xref: /openbmc/linux/tools/perf/util/header.c (revision 023e4163)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "util.h"
5 #include "string2.h"
6 #include <sys/param.h>
7 #include <sys/types.h>
8 #include <byteswap.h>
9 #include <unistd.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/stringify.h>
17 #include <sys/stat.h>
18 #include <sys/utsname.h>
19 #include <linux/time64.h>
20 #include <dirent.h>
21 #include <bpf/libbpf.h>
22 
23 #include "evlist.h"
24 #include "evsel.h"
25 #include "header.h"
26 #include "memswap.h"
27 #include "../perf.h"
28 #include "trace-event.h"
29 #include "session.h"
30 #include "symbol.h"
31 #include "debug.h"
32 #include "cpumap.h"
33 #include "pmu.h"
34 #include "vdso.h"
35 #include "strbuf.h"
36 #include "build-id.h"
37 #include "data.h"
38 #include <api/fs/fs.h>
39 #include "asm/bug.h"
40 #include "tool.h"
41 #include "time-utils.h"
42 #include "units.h"
43 #include "cputopo.h"
44 #include "bpf-event.h"
45 
46 #include "sane_ctype.h"
47 
48 /*
49  * magic2 = "PERFILE2"
50  * must be a numerical value to let the endianness
51  * determine the memory layout. That way we are able
52  * to detect endianness when reading the perf.data file
53  * back.
54  *
55  * we check for legacy (PERFFILE) format.
56  */
57 static const char *__perf_magic1 = "PERFFILE";
58 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
59 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
60 
61 #define PERF_MAGIC	__perf_magic2
62 
63 const char perf_version_string[] = PERF_VERSION;
64 
65 struct perf_file_attr {
66 	struct perf_event_attr	attr;
67 	struct perf_file_section	ids;
68 };
69 
70 struct feat_fd {
71 	struct perf_header	*ph;
72 	int			fd;
73 	void			*buf;	/* Either buf != NULL or fd >= 0 */
74 	ssize_t			offset;
75 	size_t			size;
76 	struct perf_evsel	*events;
77 };
78 
79 void perf_header__set_feat(struct perf_header *header, int feat)
80 {
81 	set_bit(feat, header->adds_features);
82 }
83 
84 void perf_header__clear_feat(struct perf_header *header, int feat)
85 {
86 	clear_bit(feat, header->adds_features);
87 }
88 
89 bool perf_header__has_feat(const struct perf_header *header, int feat)
90 {
91 	return test_bit(feat, header->adds_features);
92 }
93 
94 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
95 {
96 	ssize_t ret = writen(ff->fd, buf, size);
97 
98 	if (ret != (ssize_t)size)
99 		return ret < 0 ? (int)ret : -1;
100 	return 0;
101 }
102 
103 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
104 {
105 	/* struct perf_event_header::size is u16 */
106 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
107 	size_t new_size = ff->size;
108 	void *addr;
109 
110 	if (size + ff->offset > max_size)
111 		return -E2BIG;
112 
113 	while (size > (new_size - ff->offset))
114 		new_size <<= 1;
115 	new_size = min(max_size, new_size);
116 
117 	if (ff->size < new_size) {
118 		addr = realloc(ff->buf, new_size);
119 		if (!addr)
120 			return -ENOMEM;
121 		ff->buf = addr;
122 		ff->size = new_size;
123 	}
124 
125 	memcpy(ff->buf + ff->offset, buf, size);
126 	ff->offset += size;
127 
128 	return 0;
129 }
130 
131 /* Return: 0 if succeded, -ERR if failed. */
132 int do_write(struct feat_fd *ff, const void *buf, size_t size)
133 {
134 	if (!ff->buf)
135 		return __do_write_fd(ff, buf, size);
136 	return __do_write_buf(ff, buf, size);
137 }
138 
139 /* Return: 0 if succeded, -ERR if failed. */
140 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
141 {
142 	u64 *p = (u64 *) set;
143 	int i, ret;
144 
145 	ret = do_write(ff, &size, sizeof(size));
146 	if (ret < 0)
147 		return ret;
148 
149 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
150 		ret = do_write(ff, p + i, sizeof(*p));
151 		if (ret < 0)
152 			return ret;
153 	}
154 
155 	return 0;
156 }
157 
158 /* Return: 0 if succeded, -ERR if failed. */
159 int write_padded(struct feat_fd *ff, const void *bf,
160 		 size_t count, size_t count_aligned)
161 {
162 	static const char zero_buf[NAME_ALIGN];
163 	int err = do_write(ff, bf, count);
164 
165 	if (!err)
166 		err = do_write(ff, zero_buf, count_aligned - count);
167 
168 	return err;
169 }
170 
171 #define string_size(str)						\
172 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
173 
174 /* Return: 0 if succeded, -ERR if failed. */
175 static int do_write_string(struct feat_fd *ff, const char *str)
176 {
177 	u32 len, olen;
178 	int ret;
179 
180 	olen = strlen(str) + 1;
181 	len = PERF_ALIGN(olen, NAME_ALIGN);
182 
183 	/* write len, incl. \0 */
184 	ret = do_write(ff, &len, sizeof(len));
185 	if (ret < 0)
186 		return ret;
187 
188 	return write_padded(ff, str, olen, len);
189 }
190 
191 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
192 {
193 	ssize_t ret = readn(ff->fd, addr, size);
194 
195 	if (ret != size)
196 		return ret < 0 ? (int)ret : -1;
197 	return 0;
198 }
199 
200 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
201 {
202 	if (size > (ssize_t)ff->size - ff->offset)
203 		return -1;
204 
205 	memcpy(addr, ff->buf + ff->offset, size);
206 	ff->offset += size;
207 
208 	return 0;
209 
210 }
211 
212 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
213 {
214 	if (!ff->buf)
215 		return __do_read_fd(ff, addr, size);
216 	return __do_read_buf(ff, addr, size);
217 }
218 
219 static int do_read_u32(struct feat_fd *ff, u32 *addr)
220 {
221 	int ret;
222 
223 	ret = __do_read(ff, addr, sizeof(*addr));
224 	if (ret)
225 		return ret;
226 
227 	if (ff->ph->needs_swap)
228 		*addr = bswap_32(*addr);
229 	return 0;
230 }
231 
232 static int do_read_u64(struct feat_fd *ff, u64 *addr)
233 {
234 	int ret;
235 
236 	ret = __do_read(ff, addr, sizeof(*addr));
237 	if (ret)
238 		return ret;
239 
240 	if (ff->ph->needs_swap)
241 		*addr = bswap_64(*addr);
242 	return 0;
243 }
244 
245 static char *do_read_string(struct feat_fd *ff)
246 {
247 	u32 len;
248 	char *buf;
249 
250 	if (do_read_u32(ff, &len))
251 		return NULL;
252 
253 	buf = malloc(len);
254 	if (!buf)
255 		return NULL;
256 
257 	if (!__do_read(ff, buf, len)) {
258 		/*
259 		 * strings are padded by zeroes
260 		 * thus the actual strlen of buf
261 		 * may be less than len
262 		 */
263 		return buf;
264 	}
265 
266 	free(buf);
267 	return NULL;
268 }
269 
270 /* Return: 0 if succeded, -ERR if failed. */
271 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
272 {
273 	unsigned long *set;
274 	u64 size, *p;
275 	int i, ret;
276 
277 	ret = do_read_u64(ff, &size);
278 	if (ret)
279 		return ret;
280 
281 	set = bitmap_alloc(size);
282 	if (!set)
283 		return -ENOMEM;
284 
285 	p = (u64 *) set;
286 
287 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
288 		ret = do_read_u64(ff, p + i);
289 		if (ret < 0) {
290 			free(set);
291 			return ret;
292 		}
293 	}
294 
295 	*pset  = set;
296 	*psize = size;
297 	return 0;
298 }
299 
300 static int write_tracing_data(struct feat_fd *ff,
301 			      struct perf_evlist *evlist)
302 {
303 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
304 		return -1;
305 
306 	return read_tracing_data(ff->fd, &evlist->entries);
307 }
308 
309 static int write_build_id(struct feat_fd *ff,
310 			  struct perf_evlist *evlist __maybe_unused)
311 {
312 	struct perf_session *session;
313 	int err;
314 
315 	session = container_of(ff->ph, struct perf_session, header);
316 
317 	if (!perf_session__read_build_ids(session, true))
318 		return -1;
319 
320 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
321 		return -1;
322 
323 	err = perf_session__write_buildid_table(session, ff);
324 	if (err < 0) {
325 		pr_debug("failed to write buildid table\n");
326 		return err;
327 	}
328 	perf_session__cache_build_ids(session);
329 
330 	return 0;
331 }
332 
333 static int write_hostname(struct feat_fd *ff,
334 			  struct perf_evlist *evlist __maybe_unused)
335 {
336 	struct utsname uts;
337 	int ret;
338 
339 	ret = uname(&uts);
340 	if (ret < 0)
341 		return -1;
342 
343 	return do_write_string(ff, uts.nodename);
344 }
345 
346 static int write_osrelease(struct feat_fd *ff,
347 			   struct perf_evlist *evlist __maybe_unused)
348 {
349 	struct utsname uts;
350 	int ret;
351 
352 	ret = uname(&uts);
353 	if (ret < 0)
354 		return -1;
355 
356 	return do_write_string(ff, uts.release);
357 }
358 
359 static int write_arch(struct feat_fd *ff,
360 		      struct perf_evlist *evlist __maybe_unused)
361 {
362 	struct utsname uts;
363 	int ret;
364 
365 	ret = uname(&uts);
366 	if (ret < 0)
367 		return -1;
368 
369 	return do_write_string(ff, uts.machine);
370 }
371 
372 static int write_version(struct feat_fd *ff,
373 			 struct perf_evlist *evlist __maybe_unused)
374 {
375 	return do_write_string(ff, perf_version_string);
376 }
377 
378 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
379 {
380 	FILE *file;
381 	char *buf = NULL;
382 	char *s, *p;
383 	const char *search = cpuinfo_proc;
384 	size_t len = 0;
385 	int ret = -1;
386 
387 	if (!search)
388 		return -1;
389 
390 	file = fopen("/proc/cpuinfo", "r");
391 	if (!file)
392 		return -1;
393 
394 	while (getline(&buf, &len, file) > 0) {
395 		ret = strncmp(buf, search, strlen(search));
396 		if (!ret)
397 			break;
398 	}
399 
400 	if (ret) {
401 		ret = -1;
402 		goto done;
403 	}
404 
405 	s = buf;
406 
407 	p = strchr(buf, ':');
408 	if (p && *(p+1) == ' ' && *(p+2))
409 		s = p + 2;
410 	p = strchr(s, '\n');
411 	if (p)
412 		*p = '\0';
413 
414 	/* squash extra space characters (branding string) */
415 	p = s;
416 	while (*p) {
417 		if (isspace(*p)) {
418 			char *r = p + 1;
419 			char *q = r;
420 			*p = ' ';
421 			while (*q && isspace(*q))
422 				q++;
423 			if (q != (p+1))
424 				while ((*r++ = *q++));
425 		}
426 		p++;
427 	}
428 	ret = do_write_string(ff, s);
429 done:
430 	free(buf);
431 	fclose(file);
432 	return ret;
433 }
434 
435 static int write_cpudesc(struct feat_fd *ff,
436 		       struct perf_evlist *evlist __maybe_unused)
437 {
438 	const char *cpuinfo_procs[] = CPUINFO_PROC;
439 	unsigned int i;
440 
441 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
442 		int ret;
443 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
444 		if (ret >= 0)
445 			return ret;
446 	}
447 	return -1;
448 }
449 
450 
451 static int write_nrcpus(struct feat_fd *ff,
452 			struct perf_evlist *evlist __maybe_unused)
453 {
454 	long nr;
455 	u32 nrc, nra;
456 	int ret;
457 
458 	nrc = cpu__max_present_cpu();
459 
460 	nr = sysconf(_SC_NPROCESSORS_ONLN);
461 	if (nr < 0)
462 		return -1;
463 
464 	nra = (u32)(nr & UINT_MAX);
465 
466 	ret = do_write(ff, &nrc, sizeof(nrc));
467 	if (ret < 0)
468 		return ret;
469 
470 	return do_write(ff, &nra, sizeof(nra));
471 }
472 
473 static int write_event_desc(struct feat_fd *ff,
474 			    struct perf_evlist *evlist)
475 {
476 	struct perf_evsel *evsel;
477 	u32 nre, nri, sz;
478 	int ret;
479 
480 	nre = evlist->nr_entries;
481 
482 	/*
483 	 * write number of events
484 	 */
485 	ret = do_write(ff, &nre, sizeof(nre));
486 	if (ret < 0)
487 		return ret;
488 
489 	/*
490 	 * size of perf_event_attr struct
491 	 */
492 	sz = (u32)sizeof(evsel->attr);
493 	ret = do_write(ff, &sz, sizeof(sz));
494 	if (ret < 0)
495 		return ret;
496 
497 	evlist__for_each_entry(evlist, evsel) {
498 		ret = do_write(ff, &evsel->attr, sz);
499 		if (ret < 0)
500 			return ret;
501 		/*
502 		 * write number of unique id per event
503 		 * there is one id per instance of an event
504 		 *
505 		 * copy into an nri to be independent of the
506 		 * type of ids,
507 		 */
508 		nri = evsel->ids;
509 		ret = do_write(ff, &nri, sizeof(nri));
510 		if (ret < 0)
511 			return ret;
512 
513 		/*
514 		 * write event string as passed on cmdline
515 		 */
516 		ret = do_write_string(ff, perf_evsel__name(evsel));
517 		if (ret < 0)
518 			return ret;
519 		/*
520 		 * write unique ids for this event
521 		 */
522 		ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
523 		if (ret < 0)
524 			return ret;
525 	}
526 	return 0;
527 }
528 
529 static int write_cmdline(struct feat_fd *ff,
530 			 struct perf_evlist *evlist __maybe_unused)
531 {
532 	char pbuf[MAXPATHLEN], *buf;
533 	int i, ret, n;
534 
535 	/* actual path to perf binary */
536 	buf = perf_exe(pbuf, MAXPATHLEN);
537 
538 	/* account for binary path */
539 	n = perf_env.nr_cmdline + 1;
540 
541 	ret = do_write(ff, &n, sizeof(n));
542 	if (ret < 0)
543 		return ret;
544 
545 	ret = do_write_string(ff, buf);
546 	if (ret < 0)
547 		return ret;
548 
549 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
550 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
551 		if (ret < 0)
552 			return ret;
553 	}
554 	return 0;
555 }
556 
557 
558 static int write_cpu_topology(struct feat_fd *ff,
559 			      struct perf_evlist *evlist __maybe_unused)
560 {
561 	struct cpu_topology *tp;
562 	u32 i;
563 	int ret, j;
564 
565 	tp = cpu_topology__new();
566 	if (!tp)
567 		return -1;
568 
569 	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
570 	if (ret < 0)
571 		goto done;
572 
573 	for (i = 0; i < tp->core_sib; i++) {
574 		ret = do_write_string(ff, tp->core_siblings[i]);
575 		if (ret < 0)
576 			goto done;
577 	}
578 	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
579 	if (ret < 0)
580 		goto done;
581 
582 	for (i = 0; i < tp->thread_sib; i++) {
583 		ret = do_write_string(ff, tp->thread_siblings[i]);
584 		if (ret < 0)
585 			break;
586 	}
587 
588 	ret = perf_env__read_cpu_topology_map(&perf_env);
589 	if (ret < 0)
590 		goto done;
591 
592 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
593 		ret = do_write(ff, &perf_env.cpu[j].core_id,
594 			       sizeof(perf_env.cpu[j].core_id));
595 		if (ret < 0)
596 			return ret;
597 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
598 			       sizeof(perf_env.cpu[j].socket_id));
599 		if (ret < 0)
600 			return ret;
601 	}
602 done:
603 	cpu_topology__delete(tp);
604 	return ret;
605 }
606 
607 
608 
609 static int write_total_mem(struct feat_fd *ff,
610 			   struct perf_evlist *evlist __maybe_unused)
611 {
612 	char *buf = NULL;
613 	FILE *fp;
614 	size_t len = 0;
615 	int ret = -1, n;
616 	uint64_t mem;
617 
618 	fp = fopen("/proc/meminfo", "r");
619 	if (!fp)
620 		return -1;
621 
622 	while (getline(&buf, &len, fp) > 0) {
623 		ret = strncmp(buf, "MemTotal:", 9);
624 		if (!ret)
625 			break;
626 	}
627 	if (!ret) {
628 		n = sscanf(buf, "%*s %"PRIu64, &mem);
629 		if (n == 1)
630 			ret = do_write(ff, &mem, sizeof(mem));
631 	} else
632 		ret = -1;
633 	free(buf);
634 	fclose(fp);
635 	return ret;
636 }
637 
638 static int write_numa_topology(struct feat_fd *ff,
639 			       struct perf_evlist *evlist __maybe_unused)
640 {
641 	struct numa_topology *tp;
642 	int ret = -1;
643 	u32 i;
644 
645 	tp = numa_topology__new();
646 	if (!tp)
647 		return -ENOMEM;
648 
649 	ret = do_write(ff, &tp->nr, sizeof(u32));
650 	if (ret < 0)
651 		goto err;
652 
653 	for (i = 0; i < tp->nr; i++) {
654 		struct numa_topology_node *n = &tp->nodes[i];
655 
656 		ret = do_write(ff, &n->node, sizeof(u32));
657 		if (ret < 0)
658 			goto err;
659 
660 		ret = do_write(ff, &n->mem_total, sizeof(u64));
661 		if (ret)
662 			goto err;
663 
664 		ret = do_write(ff, &n->mem_free, sizeof(u64));
665 		if (ret)
666 			goto err;
667 
668 		ret = do_write_string(ff, n->cpus);
669 		if (ret < 0)
670 			goto err;
671 	}
672 
673 	ret = 0;
674 
675 err:
676 	numa_topology__delete(tp);
677 	return ret;
678 }
679 
680 /*
681  * File format:
682  *
683  * struct pmu_mappings {
684  *	u32	pmu_num;
685  *	struct pmu_map {
686  *		u32	type;
687  *		char	name[];
688  *	}[pmu_num];
689  * };
690  */
691 
692 static int write_pmu_mappings(struct feat_fd *ff,
693 			      struct perf_evlist *evlist __maybe_unused)
694 {
695 	struct perf_pmu *pmu = NULL;
696 	u32 pmu_num = 0;
697 	int ret;
698 
699 	/*
700 	 * Do a first pass to count number of pmu to avoid lseek so this
701 	 * works in pipe mode as well.
