xref: /openbmc/linux/tools/perf/util/header.c (revision 04eb94d526423ff082efce61f4f26b0369d0bfdd)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #include <bpf/libbpf.h>
23 
24 #include "evlist.h"
25 #include "evsel.h"
26 #include "header.h"
27 #include "memswap.h"
28 #include "../perf.h"
29 #include "trace-event.h"
30 #include "session.h"
31 #include "symbol.h"
32 #include "debug.h"
33 #include "cpumap.h"
34 #include "pmu.h"
35 #include "vdso.h"
36 #include "strbuf.h"
37 #include "build-id.h"
38 #include "data.h"
39 #include <api/fs/fs.h>
40 #include "asm/bug.h"
41 #include "tool.h"
42 #include "time-utils.h"
43 #include "units.h"
44 #include "cputopo.h"
45 #include "bpf-event.h"
46 
47 #include <linux/ctype.h>
48 
49 /*
50  * magic2 = "PERFILE2"
51  * must be a numerical value to let the endianness
52  * determine the memory layout. That way we are able
53  * to detect endianness when reading the perf.data file
54  * back.
55  *
56  * we check for legacy (PERFFILE) format.
57  */
58 static const char *__perf_magic1 = "PERFFILE";
59 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
60 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
61 
62 #define PERF_MAGIC	__perf_magic2
63 
64 const char perf_version_string[] = PERF_VERSION;
65 
66 struct perf_file_attr {
67 	struct perf_event_attr	attr;
68 	struct perf_file_section	ids;
69 };
70 
71 struct feat_fd {
72 	struct perf_header	*ph;
73 	int			fd;
74 	void			*buf;	/* Either buf != NULL or fd >= 0 */
75 	ssize_t			offset;
76 	size_t			size;
77 	struct perf_evsel	*events;
78 };
79 
80 void perf_header__set_feat(struct perf_header *header, int feat)
81 {
82 	set_bit(feat, header->adds_features);
83 }
84 
85 void perf_header__clear_feat(struct perf_header *header, int feat)
86 {
87 	clear_bit(feat, header->adds_features);
88 }
89 
90 bool perf_header__has_feat(const struct perf_header *header, int feat)
91 {
92 	return test_bit(feat, header->adds_features);
93 }
94 
95 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
96 {
97 	ssize_t ret = writen(ff->fd, buf, size);
98 
99 	if (ret != (ssize_t)size)
100 		return ret < 0 ? (int)ret : -1;
101 	return 0;
102 }
103 
104 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
105 {
106 	/* struct perf_event_header::size is u16 */
107 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
108 	size_t new_size = ff->size;
109 	void *addr;
110 
111 	if (size + ff->offset > max_size)
112 		return -E2BIG;
113 
114 	while (size > (new_size - ff->offset))
115 		new_size <<= 1;
116 	new_size = min(max_size, new_size);
117 
118 	if (ff->size < new_size) {
119 		addr = realloc(ff->buf, new_size);
120 		if (!addr)
121 			return -ENOMEM;
122 		ff->buf = addr;
123 		ff->size = new_size;
124 	}
125 
126 	memcpy(ff->buf + ff->offset, buf, size);
127 	ff->offset += size;
128 
129 	return 0;
130 }
131 
132 /* Return: 0 if succeded, -ERR if failed. */
133 int do_write(struct feat_fd *ff, const void *buf, size_t size)
134 {
135 	if (!ff->buf)
136 		return __do_write_fd(ff, buf, size);
137 	return __do_write_buf(ff, buf, size);
138 }
139 
140 /* Return: 0 if succeded, -ERR if failed. */
141 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
142 {
143 	u64 *p = (u64 *) set;
144 	int i, ret;
145 
146 	ret = do_write(ff, &size, sizeof(size));
147 	if (ret < 0)
148 		return ret;
149 
150 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
151 		ret = do_write(ff, p + i, sizeof(*p));
152 		if (ret < 0)
153 			return ret;
154 	}
155 
156 	return 0;
157 }
158 
159 /* Return: 0 if succeded, -ERR if failed. */
160 int write_padded(struct feat_fd *ff, const void *bf,
161 		 size_t count, size_t count_aligned)
162 {
163 	static const char zero_buf[NAME_ALIGN];
164 	int err = do_write(ff, bf, count);
165 
166 	if (!err)
167 		err = do_write(ff, zero_buf, count_aligned - count);
168 
169 	return err;
170 }
171 
172 #define string_size(str)						\
173 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
174 
175 /* Return: 0 if succeded, -ERR if failed. */
176 static int do_write_string(struct feat_fd *ff, const char *str)
177 {
178 	u32 len, olen;
179 	int ret;
180 
181 	olen = strlen(str) + 1;
182 	len = PERF_ALIGN(olen, NAME_ALIGN);
183 
184 	/* write len, incl. \0 */
185 	ret = do_write(ff, &len, sizeof(len));
186 	if (ret < 0)
187 		return ret;
188 
189 	return write_padded(ff, str, olen, len);
190 }
191 
192 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
193 {
194 	ssize_t ret = readn(ff->fd, addr, size);
195 
196 	if (ret != size)
197 		return ret < 0 ? (int)ret : -1;
198 	return 0;
199 }
200 
201 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
202 {
203 	if (size > (ssize_t)ff->size - ff->offset)
204 		return -1;
205 
206 	memcpy(addr, ff->buf + ff->offset, size);
207 	ff->offset += size;
208 
209 	return 0;
210 
211 }
212 
213 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
214 {
215 	if (!ff->buf)
216 		return __do_read_fd(ff, addr, size);
217 	return __do_read_buf(ff, addr, size);
218 }
219 
220 static int do_read_u32(struct feat_fd *ff, u32 *addr)
221 {
222 	int ret;
223 
224 	ret = __do_read(ff, addr, sizeof(*addr));
225 	if (ret)
226 		return ret;
227 
228 	if (ff->ph->needs_swap)
229 		*addr = bswap_32(*addr);
230 	return 0;
231 }
232 
233 static int do_read_u64(struct feat_fd *ff, u64 *addr)
234 {
235 	int ret;
236 
237 	ret = __do_read(ff, addr, sizeof(*addr));
238 	if (ret)
239 		return ret;
240 
241 	if (ff->ph->needs_swap)
242 		*addr = bswap_64(*addr);
243 	return 0;
244 }
245 
246 static char *do_read_string(struct feat_fd *ff)
247 {
248 	u32 len;
249 	char *buf;
250 
251 	if (do_read_u32(ff, &len))
252 		return NULL;
253 
254 	buf = malloc(len);
255 	if (!buf)
256 		return NULL;
257 
258 	if (!__do_read(ff, buf, len)) {
259 		/*
260 		 * strings are padded by zeroes
261 		 * thus the actual strlen of buf
262 		 * may be less than len
263 		 */
264 		return buf;
265 	}
266 
267 	free(buf);
268 	return NULL;
269 }
270 
271 /* Return: 0 if succeded, -ERR if failed. */
272 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
273 {
274 	unsigned long *set;
275 	u64 size, *p;
276 	int i, ret;
277 
278 	ret = do_read_u64(ff, &size);
279 	if (ret)
280 		return ret;
281 
282 	set = bitmap_alloc(size);
283 	if (!set)
284 		return -ENOMEM;
285 
286 	p = (u64 *) set;
287 
288 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
289 		ret = do_read_u64(ff, p + i);
290 		if (ret < 0) {
291 			free(set);
292 			return ret;
293 		}
294 	}
295 
296 	*pset  = set;
297 	*psize = size;
298 	return 0;
299 }
300 
301 static int write_tracing_data(struct feat_fd *ff,
302 			      struct perf_evlist *evlist)
303 {
304 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
305 		return -1;
306 
307 	return read_tracing_data(ff->fd, &evlist->entries);
308 }
309 
310 static int write_build_id(struct feat_fd *ff,
311 			  struct perf_evlist *evlist __maybe_unused)
312 {
313 	struct perf_session *session;
314 	int err;
315 
316 	session = container_of(ff->ph, struct perf_session, header);
317 
318 	if (!perf_session__read_build_ids(session, true))
319 		return -1;
320 
321 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
322 		return -1;
323 
324 	err = perf_session__write_buildid_table(session, ff);
325 	if (err < 0) {
326 		pr_debug("failed to write buildid table\n");
327 		return err;
328 	}
329 	perf_session__cache_build_ids(session);
330 
331 	return 0;
332 }
333 
334 static int write_hostname(struct feat_fd *ff,
335 			  struct perf_evlist *evlist __maybe_unused)
336 {
337 	struct utsname uts;
338 	int ret;
339 
340 	ret = uname(&uts);
341 	if (ret < 0)
342 		return -1;
343 
344 	return do_write_string(ff, uts.nodename);
345 }
346 
347 static int write_osrelease(struct feat_fd *ff,
348 			   struct perf_evlist *evlist __maybe_unused)
349 {
350 	struct utsname uts;
351 	int ret;
352 
353 	ret = uname(&uts);
354 	if (ret < 0)
355 		return -1;
356 
357 	return do_write_string(ff, uts.release);
358 }
359 
360 static int write_arch(struct feat_fd *ff,
361 		      struct perf_evlist *evlist __maybe_unused)
362 {
363 	struct utsname uts;
364 	int ret;
365 
366 	ret = uname(&uts);
367 	if (ret < 0)
368 		return -1;
369 
370 	return do_write_string(ff, uts.machine);
371 }
372 
373 static int write_version(struct feat_fd *ff,
374 			 struct perf_evlist *evlist __maybe_unused)
375 {
376 	return do_write_string(ff, perf_version_string);
377 }
378 
379 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
380 {
381 	FILE *file;
382 	char *buf = NULL;
383 	char *s, *p;
384 	const char *search = cpuinfo_proc;
385 	size_t len = 0;
386 	int ret = -1;
387 
388 	if (!search)
389 		return -1;
390 
391 	file = fopen("/proc/cpuinfo", "r");
392 	if (!file)
393 		return -1;
394 
395 	while (getline(&buf, &len, file) > 0) {
396 		ret = strncmp(buf, search, strlen(search));
397 		if (!ret)
398 			break;
399 	}
400 
401 	if (ret) {
402 		ret = -1;
403 		goto done;
404 	}
405 
406 	s = buf;
407 
408 	p = strchr(buf, ':');
409 	if (p && *(p+1) == ' ' && *(p+2))
410 		s = p + 2;
411 	p = strchr(s, '\n');
412 	if (p)
413 		*p = '\0';
414 
415 	/* squash extra space characters (branding string) */
416 	p = s;
417 	while (*p) {
418 		if (isspace(*p)) {
419 			char *r = p + 1;
420 			char *q = skip_spaces(r);
421 			*p = ' ';
422 			if (q != (p+1))
423 				while ((*r++ = *q++));
424 		}
425 		p++;
426 	}
427 	ret = do_write_string(ff, s);
428 done:
429 	free(buf);
430 	fclose(file);
431 	return ret;
432 }
433 
434 static int write_cpudesc(struct feat_fd *ff,
435 		       struct perf_evlist *evlist __maybe_unused)
436 {
437 	const char *cpuinfo_procs[] = CPUINFO_PROC;
438 	unsigned int i;
439 
440 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
441 		int ret;
442 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
443 		if (ret >= 0)
444 			return ret;
445 	}
446 	return -1;
447 }
448 
449 
450 static int write_nrcpus(struct feat_fd *ff,
451 			struct perf_evlist *evlist __maybe_unused)
452 {
453 	long nr;
454 	u32 nrc, nra;
455 	int ret;
456 
457 	nrc = cpu__max_present_cpu();
458 
459 	nr = sysconf(_SC_NPROCESSORS_ONLN);
460 	if (nr < 0)
461 		return -1;
462 
463 	nra = (u32)(nr & UINT_MAX);
464 
465 	ret = do_write(ff, &nrc, sizeof(nrc));
466 	if (ret < 0)
467 		return ret;
468 
469 	return do_write(ff, &nra, sizeof(nra));
470 }
471 
472 static int write_event_desc(struct feat_fd *ff,
473 			    struct perf_evlist *evlist)
474 {
475 	struct perf_evsel *evsel;
476 	u32 nre, nri, sz;
477 	int ret;
478 
479 	nre = evlist->nr_entries;
480 
481 	/*
482 	 * write number of events
483 	 */
484 	ret = do_write(ff, &nre, sizeof(nre));
485 	if (ret < 0)
486 		return ret;
487 
488 	/*
489 	 * size of perf_event_attr struct
490 	 */
491 	sz = (u32)sizeof(evsel->attr);
492 	ret = do_write(ff, &sz, sizeof(sz));
493 	if (ret < 0)
494 		return ret;
495 
496 	evlist__for_each_entry(evlist, evsel) {
497 		ret = do_write(ff, &evsel->attr, sz);
498 		if (ret < 0)
499 			return ret;
500 		/*
501 		 * write number of unique id per event
502 		 * there is one id per instance of an event
503 		 *
504 		 * copy into an nri to be independent of the
505 		 * type of ids,
506 		 */
507 		nri = evsel->ids;
508 		ret = do_write(ff, &nri, sizeof(nri));
509 		if (ret < 0)
510 			return ret;
511 
512 		/*
513 		 * write event string as passed on cmdline
514 		 */
515 		ret = do_write_string(ff, perf_evsel__name(evsel));
516 		if (ret < 0)
517 			return ret;
518 		/*
519 		 * write unique ids for this event
520 		 */
521 		ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
522 		if (ret < 0)
523 			return ret;
524 	}
525 	return 0;
526 }
527 
528 static int write_cmdline(struct feat_fd *ff,
529 			 struct perf_evlist *evlist __maybe_unused)
530 {
531 	char pbuf[MAXPATHLEN], *buf;
532 	int i, ret, n;
533 
534 	/* actual path to perf binary */
535 	buf = perf_exe(pbuf, MAXPATHLEN);
536 
537 	/* account for binary path */
538 	n = perf_env.nr_cmdline + 1;
539 
540 	ret = do_write(ff, &n, sizeof(n));
541 	if (ret < 0)
542 		return ret;
543 
544 	ret = do_write_string(ff, buf);
545 	if (ret < 0)
546 		return ret;
547 
548 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
549 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
550 		if (ret < 0)
551 			return ret;
552 	}
553 	return 0;
554 }
555 
556 
557 static int write_cpu_topology(struct feat_fd *ff,
558 			      struct perf_evlist *evlist __maybe_unused)
559 {
560 	struct cpu_topology *tp;
561 	u32 i;
562 	int ret, j;
563 
564 	tp = cpu_topology__new();
565 	if (!tp)
566 		return -1;
567 
568 	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
569 	if (ret < 0)
570 		goto done;
571 
572 	for (i = 0; i < tp->core_sib; i++) {
573 		ret = do_write_string(ff, tp->core_siblings[i]);
574 		if (ret < 0)
575 			goto done;
576 	}
577 	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
578 	if (ret < 0)
579 		goto done;
580 
581 	for (i = 0; i < tp->thread_sib; i++) {
582 		ret = do_write_string(ff, tp->thread_siblings[i]);
583 		if (ret < 0)
584 			break;
585 	}
586 
587 	ret = perf_env__read_cpu_topology_map(&perf_env);
588 	if (ret < 0)
589 		goto done;
590 
591 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
592 		ret = do_write(ff, &perf_env.cpu[j].core_id,
593 			       sizeof(perf_env.cpu[j].core_id));
594 		if (ret < 0)
595 			return ret;
596 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
597 			       sizeof(perf_env.cpu[j].socket_id));
598 		if (ret < 0)
599 			return ret;
600 	}
601 
602 	if (!tp->die_sib)
603 		goto done;
604 
605 	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
606 	if (ret < 0)
607 		goto done;
608 
609 	for (i = 0; i < tp->die_sib; i++) {
610 		ret = do_write_string(ff, tp->die_siblings[i]);
611 		if (ret < 0)
612 			goto done;
613 	}
614 
615 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
616 		ret = do_write(ff, &perf_env.cpu[j].die_id,
617 			       sizeof(perf_env.cpu[j].die_id));
618 		if (ret < 0)
619 			return ret;
620 	}
621 
622 done:
623 	cpu_topology__delete(tp);
624 	return ret;
625 }
626 
627 
628 
629 static int write_total_mem(struct feat_fd *ff,
630 			   struct perf_evlist *evlist __maybe_unused)
631 {
632 	char *buf = NULL;
633 	FILE *fp;
634 	size_t len = 0;
635 	int ret = -1, n;
636 	uint64_t mem;
637 
638 	fp = fopen("/proc/meminfo", "r");
639 	if (!fp)
640 		return -1;
641 
642 	while (getline(&buf, &len, fp) > 0) {
643 		ret = strncmp(buf, "MemTotal:", 9);
644 		if (!ret)
645 			break;
646 	}
647 	if (!ret) {
648 		n = sscanf(buf, "%*s %"PRIu64, &mem);
649 		if (n == 1)
650 			ret = do_write(ff, &mem, sizeof(mem));
651 	} else
652 		ret = -1;
653 	free(buf);
654 	fclose(fp);
655 	return ret;
656 }
657 
658 static int write_numa_topology(struct feat_fd *ff,
659 			       struct perf_evlist *evlist __maybe_unused)
660 {
661 	struct numa_topology *tp;
662 	int ret = -1;
663 	u32 i;
664 
665 	tp = numa_topology__new();
666 	if (!tp)
667 		return -ENOMEM;
668 
669 	ret = do_write(ff, &tp->nr, sizeof(u32));
670 	if (ret < 0)
671 		goto err;
672 
673 	for (i = 0; i < tp->nr; i++) {
674 		struct numa_topology_node *n = &tp->nodes[i];
675 
676 		ret = do_write(ff, &n->node, sizeof(u32));
677 		if (ret < 0)
678 			goto err;
679 
680 		ret = do_write(ff, &n->mem_total, sizeof(u64));
681 		if (ret)
682 			goto err;
683 
684 		ret = do_write(ff, &n->mem_free, sizeof(u64));
685 		if (ret)
686 			goto err;
687 
688 		ret = do_write_string(ff, n->cpus);
689 		if (ret < 0)
690 			goto err;
691 	}
692 
693 	ret = 0;
694 
695 err:
696 	numa_topology__delete(tp);
697 	return ret;
698 }
699 
700 /*
701  * File format:
702  *
703  * struct pmu_mappings {
704  *	u32	pmu_num;
705  *	struct pmu_map {
706  *		u32	type;
707  *		char	name[];
708  *	}[pmu_num];
709  * };
710  */
711 
712 static int write_pmu_mappings(struct feat_fd *ff,
713 			      struct perf_evlist *evlist __maybe_unused)
714 {
715 	struct perf_pmu *pmu = NULL;
716 	u32 pmu_num = 0;
717 	int ret;
718 
719 	/*
720 	 * Do a first pass to count number of pmu to avoid lseek so this
721 	 * works in pipe mode as well.
