xref: /openbmc/linux/tools/perf/util/header.c (revision 0b26ca68)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #ifdef HAVE_LIBBPF_SUPPORT
23 #include <bpf/libbpf.h>
24 #endif
25 #include <perf/cpumap.h>
26 
27 #include "dso.h"
28 #include "evlist.h"
29 #include "evsel.h"
30 #include "util/evsel_fprintf.h"
31 #include "header.h"
32 #include "memswap.h"
33 #include "trace-event.h"
34 #include "session.h"
35 #include "symbol.h"
36 #include "debug.h"
37 #include "cpumap.h"
38 #include "pmu.h"
39 #include "vdso.h"
40 #include "strbuf.h"
41 #include "build-id.h"
42 #include "data.h"
43 #include <api/fs/fs.h>
44 #include "asm/bug.h"
45 #include "tool.h"
46 #include "time-utils.h"
47 #include "units.h"
48 #include "util/util.h" // perf_exe()
49 #include "cputopo.h"
50 #include "bpf-event.h"
51 #include "clockid.h"
52 
53 #include <linux/ctype.h>
54 #include <internal/lib.h>
55 
56 /*
57  * magic2 = "PERFILE2"
58  * must be a numerical value to let the endianness
59  * determine the memory layout. That way we are able
60  * to detect endianness when reading the perf.data file
61  * back.
62  *
63  * we check for legacy (PERFFILE) format.
64  */
65 static const char *__perf_magic1 = "PERFFILE";
66 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
67 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
68 
69 #define PERF_MAGIC	__perf_magic2
70 
71 const char perf_version_string[] = PERF_VERSION;
72 
73 struct perf_file_attr {
74 	struct perf_event_attr	attr;
75 	struct perf_file_section	ids;
76 };
77 
78 void perf_header__set_feat(struct perf_header *header, int feat)
79 {
80 	set_bit(feat, header->adds_features);
81 }
82 
83 void perf_header__clear_feat(struct perf_header *header, int feat)
84 {
85 	clear_bit(feat, header->adds_features);
86 }
87 
88 bool perf_header__has_feat(const struct perf_header *header, int feat)
89 {
90 	return test_bit(feat, header->adds_features);
91 }
92 
93 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
94 {
95 	ssize_t ret = writen(ff->fd, buf, size);
96 
97 	if (ret != (ssize_t)size)
98 		return ret < 0 ? (int)ret : -1;
99 	return 0;
100 }
101 
102 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
103 {
104 	/* struct perf_event_header::size is u16 */
105 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
106 	size_t new_size = ff->size;
107 	void *addr;
108 
109 	if (size + ff->offset > max_size)
110 		return -E2BIG;
111 
112 	while (size > (new_size - ff->offset))
113 		new_size <<= 1;
114 	new_size = min(max_size, new_size);
115 
116 	if (ff->size < new_size) {
117 		addr = realloc(ff->buf, new_size);
118 		if (!addr)
119 			return -ENOMEM;
120 		ff->buf = addr;
121 		ff->size = new_size;
122 	}
123 
124 	memcpy(ff->buf + ff->offset, buf, size);
125 	ff->offset += size;
126 
127 	return 0;
128 }
129 
130 /* Return: 0 if succeded, -ERR if failed. */
131 int do_write(struct feat_fd *ff, const void *buf, size_t size)
132 {
133 	if (!ff->buf)
134 		return __do_write_fd(ff, buf, size);
135 	return __do_write_buf(ff, buf, size);
136 }
137 
138 /* Return: 0 if succeded, -ERR if failed. */
139 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
140 {
141 	u64 *p = (u64 *) set;
142 	int i, ret;
143 
144 	ret = do_write(ff, &size, sizeof(size));
145 	if (ret < 0)
146 		return ret;
147 
148 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
149 		ret = do_write(ff, p + i, sizeof(*p));
150 		if (ret < 0)
151 			return ret;
152 	}
153 
154 	return 0;
155 }
156 
157 /* Return: 0 if succeded, -ERR if failed. */
158 int write_padded(struct feat_fd *ff, const void *bf,
159 		 size_t count, size_t count_aligned)
160 {
161 	static const char zero_buf[NAME_ALIGN];
162 	int err = do_write(ff, bf, count);
163 
164 	if (!err)
165 		err = do_write(ff, zero_buf, count_aligned - count);
166 
167 	return err;
168 }
169 
170 #define string_size(str)						\
171 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
172 
173 /* Return: 0 if succeded, -ERR if failed. */
174 static int do_write_string(struct feat_fd *ff, const char *str)
175 {
176 	u32 len, olen;
177 	int ret;
178 
179 	olen = strlen(str) + 1;
180 	len = PERF_ALIGN(olen, NAME_ALIGN);
181 
182 	/* write len, incl. \0 */
183 	ret = do_write(ff, &len, sizeof(len));
184 	if (ret < 0)
185 		return ret;
186 
187 	return write_padded(ff, str, olen, len);
188 }
189 
190 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
191 {
192 	ssize_t ret = readn(ff->fd, addr, size);
193 
194 	if (ret != size)
195 		return ret < 0 ? (int)ret : -1;
196 	return 0;
197 }
198 
199 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
200 {
201 	if (size > (ssize_t)ff->size - ff->offset)
202 		return -1;
203 
204 	memcpy(addr, ff->buf + ff->offset, size);
205 	ff->offset += size;
206 
207 	return 0;
208 
209 }
210 
211 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
212 {
213 	if (!ff->buf)
214 		return __do_read_fd(ff, addr, size);
215 	return __do_read_buf(ff, addr, size);
216 }
217 
218 static int do_read_u32(struct feat_fd *ff, u32 *addr)
219 {
220 	int ret;
221 
222 	ret = __do_read(ff, addr, sizeof(*addr));
223 	if (ret)
224 		return ret;
225 
226 	if (ff->ph->needs_swap)
227 		*addr = bswap_32(*addr);
228 	return 0;
229 }
230 
231 static int do_read_u64(struct feat_fd *ff, u64 *addr)
232 {
233 	int ret;
234 
235 	ret = __do_read(ff, addr, sizeof(*addr));
236 	if (ret)
237 		return ret;
238 
239 	if (ff->ph->needs_swap)
240 		*addr = bswap_64(*addr);
241 	return 0;
242 }
243 
244 static char *do_read_string(struct feat_fd *ff)
245 {
246 	u32 len;
247 	char *buf;
248 
249 	if (do_read_u32(ff, &len))
250 		return NULL;
251 
252 	buf = malloc(len);
253 	if (!buf)
254 		return NULL;
255 
256 	if (!__do_read(ff, buf, len)) {
257 		/*
258 		 * strings are padded by zeroes
259 		 * thus the actual strlen of buf
260 		 * may be less than len
261 		 */
262 		return buf;
263 	}
264 
265 	free(buf);
266 	return NULL;
267 }
268 
269 /* Return: 0 if succeded, -ERR if failed. */
270 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
271 {
272 	unsigned long *set;
273 	u64 size, *p;
274 	int i, ret;
275 
276 	ret = do_read_u64(ff, &size);
277 	if (ret)
278 		return ret;
279 
280 	set = bitmap_alloc(size);
281 	if (!set)
282 		return -ENOMEM;
283 
284 	p = (u64 *) set;
285 
286 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
287 		ret = do_read_u64(ff, p + i);
288 		if (ret < 0) {
289 			free(set);
290 			return ret;
291 		}
292 	}
293 
294 	*pset  = set;
295 	*psize = size;
296 	return 0;
297 }
298 
299 static int write_tracing_data(struct feat_fd *ff,
300 			      struct evlist *evlist)
301 {
302 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
303 		return -1;
304 
305 	return read_tracing_data(ff->fd, &evlist->core.entries);
306 }
307 
308 static int write_build_id(struct feat_fd *ff,
309 			  struct evlist *evlist __maybe_unused)
310 {
311 	struct perf_session *session;
312 	int err;
313 
314 	session = container_of(ff->ph, struct perf_session, header);
315 
316 	if (!perf_session__read_build_ids(session, true))
317 		return -1;
318 
319 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
320 		return -1;
321 
322 	err = perf_session__write_buildid_table(session, ff);
323 	if (err < 0) {
324 		pr_debug("failed to write buildid table\n");
325 		return err;
326 	}
327 	perf_session__cache_build_ids(session);
328 
329 	return 0;
330 }
331 
332 static int write_hostname(struct feat_fd *ff,
333 			  struct evlist *evlist __maybe_unused)
334 {
335 	struct utsname uts;
336 	int ret;
337 
338 	ret = uname(&uts);
339 	if (ret < 0)
340 		return -1;
341 
342 	return do_write_string(ff, uts.nodename);
343 }
344 
345 static int write_osrelease(struct feat_fd *ff,
346 			   struct evlist *evlist __maybe_unused)
347 {
348 	struct utsname uts;
349 	int ret;
350 
351 	ret = uname(&uts);
352 	if (ret < 0)
353 		return -1;
354 
355 	return do_write_string(ff, uts.release);
356 }
357 
358 static int write_arch(struct feat_fd *ff,
359 		      struct evlist *evlist __maybe_unused)
360 {
361 	struct utsname uts;
362 	int ret;
363 
364 	ret = uname(&uts);
365 	if (ret < 0)
366 		return -1;
367 
368 	return do_write_string(ff, uts.machine);
369 }
370 
371 static int write_version(struct feat_fd *ff,
372 			 struct evlist *evlist __maybe_unused)
373 {
374 	return do_write_string(ff, perf_version_string);
375 }
376 
377 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
378 {
379 	FILE *file;
380 	char *buf = NULL;
381 	char *s, *p;
382 	const char *search = cpuinfo_proc;
383 	size_t len = 0;
384 	int ret = -1;
385 
386 	if (!search)
387 		return -1;
388 
389 	file = fopen("/proc/cpuinfo", "r");
390 	if (!file)
391 		return -1;
392 
393 	while (getline(&buf, &len, file) > 0) {
394 		ret = strncmp(buf, search, strlen(search));
395 		if (!ret)
396 			break;
397 	}
398 
399 	if (ret) {
400 		ret = -1;
401 		goto done;
402 	}
403 
404 	s = buf;
405 
406 	p = strchr(buf, ':');
407 	if (p && *(p+1) == ' ' && *(p+2))
408 		s = p + 2;
409 	p = strchr(s, '\n');
410 	if (p)
411 		*p = '\0';
412 
413 	/* squash extra space characters (branding string) */
414 	p = s;
415 	while (*p) {
416 		if (isspace(*p)) {
417 			char *r = p + 1;
418 			char *q = skip_spaces(r);
419 			*p = ' ';
420 			if (q != (p+1))
421 				while ((*r++ = *q++));
422 		}
423 		p++;
424 	}
425 	ret = do_write_string(ff, s);
426 done:
427 	free(buf);
428 	fclose(file);
429 	return ret;
430 }
431 
432 static int write_cpudesc(struct feat_fd *ff,
433 		       struct evlist *evlist __maybe_unused)
434 {
435 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
436 #define CPUINFO_PROC	{ "cpu", }
437 #elif defined(__s390__)
438 #define CPUINFO_PROC	{ "vendor_id", }
439 #elif defined(__sh__)
440 #define CPUINFO_PROC	{ "cpu type", }
441 #elif defined(__alpha__) || defined(__mips__)
442 #define CPUINFO_PROC	{ "cpu model", }
443 #elif defined(__arm__)
444 #define CPUINFO_PROC	{ "model name", "Processor", }
445 #elif defined(__arc__)
446 #define CPUINFO_PROC	{ "Processor", }
447 #elif defined(__xtensa__)
448 #define CPUINFO_PROC	{ "core ID", }
449 #else
450 #define CPUINFO_PROC	{ "model name", }
451 #endif
452 	const char *cpuinfo_procs[] = CPUINFO_PROC;
453 #undef CPUINFO_PROC
454 	unsigned int i;
455 
456 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
457 		int ret;
458 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
459 		if (ret >= 0)
460 			return ret;
461 	}
462 	return -1;
463 }
464 
465 
466 static int write_nrcpus(struct feat_fd *ff,
467 			struct evlist *evlist __maybe_unused)
468 {
469 	long nr;
470 	u32 nrc, nra;
471 	int ret;
472 
473 	nrc = cpu__max_present_cpu();
474 
475 	nr = sysconf(_SC_NPROCESSORS_ONLN);
476 	if (nr < 0)
477 		return -1;
478 
479 	nra = (u32)(nr & UINT_MAX);
480 
481 	ret = do_write(ff, &nrc, sizeof(nrc));
482 	if (ret < 0)
483 		return ret;
484 
485 	return do_write(ff, &nra, sizeof(nra));
486 }
487 
488 static int write_event_desc(struct feat_fd *ff,
489 			    struct evlist *evlist)
490 {
491 	struct evsel *evsel;
492 	u32 nre, nri, sz;
493 	int ret;
494 
495 	nre = evlist->core.nr_entries;
496 
497 	/*
498 	 * write number of events
499 	 */
500 	ret = do_write(ff, &nre, sizeof(nre));
501 	if (ret < 0)
502 		return ret;
503 
504 	/*
505 	 * size of perf_event_attr struct
506 	 */
507 	sz = (u32)sizeof(evsel->core.attr);
508 	ret = do_write(ff, &sz, sizeof(sz));
509 	if (ret < 0)
510 		return ret;
511 
512 	evlist__for_each_entry(evlist, evsel) {
