel *evsel;
1514 
1515 	if (!events)
1516 		return;
1517 
1518 	for (evsel = events; evsel->attr.size; evsel++) {
1519 		zfree(&evsel->name);
1520 		zfree(&evsel->id);
1521 	}
1522 
1523 	free(events);
1524 }
1525 
1526 static struct perf_evsel *read_event_desc(struct feat_fd *ff)
1527 {
1528 	struct perf_evsel *evsel, *events = NULL;
1529 	u64 *id;
1530 	void *buf = NULL;
1531 	u32 nre, sz, nr, i, j;
1532 	size_t msz;
1533 
1534 	/* number of events */
1535 	if (do_read_u32(ff, &nre))
1536 		goto error;
1537 
1538 	if (do_read_u32(ff, &sz))
1539 		goto error;
1540 
1541 	/* buffer to hold on file attr struct */
1542 	buf = malloc(sz);
1543 	if (!buf)
1544 		goto error;
1545 
1546 	/* the last event terminates with evsel->attr.size == 0: */
1547 	events = calloc(nre + 1, sizeof(*events));
1548 	if (!events)
1549 		goto error;
1550 
1551 	msz = sizeof(evsel->attr);
1552 	if (sz < msz)
1553 		msz = sz;
1554 
1555 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1556 		evsel->idx = i;
1557 
1558 		/*
1559 		 * must read entire on-file attr struct to
1560 		 * sync up with layout.
1561 		 */
1562 		if (__do_read(ff, buf, sz))
1563 			goto error;
1564 
1565 		if (ff->ph->needs_swap)
1566 			perf_event__attr_swap(buf);
1567 
1568 		memcpy(&evsel->attr, buf, msz);
1569 
1570 		if (do_read_u32(ff, &nr))
1571 			goto error;
1572 
1573 		if (ff->ph->needs_swap)
1574 			evsel->needs_swap = true;
1575 
1576 		evsel->name = do_read_string(ff);
1577 		if (!evsel->name)
1578 			goto error;
1579 
1580 		if (!nr)
1581 			continue;
1582 
1583 		id = calloc(nr, sizeof(*id));
1584 		if (!id)
1585 			goto error;
1586 		evsel->ids = nr;
1587 		evsel->id = id;
1588 
1589 		for (j = 0 ; j < nr; j++) {
1590 			if (do_read_u64(ff, id))
1591 				goto error;
1592 			id++;
1593 		}
1594 	}
1595 out:
1596 	free(buf);
1597 	return events;
1598 error:
1599 	free_event_desc(events);
1600 	events = NULL;
1601 	goto out;
1602 }
1603 
1604 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1605 				void *priv __maybe_unused)
1606 {
1607 	return fprintf(fp, ", %s = %s", name, val);
1608 }
1609 
1610 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1611 {
1612 	struct perf_evsel *evsel, *events;
1613 	u32 j;
1614 	u64 *id;
1615 
1616 	if (ff->events)
1617 		events = ff->events;
1618 	else
1619 		events = read_event_desc(ff);
1620 
1621 	if (!events) {
1622 		fprintf(fp, "# event desc: not available or unable to read\n");
1623 		return;
1624 	}
1625 
1626 	for (evsel = events; evsel->attr.size; evsel++) {
1627 		fprintf(fp, "# event : name = %s, ", evsel->name);
1628 
1629 		if (evsel->ids) {
1630 			fprintf(fp, ", id = {");
1631 			for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1632 				if (j)
1633 					fputc(',', fp);
1634 				fprintf(fp, " %"PRIu64, *id);
1635 			}
1636 			fprintf(fp, " }");
1637 		}
1638 
1639 		perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1640 
1641 		fputc('\n', fp);
1642 	}
1643 
1644 	free_event_desc(events);
1645 	ff->events = NULL;
1646 }
1647 
1648 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1649 {
1650 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1651 }
1652 
1653 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1654 {
1655 	int i;
1656 	struct numa_node *n;
1657 
1658 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1659 		n = &ff->ph->env.numa_nodes[i];
1660 
1661 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1662 			    " free = %"PRIu64" kB\n",
1663 			n->node, n->mem_total, n->mem_free);
1664 
1665 		fprintf(fp, "# node%u cpu list : ", n->node);
1666 		cpu_map__fprintf(n->map, fp);
1667 	}
1668 }
1669 
1670 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1671 {
1672 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1673 }
1674 
1675 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1676 {
1677 	fprintf(fp, "# contains samples with branch stack\n");
1678 }
1679 
1680 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1681 {
1682 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1683 }
1684 
1685 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1686 {
1687 	fprintf(fp, "# contains stat data\n");
1688 }
1689 
1690 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1691 {
1692 	int i;
1693 
1694 	fprintf(fp, "# CPU cache info:\n");
1695 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1696 		fprintf(fp, "#  ");
1697 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1698 	}
1699 }
1700 
1701 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1702 {
1703 	const char *delimiter = "# pmu mappings: ";
1704 	char *str, *tmp;
1705 	u32 pmu_num;
1706 	u32 type;
1707 
1708 	pmu_num = ff->ph->env.nr_pmu_mappings;
1709 	if (!pmu_num) {
1710 		fprintf(fp, "# pmu mappings: not available\n");
1711 		return;
1712 	}
1713 
1714 	str = ff->ph->env.pmu_mappings;
1715 
1716 	while (pmu_num) {
1717 		type = strtoul(str, &tmp, 0);
1718 		if (*tmp != ':')
1719 			goto error;
1720 
1721 		str = tmp + 1;
1722 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1723 
1724 		delimiter = ", ";
1725 		str += strlen(str) + 1;
1726 		pmu_num--;
1727 	}
1728 
1729 	fprintf(fp, "\n");
1730 
1731 	if (!pmu_num)
1732 		return;
1733 error:
1734 	fprintf(fp, "# pmu mappings: unable to read\n");
1735 }
1736 
1737 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1738 {
1739 	struct perf_session *session;
1740 	struct perf_evsel *evsel;
1741 	u32 nr = 0;
1742 
1743 	session = container_of(ff->ph, struct perf_session, header);
1744 
1745 	evlist__for_each_entry(session->evlist, evsel) {
1746 		if (perf_evsel__is_group_leader(evsel) &&
1747 		    evsel->nr_members > 1) {
1748 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1749 				perf_evsel__name(evsel));
1750 
1751 			nr = evsel->nr_members - 1;
1752 		} else if (nr) {
1753 			fprintf(fp, ",%s", perf_evsel__name(evsel));
1754 
1755 			if (--nr == 0)
1756 				fprintf(fp, "}\n");
1757 		}
1758 	}
1759 }
1760 
1761 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1762 {
1763 	struct perf_session *session;
1764 	char time_buf[32];
1765 	double d;
1766 
1767 	session = container_of(ff->ph, struct perf_session, header);
1768 
1769 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
1770 				  time_buf, sizeof(time_buf));
1771 	fprintf(fp, "# time of first sample : %s\n", time_buf);
1772 
1773 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
1774 				  time_buf, sizeof(time_buf));
1775 	fprintf(fp, "# time of last sample : %s\n", time_buf);
1776 
1777 	d = (double)(session->evlist->last_sample_time -
1778 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
1779 
1780 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
1781 }
1782 
1783 static void memory_node__fprintf(struct memory_node *n,
1784 				 unsigned long long bsize, FILE *fp)
1785 {
1786 	char buf_map[100], buf_size[50];
1787 	unsigned long long size;
1788 
1789 	size = bsize * bitmap_weight(n->set, n->size);
1790 	unit_number__scnprintf(buf_size, 50, size);
1791 
1792 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
1793 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1794 }
1795 
1796 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1797 {
1798 	struct memory_node *nodes;
1799 	int i, nr;
1800 
1801 	nodes = ff->ph->env.memory_nodes;
1802 	nr    = ff->ph->env.nr_memory_nodes;
1803 
1804 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1805 		nr, ff->ph->env.memory_bsize);
1806 
1807 	for (i = 0; i < nr; i++) {
1808 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1809 	}
1810 }
1811 
1812 static int __event_process_build_id(struct build_id_event *bev,
1813 				    char *filename,
1814 				    struct perf_session *session)
1815 {
1816 	int err = -1;
1817 	struct machine *machine;
1818 	u16 cpumode;
1819 	struct dso *dso;
1820 	enum dso_kernel_type dso_type;
1821 
1822 	machine = perf_session__findnew_machine(session, bev->pid);
1823 	if (!machine)
1824 		goto out;
1825 
1826 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1827 
1828 	switch (cpumode) {
1829 	case PERF_RECORD_MISC_KERNEL:
1830 		dso_type = DSO_TYPE_KERNEL;
1831 		break;
1832 	case PERF_RECORD_MISC_GUEST_KERNEL:
1833 		dso_type = DSO_TYPE_GUEST_KERNEL;
1834 		break;
1835 	case PERF_RECORD_MISC_USER:
1836 	case PERF_RECORD_MISC_GUEST_USER:
1837 		dso_type = DSO_TYPE_USER;
1838 		break;
1839 	default:
1840 		goto out;
1841 	}
1842 
1843 	dso = machine__findnew_dso(machine, filename);
1844 	if (dso != NULL) {
1845 		char sbuild_id[SBUILD_ID_SIZE];
1846 
1847 		dso__set_build_id(dso, &bev->build_id);
1848 
1849 		if (dso_type != DSO_TYPE_USER) {
1850 			struct kmod_path m = { .name = NULL, };
1851 
1852 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1853 				dso__set_module_info(dso, &m, machine);
1854 			else
1855 				dso->kernel = dso_type;
1856 
1857 			free(m.name);
1858 		}
1859 
1860 		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1861 				  sbuild_id);
1862 		pr_debug("build id event received for %s: %s\n",
1863 			 dso->long_name, sbuild_id);
1864 		dso__put(dso);
1865 	}
1866 
1867 	err = 0;
1868 out:
1869 	return err;
1870 }
1871 
1872 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1873 						 int input, u64 offset, u64 size)
1874 {
1875 	struct perf_session *session = container_of(header, struct perf_session, header);
1876 	struct {
1877 		struct perf_event_header   header;
1878 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1879 		char			   filename[0];
1880 	} old_bev;
1881 	struct build_id_event bev;
1882 	char filename[PATH_MAX];
1883 	u64 limit = offset + size;
1884 
1885 	while (offset < limit) {
1886 		ssize_t len;
1887 
1888 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1889 			return -1;
1890 
1891 		if (header->needs_swap)
1892 			perf_event_header__bswap(&old_bev.header);
1893 
1894 		len = old_bev.header.size - sizeof(old_bev);
1895 		if (readn(input, filename, len) != len)
1896 			return -1;
1897 
1898 		bev.header = old_bev.header;
1899 
1900 		/*
1901 		 * As the pid is the missing value, we need to fill
1902 		 * it properly. The header.misc value give us nice hint.
