1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <regex.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/string.h>
17 #include <linux/stringify.h>
18 #include <linux/zalloc.h>
19 #include <sys/stat.h>
20 #include <sys/utsname.h>
21 #include <linux/time64.h>
22 #include <dirent.h>
23 #ifdef HAVE_LIBBPF_SUPPORT
24 #include <bpf/libbpf.h>
25 #endif
26 #include <perf/cpumap.h>
27 #include <tools/libc_compat.h> // reallocarray
28
29 #include "dso.h"
30 #include "evlist.h"
31 #include "evsel.h"
32 #include "util/evsel_fprintf.h"
33 #include "header.h"
34 #include "memswap.h"
35 #include "trace-event.h"
36 #include "session.h"
37 #include "symbol.h"
38 #include "debug.h"
39 #include "cpumap.h"
40 #include "pmu.h"
41 #include "pmus.h"
42 #include "vdso.h"
43 #include "strbuf.h"
44 #include "build-id.h"
45 #include "data.h"
46 #include <api/fs/fs.h>
47 #include "asm/bug.h"
48 #include "tool.h"
49 #include "time-utils.h"
50 #include "units.h"
51 #include "util/util.h" // perf_exe()
52 #include "cputopo.h"
53 #include "bpf-event.h"
54 #include "bpf-utils.h"
55 #include "clockid.h"
56
57 #include <linux/ctype.h>
58 #include <internal/lib.h>
59
60 #ifdef HAVE_LIBTRACEEVENT
61 #include <traceevent/event-parse.h>
62 #endif
63
64 /*
65 * magic2 = "PERFILE2"
66 * must be a numerical value to let the endianness
67 * determine the memory layout. That way we are able
68 * to detect endianness when reading the perf.data file
69 * back.
70 *
71 * we check for legacy (PERFFILE) format.
72 */
73 static const char *__perf_magic1 = "PERFFILE";
74 static const u64 __perf_magic2 = 0x32454c4946524550ULL;
75 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
76
77 #define PERF_MAGIC __perf_magic2
78
79 const char perf_version_string[] = PERF_VERSION;
80
81 struct perf_file_attr {
82 struct perf_event_attr attr;
83 struct perf_file_section ids;
84 };
85
perf_header__set_feat(struct perf_header * header,int feat)86 void perf_header__set_feat(struct perf_header *header, int feat)
87 {
88 __set_bit(feat, header->adds_features);
89 }
90
perf_header__clear_feat(struct perf_header * header,int feat)91 void perf_header__clear_feat(struct perf_header *header, int feat)
92 {
93 __clear_bit(feat, header->adds_features);
94 }
95
perf_header__has_feat(const struct perf_header * header,int feat)96 bool perf_header__has_feat(const struct perf_header *header, int feat)
97 {
98 return test_bit(feat, header->adds_features);
99 }
100
__do_write_fd(struct feat_fd * ff,const void * buf,size_t size)101 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
102 {
103 ssize_t ret = writen(ff->fd, buf, size);
104
105 if (ret != (ssize_t)size)
106 return ret < 0 ? (int)ret : -1;
107 return 0;
108 }
109
__do_write_buf(struct feat_fd * ff,const void * buf,size_t size)110 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size)
111 {
112 /* struct perf_event_header::size is u16 */
113 const size_t max_size = 0xffff - sizeof(struct perf_event_header);
114 size_t new_size = ff->size;
115 void *addr;
116
117 if (size + ff->offset > max_size)
118 return -E2BIG;
119
120 while (size > (new_size - ff->offset))
121 new_size <<= 1;
122 new_size = min(max_size, new_size);
123
124 if (ff->size < new_size) {
125 addr = realloc(ff->buf, new_size);
126 if (!addr)
127 return -ENOMEM;
128 ff->buf = addr;
129 ff->size = new_size;
130 }
131
132 memcpy(ff->buf + ff->offset, buf, size);
133 ff->offset += size;
134
135 return 0;
136 }
137
138 /* Return: 0 if succeeded, -ERR if failed. */
do_write(struct feat_fd * ff,const void * buf,size_t size)139 int do_write(struct feat_fd *ff, const void *buf, size_t size)
140 {
141 if (!ff->buf)
142 return __do_write_fd(ff, buf, size);
143 return __do_write_buf(ff, buf, size);
144 }
145
146 /* Return: 0 if succeeded, -ERR if failed. */
do_write_bitmap(struct feat_fd * ff,unsigned long * set,u64 size)147 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
148 {
149 u64 *p = (u64 *) set;
150 int i, ret;
151
152 ret = do_write(ff, &size, sizeof(size));
