1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <inttypes.h> 4 #include "util.h" 5 #include "string2.h" 6 #include <sys/param.h> 7 #include <sys/types.h> 8 #include <byteswap.h> 9 #include <unistd.h> 10 #include <stdio.h> 11 #include <stdlib.h> 12 #include <linux/compiler.h> 13 #include <linux/list.h> 14 #include <linux/kernel.h> 15 #include <linux/bitops.h> 16 #include <linux/stringify.h> 17 #include <sys/stat.h> 18 #include <sys/utsname.h> 19 #include <linux/time64.h> 20 #include <dirent.h> 21 22 #include "evlist.h" 23 #include "evsel.h" 24 #include "header.h" 25 #include "memswap.h" 26 #include "../perf.h" 27 #include "trace-event.h" 28 #include "session.h" 29 #include "symbol.h" 30 #include "debug.h" 31 #include "cpumap.h" 32 #include "pmu.h" 33 #include "vdso.h" 34 #include "strbuf.h" 35 #include "build-id.h" 36 #include "data.h" 37 #include <api/fs/fs.h> 38 #include "asm/bug.h" 39 #include "tool.h" 40 #include "time-utils.h" 41 #include "units.h" 42 43 #include "sane_ctype.h" 44 45 /* 46 * magic2 = "PERFILE2" 47 * must be a numerical value to let the endianness 48 * determine the memory layout. That way we are able 49 * to detect endianness when reading the perf.data file 50 * back. 51 * 52 * we check for legacy (PERFFILE) format. 53 */ 54 static const char *__perf_magic1 = "PERFFILE"; 55 static const u64 __perf_magic2 = 0x32454c4946524550ULL; 56 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; 57 58 #define PERF_MAGIC __perf_magic2 59 60 const char perf_version_string[] = PERF_VERSION; 61 62 struct perf_file_attr { 63 struct perf_event_attr attr; 64 struct perf_file_section ids; 65 }; 66 67 struct feat_fd { 68 struct perf_header *ph; 69 int fd; 70 void *buf; /* Either buf != NULL or fd >= 0 */ 71 ssize_t offset; 72 size_t size; 73 struct perf_evsel *events; 74 }; 75 76 void perf_header__set_feat(struct perf_header *header, int feat) 77 { 78 set_bit(feat, header->adds_features); 79 } 80 81 void perf_header__clear_feat(struct perf_header *header, int feat) 82 { 83 clear_bit(feat, header->adds_features); 84 } 85 86 bool perf_header__has_feat(const struct perf_header *header, int feat) 87 { 88 return test_bit(feat, header->adds_features); 89 } 90 91 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) 92 { 93 ssize_t ret = writen(ff->fd, buf, size); 94 95 if (ret != (ssize_t)size) 96 return ret < 0 ? (int)ret : -1; 97 return 0; 98 } 99 100 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) 101 { 102 /* struct perf_event_header::size is u16 */ 103 const size_t max_size = 0xffff - sizeof(struct perf_event_header); 104 size_t new_size = ff->size; 105 void *addr; 106 107 if (size + ff->offset > max_size) 108 return -E2BIG; 109 110 while (size > (new_size - ff->offset)) 111 new_size <<= 1; 112 new_size = min(max_size, new_size); 113 114 if (ff->size < new_size) { 115 addr = realloc(ff->buf, new_size); 116 if (!addr) 117 return -ENOMEM; 118 ff->buf = addr; 119 ff->size = new_size; 120 } 121 122 memcpy(ff->buf + ff->offset, buf, size); 123 ff->offset += size; 124 125 return 0; 126 } 127 128 /* Return: 0 if succeded, -ERR if failed. */ 129 int do_write(struct feat_fd *ff, const void *buf, size_t size) 130 { 131 if (!ff->buf) 132 return __do_write_fd(ff, buf, size); 133 return __do_write_buf(ff, buf, size); 134 } 135 136 /* Return: 0 if succeded, -ERR if failed. */ 137 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) 138 { 139 u64 *p = (u64 *) set; 140 int i, ret; 141 142 ret = do_write(ff, &size, sizeof(size)); 143 if (ret < 0) 144 return ret; 145 146 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 147 ret = do_write(ff, p + i, sizeof(*p)); 148 if (ret < 0) 149 return ret; 150 } 151 152 return 0; 153 } 154 155 /* Return: 0 if succeded, -ERR if failed. */ 156 int write_padded(struct feat_fd *ff, const void *bf, 157 size_t count, size_t count_aligned) 158 { 159 static const char zero_buf[NAME_ALIGN]; 160 int err = do_write(ff, bf, count); 161 162 if (!err) 163 err = do_write(ff, zero_buf, count_aligned - count); 164 165 return err; 166 } 167 168 #define string_size(str) \ 169 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) 170 171 /* Return: 0 if succeded, -ERR if failed. */ 172 static int do_write_string(struct feat_fd *ff, const char *str) 173 { 174 u32 len, olen; 175 int ret; 176 177 olen = strlen(str) + 1; 178 len = PERF_ALIGN(olen, NAME_ALIGN); 179 180 /* write len, incl. \0 */ 181 ret = do_write(ff, &len, sizeof(len)); 182 if (ret < 0) 183 return ret; 184 185 return write_padded(ff, str, olen, len); 186 } 187 188 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) 189 { 190 ssize_t ret = readn(ff->fd, addr, size); 191 192 if (ret != size) 193 return ret < 0 ? (int)ret : -1; 194 return 0; 195 } 196 197 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) 198 { 199 if (size > (ssize_t)ff->size - ff->offset) 200 return -1; 201 202 memcpy(addr, ff->buf + ff->offset, size); 203 ff->offset += size; 204 205 return 0; 206 207 } 208 209 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) 210 { 211 if (!ff->buf) 212 return __do_read_fd(ff, addr, size); 213 return __do_read_buf(ff, addr, size); 214 } 215 216 static int do_read_u32(struct feat_fd *ff, u32 *addr) 217 { 218 int ret; 219 220 ret = __do_read(ff, addr, sizeof(*addr)); 221 if (ret) 222 return ret; 223 224 if (ff->ph->needs_swap) 225 *addr = bswap_32(*addr); 226 return 0; 227 } 228 229 static int do_read_u64(struct feat_fd *ff, u64 *addr) 230 { 231 int ret; 232 233 ret = __do_read(ff, addr, sizeof(*addr)); 234 if (ret) 235 return ret; 236 237 if (ff->ph->needs_swap) 238 *addr = bswap_64(*addr); 239 return 0; 240 } 241 242 static char *do_read_string(struct feat_fd *ff) 243 { 244 u32 len; 245 char *buf; 246 247 if (do_read_u32(ff, &len)) 248 return NULL; 249 250 buf = malloc(len); 251 if (!buf) 252 return NULL; 253 254 if (!__do_read(ff, buf, len)) { 255 /* 256 * strings are padded by zeroes 257 * thus the actual strlen of buf 258 * may be less than len 259 */ 260 return buf; 261 } 262 263 free(buf); 264 return NULL; 265 } 266 267 /* Return: 0 if succeded, -ERR if failed. */ 268 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) 269 { 270 unsigned long *set; 271 u64 size, *p; 272 int i, ret; 273 274 ret = do_read_u64(ff, &size); 275 if (ret) 276 return ret; 277 278 set = bitmap_alloc(size); 279 if (!set) 280 return -ENOMEM; 281 282 p = (u64 *) set; 283 284 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 285 ret = do_read_u64(ff, p + i); 286 if (ret < 0) { 287 free(set); 288 return ret; 289 } 290 } 291 292 *pset = set; 293 *psize = size; 294 return 0; 295 } 296 297 static int write_tracing_data(struct feat_fd *ff, 298 struct perf_evlist *evlist) 299 { 300 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 301 return -1; 302 303 return read_tracing_data(ff->fd, &evlist->entries); 304 } 305 306 static int write_build_id(struct feat_fd *ff, 307 struct perf_evlist *evlist __maybe_unused) 308 { 309 struct perf_session *session; 310 int err; 311 312 session = container_of(ff->ph, struct perf_session, header); 313 314 if (!perf_session__read_build_ids(session, true)) 315 return -1; 316 317 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 318 return -1; 319 320 err = perf_session__write_buildid_table(session, ff); 321 if (err < 0) { 322 pr_debug("failed to write buildid table\n"); 323 return err; 324 } 325 perf_session__cache_build_ids(session); 326 327 return 0; 328 } 329 330 static int write_hostname(struct feat_fd *ff, 331 struct perf_evlist *evlist __maybe_unused) 332 { 333 struct utsname uts; 334 int ret; 335 336 ret = uname(&uts); 337 if (ret < 0) 338 return -1; 339 340 return do_write_string(ff, uts.nodename); 341 } 342 343 static int write_osrelease(struct feat_fd *ff, 344 struct perf_evlist *evlist __maybe_unused) 345 { 346 struct utsname uts; 347 int ret; 348 349 ret = uname(&uts); 350 if (ret < 0) 351 return -1; 352 353 return do_write_string(ff, uts.release); 354 } 355 356 static int write_arch(struct feat_fd *ff, 357 struct perf_evlist *evlist __maybe_unused) 358 { 359 struct utsname uts; 360 int ret; 361 362 ret = uname(&uts); 363 if (ret < 0) 364 return -1; 365 366 return do_write_string(ff, uts.machine); 367 } 368 369 static int write_version(struct feat_fd *ff, 370 struct perf_evlist *evlist __maybe_unused) 371 { 372 return do_write_string(ff, perf_version_string); 373 } 374 375 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) 376 { 377 FILE *file; 378 char *buf = NULL; 379 char *s, *p; 380 const char *search = cpuinfo_proc; 381 size_t len = 0; 382 int ret = -1; 383 384 if (!search) 385 return -1; 386 387 file = fopen("/proc/cpuinfo", "r"); 388 if (!file) 389 return -1; 390 391 while (getline(&buf, &len, file) > 0) { 392 ret = strncmp(buf, search, strlen(search)); 393 if (!ret) 394 break; 395 } 396 397 if (ret) { 398 ret = -1; 399 goto done; 400 } 401 402 s = buf; 403 404 p = strchr(buf, ':'); 405 if (p && *(p+1) == ' ' && *(p+2)) 406 s = p + 2; 407 p = strchr(s, '\n'); 408 if (p) 409 *p = '\0'; 410 411 /* squash extra space characters (branding string) */ 412 p = s; 413 while (*p) { 414 if (isspace(*p)) { 415 char *r = p + 1; 416 char *q = r; 417 *p = ' '; 418 while (*q && isspace(*q)) 419 q++; 420 if (q != (p+1)) 421 while ((*r++ = *q++)); 422 } 423 p++; 424 } 425 ret = do_write_string(ff, s); 426 done: 427 free(buf); 428 fclose(file); 429 return ret; 430 } 431 432 static int write_cpudesc(struct feat_fd *ff, 433 struct perf_evlist *evlist __maybe_unused) 434 { 435 const char *cpuinfo_procs[] = CPUINFO_PROC; 436 unsigned int i; 437 438 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { 439 int ret; 440 ret = __write_cpudesc(ff, cpuinfo_procs[i]); 441 if (ret >= 0) 442 return ret; 443 } 444 return -1; 445 } 446 447 448 static int write_nrcpus(struct feat_fd *ff, 449 struct perf_evlist *evlist __maybe_unused) 450 { 451 long nr; 452 u32 nrc, nra; 453 int ret; 454 455 nrc = cpu__max_present_cpu(); 456 457 nr = sysconf(_SC_NPROCESSORS_ONLN); 458 if (nr < 0) 459 return -1; 460 461 nra = (u32)(nr & UINT_MAX); 462 463 ret = do_write(ff, &nrc, sizeof(nrc)); 464 if (ret < 0) 465 return ret; 466 467 return do_write(ff, &nra, sizeof(nra)); 468 } 469 470 static int write_event_desc(struct feat_fd *ff, 471 struct perf_evlist *evlist) 472 { 473 struct perf_evsel *evsel; 474 u32 nre, nri, sz; 475 int ret; 476 477 nre = evlist->nr_entries; 478 479 /* 480 * write number of events 481 */ 482 ret = do_write(ff, &nre, sizeof(nre)); 483 if (ret < 0) 484 return ret; 485 486 /* 487 * size of perf_event_attr struct 488 */ 489 sz = (u32)sizeof(evsel->attr); 490 ret = do_write(ff, &sz, sizeof(sz)); 491 if (ret < 0) 492 return ret; 493 494 evlist__for_each_entry(evlist, evsel) { 495 ret = do_write(ff, &evsel->attr, sz); 496 if (ret < 0) 497 return ret; 498 /* 499 * write number of unique id per event 500 * there is one id per instance of an event 501 * 502 * copy into an nri to be independent of the 503 * type of ids, 504 */ 505 nri = evsel->ids; 506 ret = do_write(ff, &nri, sizeof(nri)); 507 if (ret < 0) 508 return ret; 509 510 /* 511 * write event string as passed on cmdline 512 */ 513 ret = do_write_string(ff, perf_evsel__name(evsel)); 514 if (ret < 0) 515 return ret; 516 /* 517 * write unique ids for this event 518 */ 519 ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64)); 520 if (ret < 0) 521 return ret; 522 } 523 return 0; 524 } 525 526 static int write_cmdline(struct feat_fd *ff, 527 struct perf_evlist *evlist __maybe_unused) 528 { 529 char buf[MAXPATHLEN]; 530 u32 n; 531 int i, ret; 532 533 /* actual path to perf binary */ 534 ret = readlink("/proc/self/exe", buf, sizeof(buf) - 1); 535 if (ret <= 0) 536 return -1; 537 538 /* readlink() does not add null termination */ 539 buf[ret] = '\0'; 540 541 /* account for binary path */ 542 n = perf_env.nr_cmdline + 1; 543 544 ret = do_write(ff, &n, sizeof(n)); 545 if (ret < 0) 546 return ret; 547 548 ret = do_write_string(ff, buf); 549 if (ret < 0) 550 return ret; 551 552 for (i = 0 ; i < perf_env.nr_cmdline; i++) { 553 ret = do_write_string(ff, perf_env.cmdline_argv[i]); 554 if (ret < 0) 555 return ret; 556 } 557 return 0; 