1903 		 */
1904 		bev.pid	= HOST_KERNEL_ID;
1905 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1906 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1907 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
1908 
1909 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1910 		__event_process_build_id(&bev, filename, session);
1911 
1912 		offset += bev.header.size;
1913 	}
1914 
1915 	return 0;
1916 }
1917 
1918 static int perf_header__read_build_ids(struct perf_header *header,
1919 				       int input, u64 offset, u64 size)
1920 {
1921 	struct perf_session *session = container_of(header, struct perf_session, header);
1922 	struct build_id_event bev;
1923 	char filename[PATH_MAX];
1924 	u64 limit = offset + size, orig_offset = offset;
1925 	int err = -1;
1926 
1927 	while (offset < limit) {
1928 		ssize_t len;
1929 
1930 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1931 			goto out;
1932 
1933 		if (header->needs_swap)
1934 			perf_event_header__bswap(&bev.header);
1935 
1936 		len = bev.header.size - sizeof(bev);
1937 		if (readn(input, filename, len) != len)
1938 			goto out;
1939 		/*
1940 		 * The a1645ce1 changeset:
1941 		 *
1942 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
1943 		 *
1944 		 * Added a field to struct build_id_event that broke the file
1945 		 * format.
1946 		 *
1947 		 * Since the kernel build-id is the first entry, process the
1948 		 * table using the old format if the well known
1949 		 * '[kernel.kallsyms]' string for the kernel build-id has the
1950 		 * first 4 characters chopped off (where the pid_t sits).
1951 		 */
1952 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
1953 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
1954 				return -1;
1955 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
1956 		}
1957 
1958 		__event_process_build_id(&bev, filename, session);
1959 
1960 		offset += bev.header.size;
1961 	}
1962 	err = 0;
1963 out:
1964 	return err;
1965 }
1966 
1967 /* Macro for features that simply need to read and store a string. */
1968 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
1969 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
1970 {\
1971 	ff->ph->env.__feat_env = do_read_string(ff); \
1972 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
1973 }
1974 
1975 FEAT_PROCESS_STR_FUN(hostname, hostname);
1976 FEAT_PROCESS_STR_FUN(osrelease, os_release);
1977 FEAT_PROCESS_STR_FUN(version, version);
1978 FEAT_PROCESS_STR_FUN(arch, arch);
1979 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
1980 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
1981 
1982 static int process_tracing_data(struct feat_fd *ff, void *data)
1983 {
1984 	ssize_t ret = trace_report(ff->fd, data, false);
1985 
1986 	return ret < 0 ? -1 : 0;
1987 }
1988 
1989 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
1990 {
1991 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
1992 		pr_debug("Failed to read buildids, continuing...\n");
1993 	return 0;
1994 }
1995 
1996 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
1997 {
1998 	int ret;
1999 	u32 nr_cpus_avail, nr_cpus_online;
2000 
2001 	ret = do_read_u32(ff, &nr_cpus_avail);
2002 	if (ret)
2003 		return ret;
2004 
2005 	ret = do_read_u32(ff, &nr_cpus_online);
2006 	if (ret)
2007 		return ret;
2008 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2009 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2010 	return 0;
2011 }
2012 
2013 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2014 {
2015 	u64 total_mem;
2016 	int ret;
2017 
2018 	ret = do_read_u64(ff, &total_mem);
2019 	if (ret)
2020 		return -1;
2021 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2022 	return 0;
2023 }
2024 
2025 static struct perf_evsel *
2026 perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
2027 {
2028 	struct perf_evsel *evsel;
2029 
2030 	evlist__for_each_entry(evlist, evsel) {
2031 		if (evsel->idx == idx)
2032 			return evsel;
2033 	}
2034 
2035 	return NULL;
2036 }
2037 
2038 static void
2039 perf_evlist__set_event_name(struct perf_evlist *evlist,
2040 			    struct perf_evsel *event)
2041 {
2042 	struct perf_evsel *evsel;
2043 
2044 	if (!event->name)
2045 		return;
2046 
2047 	evsel = perf_evlist__find_by_index(evlist, event->idx);
2048 	if (!evsel)
2049 		return;
2050 
2051 	if (evsel->name)
2052 		return;
2053 
2054 	evsel->name = strdup(event->name);
2055 }
2056 
2057 static int
2058 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2059 {
2060 	struct perf_session *session;
2061 	struct perf_evsel *evsel, *events = read_event_desc(ff);
2062 
2063 	if (!events)
2064 		return 0;
2065 
2066 	session = container_of(ff->ph, struct perf_session, header);
2067 
2068 	if (session->data->is_pipe) {
2069 		/* Save events for reading later by print_event_desc,
2070 		 * since they can't be read again in pipe mode. */
2071 		ff->events = events;
2072 	}
2073 
2074 	for (evsel = events; evsel->attr.size; evsel++)
2075 		perf_evlist__set_event_name(session->evlist, evsel);
2076 
2077 	if (!session->data->is_pipe)
2078 		free_event_desc(events);
2079 
2080 	return 0;
2081 }
2082 
2083 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2084 {
2085 	char *str, *cmdline = NULL, **argv = NULL;
2086 	u32 nr, i, len = 0;
2087 
2088 	if (do_read_u32(ff, &nr))
2089 		return -1;
2090 
2091 	ff->ph->env.nr_cmdline = nr;
2092 
2093 	cmdline = zalloc(ff->size + nr + 1);
2094 	if (!cmdline)
2095 		return -1;
2096 
2097 	argv = zalloc(sizeof(char *) * (nr + 1));
2098 	if (!argv)
2099 		goto error;
2100 
2101 	for (i = 0; i < nr; i++) {
2102 		str = do_read_string(ff);
2103 		if (!str)
2104 			goto error;
2105 
2106 		argv[i] = cmdline + len;
2107 		memcpy(argv[i], str, strlen(str) + 1);
2108 		len += strlen(str) + 1;
2109 		free(str);
2110 	}
2111 	ff->ph->env.cmdline = cmdline;
2112 	ff->ph->env.cmdline_argv = (const char **) argv;
2113 	return 0;
2114 
2115 error:
2116 	free(argv);
2117 	free(cmdline);
2118 	return -1;
2119 }
2120 
2121 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2122 {
2123 	u32 nr, i;
2124 	char *str;
2125 	struct strbuf sb;
2126 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2127 	u64 size = 0;
2128 	struct perf_header *ph = ff->ph;
2129 	bool do_core_id_test = true;
2130 
2131 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2132 	if (!ph->env.cpu)
2133 		return -1;
2134 
2135 	if (do_read_u32(ff, &nr))
2136 		goto free_cpu;
2137 
2138 	ph->env.nr_sibling_cores = nr;
2139 	size += sizeof(u32);
2140 	if (strbuf_init(&sb, 128) < 0)
2141 		goto free_cpu;
2142 
2143 	for (i = 0; i < nr; i++) {
2144 		str = do_read_string(ff);
2145 		if (!str)
2146 			goto error;
2147 
2148 		/* include a NULL character at the end */
2149 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2150 			goto error;
2151 		size += string_size(str);
2152 		free(str);
2153 	}
2154 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2155 
2156 	if (do_read_u32(ff, &nr))
2157 		return -1;
2158 
2159 	ph->env.nr_sibling_threads = nr;
2160 	size += sizeof(u32);
2161 
2162 	for (i = 0; i < nr; i++) {
2163 		str = do_read_string(ff);
2164 		if (!str)
2165 			goto error;
2166 
2167 		/* include a NULL character at the end */
2168 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2169 			goto error;
2170 		size += string_size(str);
2171 		free(str);
2172 	}
2173 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2174 
2175 	/*
2176 	 * The header may be from old perf,
2177 	 * which doesn't include core id and socket id information.