153 if (ret < 0)
154 return ret;
155
156 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
157 ret = do_write(ff, p + i, sizeof(*p));
158 if (ret < 0)
159 return ret;
160 }
161
162 return 0;
163 }
164
165 /* Return: 0 if succeeded, -ERR if failed. */
write_padded(struct feat_fd * ff,const void * bf,size_t count,size_t count_aligned)166 int write_padded(struct feat_fd *ff, const void *bf,
167 size_t count, size_t count_aligned)
168 {
169 static const char zero_buf[NAME_ALIGN];
170 int err = do_write(ff, bf, count);
171
172 if (!err)
173 err = do_write(ff, zero_buf, count_aligned - count);
174
175 return err;
176 }
177
178 #define string_size(str) \
179 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
180
181 /* Return: 0 if succeeded, -ERR if failed. */
do_write_string(struct feat_fd * ff,const char * str)182 static int do_write_string(struct feat_fd *ff, const char *str)
183 {
184 u32 len, olen;
185 int ret;
186
187 olen = strlen(str) + 1;
188 len = PERF_ALIGN(olen, NAME_ALIGN);
189
190 /* write len, incl. \0 */
191 ret = do_write(ff, &len, sizeof(len));
192 if (ret < 0)
193 return ret;
194
195 return write_padded(ff, str, olen, len);
196 }
197
__do_read_fd(struct feat_fd * ff,void * addr,ssize_t size)198 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
199 {
200 ssize_t ret = readn(ff->fd, addr, size);
201
202 if (ret != size)
203 return ret < 0 ? (int)ret : -1;
204 return 0;
205 }
206
__do_read_buf(struct feat_fd * ff,void * addr,ssize_t size)207 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
208 {
209 if (size > (ssize_t)ff->size - ff->offset)
210 return -1;
211
212 memcpy(addr, ff->buf + ff->offset, size);
213 ff->offset += size;
214
215 return 0;
216
217 }
218
__do_read(struct feat_fd * ff,void * addr,ssize_t size)219 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
220 {
221 if (!ff->buf)
222 return __do_read_fd(ff, addr, size);
223 return __do_read_buf(ff, addr, size);
224 }
225
do_read_u32(struct feat_fd * ff,u32 * addr)226 static int do_read_u32(struct feat_fd *ff, u32 *addr)
227 {
228 int ret;
229
230 ret = __do_read(ff, addr, sizeof(*addr));
231 if (ret)
232 return ret;
233
234 if (ff->ph->needs_swap)
235 *addr = bswap_32(*addr);
236 return 0;
237 }
238
do_read_u64(struct feat_fd * ff,u64 * addr)239 static int do_read_u64(struct feat_fd *ff, u64 *addr)
240 {
241 int ret;
242
243 ret = __do_read(ff, addr, sizeof(*addr));
244 if (ret)
245 return ret;
246
247 if (ff->ph->needs_swap)
248 *addr = bswap_64(*addr);
249 return 0;
250 }
251
do_read_string(struct feat_fd * ff)252 static char *do_read_string(struct feat_fd *ff)
253 {
254 u32 len;
255 char *buf;
256
257 if (do_read_u32(ff, &len))
258 return NULL;
259
260 buf = malloc(len);
261 if (!buf)
262 return NULL;
263
264 if (!__do_read(ff, buf, len)) {
265 /*
266 * strings are padded by zeroes
267 * thus the actual strlen of buf
268 * may be less than len
269 */
270 return buf;
271 }
272
273 free(buf);
274 return NULL;
275 }
276
277 /* Return: 0 if succeeded, -ERR if failed. */
do_read_bitmap(struct feat_fd * ff,unsigned long ** pset,u64 * psize)278 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
279 {
280 unsigned long *set;
281 u64 size, *p;
282 int i, ret;
283
284 ret = do_read_u64(ff, &size);
285 if (ret)
286 return ret;
287
288 set = bitmap_zalloc(size);
289 if (!set)
290 return -ENOMEM;
291
292 p = (u64 *) set;
293
294 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
295 ret = do_read_u64(ff, p + i);
296 if (ret < 0) {
297 free(set);
298 return ret;
299 }
300 }
301
302 *pset = set;
303 *psize = size;
304 return 0;
305 }
306
307 #ifdef HAVE_LIBTRACEEVENT
write_tracing_data(struct feat_fd * ff,struct evlist * evlist)308 static int write_tracing_data(struct feat_fd *ff,
309 struct evlist *evlist)
310 {
311 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
312 return -1;
313
314 return read_tracing_data(ff->fd, &evlist->core.entries);
315 }
316 #endif
317