722 	 */
723 	while ((pmu = perf_pmu__scan(pmu))) {
724 		if (!pmu->name)
725 			continue;
726 		pmu_num++;
727 	}
728 
729 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
730 	if (ret < 0)
731 		return ret;
732 
733 	while ((pmu = perf_pmu__scan(pmu))) {
734 		if (!pmu->name)
735 			continue;
736 
737 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
738 		if (ret < 0)
739 			return ret;
740 
741 		ret = do_write_string(ff, pmu->name);
742 		if (ret < 0)
743 			return ret;
744 	}
745 
746 	return 0;
747 }
748 
749 /*
750  * File format:
751  *
752  * struct group_descs {
753  *	u32	nr_groups;
754  *	struct group_desc {
755  *		char	name[];
756  *		u32	leader_idx;
757  *		u32	nr_members;
758  *	}[nr_groups];
759  * };
760  */
761 static int write_group_desc(struct feat_fd *ff,
762 			    struct perf_evlist *evlist)
763 {
764 	u32 nr_groups = evlist->nr_groups;
765 	struct perf_evsel *evsel;
766 	int ret;
767 
768 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
769 	if (ret < 0)
770 		return ret;
771 
772 	evlist__for_each_entry(evlist, evsel) {
773 		if (perf_evsel__is_group_leader(evsel) &&
774 		    evsel->nr_members > 1) {
775 			const char *name = evsel->group_name ?: "{anon_group}";
776 			u32 leader_idx = evsel->idx;
777 			u32 nr_members = evsel->nr_members;
778 
779 			ret = do_write_string(ff, name);
780 			if (ret < 0)
781 				return ret;
782 
783 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
784 			if (ret < 0)
785 				return ret;
786 
787 			ret = do_write(ff, &nr_members, sizeof(nr_members));
788 			if (ret < 0)
789 				return ret;
790 		}
791 	}
792 	return 0;
793 }
794 
795 /*
796  * Return the CPU id as a raw string.
797  *
798  * Each architecture should provide a more precise id string that
799  * can be use to match the architecture's "mapfile".
800  */
801 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
802 {
803 	return NULL;
804 }
805 
806 /* Return zero when the cpuid from the mapfile.csv matches the
807  * cpuid string generated on this platform.
808  * Otherwise return non-zero.
809  */
810 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
811 {
812 	regex_t re;
813 	regmatch_t pmatch[1];
814 	int match;
815 
816 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
817 		/* Warn unable to generate match particular string. */
818 		pr_info("Invalid regular expression %s\n", mapcpuid);
819 		return 1;
820 	}
821 
822 	match = !regexec(&re, cpuid, 1, pmatch, 0);
823 	regfree(&re);
824 	if (match) {
825 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
826 
827 		/* Verify the entire string matched. */
828 		if (match_len == strlen(cpuid))
829 			return 0;
830 	}
831 	return 1;
832 }
833 
834 /*
835  * default get_cpuid(): nothing gets recorded
836  * actual implementation must be in arch/$(SRCARCH)/util/header.c
837  */
838 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
839 {
840 	return -1;
841 }
842 
843 static int write_cpuid(struct feat_fd *ff,
844 		       struct perf_evlist *evlist __maybe_unused)
845 {
846 	char buffer[64];
847 	int ret;
848 
849 	ret = get_cpuid(buffer, sizeof(buffer));
850 	if (ret)
851 		return -1;
852 
853 	return do_write_string(ff, buffer);
854 }
855 
856 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
857 			      struct perf_evlist *evlist __maybe_unused)
858 {
859 	return 0;
860 }
861 
862 static int write_auxtrace(struct feat_fd *ff,
863 			  struct perf_evlist *evlist __maybe_unused)
864 {
865 	struct perf_session *session;
866 	int err;
867 
868 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
869 		return -1;
870 
871 	session = container_of(ff->ph, struct perf_session, header);
872 
873 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
874 	if (err < 0)
875 		pr_err("Failed to write auxtrace index\n");
876 	return err;
877 }
878 
879 static int write_clockid(struct feat_fd *ff,
880 			 struct perf_evlist *evlist __maybe_unused)
881 {
882 	return do_write(ff, &ff->ph->env.clockid_res_ns,
883 			sizeof(ff->ph->env.clockid_res_ns));
884 }
885 
886 static int write_dir_format(struct feat_fd *ff,
887 			    struct perf_evlist *evlist __maybe_unused)
888 {
889 	struct perf_session *session;
890 	struct perf_data *data;
891 
892 	session = container_of(ff->ph, struct perf_session, header);
893 	data = session->data;
894 
895 	if (WARN_ON(!perf_data__is_dir(data)))
896 		return -1;
897 
898 	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
899 }
900 
901 #ifdef HAVE_LIBBPF_SUPPORT
902 static int write_bpf_prog_info(struct feat_fd *ff,
903 			       struct perf_evlist *evlist __maybe_unused)
904 {
905 	struct perf_env *env = &ff->ph->env;
906 	struct rb_root *root;
907 	struct rb_node *next;
908 	int ret;
909 
910 	down_read(&env->bpf_progs.lock);
911 
912 	ret = do_write(ff, &env->bpf_progs.infos_cnt,
913 		       sizeof(env->bpf_progs.infos_cnt));
914 	if (ret < 0)
915 		goto out;
916 
917 	root = &env->bpf_progs.infos;
918 	next = rb_first(root);
919 	while (next) {
920 		struct bpf_prog_info_node *node;
921 		size_t len;
922 
923 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
924 		next = rb_next(&node->rb_node);
925 		len = sizeof(struct bpf_prog_info_linear) +
926 			node->info_linear->data_len;
927 
928 		/* before writing to file, translate address to offset */
929 		bpf_program__bpil_addr_to_offs(node->info_linear);
930 		ret = do_write(ff, node->info_linear, len);
931 		/*
932 		 * translate back to address even when do_write() fails,
933 		 * so that this function never changes the data.
934 		 */
935 		bpf_program__bpil_offs_to_addr(node->info_linear);
936 		if (ret < 0)
937 			goto out;
938 	}
939 out:
940 	up_read(&env->bpf_progs.lock);
941 	return ret;
942 }
943 #else // HAVE_LIBBPF_SUPPORT
944 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
945 			       struct perf_evlist *evlist __maybe_unused)
946 {
947 	return 0;
948 }
949 #endif // HAVE_LIBBPF_SUPPORT
950 
951 static int write_bpf_btf(struct feat_fd *ff,
952 			 struct perf_evlist *evlist __maybe_unused)
953 {
954 	struct perf_env *env = &ff->ph->env;
955 	struct rb_root *root;
956 	struct rb_node *next;
957 	int ret;
958 
959 	down_read(&env->bpf_progs.lock);
960 
961 	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
962 		       sizeof(env->bpf_progs.btfs_cnt));
963 
964 	if (ret < 0)
965 		goto out;
966 
967 	root = &env->bpf_progs.btfs;
968 	next = rb_first(root);
969 	while (next) {
970 		struct btf_node *node;
971 
972 		node = rb_entry(next, struct btf_node, rb_node);
973 		next = rb_next(&node->rb_node);
974 		ret = do_write(ff, &node->id,
975 			       sizeof(u32) * 2 + node->data_size);
976 		if (ret < 0)
977 			goto out;
978 	}
979 out:
980 	up_read(&env->bpf_progs.lock);
981 	return ret;
982 }
983 
984 static int cpu_cache_level__sort(const void *a, const void *b)
985 {
986 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
987 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
988 
989 	return cache_a->level - cache_b->level;
990 }
991 
992 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
993 {
994 	if (a->level != b->level)
995 		return false;
996 
997 	if (a->line_size != b->line_size)
998 		return false;
999 
1000 	if (a->sets != b->sets)
1001 		return false;
1002 
1003 	if (a->ways != b->ways)
1004 		return false;
1005 
1006 	if (strcmp(a->type, b->type))
1007 		return false;
1008 
1009 	if (strcmp(a->size, b->size))
1010 		return false;
1011 
1012 	if (strcmp(a->map, b->map))
1013 		return false;
1014 
1015 	return true;
1016 }
1017 
1018 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1019 {
1020 	char path[PATH_MAX], file[PATH_MAX];
1021 	struct stat st;
1022 	size_t len;
1023 
1024 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1025 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1026 
1027 	if (stat(file, &st))
1028 		return 1;
1029 
1030 	scnprintf(file, PATH_MAX, "%s/level", path);
1031 	if (sysfs__read_int(file, (int *) &cache->level))
1032 		return -1;
1033 
1034 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1035 	if (sysfs__read_int(file, (int *) &cache->line_size))
1036 		return -1;
1037 
1038 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1039 	if (sysfs__read_int(file, (int *) &cache->sets))
1040 		return -1;
1041 
1042 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1043 	if (sysfs__read_int(file, (int *) &cache->ways))
1044 		return -1;
1045 
1046 	scnprintf(file, PATH_MAX, "%s/type", path);
1047 	if (sysfs__read_str(file, &cache->type, &len))
1048 		return -1;
1049 
1050 	cache->type[len] = 0;
1051 	cache->type = strim(cache->type);
1052 
1053 	scnprintf(file, PATH_MAX, "%s/size", path);
1054 	if (sysfs__read_str(file, &cache->size, &len)) {
1055 		zfree(&cache->type);
1056 		return -1;
1057 	}
1058 
1059 	cache->size[len] = 0;
1060 	cache->size = strim(cache->size);
1061 
1062 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1063 	if (sysfs__read_str(file, &cache->map, &len)) {
1064 		zfree(&cache->map);
1065 		zfree(&cache->type);
1066 		return -1;
1067 	}
1068 
1069 	cache->map[len] = 0;
1070 	cache->map = strim(cache->map);
1071 	return 0;
1072 }
1073 
1074 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1075 {
1076 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1077 }
1078 
1079 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1080 {
1081 	u32 i, cnt = 0;
1082 	long ncpus;
1083 	u32 nr, cpu;
1084 	u16 level;
1085 
1086 	ncpus = sysconf(_SC_NPROCESSORS_CONF);
1087 	if (ncpus < 0)
1088 		return -1;
1089 
1090 	nr = (u32)(ncpus & UINT_MAX);
1091 
1092 	for (cpu = 0; cpu < nr; cpu++) {
1093 		for (level = 0; level < 10; level++) {
1094 			struct cpu_cache_level c;
1095 			int err;
1096 
1097 			err = cpu_cache_level__read(&c, cpu, level);
1098 			if (err < 0)
1099 				return err;
1100 
1101 			if (err == 1)
1102 				break;
1103 
1104 			for (i = 0; i < cnt; i++) {
1105 				if (cpu_cache_level__cmp(&c, &caches[i]))
1106 					break;
1107 			}
1108 
1109 			if (i == cnt)
1110 				caches[cnt++] = c;
1111 			else
1112 				cpu_cache_level__free(&c);
1113 
1114 			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1115 				goto out;
1116 		}
1117 	}
1118  out:
1119 	*cntp = cnt;
1120 	return 0;
1121 }
1122 
1123 #define MAX_CACHES (MAX_NR_CPUS * 4)
1124 
1125 static int write_cache(struct feat_fd *ff,
1126 		       struct perf_evlist *evlist __maybe_unused)
1127 {
1128 	struct cpu_cache_level caches[MAX_CACHES];
1129 	u32 cnt = 0, i, version = 1;
1130 	int ret;
1131 
1132 	ret = build_caches(caches, MAX_CACHES, &cnt);
1133 	if (ret)
1134 		goto out;
1135 
1136 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1137 
1138 	ret = do_write(ff, &version, sizeof(u32));
1139 	if (ret < 0)
1140 		goto out;
1141 
1142 	ret = do_write(ff, &cnt, sizeof(u32));
1143 	if (ret < 0)
1144 		goto out;
1145 
1146 	for (i = 0; i < cnt; i++) {
1147 		struct cpu_cache_level *c = &caches[i];
1148 
1149 		#define _W(v)					\
1150 			ret = do_write(ff, &c->v, sizeof(u32));	\
1151 			if (ret < 0)				\
1152 				goto out;
1153 
1154 		_W(level)
1155 		_W(line_size)
1156 		_W(sets)
1157 		_W(ways)
1158 		#undef _W
1159 
1160 		#define _W(v)						\
1161 			ret = do_write_string(ff, (const char *) c->v);	\
1162 			if (ret < 0)					\
1163 				goto out;
1164 
1165 		_W(type)
1166 		_W(size)
1167 		_W(map)
1168 		#undef _W
1169 	}
1170 
1171 out:
1172 	for (i = 0; i < cnt; i++)
1173 		cpu_cache_level__free(&caches[i]);
1174 	return ret;
1175 }
1176 
1177 static int write_stat(struct feat_fd *ff __maybe_unused,
1178 		      struct perf_evlist *evlist __maybe_unused)
1179 {
1180 	return 0;
1181 }
1182 
1183 static int write_sample_time(struct feat_fd *ff,
1184 			     struct perf_evlist *evlist)
1185 {
1186 	int ret;
1187 
1188 	ret = do_write(ff, &evlist->first_sample_time,
1189 		       sizeof(evlist->first_sample_time));
1190 	if (ret < 0)
1191 		return ret;
1192 
1193 	return do_write(ff, &evlist->last_sample_time,
1194 			sizeof(evlist->last_sample_time));
1195 }
1196 
1197 
1198 static int memory_node__read(struct memory_node *n, unsigned long idx)
1199 {
1200 	unsigned int phys, size = 0;
1201 	char path[PATH_MAX];
1202 	struct dirent *ent;
1203 	DIR *dir;
1204 
1205 #define for_each_memory(mem, dir)					\
1206 	while ((ent = readdir(dir)))					\
1207 		if (strcmp(ent->d_name, ".") &&				\
1208 		    strcmp(ent->d_name, "..") &&			\
1209 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1210 
1211 	scnprintf(path, PATH_MAX,
1212 		  "%s/devices/system/node/node%lu",
1213 		  sysfs__mountpoint(), idx);
1214 
1215 	dir = opendir(path);
1216 	if (!dir) {
1217 		pr_warning("failed: cant' open memory sysfs data\n");
1218 		return -1;
1219 	}
1220 
1221 	for_each_memory(phys, dir) {
1222 		size = max(phys, size);
1223 	}
1224 
1225 	size++;
1226 
1227 	n->set = bitmap_alloc(size);
1228 	if (!n->set) {
1229 		closedir(dir);
1230 		return -ENOMEM;
1231 	}
1232 
1233 	n->node = idx;
1234 	n->size = size;
1235 
1236 	rewinddir(dir);
1237 
1238 	for_each_memory(phys, dir) {
1239 		set_bit(phys, n->set);
1240 	}
1241 
1242 	closedir(dir);
1243 	return 0;
1244 }
1245 
1246 static int memory_node__sort(const void *a, const void *b)
1247 {
1248 	const struct memory_node *na = a;
1249 	const struct memory_node *nb = b;
1250 
1251 	return na->node - nb->node;
1252 }
1253 
1254 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1255 {
1256 	char path[PATH_MAX];
1257 	struct dirent *ent;
1258 	DIR *dir;
1259 	u64 cnt = 0;
1260 	int ret = 0;
1261 
1262 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1263 		  sysfs__mountpoint());
1264 
1265 	dir = opendir(path);
1266 	if (!dir) {
1267 		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1268 			  __func__, path);
1269 		return -1;
1270 	}
1271 
1272 	while (!ret && (ent = readdir(dir))) {
1273 		unsigned int idx;
1274 		int r;
1275 
1276 		if (!strcmp(ent->d_name, ".") ||
1277 		    !strcmp(ent->d_name, ".."))