513 		ret = do_write(ff, &evsel->core.attr, sz);
514 		if (ret < 0)
515 			return ret;
516 		/*
517 		 * write number of unique id per event
518 		 * there is one id per instance of an event
519 		 *
520 		 * copy into an nri to be independent of the
521 		 * type of ids,
522 		 */
523 		nri = evsel->core.ids;
524 		ret = do_write(ff, &nri, sizeof(nri));
525 		if (ret < 0)
526 			return ret;
527 
528 		/*
529 		 * write event string as passed on cmdline
530 		 */
531 		ret = do_write_string(ff, evsel__name(evsel));
532 		if (ret < 0)
533 			return ret;
534 		/*
535 		 * write unique ids for this event
536 		 */
537 		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
538 		if (ret < 0)
539 			return ret;
540 	}
541 	return 0;
542 }
543 
544 static int write_cmdline(struct feat_fd *ff,
545 			 struct evlist *evlist __maybe_unused)
546 {
547 	char pbuf[MAXPATHLEN], *buf;
548 	int i, ret, n;
549 
550 	/* actual path to perf binary */
551 	buf = perf_exe(pbuf, MAXPATHLEN);
552 
553 	/* account for binary path */
554 	n = perf_env.nr_cmdline + 1;
555 
556 	ret = do_write(ff, &n, sizeof(n));
557 	if (ret < 0)
558 		return ret;
559 
560 	ret = do_write_string(ff, buf);
561 	if (ret < 0)
562 		return ret;
563 
564 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
565 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
566 		if (ret < 0)
567 			return ret;
568 	}
569 	return 0;
570 }
571 
572 
573 static int write_cpu_topology(struct feat_fd *ff,
574 			      struct evlist *evlist __maybe_unused)
575 {
576 	struct cpu_topology *tp;
577 	u32 i;
578 	int ret, j;
579 
580 	tp = cpu_topology__new();
581 	if (!tp)
582 		return -1;
583 
584 	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
585 	if (ret < 0)
586 		goto done;
587 
588 	for (i = 0; i < tp->core_sib; i++) {
589 		ret = do_write_string(ff, tp->core_siblings[i]);
590 		if (ret < 0)
591 			goto done;
592 	}
593 	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
594 	if (ret < 0)
595 		goto done;
596 
597 	for (i = 0; i < tp->thread_sib; i++) {
598 		ret = do_write_string(ff, tp->thread_siblings[i]);
599 		if (ret < 0)
600 			break;
601 	}
602 
603 	ret = perf_env__read_cpu_topology_map(&perf_env);
604 	if (ret < 0)
605 		goto done;
606 
607 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
608 		ret = do_write(ff, &perf_env.cpu[j].core_id,
609 			       sizeof(perf_env.cpu[j].core_id));
610 		if (ret < 0)
611 			return ret;
612 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
613 			       sizeof(perf_env.cpu[j].socket_id));
614 		if (ret < 0)
615 			return ret;
616 	}
617 
618 	if (!tp->die_sib)
619 		goto done;
620 
621 	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
622 	if (ret < 0)
623 		goto done;
624 
625 	for (i = 0; i < tp->die_sib; i++) {
626 		ret = do_write_string(ff, tp->die_siblings[i]);
627 		if (ret < 0)
628 			goto done;
629 	}
630 
631 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
632 		ret = do_write(ff, &perf_env.cpu[j].die_id,
633 			       sizeof(perf_env.cpu[j].die_id));
634 		if (ret < 0)
635 			return ret;
636 	}
637 
638 done:
639 	cpu_topology__delete(tp);
640 	return ret;
641 }
642 
643 
644 
645 static int write_total_mem(struct feat_fd *ff,
646 			   struct evlist *evlist __maybe_unused)
647 {
648 	char *buf = NULL;
649 	FILE *fp;
650 	size_t len = 0;
651 	int ret = -1, n;
652 	uint64_t mem;
653 
654 	fp = fopen("/proc/meminfo", "r");
655 	if (!fp)
656 		return -1;
657 
658 	while (getline(&buf, &len, fp) > 0) {
659 		ret = strncmp(buf, "MemTotal:", 9);
660 		if (!ret)
661 			break;
662 	}
663 	if (!ret) {
664 		n = sscanf(buf, "%*s %"PRIu64, &mem);
665 		if (n == 1)
666 			ret = do_write(ff, &mem, sizeof(mem));
667 	} else
668 		ret = -1;
669 	free(buf);
670 	fclose(fp);
671 	return ret;
672 }
673 
674 static int write_numa_topology(struct feat_fd *ff,
675 			       struct evlist *evlist __maybe_unused)
676 {
677 	struct numa_topology *tp;
678 	int ret = -1;
679 	u32 i;
680 
681 	tp = numa_topology__new();
682 	if (!tp)
683 		return -ENOMEM;
684 
685 	ret = do_write(ff, &tp->nr, sizeof(u32));
686 	if (ret < 0)
687 		goto err;
688 
689 	for (i = 0; i < tp->nr; i++) {
690 		struct numa_topology_node *n = &tp->nodes[i];
691 
692 		ret = do_write(ff, &n->node, sizeof(u32));
693 		if (ret < 0)
694 			goto err;
695 
696 		ret = do_write(ff, &n->mem_total, sizeof(u64));
697 		if (ret)
698 			goto err;
699 
700 		ret = do_write(ff, &n->mem_free, sizeof(u64));
701 		if (ret)
702 			goto err;
703 
704 		ret = do_write_string(ff, n->cpus);
705 		if (ret < 0)
706 			goto err;
707 	}
708 
709 	ret = 0;
710 
711 err:
712 	numa_topology__delete(tp);
713 	return ret;
714 }
715 
716 /*
717  * File format:
718  *
719  * struct pmu_mappings {
720  *	u32	pmu_num;
721  *	struct pmu_map {
722  *		u32	type;
723  *		char	name[];
724  *	}[pmu_num];
725  * };
726  */
727 
728 static int write_pmu_mappings(struct feat_fd *ff,
729 			      struct evlist *evlist __maybe_unused)
730 {
731 	struct perf_pmu *pmu = NULL;
732 	u32 pmu_num = 0;
733 	int ret;
734 
735 	/*
736 	 * Do a first pass to count number of pmu to avoid lseek so this
737 	 * works in pipe mode as well.
738 	 */
739 	while ((pmu = perf_pmu__scan(pmu))) {
740 		if (!pmu->name)
741 			continue;
742 		pmu_num++;
743 	}
744 
745 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
746 	if (ret < 0)
747 		return ret;
748 
749 	while ((pmu = perf_pmu__scan(pmu))) {
750 		if (!pmu->name)
751 			continue;
752 
753 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
754 		if (ret < 0)
755 			return ret;
756 
757 		ret = do_write_string(ff, pmu->name);
758 		if (ret < 0)
759 			return ret;
760 	}
761 
762 	return 0;
763 }
764 
765 /*
766  * File format:
767  *
768  * struct group_descs {
769  *	u32	nr_groups;
770  *	struct group_desc {
771  *		char	name[];
772  *		u32	leader_idx;
773  *		u32	nr_members;
774  *	}[nr_groups];
775  * };
776  */
777 static int write_group_desc(struct feat_fd *ff,
778 			    struct evlist *evlist)
779 {
780 	u32 nr_groups = evlist->nr_groups;
781 	struct evsel *evsel;
782 	int ret;
783 
784 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
785 	if (ret < 0)
786 		return ret;
787 
788 	evlist__for_each_entry(evlist, evsel) {
789 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
790 			const char *name = evsel->group_name ?: "{anon_group}";
791 			u32 leader_idx = evsel->idx;
792 			u32 nr_members = evsel->core.nr_members;
793 
794 			ret = do_write_string(ff, name);
795 			if (ret < 0)
796 				return ret;
797 
798 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
799 			if (ret < 0)
800 				return ret;
801 
802 			ret = do_write(ff, &nr_members, sizeof(nr_members));
803 			if (ret < 0)
804 				return ret;
805 		}
806 	}
807 	return 0;
808 }
809 
810 /*
811  * Return the CPU id as a raw string.
812  *
813  * Each architecture should provide a more precise id string that
814  * can be use to match the architecture's "mapfile".
815  */
816 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
817 {
818 	return NULL;
819 }
820 
821 /* Return zero when the cpuid from the mapfile.csv matches the
822  * cpuid string generated on this platform.
823  * Otherwise return non-zero.
824  */
825 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
826 {
827 	regex_t re;
828 	regmatch_t pmatch[1];
829 	int match;
830 
831 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
832 		/* Warn unable to generate match particular string. */
833 		pr_info("Invalid regular expression %s\n", mapcpuid);
834 		return 1;
835 	}
836 
837 	match = !regexec(&re, cpuid, 1, pmatch, 0);
838 	regfree(&re);
839 	if (match) {
840 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
841 
842 		/* Verify the entire string matched. */
843 		if (match_len == strlen(cpuid))
844 			return 0;
845 	}
846 	return 1;
847 }
848 
849 /*
850  * default get_cpuid(): nothing gets recorded
851  * actual implementation must be in arch/$(SRCARCH)/util/header.c
852  */
853 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
854 {
855 	return ENOSYS; /* Not implemented */
856 }
857 
858 static int write_cpuid(struct feat_fd *ff,
859 		       struct evlist *evlist __maybe_unused)
860 {
861 	char buffer[64];
862 	int ret;
863 
864 	ret = get_cpuid(buffer, sizeof(buffer));
865 	if (ret)
866 		return -1;
867 
868 	return do_write_string(ff, buffer);
869 }
870 
871 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
872 			      struct evlist *evlist __maybe_unused)
873 {
874 	return 0;
875 }
876 
877 static int write_auxtrace(struct feat_fd *ff,
878 			  struct evlist *evlist __maybe_unused)
879 {
880 	struct perf_session *session;
881 	int err;
882 
883 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
884 		return -1;
885 
886 	session = container_of(ff->ph, struct perf_session, header);
887 
888 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
889 	if (err < 0)
890 		pr_err("Failed to write auxtrace index\n");
891 	return err;
892 }
893 
894 static int write_clockid(struct feat_fd *ff,
895 			 struct evlist *evlist __maybe_unused)
896 {
897 	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
898 			sizeof(ff->ph->env.clock.clockid_res_ns));
899 }
900 
901 static int write_clock_data(struct feat_fd *ff,
902 			    struct evlist *evlist __maybe_unused)
903 {
904 	u64 *data64;
905 	u32 data32;
906 	int ret;
907 
908 	/* version */
909 	data32 = 1;
910 
911 	ret = do_write(ff, &data32, sizeof(data32));
912 	if (ret < 0)
913 		return ret;
914 
915 	/* clockid */
916 	data32 = ff->ph->env.clock.clockid;
917 
918 	ret = do_write(ff, &data32, sizeof(data32));
919 	if (ret < 0)
920 		return ret;
921 
922 	/* TOD ref time */
923 	data64 = &ff->ph->env.clock.tod_ns;
924 
925 	ret = do_write(ff, data64, sizeof(*data64));
926 	if (ret < 0)
927 		return ret;
928 
929 	/* clockid ref time */
930 	data64 = &ff->ph->env.clock.clockid_ns;
931 
932 	return do_write(ff, data64, sizeof(*data64));
933 }
934 
935 static int write_dir_format(struct feat_fd *ff,
936 			    struct evlist *evlist __maybe_unused)
937 {
938 	struct perf_session *session;
939 	struct perf_data *data;
940 
941 	session = container_of(ff->ph, struct perf_session, header);
942 	data = session->data;
943 
944 	if (WARN_ON(!perf_data__is_dir(data)))
945 		return -1;
946 
947 	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
948 }
949 
950 #ifdef HAVE_LIBBPF_SUPPORT
951 static int write_bpf_prog_info(struct feat_fd *ff,
952 			       struct evlist *evlist __maybe_unused)
953 {
954 	struct perf_env *env = &ff->ph->env;
955 	struct rb_root *root;
956 	struct rb_node *next;
957 	int ret;
958 
959 	down_read(&env->bpf_progs.lock);
960 
961 	ret = do_write(ff, &env->bpf_progs.infos_cnt,
962 		       sizeof(env->bpf_progs.infos_cnt));
963 	if (ret < 0)
964 		goto out;
965 
966 	root = &env->bpf_progs.infos;
967 	next = rb_first(root);
968 	while (next) {
969 		struct bpf_prog_info_node *node;
970 		size_t len;
971 
972 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
973 		next = rb_next(&node->rb_node);
974 		len = sizeof(struct bpf_prog_info_linear) +
975 			node->info_linear->data_len;
976 
977 		/* before writing to file, translate address to offset */
978 		bpf_program__bpil_addr_to_offs(node->info_linear);
979 		ret = do_write(ff, node->info_linear, len);
980 		/*
981 		 * translate back to address even when do_write() fails,
982 		 * so that this function never changes the data.