558 } 559 560 #define CORE_SIB_FMT \ 561 "/sys/devices/system/cpu/cpu%d/topology/core_siblings_list" 562 #define THRD_SIB_FMT \ 563 "/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list" 564 565 struct cpu_topo { 566 u32 cpu_nr; 567 u32 core_sib; 568 u32 thread_sib; 569 char **core_siblings; 570 char **thread_siblings; 571 }; 572 573 static int build_cpu_topo(struct cpu_topo *tp, int cpu) 574 { 575 FILE *fp; 576 char filename[MAXPATHLEN]; 577 char *buf = NULL, *p; 578 size_t len = 0; 579 ssize_t sret; 580 u32 i = 0; 581 int ret = -1; 582 583 sprintf(filename, CORE_SIB_FMT, cpu); 584 fp = fopen(filename, "r"); 585 if (!fp) 586 goto try_threads; 587 588 sret = getline(&buf, &len, fp); 589 fclose(fp); 590 if (sret <= 0) 591 goto try_threads; 592 593 p = strchr(buf, '\n'); 594 if (p) 595 *p = '\0'; 596 597 for (i = 0; i < tp->core_sib; i++) { 598 if (!strcmp(buf, tp->core_siblings[i])) 599 break; 600 } 601 if (i == tp->core_sib) { 602 tp->core_siblings[i] = buf; 603 tp->core_sib++; 604 buf = NULL; 605 len = 0; 606 } 607 ret = 0; 608 609 try_threads: 610 sprintf(filename, THRD_SIB_FMT, cpu); 611 fp = fopen(filename, "r"); 612 if (!fp) 613 goto done; 614 615 if (getline(&buf, &len, fp) <= 0) 616 goto done; 617 618 p = strchr(buf, '\n'); 619 if (p) 620 *p = '\0'; 621 622 for (i = 0; i < tp->thread_sib; i++) { 623 if (!strcmp(buf, tp->thread_siblings[i])) 624 break; 625 } 626 if (i == tp->thread_sib) { 627 tp->thread_siblings[i] = buf; 628 tp->thread_sib++; 629 buf = NULL; 630 } 631 ret = 0; 632 done: 633 if(fp) 634 fclose(fp); 635 free(buf); 636 return ret; 637 } 638 639 static void free_cpu_topo(struct cpu_topo *tp) 640 { 641 u32 i; 642 643 if (!tp) 644 return; 645 646 for (i = 0 ; i < tp->core_sib; i++) 647 zfree(&tp->core_siblings[i]); 648 649 for (i = 0 ; i < tp->thread_sib; i++) 650 zfree(&tp->thread_siblings[i]); 651 652 free(tp); 653 } 654 655 static struct cpu_topo *build_cpu_topology(void) 656 { 657 struct cpu_topo *tp = NULL; 658 void *addr; 659 u32 nr, i; 660 size_t sz; 661 long ncpus; 662 int ret = -1; 663 struct cpu_map *map; 664 665 ncpus = cpu__max_present_cpu(); 666 667 /* build online CPU map */ 668 map = cpu_map__new(NULL); 669 if (map == NULL) { 670 pr_debug("failed to get system cpumap\n"); 671 return NULL; 672 } 673 674 nr = (u32)(ncpus & UINT_MAX); 675 676 sz = nr * sizeof(char *); 677 addr = calloc(1, sizeof(*tp) + 2 * sz); 678 if (!addr) 679 goto out_free; 680 681 tp = addr; 682 tp->cpu_nr = nr; 683 addr += sizeof(*tp); 684 tp->core_siblings = addr; 685 addr += sz; 686 tp->thread_siblings = addr; 687 688 for (i = 0; i < nr; i++) { 689 if (!cpu_map__has(map, i)) 690 continue; 691 692 ret = build_cpu_topo(tp, i); 693 if (ret < 0) 694 break; 695 } 696 697 out_free: 698 cpu_map__put(map); 699 if (ret) { 700 free_cpu_topo(tp); 701 tp = NULL; 702 } 703 return tp; 704 } 705 706 static int write_cpu_topology(struct feat_fd *ff, 707 struct perf_evlist *evlist __maybe_unused) 708 { 709 struct cpu_topo *tp; 710 u32 i; 711 int ret, j; 712 713 tp = build_cpu_topology(); 714 if (!tp) 715 return -1; 716 717 ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib)); 718 if (ret < 0) 719 goto done; 720 721 for (i = 0; i < tp->core_sib; i++) { 722 ret = do_write_string(ff, tp->core_siblings[i]); 723 if (ret < 0) 724 goto done; 725 } 726 ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib)); 727 if (ret < 0) 728 goto done; 729 730 for (i = 0; i < tp->thread_sib; i++) { 731 ret = do_write_string(ff, tp->thread_siblings[i]); 732 if (ret < 0) 733 break; 734 } 735 736 ret = perf_env__read_cpu_topology_map(&perf_env); 737 if (ret < 0) 738 goto done; 739 740 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 741 ret = do_write(ff, &perf_env.cpu[j].core_id, 742 sizeof(perf_env.cpu[j].core_id)); 743 if (ret < 0) 744 return ret; 745 ret = do_write(ff, &perf_env.cpu[j].socket_id, 746 sizeof(perf_env.cpu[j].socket_id)); 747 if (ret < 0) 748 return ret; 749 } 750 done: 751 free_cpu_topo(tp); 752 return ret; 753 } 754 755 756 757 static int write_total_mem(struct feat_fd *ff, 758 struct perf_evlist *evlist __maybe_unused) 759 { 760 char *buf = NULL; 761 FILE *fp; 762 size_t len = 0; 763 int ret = -1, n; 764 uint64_t mem; 765 766 fp = fopen("/proc/meminfo", "r"); 767 if (!fp) 768 return -1; 769 770 while (getline(&buf, &len, fp) > 0) { 771 ret = strncmp(buf, "MemTotal:", 9); 772 if (!ret) 773 break; 774 } 775 if (!ret) { 776 n = sscanf(buf, "%*s %"PRIu64, &mem); 777 if (n == 1) 778 ret = do_write(ff, &mem, sizeof(mem)); 779 } else 780 ret = -1; 781 free(buf); 782 fclose(fp); 783 return ret; 784 } 785 786 static int write_topo_node(struct feat_fd *ff, int node) 787 { 788 char str[MAXPATHLEN]; 789 char field[32]; 790 char *buf = NULL, *p; 791 size_t len = 0; 792 FILE *fp; 793 u64 mem_total, mem_free, mem; 794 int ret = -1; 795 796 sprintf(str, "/sys/devices/system/node/node%d/meminfo", node); 797 fp = fopen(str, "r"); 798 if (!fp) 799 return -1; 800 801 while (getline(&buf, &len, fp) > 0) { 802 /* skip over invalid lines */ 803 if (!strchr(buf, ':')) 804 continue; 805 if (sscanf(buf, "%*s %*d %31s %"PRIu64, field, &mem) != 2) 806 goto done; 807 if (!strcmp(field, "MemTotal:")) 808 mem_total = mem; 809 if (!strcmp(field, "MemFree:")) 810 mem_free = mem; 811 } 812 813 fclose(fp); 814 fp = NULL; 815 816 ret = do_write(ff, &mem_total, sizeof(u64)); 817 if (ret) 818 goto done; 819 820 ret = do_write(ff, &mem_free, sizeof(u64)); 821 if (ret) 822 goto done; 823 824 ret = -1; 825 sprintf(str, "/sys/devices/system/node/node%d/cpulist", node); 826 827 fp = fopen(str, "r"); 828 if (!fp) 829 goto done; 830 831 if (getline(&buf, &len, fp) <= 0) 832 goto done; 833 834 p = strchr(buf, '\n'); 835 if (p) 836 *p = '\0'; 837 838 ret = do_write_string(ff, buf); 839 done: 840 free(buf); 841 if (fp) 842 fclose(fp); 843 return ret; 844 } 845 846 static int write_numa_topology(struct feat_fd *ff, 847 struct perf_evlist *evlist __maybe_unused) 848 { 849 char *buf = NULL; 850 size_t len = 0; 851 FILE *fp; 852 struct cpu_map *node_map = NULL; 853 char *c; 854 u32 nr, i, j; 855 int ret = -1; 856 857 fp = fopen("/sys/devices/system/node/online", "r"); 858 if (!fp) 859 return -1; 860 861 if (getline(&buf, &len, fp) <= 0) 862 goto done; 863 864 c = strchr(buf, '\n'); 865 if (c) 866 *c = '\0'; 867 868 node_map = cpu_map__new(buf); 869 if (!node_map) 870 goto done; 871 872 nr = (u32)node_map->nr; 873 874 ret = do_write(ff, &nr, sizeof(nr)); 875 if (ret < 0) 876 goto done; 877 878 for (i = 0; i < nr; i++) { 879 j = (u32)node_map->map[i]; 880 ret = do_write(ff, &j, sizeof(j)); 881 if (ret < 0) 882 break; 883 884 ret = write_topo_node(ff, i); 885 if (ret < 0) 886 break; 887 } 888 done: 889 free(buf); 890 fclose(fp); 891 cpu_map__put(node_map); 892 return ret; 893 } 894 895 /* 896 * File format: 897 * 898 * struct pmu_mappings { 899 * u32 pmu_num; 900 * struct pmu_map { 901 * u32 type; 902 * char name[]; 903 * }[pmu_num]; 904 * }; 905 */ 906 907 static int write_pmu_mappings(struct feat_fd *ff, 908 struct perf_evlist *evlist __maybe_unused) 909 { 910 struct perf_pmu *pmu = NULL; 911 u32 pmu_num = 0; 912 int ret; 913 914 /* 915 * Do a first pass to count number of pmu to avoid lseek so this 916 * works in pipe mode as well. 917 */ 918 while ((pmu = perf_pmu__scan(pmu))) { 919 if (!pmu->name) 920 continue; 921 pmu_num++; 922 } 923 924 ret = do_write(ff, &pmu_num, sizeof(pmu_num)); 925 if (ret < 0) 926 return ret; 927 928 while ((pmu = perf_pmu__scan(pmu))) { 929 if (!pmu->name) 930 continue; 931 932 ret = do_write(ff, &pmu->type, sizeof(pmu->type)); 933 if (ret < 0) 934 return ret; 935 936 ret = do_write_string(ff, pmu->name); 937 if (ret < 0) 938 return ret; 939 } 940 941 return 0; 942 } 943 944 /* 945 * File format: 946 * 947 * struct group_descs { 948 * u32 nr_groups; 949 * struct group_desc { 950 * char name[]; 951 * u32 leader_idx; 952 * u32 nr_members; 953 * }[nr_groups]; 954 * }; 955 */ 956 static int write_group_desc(struct feat_fd *ff, 957 struct perf_evlist *evlist) 958 { 959 u32 nr_groups = evlist->nr_groups; 960 struct perf_evsel *evsel; 961 int ret; 962 963 ret = do_write(ff, &nr_groups, sizeof(nr_groups)); 964 if (ret < 0) 965 return ret; 966 967 evlist__for_each_entry(evlist, evsel) { 968 if (perf_evsel__is_group_leader(evsel) && 969 evsel->nr_members > 1) { 970 const char *name = evsel->group_name ?: "{anon_group}"; 971 u32 leader_idx = evsel->idx; 972 u32 nr_members = evsel->nr_members; 973 974 ret = do_write_string(ff, name); 975 if (ret < 0) 976 return ret; 977 978 ret = do_write(ff, &leader_idx, sizeof(leader_idx)); 979 if (ret < 0) 980 return ret; 981 982 ret = do_write(ff, &nr_members, sizeof(nr_members)); 983 if (ret < 0) 984 return ret; 985 } 986 } 987 return 0; 988 } 989 990 /* 991 * default get_cpuid(): nothing gets recorded 992 * actual implementation must be in arch/$(SRCARCH)/util/header.c 993 */ 994 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused) 995 { 996 return -1; 997 } 998 999 static int write_cpuid(struct feat_fd *ff, 1000 struct perf_evlist *evlist __maybe_unused) 1001 { 1002 char buffer[64]; 1003 int ret; 1004 1005 ret = get_cpuid(buffer, sizeof(buffer)); 1006 if (!ret) 1007 goto write_it; 1008 1009 return -1; 1010 write_it: 1011 return do_write_string(ff, buffer); 1012 } 1013 1014 static int write_branch_stack(struct feat_fd *ff __maybe_unused, 1015 struct perf_evlist *evlist __maybe_unused) 1016 { 1017 return 0; 1018 } 1019 1020 static int write_auxtrace(struct feat_fd *ff, 1021 struct perf_evlist *evlist __maybe_unused) 1022 { 1023 struct perf_session *session; 1024 int err; 1025 1026 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 1027 return -1; 1028 1029 session = container_of(ff->ph, struct perf_session, header); 1030 1031 err = auxtrace_index__write(ff->fd, &session->auxtrace_index); 1032 if (err < 0) 1033 pr_err("Failed to write auxtrace index\n"); 1034 return err; 1035 } 1036 1037 static int write_clockid(struct feat_fd *ff, 1038 struct perf_evlist *evlist __maybe_unused) 1039 { 1040 return do_write(ff, &ff->ph->env.clockid_res_ns, 1041 sizeof(ff->ph->env.clockid_res_ns)); 1042 } 1043 1044 static int cpu_cache_level__sort(const void *a, const void *b) 1045 { 1046 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; 1047 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; 1048 1049 return cache_a->level - cache_b->level; 1050 } 1051 1052 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) 1053 { 1054 if (a->level != b->level) 1055 return false; 1056 1057 if (a->line_size != b->line_size) 1058 return false; 1059 1060 if (a->sets != b->sets) 1061 return false; 1062 1063 if (a->ways != b->ways) 1064 return false; 1065 1066 if (strcmp(a->type, b->type)) 1067 return false; 1068 1069 if (strcmp(a->size, b->size)) 1070 return false; 1071 1072 if (strcmp(a->map, b->map)) 1073 return false; 1074 1075 return true; 1076 } 1077 1078 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) 1079 { 1080 char path[PATH_MAX], file[PATH_MAX]; 1081 struct stat st; 1082 size_t len; 1083 1084 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); 1085 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); 1086 1087 if (stat(file, &st)) 1088 return 1; 1089 1090 scnprintf(file, PATH_MAX, "%s/level", path); 1091 if (sysfs__read_int(file, (int *) &cache->level)) 1092 return -1; 1093 1094 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); 1095 if (sysfs__read_int(file, (int *) &cache->line_size)) 1096 return -1; 1097 1098 scnprintf(file, PATH_MAX, "%s/number_of_sets", path); 1099 if (sysfs__read_int(file, (int *) &cache->sets)) 1100 return -1; 1101 1102 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); 1103 if (sysfs__read_int(file, (int *) &cache->ways)) 1104 return -1; 1105 1106 scnprintf(file, PATH_MAX, "%s/type", path); 1107 if (sysfs__read_str(file, &cache->type, &len)) 1108 return -1; 1109 1110 cache->type[len] = 0; 1111 cache->type = rtrim(cache->type); 1112 1113 scnprintf(file, PATH_MAX, "%s/size", path); 1114 if (sysfs__read_str(file, &cache->size, &len)) { 1115 free(cache->type); 1116 return -1; 1117 } 1118 1119 cache->size[len] = 0; 1120 cache->size = rtrim(cache->size); 1121 1122 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); 1123 if (sysfs__read_str(file, &cache->map, &len)) { 1124 free(cache->map); 1125 free(cache->type); 1126 return -1; 1127 } 1128 1129 cache->map[len] = 0; 1130 cache->map = rtrim(cache->map); 1131 return 0; 1132 } 1133 1134 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) 1135 { 1136 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); 1137 } 1138 1139 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp) 1140 { 1141 u32 i, cnt = 0; 1142 long ncpus; 1143 u32 nr, cpu; 1144 u16 level; 1145 1146 ncpus = sysconf(_SC_NPROCESSORS_CONF); 1147 if (ncpus < 0) 1148 return -1; 1149 1150 nr = (u32)(ncpus & UINT_MAX); 1151 1152 for (cpu = 0; cpu < nr; cpu++) { 1153 for (level = 0; level < 10; level++) { 1154 struct cpu_cache_level c; 1155 int err; 1156 1157 err = cpu_cache_level__read(&c, cpu, level); 1158 if (err < 0) 1159 return err; 1160 1161 if (err == 1) 1162 break; 1163 1164 for (i = 0; i < cnt; i++) { 1165 if (cpu_cache_level__cmp(&c, &caches[i])) 1166 break; 1167 } 1168 1169 if (i == cnt) 1170 caches[cnt++] = c; 1171 else 1172 cpu_cache_level__free(&c); 1173 1174 if (WARN_ONCE(cnt == size, "way too many cpu caches..")) 