1278 			continue;
1279 
1280 		r = sscanf(ent->d_name, "node%u", &idx);
1281 		if (r != 1)
1282 			continue;
1283 
1284 		if (WARN_ONCE(cnt >= size,
1285 			      "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1286 			return -1;
1287 
1288 		ret = memory_node__read(&nodes[cnt++], idx);
1289 	}
1290 
1291 	*cntp = cnt;
1292 	closedir(dir);
1293 
1294 	if (!ret)
1295 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1296 
1297 	return ret;
1298 }
1299 
1300 #define MAX_MEMORY_NODES 2000
1301 
1302 /*
1303  * The MEM_TOPOLOGY holds physical memory map for every
1304  * node in system. The format of data is as follows:
1305  *
1306  *  0 - version          | for future changes
1307  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1308  * 16 - count            | number of nodes
1309  *
1310  * For each node we store map of physical indexes for
1311  * each node:
1312  *
1313  * 32 - node id          | node index
1314  * 40 - size             | size of bitmap
1315  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1316  */
1317 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1318 			      struct perf_evlist *evlist __maybe_unused)
1319 {
1320 	static struct memory_node nodes[MAX_MEMORY_NODES];
1321 	u64 bsize, version = 1, i, nr;
1322 	int ret;
1323 
1324 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1325 			      (unsigned long long *) &bsize);
1326 	if (ret)
1327 		return ret;
1328 
1329 	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1330 	if (ret)
1331 		return ret;
1332 
1333 	ret = do_write(ff, &version, sizeof(version));
1334 	if (ret < 0)
1335 		goto out;
1336 
1337 	ret = do_write(ff, &bsize, sizeof(bsize));
1338 	if (ret < 0)
1339 		goto out;
1340 
1341 	ret = do_write(ff, &nr, sizeof(nr));
1342 	if (ret < 0)
1343 		goto out;
1344 
1345 	for (i = 0; i < nr; i++) {
1346 		struct memory_node *n = &nodes[i];
1347 
1348 		#define _W(v)						\
1349 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1350 			if (ret < 0)					\
1351 				goto out;
1352 
1353 		_W(node)
1354 		_W(size)
1355 
1356 		#undef _W
1357 
1358 		ret = do_write_bitmap(ff, n->set, n->size);
1359 		if (ret < 0)
1360 			goto out;
1361 	}
1362 
1363 out:
1364 	return ret;
1365 }
1366 
1367 static int write_compressed(struct feat_fd *ff __maybe_unused,
1368 			    struct perf_evlist *evlist __maybe_unused)
1369 {
1370 	int ret;
1371 
1372 	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1373 	if (ret)
1374 		return ret;
1375 
1376 	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1377 	if (ret)
1378 		return ret;
1379 
1380 	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1381 	if (ret)
1382 		return ret;
1383 
1384 	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1385 	if (ret)
1386 		return ret;
1387 
1388 	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1389 }
1390 
1391 static void print_hostname(struct feat_fd *ff, FILE *fp)
1392 {
1393 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1394 }
1395 
1396 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1397 {
1398 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1399 }
1400 
1401 static void print_arch(struct feat_fd *ff, FILE *fp)
1402 {
1403 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1404 }
1405 
1406 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1407 {
1408 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1409 }
1410 
1411 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1412 {
1413 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1414 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1415 }
1416 
1417 static void print_version(struct feat_fd *ff, FILE *fp)
1418 {
1419 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1420 }
1421 
1422 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1423 {
1424 	int nr, i;
1425 
1426 	nr = ff->ph->env.nr_cmdline;
1427 
1428 	fprintf(fp, "# cmdline : ");
1429 
1430 	for (i = 0; i < nr; i++) {
1431 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1432 		if (!argv_i) {
1433 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1434 		} else {
1435 			char *mem = argv_i;
1436 			do {
1437 				char *quote = strchr(argv_i, '\'');
1438 				if (!quote)
1439 					break;
1440 				*quote++ = '\0';
1441 				fprintf(fp, "%s\\\'", argv_i);
1442 				argv_i = quote;
1443 			} while (1);
1444 			fprintf(fp, "%s ", argv_i);
1445 			free(mem);
1446 		}
1447 	}
1448 	fputc('\n', fp);
1449 }
1450 
1451 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1452 {
1453 	struct perf_header *ph = ff->ph;
1454 	int cpu_nr = ph->env.nr_cpus_avail;
1455 	int nr, i;
1456 	char *str;
1457 
1458 	nr = ph->env.nr_sibling_cores;
1459 	str = ph->env.sibling_cores;
1460 
1461 	for (i = 0; i < nr; i++) {
1462 		fprintf(fp, "# sibling sockets : %s\n", str);
1463 		str += strlen(str) + 1;
1464 	}
1465 
1466 	if (ph->env.nr_sibling_dies) {
1467 		nr = ph->env.nr_sibling_dies;
1468 		str = ph->env.sibling_dies;
1469 
1470 		for (i = 0; i < nr; i++) {
1471 			fprintf(fp, "# sibling dies    : %s\n", str);
1472 			str += strlen(str) + 1;
1473 		}
1474 	}
1475 
1476 	nr = ph->env.nr_sibling_threads;
1477 	str = ph->env.sibling_threads;
1478 
1479 	for (i = 0; i < nr; i++) {
1480 		fprintf(fp, "# sibling threads : %s\n", str);
1481 		str += strlen(str) + 1;
1482 	}
1483 
1484 	if (ph->env.nr_sibling_dies) {
1485 		if (ph->env.cpu != NULL) {
1486 			for (i = 0; i < cpu_nr; i++)
1487 				fprintf(fp, "# CPU %d: Core ID %d, "
1488 					    "Die ID %d, Socket ID %d\n",
1489 					    i, ph->env.cpu[i].core_id,
1490 					    ph->env.cpu[i].die_id,
1491 					    ph->env.cpu[i].socket_id);
1492 		} else
1493 			fprintf(fp, "# Core ID, Die ID and Socket ID "
1494 				    "information is not available\n");
1495 	} else {
1496 		if (ph->env.cpu != NULL) {
1497 			for (i = 0; i < cpu_nr; i++)
1498 				fprintf(fp, "# CPU %d: Core ID %d, "
1499 					    "Socket ID %d\n",
1500 					    i, ph->env.cpu[i].core_id,
1501 					    ph->env.cpu[i].socket_id);
1502 		} else
1503 			fprintf(fp, "# Core ID and Socket ID "
1504 				    "information is not available\n");
1505 	}
1506 }
1507 
1508 static void print_clockid(struct feat_fd *ff, FILE *fp)
1509 {
1510 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1511 		ff->ph->env.clockid_res_ns * 1000);
1512 }
1513 
1514 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1515 {
1516 	struct perf_session *session;
1517 	struct perf_data *data;
1518 
1519 	session = container_of(ff->ph, struct perf_session, header);
1520 	data = session->data;
1521 
1522 	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1523 }
1524 
1525 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1526 {
1527 	struct perf_env *env = &ff->ph->env;
1528 	struct rb_root *root;
1529 	struct rb_node *next;
1530 
1531 	down_read(&env->bpf_progs.lock);
1532 
1533 	root = &env->bpf_progs.infos;
1534 	next = rb_first(root);
1535 
1536 	while (next) {
1537 		struct bpf_prog_info_node *node;
1538 
1539 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1540 		next = rb_next(&node->rb_node);
1541 
1542 		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1543 					       env, fp);
1544 	}
1545 
1546 	up_read(&env->bpf_progs.lock);
1547 }
1548 
1549 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1550 {
1551 	struct perf_env *env = &ff->ph->env;
1552 	struct rb_root *root;
1553 	struct rb_node *next;
1554 
1555 	down_read(&env->bpf_progs.lock);
1556 
1557 	root = &env->bpf_progs.btfs;
1558 	next = rb_first(root);
1559 
1560 	while (next) {
1561 		struct btf_node *node;
1562 
1563 		node = rb_entry(next, struct btf_node, rb_node);
1564 		next = rb_next(&node->rb_node);
1565 		fprintf(fp, "# btf info of id %u\n", node->id);
1566 	}
1567 
1568 	up_read(&env->bpf_progs.lock);
1569 }
1570 
1571 static void free_event_desc(struct perf_evsel *events)
1572 {
1573 	struct perf_evsel *evsel;
1574 
1575 	if (!events)
1576 		return;
1577 
1578 	for (evsel = events; evsel->attr.size; evsel++) {
1579 		zfree(&evsel->name);
1580 		zfree(&evsel->id);
1581 	}
1582 
1583 	free(events);
1584 }
1585 
1586 static struct perf_evsel *read_event_desc(struct feat_fd *ff)
1587 {
1588 	struct perf_evsel *evsel, *events = NULL;
1589 	u64 *id;
1590 	void *buf = NULL;
1591 	u32 nre, sz, nr, i, j;
1592 	size_t msz;
1593 
1594 	/* number of events */
1595 	if (do_read_u32(ff, &nre))
1596 		goto error;
1597 
1598 	if (do_read_u32(ff, &sz))
1599 		goto error;
1600 
1601 	/* buffer to hold on file attr struct */
1602 	buf = malloc(sz);
1603 	if (!buf)
1604 		goto error;
1605 
1606 	/* the last event terminates with evsel->attr.size == 0: */
1607 	events = calloc(nre + 1, sizeof(*events));
1608 	if (!events)
1609 		goto error;
1610 
1611 	msz = sizeof(evsel->attr);
1612 	if (sz < msz)
1613 		msz = sz;
1614 
1615 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1616 		evsel->idx = i;
1617 
1618 		/*
1619 		 * must read entire on-file attr struct to
1620 		 * sync up with layout.