2178 	 */
2179 	if (ff->size <= size) {
2180 		zfree(&ph->env.cpu);
2181 		return 0;
2182 	}
2183 
2184 	/* On s390 the socket_id number is not related to the numbers of cpus.
2185 	 * The socket_id number might be higher than the numbers of cpus.
2186 	 * This depends on the configuration.
2187 	 */
2188 	if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4))
2189 		do_core_id_test = false;
2190 
2191 	for (i = 0; i < (u32)cpu_nr; i++) {
2192 		if (do_read_u32(ff, &nr))
2193 			goto free_cpu;
2194 
2195 		ph->env.cpu[i].core_id = nr;
2196 
2197 		if (do_read_u32(ff, &nr))
2198 			goto free_cpu;
2199 
2200 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2201 			pr_debug("socket_id number is too big."
2202 				 "You may need to upgrade the perf tool.\n");
2203 			goto free_cpu;
2204 		}
2205 
2206 		ph->env.cpu[i].socket_id = nr;
2207 	}
2208 
2209 	return 0;
2210 
2211 error:
2212 	strbuf_release(&sb);
2213 free_cpu:
2214 	zfree(&ph->env.cpu);
2215 	return -1;
2216 }
2217 
2218 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2219 {
2220 	struct numa_node *nodes, *n;
2221 	u32 nr, i;
2222 	char *str;
2223 
2224 	/* nr nodes */
2225 	if (do_read_u32(ff, &nr))
2226 		return -1;
2227 
2228 	nodes = zalloc(sizeof(*nodes) * nr);
2229 	if (!nodes)
2230 		return -ENOMEM;
2231 
2232 	for (i = 0; i < nr; i++) {
2233 		n = &nodes[i];
2234 
2235 		/* node number */
2236 		if (do_read_u32(ff, &n->node))
2237 			goto error;
2238 
2239 		if (do_read_u64(ff, &n->mem_total))
2240 			goto error;
2241 
2242 		if (do_read_u64(ff, &n->mem_free))
2243 			goto error;
2244 
2245 		str = do_read_string(ff);
2246 		if (!str)
2247 			goto error;
2248 
2249 		n->map = cpu_map__new(str);
2250 		if (!n->map)
2251 			goto error;
2252 
2253 		free(str);
2254 	}
2255 	ff->ph->env.nr_numa_nodes = nr;
2256 	ff->ph->env.numa_nodes = nodes;
2257 	return 0;
2258 
2259 error:
2260 	free(nodes);
2261 	return -1;
2262 }
2263 
2264 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2265 {
2266 	char *name;
2267 	u32 pmu_num;
2268 	u32 type;
2269 	struct strbuf sb;
2270 
2271 	if (do_read_u32(ff, &pmu_num))
2272 		return -1;
2273 
2274 	if (!pmu_num) {
2275 		pr_debug("pmu mappings not available\n");
2276 		return 0;
2277 	}
2278 
2279 	ff->ph->env.nr_pmu_mappings = pmu_num;
2280 	if (strbuf_init(&sb, 128) < 0)
2281 		return -1;
2282 
2283 	while (pmu_num) {
2284 		if (do_read_u32(ff, &type))
2285 			goto error;
2286 
2287 		name = do_read_string(ff);
2288 		if (!name)
2289 			goto error;
2290 
2291 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2292 			goto error;
2293 		/* include a NULL character at the end */
2294 		if (strbuf_add(&sb, "", 1) < 0)
2295 			goto error;
2296 
2297 		if (!strcmp(name, "msr"))
2298 			ff->ph->env.msr_pmu_type = type;
2299 
2300 		free(name);
2301 		pmu_num--;
2302 	}
2303 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2304 	return 0;
2305 
2306 error:
2307 	strbuf_release(&sb);
2308 	return -1;
2309 }
2310 
2311 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2312 {
2313 	size_t ret = -1;
2314 	u32 i, nr, nr_groups;
2315 	struct perf_session *session;
2316 	struct perf_evsel *evsel, *leader = NULL;
2317 	struct group_desc {
2318 		char *name;
2319 		u32 leader_idx;
2320 		u32 nr_members;
2321 	} *desc;
2322 
2323 	if (do_read_u32(ff, &nr_groups))
2324 		return -1;
2325 
2326 	ff->ph->env.nr_groups = nr_groups;
2327 	if (!nr_groups) {
2328 		pr_debug("group desc not available\n");
2329 		return 0;
2330 	}
2331 
2332 	desc = calloc(nr_groups, sizeof(*desc));
2333 	if (!desc)
2334 		return -1;
2335 
2336 	for (i = 0; i < nr_groups; i++) {
2337 		desc[i].name = do_read_string(ff);
2338 		if (!desc[i].name)
2339 			goto out_free;
2340 
2341 		if (do_read_u32(ff, &desc[i].leader_idx))
2342 			goto out_free;
2343 
2344 		if (do_read_u32(ff, &desc[i].nr_members))
2345 			goto out_free;
2346 	}
2347 
2348 	/*
2349 	 * Rebuild group relationship based on the group_desc
2350 	 */
2351 	session = container_of(ff->ph, struct perf_session, header);
2352 	session->evlist->nr_groups = nr_groups;
2353 
2354 	i = nr = 0;
2355 	evlist__for_each_entry(session->evlist, evsel) {
2356 		if (evsel->idx == (int) desc[i].leader_idx) {
2357 			evsel->leader = evsel;
2358 			/* {anon_group} is a dummy name */
2359 			if (strcmp(desc[i].name, "{anon_group}")) {
2360 				evsel->group_name = desc[i].name;
2361 				desc[i].name = NULL;
2362 			}
2363 			evsel->nr_members = desc[i].nr_members;
2364 
2365 			if (i >= nr_groups || nr > 0) {
2366 				pr_debug("invalid group desc\n");
2367 				goto out_free;
2368 			}
2369 
2370 			leader = evsel;
2371 			nr = evsel->nr_members - 1;
2372 			i++;
2373 		} else if (nr) {
2374 			/* This is a group member */
2375 			evsel->leader = leader;
2376 
2377 			nr--;
2378 		}
2379 	}
2380 
2381 	if (i != nr_groups || nr != 0) {
2382 		pr_debug("invalid group desc\n");
2383 		goto out_free;
2384 	}
2385 
2386 	ret = 0;
2387 out_free:
2388 	for (i = 0; i < nr_groups; i++)
2389 		zfree(&desc[i].name);
2390 	free(desc);
2391 
2392 	return ret;
2393 }
2394 
2395 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2396 {
2397 	struct perf_session *session;
2398 	int err;
2399 
2400 	session = container_of(ff->ph, struct perf_session, header);
2401 
2402 	err = auxtrace_index__process(ff->fd, ff->size, session,
2403 				      ff->ph->needs_swap);
2404 	if (err < 0)
2405 		pr_err("Failed to process auxtrace index\n");
2406 	return err;
2407 }
2408 
2409 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2410 {
2411 	struct cpu_cache_level *caches;
2412 	u32 cnt, i, version;
2413 
2414 	if (do_read_u32(ff, &version))
2415 		return -1;
2416 
2417 	if (version != 1)
2418 		return -1;
2419 
2420 	if (do_read_u32(ff, &cnt))
2421 		return -1;
2422 
2423 	caches = zalloc(sizeof(*caches) * cnt);
2424 	if (!caches)
2425 		return -1;
2426 
2427 	for (i = 0; i < cnt; i++) {
2428 		struct cpu_cache_level c;
2429 
2430 		#define _R(v)						\
2431 			if (do_read_u32(ff, &c.v))\
2432 				goto out_free_caches;			\
2433 
2434 		_R(level)
2435 		_R(line_size)
2436 		_R(sets)
2437 		_R(ways)
2438 		#undef _R
2439 
2440 		#define _R(v)					\
2441 			c.v = do_read_string(ff);		\
2442 			if (!c.v)				\
2443 				goto out_free_caches;
2444 
2445 		_R(type)
2446 		_R(size)
2447 		_R(map)
2448 		#undef _R
2449 
2450 		caches[i] = c;
2451 	}
2452 
2453 	ff->ph->env.caches = caches;
2454 	ff->ph->env.caches_cnt = cnt;
2455 	return 0;
2456 out_free_caches:
2457 	free(caches);
2458 	return -1;
2459 }
2460 
2461 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2462 {
2463 	struct perf_session *session;
2464 	u64 first_sample_time, last_sample_time;
2465 	int ret;
2466 
2467 	session = container_of(ff->ph, struct perf_session, header);
2468 
2469 	ret = do_read_u64(ff, &first_sample_time);
2470 	if (ret)
2471 		return -1;
2472 
2473 	ret = do_read_u64(ff, &last_sample_time);
2474 	if (ret)
2475 		return -1;
2476 
2477 	session->evlist->first_sample_time = first_sample_time;
2478 	session->evlist->last_sample_time = last_sample_time;
2479 	return 0;
2480 }
2481 
2482 static int process_mem_topology(struct feat_fd *ff,
2483 				void *data __maybe_unused)
2484 {
2485 	struct memory_node *nodes;
2486 	u64 version, i, nr, bsize;
2487 	int ret = -1;
2488 
2489 	if (do_read_u64(ff, &version))
2490 		return -1;
2491 
2492 	if (version != 1)
2493 		return -1;
2494 
2495 	if (do_read_u64(ff, &bsize))
2496 		return -1;
2497 
2498 	if (do_read_u64(ff, &nr))
2499 		return -1;
2500 
2501 	nodes = zalloc(sizeof(*nodes) * nr);
2502 	if (!nodes)
2503 		return -1;
2504 
2505 	for (i = 0; i < nr; i++) {
2506 		struct memory_node n;
2507 
2508 		#define _R(v)				\
2509 			if (do_read_u64(ff, &n.v))	\
2510 				goto out;		\
2511 
2512 		_R(node)
2513 		_R(size)
2514 
2515 		#undef _R
2516 
2517 		if (do_read_bitmap(ff, &n.set, &n.size))
2518 			goto out;
2519 
2520 		nodes[i] = n;
2521 	}
2522 