983 		 */
984 		bpf_program__bpil_offs_to_addr(node->info_linear);
985 		if (ret < 0)
986 			goto out;
987 	}
988 out:
989 	up_read(&env->bpf_progs.lock);
990 	return ret;
991 }
992 
993 static int write_bpf_btf(struct feat_fd *ff,
994 			 struct evlist *evlist __maybe_unused)
995 {
996 	struct perf_env *env = &ff->ph->env;
997 	struct rb_root *root;
998 	struct rb_node *next;
999 	int ret;
1000 
1001 	down_read(&env->bpf_progs.lock);
1002 
1003 	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1004 		       sizeof(env->bpf_progs.btfs_cnt));
1005 
1006 	if (ret < 0)
1007 		goto out;
1008 
1009 	root = &env->bpf_progs.btfs;
1010 	next = rb_first(root);
1011 	while (next) {
1012 		struct btf_node *node;
1013 
1014 		node = rb_entry(next, struct btf_node, rb_node);
1015 		next = rb_next(&node->rb_node);
1016 		ret = do_write(ff, &node->id,
1017 			       sizeof(u32) * 2 + node->data_size);
1018 		if (ret < 0)
1019 			goto out;
1020 	}
1021 out:
1022 	up_read(&env->bpf_progs.lock);
1023 	return ret;
1024 }
1025 #endif // HAVE_LIBBPF_SUPPORT
1026 
1027 static int cpu_cache_level__sort(const void *a, const void *b)
1028 {
1029 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1030 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1031 
1032 	return cache_a->level - cache_b->level;
1033 }
1034 
1035 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1036 {
1037 	if (a->level != b->level)
1038 		return false;
1039 
1040 	if (a->line_size != b->line_size)
1041 		return false;
1042 
1043 	if (a->sets != b->sets)
1044 		return false;
1045 
1046 	if (a->ways != b->ways)
1047 		return false;
1048 
1049 	if (strcmp(a->type, b->type))
1050 		return false;
1051 
1052 	if (strcmp(a->size, b->size))
1053 		return false;
1054 
1055 	if (strcmp(a->map, b->map))
1056 		return false;
1057 
1058 	return true;
1059 }
1060 
1061 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1062 {
1063 	char path[PATH_MAX], file[PATH_MAX];
1064 	struct stat st;
1065 	size_t len;
1066 
1067 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1068 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1069 
1070 	if (stat(file, &st))
1071 		return 1;
1072 
1073 	scnprintf(file, PATH_MAX, "%s/level", path);
1074 	if (sysfs__read_int(file, (int *) &cache->level))
1075 		return -1;
1076 
1077 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1078 	if (sysfs__read_int(file, (int *) &cache->line_size))
1079 		return -1;
1080 
1081 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1082 	if (sysfs__read_int(file, (int *) &cache->sets))
1083 		return -1;
1084 
1085 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1086 	if (sysfs__read_int(file, (int *) &cache->ways))
1087 		return -1;
1088 
1089 	scnprintf(file, PATH_MAX, "%s/type", path);
1090 	if (sysfs__read_str(file, &cache->type, &len))
1091 		return -1;
1092 
1093 	cache->type[len] = 0;
1094 	cache->type = strim(cache->type);
1095 
1096 	scnprintf(file, PATH_MAX, "%s/size", path);
1097 	if (sysfs__read_str(file, &cache->size, &len)) {
1098 		zfree(&cache->type);
1099 		return -1;
1100 	}
1101 
1102 	cache->size[len] = 0;
1103 	cache->size = strim(cache->size);
1104 
1105 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1106 	if (sysfs__read_str(file, &cache->map, &len)) {
1107 		zfree(&cache->size);
1108 		zfree(&cache->type);
1109 		return -1;
1110 	}
1111 
1112 	cache->map[len] = 0;
1113 	cache->map = strim(cache->map);
1114 	return 0;
1115 }
1116 
1117 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1118 {
1119 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1120 }
1121 
1122 #define MAX_CACHE_LVL 4
1123 
1124 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1125 {
1126 	u32 i, cnt = 0;
1127 	u32 nr, cpu;
1128 	u16 level;
1129 
1130 	nr = cpu__max_cpu();
1131 
1132 	for (cpu = 0; cpu < nr; cpu++) {
1133 		for (level = 0; level < MAX_CACHE_LVL; level++) {
1134 			struct cpu_cache_level c;
1135 			int err;
1136 
1137 			err = cpu_cache_level__read(&c, cpu, level);
1138 			if (err < 0)
1139 				return err;
1140 
1141 			if (err == 1)
1142 				break;
1143 
1144 			for (i = 0; i < cnt; i++) {
1145 				if (cpu_cache_level__cmp(&c, &caches[i]))
1146 					break;
1147 			}
1148 
1149 			if (i == cnt)
1150 				caches[cnt++] = c;
1151 			else
1152 				cpu_cache_level__free(&c);
1153 		}
1154 	}
1155 	*cntp = cnt;
1156 	return 0;
1157 }
1158 
1159 static int write_cache(struct feat_fd *ff,
1160 		       struct evlist *evlist __maybe_unused)
1161 {
1162 	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1163 	struct cpu_cache_level caches[max_caches];
1164 	u32 cnt = 0, i, version = 1;
1165 	int ret;
1166 
1167 	ret = build_caches(caches, &cnt);
1168 	if (ret)
1169 		goto out;
1170 
1171 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1172 
1173 	ret = do_write(ff, &version, sizeof(u32));
1174 	if (ret < 0)
1175 		goto out;
1176 
1177 	ret = do_write(ff, &cnt, sizeof(u32));
1178 	if (ret < 0)
1179 		goto out;
1180 
1181 	for (i = 0; i < cnt; i++) {
1182 		struct cpu_cache_level *c = &caches[i];
1183 
1184 		#define _W(v)					\
1185 			ret = do_write(ff, &c->v, sizeof(u32));	\
1186 			if (ret < 0)				\
1187 				goto out;
1188 
1189 		_W(level)
1190 		_W(line_size)
1191 		_W(sets)
1192 		_W(ways)
1193 		#undef _W
1194 
1195 		#define _W(v)						\
1196 			ret = do_write_string(ff, (const char *) c->v);	\
1197 			if (ret < 0)					\
1198 				goto out;
1199 
1200 		_W(type)
1201 		_W(size)
1202 		_W(map)
1203 		#undef _W
1204 	}
1205 
1206 out:
1207 	for (i = 0; i < cnt; i++)
1208 		cpu_cache_level__free(&caches[i]);
1209 	return ret;
1210 }
1211 
1212 static int write_stat(struct feat_fd *ff __maybe_unused,
1213 		      struct evlist *evlist __maybe_unused)
1214 {
1215 	return 0;
1216 }
1217 
1218 static int write_sample_time(struct feat_fd *ff,
1219 			     struct evlist *evlist)
1220 {
1221 	int ret;
1222 
1223 	ret = do_write(ff, &evlist->first_sample_time,
1224 		       sizeof(evlist->first_sample_time));
1225 	if (ret < 0)
1226 		return ret;
1227 
1228 	return do_write(ff, &evlist->last_sample_time,
1229 			sizeof(evlist->last_sample_time));
1230 }
1231 
1232 
1233 static int memory_node__read(struct memory_node *n, unsigned long idx)
1234 {
1235 	unsigned int phys, size = 0;
1236 	char path[PATH_MAX];
1237 	struct dirent *ent;
1238 	DIR *dir;
1239 
1240 #define for_each_memory(mem, dir)					\
1241 	while ((ent = readdir(dir)))					\
1242 		if (strcmp(ent->d_name, ".") &&				\
1243 		    strcmp(ent->d_name, "..") &&			\
1244 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1245 
1246 	scnprintf(path, PATH_MAX,
1247 		  "%s/devices/system/node/node%lu",
1248 		  sysfs__mountpoint(), idx);
1249 
1250 	dir = opendir(path);
1251 	if (!dir) {
1252 		pr_warning("failed: cant' open memory sysfs data\n");
1253 		return -1;
1254 	}
1255 
1256 	for_each_memory(phys, dir) {
1257 		size = max(phys, size);
1258 	}
1259 
1260 	size++;
1261 
1262 	n->set = bitmap_alloc(size);
1263 	if (!n->set) {
1264 		closedir(dir);
1265 		return -ENOMEM;
1266 	}
1267 
1268 	n->node = idx;
1269 	n->size = size;
1270 
1271 	rewinddir(dir);
1272 
1273 	for_each_memory(phys, dir) {
1274 		set_bit(phys, n->set);
1275 	}
1276 
1277 	closedir(dir);
1278 	return 0;
1279 }
1280 
1281 static int memory_node__sort(const void *a, const void *b)
1282 {
1283 	const struct memory_node *na = a;
1284 	const struct memory_node *nb = b;
1285 
1286 	return na->node - nb->node;
1287 }
1288 
1289 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1290 {
1291 	char path[PATH_MAX];
1292 	struct dirent *ent;
1293 	DIR *dir;
1294 	u64 cnt = 0;
1295 	int ret = 0;
1296 
1297 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1298 		  sysfs__mountpoint());
1299 
1300 	dir = opendir(path);
1301 	if (!dir) {
1302 		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1303 			  __func__, path);
1304 		return -1;
1305 	}
1306 
1307 	while (!ret && (ent = readdir(dir))) {
1308 		unsigned int idx;
1309 		int r;
1310 
1311 		if (!strcmp(ent->d_name, ".") ||
1312 		    !strcmp(ent->d_name, ".."))
1313 			continue;
1314 
1315 		r = sscanf(ent->d_name, "node%u", &idx);
1316 		if (r != 1)
1317 			continue;
1318 
1319 		if (WARN_ONCE(cnt >= size,
1320 			"failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1321 			closedir(dir);
1322 			return -1;
1323 		}
1324 
1325 		ret = memory_node__read(&nodes[cnt++], idx);
1326 	}
1327 
1328 	*cntp = cnt;
1329 	closedir(dir);
1330 
1331 	if (!ret)
1332 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1333 
1334 	return ret;
1335 }
1336 
1337 #define MAX_MEMORY_NODES 2000
1338 
1339 /*
1340  * The MEM_TOPOLOGY holds physical memory map for every
1341  * node in system. The format of data is as follows:
1342  *
1343  *  0 - version          | for future changes
1344  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1345  * 16 - count            | number of nodes
1346  *
1347  * For each node we store map of physical indexes for
1348  * each node:
1349  *
1350  * 32 - node id          | node index
1351  * 40 - size             | size of bitmap
1352  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1353  */
1354 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1355 			      struct evlist *evlist __maybe_unused)
1356 {
1357 	static struct memory_node nodes[MAX_MEMORY_NODES];
1358 	u64 bsize, version = 1, i, nr;
1359 	int ret;
1360 
1361 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1362 			      (unsigned long long *) &bsize);
1363 	if (ret)
1364 		return ret;
1365 
1366 	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1367 	if (ret)
1368 		return ret;
1369 
1370 	ret = do_write(ff, &version, sizeof(version));
1371 	if (ret < 0)
1372 		goto out;
1373 
1374 	ret = do_write(ff, &bsize, sizeof(bsize));
1375 	if (ret < 0)
1376 		goto out;
1377 
1378 	ret = do_write(ff, &nr, sizeof(nr));
1379 	if (ret < 0)
1380 		goto out;
1381 
1382 	for (i = 0; i < nr; i++) {
1383 		struct memory_node *n = &nodes[i];
1384 
1385 		#define _W(v)						\
1386 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1387 			if (ret < 0)					\
1388 				goto out;
1389 
1390 		_W(node)
1391 		_W(size)
1392 
1393 		#undef _W
1394 
1395 		ret = do_write_bitmap(ff, n->set, n->size);
1396 		if (ret < 0)
1397 			goto out;
1398 	}
1399 
1400 out:
1401 	return ret;
1402 }
1403 
1404 static int write_compressed(struct feat_fd *ff __maybe_unused,
1405 			    struct evlist *evlist __maybe_unused)
1406 {
1407 	int ret;
1408 
1409 	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1410 	if (ret)
1411 		return ret;
1412 
1413 	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1414 	if (ret)
1415 		return ret;
1416 
1417 	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1418 	if (ret)
1419 		return ret;
1420 
1421 	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1422 	if (ret)
1423 		return ret;
1424 
1425 	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1426 }
1427 
1428 static int write_cpu_pmu_caps(struct feat_fd *ff,
1429 			      struct evlist *evlist __maybe_unused)
1430 {
1431 	struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1432 	struct perf_pmu_caps *caps = NULL;
1433 	int nr_caps;
1434 	int ret;
1435 
1436 	if (!cpu_pmu)
1437 		return -ENOENT;
1438 
1439 	nr_caps = perf_pmu__caps_parse(cpu_pmu);
1440 	if (nr_caps < 0)
1441 		return nr_caps;
1442 
1443 	ret = do_write(ff, &nr_caps, sizeof(nr_caps));
1444 	if (ret < 0)
1445 		return ret;
1446 
1447 	list_for_each_entry(caps, &cpu_pmu->caps, list) {
1448 		ret = do_write_string(ff, caps->name);
1449 		if (ret < 0)
1450 			return ret;
1451 
1452 		ret = do_write_string(ff, caps->value);
1453 		if (ret < 0)
1454 			return ret;
1455 	}
1456 
1457 	return ret;
1458 }
1459 
1460 static void print_hostname(struct feat_fd *ff, FILE *fp)
1461 {
1462 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1463 }
1464 
1465 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1466 {
1467 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1468 }
1469 
1470 static void print_arch(struct feat_fd *ff, FILE *fp)
1471 {
1472 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1473 }
1474 
1475 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1476 {
1477 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1478 }
1479 
1480 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1481 {
1482 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1483 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1484 }
1485 
1486 static void print_version(struct feat_fd *ff, FILE *fp)
1487 {
1488 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1489 }
1490 
1491 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1492 {
1493 	int nr, i;
1494 
1495 	nr = ff->ph->env.nr_cmdline;
1496 
1497 	fprintf(fp, "# cmdline : ");
1498 
1499 	for (i = 0; i < nr; i++) {
1500 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1501 		if (!argv_i) {
1502 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1503 		} else {
1504 			char *mem = argv_i;
1505 			do {
1506 				char *quote = strchr(argv_i, '\'');
1507 				if (!quote)
1508 					break;
1509 				*quote++ = '\0';
1510 				fprintf(fp, "%s\\\'", argv_i);
1511 				argv_i = quote;
1512 			} while (1);
1513 			fprintf(fp, "%s ", argv_i);
1514 			free(mem);
1515 		}
1516 	}
1517 	fputc('\n', fp);
1518 }
1519 
1520 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1521 {
1522 	struct perf_header *ph = ff->ph;
1523 	int cpu_nr = ph->env.nr_cpus_avail;
1524 	int nr, i;
1525 	char *str;
1526 
1527 	nr = ph->env.nr_sibling_cores;
1528 	str = ph->env.sibling_cores;
1529 
1530 	for (i = 0; i < nr; i++) {
1531 		fprintf(fp, "# sibling sockets : %s\n", str);
1532 		str += strlen(str) + 1;
1533 	}
1534 
1535 	if (ph->env.nr_sibling_dies) {
1536 		nr = ph->env.nr_sibling_dies;
1537 		str = ph->env.sibling_dies;
1538 
1539 		for (i = 0; i < nr; i++) {
1540 			fprintf(fp, "# sibling dies    : %s\n", str);
1541 			str += strlen(str) + 1;
1542 		}
1543 	}
1544 
1545 	nr = ph->env.nr_sibling_threads;
1546 	str = ph->env.sibling_threads;
1547 
1548 	for (i = 0; i < nr; i++) {
1549 		fprintf(fp, "# sibling threads : %s\n", str);
1550 		str += strlen(str) + 1;
1551 	}
1552 
1553 	if (ph->env.nr_sibling_dies) {
1554 		if (ph->env.cpu != NULL) {
1555 			for (i = 0; i < cpu_nr; i++)
1556 				fprintf(fp, "# CPU %d: Core ID %d, "
1557 					    "Die ID %d, Socket ID %d\n",
1558 					    i, ph->env.cpu[i].core_id,
1559 					    ph->env.cpu[i].die_id,
1560 					    ph->env.cpu[i].socket_id);
1561 		} else
1562 			fprintf(fp, "# Core ID, Die ID and Socket ID "
1563 				    "information is not available\n");
1564 	} else {
1565 		if (ph->env.cpu != NULL) {
1566 			for (i = 0; i < cpu_nr; i++)
1567 				fprintf(fp, "# CPU %d: Core ID %d, "
1568 					    "Socket ID %d\n",
1569 					    i, ph->env.cpu[i].core_id,
1570 					    ph->env.cpu[i].socket_id);
1571 		} else
1572 			fprintf(fp, "# Core ID and Socket ID "
1573 				    "information is not available\n");
1574 	}
1575 }
1576 
1577 static void print_clockid(struct feat_fd *ff, FILE *fp)
1578 {
1579 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1580 		ff->ph->env.clock.clockid_res_ns * 1000);
1581 }
1582 
1583 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1584 {
1585 	struct timespec clockid_ns;
1586 	char tstr[64], date[64];
1587 	struct timeval tod_ns;
1588 	clockid_t clockid;
1589 	struct tm ltime;
1590 	u64 ref;
1591 
1592 	if (!ff->ph->env.clock.enabled) {
1593 		fprintf(fp, "# reference time disabled\n");
1594 		return;
1595 	}
1596 
1597 	/* Compute TOD time. */
1598 	ref = ff->ph->env.clock.tod_ns;
1599 	tod_ns.tv_sec = ref / NSEC_PER_SEC;
1600 	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1601 	tod_ns.tv_usec = ref / NSEC_PER_USEC;
1602 
1603 	/* Compute clockid time. */
1604 	ref = ff->ph->env.clock.clockid_ns;
1605 	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1606 	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1607 	clockid_ns.tv_nsec = ref;
1608 
1609 	clockid = ff->ph->env.clock.clockid;
1610 
1611 	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1612 		snprintf(tstr, sizeof(tstr), "<error>");
1613 	else {
1614 		strftime(date, sizeof(date), "%F %T", &ltime);
1615 		scnprintf(tstr, sizeof(tstr), "%s.%06d",
1616 			  date, (int) tod_ns.tv_usec);
1617 	}
1618 
1619 	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1620 	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1621 		    tstr, tod_ns.tv_sec, (int) tod_ns.tv_usec,
1622 		    clockid_ns.tv_sec, clockid_ns.tv_nsec,
1623 		    clockid_name(clockid));
1624 }
1625 
1626 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1627 {
1628 	struct perf_session *session;
1629 	struct perf_data *data;
1630 
1631 	session = container_of(ff->ph, struct perf_session, header);
1632 	data = session->data;
1633 
1634 	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1635 }
1636 
1637 #ifdef HAVE_LIBBPF_SUPPORT
1638 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1639 {
1640 	struct perf_env *env = &ff->ph->env;
1641 	struct rb_root *root;
1642 	struct rb_node *next;
1643 
1644 	down_read(&env->bpf_progs.lock);
1645 
1646 	root = &env->bpf_progs.infos;
1647 	next = rb_first(root);
1648 
1649 	while (next) {
1650 		struct bpf_prog_info_node *node;
1651 
1652 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1653 		next = rb_next(&node->rb_node);
1654 
1655 		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1656 					       env, fp);
1657 	}
1658 
1659 	up_read(&env->bpf_progs.lock);
1660 }
1661 
1662 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1663 {
1664 	struct perf_env *env = &ff->ph->env;
1665 	struct rb_root *root;
1666 	struct rb_node *next;
1667 
1668 	down_read(&env->bpf_progs.lock);
1669 
1670 	root = &env->bpf_progs.btfs;
1671 	next = rb_first(root);
1672 
1673 	while (next) {
1674 		struct btf_node *node;
1675 
1676 		node = rb_entry(next, struct btf_node, rb_node);
1677 		next = rb_next(&node->rb_node);
1678 		fprintf(fp, "# btf info of id %u\n", node->id);
1679 	}
1680 
1681 	up_read(&env->bpf_progs.lock);
1682 }
1683 #endif // HAVE_LIBBPF_SUPPORT
1684 
1685 static void free_event_desc(struct evsel *events)
1686 {
1687 	struct evsel *evsel;
1688 
1689 	if (!events)
1690 		return;
1691 
1692 	for (evsel = events; evsel->core.attr.size; evsel++) {
1693 		zfree(&evsel->name);
1694 		zfree(&evsel->core.id);
1695 	}
1696 
1697 	free(events);
1698 }
1699 
1700 static bool perf_attr_check(struct perf_event_attr *attr)
1701 {
1702 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1703 		pr_warning("Reserved bits are set unexpectedly. "
1704 			   "Please update perf tool.\n");
1705 		return false;
1706 	}
1707 
1708 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1709 		pr_warning("Unknown sample type (0x%llx) is detected. "
1710 			   "Please update perf tool.\n",
1711 			   attr->sample_type);
1712 		return false;
1713 	}
1714 
1715 	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1716 		pr_warning("Unknown read format (0x%llx) is detected. "
1717 			   "Please update perf tool.\n",
1718 			   attr->read_format);
1719 		return false;
1720 	}
1721 
1722 	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1723 	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1724 		pr_warning("Unknown branch sample type (0x%llx) is detected. "
1725 			   "Please update perf tool.\n",
1726 			   attr->branch_sample_type);
1727 
1728 		return false;
1729 	}
1730 
1731 	return true;
1732 }
1733 
1734 static struct evsel *read_event_desc(struct feat_fd *ff)
1735 {
1736 	struct evsel *evsel, *events = NULL;
1737 	u64 *id;
1738 	void *buf = NULL;
1739 	u32 nre, sz, nr, i, j;
1740 	size_t msz;
1741 
1742 	/* number of events */
1743 	if (do_read_u32(ff, &nre))
1744 		goto error;
1745 
1746 	if (do_read_u32(ff, &sz))
1747 		goto error;
1748 
1749 	/* buffer to hold on file attr struct */
1750 	buf = malloc(sz);
1751 	if (!buf)
1752 		goto error;
1753 
1754 	/* the last event terminates with evsel->core.attr.size == 0: */
1755 	events = calloc(nre + 1, sizeof(*events));
1756 	if (!events)
1757 		goto error;
1758 
1759 	msz = sizeof(evsel->core.attr);
1760 	if (sz < msz)
1761 		msz = sz;
1762 
1763 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1764 		evsel->idx = i;
1765 
1766 		/*
1767 		 * must read entire on-file attr struct to
1768 		 * sync up with layout.