702 	 */
703 	while ((pmu = perf_pmu__scan(pmu))) {
704 		if (!pmu->name)
705 			continue;
706 		pmu_num++;
707 	}
708 
709 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
710 	if (ret < 0)
711 		return ret;
712 
713 	while ((pmu = perf_pmu__scan(pmu))) {
714 		if (!pmu->name)
715 			continue;
716 
717 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
718 		if (ret < 0)
719 			return ret;
720 
721 		ret = do_write_string(ff, pmu->name);
722 		if (ret < 0)
723 			return ret;
724 	}
725 
726 	return 0;
727 }
728 
729 /*
730  * File format:
731  *
732  * struct group_descs {
733  *	u32	nr_groups;
734  *	struct group_desc {
735  *		char	name[];
736  *		u32	leader_idx;
737  *		u32	nr_members;
738  *	}[nr_groups];
739  * };
740  */
741 static int write_group_desc(struct feat_fd *ff,
742 			    struct perf_evlist *evlist)
743 {
744 	u32 nr_groups = evlist->nr_groups;
745 	struct perf_evsel *evsel;
746 	int ret;
747 
748 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
749 	if (ret < 0)
750 		return ret;
751 
752 	evlist__for_each_entry(evlist, evsel) {
753 		if (perf_evsel__is_group_leader(evsel) &&
754 		    evsel->nr_members > 1) {
755 			const char *name = evsel->group_name ?: "{anon_group}";
756 			u32 leader_idx = evsel->idx;
757 			u32 nr_members = evsel->nr_members;
758 
759 			ret = do_write_string(ff, name);
760 			if (ret < 0)
761 				return ret;
762 
763 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
764 			if (ret < 0)
765 				return ret;
766 
767 			ret = do_write(ff, &nr_members, sizeof(nr_members));
768 			if (ret < 0)
769 				return ret;
770 		}
771 	}
772 	return 0;
773 }
774 
775 /*
776  * Return the CPU id as a raw string.
777  *
778  * Each architecture should provide a more precise id string that
779  * can be use to match the architecture's "mapfile".
780  */
781 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
782 {
783 	return NULL;
784 }
785 
786 /* Return zero when the cpuid from the mapfile.csv matches the
787  * cpuid string generated on this platform.
788  * Otherwise return non-zero.
789  */
790 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
791 {
792 	regex_t re;
793 	regmatch_t pmatch[1];
794 	int match;
795 
796 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
797 		/* Warn unable to generate match particular string. */
798 		pr_info("Invalid regular expression %s\n", mapcpuid);
799 		return 1;
800 	}
801 
802 	match = !regexec(&re, cpuid, 1, pmatch, 0);
803 	regfree(&re);
804 	if (match) {
805 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
806 
807 		/* Verify the entire string matched. */
808 		if (match_len == strlen(cpuid))
809 			return 0;
810 	}
811 	return 1;
812 }
813 
814 /*
815  * default get_cpuid(): nothing gets recorded
816  * actual implementation must be in arch/$(SRCARCH)/util/header.c
817  */
818 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
819 {
820 	return -1;
821 }
822 
823 static int write_cpuid(struct feat_fd *ff,
824 		       struct perf_evlist *evlist __maybe_unused)
825 {
826 	char buffer[64];
827 	int ret;
828 
829 	ret = get_cpuid(buffer, sizeof(buffer));
830 	if (ret)
831 		return -1;
832 
833 	return do_write_string(ff, buffer);
834 }
835 
836 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
837 			      struct perf_evlist *evlist __maybe_unused)
838 {
839 	return 0;
840 }
841 
842 static int write_auxtrace(struct feat_fd *ff,
843 			  struct perf_evlist *evlist __maybe_unused)
844 {
845 	struct perf_session *session;
846 	int err;
847 
848 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
849 		return -1;
850 
851 	session = container_of(ff->ph, struct perf_session, header);
852 
853 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
854 	if (err < 0)
855 		pr_err("Failed to write auxtrace index\n");
856 	return err;
857 }
858 
859 static int write_clockid(struct feat_fd *ff,
860 			 struct perf_evlist *evlist __maybe_unused)
861 {
862 	return do_write(ff, &ff->ph->env.clockid_res_ns,
863 			sizeof(ff->ph->env.clockid_res_ns));
864 }
865 
866 static int write_dir_format(struct feat_fd *ff,
867 			    struct perf_evlist *evlist __maybe_unused)
868 {
869 	struct perf_session *session;
870 	struct perf_data *data;
871 
872 	session = container_of(ff->ph, struct perf_session, header);
873 	data = session->data;
874 
875 	if (WARN_ON(!perf_data__is_dir(data)))
876 		return -1;
877 
878 	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
879 }
880 
881 #ifdef HAVE_LIBBPF_SUPPORT
882 static int write_bpf_prog_info(struct feat_fd *ff,
883 			       struct perf_evlist *evlist __maybe_unused)
884 {
885 	struct perf_env *env = &ff->ph->env;
886 	struct rb_root *root;
887 	struct rb_node *next;
888 	int ret;
889 
890 	down_read(&env->bpf_progs.lock);
891 
892 	ret = do_write(ff, &env->bpf_progs.infos_cnt,
893 		       sizeof(env->bpf_progs.infos_cnt));
894 	if (ret < 0)
895 		goto out;
896 
897 	root = &env->bpf_progs.infos;
898 	next = rb_first(root);
899 	while (next) {
900 		struct bpf_prog_info_node *node;
901 		size_t len;
902 
903 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
904 		next = rb_next(&node->rb_node);
905 		len = sizeof(struct bpf_prog_info_linear) +
906 			node->info_linear->data_len;
907 
908 		/* before writing to file, translate address to offset */
909 		bpf_program__bpil_addr_to_offs(node->info_linear);
910 		ret = do_write(ff, node->info_linear, len);
911 		/*
912 		 * translate back to address even when do_write() fails,
913 		 * so that this function never changes the data.
914 		 */
915 		bpf_program__bpil_offs_to_addr(node->info_linear);
916 		if (ret < 0)
917 			goto out;
918 	}
919 out:
920 	up_read(&env->bpf_progs.lock);
921 	return ret;
922 }
923 #else // HAVE_LIBBPF_SUPPORT
924 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
925 			       struct perf_evlist *evlist __maybe_unused)
926 {
927 	return 0;
928 }
929 #endif // HAVE_LIBBPF_SUPPORT
930 
931 static int write_bpf_btf(struct feat_fd *ff,
932 			 struct perf_evlist *evlist __maybe_unused)
933 {
934 	struct perf_env *env = &ff->ph->env;
935 	struct rb_root *root;
936 	struct rb_node *next;
937 	int ret;
938 
939 	down_read(&env->bpf_progs.lock);
940 
941 	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
942 		       sizeof(env->bpf_progs.btfs_cnt));
943 
944 	if (ret < 0)
945 		goto out;
946 
947 	root = &env->bpf_progs.btfs;
948 	next = rb_first(root);
949 	while (next) {
950 		struct btf_node *node;
951 
952 		node = rb_entry(next, struct btf_node, rb_node);
953 		next = rb_next(&node->rb_node);
954 		ret = do_write(ff, &node->id,
955 			       sizeof(u32) * 2 + node->data_size);
956 		if (ret < 0)
957 			goto out;
958 	}
959 out:
960 	up_read(&env->bpf_progs.lock);
961 	return ret;
962 }
963 
964 static int cpu_cache_level__sort(const void *a, const void *b)
965 {
966 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
967 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
968 
969 	return cache_a->level - cache_b->level;
970 }
971 
972 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
973 {
974 	if (a->level != b->level)
975 		return false;
976 
977 	if (a->line_size != b->line_size)
978 		return false;
979 
980 	if (a->sets != b->sets)
981 		return false;
982 
983 	if (a->ways != b->ways)
984 		return false;
985 
986 	if (strcmp(a->type, b->type))
987 		return false;
988 
989 	if (strcmp(a->size, b->size))
990 		return false;
991 
992 	if (strcmp(a->map, b->map))
993 		return false;
994 
995 	return true;
996 }
997 
998 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
999 {
1000 	char path[PATH_MAX], file[PATH_MAX];
1001 	struct stat st;
1002 	size_t len;
1003 
1004 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1005 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1006 
1007 	if (stat(file, &st))
1008 		return 1;
1009 
1010 	scnprintf(file, PATH_MAX, "%s/level", path);
1011 	if (sysfs__read_int(file, (int *) &cache->level))
1012 		return -1;
1013 
1014 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1015 	if (sysfs__read_int(file, (int *) &cache->line_size))
1016 		return -1;
1017 
1018 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1019 	if (sysfs__read_int(file, (int *) &cache->sets))
1020 		return -1;
1021 
1022 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1023 	if (sysfs__read_int(file, (int *) &cache->ways))
1024 		return -1;
1025 
1026 	scnprintf(file, PATH_MAX, "%s/type", path);
1027 	if (sysfs__read_str(file, &cache->type, &len))
1028 		return -1;
1029 
1030 	cache->type[len] = 0;
1031 	cache->type = rtrim(cache->type);
1032 
1033 	scnprintf(file, PATH_MAX, "%s/size", path);
1034 	if (sysfs__read_str(file, &cache->size, &len)) {
1035 		free(cache->type);
1036 		return -1;
1037 	}
1038 
1039 	cache->size[len] = 0;
1040 	cache->size = rtrim(cache->size);
1041 
1042 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1043 	if (sysfs__read_str(file, &cache->map, &len)) {
1044 		free(cache->map);
1045 		free(cache->type);
1046 		return -1;
1047 	}
1048 
1049 	cache->map[len] = 0;
1050 	cache->map = rtrim(cache->map);
1051 	return 0;
1052 }
1053 
1054 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1055 {
1056 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1057 }
1058 
1059 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1060 {
1061 	u32 i, cnt = 0;
1062 	long ncpus;
1063 	u32 nr, cpu;
1064 	u16 level;
1065 
1066 	ncpus = sysconf(_SC_NPROCESSORS_CONF);
1067 	if (ncpus < 0)
1068 		return -1;
1069 
1070 	nr = (u32)(ncpus & UINT_MAX);
1071 
1072 	for (cpu = 0; cpu < nr; cpu++) {
1073 		for (level = 0; level < 10; level++) {
1074 			struct cpu_cache_level c;
1075 			int err;
1076 
1077 			err = cpu_cache_level__read(&c, cpu, level);
1078 			if (err < 0)
1079 				return err;
1080 
1081 			if (err == 1)
1082 				break;
1083 
1084 			for (i = 0; i < cnt; i++) {
1085 				if (cpu_cache_level__cmp(&c, &caches[i]))
1086 					break;
1087 			}
1088 
1089 			if (i == cnt)
1090 				caches[cnt++] = c;
1091 			else
1092 				cpu_cache_level__free(&c);
1093 
1094 			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1095 				goto out;
1096 		}
1097 	}
1098  out:
1099 	*cntp = cnt;
1100 	return 0;
1101 }
1102 
1103 #define MAX_CACHES 2000
1104 
1105 static int write_cache(struct feat_fd *ff,
1106 		       struct perf_evlist *evlist __maybe_unused)
1107 {
1108 	struct cpu_cache_level caches[MAX_CACHES];
1109 	u32 cnt = 0, i, version = 1;
1110 	int ret;
1111 
1112 	ret = build_caches(caches, MAX_CACHES, &cnt);
1113 	if (ret)
1114 		goto out;
1115 
1116 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1117 
1118 	ret = do_write(ff, &version, sizeof(u32));
1119 	if (ret < 0)
1120 		goto out;
1121 
1122 	ret = do_write(ff, &cnt, sizeof(u32));