1621 		 */
1622 		if (__do_read(ff, buf, sz))
1623 			goto error;
1624 
1625 		if (ff->ph->needs_swap)
1626 			perf_event__attr_swap(buf);
1627 
1628 		memcpy(&evsel->attr, buf, msz);
1629 
1630 		if (do_read_u32(ff, &nr))
1631 			goto error;
1632 
1633 		if (ff->ph->needs_swap)
1634 			evsel->needs_swap = true;
1635 
1636 		evsel->name = do_read_string(ff);
1637 		if (!evsel->name)
1638 			goto error;
1639 
1640 		if (!nr)
1641 			continue;
1642 
1643 		id = calloc(nr, sizeof(*id));
1644 		if (!id)
1645 			goto error;
1646 		evsel->ids = nr;
1647 		evsel->id = id;
1648 
1649 		for (j = 0 ; j < nr; j++) {
1650 			if (do_read_u64(ff, id))
1651 				goto error;
1652 			id++;
1653 		}
1654 	}
1655 out:
1656 	free(buf);
1657 	return events;
1658 error:
1659 	free_event_desc(events);
1660 	events = NULL;
1661 	goto out;
1662 }
1663 
1664 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1665 				void *priv __maybe_unused)
1666 {
1667 	return fprintf(fp, ", %s = %s", name, val);
1668 }
1669 
1670 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1671 {
1672 	struct perf_evsel *evsel, *events;
1673 	u32 j;
1674 	u64 *id;
1675 
1676 	if (ff->events)
1677 		events = ff->events;
1678 	else
1679 		events = read_event_desc(ff);
1680 
1681 	if (!events) {
1682 		fprintf(fp, "# event desc: not available or unable to read\n");
1683 		return;
1684 	}
1685 
1686 	for (evsel = events; evsel->attr.size; evsel++) {
1687 		fprintf(fp, "# event : name = %s, ", evsel->name);
1688 
1689 		if (evsel->ids) {
1690 			fprintf(fp, ", id = {");
1691 			for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1692 				if (j)
1693 					fputc(',', fp);
1694 				fprintf(fp, " %"PRIu64, *id);
1695 			}
1696 			fprintf(fp, " }");
1697 		}
1698 
1699 		perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1700 
1701 		fputc('\n', fp);
1702 	}
1703 
1704 	free_event_desc(events);
1705 	ff->events = NULL;
1706 }
1707 
1708 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1709 {
1710 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1711 }
1712 
1713 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1714 {
1715 	int i;
1716 	struct numa_node *n;
1717 
1718 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1719 		n = &ff->ph->env.numa_nodes[i];
1720 
1721 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1722 			    " free = %"PRIu64" kB\n",
1723 			n->node, n->mem_total, n->mem_free);
1724 
1725 		fprintf(fp, "# node%u cpu list : ", n->node);
1726 		cpu_map__fprintf(n->map, fp);
1727 	}
1728 }
1729 
1730 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1731 {
1732 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1733 }
1734 
1735 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1736 {
1737 	fprintf(fp, "# contains samples with branch stack\n");
1738 }
1739 
1740 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1741 {
1742 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1743 }
1744 
1745 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1746 {
1747 	fprintf(fp, "# contains stat data\n");
1748 }
1749 
1750 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1751 {
1752 	int i;
1753 
1754 	fprintf(fp, "# CPU cache info:\n");
1755 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1756 		fprintf(fp, "#  ");
1757 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1758 	}
1759 }
1760 
1761 static void print_compressed(struct feat_fd *ff, FILE *fp)
1762 {
1763 	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1764 		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1765 		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1766 }
1767 
1768 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1769 {
1770 	const char *delimiter = "# pmu mappings: ";
1771 	char *str, *tmp;
1772 	u32 pmu_num;
1773 	u32 type;
1774 
1775 	pmu_num = ff->ph->env.nr_pmu_mappings;
1776 	if (!pmu_num) {
1777 		fprintf(fp, "# pmu mappings: not available\n");
1778 		return;
1779 	}
1780 
1781 	str = ff->ph->env.pmu_mappings;
1782 
1783 	while (pmu_num) {
1784 		type = strtoul(str, &tmp, 0);
1785 		if (*tmp != ':')
1786 			goto error;
1787 
1788 		str = tmp + 1;
1789 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1790 
1791 		delimiter = ", ";
1792 		str += strlen(str) + 1;
1793 		pmu_num--;
1794 	}
1795 
1796 	fprintf(fp, "\n");
1797 
1798 	if (!pmu_num)
1799 		return;
1800 error:
1801 	fprintf(fp, "# pmu mappings: unable to read\n");
1802 }
1803 
1804 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1805 {
1806 	struct perf_session *session;
1807 	struct perf_evsel *evsel;
1808 	u32 nr = 0;
1809 
1810 	session = container_of(ff->ph, struct perf_session, header);
1811 
1812 	evlist__for_each_entry(session->evlist, evsel) {
1813 		if (perf_evsel__is_group_leader(evsel) &&
1814 		    evsel->nr_members > 1) {
1815 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1816 				perf_evsel__name(evsel));
1817 
1818 			nr = evsel->nr_members - 1;
1819 		} else if (nr) {
1820 			fprintf(fp, ",%s", perf_evsel__name(evsel));
1821 
1822 			if (--nr == 0)
1823 				fprintf(fp, "}\n");
1824 		}
1825 	}
1826 }
1827 
1828 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1829 {
1830 	struct perf_session *session;
1831 	char time_buf[32];
1832 	double d;
1833 
1834 	session = container_of(ff->ph, struct perf_session, header);
1835 
1836 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
1837 				  time_buf, sizeof(time_buf));
1838 	fprintf(fp, "# time of first sample : %s\n", time_buf);
1839 
1840 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
1841 				  time_buf, sizeof(time_buf));
1842 	fprintf(fp, "# time of last sample : %s\n", time_buf);
1843 
1844 	d = (double)(session->evlist->last_sample_time -
1845 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
1846 
1847 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
1848 }
1849 
1850 static void memory_node__fprintf(struct memory_node *n,
1851 				 unsigned long long bsize, FILE *fp)
1852 {
1853 	char buf_map[100], buf_size[50];
1854 	unsigned long long size;
1855 
1856 	size = bsize * bitmap_weight(n->set, n->size);
1857 	unit_number__scnprintf(buf_size, 50, size);
1858 
1859 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
1860 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1861 }
1862 
1863 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1864 {
1865 	struct memory_node *nodes;
1866 	int i, nr;
1867 
1868 	nodes = ff->ph->env.memory_nodes;
1869 	nr    = ff->ph->env.nr_memory_nodes;
1870 
1871 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1872 		nr, ff->ph->env.memory_bsize);
1873 
1874 	for (i = 0; i < nr; i++) {
1875 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1876 	}
1877 }
1878 
1879 static int __event_process_build_id(struct build_id_event *bev,
1880 				    char *filename,
1881 				    struct perf_session *session)
1882 {
1883 	int err = -1;
1884 	struct machine *machine;
1885 	u16 cpumode;
1886 	struct dso *dso;
1887 	enum dso_kernel_type dso_type;
1888 
1889 	machine = perf_session__findnew_machine(session, bev->pid);
1890 	if (!machine)
1891 		goto out;
1892 
1893 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1894 
1895 	switch (cpumode) {
1896 	case PERF_RECORD_MISC_KERNEL:
1897 		dso_type = DSO_TYPE_KERNEL;
1898 		break;
1899 	case PERF_RECORD_MISC_GUEST_KERNEL:
1900 		dso_type = DSO_TYPE_GUEST_KERNEL;
1901 		break;
1902 	case PERF_RECORD_MISC_USER:
1903 	case PERF_RECORD_MISC_GUEST_USER:
1904 		dso_type = DSO_TYPE_USER;
1905 		break;
1906 	default:
1907 		goto out;
1908 	}
1909 
1910 	dso = machine__findnew_dso(machine, filename);
1911 	if (dso != NULL) {
1912 		char sbuild_id[SBUILD_ID_SIZE];
1913 
1914 		dso__set_build_id(dso, &bev->build_id);
1915 
1916 		if (dso_type != DSO_TYPE_USER) {
1917 			struct kmod_path m = { .name = NULL, };
1918 
1919 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1920 				dso__set_module_info(dso, &m, machine);
1921 			else
1922 				dso->kernel = dso_type;
1923 
1924 			free(m.name);
1925 		}
1926 
1927 		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1928 				  sbuild_id);
1929 		pr_debug("build id event received for %s: %s\n",
1930 			 dso->long_name, sbuild_id);
1931 		dso__put(dso);
1932 	}
1933 
1934 	err = 0;
1935 out:
1936 	return err;
1937 }
1938 
1939 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1940 						 int input, u64 offset, u64 size)
1941 {
1942 	struct perf_session *session = container_of(header, struct perf_session, header);
1943 	struct {
1944 		struct perf_event_header   header;
1945 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1946 		char			   filename[0];
1947 	} old_bev;
1948 	struct build_id_event bev;
1949 	char filename[PATH_MAX];
1950 	u64 limit = offset + size;
1951 
1952 	while (offset < limit) {
1953 		ssize_t len;
1954 
1955 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1956 			return -1;
1957 
1958 		if (header->needs_swap)
1959 			perf_event_header__bswap(&old_bev.header);
1960 
1961 		len = old_bev.header.size - sizeof(old_bev);
1962 		if (readn(input, filename, len) != len)
1963 			return -1;
1964 
1965 		bev.header = old_bev.header;
1966 
1967 		/*
1968 		 * As the pid is the missing value, we need to fill
1969 		 * it properly. The header.misc value give us nice hint.
1970 		 */
1971 		bev.pid	= HOST_KERNEL_ID;
1972 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1973 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1974 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
1975 
1976 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1977 		__event_process_build_id(&bev, filename, session);
1978 
1979 		offset += bev.header.size;
1980 	}
1981 
1982 	return 0;
1983 }
1984 
1985 static int perf_header__read_build_ids(struct perf_header *header,
1986 				       int input, u64 offset, u64 size)
1987 {
1988 	struct perf_session *session = container_of(header, struct perf_session, header);
1989 	struct build_id_event bev;
1990 	char filename[PATH_MAX];
1991 	u64 limit = offset + size, orig_offset = offset;
1992 	int err = -1;
1993 
1994 	while (offset < limit) {
1995 		ssize_t len;
1996 
1997 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1998 			goto out;
1999 
2000 		if (header->needs_swap)
2001 			perf_event_header__bswap(&bev.header);
2002 
2003 		len = bev.header.size - sizeof(bev);
2004 		if (readn(input, filename, len) != len)
2005 			goto out;
2006 		/*
2007 		 * The a1645ce1 changeset:
2008 		 *
2009 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2010 		 *
2011 		 * Added a field to struct build_id_event that broke the file
2012 		 * format.
2013 		 *
2014 		 * Since the kernel build-id is the first entry, process the
2015 		 * table using the old format if the well known
2016 		 * '[kernel.kallsyms]' string for the kernel build-id has the
2017 		 * first 4 characters chopped off (where the pid_t sits).
2018 		 */
2019 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2020 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2021 				return -1;
2022 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2023 		}
2024 
2025 		__event_process_build_id(&bev, filename, session);
2026 
2027 		offset += bev.header.size;
2028 	}
2029 	err = 0;
2030 out:
2031 	return err;
2032 }
2033 
2034 /* Macro for features that simply need to read and store a string. */
2035 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2036 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2037 {\
2038 	ff->ph->env.__feat_env = do_read_string(ff); \
2039 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2040 }
2041 
2042 FEAT_PROCESS_STR_FUN(hostname, hostname);
2043 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2044 FEAT_PROCESS_STR_FUN(version, version);
2045 FEAT_PROCESS_STR_FUN(arch, arch);
2046 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2047 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2048 
2049 static int process_tracing_data(struct feat_fd *ff, void *data)
2050 {
2051 	ssize_t ret = trace_report(ff->fd, data, false);
2052 
2053 	return ret < 0 ? -1 : 0;
2054 }
2055 
2056 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2057 {
2058 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2059 		pr_debug("Failed to read buildids, continuing...\n");
2060 	return 0;
2061 }
2062 
2063 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2064 {
2065 	int ret;
2066 	u32 nr_cpus_avail, nr_cpus_online;
2067 
2068 	ret = do_read_u32(ff, &nr_cpus_avail);
2069 	if (ret)
2070 		return ret;
2071 
2072 	ret = do_read_u32(ff, &nr_cpus_online);
2073 	if (ret)
2074 		return ret;
2075 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2076 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2077 	return 0;
2078 }
2079 
2080 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2081 {
2082 	u64 total_mem;
2083 	int ret;
2084 
2085 	ret = do_read_u64(ff, &total_mem);
2086 	if (ret)
2087 		return -1;
2088 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2089 	return 0;
2090 }
2091 
2092 static struct perf_evsel *
2093 perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
2094 {
2095 	struct perf_evsel *evsel;
2096 
2097 	evlist__for_each_entry(evlist, evsel) {
2098 		if (evsel->idx == idx)
2099 			return evsel;
2100 	}
2101 
2102 	return NULL;
2103 }
2104 
2105 static void
2106 perf_evlist__set_event_name(struct perf_evlist *evlist,
2107 			    struct perf_evsel *event)
2108 {
2109 	struct perf_evsel *evsel;
2110 
2111 	if (!event->name)
2112 		return;
2113 
2114 	evsel = perf_evlist__find_by_index(evlist, event->idx);
2115 	if (!evsel)
2116 		return;
2117 
2118 	if (evsel->name)
2119 		return;
2120 
2121 	evsel->name = strdup(event->name);
2122 }
2123 
2124 static int
2125 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2126 {
2127 	struct perf_session *session;
2128 	struct perf_evsel *evsel, *events = read_event_desc(ff);
2129 
2130 	if (!events)
2131 		return 0;
2132 
2133 	session = container_of(ff->ph, struct perf_session, header);
2134 
2135 	if (session->data->is_pipe) {
2136 		/* Save events for reading later by print_event_desc,
2137 		 * since they can't be read again in pipe mode. */
2138 		ff->events = events;
2139 	}
2140 
2141 	for (evsel = events; evsel->attr.size; evsel++)
2142 		perf_evlist__set_event_name(session->evlist, evsel);
2143 
2144 	if (!session->data->is_pipe)
2145 		free_event_desc(events);
2146 
2147 	return 0;
2148 }
2149 
2150 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2151 {
2152 	char *str, *cmdline = NULL, **argv = NULL;
2153 	u32 nr, i, len = 0;
2154 
2155 	if (do_read_u32(ff, &nr))
2156 		return -1;
2157 
2158 	ff->ph->env.nr_cmdline = nr;
2159 
2160 	cmdline = zalloc(ff->size + nr + 1);
2161 	if (!cmdline)
2162 		return -1;
2163 
2164 	argv = zalloc(sizeof(char *) * (nr + 1));
2165 	if (!argv)
2166 		goto error;
2167 
2168 	for (i = 0; i < nr; i++) {
2169 		str = do_read_string(ff);
2170 		if (!str)
2171 			goto error;
2172 
2173 		argv[i] = cmdline + len;
2174 		memcpy(argv[i], str, strlen(str) + 1);
2175 		len += strlen(str) + 1;
2176 		free(str);
2177 	}
2178 	ff->ph->env.cmdline = cmdline;
2179 	ff->ph->env.cmdline_argv = (const char **) argv;
2180 	return 0;
2181 
2182 error:
2183 	free(argv);
2184 	free(cmdline);
2185 	return -1;
2186 }
2187 
2188 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2189 {
2190 	u32 nr, i;
2191 	char *str;
2192 	struct strbuf sb;
2193 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2194 	u64 size = 0;
2195 	struct perf_header *ph = ff->ph;
2196 	bool do_core_id_test = true;
2197 
2198 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2199 	if (!ph->env.cpu)
2200 		return -1;
2201 
2202 	if (do_read_u32(ff, &nr))
2203 		goto free_cpu;
2204 
2205 	ph->env.nr_sibling_cores = nr;
2206 	size += sizeof(u32);
2207 	if (strbuf_init(&sb, 128) < 0)
2208 		goto free_cpu;
2209 
2210 	for (i = 0; i < nr; i++) {
2211 		str = do_read_string(ff);
2212 		if (!str)
2213 			goto error;
2214 
2215 		/* include a NULL character at the end */
2216 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2217 			goto error;
2218 		size += string_size(str);
2219 		free(str);
2220 	}
2221 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2222 
2223 	if (do_read_u32(ff, &nr))
2224 		return -1;
2225 
2226 	ph->env.nr_sibling_threads = nr;
2227 	size += sizeof(u32);
2228 
2229 	for (i = 0; i < nr; i++) {
2230 		str = do_read_string(ff);
2231 		if (!str)
2232 			goto error;
2233 
2234 		/* include a NULL character at the end */
2235 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2236 			goto error;
2237 		size += string_size(str);
2238 		free(str);
2239 	}
2240 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2241 
2242 	/*
2243 	 * The header may be from old perf,
2244 	 * which doesn't include core id and socket id information.