1769 		 */
1770 		if (__do_read(ff, buf, sz))
1771 			goto error;
1772 
1773 		if (ff->ph->needs_swap)
1774 			perf_event__attr_swap(buf);
1775 
1776 		memcpy(&evsel->core.attr, buf, msz);
1777 
1778 		if (!perf_attr_check(&evsel->core.attr))
1779 			goto error;
1780 
1781 		if (do_read_u32(ff, &nr))
1782 			goto error;
1783 
1784 		if (ff->ph->needs_swap)
1785 			evsel->needs_swap = true;
1786 
1787 		evsel->name = do_read_string(ff);
1788 		if (!evsel->name)
1789 			goto error;
1790 
1791 		if (!nr)
1792 			continue;
1793 
1794 		id = calloc(nr, sizeof(*id));
1795 		if (!id)
1796 			goto error;
1797 		evsel->core.ids = nr;
1798 		evsel->core.id = id;
1799 
1800 		for (j = 0 ; j < nr; j++) {
1801 			if (do_read_u64(ff, id))
1802 				goto error;
1803 			id++;
1804 		}
1805 	}
1806 out:
1807 	free(buf);
1808 	return events;
1809 error:
1810 	free_event_desc(events);
1811 	events = NULL;
1812 	goto out;
1813 }
1814 
1815 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1816 				void *priv __maybe_unused)
1817 {
1818 	return fprintf(fp, ", %s = %s", name, val);
1819 }
1820 
1821 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1822 {
1823 	struct evsel *evsel, *events;
1824 	u32 j;
1825 	u64 *id;
1826 
1827 	if (ff->events)
1828 		events = ff->events;
1829 	else
1830 		events = read_event_desc(ff);
1831 
1832 	if (!events) {
1833 		fprintf(fp, "# event desc: not available or unable to read\n");
1834 		return;
1835 	}
1836 
1837 	for (evsel = events; evsel->core.attr.size; evsel++) {
1838 		fprintf(fp, "# event : name = %s, ", evsel->name);
1839 
1840 		if (evsel->core.ids) {
1841 			fprintf(fp, ", id = {");
1842 			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1843 				if (j)
1844 					fputc(',', fp);
1845 				fprintf(fp, " %"PRIu64, *id);
1846 			}
1847 			fprintf(fp, " }");
1848 		}
1849 
1850 		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1851 
1852 		fputc('\n', fp);
1853 	}
1854 
1855 	free_event_desc(events);
1856 	ff->events = NULL;
1857 }
1858 
1859 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1860 {
1861 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1862 }
1863 
1864 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1865 {
1866 	int i;
1867 	struct numa_node *n;
1868 
1869 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1870 		n = &ff->ph->env.numa_nodes[i];
1871 
1872 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1873 			    " free = %"PRIu64" kB\n",
1874 			n->node, n->mem_total, n->mem_free);
1875 
1876 		fprintf(fp, "# node%u cpu list : ", n->node);
1877 		cpu_map__fprintf(n->map, fp);
1878 	}
1879 }
1880 
1881 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1882 {
1883 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1884 }
1885 
1886 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1887 {
1888 	fprintf(fp, "# contains samples with branch stack\n");
1889 }
1890 
1891 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1892 {
1893 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1894 }
1895 
1896 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1897 {
1898 	fprintf(fp, "# contains stat data\n");
1899 }
1900 
1901 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1902 {
1903 	int i;
1904 
1905 	fprintf(fp, "# CPU cache info:\n");
1906 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1907 		fprintf(fp, "#  ");
1908 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1909 	}
1910 }
1911 
1912 static void print_compressed(struct feat_fd *ff, FILE *fp)
1913 {
1914 	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1915 		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1916 		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1917 }
1918 
1919 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
1920 {
1921 	const char *delimiter = "# cpu pmu capabilities: ";
1922 	u32 nr_caps = ff->ph->env.nr_cpu_pmu_caps;
1923 	char *str;
1924 
1925 	if (!nr_caps) {
1926 		fprintf(fp, "# cpu pmu capabilities: not available\n");
1927 		return;
1928 	}
1929 
1930 	str = ff->ph->env.cpu_pmu_caps;
1931 	while (nr_caps--) {
1932 		fprintf(fp, "%s%s", delimiter, str);
1933 		delimiter = ", ";
1934 		str += strlen(str) + 1;
1935 	}
1936 
1937 	fprintf(fp, "\n");
1938 }
1939 
1940 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1941 {
1942 	const char *delimiter = "# pmu mappings: ";
1943 	char *str, *tmp;
1944 	u32 pmu_num;
1945 	u32 type;
1946 
1947 	pmu_num = ff->ph->env.nr_pmu_mappings;
1948 	if (!pmu_num) {
1949 		fprintf(fp, "# pmu mappings: not available\n");
1950 		return;
1951 	}
1952 
1953 	str = ff->ph->env.pmu_mappings;
1954 
1955 	while (pmu_num) {
1956 		type = strtoul(str, &tmp, 0);
1957 		if (*tmp != ':')
1958 			goto error;
1959 
1960 		str = tmp + 1;
1961 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1962 
1963 		delimiter = ", ";
1964 		str += strlen(str) + 1;
1965 		pmu_num--;
1966 	}
1967 
1968 	fprintf(fp, "\n");
1969 
1970 	if (!pmu_num)
1971 		return;
1972 error:
1973 	fprintf(fp, "# pmu mappings: unable to read\n");
1974 }
1975 
1976 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1977 {
1978 	struct perf_session *session;
1979 	struct evsel *evsel;
1980 	u32 nr = 0;
1981 
1982 	session = container_of(ff->ph, struct perf_session, header);
1983 
1984 	evlist__for_each_entry(session->evlist, evsel) {
1985 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
1986 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
1987 
1988 			nr = evsel->core.nr_members - 1;
1989 		} else if (nr) {
1990 			fprintf(fp, ",%s", evsel__name(evsel));
1991 
1992 			if (--nr == 0)
1993 				fprintf(fp, "}\n");
1994 		}
1995 	}
1996 }
1997 
1998 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1999 {
2000 	struct perf_session *session;
2001 	char time_buf[32];
2002 	double d;
2003 
2004 	session = container_of(ff->ph, struct perf_session, header);
2005 
2006 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
2007 				  time_buf, sizeof(time_buf));
2008 	fprintf(fp, "# time of first sample : %s\n", time_buf);
2009 
2010 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
2011 				  time_buf, sizeof(time_buf));
2012 	fprintf(fp, "# time of last sample : %s\n", time_buf);
2013 
2014 	d = (double)(session->evlist->last_sample_time -
2015 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
2016 
2017 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
2018 }
2019 
2020 static void memory_node__fprintf(struct memory_node *n,
2021 				 unsigned long long bsize, FILE *fp)
2022 {
2023 	char buf_map[100], buf_size[50];
2024 	unsigned long long size;
2025 
2026 	size = bsize * bitmap_weight(n->set, n->size);
2027 	unit_number__scnprintf(buf_size, 50, size);
2028 
2029 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
2030 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2031 }
2032 
2033 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2034 {
2035 	struct memory_node *nodes;
2036 	int i, nr;
2037 
2038 	nodes = ff->ph->env.memory_nodes;
2039 	nr    = ff->ph->env.nr_memory_nodes;
2040 
2041 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2042 		nr, ff->ph->env.memory_bsize);
2043 
2044 	for (i = 0; i < nr; i++) {
2045 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2046 	}
2047 }
2048 
2049 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2050 				    char *filename,
2051 				    struct perf_session *session)
2052 {
2053 	int err = -1;
2054 	struct machine *machine;
2055 	u16 cpumode;
2056 	struct dso *dso;
2057 	enum dso_space_type dso_space;
2058 
2059 	machine = perf_session__findnew_machine(session, bev->pid);
2060 	if (!machine)
2061 		goto out;
2062 
2063 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2064 
2065 	switch (cpumode) {
2066 	case PERF_RECORD_MISC_KERNEL:
2067 		dso_space = DSO_SPACE__KERNEL;
2068 		break;
2069 	case PERF_RECORD_MISC_GUEST_KERNEL:
2070 		dso_space = DSO_SPACE__KERNEL_GUEST;
2071 		break;
2072 	case PERF_RECORD_MISC_USER:
2073 	case PERF_RECORD_MISC_GUEST_USER:
2074 		dso_space = DSO_SPACE__USER;
2075 		break;
2076 	default:
2077 		goto out;
2078 	}
2079 
2080 	dso = machine__findnew_dso(machine, filename);
2081 	if (dso != NULL) {
2082 		char sbuild_id[SBUILD_ID_SIZE];
2083 		struct build_id bid;
2084 		size_t size = BUILD_ID_SIZE;
2085 
2086 		if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2087 			size = bev->size;
2088 
2089 		build_id__init(&bid, bev->data, size);
2090 		dso__set_build_id(dso, &bid);
2091 
2092 		if (dso_space != DSO_SPACE__USER) {
2093 			struct kmod_path m = { .name = NULL, };
2094 
2095 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2096 				dso__set_module_info(dso, &m, machine);
2097 
2098 			dso->kernel = dso_space;
2099 			free(m.name);
2100 		}
2101 
2102 		build_id__sprintf(&dso->bid, sbuild_id);
2103 		pr_debug("build id event received for %s: %s [%zu]\n",
2104 			 dso->long_name, sbuild_id, size);
2105 		dso__put(dso);
2106 	}
2107 
2108 	err = 0;
2109 out:
2110 	return err;
2111 }
2112 
2113 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2114 						 int input, u64 offset, u64 size)
2115 {
2116 	struct perf_session *session = container_of(header, struct perf_session, header);
2117 	struct {
2118 		struct perf_event_header   header;
2119 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2120 		char			   filename[0];
2121 	} old_bev;
2122 	struct perf_record_header_build_id bev;
2123 	char filename[PATH_MAX];
2124 	u64 limit = offset + size;
2125 
2126 	while (offset < limit) {
2127 		ssize_t len;
2128 
2129 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2130 			return -1;
2131 
2132 		if (header->needs_swap)
2133 			perf_event_header__bswap(&old_bev.header);
2134 
2135 		len = old_bev.header.size - sizeof(old_bev);
2136 		if (readn(input, filename, len) != len)
2137 			return -1;
2138 
2139 		bev.header = old_bev.header;
2140 
2141 		/*
2142 		 * As the pid is the missing value, we need to fill
2143 		 * it properly. The header.misc value give us nice hint.