1123 	if (ret < 0)
1124 		goto out;
1125 
1126 	for (i = 0; i < cnt; i++) {
1127 		struct cpu_cache_level *c = &caches[i];
1128 
1129 		#define _W(v)					\
1130 			ret = do_write(ff, &c->v, sizeof(u32));	\
1131 			if (ret < 0)				\
1132 				goto out;
1133 
1134 		_W(level)
1135 		_W(line_size)
1136 		_W(sets)
1137 		_W(ways)
1138 		#undef _W
1139 
1140 		#define _W(v)						\
1141 			ret = do_write_string(ff, (const char *) c->v);	\
1142 			if (ret < 0)					\
1143 				goto out;
1144 
1145 		_W(type)
1146 		_W(size)
1147 		_W(map)
1148 		#undef _W
1149 	}
1150 
1151 out:
1152 	for (i = 0; i < cnt; i++)
1153 		cpu_cache_level__free(&caches[i]);
1154 	return ret;
1155 }
1156 
1157 static int write_stat(struct feat_fd *ff __maybe_unused,
1158 		      struct perf_evlist *evlist __maybe_unused)
1159 {
1160 	return 0;
1161 }
1162 
1163 static int write_sample_time(struct feat_fd *ff,
1164 			     struct perf_evlist *evlist)
1165 {
1166 	int ret;
1167 
1168 	ret = do_write(ff, &evlist->first_sample_time,
1169 		       sizeof(evlist->first_sample_time));
1170 	if (ret < 0)
1171 		return ret;
1172 
1173 	return do_write(ff, &evlist->last_sample_time,
1174 			sizeof(evlist->last_sample_time));
1175 }
1176 
1177 
1178 static int memory_node__read(struct memory_node *n, unsigned long idx)
1179 {
1180 	unsigned int phys, size = 0;
1181 	char path[PATH_MAX];
1182 	struct dirent *ent;
1183 	DIR *dir;
1184 
1185 #define for_each_memory(mem, dir)					\
1186 	while ((ent = readdir(dir)))					\
1187 		if (strcmp(ent->d_name, ".") &&				\
1188 		    strcmp(ent->d_name, "..") &&			\
1189 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1190 
1191 	scnprintf(path, PATH_MAX,
1192 		  "%s/devices/system/node/node%lu",
1193 		  sysfs__mountpoint(), idx);
1194 
1195 	dir = opendir(path);
1196 	if (!dir) {
1197 		pr_warning("failed: cant' open memory sysfs data\n");
1198 		return -1;
1199 	}
1200 
1201 	for_each_memory(phys, dir) {
1202 		size = max(phys, size);
1203 	}
1204 
1205 	size++;
1206 
1207 	n->set = bitmap_alloc(size);
1208 	if (!n->set) {
1209 		closedir(dir);
1210 		return -ENOMEM;
1211 	}
1212 
1213 	n->node = idx;
1214 	n->size = size;
1215 
1216 	rewinddir(dir);
1217 
1218 	for_each_memory(phys, dir) {
1219 		set_bit(phys, n->set);
1220 	}
1221 
1222 	closedir(dir);
1223 	return 0;
1224 }
1225 
1226 static int memory_node__sort(const void *a, const void *b)
1227 {
1228 	const struct memory_node *na = a;
1229 	const struct memory_node *nb = b;
1230 
1231 	return na->node - nb->node;
1232 }
1233 
1234 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1235 {
1236 	char path[PATH_MAX];
1237 	struct dirent *ent;
1238 	DIR *dir;
1239 	u64 cnt = 0;
1240 	int ret = 0;
1241 
1242 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1243 		  sysfs__mountpoint());
1244 
1245 	dir = opendir(path);
1246 	if (!dir) {
1247 		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1248 			  __func__, path);
1249 		return -1;
1250 	}
1251 
1252 	while (!ret && (ent = readdir(dir))) {
1253 		unsigned int idx;
1254 		int r;
1255 
1256 		if (!strcmp(ent->d_name, ".") ||
1257 		    !strcmp(ent->d_name, ".."))
1258 			continue;
1259 
1260 		r = sscanf(ent->d_name, "node%u", &idx);
1261 		if (r != 1)
1262 			continue;
1263 
1264 		if (WARN_ONCE(cnt >= size,
1265 			      "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1266 			return -1;
1267 
1268 		ret = memory_node__read(&nodes[cnt++], idx);
1269 	}
1270 
1271 	*cntp = cnt;
1272 	closedir(dir);
1273 
1274 	if (!ret)
1275 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1276 
1277 	return ret;
1278 }
1279 
1280 #define MAX_MEMORY_NODES 2000
1281 
1282 /*
1283  * The MEM_TOPOLOGY holds physical memory map for every
1284  * node in system. The format of data is as follows:
1285  *
1286  *  0 - version          | for future changes
1287  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1288  * 16 - count            | number of nodes
1289  *
1290  * For each node we store map of physical indexes for
1291  * each node:
1292  *
1293  * 32 - node id          | node index
1294  * 40 - size             | size of bitmap
1295  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1296  */
1297 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1298 			      struct perf_evlist *evlist __maybe_unused)
1299 {
1300 	static struct memory_node nodes[MAX_MEMORY_NODES];
1301 	u64 bsize, version = 1, i, nr;
1302 	int ret;
1303 
1304 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1305 			      (unsigned long long *) &bsize);
1306 	if (ret)
1307 		return ret;
1308 
1309 	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1310 	if (ret)
1311 		return ret;
1312 
1313 	ret = do_write(ff, &version, sizeof(version));
1314 	if (ret < 0)
1315 		goto out;
1316 
1317 	ret = do_write(ff, &bsize, sizeof(bsize));
1318 	if (ret < 0)
1319 		goto out;
1320 
1321 	ret = do_write(ff, &nr, sizeof(nr));
1322 	if (ret < 0)
1323 		goto out;
1324 
1325 	for (i = 0; i < nr; i++) {
1326 		struct memory_node *n = &nodes[i];
1327 
1328 		#define _W(v)						\
1329 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1330 			if (ret < 0)					\
1331 				goto out;
1332 
1333 		_W(node)
1334 		_W(size)
1335 
1336 		#undef _W
1337 
1338 		ret = do_write_bitmap(ff, n->set, n->size);
1339 		if (ret < 0)
1340 			goto out;
1341 	}
1342 
1343 out:
1344 	return ret;
1345 }
1346 
1347 static void print_hostname(struct feat_fd *ff, FILE *fp)
1348 {
1349 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1350 }
1351 
1352 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1353 {
1354 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1355 }
1356 
1357 static void print_arch(struct feat_fd *ff, FILE *fp)
1358 {
1359 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1360 }
1361 
1362 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1363 {
1364 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1365 }
1366 
1367 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1368 {
1369 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1370 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1371 }
1372 
1373 static void print_version(struct feat_fd *ff, FILE *fp)
1374 {
1375 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1376 }
1377 
1378 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1379 {
1380 	int nr, i;
1381 
1382 	nr = ff->ph->env.nr_cmdline;
1383 
1384 	fprintf(fp, "# cmdline : ");
1385 
1386 	for (i = 0; i < nr; i++) {
1387 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1388 		if (!argv_i) {
1389 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1390 		} else {
1391 			char *mem = argv_i;
1392 			do {
1393 				char *quote = strchr(argv_i, '\'');
1394 				if (!quote)
1395 					break;
1396 				*quote++ = '\0';
1397 				fprintf(fp, "%s\\\'", argv_i);
1398 				argv_i = quote;
1399 			} while (1);
1400 			fprintf(fp, "%s ", argv_i);
1401 			free(mem);
1402 		}
1403 	}
1404 	fputc('\n', fp);
1405 }
1406 
1407 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1408 {
1409 	struct perf_header *ph = ff->ph;
1410 	int cpu_nr = ph->env.nr_cpus_avail;
1411 	int nr, i;
1412 	char *str;
1413 
1414 	nr = ph->env.nr_sibling_cores;
1415 	str = ph->env.sibling_cores;
1416 
1417 	for (i = 0; i < nr; i++) {
1418 		fprintf(fp, "# sibling cores   : %s\n", str);
1419 		str += strlen(str) + 1;
1420 	}
1421 
1422 	nr = ph->env.nr_sibling_threads;
1423 	str = ph->env.sibling_threads;
1424 
1425 	for (i = 0; i < nr; i++) {
1426 		fprintf(fp, "# sibling threads : %s\n", str);
1427 		str += strlen(str) + 1;
1428 	}
1429 
1430 	if (ph->env.cpu != NULL) {
1431 		for (i = 0; i < cpu_nr; i++)
1432 			fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i,
1433 				ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id);
1434 	} else
1435 		fprintf(fp, "# Core ID and Socket ID information is not available\n");
1436 }
1437 
1438 static void print_clockid(struct feat_fd *ff, FILE *fp)
1439 {
1440 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1441 		ff->ph->env.clockid_res_ns * 1000);
1442 }
1443 
1444 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1445 {
1446 	struct perf_session *session;
1447 	struct perf_data *data;
1448 
1449 	session = container_of(ff->ph, struct perf_session, header);
1450 	data = session->data;
1451 
1452 	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1453 }
1454 
1455 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1456 {
1457 	struct perf_env *env = &ff->ph->env;
1458 	struct rb_root *root;
1459 	struct rb_node *next;
1460 
1461 	down_read(&env->bpf_progs.lock);
1462 
1463 	root = &env->bpf_progs.infos;
1464 	next = rb_first(root);
1465 
1466 	while (next) {
1467 		struct bpf_prog_info_node *node;
1468 
1469 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1470 		next = rb_next(&node->rb_node);
1471 
1472 		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1473 					       env, fp);
1474 	}
1475 
1476 	up_read(&env->bpf_progs.lock);
1477 }
1478 
1479 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1480 {
1481 	struct perf_env *env = &ff->ph->env;
1482 	struct rb_root *root;
1483 	struct rb_node *next;
1484 
1485 	down_read(&env->bpf_progs.lock);
1486 
1487 	root = &env->bpf_progs.btfs;
1488 	next = rb_first(root);
1489 
1490 	while (next) {
1491 		struct btf_node *node;
1492 
1493 		node = rb_entry(next, struct btf_node, rb_node);
1494 		next = rb_next(&node->rb_node);
1495 		fprintf(fp, "# btf info of id %u\n", node->id);
1496 	}
1497 
1498 	up_read(&env->bpf_progs.lock);
1499 }
1500 
1501 static void free_event_desc(struct perf_evsel *events)
1502 {
1503 	struct perf_evsel *evsel;
1504 
1505 	if (!events)
1506 		return;
1507 
1508 	for (evsel = events; evsel->attr.size; evsel++) {
1509 		zfree(&evsel->name);
1510 		zfree(&evsel->id);
1511 	}
1512 
1513 	free(events);
1514 }
1515 
1516 static struct perf_evsel *read_event_desc(struct feat_fd *ff)
1517 {
1518 	struct perf_evsel *evsel, *events = NULL;
1519 	u64 *id;
1520 	void *buf = NULL;
1521 	u32 nre, sz, nr, i, j;
1522 	size_t msz;
1523 
1524 	/* number of events */
1525 	if (do_read_u32(ff, &nre))
1526 		goto error;
1527 
1528 	if (do_read_u32(ff, &sz))
1529 		goto error;
1530 
1531 	/* buffer to hold on file attr struct */
1532 	buf = malloc(sz);
1533 	if (!buf)
1534 		goto error;
1535 
1536 	/* the last event terminates with evsel->attr.size == 0: */
1537 	events = calloc(nre + 1, sizeof(*events));
1538 	if (!events)
1539 		goto error;
1540 
1541 	msz = sizeof(evsel->attr);
1542 	if (sz < msz)
1543 		msz = sz;
1544 
1545 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1546 		evsel->idx = i;
1547 
1548 		/*
1549 		 * must read entire on-file attr struct to
1550 		 * sync up with layout.