2245 	 */
2246 	if (ff->size <= size) {
2247 		zfree(&ph->env.cpu);
2248 		return 0;
2249 	}
2250 
2251 	/* On s390 the socket_id number is not related to the numbers of cpus.
2252 	 * The socket_id number might be higher than the numbers of cpus.
2253 	 * This depends on the configuration.
2254 	 */
2255 	if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4))
2256 		do_core_id_test = false;
2257 
2258 	for (i = 0; i < (u32)cpu_nr; i++) {
2259 		if (do_read_u32(ff, &nr))
2260 			goto free_cpu;
2261 
2262 		ph->env.cpu[i].core_id = nr;
2263 		size += sizeof(u32);
2264 
2265 		if (do_read_u32(ff, &nr))
2266 			goto free_cpu;
2267 
2268 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2269 			pr_debug("socket_id number is too big."
2270 				 "You may need to upgrade the perf tool.\n");
2271 			goto free_cpu;
2272 		}
2273 
2274 		ph->env.cpu[i].socket_id = nr;
2275 		size += sizeof(u32);
2276 	}
2277 
2278 	/*
2279 	 * The header may be from old perf,
2280 	 * which doesn't include die information.
2281 	 */
2282 	if (ff->size <= size)
2283 		return 0;
2284 
2285 	if (do_read_u32(ff, &nr))
2286 		return -1;
2287 
2288 	ph->env.nr_sibling_dies = nr;
2289 	size += sizeof(u32);
2290 
2291 	for (i = 0; i < nr; i++) {
2292 		str = do_read_string(ff);
2293 		if (!str)
2294 			goto error;
2295 
2296 		/* include a NULL character at the end */
2297 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2298 			goto error;
2299 		size += string_size(str);
2300 		free(str);
2301 	}
2302 	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2303 
2304 	for (i = 0; i < (u32)cpu_nr; i++) {
2305 		if (do_read_u32(ff, &nr))
2306 			goto free_cpu;
2307 
2308 		ph->env.cpu[i].die_id = nr;
2309 	}
2310 
2311 	return 0;
2312 
2313 error:
2314 	strbuf_release(&sb);
2315 free_cpu:
2316 	zfree(&ph->env.cpu);
2317 	return -1;
2318 }
2319 
2320 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2321 {
2322 	struct numa_node *nodes, *n;
2323 	u32 nr, i;
2324 	char *str;
2325 
2326 	/* nr nodes */
2327 	if (do_read_u32(ff, &nr))
2328 		return -1;
2329 
2330 	nodes = zalloc(sizeof(*nodes) * nr);
2331 	if (!nodes)
2332 		return -ENOMEM;
2333 
2334 	for (i = 0; i < nr; i++) {
2335 		n = &nodes[i];
2336 
2337 		/* node number */
2338 		if (do_read_u32(ff, &n->node))
2339 			goto error;
2340 
2341 		if (do_read_u64(ff, &n->mem_total))
2342 			goto error;
2343 
2344 		if (do_read_u64(ff, &n->mem_free))
2345 			goto error;
2346 
2347 		str = do_read_string(ff);
2348 		if (!str)
2349 			goto error;
2350 
2351 		n->map = cpu_map__new(str);
2352 		if (!n->map)
2353 			goto error;
2354 
2355 		free(str);
2356 	}
2357 	ff->ph->env.nr_numa_nodes = nr;
2358 	ff->ph->env.numa_nodes = nodes;
2359 	return 0;
2360 
2361 error:
2362 	free(nodes);
2363 	return -1;
2364 }
2365 
2366 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2367 {
2368 	char *name;
2369 	u32 pmu_num;
2370 	u32 type;
2371 	struct strbuf sb;
2372 
2373 	if (do_read_u32(ff, &pmu_num))
2374 		return -1;
2375 
2376 	if (!pmu_num) {
2377 		pr_debug("pmu mappings not available\n");
2378 		return 0;
2379 	}
2380 
2381 	ff->ph->env.nr_pmu_mappings = pmu_num;
2382 	if (strbuf_init(&sb, 128) < 0)
2383 		return -1;
2384 
2385 	while (pmu_num) {
2386 		if (do_read_u32(ff, &type))
2387 			goto error;
2388 
2389 		name = do_read_string(ff);
2390 		if (!name)
2391 			goto error;
2392 
2393 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2394 			goto error;
2395 		/* include a NULL character at the end */
2396 		if (strbuf_add(&sb, "", 1) < 0)
2397 			goto error;
2398 
2399 		if (!strcmp(name, "msr"))
2400 			ff->ph->env.msr_pmu_type = type;
2401 
2402 		free(name);
2403 		pmu_num--;
2404 	}
2405 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2406 	return 0;
2407 
2408 error:
2409 	strbuf_release(&sb);
2410 	return -1;
2411 }
2412 
2413 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2414 {
2415 	size_t ret = -1;
2416 	u32 i, nr, nr_groups;
2417 	struct perf_session *session;
2418 	struct perf_evsel *evsel, *leader = NULL;
2419 	struct group_desc {
2420 		char *name;
2421 		u32 leader_idx;
2422 		u32 nr_members;
2423 	} *desc;
2424 
2425 	if (do_read_u32(ff, &nr_groups))
2426 		return -1;
2427 
2428 	ff->ph->env.nr_groups = nr_groups;
2429 	if (!nr_groups) {
2430 		pr_debug("group desc not available\n");
2431 		return 0;
2432 	}
2433 
2434 	desc = calloc(nr_groups, sizeof(*desc));
2435 	if (!desc)
2436 		return -1;
2437 
2438 	for (i = 0; i < nr_groups; i++) {
2439 		desc[i].name = do_read_string(ff);
2440 		if (!desc[i].name)
2441 			goto out_free;
2442 
2443 		if (do_read_u32(ff, &desc[i].leader_idx))
2444 			goto out_free;
2445 
2446 		if (do_read_u32(ff, &desc[i].nr_members))
2447 			goto out_free;
2448 	}
2449 
2450 	/*
2451 	 * Rebuild group relationship based on the group_desc
2452 	 */
2453 	session = container_of(ff->ph, struct perf_session, header);
2454 	session->evlist->nr_groups = nr_groups;
2455 
2456 	i = nr = 0;
2457 	evlist__for_each_entry(session->evlist, evsel) {
2458 		if (evsel->idx == (int) desc[i].leader_idx) {
2459 			evsel->leader = evsel;
2460 			/* {anon_group} is a dummy name */
2461 			if (strcmp(desc[i].name, "{anon_group}")) {
2462 				evsel->group_name = desc[i].name;
2463 				desc[i].name = NULL;
2464 			}
2465 			evsel->nr_members = desc[i].nr_members;
2466 
2467 			if (i >= nr_groups || nr > 0) {
2468 				pr_debug("invalid group desc\n");
2469 				goto out_free;
2470 			}
2471 
2472 			leader = evsel;
2473 			nr = evsel->nr_members - 1;
2474 			i++;
2475 		} else if (nr) {
2476 			/* This is a group member */
2477 			evsel->leader = leader;
2478 
2479 			nr--;
2480 		}
2481 	}
2482 
2483 	if (i != nr_groups || nr != 0) {
2484 		pr_debug("invalid group desc\n");
2485 		goto out_free;
2486 	}
2487 
2488 	ret = 0;
2489 out_free:
2490 	for (i = 0; i < nr_groups; i++)
2491 		zfree(&desc[i].name);
2492 	free(desc);
2493 
2494 	return ret;
2495 }
2496 
2497 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2498 {
2499 	struct perf_session *session;
2500 	int err;
2501 
2502 	session = container_of(ff->ph, struct perf_session, header);
2503 
2504 	err = auxtrace_index__process(ff->fd, ff->size, session,
2505 				      ff->ph->needs_swap);
2506 	if (err < 0)
2507 		pr_err("Failed to process auxtrace index\n");
2508 	return err;
2509 }
2510 
2511 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2512 {
2513 	struct cpu_cache_level *caches;
2514 	u32 cnt, i, version;
2515 
2516 	if (do_read_u32(ff, &version))
2517 		return -1;
2518 
2519 	if (version != 1)
2520 		return -1;
2521 
2522 	if (do_read_u32(ff, &cnt))
2523 		return -1;
2524 
2525 	caches = zalloc(sizeof(*caches) * cnt);
2526 	if (!caches)
2527 		return -1;
2528 
2529 	for (i = 0; i < cnt; i++) {
2530 		struct cpu_cache_level c;
2531 
2532 		#define _R(v)						\
2533 			if (do_read_u32(ff, &c.v))\
2534 				goto out_free_caches;			\
2535 
2536 		_R(level)
2537 		_R(line_size)
2538 		_R(sets)
2539 		_R(ways)
2540 		#undef _R
2541 
2542 		#define _R(v)					\
2543 			c.v = do_read_string(ff);		\
2544 			if (!c.v)				\
2545 				goto out_free_caches;
2546 
2547 		_R(type)
2548 		_R(size)
2549 		_R(map)
2550 		#undef _R
2551 
2552 		caches[i] = c;
2553 	}
2554 
2555 	ff->ph->env.caches = caches;
2556 	ff->ph->env.caches_cnt = cnt;
2557 	return 0;
2558 out_free_caches:
2559 	free(caches);
2560 	return -1;
2561 }
2562 
2563 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2564 {
2565 	struct perf_session *session;
2566 	u64 first_sample_time, last_sample_time;
2567 	int ret;
2568 
2569 	session = container_of(ff->ph, struct perf_session, header);
2570 
2571 	ret = do_read_u64(ff, &first_sample_time);
2572 	if (ret)
2573 		return -1;
2574 
2575 	ret = do_read_u64(ff, &last_sample_time);
2576 	if (ret)
2577 		return -1;
2578 
2579 	session->evlist->first_sample_time = first_sample_time;
2580 	session->evlist->last_sample_time = last_sample_time;
2581 	return 0;
2582 }
2583 
2584 static int process_mem_topology(struct feat_fd *ff,
2585 				void *data __maybe_unused)
2586 {
2587 	struct memory_node *nodes;
2588 	u64 version, i, nr, bsize;
2589 	int ret = -1;
2590 
2591 	if (do_read_u64(ff, &version))
2592 		return -1;
2593 
2594 	if (version != 1)
2595 		return -1;
2596 
2597 	if (do_read_u64(ff, &bsize))
2598 		return -1;
2599 
2600 	if (do_read_u64(ff, &nr))
2601 		return -1;
2602 
2603 	nodes = zalloc(sizeof(*nodes) * nr);
2604 	if (!nodes)
2605 		return -1;
2606 
2607 	for (i = 0; i < nr; i++) {
2608 		struct memory_node n;
2609 
2610 		#define _R(v)				\
2611 			if (do_read_u64(ff, &n.v))	\
2612 				goto out;		\
2613 
2614 		_R(node)
2615 		_R(size)
2616 
2617 		#undef _R
2618 
2619 		if (do_read_bitmap(ff, &n.set, &n.size))
2620 			goto out;
2621 
2622 		nodes[i] = n;
2623 	}
2624 
2625 	ff->ph->env.memory_bsize    = bsize;
2626 	ff->ph->env.memory_nodes    = nodes;
2627 	ff->ph->env.nr_memory_nodes = nr;
2628 	ret = 0;
2629 
2630 out:
2631 	if (ret)
2632 		free(nodes);
2633 	return ret;
2634 }
2635 
2636 static int process_clockid(struct feat_fd *ff,
2637 			   void *data __maybe_unused)
2638 {
2639 	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2640 		return -1;
2641 
2642 	return 0;
2643 }
2644 
2645 static int process_dir_format(struct feat_fd *ff,
2646 			      void *_data __maybe_unused)
2647 {
2648 	struct perf_session *session;
2649 	struct perf_data *data;
2650 
2651 	session = container_of(ff->ph, struct perf_session, header);
2652 	data = session->data;
2653 
2654 	if (WARN_ON(!perf_data__is_dir(data)))
2655 		return -1;
2656 
2657 	return do_read_u64(ff, &data->dir.version);
2658 }
2659 
2660 #ifdef HAVE_LIBBPF_SUPPORT
2661 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2662 {
2663 	struct bpf_prog_info_linear *info_linear;
2664 	struct bpf_prog_info_node *info_node;
2665 	struct perf_env *env = &ff->ph->env;
2666 	u32 count, i;
2667 	int err = -1;
2668 
2669 	if (ff->ph->needs_swap) {
2670 		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2671 		return 0;
2672 	}
2673 
2674 	if (do_read_u32(ff, &count))
2675 		return -1;
2676 
2677 	down_write(&env->bpf_progs.lock);
2678 
2679 	for (i = 0; i < count; ++i) {
2680 		u32 info_len, data_len;
2681 
2682 		info_linear = NULL;
2683 		info_node = NULL;
2684 		if (do_read_u32(ff, &info_len))
2685 			goto out;
2686 		if (do_read_u32(ff, &data_len))
2687 			goto out;
2688 
2689 		if (info_len > sizeof(struct bpf_prog_info)) {
2690 			pr_warning("detected invalid bpf_prog_info\n");
2691 			goto out;
2692 		}
2693 
2694 		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2695 				     data_len);
2696 		if (!info_linear)
2697 			goto out;
2698 		info_linear->info_len = sizeof(struct bpf_prog_info);
2699 		info_linear->data_len = data_len;
2700 		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2701 			goto out;
2702 		if (__do_read(ff, &info_linear->info, info_len))
2703 			goto out;
2704 		if (info_len < sizeof(struct bpf_prog_info))
2705 			memset(((void *)(&info_linear->info)) + info_len, 0,
2706 			       sizeof(struct bpf_prog_info) - info_len);
2707 
2708 		if (__do_read(ff, info_linear->data, data_len))
2709 			goto out;
2710 
2711 		info_node = malloc(sizeof(struct bpf_prog_info_node));
2712 		if (!info_node)
2713 			goto out;
2714 
2715 		/* after reading from file, translate offset to address */
2716 		bpf_program__bpil_offs_to_addr(info_linear);
2717 		info_node->info_linear = info_linear;
2718 		perf_env__insert_bpf_prog_info(env, info_node);
2719 	}
2720 
2721 	up_write(&env->bpf_progs.lock);
2722 	return 0;
2723 out:
2724 	free(info_linear);
2725 	free(info_node);
2726 	up_write(&env->bpf_progs.lock);
2727 	return err;
2728 }
2729 #else // HAVE_LIBBPF_SUPPORT
2730 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2731 {
2732 	return 0;
2733 }
2734 #endif // HAVE_LIBBPF_SUPPORT
2735 
2736 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2737 {
2738 	struct perf_env *env = &ff->ph->env;
2739 	struct btf_node *node = NULL;
2740 	u32 count, i;
2741 	int err = -1;
2742 
2743 	if (ff->ph->needs_swap) {
2744 		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2745 		return 0;
2746 	}
2747 
2748 	if (do_read_u32(ff, &count))
2749 		return -1;
2750 
2751 	down_write(&env->bpf_progs.lock);
2752 
2753 	for (i = 0; i < count; ++i) {
2754 		u32 id, data_size;
2755 
2756 		if (do_read_u32(ff, &id))
2757 			goto out;
2758 		if (do_read_u32(ff, &data_size))
2759 			goto out;
2760 
2761 		node = malloc(sizeof(struct btf_node) + data_size);
2762 		if (!node)
2763 			goto out;
2764 
2765 		node->id = id;
2766 		node->data_size = data_size;
2767 
2768 		if (__do_read(ff, node->data, data_size))
2769 			goto out;
2770 
2771 		perf_env__insert_btf(env, node);
2772 		node = NULL;
2773 	}
2774 
2775 	err = 0;
2776 out:
2777 	up_write(&env->bpf_progs.lock);
2778 	free(node);
2779 	return err;
2780 }
2781 
2782 static int process_compressed(struct feat_fd *ff,
2783 			      void *data __maybe_unused)
2784 {