write_build_id(struct feat_fd * ff,struct evlist * evlist __maybe_unused)318 static int write_build_id(struct feat_fd *ff,
319 struct evlist *evlist __maybe_unused)
320 {
321 struct perf_session *session;
322 int err;
323
324 session = container_of(ff->ph, struct perf_session, header);
325
326 if (!perf_session__read_build_ids(session, true))
327 return -1;
328
329 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
330 return -1;
331
332 err = perf_session__write_buildid_table(session, ff);
333 if (err < 0) {
334 pr_debug("failed to write buildid table\n");
335 return err;
336 }
337 perf_session__cache_build_ids(session);
338
339 return 0;
340 }
341
write_hostname(struct feat_fd * ff,struct evlist * evlist __maybe_unused)342 static int write_hostname(struct feat_fd *ff,
343 struct evlist *evlist __maybe_unused)
344 {
345 struct utsname uts;
346 int ret;
347
348 ret = uname(&uts);
349 if (ret < 0)
350 return -1;
351
352 return do_write_string(ff, uts.nodename);
353 }
354
write_osrelease(struct feat_fd * ff,struct evlist * evlist __maybe_unused)355 static int write_osrelease(struct feat_fd *ff,
356 struct evlist *evlist __maybe_unused)
357 {
358 struct utsname uts;
359 int ret;
360
361 ret = uname(&uts);
362 if (ret < 0)
363 return -1;
364
365 return do_write_string(ff, uts.release);
366 }
367
write_arch(struct feat_fd * ff,struct evlist * evlist __maybe_unused)368 static int write_arch(struct feat_fd *ff,
369 struct evlist *evlist __maybe_unused)
370 {
371 struct utsname uts;
372 int ret;
373
374 ret = uname(&uts);
375 if (ret < 0)
376 return -1;
377
378 return do_write_string(ff, uts.machine);
379 }
380
write_version(struct feat_fd * ff,struct evlist * evlist __maybe_unused)381 static int write_version(struct feat_fd *ff,
382 struct evlist *evlist __maybe_unused)
383 {
384 return do_write_string(ff, perf_version_string);
385 }
386
__write_cpudesc(struct feat_fd * ff,const char * cpuinfo_proc)387 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
388 {
389 FILE *file;
390 char *buf = NULL;
391 char *s, *p;
392 const char *search = cpuinfo_proc;
393 size_t len = 0;
394 int ret = -1;
395
396 if (!search)
397 return -1;
398
399 file = fopen("/proc/cpuinfo", "r");
400 if (!file)
401 return -1;
402
403 while (getline(&buf, &len, file) > 0) {
404 ret = strncmp(buf, search, strlen(search));
405 if (!ret)
406 break;
407 }
408
409 if (ret) {
410 ret = -1;
411 goto done;
412 }
413
414 s = buf;
415
416 p = strchr(buf, ':');
417 if (p && *(p+1) == ' ' && *(p+2))
418 s = p + 2;
419 p = strchr(s, '\n');
420 if (p)
421 *p = '\0';
422
423 /* squash extra space characters (branding string) */
424 p = s;
425 while (*p) {
426 if (isspace(*p)) {
427 char *r = p + 1;
428 char *q = skip_spaces(r);
429 *p = ' ';
430 if (q != (p+1))
431 while ((*r++ = *q++));
432 }
433 p++;
434 }
435 ret = do_write_string(ff, s);
436 done:
437 free(buf);
438 fclose(file);
439 return ret;
440 }
441
write_cpudesc(struct feat_fd * ff,struct evlist * evlist __maybe_unused)442 static int write_cpudesc(struct feat_fd *ff,
443 struct evlist *evlist __maybe_unused)
444 {
445 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
446 #define CPUINFO_PROC { "cpu", }
447 #elif defined(__s390__)
448 #define CPUINFO_PROC { "vendor_id", }
449 #elif defined(__sh__)
450 #define CPUINFO_PROC { "cpu type", }
451 #elif defined(__alpha__) || defined(__mips__)
452 #define CPUINFO_PROC { "cpu model", }
453 #elif defined(__arm__)
454 #define CPUINFO_PROC { "model name", "Processor", }
455 #elif defined(__arc__)
456 #define CPUINFO_PROC { "Processor", }
457 #elif defined(__xtensa__)
458 #define CPUINFO_PROC { "core ID", }
459 #elif defined(__loongarch__)
460 #define CPUINFO_PROC { "Model Name", }
461 #else
462 #define CPUINFO_PROC { "model name", }
463 #endif
464 const char *cpuinfo_procs[] = CPUINFO_PROC;
465 #undef CPUINFO_PROC
466 unsigned int i;
467
468 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
469 int ret;
470 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
471 if (ret >= 0)