2144 		 */
2145 		bev.pid	= HOST_KERNEL_ID;
2146 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2147 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2148 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
2149 
2150 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2151 		__event_process_build_id(&bev, filename, session);
2152 
2153 		offset += bev.header.size;
2154 	}
2155 
2156 	return 0;
2157 }
2158 
2159 static int perf_header__read_build_ids(struct perf_header *header,
2160 				       int input, u64 offset, u64 size)
2161 {
2162 	struct perf_session *session = container_of(header, struct perf_session, header);
2163 	struct perf_record_header_build_id bev;
2164 	char filename[PATH_MAX];
2165 	u64 limit = offset + size, orig_offset = offset;
2166 	int err = -1;
2167 
2168 	while (offset < limit) {
2169 		ssize_t len;
2170 
2171 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2172 			goto out;
2173 
2174 		if (header->needs_swap)
2175 			perf_event_header__bswap(&bev.header);
2176 
2177 		len = bev.header.size - sizeof(bev);
2178 		if (readn(input, filename, len) != len)
2179 			goto out;
2180 		/*
2181 		 * The a1645ce1 changeset:
2182 		 *
2183 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2184 		 *
2185 		 * Added a field to struct perf_record_header_build_id that broke the file
2186 		 * format.
2187 		 *
2188 		 * Since the kernel build-id is the first entry, process the
2189 		 * table using the old format if the well known
2190 		 * '[kernel.kallsyms]' string for the kernel build-id has the
2191 		 * first 4 characters chopped off (where the pid_t sits).
2192 		 */
2193 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2194 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2195 				return -1;
2196 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2197 		}
2198 
2199 		__event_process_build_id(&bev, filename, session);
2200 
2201 		offset += bev.header.size;
2202 	}
2203 	err = 0;
2204 out:
2205 	return err;
2206 }
2207 
2208 /* Macro for features that simply need to read and store a string. */
2209 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2210 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2211 {\
2212 	ff->ph->env.__feat_env = do_read_string(ff); \
2213 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2214 }
2215 
2216 FEAT_PROCESS_STR_FUN(hostname, hostname);
2217 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2218 FEAT_PROCESS_STR_FUN(version, version);
2219 FEAT_PROCESS_STR_FUN(arch, arch);
2220 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2221 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2222 
2223 static int process_tracing_data(struct feat_fd *ff, void *data)
2224 {
2225 	ssize_t ret = trace_report(ff->fd, data, false);
2226 
2227 	return ret < 0 ? -1 : 0;
2228 }
2229 
2230 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2231 {
2232 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2233 		pr_debug("Failed to read buildids, continuing...\n");
2234 	return 0;
2235 }
2236 
2237 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2238 {
2239 	int ret;
2240 	u32 nr_cpus_avail, nr_cpus_online;
2241 
2242 	ret = do_read_u32(ff, &nr_cpus_avail);
2243 	if (ret)
2244 		return ret;
2245 
2246 	ret = do_read_u32(ff, &nr_cpus_online);
2247 	if (ret)
2248 		return ret;
2249 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2250 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2251 	return 0;
2252 }
2253 
2254 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2255 {
2256 	u64 total_mem;
2257 	int ret;
2258 
2259 	ret = do_read_u64(ff, &total_mem);
2260 	if (ret)
2261 		return -1;
2262 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2263 	return 0;
2264 }
2265 
2266 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2267 {
2268 	struct evsel *evsel;
2269 
2270 	evlist__for_each_entry(evlist, evsel) {
2271 		if (evsel->idx == idx)
2272 			return evsel;
2273 	}
2274 
2275 	return NULL;
2276 }
2277 
2278 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2279 {
2280 	struct evsel *evsel;
2281 
2282 	if (!event->name)
2283 		return;
2284 
2285 	evsel = evlist__find_by_index(evlist, event->idx);
2286 	if (!evsel)
2287 		return;
2288 
2289 	if (evsel->name)
2290 		return;
2291 
2292 	evsel->name = strdup(event->name);
2293 }
2294 
2295 static int
2296 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2297 {
2298 	struct perf_session *session;
2299 	struct evsel *evsel, *events = read_event_desc(ff);
2300 
2301 	if (!events)
2302 		return 0;
2303 
2304 	session = container_of(ff->ph, struct perf_session, header);
2305 
2306 	if (session->data->is_pipe) {
2307 		/* Save events for reading later by print_event_desc,
2308 		 * since they can't be read again in pipe mode. */
2309 		ff->events = events;
2310 	}
2311 
2312 	for (evsel = events; evsel->core.attr.size; evsel++)
2313 		evlist__set_event_name(session->evlist, evsel);
2314 
2315 	if (!session->data->is_pipe)
2316 		free_event_desc(events);
2317 
2318 	return 0;
2319 }
2320 
2321 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2322 {
2323 	char *str, *cmdline = NULL, **argv = NULL;
2324 	u32 nr, i, len = 0;
2325 
2326 	if (do_read_u32(ff, &nr))
2327 		return -1;
2328 
2329 	ff->ph->env.nr_cmdline = nr;
2330 
2331 	cmdline = zalloc(ff->size + nr + 1);
2332 	if (!cmdline)
2333 		return -1;
2334 
2335 	argv = zalloc(sizeof(char *) * (nr + 1));
2336 	if (!argv)
2337 		goto error;
2338 
2339 	for (i = 0; i < nr; i++) {
2340 		str = do_read_string(ff);
2341 		if (!str)
2342 			goto error;
2343 
2344 		argv[i] = cmdline + len;
2345 		memcpy(argv[i], str, strlen(str) + 1);
2346 		len += strlen(str) + 1;
2347 		free(str);
2348 	}
2349 	ff->ph->env.cmdline = cmdline;
2350 	ff->ph->env.cmdline_argv = (const char **) argv;
2351 	return 0;
2352 
2353 error:
2354 	free(argv);
2355 	free(cmdline);
2356 	return -1;
2357 }
2358 
2359 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2360 {
2361 	u32 nr, i;
2362 	char *str;
2363 	struct strbuf sb;
2364 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2365 	u64 size = 0;
2366 	struct perf_header *ph = ff->ph;
2367 	bool do_core_id_test = true;
2368 
2369 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2370 	if (!ph->env.cpu)
2371 		return -1;
2372 
2373 	if (do_read_u32(ff, &nr))
2374 		goto free_cpu;
2375 
2376 	ph->env.nr_sibling_cores = nr;
2377 	size += sizeof(u32);
2378 	if (strbuf_init(&sb, 128) < 0)
2379 		goto free_cpu;
2380 
2381 	for (i = 0; i < nr; i++) {
2382 		str = do_read_string(ff);
2383 		if (!str)
2384 			goto error;
2385 
2386 		/* include a NULL character at the end */
2387 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2388 			goto error;
2389 		size += string_size(str);
2390 		free(str);
2391 	}
2392 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2393 
2394 	if (do_read_u32(ff, &nr))
2395 		return -1;
2396 
2397 	ph->env.nr_sibling_threads = nr;
2398 	size += sizeof(u32);
2399 
2400 	for (i = 0; i < nr; i++) {
2401 		str = do_read_string(ff);
2402 		if (!str)
2403 			goto error;
2404 
2405 		/* include a NULL character at the end */
2406 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2407 			goto error;
2408 		size += string_size(str);
2409 		free(str);
2410 	}
2411 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2412 
2413 	/*
2414 	 * The header may be from old perf,
2415 	 * which doesn't include core id and socket id information.
2416 	 */
2417 	if (ff->size <= size) {
2418 		zfree(&ph->env.cpu);
2419 		return 0;
2420 	}
2421 
2422 	/* On s390 the socket_id number is not related to the numbers of cpus.
2423 	 * The socket_id number might be higher than the numbers of cpus.
2424 	 * This depends on the configuration.
2425 	 * AArch64 is the same.
2426 	 */
2427 	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2428 			  || !strncmp(ph->env.arch, "aarch64", 7)))
2429 		do_core_id_test = false;
2430 
2431 	for (i = 0; i < (u32)cpu_nr; i++) {
2432 		if (do_read_u32(ff, &nr))
2433 			goto free_cpu;
2434 
2435 		ph->env.cpu[i].core_id = nr;
2436 		size += sizeof(u32);
2437 
2438 		if (do_read_u32(ff, &nr))
2439 			goto free_cpu;
2440 
2441 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2442 			pr_debug("socket_id number is too big."
2443 				 "You may need to upgrade the perf tool.\n");
2444 			goto free_cpu;
2445 		}
2446 
2447 		ph->env.cpu[i].socket_id = nr;
2448 		size += sizeof(u32);
2449 	}
2450 
2451 	/*
2452 	 * The header may be from old perf,
2453 	 * which doesn't include die information.
2454 	 */
2455 	if (ff->size <= size)
2456 		return 0;
2457 
2458 	if (do_read_u32(ff, &nr))
2459 		return -1;
2460 
2461 	ph->env.nr_sibling_dies = nr;
2462 	size += sizeof(u32);
2463 
2464 	for (i = 0; i < nr; i++) {
2465 		str = do_read_string(ff);
2466 		if (!str)
2467 			goto error;
2468 
2469 		/* include a NULL character at the end */
2470 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2471 			goto error;
2472 		size += string_size(str);
2473 		free(str);
2474 	}
2475 	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2476 
2477 	for (i = 0; i < (u32)cpu_nr; i++) {
2478 		if (do_read_u32(ff, &nr))
2479 			goto free_cpu;
2480 
2481 		ph->env.cpu[i].die_id = nr;
2482 	}
2483 
2484 	return 0;
2485 
2486 error:
2487 	strbuf_release(&sb);
2488 free_cpu:
2489 	zfree(&ph->env.cpu);
2490 	return -1;
2491 }
2492 
2493 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2494 {
2495 	struct numa_node *nodes, *n;
2496 	u32 nr, i;
2497 	char *str;
2498 
2499 	/* nr nodes */
2500 	if (do_read_u32(ff, &nr))
2501 		return -1;
2502 
2503 	nodes = zalloc(sizeof(*nodes) * nr);
2504 	if (!nodes)
2505 		return -ENOMEM;
2506 
2507 	for (i = 0; i < nr; i++) {
2508 		n = &nodes[i];
2509 
2510 		/* node number */
2511 		if (do_read_u32(ff, &n->node))
2512 			goto error;
2513 
2514 		if (do_read_u64(ff, &n->mem_total))
2515 			goto error;
2516 
2517 		if (do_read_u64(ff, &n->mem_free))
2518 			goto error;
2519 
2520 		str = do_read_string(ff);
2521 		if (!str)
2522 			goto error;
2523 
2524 		n->map = perf_cpu_map__new(str);
2525 		if (!n->map)
2526 			goto error;
2527 
2528 		free(str);
2529 	}
2530 	ff->ph->env.nr_numa_nodes = nr;
2531 	ff->ph->env.numa_nodes = nodes;
2532 	return 0;
2533 
2534 error:
2535 	free(nodes);
2536 	return -1;
2537 }
2538 
2539 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2540 {
2541 	char *name;
2542 	u32 pmu_num;
2543 	u32 type;
2544 	struct strbuf sb;
2545 
2546 	if (do_read_u32(ff, &pmu_num))
2547 		return -1;
2548 
2549 	if (!pmu_num) {
2550 		pr_debug("pmu mappings not available\n");
2551 		return 0;
2552 	}
2553 
2554 	ff->ph->env.nr_pmu_mappings = pmu_num;
2555 	if (strbuf_init(&sb, 128) < 0)
2556 		return -1;
2557 
2558 	while (pmu_num) {
2559 		if (do_read_u32(ff, &type))
2560 			goto error;
2561 
2562 		name = do_read_string(ff);
2563 		if (!name)
2564 			goto error;
2565 
2566 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2567 			goto error;
2568 		/* include a NULL character at the end */
2569 		if (strbuf_add(&sb, "", 1) < 0)
2570 			goto error;
2571 
2572 		if (!strcmp(name, "msr"))
2573 			ff->ph->env.msr_pmu_type = type;
2574 
2575 		free(name);
2576 		pmu_num--;
2577 	}
2578 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2579 	return 0;
2580 
2581 error:
2582 	strbuf_release(&sb);
2583 	return -1;
2584 }
2585 
2586 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2587 {
2588 	size_t ret = -1;
2589 	u32 i, nr, nr_groups;
2590 	struct perf_session *session;
2591 	struct evsel *evsel, *leader = NULL;
2592 	struct group_desc {
2593 		char *name;
2594 		u32 leader_idx;
2595 		u32 nr_members;
2596 	} *desc;
2597 
2598 	if (do_read_u32(ff, &nr_groups))
2599 		return -1;
2600 
2601 	ff->ph->env.nr_groups = nr_groups;
2602 	if (!nr_groups) {
2603 		pr_debug("group desc not available\n");
2604 		return 0;
2605 	}
2606 
2607 	desc = calloc(nr_groups, sizeof(*desc));
2608 	if (!desc)
2609 		return -1;
2610 
2611 	for (i = 0; i < nr_groups; i++) {
2612 		desc[i].name = do_read_string(ff);
2613 		if (!desc[i].name)
2614 			goto out_free;
2615 
2616 		if (do_read_u32(ff, &desc[i].leader_idx))
2617 			goto out_free;
2618 
2619 		if (do_read_u32(ff, &desc[i].nr_members))
2620 			goto out_free;
2621 	}
2622 
2623 	/*
2624 	 * Rebuild group relationship based on the group_desc
2625 	 */
2626 	session = container_of(ff->ph, struct perf_session, header);
2627 	session->evlist->nr_groups = nr_groups;
2628 
2629 	i = nr = 0;
2630 	evlist__for_each_entry(session->evlist, evsel) {
2631 		if (evsel->idx == (int) desc[i].leader_idx) {
2632 			evsel->leader = evsel;
2633 			/* {anon_group} is a dummy name */
2634 			if (strcmp(desc[i].name, "{anon_group}")) {
2635 				evsel->group_name = desc[i].name;
2636 				desc[i].name = NULL;
2637 			}
2638 			evsel->core.nr_members = desc[i].nr_members;
2639 
2640 			if (i >= nr_groups || nr > 0) {
2641 				pr_debug("invalid group desc\n");
2642 				goto out_free;
2643 			}
2644 
2645 			leader = evsel;
2646 			nr = evsel->core.nr_members - 1;
2647 			i++;
2648 		} else if (nr) {
2649 			/* This is a group member */
2650 			evsel->leader = leader;
2651 
2652 			nr--;
2653 		}
2654 	}
2655 
2656 	if (i != nr_groups || nr != 0) {
2657 		pr_debug("invalid group desc\n");
2658 		goto out_free;
2659 	}
2660 
2661 	ret = 0;
2662 out_free:
2663 	for (i = 0; i < nr_groups; i++)
2664 		zfree(&desc[i].name);
2665 	free(desc);
2666 
2667 	return ret;
2668 }
2669 
2670 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2671 {
2672 	struct perf_session *session;
2673 	int err;
2674 
2675 	session = container_of(ff->ph, struct perf_session, header);
2676 
2677 	err = auxtrace_index__process(ff->fd, ff->size, session,
2678 				      ff->ph->needs_swap);
2679 	if (err < 0)
2680 		pr_err("Failed to process auxtrace index\n");
2681 	return err;
2682 }
2683 
2684 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2685 {
2686 	struct cpu_cache_level *caches;
2687 	u32 cnt, i, version;
2688 
2689 	if (do_read_u32(ff, &version))
2690 		return -1;
2691 
2692 	if (version != 1)
2693 		return -1;
2694 
2695 	if (do_read_u32(ff, &cnt))
2696 		return -1;
2697 
2698 	caches = zalloc(sizeof(*caches) * cnt);
2699 	if (!caches)
2700 		return -1;
2701 
2702 	for (i = 0; i < cnt; i++) {
2703 		struct cpu_cache_level c;
2704 
2705 		#define _R(v)						\
2706 			if (do_read_u32(ff, &c.v))\
2707 				goto out_free_caches;			\
2708 
2709 		_R(level)
2710 		_R(line_size)
2711 		_R(sets)
2712 		_R(ways)
2713 		#undef _R
2714 
2715 		#define _R(v)					\
2716 			c.v = do_read_string(ff);		\
2717 			if (!c.v)				\
2718 				goto out_free_caches;
2719 
2720 		_R(type)
2721 		_R(size)
2722 		_R(map)
2723 		#undef _R
2724 
2725 		caches[i] = c;
2726 	}
2727 
2728 	ff->ph->env.caches = caches;
2729 	ff->ph->env.caches_cnt = cnt;
2730 	return 0;
2731 out_free_caches:
2732 	free(caches);
2733 	return -1;
2734 }
2735 
2736 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2737 {
2738 	struct perf_session *session;
2739 	u64 first_sample_time, last_sample_time;
2740 	int ret;
2741 
2742 	session = container_of(ff->ph, struct perf_session, header);
2743 
2744 	ret = do_read_u64(ff, &first_sample_time);
2745 	if (ret)
2746 		return -1;
2747 
2748 	ret = do_read_u64(ff, &last_sample_time);
2749 	if (ret)
2750 		return -1;
2751 
2752 	session->evlist->first_sample_time = first_sample_time;
2753 	session->evlist->last_sample_time = last_sample_time;
2754 	return 0;
2755 }
2756 
2757 static int process_mem_topology(struct feat_fd *ff,