2523 	ff->ph->env.memory_bsize    = bsize;
2524 	ff->ph->env.memory_nodes    = nodes;
2525 	ff->ph->env.nr_memory_nodes = nr;
2526 	ret = 0;
2527 
2528 out:
2529 	if (ret)
2530 		free(nodes);
2531 	return ret;
2532 }
2533 
2534 struct feature_ops {
2535 	int (*write)(struct feat_fd *ff, struct perf_evlist *evlist);
2536 	void (*print)(struct feat_fd *ff, FILE *fp);
2537 	int (*process)(struct feat_fd *ff, void *data);
2538 	const char *name;
2539 	bool full_only;
2540 	bool synthesize;
2541 };
2542 
2543 #define FEAT_OPR(n, func, __full_only) \
2544 	[HEADER_##n] = {					\
2545 		.name	    = __stringify(n),			\
2546 		.write	    = write_##func,			\
2547 		.print	    = print_##func,			\
2548 		.full_only  = __full_only,			\
2549 		.process    = process_##func,			\
2550 		.synthesize = true				\
2551 	}
2552 
2553 #define FEAT_OPN(n, func, __full_only) \
2554 	[HEADER_##n] = {					\
2555 		.name	    = __stringify(n),			\
2556 		.write	    = write_##func,			\
2557 		.print	    = print_##func,			\
2558 		.full_only  = __full_only,			\
2559 		.process    = process_##func			\
2560 	}
2561 
2562 /* feature_ops not implemented: */
2563 #define print_tracing_data	NULL
2564 #define print_build_id		NULL
2565 
2566 #define process_branch_stack	NULL
2567 #define process_stat		NULL
2568 
2569 
2570 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2571 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
2572 	FEAT_OPN(BUILD_ID,	build_id,	false),
2573 	FEAT_OPR(HOSTNAME,	hostname,	false),
2574 	FEAT_OPR(OSRELEASE,	osrelease,	false),
2575 	FEAT_OPR(VERSION,	version,	false),
2576 	FEAT_OPR(ARCH,		arch,		false),
2577 	FEAT_OPR(NRCPUS,	nrcpus,		false),
2578 	FEAT_OPR(CPUDESC,	cpudesc,	false),
2579 	FEAT_OPR(CPUID,		cpuid,		false),
2580 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
2581 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
2582 	FEAT_OPR(CMDLINE,	cmdline,	false),
2583 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
2584 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
2585 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
2586 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2587 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2588 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
2589 	FEAT_OPN(STAT,		stat,		false),
2590 	FEAT_OPN(CACHE,		cache,		true),
2591 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2592 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2593 };
2594 
2595 struct header_print_data {
2596 	FILE *fp;
2597 	bool full; /* extended list of headers */
2598 };
2599 
2600 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2601 					   struct perf_header *ph,
2602 					   int feat, int fd, void *data)
2603 {
2604 	struct header_print_data *hd = data;
2605 	struct feat_fd ff;
2606 
2607 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2608 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2609 				"%d, continuing...\n", section->offset, feat);
2610 		return 0;
2611 	}
2612 	if (feat >= HEADER_LAST_FEATURE) {
2613 		pr_warning("unknown feature %d\n", feat);
2614 		return 0;
2615 	}
2616 	if (!feat_ops[feat].print)
2617 		return 0;
2618 
2619 	ff = (struct  feat_fd) {
2620 		.fd = fd,
2621 		.ph = ph,
2622 	};
2623 
2624 	if (!feat_ops[feat].full_only || hd->full)
2625 		feat_ops[feat].print(&ff, hd->fp);
2626 	else
2627 		fprintf(hd->fp, "# %s info available, use -I to display\n",
2628 			feat_ops[feat].name);
2629 
2630 	return 0;
2631 }
2632 
2633 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2634 {
2635 	struct header_print_data hd;
2636 	struct perf_header *header = &session->header;
2637 	int fd = perf_data__fd(session->data);
2638 	struct stat st;
2639 	int ret, bit;
2640 
2641 	hd.fp = fp;
2642 	hd.full = full;
2643 
2644 	ret = fstat(fd, &st);
2645 	if (ret == -1)
2646 		return -1;
2647 
2648 	fprintf(fp, "# captured on    : %s", ctime(&st.st_ctime));
2649 
2650 	fprintf(fp, "# header version : %u\n", header->version);
2651 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2652 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2653 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2654 
2655 	perf_header__process_sections(header, fd, &hd,
2656 				      perf_file_section__fprintf_info);
2657 
2658 	if (session->data->is_pipe)
2659 		return 0;
2660 
2661 	fprintf(fp, "# missing features: ");
2662 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2663 		if (bit)
2664 			fprintf(fp, "%s ", feat_ops[bit].name);
2665 	}
2666 
2667 	fprintf(fp, "\n");
2668 	return 0;
2669 }
2670 
2671 static int do_write_feat(struct feat_fd *ff, int type,
2672 			 struct perf_file_section **p,
2673 			 struct perf_evlist *evlist)
2674 {
2675 	int err;
2676 	int ret = 0;
2677 
2678 	if (perf_header__has_feat(ff->ph, type)) {
2679 		if (!feat_ops[type].write)
2680 			return -1;
2681 
2682 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2683 			return -1;
2684 
2685 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2686 
2687 		err = feat_ops[type].write(ff, evlist);
2688 		if (err < 0) {
2689 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2690 
2691 			/* undo anything written */
2692 			lseek(ff->fd, (*p)->offset, SEEK_SET);
2693 
2694 			return -1;
2695 		}
2696 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2697 		(*p)++;
2698 	}
2699 	return ret;
2700 }
2701 
2702 static int perf_header__adds_write(struct perf_header *header,
2703 				   struct perf_evlist *evlist, int fd)
2704 {
2705 	int nr_sections;
2706 	struct feat_fd ff;
2707 	struct perf_file_section *feat_sec, *p;
2708 	int sec_size;
2709 	u64 sec_start;
2710 	int feat;
2711 	int err;
2712 
2713 	ff = (struct feat_fd){
2714 		.fd  = fd,
2715 		.ph = header,
2716 	};
2717 
2718 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2719 	if (!nr_sections)
2720 		return 0;
2721 
2722 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2723 	if (feat_sec == NULL)
2724 		return -ENOMEM;
2725 
2726 	sec_size = sizeof(*feat_sec) * nr_sections;
2727 
2728 	sec_start = header->feat_offset;
2729 	lseek(fd, sec_start + sec_size, SEEK_SET);
2730 
2731 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
2732 		if (do_write_feat(&ff, feat, &p, evlist))
2733 			perf_header__clear_feat(header, feat);
2734 	}
2735 
2736 	lseek(fd, sec_start, SEEK_SET);
2737 	/*
2738 	 * may write more than needed due to dropped feature, but
2739 	 * this is okay, reader will skip the mising entries
2740 	 */
2741 	err = do_write(&ff, feat_sec, sec_size);
2742 	if (err < 0)
2743 		pr_debug("failed to write feature section\n");
2744 	free(feat_sec);
2745 	return err;
2746 }
2747 
2748 int perf_header__write_pipe(int fd)
2749 {
2750 	struct perf_pipe_file_header f_header;
2751 	struct feat_fd ff;
2752 	int err;
2753 
2754 	ff = (struct feat_fd){ .fd = fd };
2755 
2756 	f_header = (struct perf_pipe_file_header){
2757 		.magic	   = PERF_MAGIC,
2758 		.size	   = sizeof(f_header),
2759 	};
2760 
2761 	err = do_write(&ff, &f_header, sizeof(f_header));
2762 	if (err < 0) {
2763 		pr_debug("failed to write perf pipe header\n");
2764 		return err;
2765 	}
2766 
2767 	return 0;
2768 }
2769 
2770 int perf_session__write_header(struct perf_session *session,
2771 			       struct perf_evlist *evlist,
2772 			       int fd, bool at_exit)
2773 {
2774 	struct perf_file_header f_header;
2775 	struct perf_file_attr   f_attr;
2776 	struct perf_header *header = &session->header;
2777 	struct perf_evsel *evsel;
2778 	struct feat_fd ff;
2779 	u64 attr_offset;
2780 	int err;
2781 
2782 	ff = (struct feat_fd){ .fd = fd};
2783 	lseek(fd, sizeof(f_header), SEEK_SET);
2784 
2785 	evlist__for_each_entry(session->evlist, evsel) {
2786 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
2787 		err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
2788 		if (err < 0) {
2789 			pr_debug("failed to write perf header\n");
2790 			return err;
2791 		}
2792 	}
2793 