472 return ret;
473 }
474 return -1;
475 }
476
477
write_nrcpus(struct feat_fd * ff,struct evlist * evlist __maybe_unused)478 static int write_nrcpus(struct feat_fd *ff,
479 struct evlist *evlist __maybe_unused)
480 {
481 long nr;
482 u32 nrc, nra;
483 int ret;
484
485 nrc = cpu__max_present_cpu().cpu;
486
487 nr = sysconf(_SC_NPROCESSORS_ONLN);
488 if (nr < 0)
489 return -1;
490
491 nra = (u32)(nr & UINT_MAX);
492
493 ret = do_write(ff, &nrc, sizeof(nrc));
494 if (ret < 0)
495 return ret;
496
497 return do_write(ff, &nra, sizeof(nra));
498 }
499
write_event_desc(struct feat_fd * ff,struct evlist * evlist)500 static int write_event_desc(struct feat_fd *ff,
501 struct evlist *evlist)
502 {
503 struct evsel *evsel;
504 u32 nre, nri, sz;
505 int ret;
506
507 nre = evlist->core.nr_entries;
508
509 /*
510 * write number of events
511 */
512 ret = do_write(ff, &nre, sizeof(nre));
513 if (ret < 0)
514 return ret;
515
516 /*
517 * size of perf_event_attr struct
518 */
519 sz = (u32)sizeof(evsel->core.attr);
520 ret = do_write(ff, &sz, sizeof(sz));
521 if (ret < 0)
522 return ret;
523
524 evlist__for_each_entry(evlist, evsel) {
525 ret = do_write(ff, &evsel->core.attr, sz);
526 if (ret < 0)
527 return ret;
528 /*
529 * write number of unique id per event
530 * there is one id per instance of an event
531 *
532 * copy into an nri to be independent of the
533 * type of ids,
534 */
535 nri = evsel->core.ids;
536 ret = do_write(ff, &nri, sizeof(nri));
537 if (ret < 0)
538 return ret;
539
540 /*
541 * write event string as passed on cmdline
542 */
543 ret = do_write_string(ff, evsel__name(evsel));
544 if (ret < 0)
545 return ret;
546 /*
547 * write unique ids for this event
548 */
549 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
550 if (ret < 0)
551 return ret;
552 }
553 return 0;
554 }
555
write_cmdline(struct feat_fd * ff,struct evlist * evlist __maybe_unused)556 static int write_cmdline(struct feat_fd *ff,
557 struct evlist *evlist __maybe_unused)
558 {
559 char pbuf[MAXPATHLEN], *buf;
560 int i, ret, n;
561
562 /* actual path to perf binary */
563 buf = perf_exe(pbuf, MAXPATHLEN);
564
565 /* account for binary path */
566 n = perf_env.nr_cmdline + 1;
567
568 ret = do_write(ff, &n, sizeof(n));
569 if (ret < 0)
570 return ret;
571
572 ret = do_write_string(ff, buf);
573 if (ret < 0)
574 return ret;
575
576 for (i = 0 ; i < perf_env.nr_cmdline; i++) {
577 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
578 if (ret < 0)
579 return ret;
580 }
581 return 0;
582 }
583
584
write_cpu_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)585 static int write_cpu_topology(struct feat_fd *ff,
586 struct evlist *evlist __maybe_unused)
587 {
588 struct cpu_topology *tp;
589 u32 i;
590 int ret, j;
591
592 tp = cpu_topology__new();
593 if (!tp)
594 return -1;
595
596 ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
597 if (ret < 0)
598 goto done;
599
600 for (i = 0; i < tp->package_cpus_lists; i++) {
601 ret = do_write_string(ff, tp->package_cpus_list[i]);
602 if (ret < 0)
603 goto done;
604 }
605 ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
606 if (ret < 0)
607 goto done;
608
609 for (i = 0; i < tp->core_cpus_lists; i++) {
610 ret = do_write_string(ff, tp->core_cpus_list[i]);
611 if (ret < 0)
612 break;
613 }
614
615 ret = perf_env__read_cpu_topology_map(&perf_env);
616 if (ret < 0)
617 goto done;
618
619 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
620 ret = do_write(ff, &perf_env.cpu[j].core_id,
621 sizeof(perf_env.cpu[j].core_id));
622 if (ret < 0)
623 return ret;
624 ret = do_write(ff, &perf_env.cpu[j].socket_id,
625 sizeof(perf_env.cpu[j].socket_id));
626 if (ret < 0)
627 return ret;
628 }
629
630 if (!tp->die_cpus_lists)
631 goto done;
632
633 ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
634 if (ret < 0)
635 goto done;
636
637 for (i = 0; i < tp->die_cpus_lists; i++) {
638 ret = do_write_string(ff, tp->die_cpus_list[i]);
639 if (ret < 0)
640 goto done;
641 }
642