1551 		 */
1552 		if (__do_read(ff, buf, sz))
1553 			goto error;
1554 
1555 		if (ff->ph->needs_swap)
1556 			perf_event__attr_swap(buf);
1557 
1558 		memcpy(&evsel->attr, buf, msz);
1559 
1560 		if (do_read_u32(ff, &nr))
1561 			goto error;
1562 
1563 		if (ff->ph->needs_swap)
1564 			evsel->needs_swap = true;
1565 
1566 		evsel->name = do_read_string(ff);
1567 		if (!evsel->name)
1568 			goto error;
1569 
1570 		if (!nr)
1571 			continue;
1572 
1573 		id = calloc(nr, sizeof(*id));
1574 		if (!id)
1575 			goto error;
1576 		evsel->ids = nr;
1577 		evsel->id = id;
1578 
1579 		for (j = 0 ; j < nr; j++) {
1580 			if (do_read_u64(ff, id))
1581 				goto error;
1582 			id++;
1583 		}
1584 	}
1585 out:
1586 	free(buf);
1587 	return events;
1588 error:
1589 	free_event_desc(events);
1590 	events = NULL;
1591 	goto out;
1592 }
1593 
1594 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1595 				void *priv __maybe_unused)
1596 {
1597 	return fprintf(fp, ", %s = %s", name, val);
1598 }
1599 
1600 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1601 {
1602 	struct perf_evsel *evsel, *events;
1603 	u32 j;
1604 	u64 *id;
1605 
1606 	if (ff->events)
1607 		events = ff->events;
1608 	else
1609 		events = read_event_desc(ff);
1610 
1611 	if (!events) {
1612 		fprintf(fp, "# event desc: not available or unable to read\n");
1613 		return;
1614 	}
1615 
1616 	for (evsel = events; evsel->attr.size; evsel++) {
1617 		fprintf(fp, "# event : name = %s, ", evsel->name);
1618 
1619 		if (evsel->ids) {
1620 			fprintf(fp, ", id = {");
1621 			for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1622 				if (j)
1623 					fputc(',', fp);
1624 				fprintf(fp, " %"PRIu64, *id);
1625 			}
1626 			fprintf(fp, " }");
1627 		}
1628 
1629 		perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1630 
1631 		fputc('\n', fp);
1632 	}
1633 
1634 	free_event_desc(events);
1635 	ff->events = NULL;
1636 }
1637 
1638 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1639 {
1640 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1641 }
1642 
1643 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1644 {
1645 	int i;
1646 	struct numa_node *n;
1647 
1648 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1649 		n = &ff->ph->env.numa_nodes[i];
1650 
1651 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1652 			    " free = %"PRIu64" kB\n",
1653 			n->node, n->mem_total, n->mem_free);
1654 
1655 		fprintf(fp, "# node%u cpu list : ", n->node);
1656 		cpu_map__fprintf(n->map, fp);
1657 	}
1658 }
1659 
1660 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1661 {
1662 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1663 }
1664 
1665 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1666 {
1667 	fprintf(fp, "# contains samples with branch stack\n");
1668 }
1669 
1670 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1671 {
1672 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1673 }
1674 
1675 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1676 {
1677 	fprintf(fp, "# contains stat data\n");
1678 }
1679 
1680 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1681 {
1682 	int i;
1683 
1684 	fprintf(fp, "# CPU cache info:\n");
1685 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1686 		fprintf(fp, "#  ");
1687 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1688 	}
1689 }
1690 
1691 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1692 {
1693 	const char *delimiter = "# pmu mappings: ";
1694 	char *str, *tmp;
1695 	u32 pmu_num;
1696 	u32 type;
1697 
1698 	pmu_num = ff->ph->env.nr_pmu_mappings;
1699 	if (!pmu_num) {
1700 		fprintf(fp, "# pmu mappings: not available\n");
1701 		return;
1702 	}
1703 
1704 	str = ff->ph->env.pmu_mappings;
1705 
1706 	while (pmu_num) {
1707 		type = strtoul(str, &tmp, 0);
1708 		if (*tmp != ':')
1709 			goto error;
1710 
1711 		str = tmp + 1;
1712 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1713 
1714 		delimiter = ", ";
1715 		str += strlen(str) + 1;
1716 		pmu_num--;
1717 	}
1718 
1719 	fprintf(fp, "\n");
1720 
1721 	if (!pmu_num)
1722 		return;
1723 error:
1724 	fprintf(fp, "# pmu mappings: unable to read\n");
1725 }
1726 
1727 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1728 {
1729 	struct perf_session *session;
1730 	struct perf_evsel *evsel;
1731 	u32 nr = 0;
1732 
1733 	session = container_of(ff->ph, struct perf_session, header);
1734 
1735 	evlist__for_each_entry(session->evlist, evsel) {
1736 		if (perf_evsel__is_group_leader(evsel) &&
1737 		    evsel->nr_members > 1) {
1738 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1739 				perf_evsel__name(evsel));
1740 
1741 			nr = evsel->nr_members - 1;
1742 		} else if (nr) {
1743 			fprintf(fp, ",%s", perf_evsel__name(evsel));
1744 
1745 			if (--nr == 0)
1746 				fprintf(fp, "}\n");
1747 		}
1748 	}
1749 }
1750 
1751 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1752 {
1753 	struct perf_session *session;
1754 	char time_buf[32];
1755 	double d;
1756 
1757 	session = container_of(ff->ph, struct perf_session, header);
1758 
1759 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
1760 				  time_buf, sizeof(time_buf));
1761 	fprintf(fp, "# time of first sample : %s\n", time_buf);
1762 
1763 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
1764 				  time_buf, sizeof(time_buf));
1765 	fprintf(fp, "# time of last sample : %s\n", time_buf);
1766 
1767 	d = (double)(session->evlist->last_sample_time -
1768 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
1769 
1770 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
1771 }
1772 
1773 static void memory_node__fprintf(struct memory_node *n,
1774 				 unsigned long long bsize, FILE *fp)
1775 {
1776 	char buf_map[100], buf_size[50];
1777 	unsigned long long size;
1778 
1779 	size = bsize * bitmap_weight(n->set, n->size);
1780 	unit_number__scnprintf(buf_size, 50, size);
1781 
1782 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
1783 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1784 }
1785 
1786 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1787 {
1788 	struct memory_node *nodes;
1789 	int i, nr;
1790 
1791 	nodes = ff->ph->env.memory_nodes;
1792 	nr    = ff->ph->env.nr_memory_nodes;
1793 
1794 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1795 		nr, ff->ph->env.memory_bsize);
1796 
1797 	for (i = 0; i < nr; i++) {
1798 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1799 	}
1800 }
1801 
1802 static int __event_process_build_id(struct build_id_event *bev,
1803 				    char *filename,
1804 				    struct perf_session *session)
1805 {
1806 	int err = -1;
1807 	struct machine *machine;
1808 	u16 cpumode;
1809 	struct dso *dso;
1810 	enum dso_kernel_type dso_type;
1811 
1812 	machine = perf_session__findnew_machine(session, bev->pid);
1813 	if (!machine)
1814 		goto out;
1815 
1816 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1817 
1818 	switch (cpumode) {
1819 	case PERF_RECORD_MISC_KERNEL:
1820 		dso_type = DSO_TYPE_KERNEL;
1821 		break;
1822 	case PERF_RECORD_MISC_GUEST_KERNEL:
1823 		dso_type = DSO_TYPE_GUEST_KERNEL;
1824 		break;
1825 	case PERF_RECORD_MISC_USER:
1826 	case PERF_RECORD_MISC_GUEST_USER:
1827 		dso_type = DSO_TYPE_USER;
1828 		break;
1829 	default:
1830 		goto out;
1831 	}
1832 
1833 	dso = machine__findnew_dso(machine, filename);
1834 	if (dso != NULL) {
1835 		char sbuild_id[SBUILD_ID_SIZE];
1836 
1837 		dso__set_build_id(dso, &bev->build_id);
1838 
1839 		if (dso_type != DSO_TYPE_USER) {
1840 			struct kmod_path m = { .name = NULL, };
1841 
1842 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1843 				dso__set_module_info(dso, &m, machine);
1844 			else
1845 				dso->kernel = dso_type;
1846 
1847 			free(m.name);
1848 		}
1849 
1850 		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1851 				  sbuild_id);
1852 		pr_debug("build id event received for %s: %s\n",
1853 			 dso->long_name, sbuild_id);
1854 		dso__put(dso);
1855 	}
1856 
1857 	err = 0;
1858 out:
1859 	return err;
1860 }
1861 
1862 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1863 						 int input, u64 offset, u64 size)
1864 {
1865 	struct perf_session *session = container_of(header, struct perf_session, header);
1866 	struct {
1867 		struct perf_event_header   header;
1868 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1869 		char			   filename[0];
1870 	} old_bev;
1871 	struct build_id_event bev;
1872 	char filename[PATH_MAX];
1873 	u64 limit = offset + size;
1874 
1875 	while (offset < limit) {
1876 		ssize_t len;
1877 
1878 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1879 			return -1;
1880 
1881 		if (header->needs_swap)
1882 			perf_event_header__bswap(&old_bev.header);
1883 
1884 		len = old_bev.header.size - sizeof(old_bev);
1885 		if (readn(input, filename, len) != len)
1886 			return -1;
1887 
1888 		bev.header = old_bev.header;
1889 
1890 		/*
1891 		 * As the pid is the missing value, we need to fill
1892 		 * it properly. The header.misc value give us nice hint.
1893 		 */
1894 		bev.pid	= HOST_KERNEL_ID;
1895 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1896 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1897 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
1898 
1899 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1900 		__event_process_build_id(&bev, filename, session);
1901 
1902 		offset += bev.header.size;
1903 	}
1904 
1905 	return 0;
1906 }
1907 
1908 static int perf_header__read_build_ids(struct perf_header *header,
1909 				       int input, u64 offset, u64 size)
1910 {
1911 	struct perf_session *session = container_of(header, struct perf_session, header);
1912 	struct build_id_event bev;
1913 	char filename[PATH_MAX];
1914 	u64 limit = offset + size, orig_offset = offset;
1915 	int err = -1;
1916 
1917 	while (offset < limit) {
1918 		ssize_t len;
1919 
1920 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1921 			goto out;
1922 
1923 		if (header->needs_swap)
1924 			perf_event_header__bswap(&bev.header);
1925 
1926 		len = bev.header.size - sizeof(bev);
1927 		if (readn(input, filename, len) != len)
1928 			goto out;
1929 		/*
1930 		 * The a1645ce1 changeset:
1931 		 *
1932 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
1933 		 *
1934 		 * Added a field to struct build_id_event that broke the file
1935 		 * format.
1936 		 *
1937 		 * Since the kernel build-id is the first entry, process the
1938 		 * table using the old format if the well known
1939 		 * '[kernel.kallsyms]' string for the kernel build-id has the
1940 		 * first 4 characters chopped off (where the pid_t sits).
1941 		 */
1942 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
1943 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
1944 				return -1;
1945 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
1946 		}
1947 
1948 		__event_process_build_id(&bev, filename, session);
1949 
1950 		offset += bev.header.size;
1951 	}
1952 	err = 0;
1953 out:
1954 	return err;
1955 }
1956 
1957 /* Macro for features that simply need to read and store a string. */
1958 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
1959 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
1960 {\
1961 	ff->ph->env.__feat_env = do_read_string(ff); \
1962 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
1963 }
1964 
1965 FEAT_PROCESS_STR_FUN(hostname, hostname);
1966 FEAT_PROCESS_STR_FUN(osrelease, os_release);
1967 FEAT_PROCESS_STR_FUN(version, version);
1968 FEAT_PROCESS_STR_FUN(arch, arch);
1969 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
1970 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
1971 
1972 static int process_tracing_data(struct feat_fd *ff, void *data)
1973 {
1974 	ssize_t ret = trace_report(ff->fd, data, false);
1975 
1976 	return ret < 0 ? -1 : 0;
1977 }
1978 
1979 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
1980 {
1981 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
1982 		pr_debug("Failed to read buildids, continuing...\n");
1983 	return 0;
1984 }
1985 
1986 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
1987 {
1988 	int ret;
1989 	u32 nr_cpus_avail, nr_cpus_online;
1990 
1991 	ret = do_read_u32(ff, &nr_cpus_avail);
1992 	if (ret)
1993 		return ret;
1994 
1995 	ret = do_read_u32(ff, &nr_cpus_online);
1996 	if (ret)
1997 		return ret;
1998 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
1999 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2000 	return 0;
2001 }
2002 
2003 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2004 {
2005 	u64 total_mem;
2006 	int ret;
2007 
2008 	ret = do_read_u64(ff, &total_mem);
2009 	if (ret)
2010 		return -1;
2011 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2012 	return 0;
2013 }
2014 
2015 static struct perf_evsel *
2016 perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
2017 {
2018 	struct perf_evsel *evsel;
2019 
2020 	evlist__for_each_entry(evlist, evsel) {
2021 		if (evsel->idx == idx)
2022 			return evsel;
2023 	}
2024 
2025 	return NULL;
2026 }
2027 
2028 static void
2029 perf_evlist__set_event_name(struct perf_evlist *evlist,
2030 			    struct perf_evsel *event)
2031 {
2032 	struct perf_evsel *evsel;
2033 
2034 	if (!event->name)
2035 		return;
2036 
2037 	evsel = perf_evlist__find_by_index(evlist, event->idx);
2038 	if (!evsel)
2039 		return;
2040 
2041 	if (evsel->name)
2042 		return;
2043 
2044 	evsel->name = strdup(event->name);
2045 }
2046 
2047 static int
2048 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2049 {
2050 	struct perf_session *session;
2051 	struct perf_evsel *evsel, *events = read_event_desc(ff);
2052 
2053 	if (!events)
2054 		return 0;
2055 
2056 	session = container_of(ff->ph, struct perf_session, header);
2057 
2058 	if (session->data->is_pipe) {
2059 		/* Save events for reading later by print_event_desc,
2060 		 * since they can't be read again in pipe mode. */
2061 		ff->events = events;
2062 	}
2063 
2064 	for (evsel = events; evsel->attr.size; evsel++)
2065 		perf_evlist__set_event_name(session->evlist, evsel);
2066 
2067 	if (!session->data->is_pipe)
2068 		free_event_desc(events);
2069 
2070 	return 0;
2071 }
2072 
2073 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2074 {
2075 	char *str, *cmdline = NULL, **argv = NULL;
2076 	u32 nr, i, len = 0;
2077 
2078 	if (do_read_u32(ff, &nr))
2079 		return -1;
2080 
2081 	ff->ph->env.nr_cmdline = nr;
2082 
2083 	cmdline = zalloc(ff->size + nr + 1);
2084 	if (!cmdline)
2085 		return -1;
2086 
2087 	argv = zalloc(sizeof(char *) * (nr + 1));
2088 	if (!argv)
2089 		goto error;
2090 
2091 	for (i = 0; i < nr; i++) {
2092 		str = do_read_string(ff);
2093 		if (!str)
2094 			goto error;
2095 
2096 		argv[i] = cmdline + len;
2097 		memcpy(argv[i], str, strlen(str) + 1);
2098 		len += strlen(str) + 1;
2099 		free(str);
2100 	}
2101 	ff->ph->env.cmdline = cmdline;
2102 	ff->ph->env.cmdline_argv = (const char **) argv;
2103 	return 0;
2104 
2105 error:
2106 	free(argv);
2107 	free(cmdline);
2108 	return -1;
2109 }
2110 
2111 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2112 {
2113 	u32 nr, i;
2114 	char *str;
2115 	struct strbuf sb;
2116 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2117 	u64 size = 0;
2118 	struct perf_header *ph = ff->ph;
2119 	bool do_core_id_test = true;
2120 
2121 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2122 	if (!ph->env.cpu)
2123 		return -1;
2124 
2125 	if (do_read_u32(ff, &nr))
2126 		goto free_cpu;
2127 
2128 	ph->env.nr_sibling_cores = nr;
2129 	size += sizeof(u32);
2130 	if (strbuf_init(&sb, 128) < 0)
2131 		goto free_cpu;
2132 
2133 	for (i = 0; i < nr; i++) {
2134 		str = do_read_string(ff);
2135 		if (!str)
2136 			goto error;
2137 
2138 		/* include a NULL character at the end */
2139 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2140 			goto error;
2141 		size += string_size(str);
2142 		free(str);
2143 	}
2144 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2145 
2146 	if (do_read_u32(ff, &nr))
2147 		return -1;
2148 
2149 	ph->env.nr_sibling_threads = nr;
2150 	size += sizeof(u32);
2151 
2152 	for (i = 0; i < nr; i++) {
2153 		str = do_read_string(ff);
2154 		if (!str)
2155 			goto error;
2156 
2157 		/* include a NULL character at the end */
2158 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2159 			goto error;
2160 		size += string_size(str);
2161 		free(str);
2162 	}
2163 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2164 
2165 	/*
2166 	 * The header may be from old perf,
2167 	 * which doesn't include core id and socket id information.
2168 	 */
2169 	if (ff->size <= size) {
2170 		zfree(&ph->env.cpu);
2171 		return 0;
2172 	}
2173 
2174 	/* On s390 the socket_id number is not related to the numbers of cpus.