2758 				void *data __maybe_unused)
2759 {
2760 	struct memory_node *nodes;
2761 	u64 version, i, nr, bsize;
2762 	int ret = -1;
2763 
2764 	if (do_read_u64(ff, &version))
2765 		return -1;
2766 
2767 	if (version != 1)
2768 		return -1;
2769 
2770 	if (do_read_u64(ff, &bsize))
2771 		return -1;
2772 
2773 	if (do_read_u64(ff, &nr))
2774 		return -1;
2775 
2776 	nodes = zalloc(sizeof(*nodes) * nr);
2777 	if (!nodes)
2778 		return -1;
2779 
2780 	for (i = 0; i < nr; i++) {
2781 		struct memory_node n;
2782 
2783 		#define _R(v)				\
2784 			if (do_read_u64(ff, &n.v))	\
2785 				goto out;		\
2786 
2787 		_R(node)
2788 		_R(size)
2789 
2790 		#undef _R
2791 
2792 		if (do_read_bitmap(ff, &n.set, &n.size))
2793 			goto out;
2794 
2795 		nodes[i] = n;
2796 	}
2797 
2798 	ff->ph->env.memory_bsize    = bsize;
2799 	ff->ph->env.memory_nodes    = nodes;
2800 	ff->ph->env.nr_memory_nodes = nr;
2801 	ret = 0;
2802 
2803 out:
2804 	if (ret)
2805 		free(nodes);
2806 	return ret;
2807 }
2808 
2809 static int process_clockid(struct feat_fd *ff,
2810 			   void *data __maybe_unused)
2811 {
2812 	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2813 		return -1;
2814 
2815 	return 0;
2816 }
2817 
2818 static int process_clock_data(struct feat_fd *ff,
2819 			      void *_data __maybe_unused)
2820 {
2821 	u32 data32;
2822 	u64 data64;
2823 
2824 	/* version */
2825 	if (do_read_u32(ff, &data32))
2826 		return -1;
2827 
2828 	if (data32 != 1)
2829 		return -1;
2830 
2831 	/* clockid */
2832 	if (do_read_u32(ff, &data32))
2833 		return -1;
2834 
2835 	ff->ph->env.clock.clockid = data32;
2836 
2837 	/* TOD ref time */
2838 	if (do_read_u64(ff, &data64))
2839 		return -1;
2840 
2841 	ff->ph->env.clock.tod_ns = data64;
2842 
2843 	/* clockid ref time */
2844 	if (do_read_u64(ff, &data64))
2845 		return -1;
2846 
2847 	ff->ph->env.clock.clockid_ns = data64;
2848 	ff->ph->env.clock.enabled = true;
2849 	return 0;
2850 }
2851 
2852 static int process_dir_format(struct feat_fd *ff,
2853 			      void *_data __maybe_unused)
2854 {
2855 	struct perf_session *session;
2856 	struct perf_data *data;
2857 
2858 	session = container_of(ff->ph, struct perf_session, header);
2859 	data = session->data;
2860 
2861 	if (WARN_ON(!perf_data__is_dir(data)))
2862 		return -1;
2863 
2864 	return do_read_u64(ff, &data->dir.version);
2865 }
2866 
2867 #ifdef HAVE_LIBBPF_SUPPORT
2868 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2869 {
2870 	struct bpf_prog_info_linear *info_linear;
2871 	struct bpf_prog_info_node *info_node;
2872 	struct perf_env *env = &ff->ph->env;
2873 	u32 count, i;
2874 	int err = -1;
2875 
2876 	if (ff->ph->needs_swap) {
2877 		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2878 		return 0;
2879 	}
2880 
2881 	if (do_read_u32(ff, &count))
2882 		return -1;
2883 
2884 	down_write(&env->bpf_progs.lock);
2885 
2886 	for (i = 0; i < count; ++i) {
2887 		u32 info_len, data_len;
2888 
2889 		info_linear = NULL;
2890 		info_node = NULL;
2891 		if (do_read_u32(ff, &info_len))
2892 			goto out;
2893 		if (do_read_u32(ff, &data_len))
2894 			goto out;
2895 
2896 		if (info_len > sizeof(struct bpf_prog_info)) {
2897 			pr_warning("detected invalid bpf_prog_info\n");
2898 			goto out;
2899 		}
2900 
2901 		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2902 				     data_len);
2903 		if (!info_linear)
2904 			goto out;
2905 		info_linear->info_len = sizeof(struct bpf_prog_info);
2906 		info_linear->data_len = data_len;
2907 		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2908 			goto out;
2909 		if (__do_read(ff, &info_linear->info, info_len))
2910 			goto out;
2911 		if (info_len < sizeof(struct bpf_prog_info))
2912 			memset(((void *)(&info_linear->info)) + info_len, 0,
2913 			       sizeof(struct bpf_prog_info) - info_len);
2914 
2915 		if (__do_read(ff, info_linear->data, data_len))
2916 			goto out;
2917 
2918 		info_node = malloc(sizeof(struct bpf_prog_info_node));
2919 		if (!info_node)
2920 			goto out;
2921 
2922 		/* after reading from file, translate offset to address */
2923 		bpf_program__bpil_offs_to_addr(info_linear);
2924 		info_node->info_linear = info_linear;
2925 		perf_env__insert_bpf_prog_info(env, info_node);
2926 	}
2927 
2928 	up_write(&env->bpf_progs.lock);
2929 	return 0;
2930 out:
2931 	free(info_linear);
2932 	free(info_node);
2933 	up_write(&env->bpf_progs.lock);
2934 	return err;
2935 }
2936 
2937 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2938 {
2939 	struct perf_env *env = &ff->ph->env;
2940 	struct btf_node *node = NULL;
2941 	u32 count, i;
2942 	int err = -1;
2943 
2944 	if (ff->ph->needs_swap) {
2945 		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2946 		return 0;
2947 	}
2948 
2949 	if (do_read_u32(ff, &count))
2950 		return -1;
2951 
2952 	down_write(&env->bpf_progs.lock);
2953 
2954 	for (i = 0; i < count; ++i) {
2955 		u32 id, data_size;
2956 
2957 		if (do_read_u32(ff, &id))
2958 			goto out;
2959 		if (do_read_u32(ff, &data_size))
2960 			goto out;
2961 
2962 		node = malloc(sizeof(struct btf_node) + data_size);
2963 		if (!node)
2964 			goto out;
2965 
2966 		node->id = id;
2967 		node->data_size = data_size;
2968 
2969 		if (__do_read(ff, node->data, data_size))
2970 			goto out;
2971 
2972 		perf_env__insert_btf(env, node);
2973 		node = NULL;
2974 	}
2975 
2976 	err = 0;
2977 out:
2978 	up_write(&env->bpf_progs.lock);
2979 	free(node);
2980 	return err;
2981 }
2982 #endif // HAVE_LIBBPF_SUPPORT
2983 
2984 static int process_compressed(struct feat_fd *ff,
2985 			      void *data __maybe_unused)
2986 {
2987 	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2988 		return -1;
2989 
2990 	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2991 		return -1;
2992 
2993 	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2994 		return -1;
2995 
2996 	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2997 		return -1;
2998 
2999 	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3000 		return -1;
3001 
3002 	return 0;
3003 }
3004 
3005 static int process_cpu_pmu_caps(struct feat_fd *ff,
3006 				void *data __maybe_unused)
3007 {
3008 	char *name, *value;
3009 	struct strbuf sb;
3010 	u32 nr_caps;
3011 
3012 	if (do_read_u32(ff, &nr_caps))
3013 		return -1;
3014 
3015 	if (!nr_caps) {
3016 		pr_debug("cpu pmu capabilities not available\n");
3017 		return 0;
3018 	}
3019 
3020 	ff->ph->env.nr_cpu_pmu_caps = nr_caps;
3021 
3022 	if (strbuf_init(&sb, 128) < 0)
3023 		return -1;
3024 
3025 	while (nr_caps--) {
3026 		name = do_read_string(ff);
3027 		if (!name)
3028 			goto error;
3029 
3030 		value = do_read_string(ff);
3031 		if (!value)
3032 			goto free_name;
3033 
3034 		if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
3035 			goto free_value;
3036 
3037 		/* include a NULL character at the end */
3038 		if (strbuf_add(&sb, "", 1) < 0)
3039 			goto free_value;
3040 
3041 		if (!strcmp(name, "branches"))
3042 			ff->ph->env.max_branches = atoi(value);
3043 
3044 		free(value);
3045 		free(name);
3046 	}
3047 	ff->ph->env.cpu_pmu_caps = strbuf_detach(&sb, NULL);
3048 	return 0;
3049 
3050 free_value:
3051 	free(value);
3052 free_name:
3053 	free(name);
3054 error:
3055 	strbuf_release(&sb);
3056 	return -1;
3057 }
3058 
3059 #define FEAT_OPR(n, func, __full_only) \
3060 	[HEADER_##n] = {					\
3061 		.name	    = __stringify(n),			\
3062 		.write	    = write_##func,			\
3063 		.print	    = print_##func,			\
3064 		.full_only  = __full_only,			\
3065 		.process    = process_##func,			\
3066 		.synthesize = true				\
3067 	}
3068 
3069 #define FEAT_OPN(n, func, __full_only) \
3070 	[HEADER_##n] = {					\
3071 		.name	    = __stringify(n),			\
3072 		.write	    = write_##func,			\
3073 		.print	    = print_##func,			\
3074 		.full_only  = __full_only,			\
3075 		.process    = process_##func			\
3076 	}
3077 
3078 /* feature_ops not implemented: */
3079 #define print_tracing_data	NULL
3080 #define print_build_id		NULL
3081 
3082 #define process_branch_stack	NULL
3083 #define process_stat		NULL
3084 
3085 // Only used in util/synthetic-events.c
3086 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3087 
3088 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3089 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
3090 	FEAT_OPN(BUILD_ID,	build_id,	false),
3091 	FEAT_OPR(HOSTNAME,	hostname,	false),
3092 	FEAT_OPR(OSRELEASE,	osrelease,	false),
3093 	FEAT_OPR(VERSION,	version,	false),
3094 	FEAT_OPR(ARCH,		arch,		false),
3095 	FEAT_OPR(NRCPUS,	nrcpus,		false),
3096 	FEAT_OPR(CPUDESC,	cpudesc,	false),
3097 	FEAT_OPR(CPUID,		cpuid,		false),
3098 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
3099 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
3100 	FEAT_OPR(CMDLINE,	cmdline,	false),
3101 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
3102 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
3103 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
3104 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3105 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3106 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
3107 	FEAT_OPN(STAT,		stat,		false),
3108 	FEAT_OPN(CACHE,		cache,		true),
3109 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3110 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3111 	FEAT_OPR(CLOCKID,	clockid,	false),
3112 	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3113 #ifdef HAVE_LIBBPF_SUPPORT
3114 	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3115 	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3116 #endif
3117 	FEAT_OPR(COMPRESSED,	compressed,	false),
3118 	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3119 	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3120 };
3121 
3122 struct header_print_data {
3123 	FILE *fp;
3124 	bool full; /* extended list of headers */
3125 };
3126 
3127 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3128 					   struct perf_header *ph,
3129 					   int feat, int fd, void *data)
3130 {
3131 	struct header_print_data *hd = data;
3132 	struct feat_fd ff;
3133 
3134 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3135 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3136 				"%d, continuing...\n", section->offset, feat);
3137 		return 0;
3138 	}
3139 	if (feat >= HEADER_LAST_FEATURE) {
3140 		pr_warning("unknown feature %d\n", feat);
3141 		return 0;
3142 	}
3143 	if (!feat_ops[feat].print)
3144 		return 0;
3145 
3146 	ff = (struct  feat_fd) {
3147 		.fd = fd,
3148 		.ph = ph,
3149 	};
3150 
3151 	if (!feat_ops[feat].full_only || hd->full)
3152 		feat_ops[feat].print(&ff, hd->fp);
3153 	else
3154 		fprintf(hd->fp, "# %s info available, use -I to display\n",
3155 			feat_ops[feat].name);
3156 
3157 	return 0;
3158 }
3159 
3160 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3161 {
3162 	struct header_print_data hd;
3163 	struct perf_header *header = &session->header;
3164 	int fd = perf_data__fd(session->data);
3165 	struct stat st;
3166 	time_t stctime;
3167 	int ret, bit;
3168 
3169 	hd.fp = fp;
3170 	hd.full = full;
3171 
3172 	ret = fstat(fd, &st);
3173 	if (ret == -1)
3174 		return -1;
3175 
3176 	stctime = st.st_mtime;
3177 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3178 
3179 	fprintf(fp, "# header version : %u\n", header->version);
3180 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3181 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3182 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3183 
3184 	perf_header__process_sections(header, fd, &hd,
3185 				      perf_file_section__fprintf_info);
3186 
3187 	if (session->data->is_pipe)
3188 		return 0;
3189 
3190 	fprintf(fp, "# missing features: ");
3191 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3192 		if (bit)
3193 			fprintf(fp, "%s ", feat_ops[bit].name);
3194 	}
3195 
3196 	fprintf(fp, "\n");
3197 	return 0;
3198 }
3199 
3200 static int do_write_feat(struct feat_fd *ff, int type,
3201 			 struct perf_file_section **p,
3202 			 struct evlist *evlist)
3203 {
3204 	int err;
3205 	int ret = 0;
3206 
3207 	if (perf_header__has_feat(ff->ph, type)) {
3208 		if (!feat_ops[type].write)
3209 			return -1;
3210 
3211 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3212 			return -1;
3213 
3214 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3215 
3216 		err = feat_ops[type].write(ff, evlist);
3217 		if (err < 0) {
3218 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3219 
3220 			/* undo anything written */
3221 			lseek(ff->fd, (*p)->offset, SEEK_SET);
3222 
3223 			return -1;
3224 		}
3225 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3226 		(*p)++;
3227 	}
3228 	return ret;
3229 }
3230 
3231 static int perf_header__adds_write(struct perf_header *header,
3232 				   struct evlist *evlist, int fd)
3233 {
3234 	int nr_sections;
3235 	struct feat_fd ff;
3236 	struct perf_file_section *feat_sec, *p;
3237 	int sec_size;
3238 	u64 sec_start;
3239 	int feat;
3240 	int err;
3241 
3242 	ff = (struct feat_fd){
3243 		.fd  = fd,
3244 		.ph = header,
3245 	};
3246 
3247 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3248 	if (!nr_sections)
3249 		return 0;
3250 
3251 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3252 	if (feat_sec == NULL)
3253 		return -ENOMEM;
3254 
3255 	sec_size = sizeof(*feat_sec) * nr_sections;
3256 
3257 	sec_start = header->feat_offset;
3258 	lseek(fd, sec_start + sec_size, SEEK_SET);
3259 
3260 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3261 		if (do_write_feat(&ff, feat, &p, evlist))
3262 			perf_header__clear_feat(header, feat);
3263 	}
3264 
3265 	lseek(fd, sec_start, SEEK_SET);
3266 	/*
3267 	 * may write more than needed due to dropped feature, but
3268 	 * this is okay, reader will skip the missing entries
3269 	 */
3270 	err = do_write(&ff, feat_sec, sec_size);
3271 	if (err < 0)
3272 		pr_debug("failed to write feature section\n");
3273 	free(feat_sec);
3274 	return err;
3275 }
3276 
3277 int perf_header__write_pipe(int fd)
3278 {
3279 	struct perf_pipe_file_header f_header;
3280 	struct feat_fd ff;
3281 	int err;
3282 
3283 	ff = (struct feat_fd){ .fd = fd };
3284 
3285 	f_header = (struct perf_pipe_file_header){
3286 		.magic	   = PERF_MAGIC,
3287 		.size	   = sizeof(f_header),
3288 	};
3289 
3290 	err = do_write(&ff, &f_header, sizeof(f_header));
3291 	if (err < 0) {
3292 		pr_debug("failed to write perf pipe header\n");
3293 		return err;
3294 	}
3295 
3296 	return 0;
3297 }
3298 
3299 int perf_session__write_header(struct perf_session *session,
3300 			       struct evlist *evlist,
3301 			       int fd, bool at_exit)
3302 {
3303 	struct perf_file_header f_header;
3304 	struct perf_file_attr   f_attr;
3305 	struct perf_header *header = &session->header;
3306 	struct evsel *evsel;
3307 	struct feat_fd ff;
3308 	u64 attr_offset;
3309 	int err;
3310 
3311 	ff = (struct feat_fd){ .fd = fd};
3312 	lseek(fd, sizeof(f_header), SEEK_SET);
3313 
3314 	evlist__for_each_entry(session->evlist, evsel) {
3315 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3316 		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3317 		if (err < 0) {
3318 			pr_debug("failed to write perf header\n");
3319 			return err;
3320 		}
3321 	}
3322 
3323 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3324 
3325 	evlist__for_each_entry(evlist, evsel) {
3326 		if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3327 			/*
3328 			 * We are likely in "perf inject" and have read
3329 			 * from an older file. Update attr size so that
3330 			 * reader gets the right offset to the ids.