2785 	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2786 		return -1;
2787 
2788 	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2789 		return -1;
2790 
2791 	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2792 		return -1;
2793 
2794 	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2795 		return -1;
2796 
2797 	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2798 		return -1;
2799 
2800 	return 0;
2801 }
2802 
2803 struct feature_ops {
2804 	int (*write)(struct feat_fd *ff, struct perf_evlist *evlist);
2805 	void (*print)(struct feat_fd *ff, FILE *fp);
2806 	int (*process)(struct feat_fd *ff, void *data);
2807 	const char *name;
2808 	bool full_only;
2809 	bool synthesize;
2810 };
2811 
2812 #define FEAT_OPR(n, func, __full_only) \
2813 	[HEADER_##n] = {					\
2814 		.name	    = __stringify(n),			\
2815 		.write	    = write_##func,			\
2816 		.print	    = print_##func,			\
2817 		.full_only  = __full_only,			\
2818 		.process    = process_##func,			\
2819 		.synthesize = true				\
2820 	}
2821 
2822 #define FEAT_OPN(n, func, __full_only) \
2823 	[HEADER_##n] = {					\
2824 		.name	    = __stringify(n),			\
2825 		.write	    = write_##func,			\
2826 		.print	    = print_##func,			\
2827 		.full_only  = __full_only,			\
2828 		.process    = process_##func			\
2829 	}
2830 
2831 /* feature_ops not implemented: */
2832 #define print_tracing_data	NULL
2833 #define print_build_id		NULL
2834 
2835 #define process_branch_stack	NULL
2836 #define process_stat		NULL
2837 
2838 
2839 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2840 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
2841 	FEAT_OPN(BUILD_ID,	build_id,	false),
2842 	FEAT_OPR(HOSTNAME,	hostname,	false),
2843 	FEAT_OPR(OSRELEASE,	osrelease,	false),
2844 	FEAT_OPR(VERSION,	version,	false),
2845 	FEAT_OPR(ARCH,		arch,		false),
2846 	FEAT_OPR(NRCPUS,	nrcpus,		false),
2847 	FEAT_OPR(CPUDESC,	cpudesc,	false),
2848 	FEAT_OPR(CPUID,		cpuid,		false),
2849 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
2850 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
2851 	FEAT_OPR(CMDLINE,	cmdline,	false),
2852 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
2853 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
2854 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
2855 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2856 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2857 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
2858 	FEAT_OPN(STAT,		stat,		false),
2859 	FEAT_OPN(CACHE,		cache,		true),
2860 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2861 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2862 	FEAT_OPR(CLOCKID,	clockid,	false),
2863 	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
2864 	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
2865 	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2866 	FEAT_OPR(COMPRESSED,	compressed,	false),
2867 };
2868 
2869 struct header_print_data {
2870 	FILE *fp;
2871 	bool full; /* extended list of headers */
2872 };
2873 
2874 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2875 					   struct perf_header *ph,
2876 					   int feat, int fd, void *data)
2877 {
2878 	struct header_print_data *hd = data;
2879 	struct feat_fd ff;
2880 
2881 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2882 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2883 				"%d, continuing...\n", section->offset, feat);
2884 		return 0;
2885 	}
2886 	if (feat >= HEADER_LAST_FEATURE) {
2887 		pr_warning("unknown feature %d\n", feat);
2888 		return 0;
2889 	}
2890 	if (!feat_ops[feat].print)
2891 		return 0;
2892 
2893 	ff = (struct  feat_fd) {
2894 		.fd = fd,
2895 		.ph = ph,
2896 	};
2897 
2898 	if (!feat_ops[feat].full_only || hd->full)
2899 		feat_ops[feat].print(&ff, hd->fp);
2900 	else
2901 		fprintf(hd->fp, "# %s info available, use -I to display\n",
2902 			feat_ops[feat].name);
2903 
2904 	return 0;
2905 }
2906 
2907 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2908 {
2909 	struct header_print_data hd;
2910 	struct perf_header *header = &session->header;
2911 	int fd = perf_data__fd(session->data);
2912 	struct stat st;
2913 	time_t stctime;
2914 	int ret, bit;
2915 
2916 	hd.fp = fp;
2917 	hd.full = full;
2918 
2919 	ret = fstat(fd, &st);
2920 	if (ret == -1)
2921 		return -1;
2922 
2923 	stctime = st.st_ctime;
2924 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
2925 
2926 	fprintf(fp, "# header version : %u\n", header->version);
2927 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2928 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2929 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2930 
2931 	perf_header__process_sections(header, fd, &hd,
2932 				      perf_file_section__fprintf_info);
2933 
2934 	if (session->data->is_pipe)
2935 		return 0;
2936 
2937 	fprintf(fp, "# missing features: ");
2938 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2939 		if (bit)
2940 			fprintf(fp, "%s ", feat_ops[bit].name);
2941 	}
2942 
2943 	fprintf(fp, "\n");
2944 	return 0;
2945 }
2946 
2947 static int do_write_feat(struct feat_fd *ff, int type,
2948 			 struct perf_file_section **p,
2949 			 struct perf_evlist *evlist)
2950 {
2951 	int err;
2952 	int ret = 0;
2953 
2954 	if (perf_header__has_feat(ff->ph, type)) {
2955 		if (!feat_ops[type].write)
2956 			return -1;
2957 
2958 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2959 			return -1;
2960 
2961 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2962 
2963 		err = feat_ops[type].write(ff, evlist);
2964 		if (err < 0) {
2965 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2966 
2967 			/* undo anything written */
2968 			lseek(ff->fd, (*p)->offset, SEEK_SET);
2969 
2970 			return -1;
2971 		}
2972 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2973 		(*p)++;
2974 	}
2975 	return ret;
2976 }
2977 
2978 static int perf_header__adds_write(struct perf_header *header,
2979 				   struct perf_evlist *evlist, int fd)
2980 {
2981 	int nr_sections;
2982 	struct feat_fd ff;
2983 	struct perf_file_section *feat_sec, *p;
2984 	int sec_size;
2985 	u64 sec_start;
2986 	int feat;
2987 	int err;
2988 
2989 	ff = (struct feat_fd){
2990 		.fd  = fd,
2991 		.ph = header,
2992 	};
2993 
2994 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2995 	if (!nr_sections)
2996 		return 0;
2997 
2998 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2999 	if (feat_sec == NULL)
3000 		return -ENOMEM;
3001 
3002 	sec_size = sizeof(*feat_sec) * nr_sections;
3003 
3004 	sec_start = header->feat_offset;
3005 	lseek(fd, sec_start + sec_size, SEEK_SET);
3006 
3007 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3008 		if (do_write_feat(&ff, feat, &p, evlist))
3009 			perf_header__clear_feat(header, feat);
3010 	}
3011 
3012 	lseek(fd, sec_start, SEEK_SET);
3013 	/*
3014 	 * may write more than needed due to dropped feature, but
3015 	 * this is okay, reader will skip the missing entries
3016 	 */
3017 	err = do_write(&ff, feat_sec, sec_size);
3018 	if (err < 0)
3019 		pr_debug("failed to write feature section\n");
3020 	free(feat_sec);
3021 	return err;
3022 }
3023 
3024 int perf_header__write_pipe(int fd)
3025 {
3026 	struct perf_pipe_file_header f_header;
3027 	struct feat_fd ff;
3028 	int err;
3029 
3030 	ff = (struct feat_fd){ .fd = fd };
3031 
3032 	f_header = (struct perf_pipe_file_header){
3033 		.magic	   = PERF_MAGIC,
3034 		.size	   = sizeof(f_header),
3035 	};
3036 
3037 	err = do_write(&ff, &f_header, sizeof(f_header));
3038 	if (err < 0) {
3039 		pr_debug("failed to write perf pipe header\n");
3040 		return err;
3041 	}
3042 
3043 	return 0;
3044 }
3045 
3046 int perf_session__write_header(struct perf_session *session,
3047 			       struct perf_evlist *evlist,
3048 			       int fd, bool at_exit)
3049 {
3050 	struct perf_file_header f_header;
3051 	struct perf_file_attr   f_attr;
3052 	struct perf_header *header = &session->header;
3053 	struct perf_evsel *evsel;
3054 	struct feat_fd ff;
3055 	u64 attr_offset;
3056 	int err;
3057 
3058 	ff = (struct feat_fd){ .fd = fd};
3059 	lseek(fd, sizeof(f_header), SEEK_SET);
3060 
3061 	evlist__for_each_entry(session->evlist, evsel) {
3062 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3063 		err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
3064 		if (err < 0) {
3065 			pr_debug("failed to write perf header\n");
3066 			return err;
3067 		}
3068 	}
3069 
3070 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3071 
3072 	evlist__for_each_entry(evlist, evsel) {
3073 		f_attr = (struct perf_file_attr){
3074 			.attr = evsel->attr,
3075 			.ids  = {
3076 				.offset = evsel->id_offset,
3077 				.size   = evsel->ids * sizeof(u64),
3078 			}
3079 		};
3080 		err = do_write(&ff, &f_attr, sizeof(f_attr));
3081 		if (err < 0) {
3082 			pr_debug("failed to write perf header attribute\n");
3083 			return err;
3084 		}
3085 	}
3086 
3087 	if (!header->data_offset)
3088 		header->data_offset = lseek(fd, 0, SEEK_CUR);
3089 	header->feat_offset = header->data_offset + header->data_size;
3090 
3091 	if (at_exit) {
3092 		err = perf_header__adds_write(header, evlist, fd);
3093 		if (err < 0)
3094 			return err;
3095 	}
3096 
3097 	f_header = (struct perf_file_header){
3098 		.magic	   = PERF_MAGIC,
3099 		.size	   = sizeof(f_header),
3100 		.attr_size = sizeof(f_attr),
3101 		.attrs = {
3102 			.offset = attr_offset,
3103 			.size   = evlist->nr_entries * sizeof(f_attr),
3104 		},
3105 		.data = {
3106 			.offset = header->data_offset,
3107 			.size	= header->data_size,
3108 		},
3109 		/* event_types is ignored, store zeros */
3110 	};
3111 
3112 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3113 
3114 	lseek(fd, 0, SEEK_SET);
3115 	err = do_write(&ff, &f_header, sizeof(f_header));
3116 	if (err < 0) {
3117 		pr_debug("failed to write perf header\n");
3118 		return err;
3119 	}
3120 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3121 
3122 	return 0;
3123 }
3124 
3125 static int perf_header__getbuffer64(struct perf_header *header,
3126 				    int fd, void *buf, size_t size)
3127 {
3128 	if (readn(fd, buf, size) <= 0)
3129 		return -1;
3130 
3131 	if (header->needs_swap)
3132 		mem_bswap_64(buf, size);
3133 
3134 	return 0;
3135 }
3136 
3137 int perf_header__process_sections(struct perf_header *header, int fd,
3138 				  void *data,
3139 				  int (*process)(struct perf_file_section *section,
3140 						 struct perf_header *ph,
3141 						 int feat, int fd, void *data))
3142 {
3143 	struct perf_file_section *feat_sec, *sec;
3144 	int nr_sections;
3145 	int sec_size;
3146 	int feat;
3147 	int err;
3148 
3149 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3150 	if (!nr_sections)
3151 		return 0;
3152 
3153 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3154 	if (!feat_sec)
3155 		return -1;
3156 
3157 	sec_size = sizeof(*feat_sec) * nr_sections;
3158 
3159 	lseek(fd, header->feat_offset, SEEK_SET);
3160 
3161 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3162 	if (err < 0)
3163 		goto out_free;
3164 
3165 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3166 		err = process(sec++, header, feat, fd, data);
3167 		if (err < 0)
3168 			goto out_free;
3169 	}
3170 	err = 0;
3171 out_free:
3172 	free(feat_sec);
3173 	return err;
3174 }
3175 
3176 static const int attr_file_abi_sizes[] = {
3177 	[0] = PERF_ATTR_SIZE_VER0,
3178 	[1] = PERF_ATTR_SIZE_VER1,
3179 	[2] = PERF_ATTR_SIZE_VER2,
3180 	[3] = PERF_ATTR_SIZE_VER3,
3181 	[4] = PERF_ATTR_SIZE_VER4,
3182 	0,
3183 };
3184 
3185 /*
3186  * In the legacy file format, the magic number is not used to encode endianness.
3187  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3188  * on ABI revisions, we need to try all combinations for all endianness to
3189  * detect the endianness.
3190  */
3191 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3192 {
3193 	uint64_t ref_size, attr_size;
3194 	int i;
3195 
3196 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3197 		ref_size = attr_file_abi_sizes[i]
3198 			 + sizeof(struct perf_file_section);
3199 		if (hdr_sz != ref_size) {
3200 			attr_size = bswap_64(hdr_sz);
3201 			if (attr_size != ref_size)
3202 				continue;
3203 
3204 			ph->needs_swap = true;
3205 		}
3206 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3207 			 i,
3208 			 ph->needs_swap);
3209 		return 0;
3210 	}
3211 	/* could not determine endianness */
3212 	return -1;
3213 }
3214 
3215 #define PERF_PIPE_HDR_VER0	16
3216 
3217 static const size_t attr_pipe_abi_sizes[] = {
3218 	[0] = PERF_PIPE_HDR_VER0,
3219 	0,
3220 };
3221 
3222 /*
3223  * In the legacy pipe format, there is an implicit assumption that endiannesss
3224  * between host recording the samples, and host parsing the samples is the
3225  * same. This is not always the case given that the pipe output may always be
3226  * redirected into a file and analyzed on a different machine with possibly a
3227  * different endianness and perf_event ABI revsions in the perf tool itself.