2794 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
2795 
2796 	evlist__for_each_entry(evlist, evsel) {
2797 		f_attr = (struct perf_file_attr){
2798 			.attr = evsel->attr,
2799 			.ids  = {
2800 				.offset = evsel->id_offset,
2801 				.size   = evsel->ids * sizeof(u64),
2802 			}
2803 		};
2804 		err = do_write(&ff, &f_attr, sizeof(f_attr));
2805 		if (err < 0) {
2806 			pr_debug("failed to write perf header attribute\n");
2807 			return err;
2808 		}
2809 	}
2810 
2811 	if (!header->data_offset)
2812 		header->data_offset = lseek(fd, 0, SEEK_CUR);
2813 	header->feat_offset = header->data_offset + header->data_size;
2814 
2815 	if (at_exit) {
2816 		err = perf_header__adds_write(header, evlist, fd);
2817 		if (err < 0)
2818 			return err;
2819 	}
2820 
2821 	f_header = (struct perf_file_header){
2822 		.magic	   = PERF_MAGIC,
2823 		.size	   = sizeof(f_header),
2824 		.attr_size = sizeof(f_attr),
2825 		.attrs = {
2826 			.offset = attr_offset,
2827 			.size   = evlist->nr_entries * sizeof(f_attr),
2828 		},
2829 		.data = {
2830 			.offset = header->data_offset,
2831 			.size	= header->data_size,
2832 		},
2833 		/* event_types is ignored, store zeros */
2834 	};
2835 
2836 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
2837 
2838 	lseek(fd, 0, SEEK_SET);
2839 	err = do_write(&ff, &f_header, sizeof(f_header));
2840 	if (err < 0) {
2841 		pr_debug("failed to write perf header\n");
2842 		return err;
2843 	}
2844 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
2845 
2846 	return 0;
2847 }
2848 
2849 static int perf_header__getbuffer64(struct perf_header *header,
2850 				    int fd, void *buf, size_t size)
2851 {
2852 	if (readn(fd, buf, size) <= 0)
2853 		return -1;
2854 
2855 	if (header->needs_swap)
2856 		mem_bswap_64(buf, size);
2857 
2858 	return 0;
2859 }
2860 
2861 int perf_header__process_sections(struct perf_header *header, int fd,
2862 				  void *data,
2863 				  int (*process)(struct perf_file_section *section,
2864 						 struct perf_header *ph,
2865 						 int feat, int fd, void *data))
2866 {
2867 	struct perf_file_section *feat_sec, *sec;
2868 	int nr_sections;
2869 	int sec_size;
2870 	int feat;
2871 	int err;
2872 
2873 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2874 	if (!nr_sections)
2875 		return 0;
2876 
2877 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
2878 	if (!feat_sec)
2879 		return -1;
2880 
2881 	sec_size = sizeof(*feat_sec) * nr_sections;
2882 
2883 	lseek(fd, header->feat_offset, SEEK_SET);
2884 
2885 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
2886 	if (err < 0)
2887 		goto out_free;
2888 
2889 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
2890 		err = process(sec++, header, feat, fd, data);
2891 		if (err < 0)
2892 			goto out_free;
2893 	}
2894 	err = 0;
2895 out_free:
2896 	free(feat_sec);
2897 	return err;
2898 }
2899 
2900 static const int attr_file_abi_sizes[] = {
2901 	[0] = PERF_ATTR_SIZE_VER0,
2902 	[1] = PERF_ATTR_SIZE_VER1,
2903 	[2] = PERF_ATTR_SIZE_VER2,
2904 	[3] = PERF_ATTR_SIZE_VER3,
2905 	[4] = PERF_ATTR_SIZE_VER4,
2906 	0,
2907 };
2908 
2909 /*
2910  * In the legacy file format, the magic number is not used to encode endianness.
2911  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
2912  * on ABI revisions, we need to try all combinations for all endianness to
2913  * detect the endianness.
2914  */
2915 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
2916 {
2917 	uint64_t ref_size, attr_size;
2918 	int i;
2919 
2920 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
2921 		ref_size = attr_file_abi_sizes[i]
2922 			 + sizeof(struct perf_file_section);
2923 		if (hdr_sz != ref_size) {
2924 			attr_size = bswap_64(hdr_sz);
2925 			if (attr_size != ref_size)
2926 				continue;
2927 
2928 			ph->needs_swap = true;
2929 		}
2930 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
2931 			 i,
2932 			 ph->needs_swap);
2933 		return 0;
2934 	}
2935 	/* could not determine endianness */
2936 	return -1;
2937 }
2938 
2939 #define PERF_PIPE_HDR_VER0	16
2940 
2941 static const size_t attr_pipe_abi_sizes[] = {
2942 	[0] = PERF_PIPE_HDR_VER0,
2943 	0,
2944 };
2945 
2946 /*
2947  * In the legacy pipe format, there is an implicit assumption that endiannesss
2948  * between host recording the samples, and host parsing the samples is the
2949  * same. This is not always the case given that the pipe output may always be
2950  * redirected into a file and analyzed on a different machine with possibly a
2951  * different endianness and perf_event ABI revsions in the perf tool itself.
2952  */
2953 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
2954 {
2955 	u64 attr_size;
2956 	int i;
2957 
2958 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
2959 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
2960 			attr_size = bswap_64(hdr_sz);
2961 			if (attr_size != hdr_sz)
2962 				continue;
2963 
2964 			ph->needs_swap = true;
2965 		}
2966 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
2967 		return 0;
2968 	}
2969 	return -1;
2970 }
2971 
2972 bool is_perf_magic(u64 magic)
2973 {
2974 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
2975 		|| magic == __perf_magic2
2976 		|| magic == __perf_magic2_sw)
2977 		return true;
2978 
2979 	return false;
2980 }
2981 
2982 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
2983 			      bool is_pipe, struct perf_header *ph)
2984 {
2985 	int ret;
2986 
2987 	/* check for legacy format */
2988 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
2989 	if (ret == 0) {
2990 		ph->version = PERF_HEADER_VERSION_1;
2991 		pr_debug("legacy perf.data format\n");
2992 		if (is_pipe)
2993 			return try_all_pipe_abis(hdr_sz, ph);
2994 
2995 		return try_all_file_abis(hdr_sz, ph);
2996 	}
2997 	/*
2998 	 * the new magic number serves two purposes:
2999 	 * - unique number to identify actual perf.data files
3000 	 * - encode endianness of file
3001 	 */
3002 	ph->version = PERF_HEADER_VERSION_2;
3003 
3004 	/* check magic number with one endianness */
3005 	if (magic == __perf_magic2)
3006 		return 0;
3007 
3008 	/* check magic number with opposite endianness */
3009 	if (magic != __perf_magic2_sw)
3010 		return -1;
3011 
3012 	ph->needs_swap = true;
3013 
3014 	return 0;
3015 }
3016 
3017 int perf_file_header__read(struct perf_file_header *header,
3018 			   struct perf_header *ph, int fd)
3019 {
3020 	ssize_t ret;
3021 
3022 	lseek(fd, 0, SEEK_SET);
3023 
3024 	ret = readn(fd, header, sizeof(*header));
3025 	if (ret <= 0)
3026 		return -1;
3027 
3028 	if (check_magic_endian(header->magic,
3029 			       header->attr_size, false, ph) < 0) {
3030 		pr_debug("magic/endian check failed\n");
3031 		return -1;
3032 	}
3033 
3034 	if (ph->needs_swap) {
3035 		mem_bswap_64(header, offsetof(struct perf_file_header,
3036 			     adds_features));
3037 	}
3038 
3039 	if (header->size != sizeof(*header)) {
3040 		/* Support the previous format */
3041 		if (header->size == offsetof(typeof(*header), adds_features))
3042 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3043 		else
3044 			return -1;
3045 	} else if (ph->needs_swap) {
3046 		/*
3047 		 * feature bitmap is declared as an array of unsigned longs --
3048 		 * not good since its size can differ between the host that
3049 		 * generated the data file and the host analyzing the file.
3050 		 *
3051 		 * We need to handle endianness, but we don't know the size of
3052 		 * the unsigned long where the file was generated. Take a best
3053 		 * guess at determining it: try 64-bit swap first (ie., file
3054 		 * created on a 64-bit host), and check if the hostname feature
3055 		 * bit is set (this feature bit is forced on as of fbe96f2).
3056 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3057 		 * swap. If the hostname bit is still not set (e.g., older data
3058 		 * file), punt and fallback to the original behavior --
3059 		 * clearing all feature bits and setting buildid.