1175 goto out; 1176 } 1177 } 1178 out: 1179 *cntp = cnt; 1180 return 0; 1181 } 1182 1183 #define MAX_CACHES 2000 1184 1185 static int write_cache(struct feat_fd *ff, 1186 struct perf_evlist *evlist __maybe_unused) 1187 { 1188 struct cpu_cache_level caches[MAX_CACHES]; 1189 u32 cnt = 0, i, version = 1; 1190 int ret; 1191 1192 ret = build_caches(caches, MAX_CACHES, &cnt); 1193 if (ret) 1194 goto out; 1195 1196 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); 1197 1198 ret = do_write(ff, &version, sizeof(u32)); 1199 if (ret < 0) 1200 goto out; 1201 1202 ret = do_write(ff, &cnt, sizeof(u32)); 1203 if (ret < 0) 1204 goto out; 1205 1206 for (i = 0; i < cnt; i++) { 1207 struct cpu_cache_level *c = &caches[i]; 1208 1209 #define _W(v) \ 1210 ret = do_write(ff, &c->v, sizeof(u32)); \ 1211 if (ret < 0) \ 1212 goto out; 1213 1214 _W(level) 1215 _W(line_size) 1216 _W(sets) 1217 _W(ways) 1218 #undef _W 1219 1220 #define _W(v) \ 1221 ret = do_write_string(ff, (const char *) c->v); \ 1222 if (ret < 0) \ 1223 goto out; 1224 1225 _W(type) 1226 _W(size) 1227 _W(map) 1228 #undef _W 1229 } 1230 1231 out: 1232 for (i = 0; i < cnt; i++) 1233 cpu_cache_level__free(&caches[i]); 1234 return ret; 1235 } 1236 1237 static int write_stat(struct feat_fd *ff __maybe_unused, 1238 struct perf_evlist *evlist __maybe_unused) 1239 { 1240 return 0; 1241 } 1242 1243 static int write_sample_time(struct feat_fd *ff, 1244 struct perf_evlist *evlist) 1245 { 1246 int ret; 1247 1248 ret = do_write(ff, &evlist->first_sample_time, 1249 sizeof(evlist->first_sample_time)); 1250 if (ret < 0) 1251 return ret; 1252 1253 return do_write(ff, &evlist->last_sample_time, 1254 sizeof(evlist->last_sample_time)); 1255 } 1256 1257 1258 static int memory_node__read(struct memory_node *n, unsigned long idx) 1259 { 1260 unsigned int phys, size = 0; 1261 char path[PATH_MAX]; 1262 struct dirent *ent; 1263 DIR *dir; 1264 1265 #define for_each_memory(mem, dir) \ 1266 while ((ent = readdir(dir))) \ 1267 if (strcmp(ent->d_name, ".") && \ 1268 strcmp(ent->d_name, "..") && \ 1269 sscanf(ent->d_name, "memory%u", &mem) == 1) 1270 1271 scnprintf(path, PATH_MAX, 1272 "%s/devices/system/node/node%lu", 1273 sysfs__mountpoint(), idx); 1274 1275 dir = opendir(path); 1276 if (!dir) { 1277 pr_warning("failed: cant' open memory sysfs data\n"); 1278 return -1; 1279 } 1280 1281 for_each_memory(phys, dir) { 1282 size = max(phys, size); 1283 } 1284 1285 size++; 1286 1287 n->set = bitmap_alloc(size); 1288 if (!n->set) { 1289 closedir(dir); 1290 return -ENOMEM; 1291 } 1292 1293 n->node = idx; 1294 n->size = size; 1295 1296 rewinddir(dir); 1297 1298 for_each_memory(phys, dir) { 1299 set_bit(phys, n->set); 1300 } 1301 1302 closedir(dir); 1303 return 0; 1304 } 1305 1306 static int memory_node__sort(const void *a, const void *b) 1307 { 1308 const struct memory_node *na = a; 1309 const struct memory_node *nb = b; 1310 1311 return na->node - nb->node; 1312 } 1313 1314 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp) 1315 { 1316 char path[PATH_MAX]; 1317 struct dirent *ent; 1318 DIR *dir; 1319 u64 cnt = 0; 1320 int ret = 0; 1321 1322 scnprintf(path, PATH_MAX, "%s/devices/system/node/", 1323 sysfs__mountpoint()); 1324 1325 dir = opendir(path); 1326 if (!dir) { 1327 pr_debug2("%s: could't read %s, does this arch have topology information?\n", 1328 __func__, path); 1329 return -1; 1330 } 1331 1332 while (!ret && (ent = readdir(dir))) { 1333 unsigned int idx; 1334 int r; 1335 1336 if (!strcmp(ent->d_name, ".") || 1337 !strcmp(ent->d_name, "..")) 1338 continue; 1339 1340 r = sscanf(ent->d_name, "node%u", &idx); 1341 if (r != 1) 1342 continue; 1343 1344 if (WARN_ONCE(cnt >= size, 1345 "failed to write MEM_TOPOLOGY, way too many nodes\n")) 1346 return -1; 1347 1348 ret = memory_node__read(&nodes[cnt++], idx); 1349 } 1350 1351 *cntp = cnt; 1352 closedir(dir); 1353 1354 if (!ret) 1355 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); 1356 1357 return ret; 1358 } 1359 1360 #define MAX_MEMORY_NODES 2000 1361 1362 /* 1363 * The MEM_TOPOLOGY holds physical memory map for every 1364 * node in system. The format of data is as follows: 1365 * 1366 * 0 - version | for future changes 1367 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes 1368 * 16 - count | number of nodes 1369 * 1370 * For each node we store map of physical indexes for 1371 * each node: 1372 * 1373 * 32 - node id | node index 1374 * 40 - size | size of bitmap 1375 * 48 - bitmap | bitmap of memory indexes that belongs to node 1376 */ 1377 static int write_mem_topology(struct feat_fd *ff __maybe_unused, 1378 struct perf_evlist *evlist __maybe_unused) 1379 { 1380 static struct memory_node nodes[MAX_MEMORY_NODES]; 1381 u64 bsize, version = 1, i, nr; 1382 int ret; 1383 1384 ret = sysfs__read_xll("devices/system/memory/block_size_bytes", 1385 (unsigned long long *) &bsize); 1386 if (ret) 1387 return ret; 1388 1389 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr); 1390 if (ret) 1391 return ret; 1392 1393 ret = do_write(ff, &version, sizeof(version)); 1394 if (ret < 0) 1395 goto out; 1396 1397 ret = do_write(ff, &bsize, sizeof(bsize)); 1398 if (ret < 0) 1399 goto out; 1400 1401 ret = do_write(ff, &nr, sizeof(nr)); 1402 if (ret < 0) 1403 goto out; 1404 1405 for (i = 0; i < nr; i++) { 1406 struct memory_node *n = &nodes[i]; 1407 1408 #define _W(v) \ 1409 ret = do_write(ff, &n->v, sizeof(n->v)); \ 1410 if (ret < 0) \ 1411 goto out; 1412 1413 _W(node) 1414 _W(size) 1415 1416 #undef _W 1417 1418 ret = do_write_bitmap(ff, n->set, n->size); 1419 if (ret < 0) 1420 goto out; 1421 } 1422 1423 out: 1424 return ret; 1425 } 1426 1427 static void print_hostname(struct feat_fd *ff, FILE *fp) 1428 { 1429 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); 1430 } 1431 1432 static void print_osrelease(struct feat_fd *ff, FILE *fp) 1433 { 1434 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); 1435 } 1436 1437 static void print_arch(struct feat_fd *ff, FILE *fp) 1438 { 1439 fprintf(fp, "# arch : %s\n", ff->ph->env.arch); 1440 } 1441 1442 static void print_cpudesc(struct feat_fd *ff, FILE *fp) 1443 { 1444 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); 1445 } 1446 1447 static void print_nrcpus(struct feat_fd *ff, FILE *fp) 1448 { 1449 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); 1450 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); 1451 } 1452 1453 static void print_version(struct feat_fd *ff, FILE *fp) 1454 { 1455 fprintf(fp, "# perf version : %s\n", ff->ph->env.version); 1456 } 1457 1458 static void print_cmdline(struct feat_fd *ff, FILE *fp) 1459 { 1460 int nr, i; 1461 1462 nr = ff->ph->env.nr_cmdline; 1463 1464 fprintf(fp, "# cmdline : "); 1465 1466 for (i = 0; i < nr; i++) { 1467 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); 1468 if (!argv_i) { 1469 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); 1470 } else { 1471 char *mem = argv_i; 1472 do { 1473 char *quote = strchr(argv_i, '\''); 1474 if (!quote) 1475 break; 1476 *quote++ = '\0'; 1477 fprintf(fp, "%s\\\'", argv_i); 1478 argv_i = quote; 1479 } while (1); 1480 fprintf(fp, "%s ", argv_i); 1481 free(mem); 1482 } 1483 } 1484 fputc('\n', fp); 1485 } 1486 1487 static void print_cpu_topology(struct feat_fd *ff, FILE *fp) 1488 { 1489 struct perf_header *ph = ff->ph; 1490 int cpu_nr = ph->env.nr_cpus_avail; 1491 int nr, i; 1492 char *str; 1493 1494 nr = ph->env.nr_sibling_cores; 1495 str = ph->env.sibling_cores; 1496 1497 for (i = 0; i < nr; i++) { 1498 fprintf(fp, "# sibling cores : %s\n", str); 1499 str += strlen(str) + 1; 1500 } 1501 1502 nr = ph->env.nr_sibling_threads; 1503 str = ph->env.sibling_threads; 1504 1505 for (i = 0; i < nr; i++) { 1506 fprintf(fp, "# sibling threads : %s\n", str); 1507 str += strlen(str) + 1; 1508 } 1509 1510 if (ph->env.cpu != NULL) { 1511 for (i = 0; i < cpu_nr; i++) 1512 fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i, 1513 ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id); 1514 } else 1515 fprintf(fp, "# Core ID and Socket ID information is not available\n"); 1516 } 1517 1518 static void print_clockid(struct feat_fd *ff, FILE *fp) 1519 { 1520 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", 1521 ff->ph->env.clockid_res_ns * 1000); 1522 } 1523 1524 static void free_event_desc(struct perf_evsel *events) 1525 { 1526 struct perf_evsel *evsel; 1527 1528 if (!events) 1529 return; 1530 1531 for (evsel = events; evsel->attr.size; evsel++) { 1532 zfree(&evsel->name); 1533 zfree(&evsel->id); 1534 } 1535 1536 free(events); 1537 } 1538 1539 static struct perf_evsel *read_event_desc(struct feat_fd *ff) 1540 { 1541 struct perf_evsel *evsel, *events = NULL; 1542 u64 *id; 1543 void *buf = NULL; 1544 u32 nre, sz, nr, i, j; 1545 size_t msz; 1546 1547 /* number of events */ 1548 if (do_read_u32(ff, &nre)) 1549 goto error; 1550 1551 if (do_read_u32(ff, &sz)) 1552 goto error; 1553 1554 /* buffer to hold on file attr struct */ 1555 buf = malloc(sz); 1556 if (!buf) 1557 goto error; 1558 1559 /* the last event terminates with evsel->attr.size == 0: */ 1560 events = calloc(nre + 1, sizeof(*events)); 1561 if (!events) 1562 goto error; 1563 1564 msz = sizeof(evsel->attr); 1565 if (sz < msz) 1566 msz = sz; 1567 1568 for (i = 0, evsel = events; i < nre; evsel++, i++) { 1569 evsel->idx = i; 1570 1571 /* 1572 * must read entire on-file attr struct to 1573 * sync up with layout. 