643 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
644 ret = do_write(ff, &perf_env.cpu[j].die_id,
645 sizeof(perf_env.cpu[j].die_id));
646 if (ret < 0)
647 return ret;
648 }
649
650 done:
651 cpu_topology__delete(tp);
652 return ret;
653 }
654
655
656
write_total_mem(struct feat_fd * ff,struct evlist * evlist __maybe_unused)657 static int write_total_mem(struct feat_fd *ff,
658 struct evlist *evlist __maybe_unused)
659 {
660 char *buf = NULL;
661 FILE *fp;
662 size_t len = 0;
663 int ret = -1, n;
664 uint64_t mem;
665
666 fp = fopen("/proc/meminfo", "r");
667 if (!fp)
668 return -1;
669
670 while (getline(&buf, &len, fp) > 0) {
671 ret = strncmp(buf, "MemTotal:", 9);
672 if (!ret)
673 break;
674 }
675 if (!ret) {
676 n = sscanf(buf, "%*s %"PRIu64, &mem);
677 if (n == 1)
678 ret = do_write(ff, &mem, sizeof(mem));
679 } else
680 ret = -1;
681 free(buf);
682 fclose(fp);
683 return ret;
684 }
685
write_numa_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)686 static int write_numa_topology(struct feat_fd *ff,
687 struct evlist *evlist __maybe_unused)
688 {
689 struct numa_topology *tp;
690 int ret = -1;
691 u32 i;
692
693 tp = numa_topology__new();
694 if (!tp)
695 return -ENOMEM;
696
697 ret = do_write(ff, &tp->nr, sizeof(u32));
698 if (ret < 0)
699 goto err;
700
701 for (i = 0; i < tp->nr; i++) {
702 struct numa_topology_node *n = &tp->nodes[i];
703
704 ret = do_write(ff, &n->node, sizeof(u32));
705 if (ret < 0)
706 goto err;
707
708 ret = do_write(ff, &n->mem_total, sizeof(u64));
709 if (ret)
710 goto err;
711
712 ret = do_write(ff, &n->mem_free, sizeof(u64));
713 if (ret)
714 goto err;
715
716 ret = do_write_string(ff, n->cpus);
717 if (ret < 0)
718 goto err;
719 }
720
721 ret = 0;
722
723 err:
724 numa_topology__delete(tp);
725 return ret;
726 }
727
728 /*
729 * File format:
730 *
731 * struct pmu_mappings {
732 * u32 pmu_num;
733 * struct pmu_map {
734 * u32 type;
735 * char name[];
736 * }[pmu_num];
737 * };
738 */
739
write_pmu_mappings(struct feat_fd * ff,struct evlist * evlist __maybe_unused)740 static int write_pmu_mappings(struct feat_fd *ff,
741 struct evlist *evlist __maybe_unused)
742 {
743 struct perf_pmu *pmu = NULL;
744 u32 pmu_num = 0;
745 int ret;
746
747 /*
748 * Do a first pass to count number of pmu to avoid lseek so this
749 * works in pipe mode as well.
750 */
751 while ((pmu = perf_pmus__scan(pmu)))
752 pmu_num++;
753
754 ret = do_write(ff, &pmu_num, sizeof(pmu_num));
755 if (ret < 0)
756 return ret;
757
758 while ((pmu = perf_pmus__scan(pmu))) {
759 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
760 if (ret < 0)
761 return ret;
762
763 ret = do_write_string(ff, pmu->name);
764 if (ret < 0)
765 return ret;
766 }
767
768 return 0;
769 }
770
771 /*
772 * File format:
773 *
774 * struct group_descs {
775 * u32 nr_groups;
776 * struct group_desc {
777 * char name[];
778 * u32 leader_idx;
779 * u32 nr_members;
780 * }[nr_groups];
781 * };
782 */
write_group_desc(struct feat_fd * ff,struct evlist * evlist)783 static int write_group_desc(struct feat_fd *ff,
784 struct evlist *evlist)
785 {
786 u32 nr_groups = evlist__nr_groups(evlist);
787 struct evsel *evsel;
788 int ret;
789
790 ret = do_write(ff, &nr_groups, sizeof(nr_groups));
791 if (ret < 0)
792 return ret;
793
794 evlist__for_each_entry(evlist, evsel) {
795 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
796 const char *name = evsel->group_name ?: "{anon_group}";
797 u32 leader_idx = evsel->core.idx;
798 u32 nr_members = evsel->core.nr_members;
799
800 ret = do_write_string(ff, name);
801 if (ret < 0)
802 return ret;
803
804 ret = do_write(ff, &leader_idx, sizeof(leader_idx));
805 if (ret < 0)
806 return ret;
807
808 ret = do_write(ff, &nr_members, sizeof(nr_members));
809 if (ret < 0)
810 return ret;
811 }
812 }
813 return 0;
814 }
815
816 /*
817 * Return the CPU id as a raw string.
818 *
819 * Each architecture should provide a more precise id string that
820 * can be use to match the architecture's "mapfile".