3060 		 */
3061 		mem_bswap_64(&header->adds_features,
3062 			    BITS_TO_U64(HEADER_FEAT_BITS));
3063 
3064 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3065 			/* unswap as u64 */
3066 			mem_bswap_64(&header->adds_features,
3067 				    BITS_TO_U64(HEADER_FEAT_BITS));
3068 
3069 			/* unswap as u32 */
3070 			mem_bswap_32(&header->adds_features,
3071 				    BITS_TO_U32(HEADER_FEAT_BITS));
3072 		}
3073 
3074 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3075 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3076 			set_bit(HEADER_BUILD_ID, header->adds_features);
3077 		}
3078 	}
3079 
3080 	memcpy(&ph->adds_features, &header->adds_features,
3081 	       sizeof(ph->adds_features));
3082 
3083 	ph->data_offset  = header->data.offset;
3084 	ph->data_size	 = header->data.size;
3085 	ph->feat_offset  = header->data.offset + header->data.size;
3086 	return 0;
3087 }
3088 
3089 static int perf_file_section__process(struct perf_file_section *section,
3090 				      struct perf_header *ph,
3091 				      int feat, int fd, void *data)
3092 {
3093 	struct feat_fd fdd = {
3094 		.fd	= fd,
3095 		.ph	= ph,
3096 		.size	= section->size,
3097 		.offset	= section->offset,
3098 	};
3099 
3100 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3101 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3102 			  "%d, continuing...\n", section->offset, feat);
3103 		return 0;
3104 	}
3105 
3106 	if (feat >= HEADER_LAST_FEATURE) {
3107 		pr_debug("unknown feature %d, continuing...\n", feat);
3108 		return 0;
3109 	}
3110 
3111 	if (!feat_ops[feat].process)
3112 		return 0;
3113 
3114 	return feat_ops[feat].process(&fdd, data);
3115 }
3116 
3117 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3118 				       struct perf_header *ph, int fd,
3119 				       bool repipe)
3120 {
3121 	struct feat_fd ff = {
3122 		.fd = STDOUT_FILENO,
3123 		.ph = ph,
3124 	};
3125 	ssize_t ret;
3126 
3127 	ret = readn(fd, header, sizeof(*header));
3128 	if (ret <= 0)
3129 		return -1;
3130 
3131 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3132 		pr_debug("endian/magic failed\n");
3133 		return -1;
3134 	}
3135 
3136 	if (ph->needs_swap)
3137 		header->size = bswap_64(header->size);
3138 
3139 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3140 		return -1;
3141 
3142 	return 0;
3143 }
3144 
3145 static int perf_header__read_pipe(struct perf_session *session)
3146 {
3147 	struct perf_header *header = &session->header;
3148 	struct perf_pipe_file_header f_header;
3149 
3150 	if (perf_file_header__read_pipe(&f_header, header,
3151 					perf_data__fd(session->data),
3152 					session->repipe) < 0) {
3153 		pr_debug("incompatible file format\n");
3154 		return -EINVAL;
3155 	}
3156 
3157 	return 0;
3158 }
3159 
3160 static int read_attr(int fd, struct perf_header *ph,
3161 		     struct perf_file_attr *f_attr)
3162 {
3163 	struct perf_event_attr *attr = &f_attr->attr;
3164 	size_t sz, left;
3165 	size_t our_sz = sizeof(f_attr->attr);
3166 	ssize_t ret;
3167 
3168 	memset(f_attr, 0, sizeof(*f_attr));
3169 
3170 	/* read minimal guaranteed structure */
3171 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3172 	if (ret <= 0) {
3173 		pr_debug("cannot read %d bytes of header attr\n",
3174 			 PERF_ATTR_SIZE_VER0);
3175 		return -1;
3176 	}
3177 
3178 	/* on file perf_event_attr size */
3179 	sz = attr->size;
3180 
3181 	if (ph->needs_swap)
3182 		sz = bswap_32(sz);
3183 
3184 	if (sz == 0) {
3185 		/* assume ABI0 */
3186 		sz =  PERF_ATTR_SIZE_VER0;
3187 	} else if (sz > our_sz) {
3188 		pr_debug("file uses a more recent and unsupported ABI"
3189 			 " (%zu bytes extra)\n", sz - our_sz);
3190 		return -1;
3191 	}
3192 	/* what we have not yet read and that we know about */
3193 	left = sz - PERF_ATTR_SIZE_VER0;
3194 	if (left) {
3195 		void *ptr = attr;
3196 		ptr += PERF_ATTR_SIZE_VER0;
3197 
3198 		ret = readn(fd, ptr, left);
3199 	}
3200 	/* read perf_file_section, ids are read in caller */
3201 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3202 
3203 	return ret <= 0 ? -1 : 0;
3204 }
3205 
3206 static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
3207 						struct tep_handle *pevent)
3208 {
3209 	struct event_format *event;
3210 	char bf[128];
3211 
3212 	/* already prepared */
3213 	if (evsel->tp_format)
3214 		return 0;
3215 
3216 	if (pevent == NULL) {
3217 		pr_debug("broken or missing trace data\n");
3218 		return -1;
3219 	}
3220 
3221 	event = tep_find_event(pevent, evsel->attr.config);
3222 	if (event == NULL) {
3223 		pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3224 		return -1;
3225 	}
3226 
3227 	if (!evsel->name) {
3228 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3229 		evsel->name = strdup(bf);
3230 		if (evsel->name == NULL)
3231 			return -1;
3232 	}
3233 
3234 	evsel->tp_format = event;
3235 	return 0;
3236 }
3237 
3238 static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
3239 						  struct tep_handle *pevent)
3240 {
3241 	struct perf_evsel *pos;
3242 
3243 	evlist__for_each_entry(evlist, pos) {
3244 		if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
3245 		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3246 			return -1;
3247 	}
3248 
3249 	return 0;
3250 }
3251 
3252 int perf_session__read_header(struct perf_session *session)
3253 {
3254 	struct perf_data *data = session->data;
3255 	struct perf_header *header = &session->header;
3256 	struct perf_file_header	f_header;
3257 	struct perf_file_attr	f_attr;
3258 	u64			f_id;
3259 	int nr_attrs, nr_ids, i, j;
3260 	int fd = perf_data__fd(data);
3261 
3262 	session->evlist = perf_evlist__new();
3263 	if (session->evlist == NULL)
3264 		return -ENOMEM;
3265 
3266 	session->evlist->env = &header->env;
3267 	session->machines.host.env = &header->env;
3268 	if (perf_data__is_pipe(data))
3269 		return perf_header__read_pipe(session);
3270 
3271 	if (perf_file_header__read(&f_header, header, fd) < 0)
3272 		return -EINVAL;
3273 
3274 	/*
3275 	 * Sanity check that perf.data was written cleanly; data size is
3276 	 * initialized to 0 and updated only if the on_exit function is run.
3277 	 * If data size is still 0 then the file contains only partial
3278 	 * information.  Just warn user and process it as much as it can.
3279 	 */
3280 	if (f_header.data.size == 0) {
3281 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3282 			   "Was the 'perf record' command properly terminated?\n",
3283 			   data->file.path);
3284 	}
3285 
3286 	nr_attrs = f_header.attrs.size / f_header.attr_size;
3287 	lseek(fd, f_header.attrs.offset, SEEK_SET);
3288 
3289 	for (i = 0; i < nr_attrs; i++) {
3290 		struct perf_evsel *evsel;
3291 		off_t tmp;
3292 
3293 		if (read_attr(fd, header, &f_attr) < 0)
3294 			goto out_errno;
3295 
3296 		if (header->needs_swap) {
3297 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3298 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3299 			perf_event__attr_swap(&f_attr.attr);
3300 		}
3301 
3302 		tmp = lseek(fd, 0, SEEK_CUR);
3303 		evsel = perf_evsel__new(&f_attr.attr);
3304 
3305 		if (evsel == NULL)
3306 			goto out_delete_evlist;
3307 
3308 		evsel->needs_swap = header->needs_swap;
3309 		/*
3310 		 * Do it before so that if perf_evsel__alloc_id fails, this
3311 		 * entry gets purged too at perf_evlist__delete().
3312 		 */
3313 		perf_evlist__add(session->evlist, evsel);
3314 
3315 		nr_ids = f_attr.ids.size / sizeof(u64);
3316 		/*
3317 		 * We don't have the cpu and thread maps on the header, so
3318 		 * for allocating the perf_sample_id table we fake 1 cpu and
3319 		 * hattr->ids threads.