3331 			 */
3332 			evsel->core.attr.size = sizeof(evsel->core.attr);
3333 		}
3334 		f_attr = (struct perf_file_attr){
3335 			.attr = evsel->core.attr,
3336 			.ids  = {
3337 				.offset = evsel->id_offset,
3338 				.size   = evsel->core.ids * sizeof(u64),
3339 			}
3340 		};
3341 		err = do_write(&ff, &f_attr, sizeof(f_attr));
3342 		if (err < 0) {
3343 			pr_debug("failed to write perf header attribute\n");
3344 			return err;
3345 		}
3346 	}
3347 
3348 	if (!header->data_offset)
3349 		header->data_offset = lseek(fd, 0, SEEK_CUR);
3350 	header->feat_offset = header->data_offset + header->data_size;
3351 
3352 	if (at_exit) {
3353 		err = perf_header__adds_write(header, evlist, fd);
3354 		if (err < 0)
3355 			return err;
3356 	}
3357 
3358 	f_header = (struct perf_file_header){
3359 		.magic	   = PERF_MAGIC,
3360 		.size	   = sizeof(f_header),
3361 		.attr_size = sizeof(f_attr),
3362 		.attrs = {
3363 			.offset = attr_offset,
3364 			.size   = evlist->core.nr_entries * sizeof(f_attr),
3365 		},
3366 		.data = {
3367 			.offset = header->data_offset,
3368 			.size	= header->data_size,
3369 		},
3370 		/* event_types is ignored, store zeros */
3371 	};
3372 
3373 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3374 
3375 	lseek(fd, 0, SEEK_SET);
3376 	err = do_write(&ff, &f_header, sizeof(f_header));
3377 	if (err < 0) {
3378 		pr_debug("failed to write perf header\n");
3379 		return err;
3380 	}
3381 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3382 
3383 	return 0;
3384 }
3385 
3386 static int perf_header__getbuffer64(struct perf_header *header,
3387 				    int fd, void *buf, size_t size)
3388 {
3389 	if (readn(fd, buf, size) <= 0)
3390 		return -1;
3391 
3392 	if (header->needs_swap)
3393 		mem_bswap_64(buf, size);
3394 
3395 	return 0;
3396 }
3397 
3398 int perf_header__process_sections(struct perf_header *header, int fd,
3399 				  void *data,
3400 				  int (*process)(struct perf_file_section *section,
3401 						 struct perf_header *ph,
3402 						 int feat, int fd, void *data))
3403 {
3404 	struct perf_file_section *feat_sec, *sec;
3405 	int nr_sections;
3406 	int sec_size;
3407 	int feat;
3408 	int err;
3409 
3410 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3411 	if (!nr_sections)
3412 		return 0;
3413 
3414 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3415 	if (!feat_sec)
3416 		return -1;
3417 
3418 	sec_size = sizeof(*feat_sec) * nr_sections;
3419 
3420 	lseek(fd, header->feat_offset, SEEK_SET);
3421 
3422 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3423 	if (err < 0)
3424 		goto out_free;
3425 
3426 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3427 		err = process(sec++, header, feat, fd, data);
3428 		if (err < 0)
3429 			goto out_free;
3430 	}
3431 	err = 0;
3432 out_free:
3433 	free(feat_sec);
3434 	return err;
3435 }
3436 
3437 static const int attr_file_abi_sizes[] = {
3438 	[0] = PERF_ATTR_SIZE_VER0,
3439 	[1] = PERF_ATTR_SIZE_VER1,
3440 	[2] = PERF_ATTR_SIZE_VER2,
3441 	[3] = PERF_ATTR_SIZE_VER3,
3442 	[4] = PERF_ATTR_SIZE_VER4,
3443 	0,
3444 };
3445 
3446 /*
3447  * In the legacy file format, the magic number is not used to encode endianness.
3448  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3449  * on ABI revisions, we need to try all combinations for all endianness to
3450  * detect the endianness.
3451  */
3452 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3453 {
3454 	uint64_t ref_size, attr_size;
3455 	int i;
3456 
3457 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3458 		ref_size = attr_file_abi_sizes[i]
3459 			 + sizeof(struct perf_file_section);
3460 		if (hdr_sz != ref_size) {
3461 			attr_size = bswap_64(hdr_sz);
3462 			if (attr_size != ref_size)
3463 				continue;
3464 
3465 			ph->needs_swap = true;
3466 		}
3467 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3468 			 i,
3469 			 ph->needs_swap);
3470 		return 0;
3471 	}
3472 	/* could not determine endianness */
3473 	return -1;
3474 }
3475 
3476 #define PERF_PIPE_HDR_VER0	16
3477 
3478 static const size_t attr_pipe_abi_sizes[] = {
3479 	[0] = PERF_PIPE_HDR_VER0,
3480 	0,
3481 };
3482 
3483 /*
3484  * In the legacy pipe format, there is an implicit assumption that endiannesss
3485  * between host recording the samples, and host parsing the samples is the
3486  * same. This is not always the case given that the pipe output may always be
3487  * redirected into a file and analyzed on a different machine with possibly a
3488  * different endianness and perf_event ABI revsions in the perf tool itself.
3489  */
3490 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3491 {
3492 	u64 attr_size;
3493 	int i;
3494 
3495 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3496 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3497 			attr_size = bswap_64(hdr_sz);
3498 			if (attr_size != hdr_sz)
3499 				continue;
3500 
3501 			ph->needs_swap = true;
3502 		}
3503 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3504 		return 0;
3505 	}
3506 	return -1;
3507 }
3508 
3509 bool is_perf_magic(u64 magic)
3510 {
3511 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3512 		|| magic == __perf_magic2
3513 		|| magic == __perf_magic2_sw)
3514 		return true;
3515 
3516 	return false;
3517 }
3518 
3519 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3520 			      bool is_pipe, struct perf_header *ph)
3521 {
3522 	int ret;
3523 
3524 	/* check for legacy format */
3525 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3526 	if (ret == 0) {
3527 		ph->version = PERF_HEADER_VERSION_1;
3528 		pr_debug("legacy perf.data format\n");
3529 		if (is_pipe)
3530 			return try_all_pipe_abis(hdr_sz, ph);
3531 
3532 		return try_all_file_abis(hdr_sz, ph);
3533 	}
3534 	/*
3535 	 * the new magic number serves two purposes:
3536 	 * - unique number to identify actual perf.data files
3537 	 * - encode endianness of file
3538 	 */
3539 	ph->version = PERF_HEADER_VERSION_2;
3540 
3541 	/* check magic number with one endianness */
3542 	if (magic == __perf_magic2)
3543 		return 0;
3544 
3545 	/* check magic number with opposite endianness */
3546 	if (magic != __perf_magic2_sw)
3547 		return -1;
3548 
3549 	ph->needs_swap = true;
3550 
3551 	return 0;
3552 }
3553 
3554 int perf_file_header__read(struct perf_file_header *header,
3555 			   struct perf_header *ph, int fd)
3556 {
3557 	ssize_t ret;
3558 
3559 	lseek(fd, 0, SEEK_SET);
3560 
3561 	ret = readn(fd, header, sizeof(*header));
3562 	if (ret <= 0)
3563 		return -1;
3564 
3565 	if (check_magic_endian(header->magic,
3566 			       header->attr_size, false, ph) < 0) {
3567 		pr_debug("magic/endian check failed\n");
3568 		return -1;
3569 	}
3570 
3571 	if (ph->needs_swap) {
3572 		mem_bswap_64(header, offsetof(struct perf_file_header,
3573 			     adds_features));
3574 	}
3575 
3576 	if (header->size != sizeof(*header)) {
3577 		/* Support the previous format */
3578 		if (header->size == offsetof(typeof(*header), adds_features))
3579 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3580 		else
3581 			return -1;
3582 	} else if (ph->needs_swap) {
3583 		/*
3584 		 * feature bitmap is declared as an array of unsigned longs --
3585 		 * not good since its size can differ between the host that
3586 		 * generated the data file and the host analyzing the file.
3587 		 *
3588 		 * We need to handle endianness, but we don't know the size of
3589 		 * the unsigned long where the file was generated. Take a best
3590 		 * guess at determining it: try 64-bit swap first (ie., file
3591 		 * created on a 64-bit host), and check if the hostname feature
3592 		 * bit is set (this feature bit is forced on as of fbe96f2).
3593 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3594 		 * swap. If the hostname bit is still not set (e.g., older data
3595 		 * file), punt and fallback to the original behavior --
3596 		 * clearing all feature bits and setting buildid.