2175 	 * The socket_id number might be higher than the numbers of cpus.
2176 	 * This depends on the configuration.
2177 	 */
2178 	if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4))
2179 		do_core_id_test = false;
2180 
2181 	for (i = 0; i < (u32)cpu_nr; i++) {
2182 		if (do_read_u32(ff, &nr))
2183 			goto free_cpu;
2184 
2185 		ph->env.cpu[i].core_id = nr;
2186 
2187 		if (do_read_u32(ff, &nr))
2188 			goto free_cpu;
2189 
2190 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2191 			pr_debug("socket_id number is too big."
2192 				 "You may need to upgrade the perf tool.\n");
2193 			goto free_cpu;
2194 		}
2195 
2196 		ph->env.cpu[i].socket_id = nr;
2197 	}
2198 
2199 	return 0;
2200 
2201 error:
2202 	strbuf_release(&sb);
2203 free_cpu:
2204 	zfree(&ph->env.cpu);
2205 	return -1;
2206 }
2207 
2208 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2209 {
2210 	struct numa_node *nodes, *n;
2211 	u32 nr, i;
2212 	char *str;
2213 
2214 	/* nr nodes */
2215 	if (do_read_u32(ff, &nr))
2216 		return -1;
2217 
2218 	nodes = zalloc(sizeof(*nodes) * nr);
2219 	if (!nodes)
2220 		return -ENOMEM;
2221 
2222 	for (i = 0; i < nr; i++) {
2223 		n = &nodes[i];
2224 
2225 		/* node number */
2226 		if (do_read_u32(ff, &n->node))
2227 			goto error;
2228 
2229 		if (do_read_u64(ff, &n->mem_total))
2230 			goto error;
2231 
2232 		if (do_read_u64(ff, &n->mem_free))
2233 			goto error;
2234 
2235 		str = do_read_string(ff);
2236 		if (!str)
2237 			goto error;
2238 
2239 		n->map = cpu_map__new(str);
2240 		if (!n->map)
2241 			goto error;
2242 
2243 		free(str);
2244 	}
2245 	ff->ph->env.nr_numa_nodes = nr;
2246 	ff->ph->env.numa_nodes = nodes;
2247 	return 0;
2248 
2249 error:
2250 	free(nodes);
2251 	return -1;
2252 }
2253 
2254 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2255 {
2256 	char *name;
2257 	u32 pmu_num;
2258 	u32 type;
2259 	struct strbuf sb;
2260 
2261 	if (do_read_u32(ff, &pmu_num))
2262 		return -1;
2263 
2264 	if (!pmu_num) {
2265 		pr_debug("pmu mappings not available\n");
2266 		return 0;
2267 	}
2268 
2269 	ff->ph->env.nr_pmu_mappings = pmu_num;
2270 	if (strbuf_init(&sb, 128) < 0)
2271 		return -1;
2272 
2273 	while (pmu_num) {
2274 		if (do_read_u32(ff, &type))
2275 			goto error;
2276 
2277 		name = do_read_string(ff);
2278 		if (!name)
2279 			goto error;
2280 
2281 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2282 			goto error;
2283 		/* include a NULL character at the end */
2284 		if (strbuf_add(&sb, "", 1) < 0)
2285 			goto error;
2286 
2287 		if (!strcmp(name, "msr"))
2288 			ff->ph->env.msr_pmu_type = type;
2289 
2290 		free(name);
2291 		pmu_num--;
2292 	}
2293 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2294 	return 0;
2295 
2296 error:
2297 	strbuf_release(&sb);
2298 	return -1;
2299 }
2300 
2301 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2302 {
2303 	size_t ret = -1;
2304 	u32 i, nr, nr_groups;
2305 	struct perf_session *session;
2306 	struct perf_evsel *evsel, *leader = NULL;
2307 	struct group_desc {
2308 		char *name;
2309 		u32 leader_idx;
2310 		u32 nr_members;
2311 	} *desc;
2312 
2313 	if (do_read_u32(ff, &nr_groups))
2314 		return -1;
2315 
2316 	ff->ph->env.nr_groups = nr_groups;
2317 	if (!nr_groups) {
2318 		pr_debug("group desc not available\n");
2319 		return 0;
2320 	}
2321 
2322 	desc = calloc(nr_groups, sizeof(*desc));
2323 	if (!desc)
2324 		return -1;
2325 
2326 	for (i = 0; i < nr_groups; i++) {
2327 		desc[i].name = do_read_string(ff);
2328 		if (!desc[i].name)
2329 			goto out_free;
2330 
2331 		if (do_read_u32(ff, &desc[i].leader_idx))
2332 			goto out_free;
2333 
2334 		if (do_read_u32(ff, &desc[i].nr_members))
2335 			goto out_free;
2336 	}
2337 
2338 	/*
2339 	 * Rebuild group relationship based on the group_desc
2340 	 */
2341 	session = container_of(ff->ph, struct perf_session, header);
2342 	session->evlist->nr_groups = nr_groups;
2343 
2344 	i = nr = 0;
2345 	evlist__for_each_entry(session->evlist, evsel) {
2346 		if (evsel->idx == (int) desc[i].leader_idx) {
2347 			evsel->leader = evsel;
2348 			/* {anon_group} is a dummy name */
2349 			if (strcmp(desc[i].name, "{anon_group}")) {
2350 				evsel->group_name = desc[i].name;
2351 				desc[i].name = NULL;
2352 			}
2353 			evsel->nr_members = desc[i].nr_members;
2354 
2355 			if (i >= nr_groups || nr > 0) {
2356 				pr_debug("invalid group desc\n");
2357 				goto out_free;
2358 			}
2359 
2360 			leader = evsel;
2361 			nr = evsel->nr_members - 1;
2362 			i++;
2363 		} else if (nr) {
2364 			/* This is a group member */
2365 			evsel->leader = leader;
2366 
2367 			nr--;
2368 		}
2369 	}
2370 
2371 	if (i != nr_groups || nr != 0) {
2372 		pr_debug("invalid group desc\n");
2373 		goto out_free;
2374 	}
2375 
2376 	ret = 0;
2377 out_free:
2378 	for (i = 0; i < nr_groups; i++)
2379 		zfree(&desc[i].name);
2380 	free(desc);
2381 
2382 	return ret;
2383 }
2384 
2385 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2386 {
2387 	struct perf_session *session;
2388 	int err;
2389 
2390 	session = container_of(ff->ph, struct perf_session, header);
2391 
2392 	err = auxtrace_index__process(ff->fd, ff->size, session,
2393 				      ff->ph->needs_swap);
2394 	if (err < 0)
2395 		pr_err("Failed to process auxtrace index\n");
2396 	return err;
2397 }
2398 
2399 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2400 {
2401 	struct cpu_cache_level *caches;
2402 	u32 cnt, i, version;
2403 
2404 	if (do_read_u32(ff, &version))
2405 		return -1;
2406 
2407 	if (version != 1)
2408 		return -1;
2409 
2410 	if (do_read_u32(ff, &cnt))
2411 		return -1;
2412 
2413 	caches = zalloc(sizeof(*caches) * cnt);
2414 	if (!caches)
2415 		return -1;
2416 
2417 	for (i = 0; i < cnt; i++) {
2418 		struct cpu_cache_level c;
2419 
2420 		#define _R(v)						\
2421 			if (do_read_u32(ff, &c.v))\
2422 				goto out_free_caches;			\
2423 
2424 		_R(level)
2425 		_R(line_size)
2426 		_R(sets)
2427 		_R(ways)
2428 		#undef _R
2429 
2430 		#define _R(v)					\
2431 			c.v = do_read_string(ff);		\
2432 			if (!c.v)				\
2433 				goto out_free_caches;
2434 
2435 		_R(type)
2436 		_R(size)
2437 		_R(map)
2438 		#undef _R
2439 
2440 		caches[i] = c;
2441 	}
2442 
2443 	ff->ph->env.caches = caches;
2444 	ff->ph->env.caches_cnt = cnt;
2445 	return 0;
2446 out_free_caches:
2447 	free(caches);
2448 	return -1;
2449 }
2450 
2451 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2452 {
2453 	struct perf_session *session;
2454 	u64 first_sample_time, last_sample_time;
2455 	int ret;
2456 
2457 	session = container_of(ff->ph, struct perf_session, header);
2458 
2459 	ret = do_read_u64(ff, &first_sample_time);
2460 	if (ret)
2461 		return -1;
2462 
2463 	ret = do_read_u64(ff, &last_sample_time);
2464 	if (ret)
2465 		return -1;
2466 
2467 	session->evlist->first_sample_time = first_sample_time;
2468 	session->evlist->last_sample_time = last_sample_time;
2469 	return 0;
2470 }
2471 
2472 static int process_mem_topology(struct feat_fd *ff,
2473 				void *data __maybe_unused)
2474 {
2475 	struct memory_node *nodes;
2476 	u64 version, i, nr, bsize;
2477 	int ret = -1;
2478 
2479 	if (do_read_u64(ff, &version))
2480 		return -1;
2481 
2482 	if (version != 1)
2483 		return -1;
2484 
2485 	if (do_read_u64(ff, &bsize))
2486 		return -1;
2487 
2488 	if (do_read_u64(ff, &nr))
2489 		return -1;
2490 
2491 	nodes = zalloc(sizeof(*nodes) * nr);
2492 	if (!nodes)
2493 		return -1;
2494 
2495 	for (i = 0; i < nr; i++) {
2496 		struct memory_node n;
2497 
2498 		#define _R(v)				\
2499 			if (do_read_u64(ff, &n.v))	\
2500 				goto out;		\
2501 
2502 		_R(node)
2503 		_R(size)
2504 
2505 		#undef _R
2506 
2507 		if (do_read_bitmap(ff, &n.set, &n.size))
2508 			goto out;
2509 
2510 		nodes[i] = n;
2511 	}
2512 
2513 	ff->ph->env.memory_bsize    = bsize;
2514 	ff->ph->env.memory_nodes    = nodes;
2515 	ff->ph->env.nr_memory_nodes = nr;
2516 	ret = 0;
2517 
2518 out:
2519 	if (ret)
2520 		free(nodes);
2521 	return ret;
2522 }
2523 
2524 static int process_clockid(struct feat_fd *ff,
2525 			   void *data __maybe_unused)
2526 {
2527 	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2528 		return -1;
2529 
2530 	return 0;
2531 }
2532 
2533 static int process_dir_format(struct feat_fd *ff,
2534 			      void *_data __maybe_unused)
2535 {
2536 	struct perf_session *session;
2537 	struct perf_data *data;
2538 
2539 	session = container_of(ff->ph, struct perf_session, header);
2540 	data = session->data;
2541 
2542 	if (WARN_ON(!perf_data__is_dir(data)))
2543 		return -1;
2544 
2545 	return do_read_u64(ff, &data->dir.version);
2546 }
2547 
2548 #ifdef HAVE_LIBBPF_SUPPORT
2549 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2550 {
2551 	struct bpf_prog_info_linear *info_linear;
2552 	struct bpf_prog_info_node *info_node;
2553 	struct perf_env *env = &ff->ph->env;
2554 	u32 count, i;
2555 	int err = -1;
2556 
2557 	if (ff->ph->needs_swap) {
2558 		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2559 		return 0;
2560 	}
2561 
2562 	if (do_read_u32(ff, &count))
2563 		return -1;
2564 
2565 	down_write(&env->bpf_progs.lock);
2566 
2567 	for (i = 0; i < count; ++i) {
2568 		u32 info_len, data_len;
2569 
2570 		info_linear = NULL;
2571 		info_node = NULL;
2572 		if (do_read_u32(ff, &info_len))
2573 			goto out;
2574 		if (do_read_u32(ff, &data_len))
2575 			goto out;
2576 
2577 		if (info_len > sizeof(struct bpf_prog_info)) {
2578 			pr_warning("detected invalid bpf_prog_info\n");
2579 			goto out;
2580 		}
2581 
2582 		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2583 				     data_len);
2584 		if (!info_linear)
2585 			goto out;
2586 		info_linear->info_len = sizeof(struct bpf_prog_info);
2587 		info_linear->data_len = data_len;
2588 		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2589 			goto out;
2590 		if (__do_read(ff, &info_linear->info, info_len))
2591 			goto out;
2592 		if (info_len < sizeof(struct bpf_prog_info))
2593 			memset(((void *)(&info_linear->info)) + info_len, 0,
2594 			       sizeof(struct bpf_prog_info) - info_len);
2595 
2596 		if (__do_read(ff, info_linear->data, data_len))
2597 			goto out;
2598 
2599 		info_node = malloc(sizeof(struct bpf_prog_info_node));
2600 		if (!info_node)
2601 			goto out;
2602 
2603 		/* after reading from file, translate offset to address */
2604 		bpf_program__bpil_offs_to_addr(info_linear);
2605 		info_node->info_linear = info_linear;
2606 		perf_env__insert_bpf_prog_info(env, info_node);
2607 	}
2608 
2609 	return 0;
2610 out:
2611 	free(info_linear);
2612 	free(info_node);
2613 	up_write(&env->bpf_progs.lock);
2614 	return err;
2615 }
2616 #else // HAVE_LIBBPF_SUPPORT
2617 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2618 {
2619 	return 0;
2620 }
2621 #endif // HAVE_LIBBPF_SUPPORT
2622 
2623 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2624 {
2625 	struct perf_env *env = &ff->ph->env;
2626 	u32 count, i;
2627 
2628 	if (ff->ph->needs_swap) {
2629 		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2630 		return 0;
2631 	}
2632 
2633 	if (do_read_u32(ff, &count))
2634 		return -1;
2635 
2636 	down_write(&env->bpf_progs.lock);
2637 
2638 	for (i = 0; i < count; ++i) {
2639 		struct btf_node *node;
2640 		u32 id, data_size;
2641 
2642 		if (do_read_u32(ff, &id))
2643 			return -1;
2644 		if (do_read_u32(ff, &data_size))
2645 			return -1;
2646 
2647 		node = malloc(sizeof(struct btf_node) + data_size);
2648 		if (!node)
2649 			return -1;
2650 
2651 		node->id = id;
2652 		node->data_size = data_size;
2653 
2654 		if (__do_read(ff, node->data, data_size)) {
2655 			free(node);
2656 			return -1;
2657 		}
2658 
2659 		perf_env__insert_btf(env, node);
2660 	}
2661 
2662 	up_write(&env->bpf_progs.lock);
2663 	return 0;
2664 }
2665 
2666 struct feature_ops {
2667 	int (*write)(struct feat_fd *ff, struct perf_evlist *evlist);
2668 	void (*print)(struct feat_fd *ff, FILE *fp);
2669 	int (*process)(struct feat_fd *ff, void *data);
2670 	const char *name;
2671 	bool full_only;
2672 	bool synthesize;
2673 };
2674 
2675 #define FEAT_OPR(n, func, __full_only) \
2676 	[HEADER_##n] = {					\
2677 		.name	    = __stringify(n),			\
2678 		.write	    = write_##func,			\
2679 		.print	    = print_##func,			\
2680 		.full_only  = __full_only,			\
2681 		.process    = process_##func,			\
2682 		.synthesize = true				\
2683 	}
2684 
2685 #define FEAT_OPN(n, func, __full_only) \
2686 	[HEADER_##n] = {					\
2687 		.name	    = __stringify(n),			\
2688 		.write	    = write_##func,			\
2689 		.print	    = print_##func,			\
2690 		.full_only  = __full_only,			\
2691 		.process    = process_##func			\
2692 	}
2693 
2694 /* feature_ops not implemented: */
2695 #define print_tracing_data	NULL
2696 #define print_build_id		NULL
2697 
2698 #define process_branch_stack	NULL
2699 #define process_stat		NULL
2700 
2701 
2702 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2703 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
2704 	FEAT_OPN(BUILD_ID,	build_id,	false),
2705 	FEAT_OPR(HOSTNAME,	hostname,	false),
2706 	FEAT_OPR(OSRELEASE,	osrelease,	false),
2707 	FEAT_OPR(VERSION,	version,	false),
2708 	FEAT_OPR(ARCH,		arch,		false),
2709 	FEAT_OPR(NRCPUS,	nrcpus,		false),
2710 	FEAT_OPR(CPUDESC,	cpudesc,	false),
2711 	FEAT_OPR(CPUID,		cpuid,		false),
2712 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
2713 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
2714 	FEAT_OPR(CMDLINE,	cmdline,	false),
2715 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