3320 		 */
3321 		if (perf_evsel__alloc_id(evsel, 1, nr_ids))
3322 			goto out_delete_evlist;
3323 
3324 		lseek(fd, f_attr.ids.offset, SEEK_SET);
3325 
3326 		for (j = 0; j < nr_ids; j++) {
3327 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3328 				goto out_errno;
3329 
3330 			perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3331 		}
3332 
3333 		lseek(fd, tmp, SEEK_SET);
3334 	}
3335 
3336 	perf_header__process_sections(header, fd, &session->tevent,
3337 				      perf_file_section__process);
3338 
3339 	if (perf_evlist__prepare_tracepoint_events(session->evlist,
3340 						   session->tevent.pevent))
3341 		goto out_delete_evlist;
3342 
3343 	return 0;
3344 out_errno:
3345 	return -errno;
3346 
3347 out_delete_evlist:
3348 	perf_evlist__delete(session->evlist);
3349 	session->evlist = NULL;
3350 	return -ENOMEM;
3351 }
3352 
3353 int perf_event__synthesize_attr(struct perf_tool *tool,
3354 				struct perf_event_attr *attr, u32 ids, u64 *id,
3355 				perf_event__handler_t process)
3356 {
3357 	union perf_event *ev;
3358 	size_t size;
3359 	int err;
3360 
3361 	size = sizeof(struct perf_event_attr);
3362 	size = PERF_ALIGN(size, sizeof(u64));
3363 	size += sizeof(struct perf_event_header);
3364 	size += ids * sizeof(u64);
3365 
3366 	ev = malloc(size);
3367 
3368 	if (ev == NULL)
3369 		return -ENOMEM;
3370 
3371 	ev->attr.attr = *attr;
3372 	memcpy(ev->attr.id, id, ids * sizeof(u64));
3373 
3374 	ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3375 	ev->attr.header.size = (u16)size;
3376 
3377 	if (ev->attr.header.size == size)
3378 		err = process(tool, ev, NULL, NULL);
3379 	else
3380 		err = -E2BIG;
3381 
3382 	free(ev);
3383 
3384 	return err;
3385 }
3386 
3387 int perf_event__synthesize_features(struct perf_tool *tool,
3388 				    struct perf_session *session,
3389 				    struct perf_evlist *evlist,
3390 				    perf_event__handler_t process)
3391 {
3392 	struct perf_header *header = &session->header;
3393 	struct feat_fd ff;
3394 	struct feature_event *fe;
3395 	size_t sz, sz_hdr;
3396 	int feat, ret;
3397 
3398 	sz_hdr = sizeof(fe->header);
3399 	sz = sizeof(union perf_event);
3400 	/* get a nice alignment */
3401 	sz = PERF_ALIGN(sz, page_size);
3402 
3403 	memset(&ff, 0, sizeof(ff));
3404 
3405 	ff.buf = malloc(sz);
3406 	if (!ff.buf)
3407 		return -ENOMEM;
3408 
3409 	ff.size = sz - sz_hdr;
3410 
3411 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3412 		if (!feat_ops[feat].synthesize) {
3413 			pr_debug("No record header feature for header :%d\n", feat);
3414 			continue;
3415 		}
3416 
3417 		ff.offset = sizeof(*fe);
3418 
3419 		ret = feat_ops[feat].write(&ff, evlist);
3420 		if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
3421 			pr_debug("Error writing feature\n");
3422 			continue;
3423 		}
3424 		/* ff.buf may have changed due to realloc in do_write() */
3425 		fe = ff.buf;
3426 		memset(fe, 0, sizeof(*fe));
3427 
3428 		fe->feat_id = feat;
3429 		fe->header.type = PERF_RECORD_HEADER_FEATURE;
3430 		fe->header.size = ff.offset;
3431 
3432 		ret = process(tool, ff.buf, NULL, NULL);
3433 		if (ret) {
3434 			free(ff.buf);
3435 			return ret;
3436 		}
3437 	}
3438 
3439 	/* Send HEADER_LAST_FEATURE mark. */
3440 	fe = ff.buf;
3441 	fe->feat_id     = HEADER_LAST_FEATURE;
3442 	fe->header.type = PERF_RECORD_HEADER_FEATURE;
3443 	fe->header.size = sizeof(*fe);
3444 
3445 	ret = process(tool, ff.buf, NULL, NULL);
3446 
3447 	free(ff.buf);
3448 	return ret;
3449 }
3450 
3451 int perf_event__process_feature(struct perf_tool *tool,
3452 				union perf_event *event,
3453 				struct perf_session *session __maybe_unused)
3454 {
3455 	struct feat_fd ff = { .fd = 0 };
3456 	struct feature_event *fe = (struct feature_event *)event;
3457 	int type = fe->header.type;
3458 	u64 feat = fe->feat_id;
3459 
3460 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3461 		pr_warning("invalid record type %d in pipe-mode\n", type);
3462 		return 0;
3463 	}
3464 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3465 		pr_warning("invalid record type %d in pipe-mode\n", type);
3466 		return -1;
3467 	}
3468 
3469 	if (!feat_ops[feat].process)
3470 		return 0;
3471 
3472 	ff.buf  = (void *)fe->data;
3473 	ff.size = event->header.size - sizeof(event->header);
3474 	ff.ph = &session->header;
3475 
3476 	if (feat_ops[feat].process(&ff, NULL))
3477 		return -1;
3478 
3479 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3480 		return 0;
3481 
3482 	if (!feat_ops[feat].full_only ||
3483 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3484 		feat_ops[feat].print(&ff, stdout);
3485 	} else {
3486 		fprintf(stdout, "# %s info available, use -I to display\n",
3487 			feat_ops[feat].name);
3488 	}
3489 
3490 	return 0;
3491 }
3492 
3493 static struct event_update_event *
3494 event_update_event__new(size_t size, u64 type, u64 id)
3495 {
3496 	struct event_update_event *ev;
3497 
3498 	size += sizeof(*ev);
3499 	size  = PERF_ALIGN(size, sizeof(u64));
3500 
3501 	ev = zalloc(size);
3502 	if (ev) {
3503 		ev->header.type = PERF_RECORD_EVENT_UPDATE;
3504 		ev->header.size = (u16)size;
3505 		ev->type = type;
3506 		ev->id = id;
3507 	}
3508 	return ev;
3509 }
3510 
3511 int
3512 perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3513 					 struct perf_evsel *evsel,
3514 					 perf_event__handler_t process)
3515 {
3516 	struct event_update_event *ev;
3517 	size_t size = strlen(evsel->unit);
3518 	int err;
3519 
3520 	ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3521 	if (ev == NULL)
3522 		return -ENOMEM;
3523 
3524 	strncpy(ev->data, evsel->unit, size);
3525 	err = process(tool, (union perf_event *)ev, NULL, NULL);
3526 	free(ev);
3527 	return err;
3528 }
3529 
3530 int
3531 perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3532 					  struct perf_evsel *evsel,
3533 					  perf_event__handler_t process)
3534 {
3535 	struct event_update_event *ev;
3536 	struct event_update_event_scale *ev_data;
3537 	int err;
3538 
3539 	ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3540 	if (ev == NULL)
3541 		return -ENOMEM;
3542 
3543 	ev_data = (struct event_update_event_scale *) ev->data;
3544 	ev_data->scale = evsel->scale;
3545 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3546 	free(ev);
3547 	return err;
3548 }
3549 
3550 int
3551 perf_event__synthesize_event_update_name(struct perf_tool *tool,
3552 					 struct perf_evsel *evsel,
3553 					 perf_event__handler_t process)
3554 {
3555 	struct event_update_event *ev;
3556 	size_t len = strlen(evsel->name);
3557 	int err;
3558 
3559 	ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3560 	if (ev == NULL)
3561 		return -ENOMEM;
3562 
3563 	strncpy(ev->data, evsel->name, len);
3564 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3565 	free(ev);
3566 	return err;
3567 }
3568 
3569 int
3570 perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3571 					struct perf_evsel *evsel,
3572 					perf_event__handler_t process)
3573 {
3574 	size_t size = sizeof(struct event_update_event);
3575 	struct event_update_event *ev;
3576 	int max, err;
3577 	u16 type;
3578 
3579 	if (!evsel->own_cpus)
3580 		return 0;
3581 
3582 	ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
3583 	if (!ev)
3584 		return -ENOMEM;
3585 
3586 	ev->header.type = PERF_RECORD_EVENT_UPDATE;
3587 	ev->header.size = (u16)size;
3588 	ev->type = PERF_EVENT_UPDATE__CPUS;
3589 	ev->id   = evsel->id[0];
3590 
3591 	cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3592 				 evsel->own_cpus,
3593 				 type, max);
3594 
3595 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3596 	free(ev);
3597 	return err;
3598 }
3599 
3600 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3601 {
3602 	struct event_update_event *ev = &event->event_update;
3603 	struct event_update_event_scale *ev_scale;
3604 	struct event_update_event_cpus *ev_cpus;
3605 	struct cpu_map *map;
3606 	size_t ret;
3607 
3608 	ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);
3609 
3610 	switch (ev->type) {
3611 	case PERF_EVENT_UPDATE__SCALE:
3612 		ev_scale = (struct event_update_event_scale *) ev->data;
3613 		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3614 		break;
3615 	case PERF_EVENT_UPDATE__UNIT:
3616 		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3617 		break;
3618 	case PERF_EVENT_UPDATE__NAME:
3619 		ret += fprintf(fp, "... name:  %s\n", ev->data);
3620 		break;
3621 	case PERF_EVENT_UPDATE__CPUS:
3622 		ev_cpus = (struct event_update_event_cpus *) ev->data;
3623 		ret += fprintf(fp, "... ");
3624 
3625 		map = cpu_map__new_data(&ev_cpus->cpus);
3626 		if (map)
3627 			ret += cpu_map__fprintf(map, fp);
3628 		else
3629 			ret += fprintf(fp, "failed to get cpus\n");
3630 		break;
3631 	default:
3632 		ret += fprintf(fp, "... unknown type\n");
3633 		break;
3634 	}
3635 
3636 	return ret;
3637 }
3638 
3639 int perf_event__synthesize_attrs(struct perf_tool *tool,
3640 				   struct perf_session *session,
3641 				   perf_event__handler_t process)
3642 {
3643 	struct perf_evsel *evsel;
3644 	int err = 0;
3645 
3646 	evlist__for_each_entry(session->evlist, evsel) {
3647 		err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
3648 						  evsel->id, process);
3649 		if (err) {
3650 			pr_debug("failed to create perf header attribute\n");
3651 			return err;
3652 		}
3653 	}
3654 
3655 	return err;
3656 }
3657 
3658 static bool has_unit(struct perf_evsel *counter)
3659 {
3660 	return counter->unit && *counter->unit;
3661 }
3662 
3663 static bool has_scale(struct perf_evsel *counter)
3664 {
3665 	return counter->scale != 1;
3666 }
3667 
3668 int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3669 				      struct perf_evlist *evsel_list,
3670 				      perf_event__handler_t process,
3671 				      bool is_pipe)
3672 {
3673 	struct perf_evsel *counter;
3674 	int err;
3675 
3676 	/*
3677 	 * Synthesize other events stuff not carried within
3678 	 * attr event - unit, scale, name
3679 	 */
3680 	evlist__for_each_entry(evsel_list, counter) {
3681 		if (!counter->supported)
3682 			continue;
3683 
3684 		/*
3685 		 * Synthesize unit and scale only if it's defined.