1574 */ 1575 if (__do_read(ff, buf, sz)) 1576 goto error; 1577 1578 if (ff->ph->needs_swap) 1579 perf_event__attr_swap(buf); 1580 1581 memcpy(&evsel->attr, buf, msz); 1582 1583 if (do_read_u32(ff, &nr)) 1584 goto error; 1585 1586 if (ff->ph->needs_swap) 1587 evsel->needs_swap = true; 1588 1589 evsel->name = do_read_string(ff); 1590 if (!evsel->name) 1591 goto error; 1592 1593 if (!nr) 1594 continue; 1595 1596 id = calloc(nr, sizeof(*id)); 1597 if (!id) 1598 goto error; 1599 evsel->ids = nr; 1600 evsel->id = id; 1601 1602 for (j = 0 ; j < nr; j++) { 1603 if (do_read_u64(ff, id)) 1604 goto error; 1605 id++; 1606 } 1607 } 1608 out: 1609 free(buf); 1610 return events; 1611 error: 1612 free_event_desc(events); 1613 events = NULL; 1614 goto out; 1615 } 1616 1617 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, 1618 void *priv __maybe_unused) 1619 { 1620 return fprintf(fp, ", %s = %s", name, val); 1621 } 1622 1623 static void print_event_desc(struct feat_fd *ff, FILE *fp) 1624 { 1625 struct perf_evsel *evsel, *events; 1626 u32 j; 1627 u64 *id; 1628 1629 if (ff->events) 1630 events = ff->events; 1631 else 1632 events = read_event_desc(ff); 1633 1634 if (!events) { 1635 fprintf(fp, "# event desc: not available or unable to read\n"); 1636 return; 1637 } 1638 1639 for (evsel = events; evsel->attr.size; evsel++) { 1640 fprintf(fp, "# event : name = %s, ", evsel->name); 1641 1642 if (evsel->ids) { 1643 fprintf(fp, ", id = {"); 1644 for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) { 1645 if (j) 1646 fputc(',', fp); 1647 fprintf(fp, " %"PRIu64, *id); 1648 } 1649 fprintf(fp, " }"); 1650 } 1651 1652 perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL); 1653 1654 fputc('\n', fp); 1655 } 1656 1657 free_event_desc(events); 1658 ff->events = NULL; 1659 } 1660 1661 static void print_total_mem(struct feat_fd *ff, FILE *fp) 1662 { 1663 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); 1664 } 1665 1666 static void print_numa_topology(struct feat_fd *ff, FILE *fp) 1667 { 1668 int i; 1669 struct numa_node *n; 1670 1671 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { 1672 n = &ff->ph->env.numa_nodes[i]; 1673 1674 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," 1675 " free = %"PRIu64" kB\n", 1676 n->node, n->mem_total, n->mem_free); 1677 1678 fprintf(fp, "# node%u cpu list : ", n->node); 1679 cpu_map__fprintf(n->map, fp); 1680 } 1681 } 1682 1683 static void print_cpuid(struct feat_fd *ff, FILE *fp) 1684 { 1685 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); 1686 } 1687 1688 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) 1689 { 1690 fprintf(fp, "# contains samples with branch stack\n"); 1691 } 1692 1693 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) 1694 { 1695 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); 1696 } 1697 1698 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) 1699 { 1700 fprintf(fp, "# contains stat data\n"); 1701 } 1702 1703 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) 1704 { 1705 int i; 1706 1707 fprintf(fp, "# CPU cache info:\n"); 1708 for (i = 0; i < ff->ph->env.caches_cnt; i++) { 1709 fprintf(fp, "# "); 1710 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); 1711 } 1712 } 1713 1714 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) 1715 { 1716 const char *delimiter = "# pmu mappings: "; 1717 char *str, *tmp; 1718 u32 pmu_num; 1719 u32 type; 1720 1721 pmu_num = ff->ph->env.nr_pmu_mappings; 1722 if (!pmu_num) { 1723 fprintf(fp, "# pmu mappings: not available\n"); 1724 return; 1725 } 1726 1727 str = ff->ph->env.pmu_mappings; 1728 1729 while (pmu_num) { 1730 type = strtoul(str, &tmp, 0); 1731 if (*tmp != ':') 1732 goto error; 1733 1734 str = tmp + 1; 1735 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); 1736 1737 delimiter = ", "; 1738 str += strlen(str) + 1; 1739 pmu_num--; 1740 } 1741 1742 fprintf(fp, "\n"); 1743 1744 if (!pmu_num) 1745 return; 1746 error: 1747 fprintf(fp, "# pmu mappings: unable to read\n"); 1748 } 1749 1750 static void print_group_desc(struct feat_fd *ff, FILE *fp) 1751 { 1752 struct perf_session *session; 1753 struct perf_evsel *evsel; 1754 u32 nr = 0; 1755 1756 session = container_of(ff->ph, struct perf_session, header); 1757 1758 evlist__for_each_entry(session->evlist, evsel) { 1759 if (perf_evsel__is_group_leader(evsel) && 1760 evsel->nr_members > 1) { 1761 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", 1762 perf_evsel__name(evsel)); 1763 1764 nr = evsel->nr_members - 1; 1765 } else if (nr) { 1766 fprintf(fp, ",%s", perf_evsel__name(evsel)); 1767 1768 if (--nr == 0) 1769 fprintf(fp, "}\n"); 1770 } 1771 } 1772 } 1773 1774 static void print_sample_time(struct feat_fd *ff, FILE *fp) 1775 { 1776 struct perf_session *session; 1777 char time_buf[32]; 1778 double d; 1779 1780 session = container_of(ff->ph, struct perf_session, header); 1781 1782 timestamp__scnprintf_usec(session->evlist->first_sample_time, 1783 time_buf, sizeof(time_buf)); 1784 fprintf(fp, "# time of first sample : %s\n", time_buf); 1785 1786 timestamp__scnprintf_usec(session->evlist->last_sample_time, 1787 time_buf, sizeof(time_buf)); 1788 fprintf(fp, "# time of last sample : %s\n", time_buf); 1789 1790 d = (double)(session->evlist->last_sample_time - 1791 session->evlist->first_sample_time) / NSEC_PER_MSEC; 1792 1793 fprintf(fp, "# sample duration : %10.3f ms\n", d); 1794 } 1795 1796 static void memory_node__fprintf(struct memory_node *n, 1797 unsigned long long bsize, FILE *fp) 1798 { 1799 char buf_map[100], buf_size[50]; 1800 unsigned long long size; 1801 1802 size = bsize * bitmap_weight(n->set, n->size); 1803 unit_number__scnprintf(buf_size, 50, size); 1804 1805 bitmap_scnprintf(n->set, n->size, buf_map, 100); 1806 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); 1807 } 1808 1809 static void print_mem_topology(struct feat_fd *ff, FILE *fp) 1810 { 1811 struct memory_node *nodes; 1812 int i, nr; 1813 1814 nodes = ff->ph->env.memory_nodes; 1815 nr = ff->ph->env.nr_memory_nodes; 1816 1817 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", 1818 nr, ff->ph->env.memory_bsize); 1819 1820 for (i = 0; i < nr; i++) { 1821 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp); 1822 } 1823 } 1824 1825 static int __event_process_build_id(struct build_id_event *bev, 1826 char *filename, 1827 struct perf_session *session) 1828 { 1829 int err = -1; 1830 struct machine *machine; 1831 u16 cpumode; 1832 struct dso *dso; 1833 enum dso_kernel_type dso_type; 1834 1835 machine = perf_session__findnew_machine(session, bev->pid); 1836 if (!machine) 1837 goto out; 1838 1839 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1840 1841 switch (cpumode) { 1842 case PERF_RECORD_MISC_KERNEL: 1843 dso_type = DSO_TYPE_KERNEL; 1844 break; 1845 case PERF_RECORD_MISC_GUEST_KERNEL: 1846 dso_type = DSO_TYPE_GUEST_KERNEL; 1847 break; 1848 case PERF_RECORD_MISC_USER: 1849 case PERF_RECORD_MISC_GUEST_USER: 1850 dso_type = DSO_TYPE_USER; 1851 break; 1852 default: 1853 goto out; 1854 } 1855 1856 dso = machine__findnew_dso(machine, filename); 1857 if (dso != NULL) { 1858 char sbuild_id[SBUILD_ID_SIZE]; 1859 1860 dso__set_build_id(dso, &bev->build_id); 1861 1862 if (dso_type != DSO_TYPE_USER) { 1863 struct kmod_path m = { .name = NULL, }; 1864 1865 if (!kmod_path__parse_name(&m, filename) && m.kmod) 1866 dso__set_module_info(dso, &m, machine); 1867 else 1868 dso->kernel = dso_type; 1869 1870 free(m.name); 1871 } 1872 1873 build_id__sprintf(dso->build_id, sizeof(dso->build_id), 1874 sbuild_id); 1875 pr_debug("build id event received for %s: %s\n", 1876 dso->long_name, sbuild_id); 1877 dso__put(dso); 1878 } 1879 1880 err = 0; 1881 out: 1882 return err; 1883 } 1884 1885 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, 1886 int input, u64 offset, u64 size) 1887 { 1888 struct perf_session *session = container_of(header, struct perf_session, header); 1889 struct { 1890 struct perf_event_header header; 1891 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; 1892 char filename[0]; 1893 } old_bev; 1894 struct build_id_event bev; 1895 char filename[PATH_MAX]; 1896 u64 limit = offset + size; 1897 1898 while (offset < limit) { 1899 ssize_t len; 1900 1901 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) 1902 return -1; 1903 1904 if (header->needs_swap) 1905 perf_event_header__bswap(&old_bev.header); 1906 1907 len = old_bev.header.size - sizeof(old_bev); 1908 if (readn(input, filename, len) != len) 1909 return -1; 1910 1911 bev.header = old_bev.header; 1912 1913 /* 1914 * As the pid is the missing value, we need to fill 1915 * it properly. The header.misc value give us nice hint. 1916 */ 1917 bev.pid = HOST_KERNEL_ID; 1918 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || 1919 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) 1920 bev.pid = DEFAULT_GUEST_KERNEL_ID; 1921 1922 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); 1923 __event_process_build_id(&bev, filename, session); 1924 1925 offset += bev.header.size; 1926 } 1927 1928 return 0; 1929 } 1930 1931 static int perf_header__read_build_ids(struct perf_header *header, 1932 int input, u64 offset, u64 size) 1933 { 1934 struct perf_session *session = container_of(header, struct perf_session, header); 1935 struct build_id_event bev; 1936 char filename[PATH_MAX]; 1937 u64 limit = offset + size, orig_offset = offset; 1938 int err = -1; 1939 1940 while (offset < limit) { 1941 ssize_t len; 1942 1943 if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) 1944 goto out; 1945 1946 if (header->needs_swap) 1947 perf_event_header__bswap(&bev.header); 1948 1949 len = bev.header.size - sizeof(bev); 1950 if (readn(input, filename, len) != len) 1951 goto out; 1952 /* 1953 * The a1645ce1 changeset: 1954 * 1955 * "perf: 'perf kvm' tool for monitoring guest performance from host" 1956 * 1957 * Added a field to struct build_id_event that broke the file 1958 * format. 1959 * 1960 * Since the kernel build-id is the first entry, process the 1961 * table using the old format if the well known 1962 * '[kernel.kallsyms]' string for the kernel build-id has the 1963 * first 4 characters chopped off (where the pid_t sits). 1964 */ 1965 if (memcmp(filename, "nel.kallsyms]", 13) == 0) { 1966 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) 1967 return -1; 1968 return perf_header__read_build_ids_abi_quirk(header, input, offset, size); 1969 } 1970 1971 __event_process_build_id(&bev, filename, session); 1972 1973 offset += bev.header.size; 1974 } 1975 err = 0; 1976 out: 1977 return err; 1978 } 1979 1980 /* Macro for features that simply need to read and store a string. */ 1981 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ 1982 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ 1983 {\ 1984 ff->ph->env.__feat_env = do_read_string(ff); \ 1985 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ 1986 } 1987 1988 FEAT_PROCESS_STR_FUN(hostname, hostname); 1989 FEAT_PROCESS_STR_FUN(osrelease, os_release); 1990 FEAT_PROCESS_STR_FUN(version, version); 1991 FEAT_PROCESS_STR_FUN(arch, arch); 1992 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); 1993 FEAT_PROCESS_STR_FUN(cpuid, cpuid); 1994 1995 static int process_tracing_data(struct feat_fd *ff, void *data) 1996 { 1997 ssize_t ret = trace_report(ff->fd, data, false); 1998 1999 return ret < 0 ? -1 : 0; 2000 } 2001 2002 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) 2003 { 2004 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) 2005 pr_debug("Failed to read buildids, continuing...\n"); 2006 return 0; 2007 } 2008 2009 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) 2010 { 2011 int ret; 2012 u32 nr_cpus_avail, nr_cpus_online; 2013 2014 ret = do_read_u32(ff, &nr_cpus_avail); 2015 if (ret) 2016 return ret; 2017 2018 ret = do_read_u32(ff, &nr_cpus_online); 2019 if (ret) 2020 return ret; 2021 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail; 2022 ff->ph->env.nr_cpus_online = (int)nr_cpus_online; 2023 return 0; 2024 } 2025 2026 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) 2027 { 2028 u64 total_mem; 2029 int ret; 2030 2031 ret = do_read_u64(ff, &total_mem); 2032 if (ret) 2033 return -1; 2034 ff->ph->env.total_mem = (unsigned long long)total_mem; 2035 return 0; 2036 } 2037 2038 static struct perf_evsel * 2039 perf_evlist__find_by_index(struct perf_evlist *evlist, int idx) 2040 { 2041 struct perf_evsel *evsel; 2042 2043 evlist__for_each_entry(evlist, evsel) { 2044 if (evsel->idx == idx) 2045 return evsel; 2046 } 2047 2048 return NULL; 2049 } 2050 2051 static void 2052 perf_evlist__set_event_name(struct perf_evlist *evlist, 2053 struct perf_evsel *event) 2054 { 2055 struct perf_evsel *evsel; 2056 2057 if (!event->name) 2058 return; 2059 2060 evsel = perf_evlist__find_by_index(evlist, event->idx); 2061 if (!evsel) 2062 return; 2063 2064 if (evsel->name) 2065 return; 2066 2067 evsel->name = strdup(event->name); 2068 } 2069 2070 static int 2071 process_event_desc(struct feat_fd *ff, void *data __maybe_unused) 2072 { 2073 struct perf_session *session; 2074 struct perf_evsel *evsel, *events = read_event_desc(ff); 2075 2076 if (!events) 2077 return 0; 2078 2079 session = container_of(ff->ph, struct perf_session, header); 2080 2081 if (session->data->is_pipe) { 2082 /* Save events for reading later by print_event_desc, 2083 * since they can't be read again in pipe mode. */ 2084 ff->events = events; 2085 } 2086 2087 for (evsel = events; evsel->attr.size; evsel++) 2088 perf_evlist__set_event_name(session->evlist, evsel); 2089 2090 if (!session->data->is_pipe) 2091 free_event_desc(events); 2092 2093 return 0; 2094 } 2095 2096 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) 2097 { 2098 char *str, *cmdline = NULL, **argv = NULL; 2099 u32 nr, i, len = 0; 2100 2101 if (do_read_u32(ff, &nr)) 2102 return -1; 2103 2104 ff->ph->env.nr_cmdline = nr; 2105 2106 cmdline = zalloc(ff->size + nr + 1); 2107 if (!cmdline) 2108 return -1; 2109 2110 argv = zalloc(sizeof(char *) * (nr + 1)); 2111 if (!argv) 2112 goto error; 2113 2114 for (i = 0; i < nr; i++) { 2115 str = do_read_string(ff); 2116 if (!str) 2117 goto error; 2118 2119 argv[i] = cmdline + len; 2120 memcpy(argv[i], str, strlen(str) + 1); 2121 len += strlen(str) + 1; 2122 free(str); 2123 } 2124 ff->ph->env.cmdline = cmdline; 2125 ff->ph->env.cmdline_argv = (const char **) argv; 2126 return 0; 2127 2128 error: 2129 free(argv); 2130 free(cmdline); 2131 return -1; 2132 } 2133 2134 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) 2135 { 2136 u32 nr, i; 2137 char *str; 2138 struct strbuf sb; 2139 int cpu_nr = ff->ph->env.nr_cpus_avail; 2140 u64 size = 0; 2141 struct perf_header *ph = ff->ph; 2142 bool do_core_id_test = true; 2143 2144 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu)); 2145 if (!ph->env.cpu) 2146 return -1; 2147 2148 if (do_read_u32(ff, &nr)) 2149 goto free_cpu; 2150 2151 ph->env.nr_sibling_cores = nr; 2152 size += sizeof(u32); 2153 if (strbuf_init(&sb, 128) < 0) 2154 goto free_cpu; 2155 2156 for (i = 0; i < nr; i++) { 2157 str = do_read_string(ff); 2158 if (!str) 2159 goto error; 2160 2161 /* include a NULL character at the end */ 2162 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2163 goto error; 2164 size += string_size(str); 2165 free(str); 2166 } 2167 ph->env.sibling_cores = strbuf_detach(&sb, NULL); 2168 2169 if (do_read_u32(ff, &nr)) 2170 return -1; 2171 2172 ph->env.nr_sibling_threads = nr; 2173 size += sizeof(u32); 2174 2175 for (i = 0; i < nr; i++) { 2176 str = do_read_string(ff); 2177 if (!str) 2178 goto error; 2179 2180 /* include a NULL character at the end */ 2181 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2182 goto error; 2183 size += string_size(str); 2184 free(str); 2185 } 2186 ph->env.sibling_threads = strbuf_detach(&sb, NULL); 2187 2188 /* 2189 * The header may be from old perf, 2190 * which doesn't include core id and socket id information. 2191 */ 2192 if (ff->size <= size) { 2193 zfree(&ph->env.cpu); 2194 return 0; 2195 } 2196 2197 /* On s390 the socket_id number is not related to the numbers of cpus. 2198 * The socket_id number might be higher than the numbers of cpus. 2199 * This depends on the configuration. 2200 */ 2201 if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4)) 2202 do_core_id_test = false; 2203 2204 for (i = 0; i < (u32)cpu_nr; i++) { 2205 if (do_read_u32(ff, &nr)) 2206 goto free_cpu; 2207 2208 ph->env.cpu[i].core_id = nr; 2209 2210 if (do_read_u32(ff, &nr)) 2211 goto free_cpu; 2212 2213 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) { 2214 pr_debug("socket_id number is too big." 2215 "You may need to upgrade the perf tool.\n"); 2216 goto free_cpu; 2217 } 2218 2219 ph->env.cpu[i].socket_id = nr; 2220 } 2221 2222 return 0; 2223 2224 error: 2225 strbuf_release(&sb); 2226 free_cpu: 2227 zfree(&ph->env.cpu); 2228 return -1; 2229 } 2230 2231 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) 2232 { 2233 struct numa_node *nodes, *n; 2234 u32 nr, i; 2235 char *str; 2236 2237 /* nr nodes */ 2238 if (do_read_u32(ff, &nr)) 2239 return -1; 2240 2241 nodes = zalloc(sizeof(*nodes) * nr); 2242 if (!nodes) 2243 return -ENOMEM; 2244 2245 for (i = 0; i < nr; i++) { 2246 n = &nodes[i]; 2247 2248 /* node number */ 2249 if (do_read_u32(ff, &n->node)) 2250 goto error; 2251 2252 if (do_read_u64(ff, &n->mem_total)) 2253 goto error; 2254 2255 if (do_read_u64(ff, &n->mem_free)) 2256 goto error; 2257 2258 str = do_read_string(ff); 2259 if (!str) 2260 goto error; 2261 2262 n->map = cpu_map__new(str); 2263 if (!n->map) 2264 goto error; 2265 2266 free(str); 2267 } 2268 ff->ph->env.nr_numa_nodes = nr; 2269 ff->ph->env.numa_nodes = nodes; 2270 return 0; 2271 2272 error: 2273 free(nodes); 2274 return -1; 2275 } 2276 2277 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) 2278 { 2279 char *name; 2280 u32 pmu_num; 2281 u32 type; 2282 struct strbuf sb; 2283 2284 if (do_read_u32(ff, &pmu_num)) 2285 return -1; 2286 2287 if (!pmu_num) { 2288 pr_debug("pmu mappings not available\n"); 2289 return 0; 2290 } 2291 2292 ff->ph->env.nr_pmu_mappings = pmu_num; 2293 if (strbuf_init(&sb, 128) < 0) 2294 return -1; 2295 2296 while (pmu_num) { 2297 if (do_read_u32(ff, &type)) 2298 goto error; 2299 2300 name = do_read_string(ff); 2301 if (!name) 2302 goto error; 2303 2304 if (strbuf_addf(&sb, "%u:%s", type, name) < 0) 2305 goto error; 2306 /* include a NULL character at the end */ 2307 if (strbuf_add(&sb, "", 1) < 0) 2308 goto error; 2309 2310 if (!strcmp(name, "msr")) 2311 ff->ph->env.msr_pmu_type = type; 2312 2313 free(name); 2314 pmu_num--; 2315 } 2316 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL); 2317 return 0; 2318 2319 error: 2320 strbuf_release(&sb); 2321 return -1; 2322 } 2323 2324 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) 2325 { 2326 size_t ret = -1; 2327 u32 i, nr, nr_groups; 2328 struct perf_session *session; 2329 struct perf_evsel *evsel, *leader = NULL; 2330 struct group_desc { 2331 char *name; 2332 u32 leader_idx; 2333 u32 nr_members; 2334 } *desc; 2335 2336 if (do_read_u32(ff, &nr_groups)) 2337 return -1; 2338 2339 ff->ph->env.nr_groups = nr_groups; 2340 if (!nr_groups) { 2341 pr_debug("group desc not available\n"); 2342 return 0; 2343 } 2344 2345 desc = calloc(nr_groups, sizeof(*desc)); 2346 if (!desc) 2347 return -1; 2348 2349 for (i = 0; i < nr_groups; i++) { 2350 desc[i].name = do_read_string(ff); 2351 if (!desc[i].name) 2352 goto out_free; 2353 2354 if (do_read_u32(ff, &desc[i].leader_idx)) 2355 goto out_free; 2356 2357 if (do_read_u32(ff, &desc[i].nr_members)) 2358 goto out_free; 2359 } 2360 2361 /* 2362 * Rebuild group relationship based on the group_desc 2363 */ 2364 session = container_of(ff->ph, struct perf_session, header); 2365 session->evlist->nr_groups = nr_groups; 2366 2367 i = nr = 0; 2368 evlist__for_each_entry(session->evlist, evsel) { 2369 if (evsel->idx == (int) desc[i].leader_idx) { 2370 evsel->leader = evsel; 2371 /* {anon_group} is a dummy name */ 2372 if (strcmp(desc[i].name, "{anon_group}")) { 2373 evsel->group_name = desc[i].name; 2374 desc[i].name = NULL; 2375 } 2376 evsel->nr_members = desc[i].nr_members; 2377 2378 if (i >= nr_groups || nr > 0) { 2379 pr_debug("invalid group desc\n"); 2380 goto out_free; 2381 } 2382 2383 leader = evsel; 2384 nr = evsel->nr_members - 1; 2385 i++; 2386 } else if (nr) { 2387 /* This is a group member */ 2388 evsel->leader = leader; 2389 2390 nr--; 2391 } 2392 } 2393 2394 if (i != nr_groups || nr != 0) { 2395 pr_debug("invalid group desc\n"); 2396 goto out_free; 2397 } 2398 2399 ret = 0; 2400 out_free: 2401 for (i = 0; i < nr_groups; i++) 2402 zfree(&desc[i].name); 2403 free(desc); 2404 2405 return ret; 2406 } 2407 2408 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) 2409 { 2410 struct perf_session *session; 2411 int err; 2412 2413 session = container_of(ff->ph, struct perf_session, header); 2414 2415 err = auxtrace_index__process(ff->fd, ff->size, session, 2416 ff->ph->needs_swap); 2417 if (err < 0) 2418 pr_err("Failed to process auxtrace index\n"); 2419 return err; 2420 } 2421 2422 static int process_cache(struct feat_fd *ff, void *data __maybe_unused) 2423 { 2424 struct cpu_cache_level *caches; 2425 u32 cnt, i, version; 2426 2427 if (do_read_u32(ff, &version)) 2428 return -1; 2429 2430 if (version != 1) 2431 return -1; 2432 2433 if (do_read_u32(ff, &cnt)) 2434 return -1; 2435 2436 caches = zalloc(sizeof(*caches) * cnt); 2437 if (!caches) 2438 return -1; 2439 2440 for (i = 0; i < cnt; i++) { 2441 struct cpu_cache_level c; 2442 2443 #define _R(v) \ 2444 if (do_read_u32(ff, &c.v))\ 2445 goto out_free_caches; \ 2446 2447 _R(level) 2448 _R(line_size) 2449 _R(sets) 2450 _R(ways) 2451 #undef _R 2452 2453 #define _R(v) \ 2454 c.v = do_read_string(ff); \ 2455 if (!c.v) \ 2456 goto out_free_caches; 2457 2458 _R(type) 2459 _R(size) 2460 _R(map) 2461 #undef _R 2462 2463 caches[i] = c; 2464 } 2465 2466 ff->ph->env.caches = caches; 2467 ff->ph->env.caches_cnt = cnt; 2468 return 0; 2469 out_free_caches: 2470 free(caches); 2471 return -1; 2472 } 2473 2474 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) 2475 { 2476 struct perf_session *session; 2477 u64 first_sample_time, last_sample_time; 2478 int ret; 2479 2480 session = container_of(ff->ph, struct perf_session, header); 2481 2482 ret = do_read_u64(ff, &first_sample_time); 2483 if (ret) 2484 return -1; 2485 2486 ret = do_read_u64(ff, &last_sample_time); 2487 if (ret) 2488 return -1; 2489 2490 session->evlist->first_sample_time = first_sample_time; 2491 session->evlist->last_sample_time = last_sample_time; 2492 return 0; 2493 } 2494 2495 static int process_mem_topology(struct feat_fd *ff, 2496 void *data __maybe_unused) 2497 { 2498 struct memory_node *nodes; 2499 u64 version, i, nr, bsize; 2500 int ret = -1; 2501 2502 if (do_read_u64(ff, &version)) 2503 return -1; 2504 2505 if (version != 1) 2506 return -1; 2507 2508 if (do_read_u64(ff, &bsize)) 2509 return -1; 2510 2511 if (do_read_u64(ff, &nr)) 2512 return -1; 2513 2514 nodes = zalloc(sizeof(*nodes) * nr); 2515 if (!nodes) 2516 return -1; 2517 2518 for (i = 0; i < nr; i++) { 2519 struct memory_node n; 2520 2521 #define _R(v) \ 2522 if (do_read_u64(ff, &n.v)) \ 2523 goto out; \ 2524 2525 _R(node) 2526 _R(size) 2527 2528 #undef _R 2529 2530 if (do_read_bitmap(ff, &n.set, &n.size)) 2531 goto out; 2532 2533 nodes[i] = n; 2534 } 2535 2536 ff->ph->env.memory_bsize = bsize; 2537 ff->ph->env.memory_nodes = nodes; 2538 ff->ph->env.nr_memory_nodes = nr; 2539 ret = 0; 2540 2541 out: 2542 if (ret) 2543 free(nodes); 2544 return ret; 2545 } 2546 2547 static int process_clockid(struct feat_fd *ff, 2548 void *data __maybe_unused) 2549 { 2550 if (do_read_u64(ff, &ff->ph->env.clockid_res_ns)) 2551 return -1; 2552 2553 return 0; 2554 } 2555 2556 struct feature_ops { 2557 int (*write)(struct feat_fd *ff, struct perf_evlist *evlist); 2558 void (*print)(struct feat_fd *ff, FILE *fp); 2559 int (*process)(struct feat_fd *ff, void *data); 2560 const char *name; 2561 bool full_only; 2562 bool synthesize; 2563 }; 2564 2565 #define FEAT_OPR(n, func, __full_only) \ 2566 [HEADER_##n] = { \ 2567 .name = __stringify(n), \ 2568 .write = write_##func, \ 2569 .print = print_##func, \ 2570 .full_only = __full_only, \ 2571 .process = process_##func, \ 2572 .synthesize = true \ 2573 } 2574 2575 #define FEAT_OPN(n, func, __full_only) \ 2576 [HEADER_##n] = { \ 2577 .name = __stringify(n), \ 2578 .write = write_##func, \ 2579 .print = print_##func, \ 2580 .full_only = __full_only, \ 2581 .process = process_##func \ 2582 } 2583 2584 /* feature_ops not implemented: */ 2585 #define print_tracing_data NULL 2586 #define print_build_id NULL 2587 2588 #define process_branch_stack NULL 2589 #define process_stat NULL 2590 2591 2592 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = { 2593 FEAT_OPN(TRACING_DATA, tracing_data, false), 2594 FEAT_OPN(BUILD_ID, build_id, false), 2595 FEAT_OPR(HOSTNAME, hostname, false), 2596 FEAT_OPR(OSRELEASE, osrelease, false), 2597 FEAT_OPR(VERSION, version, false), 2598 FEAT_OPR(ARCH, arch, false), 2599 FEAT_OPR(NRCPUS, nrcpus, false), 2600 FEAT_OPR(CPUDESC, cpudesc, false), 2601 FEAT_OPR(CPUID, cpuid, false), 2602 FEAT_OPR(TOTAL_MEM, total_mem, false), 2603 FEAT_OPR(EVENT_DESC, event_desc, false), 2604 FEAT_OPR(CMDLINE, cmdline, false), 2605 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), 2606 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), 2607 FEAT_OPN(BRANCH_STACK, branch_stack, false), 2608 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), 2609 FEAT_OPR(GROUP_DESC, group_desc, false), 2610 FEAT_OPN(AUXTRACE, auxtrace, false), 2611 FEAT_OPN(STAT, stat, false), 2612 FEAT_OPN(CACHE, cache, true), 2613 FEAT_OPR(SAMPLE_TIME, sample_time, false), 2614 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), 2615 FEAT_OPR(CLOCKID, clockid, false) 2616 }; 2617 2618 struct header_print_data { 2619 FILE *fp; 2620 bool full; /* extended list of headers */ 2621 }; 2622 2623 static int perf_file_section__fprintf_info(struct perf_file_section *section, 2624 struct perf_header *ph, 2625 int feat, int fd, void *data) 2626 { 2627 struct header_print_data *hd = data; 2628 struct feat_fd ff; 2629 2630 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 2631 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 2632 "%d, continuing...