821 */
get_cpuid_str(struct perf_pmu * pmu __maybe_unused)822 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
823 {
824 return NULL;
825 }
826
827 /* Return zero when the cpuid from the mapfile.csv matches the
828 * cpuid string generated on this platform.
829 * Otherwise return non-zero.
830 */
strcmp_cpuid_str(const char * mapcpuid,const char * cpuid)831 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
832 {
833 regex_t re;
834 regmatch_t pmatch[1];
835 int match;
836
837 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
838 /* Warn unable to generate match particular string. */
839 pr_info("Invalid regular expression %s\n", mapcpuid);
840 return 1;
841 }
842
843 match = !regexec(&re, cpuid, 1, pmatch, 0);
844 regfree(&re);
845 if (match) {
846 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
847
848 /* Verify the entire string matched. */
849 if (match_len == strlen(cpuid))
850 return 0;
851 }
852 return 1;
853 }
854
855 /*
856 * default get_cpuid(): nothing gets recorded
857 * actual implementation must be in arch/$(SRCARCH)/util/header.c
858 */
get_cpuid(char * buffer __maybe_unused,size_t sz __maybe_unused)859 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
860 {
861 return ENOSYS; /* Not implemented */
862 }
863
write_cpuid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)864 static int write_cpuid(struct feat_fd *ff,
865 struct evlist *evlist __maybe_unused)
866 {
867 char buffer[64];
868 int ret;
869
870 ret = get_cpuid(buffer, sizeof(buffer));
871 if (ret)
872 return -1;
873
874 return do_write_string(ff, buffer);
875 }
876
write_branch_stack(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)877 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
878 struct evlist *evlist __maybe_unused)
879 {
880 return 0;
881 }
882
write_auxtrace(struct feat_fd * ff,struct evlist * evlist __maybe_unused)883 static int write_auxtrace(struct feat_fd *ff,
884 struct evlist *evlist __maybe_unused)
885 {
886 struct perf_session *session;
887 int err;
888
889 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
890 return -1;
891
892 session = container_of(ff->ph, struct perf_session, header);
893
894 err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
895 if (err < 0)
896 pr_err("Failed to write auxtrace index\n");
897 return err;
898 }
899
write_clockid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)900 static int write_clockid(struct feat_fd *ff,
901 struct evlist *evlist __maybe_unused)
902 {
903 return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
904 sizeof(ff->ph->env.clock.clockid_res_ns));
905 }
906
write_clock_data(struct feat_fd * ff,struct evlist * evlist __maybe_unused)907 static int write_clock_data(struct feat_fd *ff,
908 struct evlist *evlist __maybe_unused)
909 {
910 u64 *data64;
911 u32 data32;
912 int ret;
913
914 /* version */
915 data32 = 1;
916
917 ret = do_write(ff, &data32, sizeof(data32));
918 if (ret < 0)
919 return ret;
920
921 /* clockid */
922 data32 = ff->ph->env.clock.clockid;
923
924 ret = do_write(ff, &data32, sizeof(data32));
925 if (ret < 0)
926 return ret;
927
928 /* TOD ref time */
929 data64 = &ff->ph->env.clock.tod_ns;
930
931 ret = do_write(ff, data64, sizeof(*data64));
932 if (ret < 0)
933 return ret;
934
935 /* clockid ref time */
936 data64 = &ff->ph->env.clock.clockid_ns;
937
938 return do_write(ff, data64, sizeof(*data64));
939 }
940
write_hybrid_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)941 static int write_hybrid_topology(struct feat_fd *ff,
942 struct evlist *evlist __maybe_unused)
943 {
944 struct hybrid_topology *tp;
945 int ret;
946 u32 i;
947
948 tp = hybrid_topology__new();
949 if (!tp)
950 return -ENOENT;
951
952 ret = do_write(ff, &tp->nr, sizeof(u32));
953 if (ret < 0)
954 goto err;
955
956 for (i = 0; i < tp->nr; i++) {
957 struct hybrid_topology_node *n = &tp->nodes[i];
958
959 ret = do_write_string(ff, n->pmu_name);
960 if (ret < 0)
961 goto err;
962
963 ret = do_write_string(ff, n->cpus);
964 if (ret < 0)
965 goto err;
966 }
967
968 ret = 0;
969
970 err:
971 hybrid_topology__delete(tp);
972 return ret;
973 }
974
write_dir_format(struct feat_fd * ff,struct evlist * evlist __maybe_unused)975 static int write_dir_format(struct feat_fd *ff,
976 struct evlist *evlist __maybe_unused)
977 {
978 struct perf_session *session;
979 struct perf_data *data;
980
981 session = container_of(ff->ph, struct perf_session, header);
982 data = session->data;
983
984 if (WARN_ON(!perf_data__is_dir(data)))
985 return -1;
986
987 return do_write(ff, &data->dir.version, sizeof(data->dir.version));
988 }
989
990 /*
991 * Check whether a CPU is online
992 *
993 * Returns:
994 * 1 -> if CPU is online
995 * 0 -> if CPU is offline
996 * -1 -> error case
997 */
is_cpu_online(unsigned int cpu)998 int is_cpu_online(unsigned int cpu)
999 {
1000 char *str;
1001 size_t strlen;
1002 char buf[256];
1003 int status = -1;
1004 struct stat statbuf;
1005
1006 snprintf(buf, sizeof(buf),
1007 "/sys/devices/system/cpu/cpu%d", cpu);
1008 if (stat(buf, &statbuf) != 0)
1009 return 0;
1010
1011 /*
1012 * Check if /sys/devices/system/cpu/cpux/online file
1013 * exists. Some cases cpu0 won't have online file since
1014 * it is not expected to be turned off generally.