2716 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
2717 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
2718 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2719 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2720 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
2721 	FEAT_OPN(STAT,		stat,		false),
2722 	FEAT_OPN(CACHE,		cache,		true),
2723 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2724 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2725 	FEAT_OPR(CLOCKID,	clockid,	false),
2726 	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
2727 	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
2728 	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2729 };
2730 
2731 struct header_print_data {
2732 	FILE *fp;
2733 	bool full; /* extended list of headers */
2734 };
2735 
2736 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2737 					   struct perf_header *ph,
2738 					   int feat, int fd, void *data)
2739 {
2740 	struct header_print_data *hd = data;
2741 	struct feat_fd ff;
2742 
2743 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2744 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2745 				"%d, continuing...\n", section->offset, feat);
2746 		return 0;
2747 	}
2748 	if (feat >= HEADER_LAST_FEATURE) {
2749 		pr_warning("unknown feature %d\n", feat);
2750 		return 0;
2751 	}
2752 	if (!feat_ops[feat].print)
2753 		return 0;
2754 
2755 	ff = (struct  feat_fd) {
2756 		.fd = fd,
2757 		.ph = ph,
2758 	};
2759 
2760 	if (!feat_ops[feat].full_only || hd->full)
2761 		feat_ops[feat].print(&ff, hd->fp);
2762 	else
2763 		fprintf(hd->fp, "# %s info available, use -I to display\n",
2764 			feat_ops[feat].name);
2765 
2766 	return 0;
2767 }
2768 
2769 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2770 {
2771 	struct header_print_data hd;
2772 	struct perf_header *header = &session->header;
2773 	int fd = perf_data__fd(session->data);
2774 	struct stat st;
2775 	time_t stctime;
2776 	int ret, bit;
2777 
2778 	hd.fp = fp;
2779 	hd.full = full;
2780 
2781 	ret = fstat(fd, &st);
2782 	if (ret == -1)
2783 		return -1;
2784 
2785 	stctime = st.st_ctime;
2786 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
2787 
2788 	fprintf(fp, "# header version : %u\n", header->version);
2789 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2790 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2791 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2792 
2793 	perf_header__process_sections(header, fd, &hd,
2794 				      perf_file_section__fprintf_info);
2795 
2796 	if (session->data->is_pipe)
2797 		return 0;
2798 
2799 	fprintf(fp, "# missing features: ");
2800 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2801 		if (bit)
2802 			fprintf(fp, "%s ", feat_ops[bit].name);
2803 	}
2804 
2805 	fprintf(fp, "\n");
2806 	return 0;
2807 }
2808 
2809 static int do_write_feat(struct feat_fd *ff, int type,
2810 			 struct perf_file_section **p,
2811 			 struct perf_evlist *evlist)
2812 {
2813 	int err;
2814 	int ret = 0;
2815 
2816 	if (perf_header__has_feat(ff->ph, type)) {
2817 		if (!feat_ops[type].write)
2818 			return -1;
2819 
2820 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2821 			return -1;
2822 
2823 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2824 
2825 		err = feat_ops[type].write(ff, evlist);
2826 		if (err < 0) {
2827 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2828 
2829 			/* undo anything written */
2830 			lseek(ff->fd, (*p)->offset, SEEK_SET);
2831 
2832 			return -1;
2833 		}
2834 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2835 		(*p)++;
2836 	}
2837 	return ret;
2838 }
2839 
2840 static int perf_header__adds_write(struct perf_header *header,
2841 				   struct perf_evlist *evlist, int fd)
2842 {
2843 	int nr_sections;
2844 	struct feat_fd ff;
2845 	struct perf_file_section *feat_sec, *p;
2846 	int sec_size;
2847 	u64 sec_start;
2848 	int feat;
2849 	int err;
2850 
2851 	ff = (struct feat_fd){
2852 		.fd  = fd,
2853 		.ph = header,
2854 	};
2855 
2856 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2857 	if (!nr_sections)
2858 		return 0;
2859 
2860 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2861 	if (feat_sec == NULL)
2862 		return -ENOMEM;
2863 
2864 	sec_size = sizeof(*feat_sec) * nr_sections;
2865 
2866 	sec_start = header->feat_offset;
2867 	lseek(fd, sec_start + sec_size, SEEK_SET);
2868 
2869 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
2870 		if (do_write_feat(&ff, feat, &p, evlist))
2871 			perf_header__clear_feat(header, feat);
2872 	}
2873 
2874 	lseek(fd, sec_start, SEEK_SET);
2875 	/*
2876 	 * may write more than needed due to dropped feature, but
2877 	 * this is okay, reader will skip the missing entries
2878 	 */
2879 	err = do_write(&ff, feat_sec, sec_size);
2880 	if (err < 0)
2881 		pr_debug("failed to write feature section\n");
2882 	free(feat_sec);
2883 	return err;
2884 }
2885 
2886 int perf_header__write_pipe(int fd)
2887 {
2888 	struct perf_pipe_file_header f_header;
2889 	struct feat_fd ff;
2890 	int err;
2891 
2892 	ff = (struct feat_fd){ .fd = fd };
2893 
2894 	f_header = (struct perf_pipe_file_header){
2895 		.magic	   = PERF_MAGIC,
2896 		.size	   = sizeof(f_header),
2897 	};
2898 
2899 	err = do_write(&ff, &f_header, sizeof(f_header));
2900 	if (err < 0) {
2901 		pr_debug("failed to write perf pipe header\n");
2902 		return err;
2903 	}
2904 
2905 	return 0;
2906 }
2907 
2908 int perf_session__write_header(struct perf_session *session,
2909 			       struct perf_evlist *evlist,
2910 			       int fd, bool at_exit)
2911 {
2912 	struct perf_file_header f_header;
2913 	struct perf_file_attr   f_attr;
2914 	struct perf_header *header = &session->header;
2915 	struct perf_evsel *evsel;
2916 	struct feat_fd ff;
2917 	u64 attr_offset;
2918 	int err;
2919 
2920 	ff = (struct feat_fd){ .fd = fd};
2921 	lseek(fd, sizeof(f_header), SEEK_SET);
2922 
2923 	evlist__for_each_entry(session->evlist, evsel) {
2924 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
2925 		err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
2926 		if (err < 0) {
2927 			pr_debug("failed to write perf header\n");
2928 			return err;
2929 		}
2930 	}
2931 
2932 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
2933 
2934 	evlist__for_each_entry(evlist, evsel) {
2935 		f_attr = (struct perf_file_attr){
2936 			.attr = evsel->attr,
2937 			.ids  = {
2938 				.offset = evsel->id_offset,
2939 				.size   = evsel->ids * sizeof(u64),
2940 			}
2941 		};
2942 		err = do_write(&ff, &f_attr, sizeof(f_attr));
2943 		if (err < 0) {
2944 			pr_debug("failed to write perf header attribute\n");
2945 			return err;
2946 		}
2947 	}
2948 
2949 	if (!header->data_offset)
2950 		header->data_offset = lseek(fd, 0, SEEK_CUR);
2951 	header->feat_offset = header->data_offset + header->data_size;
2952 
2953 	if (at_exit) {
2954 		err = perf_header__adds_write(header, evlist, fd);
2955 		if (err < 0)
2956 			return err;
2957 	}
2958 
2959 	f_header = (struct perf_file_header){
2960 		.magic	   = PERF_MAGIC,
2961 		.size	   = sizeof(f_header),
2962 		.attr_size = sizeof(f_attr),
2963 		.attrs = {
2964 			.offset = attr_offset,
2965 			.size   = evlist->nr_entries * sizeof(f_attr),
2966 		},
2967 		.data = {
2968 			.offset = header->data_offset,
2969 			.size	= header->data_size,
2970 		},
2971 		/* event_types is ignored, store zeros */
2972 	};
2973 
2974 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
2975 
2976 	lseek(fd, 0, SEEK_SET);
2977 	err = do_write(&ff, &f_header, sizeof(f_header));
2978 	if (err < 0) {
2979 		pr_debug("failed to write perf header\n");
2980 		return err;
2981 	}
2982 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
2983 
2984 	return 0;
2985 }
2986 
2987 static int perf_header__getbuffer64(struct perf_header *header,
2988 				    int fd, void *buf, size_t size)
2989 {
2990 	if (readn(fd, buf, size) <= 0)
2991 		return -1;
2992 
2993 	if (header->needs_swap)
2994 		mem_bswap_64(buf, size);
2995 
2996 	return 0;
2997 }
2998 
2999 int perf_header__process_sections(struct perf_header *header, int fd,
3000 				  void *data,
3001 				  int (*process)(struct perf_file_section *section,
3002 						 struct perf_header *ph,
3003 						 int feat, int fd, void *data))
3004 {
3005 	struct perf_file_section *feat_sec, *sec;
3006 	int nr_sections;
3007 	int sec_size;
3008 	int feat;
3009 	int err;
3010 
3011 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3012 	if (!nr_sections)
3013 		return 0;
3014 
3015 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3016 	if (!feat_sec)
3017 		return -1;
3018 
3019 	sec_size = sizeof(*feat_sec) * nr_sections;
3020 
3021 	lseek(fd, header->feat_offset, SEEK_SET);
3022 
3023 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3024 	if (err < 0)
3025 		goto out_free;
3026 
3027 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3028 		err = process(sec++, header, feat, fd, data);
3029 		if (err < 0)
3030 			goto out_free;
3031 	}
3032 	err = 0;
3033 out_free:
3034 	free(feat_sec);
3035 	return err;
3036 }
3037 
3038 static const int attr_file_abi_sizes[] = {
3039 	[0] = PERF_ATTR_SIZE_VER0,
3040 	[1] = PERF_ATTR_SIZE_VER1,
3041 	[2] = PERF_ATTR_SIZE_VER2,
3042 	[3] = PERF_ATTR_SIZE_VER3,
3043 	[4] = PERF_ATTR_SIZE_VER4,
3044 	0,
3045 };
3046 
3047 /*
3048  * In the legacy file format, the magic number is not used to encode endianness.
3049  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3050  * on ABI revisions, we need to try all combinations for all endianness to
3051  * detect the endianness.
3052  */
3053 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3054 {
3055 	uint64_t ref_size, attr_size;
3056 	int i;
3057 
3058 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3059 		ref_size = attr_file_abi_sizes[i]
3060 			 + sizeof(struct perf_file_section);
3061 		if (hdr_sz != ref_size) {
3062 			attr_size = bswap_64(hdr_sz);
3063 			if (attr_size != ref_size)
3064 				continue;
3065 
3066 			ph->needs_swap = true;
3067 		}
3068 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3069 			 i,
3070 			 ph->needs_swap);
3071 		return 0;
3072 	}
3073 	/* could not determine endianness */
3074 	return -1;
3075 }
3076 
3077 #define PERF_PIPE_HDR_VER0	16
3078 
3079 static const size_t attr_pipe_abi_sizes[] = {
3080 	[0] = PERF_PIPE_HDR_VER0,
3081 	0,
3082 };
3083 
3084 /*
3085  * In the legacy pipe format, there is an implicit assumption that endiannesss
3086  * between host recording the samples, and host parsing the samples is the
3087  * same. This is not always the case given that the pipe output may always be
3088  * redirected into a file and analyzed on a different machine with possibly a
3089  * different endianness and perf_event ABI revsions in the perf tool itself.
3090  */
3091 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3092 {
3093 	u64 attr_size;
3094 	int i;
3095 
3096 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3097 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3098 			attr_size = bswap_64(hdr_sz);
3099 			if (attr_size != hdr_sz)
3100 				continue;
3101 
3102 			ph->needs_swap = true;
3103 		}
3104 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3105 		return 0;
3106 	}
3107 	return -1;
3108 }
3109 
3110 bool is_perf_magic(u64 magic)
3111 {
3112 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3113 		|| magic == __perf_magic2
3114 		|| magic == __perf_magic2_sw)
3115 		return true;
3116 
3117 	return false;
3118 }
3119 
3120 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3121 			      bool is_pipe, struct perf_header *ph)
3122 {
3123 	int ret;
3124 
3125 	/* check for legacy format */
3126 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3127 	if (ret == 0) {
3128 		ph->version = PERF_HEADER_VERSION_1;
3129 		pr_debug("legacy perf.data format\n");
3130 		if (is_pipe)
3131 			return try_all_pipe_abis(hdr_sz, ph);
3132 
3133 		return try_all_file_abis(hdr_sz, ph);
3134 	}
3135 	/*
3136 	 * the new magic number serves two purposes:
3137 	 * - unique number to identify actual perf.data files
3138 	 * - encode endianness of file
3139 	 */
3140 	ph->version = PERF_HEADER_VERSION_2;
3141 
3142 	/* check magic number with one endianness */
3143 	if (magic == __perf_magic2)
3144 		return 0;
3145 
3146 	/* check magic number with opposite endianness */
3147 	if (magic != __perf_magic2_sw)
3148 		return -1;
3149 
3150 	ph->needs_swap = true;
3151 
3152 	return 0;
3153 }
3154 
3155 int perf_file_header__read(struct perf_file_header *header,
3156 			   struct perf_header *ph, int fd)
3157 {
3158 	ssize_t ret;
3159 
3160 	lseek(fd, 0, SEEK_SET);
3161 
3162 	ret = readn(fd, header, sizeof(*header));
3163 	if (ret <= 0)
3164 		return -1;
3165 
3166 	if (check_magic_endian(header->magic,
3167 			       header->attr_size, false, ph) < 0) {
3168 		pr_debug("magic/endian check failed\n");
3169 		return -1;
3170 	}
3171 
3172 	if (ph->needs_swap) {
3173 		mem_bswap_64(header, offsetof(struct perf_file_header,
3174 			     adds_features));
3175 	}
3176 
3177 	if (header->size != sizeof(*header)) {
3178 		/* Support the previous format */
3179 		if (header->size == offsetof(typeof(*header), adds_features))
3180 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3181 		else
3182 			return -1;
3183 	} else if (ph->needs_swap) {
3184 		/*
3185 		 * feature bitmap is declared as an array of unsigned longs --
3186 		 * not good since its size can differ between the host that
3187 		 * generated the data file and the host analyzing the file.