3686 		 */
3687 		if (has_unit(counter)) {
3688 			err = perf_event__synthesize_event_update_unit(tool, counter, process);
3689 			if (err < 0) {
3690 				pr_err("Couldn't synthesize evsel unit.\n");
3691 				return err;
3692 			}
3693 		}
3694 
3695 		if (has_scale(counter)) {
3696 			err = perf_event__synthesize_event_update_scale(tool, counter, process);
3697 			if (err < 0) {
3698 				pr_err("Couldn't synthesize evsel counter.\n");
3699 				return err;
3700 			}
3701 		}
3702 
3703 		if (counter->own_cpus) {
3704 			err = perf_event__synthesize_event_update_cpus(tool, counter, process);
3705 			if (err < 0) {
3706 				pr_err("Couldn't synthesize evsel cpus.\n");
3707 				return err;
3708 			}
3709 		}
3710 
3711 		/*
3712 		 * Name is needed only for pipe output,
3713 		 * perf.data carries event names.
3714 		 */
3715 		if (is_pipe) {
3716 			err = perf_event__synthesize_event_update_name(tool, counter, process);
3717 			if (err < 0) {
3718 				pr_err("Couldn't synthesize evsel name.\n");
3719 				return err;
3720 			}
3721 		}
3722 	}
3723 	return 0;
3724 }
3725 
3726 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3727 			     union perf_event *event,
3728 			     struct perf_evlist **pevlist)
3729 {
3730 	u32 i, ids, n_ids;
3731 	struct perf_evsel *evsel;
3732 	struct perf_evlist *evlist = *pevlist;
3733 
3734 	if (evlist == NULL) {
3735 		*pevlist = evlist = perf_evlist__new();
3736 		if (evlist == NULL)
3737 			return -ENOMEM;
3738 	}
3739 
3740 	evsel = perf_evsel__new(&event->attr.attr);
3741 	if (evsel == NULL)
3742 		return -ENOMEM;
3743 
3744 	perf_evlist__add(evlist, evsel);
3745 
3746 	ids = event->header.size;
3747 	ids -= (void *)&event->attr.id - (void *)event;
3748 	n_ids = ids / sizeof(u64);
3749 	/*
3750 	 * We don't have the cpu and thread maps on the header, so
3751 	 * for allocating the perf_sample_id table we fake 1 cpu and
3752 	 * hattr->ids threads.
3753 	 */
3754 	if (perf_evsel__alloc_id(evsel, 1, n_ids))
3755 		return -ENOMEM;
3756 
3757 	for (i = 0; i < n_ids; i++) {
3758 		perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
3759 	}
3760 
3761 	return 0;
3762 }
3763 
3764 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3765 				     union perf_event *event,
3766 				     struct perf_evlist **pevlist)
3767 {
3768 	struct event_update_event *ev = &event->event_update;
3769 	struct event_update_event_scale *ev_scale;
3770 	struct event_update_event_cpus *ev_cpus;
3771 	struct perf_evlist *evlist;
3772 	struct perf_evsel *evsel;
3773 	struct cpu_map *map;
3774 
3775 	if (!pevlist || *pevlist == NULL)
3776 		return -EINVAL;
3777 
3778 	evlist = *pevlist;
3779 
3780 	evsel = perf_evlist__id2evsel(evlist, ev->id);
3781 	if (evsel == NULL)
3782 		return -EINVAL;
3783 
3784 	switch (ev->type) {
3785 	case PERF_EVENT_UPDATE__UNIT:
3786 		evsel->unit = strdup(ev->data);
3787 		break;
3788 	case PERF_EVENT_UPDATE__NAME:
3789 		evsel->name = strdup(ev->data);
3790 		break;
3791 	case PERF_EVENT_UPDATE__SCALE:
3792 		ev_scale = (struct event_update_event_scale *) ev->data;
3793 		evsel->scale = ev_scale->scale;
3794 		break;
3795 	case PERF_EVENT_UPDATE__CPUS:
3796 		ev_cpus = (struct event_update_event_cpus *) ev->data;
3797 
3798 		map = cpu_map__new_data(&ev_cpus->cpus);
3799 		if (map)
3800 			evsel->own_cpus = map;
3801 		else
3802 			pr_err("failed to get event_update cpus\n");
3803 	default:
3804 		break;
3805 	}
3806 
3807 	return 0;
3808 }
3809 
3810 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
3811 					struct perf_evlist *evlist,
3812 					perf_event__handler_t process)
3813 {
3814 	union perf_event ev;
3815 	struct tracing_data *tdata;
3816 	ssize_t size = 0, aligned_size = 0, padding;
3817 	struct feat_fd ff;
3818 	int err __maybe_unused = 0;
3819 
3820 	/*
3821 	 * We are going to store the size of the data followed
3822 	 * by the data contents. Since the fd descriptor is a pipe,
3823 	 * we cannot seek back to store the size of the data once
3824 	 * we know it. Instead we:
3825 	 *
3826 	 * - write the tracing data to the temp file
3827 	 * - get/write the data size to pipe
3828 	 * - write the tracing data from the temp file
3829 	 *   to the pipe
3830 	 */
3831 	tdata = tracing_data_get(&evlist->entries, fd, true);
3832 	if (!tdata)
3833 		return -1;
3834 
3835 	memset(&ev, 0, sizeof(ev));
3836 
3837 	ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
3838 	size = tdata->size;
3839 	aligned_size = PERF_ALIGN(size, sizeof(u64));
3840 	padding = aligned_size - size;
3841 	ev.tracing_data.header.size = sizeof(ev.tracing_data);
3842 	ev.tracing_data.size = aligned_size;
3843 
3844 	process(tool, &ev, NULL, NULL);
3845 
3846 	/*
3847 	 * The put function will copy all the tracing data
3848 	 * stored in temp file to the pipe.
3849 	 */
3850 	tracing_data_put(tdata);
3851 
3852 	ff = (struct feat_fd){ .fd = fd };
3853 	if (write_padded(&ff, NULL, 0, padding))
3854 		return -1;
3855 
3856 	return aligned_size;
3857 }
3858 
3859 int perf_event__process_tracing_data(struct perf_tool *tool __maybe_unused,
3860 				     union perf_event *event,
3861 				     struct perf_session *session)
3862 {
3863 	ssize_t size_read, padding, size = event->tracing_data.size;
3864 	int fd = perf_data__fd(session->data);
3865 	off_t offset = lseek(fd, 0, SEEK_CUR);
3866 	char buf[BUFSIZ];
3867 
3868 	/* setup for reading amidst mmap */
3869 	lseek(fd, offset + sizeof(struct tracing_data_event),
3870 	      SEEK_SET);
3871 
3872 	size_read = trace_report(fd, &session->tevent,
3873 				 session->repipe);
3874 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3875 
3876 	if (readn(fd, buf, padding) < 0) {
3877 		pr_err("%s: reading input file", __func__);
3878 		return -1;
3879 	}
3880 	if (session->repipe) {
3881 		int retw = write(STDOUT_FILENO, buf, padding);
3882 		if (retw <= 0 || retw != padding) {
3883 			pr_err("%s: repiping tracing data padding", __func__);
3884 			return -1;
3885 		}
3886 	}
3887 
3888 	if (size_read + padding != size) {
3889 		pr_err("%s: tracing data size mismatch", __func__);
3890 		return -1;
3891 	}
3892 
3893 	perf_evlist__prepare_tracepoint_events(session->evlist,
3894 					       session->tevent.pevent);
3895 
3896 	return size_read + padding;
3897 }
3898 
3899 int perf_event__synthesize_build_id(struct perf_tool *tool,
3900 				    struct dso *pos, u16 misc,
3901 				    perf_event__handler_t process,
3902 				    struct machine *machine)
3903 {
3904 	union perf_event ev;
3905 	size_t len;
3906 	int err = 0;
3907 
3908 	if (!pos->hit)
3909 		return err;
3910 
3911 	memset(&ev, 0, sizeof(ev));
3912 
3913 	len = pos->long_name_len + 1;
3914 	len = PERF_ALIGN(len, NAME_ALIGN);
3915 	memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
3916 	ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
3917 	ev.build_id.header.misc = misc;
3918 	ev.build_id.pid = machine->pid;
3919 	ev.build_id.header.size = sizeof(ev.build_id) + len;
3920 	memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
3921 
3922 	err = process(tool, &ev, NULL, machine);
3923 
3924 	return err;
3925 }
3926 
3927 int perf_event__process_build_id(struct perf_tool *tool __maybe_unused,
3928 				 union perf_event *event,
3929 				 struct perf_session *session)
3930 {
3931 	__event_process_build_id(&event->build_id,
3932 				 event->build_id.filename,
3933 				 session);
3934 	return 0;
3935 }
3936