1015 * In kernels without CONFIG_HOTPLUG_CPU, this
1016 * file won't exist
1017 */
1018 snprintf(buf, sizeof(buf),
1019 "/sys/devices/system/cpu/cpu%d/online", cpu);
1020 if (stat(buf, &statbuf) != 0)
1021 return 1;
1022
1023 /*
1024 * Read online file using sysfs__read_str.
1025 * If read or open fails, return -1.
1026 * If read succeeds, return value from file
1027 * which gets stored in "str"
1028 */
1029 snprintf(buf, sizeof(buf),
1030 "devices/system/cpu/cpu%d/online", cpu);
1031
1032 if (sysfs__read_str(buf, &str, &strlen) < 0)
1033 return status;
1034
1035 status = atoi(str);
1036
1037 free(str);
1038 return status;
1039 }
1040
1041 #ifdef HAVE_LIBBPF_SUPPORT
write_bpf_prog_info(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1042 static int write_bpf_prog_info(struct feat_fd *ff,
1043 struct evlist *evlist __maybe_unused)
1044 {
1045 struct perf_env *env = &ff->ph->env;
1046 struct rb_root *root;
1047 struct rb_node *next;
1048 int ret;
1049
1050 down_read(&env->bpf_progs.lock);
1051
1052 ret = do_write(ff, &env->bpf_progs.infos_cnt,
1053 sizeof(env->bpf_progs.infos_cnt));
1054 if (ret < 0)
1055 goto out;
1056
1057 root = &env->bpf_progs.infos;
1058 next = rb_first(root);
1059 while (next) {
1060 struct bpf_prog_info_node *node;
1061 size_t len;
1062
1063 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1064 next = rb_next(&node->rb_node);
1065 len = sizeof(struct perf_bpil) +
1066 node->info_linear->data_len;
1067
1068 /* before writing to file, translate address to offset */
1069 bpil_addr_to_offs(node->info_linear);
1070 ret = do_write(ff, node->info_linear, len);
1071 /*
1072 * translate back to address even when do_write() fails,
1073 * so that this function never changes the data.
1074 */
1075 bpil_offs_to_addr(node->info_linear);
1076 if (ret < 0)
1077 goto out;
1078 }
1079 out:
1080 up_read(&env->bpf_progs.lock);
1081 return ret;
1082 }
1083
write_bpf_btf(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1084 static int write_bpf_btf(struct feat_fd *ff,
1085 struct evlist *evlist __maybe_unused)
1086 {
1087 struct perf_env *env = &ff->ph->env;
1088 struct rb_root *root;
1089 struct rb_node *next;
1090 int ret;
1091
1092 down_read(&env->bpf_progs.lock);
1093
1094 ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1095 sizeof(env->bpf_progs.btfs_cnt));
1096
1097 if (ret < 0)
1098 goto out;
1099
1100 root = &env->bpf_progs.btfs;
1101 next = rb_first(root);
1102 while (next) {
1103 struct btf_node *node;
1104
1105 node = rb_entry(next, struct btf_node, rb_node);
1106 next = rb_next(&node->rb_node);
1107 ret = do_write(ff, &node->id,
1108 sizeof(u32) * 2 + node->data_size);
1109 if (ret < 0)
1110 goto out;
1111 }
1112 out:
1113 up_read(&env->bpf_progs.lock);
1114 return ret;
1115 }
1116 #endif // HAVE_LIBBPF_SUPPORT
1117
cpu_cache_level__sort(const void * a,const void * b)1118 static int cpu_cache_level__sort(const void *a, const void *b)
1119 {
1120 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1121 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1122
1123 return cache_a->level - cache_b->level;
1124 }
1125
cpu_cache_level__cmp(struct cpu_cache_level * a,struct cpu_cache_level * b)1126 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1127 {
1128 if (a->level != b->level)
1129 return false;
1130
1131 if (a->line_size != b->line_size)
1132 return false;
1133
1134 if (a->sets != b->sets)
1135 return false;
1136
1137 if (a->ways != b->ways)
1138 return false;
1139
1140 if (strcmp(a->type, b->type))
1141 return false;
1142
1143 if (strcmp(a->size, b->size))
1144 return false;
1145
1146 if (strcmp(a->map, b->map))
1147 return false;
1148
1149 return true;
1150 }
1151
cpu_cache_level__read(struct cpu_cache_level * cache,u32 cpu,u16 level)1152 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1153 {