\n", section->offset, feat); 2633 return 0; 2634 } 2635 if (feat >= HEADER_LAST_FEATURE) { 2636 pr_warning("unknown feature %d\n", feat); 2637 return 0; 2638 } 2639 if (!feat_ops[feat].print) 2640 return 0; 2641 2642 ff = (struct feat_fd) { 2643 .fd = fd, 2644 .ph = ph, 2645 }; 2646 2647 if (!feat_ops[feat].full_only || hd->full) 2648 feat_ops[feat].print(&ff, hd->fp); 2649 else 2650 fprintf(hd->fp, "# %s info available, use -I to display\n", 2651 feat_ops[feat].name); 2652 2653 return 0; 2654 } 2655 2656 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) 2657 { 2658 struct header_print_data hd; 2659 struct perf_header *header = &session->header; 2660 int fd = perf_data__fd(session->data); 2661 struct stat st; 2662 int ret, bit; 2663 2664 hd.fp = fp; 2665 hd.full = full; 2666 2667 ret = fstat(fd, &st); 2668 if (ret == -1) 2669 return -1; 2670 2671 fprintf(fp, "# captured on : %s", ctime(&st.st_ctime)); 2672 2673 fprintf(fp, "# header version : %u\n", header->version); 2674 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); 2675 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); 2676 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); 2677 2678 perf_header__process_sections(header, fd, &hd, 2679 perf_file_section__fprintf_info); 2680 2681 if (session->data->is_pipe) 2682 return 0; 2683 2684 fprintf(fp, "# missing features: "); 2685 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { 2686 if (bit) 2687 fprintf(fp, "%s ", feat_ops[bit].name); 2688 } 2689 2690 fprintf(fp, "\n"); 2691 return 0; 2692 } 2693 2694 static int do_write_feat(struct feat_fd *ff, int type, 2695 struct perf_file_section **p, 2696 struct perf_evlist *evlist) 2697 { 2698 int err; 2699 int ret = 0; 2700 2701 if (perf_header__has_feat(ff->ph, type)) { 2702 if (!feat_ops[type].write) 2703 return -1; 2704 2705 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 2706 return -1; 2707 2708 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); 2709 2710 err = feat_ops[type].write(ff, evlist); 2711 if (err < 0) { 2712 pr_debug("failed to write feature %s\n", feat_ops[type].name); 2713 2714 /* undo anything written */ 2715 lseek(ff->fd, (*p)->offset, SEEK_SET); 2716 2717 return -1; 2718 } 2719 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; 2720 (*p)++; 2721 } 2722 return ret; 2723 } 2724 2725 static int perf_header__adds_write(struct perf_header *header, 2726 struct perf_evlist *evlist, int fd) 2727 { 2728 int nr_sections; 2729 struct feat_fd ff; 2730 struct perf_file_section *feat_sec, *p; 2731 int sec_size; 2732 u64 sec_start; 2733 int feat; 2734 int err; 2735 2736 ff = (struct feat_fd){ 2737 .fd = fd, 2738 .ph = header, 2739 }; 2740 2741 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 2742 if (!nr_sections) 2743 return 0; 2744 2745 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); 2746 if (feat_sec == NULL) 2747 return -ENOMEM; 2748 2749 sec_size = sizeof(*feat_sec) * nr_sections; 2750 2751 sec_start = header->feat_offset; 2752 lseek(fd, sec_start + sec_size, SEEK_SET); 2753 2754 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 2755 if (do_write_feat(&ff, feat, &p, evlist)) 2756 perf_header__clear_feat(header, feat); 2757 } 2758 2759 lseek(fd, sec_start, SEEK_SET); 2760 /* 2761 * may write more than needed due to dropped feature, but 2762 * this is okay, reader will skip the mising entries 2763 */ 2764 err = do_write(&ff, feat_sec, sec_size); 2765 if (err < 0) 2766 pr_debug("failed to write feature section\n"); 2767 free(feat_sec); 2768 return err; 2769 } 2770 2771 int perf_header__write_pipe(int fd) 2772 { 2773 struct perf_pipe_file_header f_header; 2774 struct feat_fd ff; 2775 int err; 2776 2777 ff = (struct feat_fd){ .fd = fd }; 2778 2779 f_header = (struct perf_pipe_file_header){ 2780 .magic = PERF_MAGIC, 2781 .size = sizeof(f_header), 2782 }; 2783 2784 err = do_write(&ff, &f_header, sizeof(f_header)); 2785 if (err < 0) { 2786 pr_debug("failed to write perf pipe header\n"); 2787 return err; 2788 } 2789 2790 return 0; 2791 } 2792 2793 int perf_session__write_header(struct perf_session *session, 2794 struct perf_evlist *evlist, 2795 int fd, bool at_exit) 2796 { 2797 struct perf_file_header f_header; 2798 struct perf_file_attr f_attr; 2799 struct perf_header *header = &session->header; 2800 struct perf_evsel *evsel; 2801 struct feat_fd ff; 2802 u64 attr_offset; 2803 int err; 2804 2805 ff = (struct feat_fd){ .fd = fd}; 2806 lseek(fd, sizeof(f_header), SEEK_SET); 2807 2808 evlist__for_each_entry(session->evlist, evsel) { 2809 evsel->id_offset = lseek(fd, 0, SEEK_CUR); 2810 err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64)); 2811 if (err < 0) { 2812 pr_debug("failed to write perf header\n"); 2813 return err; 2814 } 2815 } 2816 2817 attr_offset = lseek(ff.fd, 0, SEEK_CUR); 2818 2819 evlist__for_each_entry(evlist, evsel) { 2820 f_attr = (struct perf_file_attr){ 2821 .attr = evsel->attr, 2822 .ids = { 2823 .offset = evsel->id_offset, 2824 .size = evsel->ids * sizeof(u64), 2825 } 2826 }; 2827 err = do_write(&ff, &f_attr, sizeof(f_attr)); 2828 if (err < 0) { 2829 pr_debug("failed to write perf header attribute\n"); 2830 return err; 2831 } 2832 } 2833 2834 if (!header->data_offset) 2835 header->data_offset = lseek(fd, 0, SEEK_CUR); 2836 header->feat_offset = header->data_offset + header->data_size; 2837 2838 if (at_exit) { 2839 err = perf_header__adds_write(header, evlist, fd); 2840 if (err < 0) 2841 return err; 2842 } 2843 2844 f_header = (struct perf_file_header){ 2845 .magic = PERF_MAGIC, 2846 .size = sizeof(f_header), 2847 .attr_size = sizeof(f_attr), 2848 .attrs = { 2849 .offset = attr_offset, 2850 .size = evlist->nr_entries * sizeof(f_attr), 2851 }, 2852 .data = { 2853 .offset = header->data_offset, 2854 .size = header->data_size, 2855 }, 2856 /* event_types is ignored, store zeros */ 2857 }; 2858 2859 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); 2860 2861 lseek(fd, 0, SEEK_SET); 2862 err = do_write(&ff, &f_header, sizeof(f_header)); 2863 if (err < 0) { 2864 pr_debug("failed to write perf header\n"); 2865 return err; 2866 } 2867 lseek(fd, header->data_offset + header->data_size, SEEK_SET); 2868 2869 return 0; 2870 } 2871 2872 static int perf_header__getbuffer64(struct perf_header *header, 2873 int fd, void *buf, size_t size) 2874 { 2875 if (readn(fd, buf, size) <= 0) 2876 return -1; 2877 2878 if (header->needs_swap) 2879 mem_bswap_64(buf, size); 2880 2881 return 0; 2882 } 2883 2884 int perf_header__process_sections(struct perf_header *header, int fd, 2885 void *data, 2886 int (*process)(struct perf_file_section *section, 2887 struct perf_header *ph, 2888 int feat, int fd, void *data)) 2889 { 2890 struct perf_file_section *feat_sec, *sec; 2891 int nr_sections; 2892 int sec_size; 2893 int feat; 2894 int err; 2895 2896 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 2897 if (!nr_sections) 2898 return 0; 2899 2900 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); 2901 if (!feat_sec) 2902 return -1; 2903 2904 sec_size = sizeof(*feat_sec) * nr_sections; 2905 2906 lseek(fd, header->feat_offset, SEEK_SET); 2907 2908 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); 2909 if (err < 0) 2910 goto out_free; 2911 2912 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { 2913 err = process(sec++, header, feat, fd, data); 2914 if (err < 0) 2915 goto out_free; 2916 } 2917 err = 0; 2918 out_free: 2919 free(feat_sec); 2920 return err; 2921 } 2922 2923 static const int attr_file_abi_sizes[] = { 2924 [0] = PERF_ATTR_SIZE_VER0, 2925 [1] = PERF_ATTR_SIZE_VER1, 2926 [2] = PERF_ATTR_SIZE_VER2, 2927 [3] = PERF_ATTR_SIZE_VER3, 2928 [4] = PERF_ATTR_SIZE_VER4, 2929 0, 2930 }; 2931 2932 /* 2933 * In the legacy file format, the magic number is not used to encode endianness. 2934 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based 2935 * on ABI revisions, we need to try all combinations for all endianness to 2936 * detect the endianness. 2937 */ 2938 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) 2939 { 2940 uint64_t ref_size, attr_size; 2941 int i; 2942 2943 for (i = 0 ; attr_file_abi_sizes[i]; i++) { 2944 ref_size = attr_file_abi_sizes[i] 2945 + sizeof(struct perf_file_section); 2946 if (hdr_sz != ref_size) { 2947 attr_size = bswap_64(hdr_sz); 2948 if (attr_size != ref_size) 2949 continue; 2950 2951 ph->needs_swap = true; 2952 } 2953 pr_debug("ABI%d perf.data file detected, need_swap=%d\n", 2954 i, 2955 ph->needs_swap); 2956 return 0; 2957 } 2958 /* could not determine endianness */ 2959 return -1; 2960 } 2961 2962 #define PERF_PIPE_HDR_VER0 16 2963 2964 static const size_t attr_pipe_abi_sizes[] = { 2965 [0] = PERF_PIPE_HDR_VER0, 2966 0, 2967 }; 2968 2969 /* 2970 * In the legacy pipe format, there is an implicit assumption that endiannesss 2971 * between host recording the samples, and host parsing the samples is the 2972 * same. This is not always the case given that the pipe output may always be 2973 * redirected into a file and analyzed on a different machine with possibly a 2974 * different endianness and perf_event ABI revsions in the perf tool itself. 2975 */ 2976 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) 2977 { 2978 u64 attr_size; 2979 int i; 2980 2981 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { 2982 if (hdr_sz != attr_pipe_abi_sizes[i]) { 2983 attr_size = bswap_64(hdr_sz); 2984 if (attr_size != hdr_sz) 2985 continue; 2986 2987 ph->needs_swap = true; 2988 } 2989 pr_debug("Pipe ABI%d perf.data file detected\n", i); 2990 return 0; 2991 } 2992 return -1; 2993 } 2994 2995 bool is_perf_magic(u64 magic) 2996 { 2997 if (!memcmp(&magic, __perf_magic1, sizeof(magic)) 2998 || magic == __perf_magic2 2999 || magic == __perf_magic2_sw) 3000 return true; 3001 3002 return false; 3003 } 3004 3005 static int check_magic_endian(u64 magic, uint64_t hdr_sz, 3006 bool is_pipe, struct perf_header *ph) 3007 { 3008 int ret; 3009 3010 /* check for legacy format */ 3011 ret = memcmp(&magic, __perf_magic1, sizeof(magic)); 3012 if (ret == 0) { 3013 ph->version = PERF_HEADER_VERSION_1; 3014 pr_debug("legacy perf.data format\n"); 3015 if (is_pipe) 3016 return try_all_pipe_abis(hdr_sz, ph); 3017 3018 return try_all_file_abis(hdr_sz, ph); 3019 } 3020 /* 3021 * the new magic number serves two purposes: 3022 * - unique number to identify actual perf.data files 3023 * - encode endianness of file 3024 */ 3025 ph->version = PERF_HEADER_VERSION_2; 3026 3027 /* check magic number with one endianness */ 3028 if (magic == __perf_magic2) 3029 return 0; 3030 3031 /* check magic number with opposite endianness */ 3032 if (magic != __perf_magic2_sw) 3033 return -1; 3034 3035 ph->needs_swap = true; 3036 3037 return 0; 3038 } 3039 3040 int perf_file_header__read(struct perf_file_header *header, 3041 struct perf_header *ph, int fd) 3042 { 3043 ssize_t ret; 3044 3045 lseek(fd, 0, SEEK_SET); 3046 3047 ret = readn(fd, header, sizeof(*header)); 3048 if (ret <= 0) 3049 return -1; 3050 3051 if (check_magic_endian(header->magic, 3052 header->attr_size, false, ph) < 0) { 3053 pr_debug("magic/endian check failed\n"); 3054 return -1; 3055 } 3056 3057 if (ph->needs_swap) { 3058 mem_bswap_64(header, offsetof(struct perf_file_header, 3059 adds_features)); 3060 } 3061 3062 if (header->size != sizeof(*header)) { 3063 /* Support the previous format */ 3064 if (header->size == offsetof(typeof(*header), adds_features)) 3065 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3066 else 3067 return -1; 3068 } else if (ph->needs_swap) { 3069 /* 3070 * feature bitmap is declared as an array of unsigned longs -- 3071 * not good since its size can differ between the host that 3072 * generated the data file and the host analyzing the file. 3073 * 3074 * We need to handle endianness, but we don't know the size of 3075 * the unsigned long where the file was generated. Take a best 3076 * guess at determining it: try 64-bit swap first (ie., file 3077 * created on a 64-bit host), and check if the hostname feature 3078 * bit is set (this feature bit is forced on as of fbe96f2). 