3228  */
3229 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3230 {
3231 	u64 attr_size;
3232 	int i;
3233 
3234 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3235 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3236 			attr_size = bswap_64(hdr_sz);
3237 			if (attr_size != hdr_sz)
3238 				continue;
3239 
3240 			ph->needs_swap = true;
3241 		}
3242 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3243 		return 0;
3244 	}
3245 	return -1;
3246 }
3247 
3248 bool is_perf_magic(u64 magic)
3249 {
3250 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3251 		|| magic == __perf_magic2
3252 		|| magic == __perf_magic2_sw)
3253 		return true;
3254 
3255 	return false;
3256 }
3257 
3258 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3259 			      bool is_pipe, struct perf_header *ph)
3260 {
3261 	int ret;
3262 
3263 	/* check for legacy format */
3264 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3265 	if (ret == 0) {
3266 		ph->version = PERF_HEADER_VERSION_1;
3267 		pr_debug("legacy perf.data format\n");
3268 		if (is_pipe)
3269 			return try_all_pipe_abis(hdr_sz, ph);
3270 
3271 		return try_all_file_abis(hdr_sz, ph);
3272 	}
3273 	/*
3274 	 * the new magic number serves two purposes:
3275 	 * - unique number to identify actual perf.data files
3276 	 * - encode endianness of file
3277 	 */
3278 	ph->version = PERF_HEADER_VERSION_2;
3279 
3280 	/* check magic number with one endianness */
3281 	if (magic == __perf_magic2)
3282 		return 0;
3283 
3284 	/* check magic number with opposite endianness */
3285 	if (magic != __perf_magic2_sw)
3286 		return -1;
3287 
3288 	ph->needs_swap = true;
3289 
3290 	return 0;
3291 }
3292 
3293 int perf_file_header__read(struct perf_file_header *header,
3294 			   struct perf_header *ph, int fd)
3295 {
3296 	ssize_t ret;
3297 
3298 	lseek(fd, 0, SEEK_SET);
3299 
3300 	ret = readn(fd, header, sizeof(*header));
3301 	if (ret <= 0)
3302 		return -1;
3303 
3304 	if (check_magic_endian(header->magic,
3305 			       header->attr_size, false, ph) < 0) {
3306 		pr_debug("magic/endian check failed\n");
3307 		return -1;
3308 	}
3309 
3310 	if (ph->needs_swap) {
3311 		mem_bswap_64(header, offsetof(struct perf_file_header,
3312 			     adds_features));
3313 	}
3314 
3315 	if (header->size != sizeof(*header)) {
3316 		/* Support the previous format */
3317 		if (header->size == offsetof(typeof(*header), adds_features))
3318 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3319 		else
3320 			return -1;
3321 	} else if (ph->needs_swap) {
3322 		/*
3323 		 * feature bitmap is declared as an array of unsigned longs --
3324 		 * not good since its size can differ between the host that
3325 		 * generated the data file and the host analyzing the file.
3326 		 *
3327 		 * We need to handle endianness, but we don't know the size of
3328 		 * the unsigned long where the file was generated. Take a best
3329 		 * guess at determining it: try 64-bit swap first (ie., file
3330 		 * created on a 64-bit host), and check if the hostname feature
3331 		 * bit is set (this feature bit is forced on as of fbe96f2).
3332 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3333 		 * swap. If the hostname bit is still not set (e.g., older data
3334 		 * file), punt and fallback to the original behavior --
3335 		 * clearing all feature bits and setting buildid.
3336 		 */
3337 		mem_bswap_64(&header->adds_features,
3338 			    BITS_TO_U64(HEADER_FEAT_BITS));
3339 
3340 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3341 			/* unswap as u64 */
3342 			mem_bswap_64(&header->adds_features,
3343 				    BITS_TO_U64(HEADER_FEAT_BITS));
3344 
3345 			/* unswap as u32 */
3346 			mem_bswap_32(&header->adds_features,
3347 				    BITS_TO_U32(HEADER_FEAT_BITS));
3348 		}
3349 
3350 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3351 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3352 			set_bit(HEADER_BUILD_ID, header->adds_features);
3353 		}
3354 	}
3355 
3356 	memcpy(&ph->adds_features, &header->adds_features,
3357 	       sizeof(ph->adds_features));
3358 
3359 	ph->data_offset  = header->data.offset;
3360 	ph->data_size	 = header->data.size;
3361 	ph->feat_offset  = header->data.offset + header->data.size;
3362 	return 0;
3363 }
3364 
3365 static int perf_file_section__process(struct perf_file_section *section,
3366 				      struct perf_header *ph,
3367 				      int feat, int fd, void *data)
3368 {
3369 	struct feat_fd fdd = {
3370 		.fd	= fd,
3371 		.ph	= ph,
3372 		.size	= section->size,
3373 		.offset	= section->offset,
3374 	};
3375 
3376 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3377 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3378 			  "%d, continuing...\n", section->offset, feat);
3379 		return 0;
3380 	}
3381 
3382 	if (feat >= HEADER_LAST_FEATURE) {
3383 		pr_debug("unknown feature %d, continuing...\n", feat);
3384 		return 0;
3385 	}
3386 
3387 	if (!feat_ops[feat].process)
3388 		return 0;
3389 
3390 	return feat_ops[feat].process(&fdd, data);
3391 }
3392 
3393 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3394 				       struct perf_header *ph, int fd,
3395 				       bool repipe)
3396 {
3397 	struct feat_fd ff = {
3398 		.fd = STDOUT_FILENO,
3399 		.ph = ph,
3400 	};
3401 	ssize_t ret;
3402 
3403 	ret = readn(fd, header, sizeof(*header));
3404 	if (ret <= 0)
3405 		return -1;
3406 
3407 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3408 		pr_debug("endian/magic failed\n");
3409 		return -1;
3410 	}
3411 
3412 	if (ph->needs_swap)
3413 		header->size = bswap_64(header->size);
3414 
3415 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3416 		return -1;
3417 
3418 	return 0;
3419 }
3420 
3421 static int perf_header__read_pipe(struct perf_session *session)
3422 {
3423 	struct perf_header *header = &session->header;
3424 	struct perf_pipe_file_header f_header;
3425 
3426 	if (perf_file_header__read_pipe(&f_header, header,
3427 					perf_data__fd(session->data),
3428 					session->repipe) < 0) {
3429 		pr_debug("incompatible file format\n");
3430 		return -EINVAL;
3431 	}
3432 
3433 	return 0;
3434 }
3435 
3436 static int read_attr(int fd, struct perf_header *ph,
3437 		     struct perf_file_attr *f_attr)
3438 {
3439 	struct perf_event_attr *attr = &f_attr->attr;
3440 	size_t sz, left;
3441 	size_t our_sz = sizeof(f_attr->attr);
3442 	ssize_t ret;
3443 
3444 	memset(f_attr, 0, sizeof(*f_attr));
3445 
3446 	/* read minimal guaranteed structure */
3447 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3448 	if (ret <= 0) {
3449 		pr_debug("cannot read %d bytes of header attr\n",
3450 			 PERF_ATTR_SIZE_VER0);
3451 		return -1;
3452 	}
3453 
3454 	/* on file perf_event_attr size */
3455 	sz = attr->size;
3456 
3457 	if (ph->needs_swap)
3458 		sz = bswap_32(sz);
3459 
3460 	if (sz == 0) {
3461 		/* assume ABI0 */
3462 		sz =  PERF_ATTR_SIZE_VER0;
3463 	} else if (sz > our_sz) {
3464 		pr_debug("file uses a more recent and unsupported ABI"
3465 			 " (%zu bytes extra)\n", sz - our_sz);
3466 		return -1;
3467 	}
3468 	/* what we have not yet read and that we know about */
3469 	left = sz - PERF_ATTR_SIZE_VER0;
3470 	if (left) {
3471 		void *ptr = attr;
3472 		ptr += PERF_ATTR_SIZE_VER0;
3473 
3474 		ret = readn(fd, ptr, left);
3475 	}
3476 	/* read perf_file_section, ids are read in caller */
3477 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3478 
3479 	return ret <= 0 ? -1 : 0;
3480 }
3481 
3482 static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
3483 						struct tep_handle *pevent)
3484 {
3485 	struct tep_event *event;
3486 	char bf[128];
3487 
3488 	/* already prepared */
3489 	if (evsel->tp_format)
3490 		return 0;
3491 
3492 	if (pevent == NULL) {
3493 		pr_debug("broken or missing trace data\n");
3494 		return -1;
3495 	}
3496 
3497 	event = tep_find_event(pevent, evsel->attr.config);
3498 	if (event == NULL) {
3499 		pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3500 		return -1;
3501 	}
3502 
3503 	if (!evsel->name) {
3504 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3505 		evsel->name = strdup(bf);
3506 		if (evsel->name == NULL)
3507 			return -1;
3508 	}
3509 
3510 	evsel->tp_format = event;
3511 	return 0;
3512 }
3513 
3514 static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
3515 						  struct tep_handle *pevent)
3516 {
3517 	struct perf_evsel *pos;
3518 
3519 	evlist__for_each_entry(evlist, pos) {
3520 		if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
3521 		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3522 			return -1;
3523 	}
3524 
3525 	return 0;
3526 }
3527 
3528 int perf_session__read_header(struct perf_session *session)
3529 {
3530 	struct perf_data *data = session->data;
3531 	struct perf_header *header = &session->header;
3532 	struct perf_file_header	f_header;
3533 	struct perf_file_attr	f_attr;
3534 	u64			f_id;
3535 	int nr_attrs, nr_ids, i, j;
3536 	int fd = perf_data__fd(data);
3537 
3538 	session->evlist = perf_evlist__new();
3539 	if (session->evlist == NULL)
3540 		return -ENOMEM;
3541 
3542 	session->evlist->env = &header->env;
3543 	session->machines.host.env = &header->env;
3544 	if (perf_data__is_pipe(data))
3545 		return perf_header__read_pipe(session);
3546 
3547 	if (perf_file_header__read(&f_header, header, fd) < 0)
3548 		return -EINVAL;
3549 
3550 	/*
3551 	 * Sanity check that perf.data was written cleanly; data size is
3552 	 * initialized to 0 and updated only if the on_exit function is run.
3553 	 * If data size is still 0 then the file contains only partial
3554 	 * information.  Just warn user and process it as much as it can.
3555 	 */
3556 	if (f_header.data.size == 0) {
3557 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3558 			   "Was the 'perf record' command properly terminated?\n",
3559 			   data->file.path);
3560 	}
3561 
3562 	if (f_header.attr_size == 0) {
3563 		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3564 		       "Was the 'perf record' command properly terminated?\n",
3565 		       data->file.path);
3566 		return -EINVAL;
3567 	}
3568 
3569 	nr_attrs = f_header.attrs.size / f_header.attr_size;
3570 	lseek(fd, f_header.attrs.offset, SEEK_SET);
3571 
3572 	for (i = 0; i < nr_attrs; i++) {
3573 		struct perf_evsel *evsel;
3574 		off_t tmp;
3575 
3576 		if (read_attr(fd, header, &f_attr) < 0)
3577 			goto out_errno;
3578 
3579 		if (header->needs_swap) {
3580 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3581 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3582 			perf_event__attr_swap(&f_attr.attr);
3583 		}
3584 
3585 		tmp = lseek(fd, 0, SEEK_CUR);
3586 		evsel = perf_evsel__new(&f_attr.attr);
3587 
3588 		if (evsel == NULL)
3589 			goto out_delete_evlist;
3590 
3591 		evsel->needs_swap = header->needs_swap;
3592 		/*
3593 		 * Do it before so that if perf_evsel__alloc_id fails, this
3594 		 * entry gets purged too at perf_evlist__delete().
3595 		 */
3596 		perf_evlist__add(session->evlist, evsel);
3597 
3598 		nr_ids = f_attr.ids.size / sizeof(u64);
3599 		/*
3600 		 * We don't have the cpu and thread maps on the header, so
3601 		 * for allocating the perf_sample_id table we fake 1 cpu and
3602 		 * hattr->ids threads.
3603 		 */
3604 		if (perf_evsel__alloc_id(evsel, 1, nr_ids))
3605 			goto out_delete_evlist;
3606 
3607 		lseek(fd, f_attr.ids.offset, SEEK_SET);
3608 
3609 		for (j = 0; j < nr_ids; j++) {
3610 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3611 				goto out_errno;
3612 
3613 			perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3614 		}
3615 
3616 		lseek(fd, tmp, SEEK_SET);
3617 	}
3618 
3619 	perf_header__process_sections(header, fd, &session->tevent,
3620 				      perf_file_section__process);
3621 
3622 	if (perf_evlist__prepare_tracepoint_events(session->evlist,
3623 						   session->tevent.pevent))
3624 		goto out_delete_evlist;
3625 
3626 	return 0;
3627 out_errno:
3628 	return -errno;
3629 
3630 out_delete_evlist:
3631 	perf_evlist__delete(session->evlist);
3632 	session->evlist = NULL;
3633 	return -ENOMEM;
3634 }
3635 
3636 int perf_event__synthesize_attr(struct perf_tool *tool,
3637 				struct perf_event_attr *attr, u32 ids, u64 *id,
3638 				perf_event__handler_t process)
3639 {
3640 	union perf_event *ev;
3641 	size_t size;
3642 	int err;
3643 
3644 	size = sizeof(struct perf_event_attr);
3645 	size = PERF_ALIGN(size, sizeof(u64));
3646 	size += sizeof(struct perf_event_header);
3647 	size += ids * sizeof(u64);
3648 
3649 	ev = zalloc(size);
3650 
3651 	if (ev == NULL)
3652 		return -ENOMEM;
3653 
3654 	ev->attr.attr = *attr;
3655 	memcpy(ev->attr.id, id, ids * sizeof(u64));
3656 
3657 	ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3658 	ev->attr.header.size = (u16)size;
3659 
3660 	if (ev->attr.header.size == size)
3661 		err = process(tool, ev, NULL, NULL);
3662 	else
3663 		err = -E2BIG;
3664 
3665 	free(ev);
3666 
3667 	return err;
3668 }
3669 
3670 int perf_event__synthesize_features(struct perf_tool *tool,
3671 				    struct perf_session *session,
3672 				    struct perf_evlist *evlist,
3673 				    perf_event__handler_t process)
3674 {
3675 	struct perf_header *header = &session->header;
3676 	struct feat_fd ff;
3677 	struct feature_event *fe;
3678 	size_t sz, sz_hdr;
3679 	int feat, ret;
3680 
3681 	sz_hdr = sizeof(fe->header);
3682 	sz = sizeof(union perf_event);
3683 	/* get a nice alignment */
3684 	sz = PERF_ALIGN(sz, page_size);
3685 
3686 	memset(&ff, 0, sizeof(ff));
3687 
3688 	ff.buf = malloc(sz);
3689 	if (!ff.buf)
3690 		return -ENOMEM;
3691 
3692 	ff.size = sz - sz_hdr;
3693 	ff.ph = &session->header;
3694 
3695 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3696 		if (!feat_ops[feat].synthesize) {
3697 			pr_debug("No record header feature for header :%d\n", feat);
3698 			continue;
3699 		}
3700 
3701 		ff.offset = sizeof(*fe);
3702 
3703 		ret = feat_ops[feat].write(&ff, evlist);
3704 		if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
3705 			pr_debug("Error writing feature\n");
3706 			continue;
3707 		}
3708 		/* ff.buf may have changed due to realloc in do_write() */
3709 		fe = ff.buf;
3710 		memset(fe, 0, sizeof(*fe));
3711 
3712 		fe->feat_id = feat;
3713 		fe->header.type = PERF_RECORD_HEADER_FEATURE;
3714 		fe->header.size = ff.offset;
3715 
3716 		ret = process(tool, ff.buf, NULL, NULL);