3188 		 *
3189 		 * We need to handle endianness, but we don't know the size of
3190 		 * the unsigned long where the file was generated. Take a best
3191 		 * guess at determining it: try 64-bit swap first (ie., file
3192 		 * created on a 64-bit host), and check if the hostname feature
3193 		 * bit is set (this feature bit is forced on as of fbe96f2).
3194 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3195 		 * swap. If the hostname bit is still not set (e.g., older data
3196 		 * file), punt and fallback to the original behavior --
3197 		 * clearing all feature bits and setting buildid.
3198 		 */
3199 		mem_bswap_64(&header->adds_features,
3200 			    BITS_TO_U64(HEADER_FEAT_BITS));
3201 
3202 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3203 			/* unswap as u64 */
3204 			mem_bswap_64(&header->adds_features,
3205 				    BITS_TO_U64(HEADER_FEAT_BITS));
3206 
3207 			/* unswap as u32 */
3208 			mem_bswap_32(&header->adds_features,
3209 				    BITS_TO_U32(HEADER_FEAT_BITS));
3210 		}
3211 
3212 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3213 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3214 			set_bit(HEADER_BUILD_ID, header->adds_features);
3215 		}
3216 	}
3217 
3218 	memcpy(&ph->adds_features, &header->adds_features,
3219 	       sizeof(ph->adds_features));
3220 
3221 	ph->data_offset  = header->data.offset;
3222 	ph->data_size	 = header->data.size;
3223 	ph->feat_offset  = header->data.offset + header->data.size;
3224 	return 0;
3225 }
3226 
3227 static int perf_file_section__process(struct perf_file_section *section,
3228 				      struct perf_header *ph,
3229 				      int feat, int fd, void *data)
3230 {
3231 	struct feat_fd fdd = {
3232 		.fd	= fd,
3233 		.ph	= ph,
3234 		.size	= section->size,
3235 		.offset	= section->offset,
3236 	};
3237 
3238 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3239 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3240 			  "%d, continuing...\n", section->offset, feat);
3241 		return 0;
3242 	}
3243 
3244 	if (feat >= HEADER_LAST_FEATURE) {
3245 		pr_debug("unknown feature %d, continuing...\n", feat);
3246 		return 0;
3247 	}
3248 
3249 	if (!feat_ops[feat].process)
3250 		return 0;
3251 
3252 	return feat_ops[feat].process(&fdd, data);
3253 }
3254 
3255 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3256 				       struct perf_header *ph, int fd,
3257 				       bool repipe)
3258 {
3259 	struct feat_fd ff = {
3260 		.fd = STDOUT_FILENO,
3261 		.ph = ph,
3262 	};
3263 	ssize_t ret;
3264 
3265 	ret = readn(fd, header, sizeof(*header));
3266 	if (ret <= 0)
3267 		return -1;
3268 
3269 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3270 		pr_debug("endian/magic failed\n");
3271 		return -1;
3272 	}
3273 
3274 	if (ph->needs_swap)
3275 		header->size = bswap_64(header->size);
3276 
3277 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3278 		return -1;
3279 
3280 	return 0;
3281 }
3282 
3283 static int perf_header__read_pipe(struct perf_session *session)
3284 {
3285 	struct perf_header *header = &session->header;
3286 	struct perf_pipe_file_header f_header;
3287 
3288 	if (perf_file_header__read_pipe(&f_header, header,
3289 					perf_data__fd(session->data),
3290 					session->repipe) < 0) {
3291 		pr_debug("incompatible file format\n");
3292 		return -EINVAL;
3293 	}
3294 
3295 	return 0;
3296 }
3297 
3298 static int read_attr(int fd, struct perf_header *ph,
3299 		     struct perf_file_attr *f_attr)
3300 {
3301 	struct perf_event_attr *attr = &f_attr->attr;
3302 	size_t sz, left;
3303 	size_t our_sz = sizeof(f_attr->attr);
3304 	ssize_t ret;
3305 
3306 	memset(f_attr, 0, sizeof(*f_attr));
3307 
3308 	/* read minimal guaranteed structure */
3309 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3310 	if (ret <= 0) {
3311 		pr_debug("cannot read %d bytes of header attr\n",
3312 			 PERF_ATTR_SIZE_VER0);
3313 		return -1;
3314 	}
3315 
3316 	/* on file perf_event_attr size */
3317 	sz = attr->size;
3318 
3319 	if (ph->needs_swap)
3320 		sz = bswap_32(sz);
3321 
3322 	if (sz == 0) {
3323 		/* assume ABI0 */
3324 		sz =  PERF_ATTR_SIZE_VER0;
3325 	} else if (sz > our_sz) {
3326 		pr_debug("file uses a more recent and unsupported ABI"
3327 			 " (%zu bytes extra)\n", sz - our_sz);
3328 		return -1;
3329 	}
3330 	/* what we have not yet read and that we know about */
3331 	left = sz - PERF_ATTR_SIZE_VER0;
3332 	if (left) {
3333 		void *ptr = attr;
3334 		ptr += PERF_ATTR_SIZE_VER0;
3335 
3336 		ret = readn(fd, ptr, left);
3337 	}
3338 	/* read perf_file_section, ids are read in caller */
3339 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3340 
3341 	return ret <= 0 ? -1 : 0;
3342 }
3343 
3344 static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
3345 						struct tep_handle *pevent)
3346 {
3347 	struct tep_event *event;
3348 	char bf[128];
3349 
3350 	/* already prepared */
3351 	if (evsel->tp_format)
3352 		return 0;
3353 
3354 	if (pevent == NULL) {
3355 		pr_debug("broken or missing trace data\n");
3356 		return -1;
3357 	}
3358 
3359 	event = tep_find_event(pevent, evsel->attr.config);
3360 	if (event == NULL) {
3361 		pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3362 		return -1;
3363 	}
3364 
3365 	if (!evsel->name) {
3366 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3367 		evsel->name = strdup(bf);
3368 		if (evsel->name == NULL)
3369 			return -1;
3370 	}
3371 
3372 	evsel->tp_format = event;
3373 	return 0;
3374 }
3375 
3376 static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
3377 						  struct tep_handle *pevent)
3378 {
3379 	struct perf_evsel *pos;
3380 
3381 	evlist__for_each_entry(evlist, pos) {
3382 		if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
3383 		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3384 			return -1;
3385 	}
3386 
3387 	return 0;
3388 }
3389 
3390 int perf_session__read_header(struct perf_session *session)
3391 {
3392 	struct perf_data *data = session->data;
3393 	struct perf_header *header = &session->header;
3394 	struct perf_file_header	f_header;
3395 	struct perf_file_attr	f_attr;
3396 	u64			f_id;
3397 	int nr_attrs, nr_ids, i, j;
3398 	int fd = perf_data__fd(data);
3399 
3400 	session->evlist = perf_evlist__new();
3401 	if (session->evlist == NULL)
3402 		return -ENOMEM;
3403 
3404 	session->evlist->env = &header->env;
3405 	session->machines.host.env = &header->env;
3406 	if (perf_data__is_pipe(data))
3407 		return perf_header__read_pipe(session);
3408 
3409 	if (perf_file_header__read(&f_header, header, fd) < 0)
3410 		return -EINVAL;
3411 
3412 	/*
3413 	 * Sanity check that perf.data was written cleanly; data size is
3414 	 * initialized to 0 and updated only if the on_exit function is run.
3415 	 * If data size is still 0 then the file contains only partial
3416 	 * information.  Just warn user and process it as much as it can.
3417 	 */
3418 	if (f_header.data.size == 0) {
3419 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3420 			   "Was the 'perf record' command properly terminated?\n",
3421 			   data->file.path);
3422 	}
3423 
3424 	nr_attrs = f_header.attrs.size / f_header.attr_size;
3425 	lseek(fd, f_header.attrs.offset, SEEK_SET);
3426 
3427 	for (i = 0; i < nr_attrs; i++) {
3428 		struct perf_evsel *evsel;
3429 		off_t tmp;
3430 
3431 		if (read_attr(fd, header, &f_attr) < 0)
3432 			goto out_errno;
3433 
3434 		if (header->needs_swap) {
3435 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3436 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3437 			perf_event__attr_swap(&f_attr.attr);
3438 		}
3439 
3440 		tmp = lseek(fd, 0, SEEK_CUR);
3441 		evsel = perf_evsel__new(&f_attr.attr);
3442 
3443 		if (evsel == NULL)
3444 			goto out_delete_evlist;
3445 
3446 		evsel->needs_swap = header->needs_swap;
3447 		/*
3448 		 * Do it before so that if perf_evsel__alloc_id fails, this
3449 		 * entry gets purged too at perf_evlist__delete().
3450 		 */
3451 		perf_evlist__add(session->evlist, evsel);
3452 
3453 		nr_ids = f_attr.ids.size / sizeof(u64);
3454 		/*
3455 		 * We don't have the cpu and thread maps on the header, so
3456 		 * for allocating the perf_sample_id table we fake 1 cpu and
3457 		 * hattr->ids threads.
3458 		 */
3459 		if (perf_evsel__alloc_id(evsel, 1, nr_ids))
3460 			goto out_delete_evlist;
3461 
3462 		lseek(fd, f_attr.ids.offset, SEEK_SET);
3463 
3464 		for (j = 0; j < nr_ids; j++) {
3465 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3466 				goto out_errno;
3467 
3468 			perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3469 		}
3470 
3471 		lseek(fd, tmp, SEEK_SET);
3472 	}
3473 
3474 	perf_header__process_sections(header, fd, &session->tevent,
3475 				      perf_file_section__process);
3476 
3477 	if (perf_evlist__prepare_tracepoint_events(session->evlist,
3478 						   session->tevent.pevent))
3479 		goto out_delete_evlist;
3480 
3481 	return 0;
3482 out_errno:
3483 	return -errno;
3484 
3485 out_delete_evlist:
3486 	perf_evlist__delete(session->evlist);
3487 	session->evlist = NULL;
3488 	return -ENOMEM;
3489 }
3490 
3491 int perf_event__synthesize_attr(struct perf_tool *tool,
3492 				struct perf_event_attr *attr, u32 ids, u64 *id,
3493 				perf_event__handler_t process)
3494 {
3495 	union perf_event *ev;
3496 	size_t size;
3497 	int err;
3498 
3499 	size = sizeof(struct perf_event_attr);
3500 	size = PERF_ALIGN(size, sizeof(u64));
3501 	size += sizeof(struct perf_event_header);
3502 	size += ids * sizeof(u64);
3503 
3504 	ev = malloc(size);
3505 
3506 	if (ev == NULL)
3507 		return -ENOMEM;
3508 
3509 	ev->attr.attr = *attr;
3510 	memcpy(ev->attr.id, id, ids * sizeof(u64));
3511 
3512 	ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3513 	ev->attr.header.size = (u16)size;
3514 
3515 	if (ev->attr.header.size == size)
3516 		err = process(tool, ev, NULL, NULL);
3517 	else
3518 		err = -E2BIG;
3519 
3520 	free(ev);
3521 
3522 	return err;
3523 }
3524 
3525 int perf_event__synthesize_features(struct perf_tool *tool,
3526 				    struct perf_session *session,
3527 				    struct perf_evlist *evlist,
3528 				    perf_event__handler_t process)
3529 {
3530 	struct perf_header *header = &session->header;
3531 	struct feat_fd ff;
3532 	struct feature_event *fe;
3533 	size_t sz, sz_hdr;
3534 	int feat, ret;
3535 
3536 	sz_hdr = sizeof(fe->header);
3537 	sz = sizeof(union perf_event);
3538 	/* get a nice alignment */
3539 	sz = PERF_ALIGN(sz, page_size);
3540 
3541 	memset(&ff, 0, sizeof(ff));
3542 
3543 	ff.buf = malloc(sz);
3544 	if (!ff.buf)
3545 		return -ENOMEM;
3546 
3547 	ff.size = sz - sz_hdr;
3548 
3549 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3550 		if (!feat_ops[feat].synthesize) {
3551 			pr_debug("No record header feature for header :%d\n", feat);
3552 			continue;
3553 		}
3554 
3555 		ff.offset = sizeof(*fe);
3556 
3557 		ret = feat_ops[feat].write(&ff, evlist);
3558 		if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
3559 			pr_debug("Error writing feature\n");
3560 			continue;
3561 		}
3562 		/* ff.buf may have changed due to realloc in do_write() */
3563 		fe = ff.buf;
3564 		memset(fe, 0, sizeof(*fe));
3565 
3566 		fe->feat_id = feat;
3567 		fe->header.type = PERF_RECORD_HEADER_FEATURE;
3568 		fe->header.size = ff.offset;
3569 
3570 		ret = process(tool, ff.buf, NULL, NULL);
3571 		if (ret) {
3572 			free(ff.buf);
3573 			return ret;
3574 		}
3575 	}
3576 
3577 	/* Send HEADER_LAST_FEATURE mark. */
3578 	fe = ff.buf;
3579 	fe->feat_id     = HEADER_LAST_FEATURE;
3580 	fe->header.type = PERF_RECORD_HEADER_FEATURE;
3581 	fe->header.size = sizeof(*fe);
3582 
3583 	ret = process(tool, ff.buf, NULL, NULL);
3584 
3585 	free(ff.buf);
3586 	return ret;
3587 }
3588 
3589 int perf_event__process_feature(struct perf_session *session,
3590 				union perf_event *event)
3591 {
3592 	struct perf_tool *tool = session->tool;
3593 	struct feat_fd ff = { .fd = 0 };
3594 	struct feature_event *fe = (struct feature_event *)event;
3595 	int type = fe->header.type;
3596 	u64 feat = fe->feat_id;
3597 
3598 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3599 		pr_warning("invalid record type %d in pipe-mode\n", type);
3600 		return 0;
3601 	}
3602 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3603 		pr_warning("invalid record type %d in pipe-mode\n", type);
3604 		return -1;
3605 	}
3606 
3607 	if (!feat_ops[feat].process)
3608 		return 0;
3609 
3610 	ff.buf  = (void *)fe->data;
3611 	ff.size = event->header.size - sizeof(event->header);
3612 	ff.ph = &session->header;
3613 
3614 	if (feat_ops[feat].process(&ff, NULL))
3615 		return -1;
3616 
3617 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3618 		return 0;
3619 
3620 	if (!feat_ops[feat].full_only ||
3621 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3622 		feat_ops[feat].print(&ff, stdout);