3079 * If the bit is not, undo the 64-bit swap and try a 32-bit 3080 * swap. If the hostname bit is still not set (e.g., older data 3081 * file), punt and fallback to the original behavior -- 3082 * clearing all feature bits and setting buildid. 3083 */ 3084 mem_bswap_64(&header->adds_features, 3085 BITS_TO_U64(HEADER_FEAT_BITS)); 3086 3087 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3088 /* unswap as u64 */ 3089 mem_bswap_64(&header->adds_features, 3090 BITS_TO_U64(HEADER_FEAT_BITS)); 3091 3092 /* unswap as u32 */ 3093 mem_bswap_32(&header->adds_features, 3094 BITS_TO_U32(HEADER_FEAT_BITS)); 3095 } 3096 3097 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3098 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3099 set_bit(HEADER_BUILD_ID, header->adds_features); 3100 } 3101 } 3102 3103 memcpy(&ph->adds_features, &header->adds_features, 3104 sizeof(ph->adds_features)); 3105 3106 ph->data_offset = header->data.offset; 3107 ph->data_size = header->data.size; 3108 ph->feat_offset = header->data.offset + header->data.size; 3109 return 0; 3110 } 3111 3112 static int perf_file_section__process(struct perf_file_section *section, 3113 struct perf_header *ph, 3114 int feat, int fd, void *data) 3115 { 3116 struct feat_fd fdd = { 3117 .fd = fd, 3118 .ph = ph, 3119 .size = section->size, 3120 .offset = section->offset, 3121 }; 3122 3123 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3124 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3125 "%d, continuing...\n", section->offset, feat); 3126 return 0; 3127 } 3128 3129 if (feat >= HEADER_LAST_FEATURE) { 3130 pr_debug("unknown feature %d, continuing...\n", feat); 3131 return 0; 3132 } 3133 3134 if (!feat_ops[feat].process) 3135 return 0; 3136 3137 return feat_ops[feat].process(&fdd, data); 3138 } 3139 3140 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, 3141 struct perf_header *ph, int fd, 3142 bool repipe) 3143 { 3144 struct feat_fd ff = { 3145 .fd = STDOUT_FILENO, 3146 .ph = ph, 3147 }; 3148 ssize_t ret; 3149 3150 ret = readn(fd, header, sizeof(*header)); 3151 if (ret <= 0) 3152 return -1; 3153 3154 if (check_magic_endian(header->magic, header->size, true, ph) < 0) { 3155 pr_debug("endian/magic failed\n"); 3156 return -1; 3157 } 3158 3159 if (ph->needs_swap) 3160 header->size = bswap_64(header->size); 3161 3162 if (repipe && do_write(&ff, header, sizeof(*header)) < 0) 3163 return -1; 3164 3165 return 0; 3166 } 3167 3168 static int perf_header__read_pipe(struct perf_session *session) 3169 { 3170 struct perf_header *header = &session->header; 3171 struct perf_pipe_file_header f_header; 3172 3173 if (perf_file_header__read_pipe(&f_header, header, 3174 perf_data__fd(session->data), 3175 session->repipe) < 0) { 3176 pr_debug("incompatible file format\n"); 3177 return -EINVAL; 3178 } 3179 3180 return 0; 3181 } 3182 3183 static int read_attr(int fd, struct perf_header *ph, 3184 struct perf_file_attr *f_attr) 3185 { 3186 struct perf_event_attr *attr = &f_attr->attr; 3187 size_t sz, left; 3188 size_t our_sz = sizeof(f_attr->attr); 3189 ssize_t ret; 3190 3191 memset(f_attr, 0, sizeof(*f_attr)); 3192 3193 /* read minimal guaranteed structure */ 3194 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); 3195 if (ret <= 0) { 3196 pr_debug("cannot read %d bytes of header attr\n", 3197 PERF_ATTR_SIZE_VER0); 3198 return -1; 3199 } 3200 3201 /* on file perf_event_attr size */ 3202 sz = attr->size; 3203 3204 if (ph->needs_swap) 3205 sz = bswap_32(sz); 3206 3207 if (sz == 0) { 3208 /* assume ABI0 */ 3209 sz = PERF_ATTR_SIZE_VER0; 3210 } else if (sz > our_sz) { 3211 pr_debug("file uses a more recent and unsupported ABI" 3212 " (%zu bytes extra)\n", sz - our_sz); 3213 return -1; 3214 } 3215 /* what we have not yet read and that we know about */ 3216 left = sz - PERF_ATTR_SIZE_VER0; 3217 if (left) { 3218 void *ptr = attr; 3219 ptr += PERF_ATTR_SIZE_VER0; 3220 3221 ret = readn(fd, ptr, left); 3222 } 3223 /* read perf_file_section, ids are read in caller */ 3224 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); 3225 3226 return ret <= 0 ? -1 : 0; 3227 } 3228 3229 static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel, 3230 struct tep_handle *pevent) 3231 { 3232 struct tep_event_format *event; 3233 char bf[128]; 3234 3235 /* already prepared */ 3236 if (evsel->tp_format) 3237 return 0; 3238 3239 if (pevent == NULL) { 3240 pr_debug("broken or missing trace data\n"); 3241 return -1; 3242 } 3243 3244 event = tep_find_event(pevent, evsel->attr.config); 3245 if (event == NULL) { 3246 pr_debug("cannot find event format for %d\n", (int)evsel->attr.config); 3247 return -1; 3248 } 3249 3250 if (!evsel->name) { 3251 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); 3252 evsel->name = strdup(bf); 3253 if (evsel->name == NULL) 3254 return -1; 3255 } 3256 3257 evsel->tp_format = event; 3258 return 0; 3259 } 3260 3261 static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist, 3262 struct tep_handle *pevent) 3263 { 3264 struct perf_evsel *pos; 3265 3266 evlist__for_each_entry(evlist, pos) { 3267 if (pos->attr.type == PERF_TYPE_TRACEPOINT && 3268 perf_evsel__prepare_tracepoint_event(pos, pevent)) 3269 return -1; 3270 } 3271 3272 return 0; 3273 } 3274 3275 int perf_session__read_header(struct perf_session *session) 3276 { 3277 struct perf_data *data = session->data; 3278 struct perf_header *header = &session->header; 3279 struct perf_file_header f_header; 3280 struct perf_file_attr f_attr; 3281 u64 f_id; 3282 int nr_attrs, nr_ids, i, j; 3283 int fd = perf_data__fd(data); 3284 3285 session->evlist = perf_evlist__new(); 3286 if (session->evlist == NULL) 3287 return -ENOMEM; 3288 3289 session->evlist->env = &header->env; 3290 session->machines.host.env = &header->env; 3291 if (perf_data__is_pipe(data)) 3292 return perf_header__read_pipe(session); 3293 3294 if (perf_file_header__read(&f_header, header, fd) < 0) 3295 return -EINVAL; 3296 3297 /* 3298 * Sanity check that perf.data was written cleanly; data size is 3299 * initialized to 0 and updated only if the on_exit function is run. 3300 * If data size is still 0 then the file contains only partial 3301 * information. Just warn user and process it as much as it can. 3302 */ 3303 if (f_header.data.size == 0) { 3304 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" 3305 "Was the 'perf record' command properly terminated?\n", 3306 data->file.path); 3307 } 3308 3309 nr_attrs = f_header.attrs.size / f_header.attr_size; 3310 lseek(fd, f_header.attrs.offset, SEEK_SET); 3311 3312 for (i = 0; i < nr_attrs; i++) { 3313 struct perf_evsel *evsel; 3314 off_t tmp; 3315 3316 if (read_attr(fd, header, &f_attr) < 0) 3317 goto out_errno; 3318 3319 if (header->needs_swap) { 3320 f_attr.ids.size = bswap_64(f_attr.ids.size); 3321 f_attr.ids.offset = bswap_64(f_attr.ids.offset); 3322 perf_event__attr_swap(&f_attr.attr); 3323 } 3324 3325 tmp = lseek(fd, 0, SEEK_CUR); 3326 evsel = perf_evsel__new(&f_attr.attr); 3327 3328 if (evsel == NULL) 3329 goto out_delete_evlist; 3330 3331 evsel->needs_swap = header->needs_swap; 3332 /* 3333 * Do it before so that if perf_evsel__alloc_id fails, this 3334 * entry gets purged too at perf_evlist__delete(). 3335 */ 3336 perf_evlist__add(session->evlist, evsel); 3337 3338 nr_ids = f_attr.ids.size / sizeof(u64); 3339 /* 3340 * We don't have the cpu and thread maps on the header, so 3341 * for allocating the perf_sample_id table we fake 1 cpu and 3342 * hattr->ids threads. 3343 */ 3344 if (perf_evsel__alloc_id(evsel, 1, nr_ids)) 3345 goto out_delete_evlist; 3346 3347 lseek(fd, f_attr.ids.offset, SEEK_SET); 3348 3349 for (j = 0; j < nr_ids; j++) { 3350 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) 3351 goto out_errno; 3352 3353 perf_evlist__id_add(session->evlist, evsel, 0, j, f_id); 3354 } 3355 3356 lseek(fd, tmp, SEEK_SET); 3357 } 3358 3359 perf_header__process_sections(header, fd, &session->tevent, 3360 perf_file_section__process); 3361 3362 if (perf_evlist__prepare_tracepoint_events(session->evlist, 3363 session->tevent.pevent)) 3364 goto out_delete_evlist; 3365 3366 return 0; 3367 out_errno: 3368 return -errno; 3369 3370 out_delete_evlist: 3371 perf_evlist__delete(session->evlist); 3372 session->evlist = NULL; 3373 return -ENOMEM; 3374 } 3375 3376 int perf_event__synthesize_attr(struct perf_tool *tool, 3377 struct perf_event_attr *attr, u32 ids, u64 *id, 3378 perf_event__handler_t process) 3379 { 3380 union perf_event *ev; 3381 size_t size; 3382 int err; 3383 3384 size = sizeof(struct perf_event_attr); 3385 size = PERF_ALIGN(size, sizeof(u64)); 3386 size += sizeof(struct perf_event_header); 3387 size += ids * sizeof(u64); 3388 3389 ev = malloc(size); 3390 3391 if (ev == NULL) 3392 return -ENOMEM; 3393 3394 ev->attr.attr = *attr; 3395 memcpy(ev->attr.id, id, ids * sizeof(u64)); 3396 3397 ev->attr.header.type = PERF_RECORD_HEADER_ATTR; 3398 ev->attr.header.size = (u16)size; 3399 3400 if (ev->attr.header.size == size) 3401 err = process(tool, ev, NULL, NULL); 3402 else 3403 err = -E2BIG; 3404 3405 free(ev); 3406 3407 return err; 3408 } 3409 3410 int perf_event__synthesize_features(struct perf_tool *tool, 3411 struct perf_session *session, 3412 struct perf_evlist *evlist, 3413 perf_event__handler_t process) 3414 { 3415 struct perf_header *header = &session->header; 3416 struct feat_fd ff; 3417 struct feature_event *fe; 3418 size_t sz, sz_hdr; 3419 int feat, ret; 3420 3421 sz_hdr = sizeof(fe->header); 3422 sz = sizeof(union perf_event); 3423 /* get a nice alignment */ 3424 sz = PERF_ALIGN(sz, page_size); 3425 3426 memset(&ff, 0, sizeof(ff)); 3427 3428 ff.buf = malloc(sz); 3429 if (!ff.buf) 3430 return -ENOMEM; 3431 3432 ff.size = sz - sz_hdr; 3433 3434 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3435 if (!feat_ops[feat].synthesize) { 3436 pr_debug("No record header feature for header :%d\n", feat); 3437 continue; 3438 } 3439 3440 ff.offset = sizeof(*fe); 3441 3442 ret = feat_ops[feat].write(&ff, evlist); 3443 if (ret || ff.offset <= (ssize_t)sizeof(*fe)) { 3444 pr_debug("Error writing feature\n"); 3445 continue; 3446 } 3447 /* ff.buf may have changed due to realloc in do_write() */ 3448 fe = ff.buf; 3449 memset(fe, 0, sizeof(*fe)); 3450 3451 fe->feat_id = feat; 3452 fe->header.type = PERF_RECORD_HEADER_FEATURE; 3453 fe->header.size = ff.offset; 3454 3455 ret = process(tool, ff.buf, NULL, NULL); 3456 if (ret) { 3457 free(ff.buf); 3458 return ret; 3459 } 3460 } 3461 3462 /* Send HEADER_LAST_FEATURE mark. */ 3463 fe = ff.buf; 3464 fe->feat_id = HEADER_LAST_FEATURE; 3465 fe->header.type = PERF_RECORD_HEADER_FEATURE; 3466 fe->header.size = sizeof(*fe); 3467 3468 ret = process(tool, ff.buf, NULL, NULL); 3469 3470 free(ff.buf); 3471 return ret; 3472 } 3473 3474 int perf_event__process_feature(struct perf_session *session, 3475 union perf_event *event) 3476 { 3477 struct perf_tool *tool = session->tool; 3478 struct feat_fd ff = { .fd = 0 }; 3479 struct feature_event *fe = (struct feature_event *)event; 3480 int type = fe->header.type; 3481 u64 feat = fe->feat_id; 3482 3483 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { 3484 pr_warning("invalid record type %d in pipe-mode\n", type); 3485 return 0; 3486 } 3487 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { 3488 pr_warning("invalid record type %d in pipe-mode\n", type); 3489 return -1; 3490 } 3491 3492 if (!feat_ops[feat].process) 3493 return 0; 3494 3495 ff.buf = (void *)fe->data; 3496 ff.size = event->header.size - sizeof(event->header); 3497 ff.ph = &session->header; 3498 3499 if (feat_ops[feat].process(&ff, NULL)) 3500 return -1; 3501 3502 if (!feat_ops[feat].print || !tool->show_feat_hdr) 3503 return 0; 3504 3505 if (!feat_ops[feat].full_only || 3506 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { 3507 feat_ops[feat].print(&ff, stdout); 3508 } else { 3509 fprintf(stdout, "# %s