3717 		if (ret) {
3718 			free(ff.buf);
3719 			return ret;
3720 		}
3721 	}
3722 
3723 	/* Send HEADER_LAST_FEATURE mark. */
3724 	fe = ff.buf;
3725 	fe->feat_id     = HEADER_LAST_FEATURE;
3726 	fe->header.type = PERF_RECORD_HEADER_FEATURE;
3727 	fe->header.size = sizeof(*fe);
3728 
3729 	ret = process(tool, ff.buf, NULL, NULL);
3730 
3731 	free(ff.buf);
3732 	return ret;
3733 }
3734 
3735 int perf_event__process_feature(struct perf_session *session,
3736 				union perf_event *event)
3737 {
3738 	struct perf_tool *tool = session->tool;
3739 	struct feat_fd ff = { .fd = 0 };
3740 	struct feature_event *fe = (struct feature_event *)event;
3741 	int type = fe->header.type;
3742 	u64 feat = fe->feat_id;
3743 
3744 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3745 		pr_warning("invalid record type %d in pipe-mode\n", type);
3746 		return 0;
3747 	}
3748 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3749 		pr_warning("invalid record type %d in pipe-mode\n", type);
3750 		return -1;
3751 	}
3752 
3753 	if (!feat_ops[feat].process)
3754 		return 0;
3755 
3756 	ff.buf  = (void *)fe->data;
3757 	ff.size = event->header.size - sizeof(*fe);
3758 	ff.ph = &session->header;
3759 
3760 	if (feat_ops[feat].process(&ff, NULL))
3761 		return -1;
3762 
3763 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3764 		return 0;
3765 
3766 	if (!feat_ops[feat].full_only ||
3767 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3768 		feat_ops[feat].print(&ff, stdout);
3769 	} else {
3770 		fprintf(stdout, "# %s info available, use -I to display\n",
3771 			feat_ops[feat].name);
3772 	}
3773 
3774 	return 0;
3775 }
3776 
3777 static struct event_update_event *
3778 event_update_event__new(size_t size, u64 type, u64 id)
3779 {
3780 	struct event_update_event *ev;
3781 
3782 	size += sizeof(*ev);
3783 	size  = PERF_ALIGN(size, sizeof(u64));
3784 
3785 	ev = zalloc(size);
3786 	if (ev) {
3787 		ev->header.type = PERF_RECORD_EVENT_UPDATE;
3788 		ev->header.size = (u16)size;
3789 		ev->type = type;
3790 		ev->id = id;
3791 	}
3792 	return ev;
3793 }
3794 
3795 int
3796 perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3797 					 struct perf_evsel *evsel,
3798 					 perf_event__handler_t process)
3799 {
3800 	struct event_update_event *ev;
3801 	size_t size = strlen(evsel->unit);
3802 	int err;
3803 
3804 	ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3805 	if (ev == NULL)
3806 		return -ENOMEM;
3807 
3808 	strlcpy(ev->data, evsel->unit, size + 1);
3809 	err = process(tool, (union perf_event *)ev, NULL, NULL);
3810 	free(ev);
3811 	return err;
3812 }
3813 
3814 int
3815 perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3816 					  struct perf_evsel *evsel,
3817 					  perf_event__handler_t process)
3818 {
3819 	struct event_update_event *ev;
3820 	struct event_update_event_scale *ev_data;
3821 	int err;
3822 
3823 	ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3824 	if (ev == NULL)
3825 		return -ENOMEM;
3826 
3827 	ev_data = (struct event_update_event_scale *) ev->data;
3828 	ev_data->scale = evsel->scale;
3829 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3830 	free(ev);
3831 	return err;
3832 }
3833 
3834 int
3835 perf_event__synthesize_event_update_name(struct perf_tool *tool,
3836 					 struct perf_evsel *evsel,
3837 					 perf_event__handler_t process)
3838 {
3839 	struct event_update_event *ev;
3840 	size_t len = strlen(evsel->name);
3841 	int err;
3842 
3843 	ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3844 	if (ev == NULL)
3845 		return -ENOMEM;
3846 
3847 	strlcpy(ev->data, evsel->name, len + 1);
3848 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3849 	free(ev);
3850 	return err;
3851 }
3852 
3853 int
3854 perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3855 					struct perf_evsel *evsel,
3856 					perf_event__handler_t process)
3857 {
3858 	size_t size = sizeof(struct event_update_event);
3859 	struct event_update_event *ev;
3860 	int max, err;
3861 	u16 type;
3862 
3863 	if (!evsel->own_cpus)
3864 		return 0;
3865 
3866 	ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
3867 	if (!ev)
3868 		return -ENOMEM;
3869 
3870 	ev->header.type = PERF_RECORD_EVENT_UPDATE;
3871 	ev->header.size = (u16)size;
3872 	ev->type = PERF_EVENT_UPDATE__CPUS;
3873 	ev->id   = evsel->id[0];
3874 
3875 	cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3876 				 evsel->own_cpus,
3877 				 type, max);
3878 
3879 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3880 	free(ev);
3881 	return err;
3882 }
3883 
3884 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3885 {
3886 	struct event_update_event *ev = &event->event_update;
3887 	struct event_update_event_scale *ev_scale;
3888 	struct event_update_event_cpus *ev_cpus;
3889 	struct cpu_map *map;
3890 	size_t ret;
3891 
3892 	ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);
3893 
3894 	switch (ev->type) {
3895 	case PERF_EVENT_UPDATE__SCALE:
3896 		ev_scale = (struct event_update_event_scale *) ev->data;
3897 		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3898 		break;
3899 	case PERF_EVENT_UPDATE__UNIT:
3900 		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3901 		break;
3902 	case PERF_EVENT_UPDATE__NAME:
3903 		ret += fprintf(fp, "... name:  %s\n", ev->data);
3904 		break;
3905 	case PERF_EVENT_UPDATE__CPUS:
3906 		ev_cpus = (struct event_update_event_cpus *) ev->data;
3907 		ret += fprintf(fp, "... ");
3908 
3909 		map = cpu_map__new_data(&ev_cpus->cpus);
3910 		if (map)
3911 			ret += cpu_map__fprintf(map, fp);
3912 		else
3913 			ret += fprintf(fp, "failed to get cpus\n");
3914 		break;
3915 	default:
3916 		ret += fprintf(fp, "... unknown type\n");
3917 		break;
3918 	}
3919 
3920 	return ret;
3921 }
3922 
3923 int perf_event__synthesize_attrs(struct perf_tool *tool,
3924 				 struct perf_evlist *evlist,
3925 				 perf_event__handler_t process)
3926 {
3927 	struct perf_evsel *evsel;
3928 	int err = 0;
3929 
3930 	evlist__for_each_entry(evlist, evsel) {
3931 		err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
3932 						  evsel->id, process);
3933 		if (err) {
3934 			pr_debug("failed to create perf header attribute\n");
3935 			return err;
3936 		}
3937 	}
3938 
3939 	return err;
3940 }
3941 
3942 static bool has_unit(struct perf_evsel *counter)
3943 {
3944 	return counter->unit && *counter->unit;
3945 }
3946 
3947 static bool has_scale(struct perf_evsel *counter)
3948 {
3949 	return counter->scale != 1;
3950 }
3951 
3952 int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3953 				      struct perf_evlist *evsel_list,
3954 				      perf_event__handler_t process,
3955 				      bool is_pipe)
3956 {
3957 	struct perf_evsel *counter;
3958 	int err;
3959 
3960 	/*
3961 	 * Synthesize other events stuff not carried within
3962 	 * attr event - unit, scale, name
3963 	 */
3964 	evlist__for_each_entry(evsel_list, counter) {
3965 		if (!counter->supported)
3966 			continue;
3967 
3968 		/*
3969 		 * Synthesize unit and scale only if it's defined.
3970 		 */
3971 		if (has_unit(counter)) {
3972 			err = perf_event__synthesize_event_update_unit(tool, counter, process);
3973 			if (err < 0) {
3974 				pr_err("Couldn't synthesize evsel unit.\n");
3975 				return err;
3976 			}
3977 		}
3978 
3979 		if (has_scale(counter)) {
3980 			err = perf_event__synthesize_event_update_scale(tool, counter, process);
3981 			if (err < 0) {
3982 				pr_err("Couldn't synthesize evsel counter.\n");
3983 				return err;
3984 			}
3985 		}
3986 
3987 		if (counter->own_cpus) {
3988 			err = perf_event__synthesize_event_update_cpus(tool, counter, process);
3989 			if (err < 0) {
3990 				pr_err("Couldn't synthesize evsel cpus.\n");
3991 				return err;
3992 			}
3993 		}
3994 
3995 		/*
3996 		 * Name is needed only for pipe output,
3997 		 * perf.data carries event names.
3998 		 */
3999 		if (is_pipe) {
4000 			err = perf_event__synthesize_event_update_name(tool, counter, process);
4001 			if (err < 0) {
4002 				pr_err("Couldn't synthesize evsel name.\n");
4003 				return err;
4004 			}
4005 		}
4006 	}
4007 	return 0;
4008 }
4009 
4010 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4011 			     union perf_event *event,
4012 			     struct perf_evlist **pevlist)
4013 {
4014 	u32 i, ids, n_ids;
4015 	struct perf_evsel *evsel;
4016 	struct perf_evlist *evlist = *pevlist;
4017 
4018 	if (evlist == NULL) {
4019 		*pevlist = evlist = perf_evlist__new();
4020 		if (evlist == NULL)
4021 			return -ENOMEM;
4022 	}
4023 
4024 	evsel = perf_evsel__new(&event->attr.attr);
4025 	if (evsel == NULL)
4026 		return -ENOMEM;
4027 
4028 	perf_evlist__add(evlist, evsel);
4029 
4030 	ids = event->header.size;
4031 	ids -= (void *)&event->attr.id - (void *)event;
4032 	n_ids = ids / sizeof(u64);
4033 	/*
4034 	 * We don't have the cpu and thread maps on the header, so
4035 	 * for allocating the perf_sample_id table we fake 1 cpu and
4036 	 * hattr->ids threads.
4037 	 */
4038 	if (perf_evsel__alloc_id(evsel, 1, n_ids))
4039 		return -ENOMEM;
4040 
4041 	for (i = 0; i < n_ids; i++) {
4042 		perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
4043 	}
4044 
4045 	return 0;
4046 }
4047 
4048 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4049 				     union perf_event *event,
4050 				     struct perf_evlist **pevlist)
4051 {
4052 	struct event_update_event *ev = &event->event_update;
4053 	struct event_update_event_scale *ev_scale;
4054 	struct event_update_event_cpus *ev_cpus;
4055 	struct perf_evlist *evlist;
4056 	struct perf_evsel *evsel;
4057 	struct cpu_map *map;
4058 
4059 	if (!pevlist || *pevlist == NULL)
4060 		return -EINVAL;
4061 
4062 	evlist = *pevlist;
4063 
4064 	evsel = perf_evlist__id2evsel(evlist, ev->id);
4065 	if (evsel == NULL)
4066 		return -EINVAL;
4067 
4068 	switch (ev->type) {
4069 	case PERF_EVENT_UPDATE__UNIT:
4070 		evsel->unit = strdup(ev->data);
4071 		break;
4072 	case PERF_EVENT_UPDATE__NAME:
4073 		evsel->name = strdup(ev->data);
4074 		break;
4075 	case PERF_EVENT_UPDATE__SCALE:
4076 		ev_scale = (struct event_update_event_scale *) ev->data;
4077 		evsel->scale = ev_scale->scale;
4078 		break;
4079 	case PERF_EVENT_UPDATE__CPUS:
4080 		ev_cpus = (struct event_update_event_cpus *) ev->data;
4081 
4082 		map = cpu_map__new_data(&ev_cpus->cpus);
4083 		if (map)
4084 			evsel->own_cpus = map;
4085 		else
4086 			pr_err("failed to get event_update cpus\n");
4087 	default:
4088 		break;
4089 	}
4090 
4091 	return 0;
4092 }
4093 
4094 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
4095 					struct perf_evlist *evlist,
4096 					perf_event__handler_t process)
4097 {
4098 	union perf_event ev;
4099 	struct tracing_data *tdata;
4100 	ssize_t size = 0, aligned_size = 0, padding;
4101 	struct feat_fd ff;
4102 	int err __maybe_unused = 0;
4103 
4104 	/*
4105 	 * We are going to store the size of the data followed
4106 	 * by the data contents. Since the fd descriptor is a pipe,
4107 	 * we cannot seek back to store the size of the data once
4108 	 * we know it. Instead we:
4109 	 *
4110 	 * - write the tracing data to the temp file
4111 	 * - get/write the data size to pipe
4112 	 * - write the tracing data from the temp file
4113 	 *   to the pipe
4114 	 */
4115 	tdata = tracing_data_get(&evlist->entries, fd, true);
4116 	if (!tdata)
4117 		return -1;
4118 
4119 	memset(&ev, 0, sizeof(ev));
4120 
4121 	ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
4122 	size = tdata->size;
4123 	aligned_size = PERF_ALIGN(size, sizeof(u64));
4124 	padding = aligned_size - size;
4125 	ev.tracing_data.header.size = sizeof(ev.tracing_data);
4126 	ev.tracing_data.size = aligned_size;
4127 
4128 	process(tool, &ev, NULL, NULL);
4129 
4130 	/*
4131 	 * The put function will copy all the tracing data
4132 	 * stored in temp file to the pipe.
4133 	 */
4134 	tracing_data_put(tdata);
4135 
4136 	ff = (struct feat_fd){ .fd = fd };
4137 	if (write_padded(&ff, NULL, 0, padding))
4138 		return -1;
4139 
4140 	return aligned_size;
4141 }
4142 
4143 int perf_event__process_tracing_data(struct perf_session *session,
4144 				     union perf_event *event)
4145 {
4146 	ssize_t size_read, padding, size = event->tracing_data.size;
4147 	int fd = perf_data__fd(session->data);
4148 	off_t offset = lseek(fd, 0, SEEK_CUR);
4149 	char buf[BUFSIZ];
4150 
4151 	/* setup for reading amidst mmap */
4152 	lseek(fd, offset + sizeof(struct tracing_data_event),
4153 	      SEEK_SET);
4154 
4155 	size_read = trace_report(fd, &session->tevent,
4156 				 session->repipe);
4157 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4158 
4159 	if (readn(fd, buf, padding) < 0) {
4160 		pr_err("%s: reading input file", __func__);
4161 		return -1;
4162 	}
4163 	if (session->repipe) {
4164 		int retw = write(STDOUT_FILENO, buf, padding);
4165 		if (retw <= 0 || retw != padding) {
4166 			pr_err("%s: repiping tracing data padding", __func__);
4167 			return -1;
4168 		}
4169 	}
4170 
4171 	if (size_read + padding != size) {
4172 		pr_err("%s: tracing data size mismatch", __func__);
4173 		return -1;
4174 	}
4175 
4176 	perf_evlist__prepare_tracepoint_events(session->evlist,
4177 					       session->tevent.pevent);
4178 
4179 	return size_read + padding;
4180 }
4181 
4182 int perf_event__synthesize_build_id(struct perf_tool *tool,
4183 				    struct dso *pos, u16 misc,
4184 				    perf_event__handler_t process,
4185 				    struct machine *machine)
4186 {
4187 	union perf_event ev;
4188 	size_t len;
4189 	int err = 0;
4190 
4191 	if (!pos->hit)
4192 		return err;
4193 
4194 	memset(&ev, 0, sizeof(ev));
4195 
4196 	len = pos->long_name_len + 1;
4197 	len = PERF_ALIGN(len, NAME_ALIGN);
4198 	memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
4199 	ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
4200 	ev.build_id.header.misc = misc;
4201 	ev.build_id.pid = machine->pid;
4202 	ev.build_id.header.size = sizeof(ev.build_id) + len;
4203 	memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
4204 
4205 	err = process(tool, &ev, NULL, machine);
4206 
4207 	return err;
4208 }
4209 
4210 int perf_event__process_build_id(struct perf_session *session,
4211 				 union perf_event *event)
4212 {
4213 	__event_process_build_id(&event->build_id,
4214 				 event->build_id.filename,
4215 				 session);
4216 	return 0;
4217 }
4218