3597 		 */
3598 		mem_bswap_64(&header->adds_features,
3599 			    BITS_TO_U64(HEADER_FEAT_BITS));
3600 
3601 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3602 			/* unswap as u64 */
3603 			mem_bswap_64(&header->adds_features,
3604 				    BITS_TO_U64(HEADER_FEAT_BITS));
3605 
3606 			/* unswap as u32 */
3607 			mem_bswap_32(&header->adds_features,
3608 				    BITS_TO_U32(HEADER_FEAT_BITS));
3609 		}
3610 
3611 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3612 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3613 			set_bit(HEADER_BUILD_ID, header->adds_features);
3614 		}
3615 	}
3616 
3617 	memcpy(&ph->adds_features, &header->adds_features,
3618 	       sizeof(ph->adds_features));
3619 
3620 	ph->data_offset  = header->data.offset;
3621 	ph->data_size	 = header->data.size;
3622 	ph->feat_offset  = header->data.offset + header->data.size;
3623 	return 0;
3624 }
3625 
3626 static int perf_file_section__process(struct perf_file_section *section,
3627 				      struct perf_header *ph,
3628 				      int feat, int fd, void *data)
3629 {
3630 	struct feat_fd fdd = {
3631 		.fd	= fd,
3632 		.ph	= ph,
3633 		.size	= section->size,
3634 		.offset	= section->offset,
3635 	};
3636 
3637 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3638 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3639 			  "%d, continuing...\n", section->offset, feat);
3640 		return 0;
3641 	}
3642 
3643 	if (feat >= HEADER_LAST_FEATURE) {
3644 		pr_debug("unknown feature %d, continuing...\n", feat);
3645 		return 0;
3646 	}
3647 
3648 	if (!feat_ops[feat].process)
3649 		return 0;
3650 
3651 	return feat_ops[feat].process(&fdd, data);
3652 }
3653 
3654 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3655 				       struct perf_header *ph,
3656 				       struct perf_data* data,
3657 				       bool repipe)
3658 {
3659 	struct feat_fd ff = {
3660 		.fd = STDOUT_FILENO,
3661 		.ph = ph,
3662 	};
3663 	ssize_t ret;
3664 
3665 	ret = perf_data__read(data, header, sizeof(*header));
3666 	if (ret <= 0)
3667 		return -1;
3668 
3669 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3670 		pr_debug("endian/magic failed\n");
3671 		return -1;
3672 	}
3673 
3674 	if (ph->needs_swap)
3675 		header->size = bswap_64(header->size);
3676 
3677 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3678 		return -1;
3679 
3680 	return 0;
3681 }
3682 
3683 static int perf_header__read_pipe(struct perf_session *session)
3684 {
3685 	struct perf_header *header = &session->header;
3686 	struct perf_pipe_file_header f_header;
3687 
3688 	if (perf_file_header__read_pipe(&f_header, header, session->data,
3689 					session->repipe) < 0) {
3690 		pr_debug("incompatible file format\n");
3691 		return -EINVAL;
3692 	}
3693 
3694 	return f_header.size == sizeof(f_header) ? 0 : -1;
3695 }
3696 
3697 static int read_attr(int fd, struct perf_header *ph,
3698 		     struct perf_file_attr *f_attr)
3699 {
3700 	struct perf_event_attr *attr = &f_attr->attr;
3701 	size_t sz, left;
3702 	size_t our_sz = sizeof(f_attr->attr);
3703 	ssize_t ret;
3704 
3705 	memset(f_attr, 0, sizeof(*f_attr));
3706 
3707 	/* read minimal guaranteed structure */
3708 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3709 	if (ret <= 0) {
3710 		pr_debug("cannot read %d bytes of header attr\n",
3711 			 PERF_ATTR_SIZE_VER0);
3712 		return -1;
3713 	}
3714 
3715 	/* on file perf_event_attr size */
3716 	sz = attr->size;
3717 
3718 	if (ph->needs_swap)
3719 		sz = bswap_32(sz);
3720 
3721 	if (sz == 0) {
3722 		/* assume ABI0 */
3723 		sz =  PERF_ATTR_SIZE_VER0;
3724 	} else if (sz > our_sz) {
3725 		pr_debug("file uses a more recent and unsupported ABI"
3726 			 " (%zu bytes extra)\n", sz - our_sz);
3727 		return -1;
3728 	}
3729 	/* what we have not yet read and that we know about */
3730 	left = sz - PERF_ATTR_SIZE_VER0;
3731 	if (left) {
3732 		void *ptr = attr;
3733 		ptr += PERF_ATTR_SIZE_VER0;
3734 
3735 		ret = readn(fd, ptr, left);
3736 	}
3737 	/* read perf_file_section, ids are read in caller */
3738 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3739 
3740 	return ret <= 0 ? -1 : 0;
3741 }
3742 
3743 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
3744 {
3745 	struct tep_event *event;
3746 	char bf[128];
3747 
3748 	/* already prepared */
3749 	if (evsel->tp_format)
3750 		return 0;
3751 
3752 	if (pevent == NULL) {
3753 		pr_debug("broken or missing trace data\n");
3754 		return -1;
3755 	}
3756 
3757 	event = tep_find_event(pevent, evsel->core.attr.config);
3758 	if (event == NULL) {
3759 		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3760 		return -1;
3761 	}
3762 
3763 	if (!evsel->name) {
3764 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3765 		evsel->name = strdup(bf);
3766 		if (evsel->name == NULL)
3767 			return -1;
3768 	}
3769 
3770 	evsel->tp_format = event;
3771 	return 0;
3772 }
3773 
3774 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
3775 {
3776 	struct evsel *pos;
3777 
3778 	evlist__for_each_entry(evlist, pos) {
3779 		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3780 		    evsel__prepare_tracepoint_event(pos, pevent))
3781 			return -1;
3782 	}
3783 
3784 	return 0;
3785 }
3786 
3787 int perf_session__read_header(struct perf_session *session)
3788 {
3789 	struct perf_data *data = session->data;
3790 	struct perf_header *header = &session->header;
3791 	struct perf_file_header	f_header;
3792 	struct perf_file_attr	f_attr;
3793 	u64			f_id;
3794 	int nr_attrs, nr_ids, i, j, err;
3795 	int fd = perf_data__fd(data);
3796 
3797 	session->evlist = evlist__new();
3798 	if (session->evlist == NULL)
3799 		return -ENOMEM;
3800 
3801 	session->evlist->env = &header->env;
3802 	session->machines.host.env = &header->env;
3803 
3804 	/*
3805 	 * We can read 'pipe' data event from regular file,
3806 	 * check for the pipe header regardless of source.
3807 	 */
3808 	err = perf_header__read_pipe(session);
3809 	if (!err || (err && perf_data__is_pipe(data))) {
3810 		data->is_pipe = true;
3811 		return err;
3812 	}
3813 
3814 	if (perf_file_header__read(&f_header, header, fd) < 0)
3815 		return -EINVAL;
3816 
3817 	/*
3818 	 * Sanity check that perf.data was written cleanly; data size is
3819 	 * initialized to 0 and updated only if the on_exit function is run.
3820 	 * If data size is still 0 then the file contains only partial
3821 	 * information.  Just warn user and process it as much as it can.
3822 	 */
3823 	if (f_header.data.size == 0) {
3824 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3825 			   "Was the 'perf record' command properly terminated?\n",
3826 			   data->file.path);
3827 	}
3828 
3829 	if (f_header.attr_size == 0) {
3830 		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3831 		       "Was the 'perf record' command properly terminated?\n",
3832 		       data->file.path);
3833 		return -EINVAL;
3834 	}
3835 
3836 	nr_attrs = f_header.attrs.size / f_header.attr_size;
3837 	lseek(fd, f_header.attrs.offset, SEEK_SET);
3838 
3839 	for (i = 0; i < nr_attrs; i++) {
3840 		struct evsel *evsel;
3841 		off_t tmp;
3842 
3843 		if (read_attr(fd, header, &f_attr) < 0)
3844 			goto out_errno;
3845 
3846 		if (header->needs_swap) {
3847 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3848 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3849 			perf_event__attr_swap(&f_attr.attr);
3850 		}
3851 
3852 		tmp = lseek(fd, 0, SEEK_CUR);
3853 		evsel = evsel__new(&f_attr.attr);
3854 
3855 		if (evsel == NULL)
3856 			goto out_delete_evlist;
3857 
3858 		evsel->needs_swap = header->needs_swap;
3859 		/*
3860 		 * Do it before so that if perf_evsel__alloc_id fails, this
3861 		 * entry gets purged too at evlist__delete().
3862 		 */
3863 		evlist__add(session->evlist, evsel);
3864 
3865 		nr_ids = f_attr.ids.size / sizeof(u64);
3866 		/*
3867 		 * We don't have the cpu and thread maps on the header, so
3868 		 * for allocating the perf_sample_id table we fake 1 cpu and
3869 		 * hattr->ids threads.
3870 		 */
3871 		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3872 			goto out_delete_evlist;
3873 
3874 		lseek(fd, f_attr.ids.offset, SEEK_SET);
3875 
3876 		for (j = 0; j < nr_ids; j++) {
3877 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3878 				goto out_errno;
3879 
3880 			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3881 		}
3882 
3883 		lseek(fd, tmp, SEEK_SET);
3884 	}
3885 
3886 	perf_header__process_sections(header, fd, &session->tevent,
3887 				      perf_file_section__process);
3888 
3889 	if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
3890 		goto out_delete_evlist;
3891 
3892 	return 0;
3893 out_errno:
3894 	return -errno;
3895 
3896 out_delete_evlist:
3897 	evlist__delete(session->evlist);
3898 	session->evlist = NULL;
3899 	return -ENOMEM;
3900 }
3901 
3902 int perf_event__process_feature(struct perf_session *session,
3903 				union perf_event *event)
3904 {
3905 	struct perf_tool *tool = session->tool;
3906 	struct feat_fd ff = { .fd = 0 };
3907 	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3908 	int type = fe->header.type;
3909 	u64 feat = fe->feat_id;
3910 
3911 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3912 		pr_warning("invalid record type %d in pipe-mode\n", type);
3913 		return 0;
3914 	}
3915 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3916 		pr_warning("invalid record type %d in pipe-mode\n", type);
3917 		return -1;
3918 	}
3919 
3920 	if (!feat_ops[feat].process)
3921 		return 0;
3922 
3923 	ff.buf  = (void *)fe->data;
3924 	ff.size = event->header.size - sizeof(*fe);
3925 	ff.ph = &session->header;
3926 
3927 	if (feat_ops[feat].process(&ff, NULL))
3928 		return -1;
3929 
3930 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3931 		return 0;
3932 
3933 	if (!feat_ops[feat].full_only ||
3934 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3935 		feat_ops[feat].print(&ff, stdout);
3936 	} else {
3937 		fprintf(stdout, "# %s info available, use -I to display\n",
3938 			feat_ops[feat].name);
3939 	}
3940 
3941 	return 0;
3942 }
3943 
3944 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3945 {
3946 	struct perf_record_event_update *ev = &event->event_update;
3947 	struct perf_record_event_update_scale *ev_scale;
3948 	struct perf_record_event_update_cpus *ev_cpus;
3949 	struct perf_cpu_map *map;
3950 	size_t ret;
3951 
3952 	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3953 
3954 	switch (ev->type) {
3955 	case PERF_EVENT_UPDATE__SCALE:
3956 		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3957 		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3958 		break;
3959 	case PERF_EVENT_UPDATE__UNIT:
3960 		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3961 		break;
3962 	case PERF_EVENT_UPDATE__NAME:
3963 		ret += fprintf(fp, "... name:  %s\n", ev->data);
3964 		break;
3965 	case PERF_EVENT_UPDATE__CPUS:
3966 		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3967 		ret += fprintf(fp, "... ");
3968 
3969 		map = cpu_map__new_data(&ev_cpus->cpus);
3970 		if (map)
3971 			ret += cpu_map__fprintf(map, fp);
3972 		else
3973 			ret += fprintf(fp, "failed to get cpus\n");
3974 		break;
3975 	default:
3976 		ret += fprintf(fp, "... unknown type\n");
3977 		break;
3978 	}
3979 
3980 	return ret;
3981 }
3982 
3983 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3984 			     union perf_event *event,
3985 			     struct evlist **pevlist)
3986 {
3987 	u32 i, ids, n_ids;
3988 	struct evsel *evsel;
3989 	struct evlist *evlist = *pevlist;
3990 
3991 	if (evlist == NULL) {
3992 		*pevlist = evlist = evlist__new();
3993 		if (evlist == NULL)
3994 			return -ENOMEM;
3995 	}
3996 
3997 	evsel = evsel__new(&event->attr.attr);
3998 	if (evsel == NULL)
3999 		return -ENOMEM;
4000 
4001 	evlist__add(evlist, evsel);
4002 
4003 	ids = event->header.size;
4004 	ids -= (void *)&event->attr.id - (void *)event;
4005 	n_ids = ids / sizeof(u64);
4006 	/*
4007 	 * We don't have the cpu and thread maps on the header, so
4008 	 * for allocating the perf_sample_id table we fake 1 cpu and
4009 	 * hattr->ids threads.
4010 	 */
4011 	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4012 		return -ENOMEM;
4013 
4014 	for (i = 0; i < n_ids; i++) {
4015 		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4016 	}
4017 
4018 	return 0;
4019 }
4020 
4021 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4022 				     union perf_event *event,
4023 				     struct evlist **pevlist)
4024 {
4025 	struct perf_record_event_update *ev = &event->event_update;
4026 	struct perf_record_event_update_scale *ev_scale;
4027 	struct perf_record_event_update_cpus *ev_cpus;
4028 	struct evlist *evlist;
4029 	struct evsel *evsel;
4030 	struct perf_cpu_map *map;
4031 
4032 	if (!pevlist || *pevlist == NULL)
4033 		return -EINVAL;
4034 
4035 	evlist = *pevlist;
4036 
4037 	evsel = evlist__id2evsel(evlist, ev->id);
4038 	if (evsel == NULL)
4039 		return -EINVAL;
4040 
4041 	switch (ev->type) {
4042 	case PERF_EVENT_UPDATE__UNIT:
4043 		evsel->unit = strdup(ev->data);
4044 		break;
4045 	case PERF_EVENT_UPDATE__NAME:
4046 		evsel->name = strdup(ev->data);
4047 		break;
4048 	case PERF_EVENT_UPDATE__SCALE:
4049 		ev_scale = (struct perf_record_event_update_scale *)ev->data;
4050 		evsel->scale = ev_scale->scale;
4051 		break;
4052 	case PERF_EVENT_UPDATE__CPUS:
4053 		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4054 
4055 		map = cpu_map__new_data(&ev_cpus->cpus);
4056 		if (map)
4057 			evsel->core.own_cpus = map;
4058 		else
4059 			pr_err("failed to get event_update cpus\n");
4060 	default:
4061 		break;
4062 	}
4063 
4064 	return 0;
4065 }
4066 
4067 int perf_event__process_tracing_data(struct perf_session *session,
4068 				     union perf_event *event)
4069 {
4070 	ssize_t size_read, padding, size = event->tracing_data.size;
4071 	int fd = perf_data__fd(session->data);
4072 	char buf[BUFSIZ];
4073 
4074 	/*
4075 	 * The pipe fd is already in proper place and in any case
4076 	 * we can't move it, and we'd screw the case where we read
4077 	 * 'pipe' data from regular file. The trace_report reads
4078 	 * data from 'fd' so we need to set it directly behind the
4079 	 * event, where the tracing data starts.
4080 	 */
4081 	if (!perf_data__is_pipe(session->data)) {
4082 		off_t offset = lseek(fd, 0, SEEK_CUR);
4083 
4084 		/* setup for reading amidst mmap */
4085 		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4086 		      SEEK_SET);
4087 	}
4088 
4089 	size_read = trace_report(fd, &session->tevent,
4090 				 session->repipe);
4091 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4092 
4093 	if (readn(fd, buf, padding) < 0) {
4094 		pr_err("%s: reading input file", __func__);
4095 		return -1;
4096 	}
4097 	if (session->repipe) {
4098 		int retw = write(STDOUT_FILENO, buf, padding);
4099 		if (retw <= 0 || retw != padding) {
4100 			pr_err("%s: repiping tracing data padding", __func__);
4101 			return -1;
4102 		}
4103 	}
4104 
4105 	if (size_read + padding != size) {
4106 		pr_err("%s: tracing data size mismatch", __func__);
4107 		return -1;
4108 	}
4109 
4110 	evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4111 
4112 	return size_read + padding;
4113 }
4114 
4115 int perf_event__process_build_id(struct perf_session *session,
4116 				 union perf_event *event)
4117 {
4118 	__event_process_build_id(&event->build_id,
4119 				 event->build_id.filename,
4120 				 session);
4121 	return 0;
4122 }
4123