info available, use -I to display\n", 3510 feat_ops[feat].name); 3511 } 3512 3513 return 0; 3514 } 3515 3516 static struct event_update_event * 3517 event_update_event__new(size_t size, u64 type, u64 id) 3518 { 3519 struct event_update_event *ev; 3520 3521 size += sizeof(*ev); 3522 size = PERF_ALIGN(size, sizeof(u64)); 3523 3524 ev = zalloc(size); 3525 if (ev) { 3526 ev->header.type = PERF_RECORD_EVENT_UPDATE; 3527 ev->header.size = (u16)size; 3528 ev->type = type; 3529 ev->id = id; 3530 } 3531 return ev; 3532 } 3533 3534 int 3535 perf_event__synthesize_event_update_unit(struct perf_tool *tool, 3536 struct perf_evsel *evsel, 3537 perf_event__handler_t process) 3538 { 3539 struct event_update_event *ev; 3540 size_t size = strlen(evsel->unit); 3541 int err; 3542 3543 ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]); 3544 if (ev == NULL) 3545 return -ENOMEM; 3546 3547 strncpy(ev->data, evsel->unit, size); 3548 err = process(tool, (union perf_event *)ev, NULL, NULL); 3549 free(ev); 3550 return err; 3551 } 3552 3553 int 3554 perf_event__synthesize_event_update_scale(struct perf_tool *tool, 3555 struct perf_evsel *evsel, 3556 perf_event__handler_t process) 3557 { 3558 struct event_update_event *ev; 3559 struct event_update_event_scale *ev_data; 3560 int err; 3561 3562 ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]); 3563 if (ev == NULL) 3564 return -ENOMEM; 3565 3566 ev_data = (struct event_update_event_scale *) ev->data; 3567 ev_data->scale = evsel->scale; 3568 err = process(tool, (union perf_event*) ev, NULL, NULL); 3569 free(ev); 3570 return err; 3571 } 3572 3573 int 3574 perf_event__synthesize_event_update_name(struct perf_tool *tool, 3575 struct perf_evsel *evsel, 3576 perf_event__handler_t process) 3577 { 3578 struct event_update_event *ev; 3579 size_t len = strlen(evsel->name); 3580 int err; 3581 3582 ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]); 3583 if (ev == NULL) 3584 return -ENOMEM; 3585 3586 strncpy(ev->data, evsel->name, len); 3587 err = process(tool, (union perf_event*) ev, NULL, NULL); 3588 free(ev); 3589 return err; 3590 } 3591 3592 int 3593 perf_event__synthesize_event_update_cpus(struct perf_tool *tool, 3594 struct perf_evsel *evsel, 3595 perf_event__handler_t process) 3596 { 3597 size_t size = sizeof(struct event_update_event); 3598 struct event_update_event *ev; 3599 int max, err; 3600 u16 type; 3601 3602 if (!evsel->own_cpus) 3603 return 0; 3604 3605 ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max); 3606 if (!ev) 3607 return -ENOMEM; 3608 3609 ev->header.type = PERF_RECORD_EVENT_UPDATE; 3610 ev->header.size = (u16)size; 3611 ev->type = PERF_EVENT_UPDATE__CPUS; 3612 ev->id = evsel->id[0]; 3613 3614 cpu_map_data__synthesize((struct cpu_map_data *) ev->data, 3615 evsel->own_cpus, 3616 type, max); 3617 3618 err = process(tool, (union perf_event*) ev, NULL, NULL); 3619 free(ev); 3620 return err; 3621 } 3622 3623 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) 3624 { 3625 struct event_update_event *ev = &event->event_update; 3626 struct event_update_event_scale *ev_scale; 3627 struct event_update_event_cpus *ev_cpus; 3628 struct cpu_map *map; 3629 size_t ret; 3630 3631 ret = fprintf(fp, "\n... id: %" PRIu64 "\n", ev->id); 3632 3633 switch (ev->type) { 3634 case PERF_EVENT_UPDATE__SCALE: 3635 ev_scale = (struct event_update_event_scale *) ev->data; 3636 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale); 3637 break; 3638 case PERF_EVENT_UPDATE__UNIT: 3639 ret += fprintf(fp, "... unit: %s\n", ev->data); 3640 break; 3641 case PERF_EVENT_UPDATE__NAME: 3642 ret += fprintf(fp, "... name: %s\n", ev->data); 3643 break; 3644 case PERF_EVENT_UPDATE__CPUS: 3645 ev_cpus = (struct event_update_event_cpus *) ev->data; 3646 ret += fprintf(fp, "... "); 3647 3648 map = cpu_map__new_data(&ev_cpus->cpus); 3649 if (map) 3650 ret += cpu_map__fprintf(map, fp); 3651 else 3652 ret += fprintf(fp, "failed to get cpus\n"); 3653 break; 3654 default: 3655 ret += fprintf(fp, "... unknown type\n"); 3656 break; 3657 } 3658 3659 return ret; 3660 } 3661 3662 int perf_event__synthesize_attrs(struct perf_tool *tool, 3663 struct perf_evlist *evlist, 3664 perf_event__handler_t process) 3665 { 3666 struct perf_evsel *evsel; 3667 int err = 0; 3668 3669 evlist__for_each_entry(evlist, evsel) { 3670 err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids, 3671 evsel->id, process); 3672 if (err) { 3673 pr_debug("failed to create perf header attribute\n"); 3674 return err; 3675 } 3676 } 3677 3678 return err; 3679 } 3680 3681 static bool has_unit(struct perf_evsel *counter) 3682 { 3683 return counter->unit && *counter->unit; 3684 } 3685 3686 static bool has_scale(struct perf_evsel *counter) 3687 { 3688 return counter->scale != 1; 3689 } 3690 3691 int perf_event__synthesize_extra_attr(struct perf_tool *tool, 3692 struct perf_evlist *evsel_list, 3693 perf_event__handler_t process, 3694 bool is_pipe) 3695 { 3696 struct perf_evsel *counter; 3697 int err; 3698 3699 /* 3700 * Synthesize other events stuff not carried within 3701 * attr event - unit, scale, name 3702 */ 3703 evlist__for_each_entry(evsel_list, counter) { 3704 if (!counter->supported) 3705 continue; 3706 3707 /* 3708 * Synthesize unit and scale only if it's defined. 3709 */ 3710 if (has_unit(counter)) { 3711 err = perf_event__synthesize_event_update_unit(tool, counter, process); 3712 if (err < 0) { 3713 pr_err("Couldn't synthesize evsel unit.\n"); 3714 return err; 3715 } 3716 } 3717 3718 if (has_scale(counter)) { 3719 err = perf_event__synthesize_event_update_scale(tool, counter, process); 3720 if (err < 0) { 3721 pr_err("Couldn't synthesize evsel counter.\n"); 3722 return err; 3723 } 3724 } 3725 3726 if (counter->own_cpus) { 3727 err = perf_event__synthesize_event_update_cpus(tool, counter, process); 3728 if (err < 0) { 3729 pr_err("Couldn't synthesize evsel cpus.\n"); 3730 return err; 3731 } 3732 } 3733 3734 /* 3735 * Name is needed only for pipe output, 3736 * perf.data carries event names. 3737 */ 3738 if (is_pipe) { 3739 err = perf_event__synthesize_event_update_name(tool, counter, process); 3740 if (err < 0) { 3741 pr_err("Couldn't synthesize evsel name.\n"); 3742 return err; 3743 } 3744 } 3745 } 3746 return 0; 3747 } 3748 3749 int perf_event__process_attr(struct perf_tool *tool __maybe_unused, 3750 union perf_event *event, 3751 struct perf_evlist **pevlist) 3752 { 3753 u32 i, ids, n_ids; 3754 struct perf_evsel *evsel; 3755 struct perf_evlist *evlist = *pevlist; 3756 3757 if (evlist == NULL) { 3758 *pevlist = evlist = perf_evlist__new(); 3759 if (evlist == NULL) 3760 return -ENOMEM; 3761 } 3762 3763 evsel = perf_evsel__new(&event->attr.attr); 3764 if (evsel == NULL) 3765 return -ENOMEM; 3766 3767 perf_evlist__add(evlist, evsel); 3768 3769 ids = event->header.size; 3770 ids -= (void *)&event->attr.id - (void *)event; 3771 n_ids = ids / sizeof(u64); 3772 /* 3773 * We don't have the cpu and thread maps on the header, so 3774 * for allocating the perf_sample_id table we fake 1 cpu and 3775 * hattr->ids threads. 3776 */ 3777 if (perf_evsel__alloc_id(evsel, 1, n_ids)) 3778 return -ENOMEM; 3779 3780 for (i = 0; i < n_ids; i++) { 3781 perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]); 3782 } 3783 3784 return 0; 3785 } 3786 3787 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused, 3788 union perf_event *event, 3789 struct perf_evlist **pevlist) 3790 { 3791 struct event_update_event *ev = &event->event_update; 3792 struct event_update_event_scale *ev_scale; 3793 struct event_update_event_cpus *ev_cpus; 3794 struct perf_evlist *evlist; 3795 struct perf_evsel *evsel; 3796 struct cpu_map *map; 3797 3798 if (!pevlist || *pevlist == NULL) 3799 return -EINVAL; 3800 3801 evlist = *pevlist; 3802 3803 evsel = perf_evlist__id2evsel(evlist, ev->id); 3804 if (evsel == NULL) 3805 return -EINVAL; 3806 3807 switch (ev->type) { 3808 case PERF_EVENT_UPDATE__UNIT: 3809 evsel->unit = strdup(ev->data); 3810 break; 3811 case PERF_EVENT_UPDATE__NAME: 3812 evsel->name = strdup(ev->data); 3813 break; 3814 case PERF_EVENT_UPDATE__SCALE: 3815 ev_scale = (struct event_update_event_scale *) ev->data; 3816 evsel->scale = ev_scale->scale; 3817 break; 3818 case PERF_EVENT_UPDATE__CPUS: 3819 ev_cpus = (struct event_update_event_cpus *) ev->data; 3820 3821 map = cpu_map__new_data(&ev_cpus->cpus); 3822 if (map) 3823 evsel->own_cpus = map; 3824 else 3825 pr_err("failed to get event_update cpus\n"); 3826 default: 3827 break; 3828 } 3829 3830 return 0; 3831 } 3832 3833 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd, 3834 struct perf_evlist *evlist, 3835 perf_event__handler_t process) 3836 { 3837 union perf_event ev; 3838 struct tracing_data *tdata; 3839 ssize_t size = 0, aligned_size = 0, padding; 3840 struct feat_fd ff; 3841 int err __maybe_unused = 0; 3842 3843 /* 3844 * We are going to store the size of the data followed 3845 * by the data contents. Since the fd descriptor is a pipe, 3846 * we cannot seek back to store the size of the data once 3847 * we know it. Instead we: 3848 * 3849 * - write the tracing data to the temp file 3850 * - get/write the data size to pipe 3851 * - write the tracing data from the temp file 3852 * to the pipe 3853 */ 3854 tdata = tracing_data_get(&evlist->entries, fd, true); 3855 if (!tdata) 3856 return -1; 3857 3858 memset(&ev, 0, sizeof(ev)); 3859 3860 ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA; 3861 size = tdata->size; 3862 aligned_size = PERF_ALIGN(size, sizeof(u64)); 3863 padding = aligned_size - size; 3864 ev.tracing_data.header.size = sizeof(ev.tracing_data); 3865 ev.tracing_data.size = aligned_size; 3866 3867 process(tool, &ev, NULL, NULL); 3868 3869 /* 3870 * The put function will copy all the tracing data 3871 * stored in temp file to the pipe. 3872 */ 3873 tracing_data_put(tdata); 3874 3875 ff = (struct feat_fd){ .fd = fd }; 3876 if (write_padded(&ff, NULL, 0, padding)) 3877 return -1; 3878 3879 return aligned_size; 3880 } 3881 3882 int perf_event__process_tracing_data(struct perf_session *session, 3883 union perf_event *event) 3884 { 3885 ssize_t size_read, padding, size = event->tracing_data.size; 3886 int fd = perf_data__fd(session->data); 3887 off_t offset = lseek(fd, 0, SEEK_CUR); 3888 char buf[BUFSIZ]; 3889 3890 /* setup for reading amidst mmap */ 3891 lseek(fd, offset + sizeof(struct tracing_data_event), 3892 SEEK_SET); 3893 3894 size_read = trace_report(fd, &session->tevent, 3895 session->repipe); 3896 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; 3897 3898 if (readn(fd, buf, padding) < 0) { 3899 pr_err("%s: reading input file", __func__); 3900 return -1; 3901 } 3902 if (session->repipe) { 3903 int retw = write(STDOUT_FILENO, buf, padding); 3904 if (retw <= 0 || retw != padding) { 3905 pr_err("%s: repiping tracing data padding", __func__); 3906 return -1; 3907 } 3908 } 3909 3910 if (size_read + padding != size) { 3911 pr_err("%s: tracing data size mismatch", __func__); 3912 return -1; 3913 } 3914 3915 perf_evlist__prepare_tracepoint_events(session->evlist, 3916 session->tevent.pevent); 3917 3918 return size_read + padding; 3919 } 3920 3921 int perf_event__synthesize_build_id(struct perf_tool *tool, 3922 struct dso *pos, u16 misc, 3923 perf_event__handler_t process, 3924 struct machine *machine) 3925 { 3926 union perf_event ev; 3927 size_t len; 3928 int err = 0; 3929 3930 if (!pos->hit) 3931 return err; 3932 3933 memset(&ev, 0, sizeof(ev)); 3934 3935 len = pos->long_name_len + 1; 3936 len = PERF_ALIGN(len, NAME_ALIGN); 3937 memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id)); 3938 ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID; 3939 ev.build_id.header.misc = misc; 3940 ev.build_id.pid = machine->pid; 3941 ev.build_id.header.size = sizeof(ev.build_id) + len; 3942 memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len); 3943 3944 err = process(tool, &ev, NULL, machine); 3945 3946 return err; 3947 } 3948 3949 int perf_event__process_build_id(struct perf_session *session, 3950 union perf_event *event) 3951 { 3952 __event_process_build_id(&event->build_id, 3953 event->build_id.filename, 3954 session); 3955 return 0; 3956 } 3957