3623 	} else {
3624 		fprintf(stdout, "# %s info available, use -I to display\n",
3625 			feat_ops[feat].name);
3626 	}
3627 
3628 	return 0;
3629 }
3630 
3631 static struct event_update_event *
3632 event_update_event__new(size_t size, u64 type, u64 id)
3633 {
3634 	struct event_update_event *ev;
3635 
3636 	size += sizeof(*ev);
3637 	size  = PERF_ALIGN(size, sizeof(u64));
3638 
3639 	ev = zalloc(size);
3640 	if (ev) {
3641 		ev->header.type = PERF_RECORD_EVENT_UPDATE;
3642 		ev->header.size = (u16)size;
3643 		ev->type = type;
3644 		ev->id = id;
3645 	}
3646 	return ev;
3647 }
3648 
3649 int
3650 perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3651 					 struct perf_evsel *evsel,
3652 					 perf_event__handler_t process)
3653 {
3654 	struct event_update_event *ev;
3655 	size_t size = strlen(evsel->unit);
3656 	int err;
3657 
3658 	ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3659 	if (ev == NULL)
3660 		return -ENOMEM;
3661 
3662 	strlcpy(ev->data, evsel->unit, size + 1);
3663 	err = process(tool, (union perf_event *)ev, NULL, NULL);
3664 	free(ev);
3665 	return err;
3666 }
3667 
3668 int
3669 perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3670 					  struct perf_evsel *evsel,
3671 					  perf_event__handler_t process)
3672 {
3673 	struct event_update_event *ev;
3674 	struct event_update_event_scale *ev_data;
3675 	int err;
3676 
3677 	ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3678 	if (ev == NULL)
3679 		return -ENOMEM;
3680 
3681 	ev_data = (struct event_update_event_scale *) ev->data;
3682 	ev_data->scale = evsel->scale;
3683 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3684 	free(ev);
3685 	return err;
3686 }
3687 
3688 int
3689 perf_event__synthesize_event_update_name(struct perf_tool *tool,
3690 					 struct perf_evsel *evsel,
3691 					 perf_event__handler_t process)
3692 {
3693 	struct event_update_event *ev;
3694 	size_t len = strlen(evsel->name);
3695 	int err;
3696 
3697 	ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3698 	if (ev == NULL)
3699 		return -ENOMEM;
3700 
3701 	strlcpy(ev->data, evsel->name, len + 1);
3702 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3703 	free(ev);
3704 	return err;
3705 }
3706 
3707 int
3708 perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3709 					struct perf_evsel *evsel,
3710 					perf_event__handler_t process)
3711 {
3712 	size_t size = sizeof(struct event_update_event);
3713 	struct event_update_event *ev;
3714 	int max, err;
3715 	u16 type;
3716 
3717 	if (!evsel->own_cpus)
3718 		return 0;
3719 
3720 	ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
3721 	if (!ev)
3722 		return -ENOMEM;
3723 
3724 	ev->header.type = PERF_RECORD_EVENT_UPDATE;
3725 	ev->header.size = (u16)size;
3726 	ev->type = PERF_EVENT_UPDATE__CPUS;
3727 	ev->id   = evsel->id[0];
3728 
3729 	cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3730 				 evsel->own_cpus,
3731 				 type, max);
3732 
3733 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3734 	free(ev);
3735 	return err;
3736 }
3737 
3738 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3739 {
3740 	struct event_update_event *ev = &event->event_update;
3741 	struct event_update_event_scale *ev_scale;
3742 	struct event_update_event_cpus *ev_cpus;
3743 	struct cpu_map *map;
3744 	size_t ret;
3745 
3746 	ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);
3747 
3748 	switch (ev->type) {
3749 	case PERF_EVENT_UPDATE__SCALE:
3750 		ev_scale = (struct event_update_event_scale *) ev->data;
3751 		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3752 		break;
3753 	case PERF_EVENT_UPDATE__UNIT:
3754 		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3755 		break;
3756 	case PERF_EVENT_UPDATE__NAME:
3757 		ret += fprintf(fp, "... name:  %s\n", ev->data);
3758 		break;
3759 	case PERF_EVENT_UPDATE__CPUS:
3760 		ev_cpus = (struct event_update_event_cpus *) ev->data;
3761 		ret += fprintf(fp, "... ");
3762 
3763 		map = cpu_map__new_data(&ev_cpus->cpus);
3764 		if (map)
3765 			ret += cpu_map__fprintf(map, fp);
3766 		else
3767 			ret += fprintf(fp, "failed to get cpus\n");
3768 		break;
3769 	default:
3770 		ret += fprintf(fp, "... unknown type\n");
3771 		break;
3772 	}
3773 
3774 	return ret;
3775 }
3776 
3777 int perf_event__synthesize_attrs(struct perf_tool *tool,
3778 				 struct perf_evlist *evlist,
3779 				 perf_event__handler_t process)
3780 {
3781 	struct perf_evsel *evsel;
3782 	int err = 0;
3783 
3784 	evlist__for_each_entry(evlist, evsel) {
3785 		err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
3786 						  evsel->id, process);
3787 		if (err) {
3788 			pr_debug("failed to create perf header attribute\n");
3789 			return err;
3790 		}
3791 	}
3792 
3793 	return err;
3794 }
3795 
3796 static bool has_unit(struct perf_evsel *counter)
3797 {
3798 	return counter->unit && *counter->unit;
3799 }
3800 
3801 static bool has_scale(struct perf_evsel *counter)
3802 {
3803 	return counter->scale != 1;
3804 }
3805 
3806 int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3807 				      struct perf_evlist *evsel_list,
3808 				      perf_event__handler_t process,
3809 				      bool is_pipe)
3810 {
3811 	struct perf_evsel *counter;
3812 	int err;
3813 
3814 	/*
3815 	 * Synthesize other events stuff not carried within
3816 	 * attr event - unit, scale, name
3817 	 */
3818 	evlist__for_each_entry(evsel_list, counter) {
3819 		if (!counter->supported)
3820 			continue;
3821 
3822 		/*
3823 		 * Synthesize unit and scale only if it's defined.
3824 		 */
3825 		if (has_unit(counter)) {
3826 			err = perf_event__synthesize_event_update_unit(tool, counter, process);
3827 			if (err < 0) {
3828 				pr_err("Couldn't synthesize evsel unit.\n");
3829 				return err;
3830 			}
3831 		}
3832 
3833 		if (has_scale(counter)) {
3834 			err = perf_event__synthesize_event_update_scale(tool, counter, process);
3835 			if (err < 0) {
3836 				pr_err("Couldn't synthesize evsel counter.\n");
3837 				return err;
3838 			}
3839 		}
3840 
3841 		if (counter->own_cpus) {
3842 			err = perf_event__synthesize_event_update_cpus(tool, counter, process);
3843 			if (err < 0) {
3844 				pr_err("Couldn't synthesize evsel cpus.\n");
3845 				return err;
3846 			}
3847 		}
3848 
3849 		/*
3850 		 * Name is needed only for pipe output,
3851 		 * perf.data carries event names.
3852 		 */
3853 		if (is_pipe) {
3854 			err = perf_event__synthesize_event_update_name(tool, counter, process);
3855 			if (err < 0) {
3856 				pr_err("Couldn't synthesize evsel name.\n");
3857 				return err;
3858 			}
3859 		}
3860 	}
3861 	return 0;
3862 }
3863 
3864 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3865 			     union perf_event *event,
3866 			     struct perf_evlist **pevlist)
3867 {
3868 	u32 i, ids, n_ids;
3869 	struct perf_evsel *evsel;
3870 	struct perf_evlist *evlist = *pevlist;
3871 
3872 	if (evlist == NULL) {
3873 		*pevlist = evlist = perf_evlist__new();
3874 		if (evlist == NULL)
3875 			return -ENOMEM;
3876 	}
3877 
3878 	evsel = perf_evsel__new(&event->attr.attr);
3879 	if (evsel == NULL)
3880 		return -ENOMEM;
3881 
3882 	perf_evlist__add(evlist, evsel);
3883 
3884 	ids = event->header.size;
3885 	ids -= (void *)&event->attr.id - (void *)event;
3886 	n_ids = ids / sizeof(u64);
3887 	/*
3888 	 * We don't have the cpu and thread maps on the header, so
3889 	 * for allocating the perf_sample_id table we fake 1 cpu and
3890 	 * hattr->ids threads.
3891 	 */
3892 	if (perf_evsel__alloc_id(evsel, 1, n_ids))
3893 		return -ENOMEM;
3894 
3895 	for (i = 0; i < n_ids; i++) {
3896 		perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
3897 	}
3898 
3899 	return 0;
3900 }
3901 
3902 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3903 				     union perf_event *event,
3904 				     struct perf_evlist **pevlist)
3905 {
3906 	struct event_update_event *ev = &event->event_update;
3907 	struct event_update_event_scale *ev_scale;
3908 	struct event_update_event_cpus *ev_cpus;
3909 	struct perf_evlist *evlist;
3910 	struct perf_evsel *evsel;
3911 	struct cpu_map *map;
3912 
3913 	if (!pevlist || *pevlist == NULL)
3914 		return -EINVAL;
3915 
3916 	evlist = *pevlist;
3917 
3918 	evsel = perf_evlist__id2evsel(evlist, ev->id);
3919 	if (evsel == NULL)
3920 		return -EINVAL;
3921 
3922 	switch (ev->type) {
3923 	case PERF_EVENT_UPDATE__UNIT:
3924 		evsel->unit = strdup(ev->data);
3925 		break;
3926 	case PERF_EVENT_UPDATE__NAME:
3927 		evsel->name = strdup(ev->data);
3928 		break;
3929 	case PERF_EVENT_UPDATE__SCALE:
3930 		ev_scale = (struct event_update_event_scale *) ev->data;
3931 		evsel->scale = ev_scale->scale;
3932 		break;
3933 	case PERF_EVENT_UPDATE__CPUS:
3934 		ev_cpus = (struct event_update_event_cpus *) ev->data;
3935 
3936 		map = cpu_map__new_data(&ev_cpus->cpus);
3937 		if (map)
3938 			evsel->own_cpus = map;
3939 		else
3940 			pr_err("failed to get event_update cpus\n");
3941 	default:
3942 		break;
3943 	}
3944 
3945 	return 0;
3946 }
3947 
3948 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
3949 					struct perf_evlist *evlist,
3950 					perf_event__handler_t process)
3951 {
3952 	union perf_event ev;
3953 	struct tracing_data *tdata;
3954 	ssize_t size = 0, aligned_size = 0, padding;
3955 	struct feat_fd ff;
3956 	int err __maybe_unused = 0;
3957 
3958 	/*
3959 	 * We are going to store the size of the data followed
3960 	 * by the data contents. Since the fd descriptor is a pipe,
3961 	 * we cannot seek back to store the size of the data once
3962 	 * we know it. Instead we:
3963 	 *
3964 	 * - write the tracing data to the temp file
3965 	 * - get/write the data size to pipe
3966 	 * - write the tracing data from the temp file
3967 	 *   to the pipe
3968 	 */
3969 	tdata = tracing_data_get(&evlist->entries, fd, true);
3970 	if (!tdata)
3971 		return -1;
3972 
3973 	memset(&ev, 0, sizeof(ev));
3974 
3975 	ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
3976 	size = tdata->size;
3977 	aligned_size = PERF_ALIGN(size, sizeof(u64));
3978 	padding = aligned_size - size;
3979 	ev.tracing_data.header.size = sizeof(ev.tracing_data);
3980 	ev.tracing_data.size = aligned_size;
3981 
3982 	process(tool, &ev, NULL, NULL);
3983 
3984 	/*
3985 	 * The put function will copy all the tracing data
3986 	 * stored in temp file to the pipe.
3987 	 */
3988 	tracing_data_put(tdata);
3989 
3990 	ff = (struct feat_fd){ .fd = fd };
3991 	if (write_padded(&ff, NULL, 0, padding))
3992 		return -1;
3993 
3994 	return aligned_size;
3995 }
3996 
3997 int perf_event__process_tracing_data(struct perf_session *session,
3998 				     union perf_event *event)
3999 {
4000 	ssize_t size_read, padding, size = event->tracing_data.size;
4001 	int fd = perf_data__fd(session->data);
4002 	off_t offset = lseek(fd, 0, SEEK_CUR);
4003 	char buf[BUFSIZ];
4004 
4005 	/* setup for reading amidst mmap */
4006 	lseek(fd, offset + sizeof(struct tracing_data_event),
4007 	      SEEK_SET);
4008 
4009 	size_read = trace_report(fd, &session->tevent,
4010 				 session->repipe);
4011 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4012 
4013 	if (readn(fd, buf, padding) < 0) {
4014 		pr_err("%s: reading input file", __func__);
4015 		return -1;
4016 	}
4017 	if (session->repipe) {
4018 		int retw = write(STDOUT_FILENO, buf, padding);
4019 		if (retw <= 0 || retw != padding) {
4020 			pr_err("%s: repiping tracing data padding", __func__);
4021 			return -1;
4022 		}
4023 	}
4024 
4025 	if (size_read + padding != size) {
4026 		pr_err("%s: tracing data size mismatch", __func__);
4027 		return -1;
4028 	}
4029 
4030 	perf_evlist__prepare_tracepoint_events(session->evlist,
4031 					       session->tevent.pevent);
4032 
4033 	return size_read + padding;
4034 }
4035 
4036 int perf_event__synthesize_build_id(struct perf_tool *tool,
4037 				    struct dso *pos, u16 misc,
4038 				    perf_event__handler_t process,
4039 				    struct machine *machine)
4040 {
4041 	union perf_event ev;
4042 	size_t len;
4043 	int err = 0;
4044 
4045 	if (!pos->hit)
4046 		return err;
4047 
4048 	memset(&ev, 0, sizeof(ev));
4049 
4050 	len = pos->long_name_len + 1;
4051 	len = PERF_ALIGN(len, NAME_ALIGN);
4052 	memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
4053 	ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
4054 	ev.build_id.header.misc = misc;
4055 	ev.build_id.pid = machine->pid;
4056 	ev.build_id.header.size = sizeof(ev.build_id) + len;
4057 	memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
4058 
4059 	err = process(tool, &ev, NULL, machine);
4060 
4061 	return err;
4062 }
4063 
4064 int perf_event__process_build_id(struct perf_session *session,
4065 				 union perf_event *event)
4066 {
4067 	__event_process_build_id(&event->build_id,
4068 				 event->build_id.filename,
4069 				 session);
4070 	return 0;
4071 }
4072