1154 char path[PATH_MAX], file[PATH_MAX];
1155 struct stat st;
1156 size_t len;
1157
1158 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1159 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1160
1161 if (stat(file, &st))
1162 return 1;
1163
1164 scnprintf(file, PATH_MAX, "%s/level", path);
1165 if (sysfs__read_int(file, (int *) &cache->level))
1166 return -1;
1167
1168 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1169 if (sysfs__read_int(file, (int *) &cache->line_size))
1170 return -1;
1171
1172 scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1173 if (sysfs__read_int(file, (int *) &cache->sets))
1174 return -1;
1175
1176 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1177 if (sysfs__read_int(file, (int *) &cache->ways))
1178 return -1;
1179
1180 scnprintf(file, PATH_MAX, "%s/type", path);
1181 if (sysfs__read_str(file, &cache->type, &len))
1182 return -1;
1183
1184 cache->type[len] = 0;
1185 cache->type = strim(cache->type);
1186
1187 scnprintf(file, PATH_MAX, "%s/size", path);
1188 if (sysfs__read_str(file, &cache->size, &len)) {
1189 zfree(&cache->type);
1190 return -1;
1191 }
1192
1193 cache->size[len] = 0;
1194 cache->size = strim(cache->size);
1195
1196 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1197 if (sysfs__read_str(file, &cache->map, &len)) {
1198 zfree(&cache->size);
1199 zfree(&cache->type);
1200 return -1;
1201 }
1202
1203 cache->map[len] = 0;
1204 cache->map = strim(cache->map);
1205 return 0;
1206 }
1207
cpu_cache_level__fprintf(FILE * out,struct cpu_cache_level * c)1208 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1209 {
1210 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1211 }
1212
1213 /*
1214 * Build caches levels for a particular CPU from the data in
1215 * /sys/devices/system/cpu/cpu<cpu>/cache/
1216 * The cache level data is stored in caches[] from index at
1217 * *cntp.
1218 */
build_caches_for_cpu(u32 cpu,struct cpu_cache_level caches[],u32 * cntp)1219 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp)
1220 {
1221 u16 level;
1222
1223 for (level = 0; level < MAX_CACHE_LVL; level++) {
1224 struct cpu_cache_level c;
1225 int err;
1226 u32 i;
1227
1228 err = cpu_cache_level__read(&c, cpu, level);
1229 if (err < 0)
1230 return err;
1231
1232 if (err == 1)
1233 break;
1234
1235 for (i = 0; i < *cntp; i++) {
1236 if (cpu_cache_level__cmp(&c, &caches[i]))
1237 break;
1238 }
1239
1240 if (i == *cntp) {
1241 caches[*cntp] = c;
1242 *cntp = *cntp + 1;
1243 } else
1244 cpu_cache_level__free(&c);
1245 }
1246
1247 return 0;
1248 }
1249
build_caches(struct cpu_cache_level caches[],u32 * cntp)1250 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1251 {
1252 u32 nr, cpu, cnt = 0;
1253
1254 nr = cpu__max_cpu().cpu;
1255
1256 for (cpu = 0; cpu < nr; cpu++) {
1257 int ret = build_caches_for_cpu(cpu, caches, &cnt);
1258
1259 if (ret)
1260 return ret;
1261 }
1262 *cntp = cnt;
1263 return 0;
1264 }
1265
write_cache(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1266 static int write_cache(struct feat_fd *ff,
1267 struct evlist *evlist __maybe_unused)
1268 {
1269 u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1270 struct cpu_cache_level caches[max_caches];
1271 u32 cnt = 0, i, version = 1;
1272 int ret;
1273
1274 ret = build_caches(caches, &cnt);
1275 if (ret)
1276 goto out;
1277
1278 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1279
1280 ret = do_write(ff, &version, sizeof(u32));
1281 if (ret < 0)
1282 goto out;
1283
1284 ret = do_write(ff, &cnt, sizeof(u32));
1285 if (ret < 0)
1286 goto out;
1287
1288 for (i = 0; i < cnt; i++) {
1289 struct cpu_cache_level *c = &caches[i];
1290
1291 #define _W(v) \
1292 ret = do_write(ff, &c->v, sizeof(u32)); \
1293 if (ret < 0) \
1294 goto out;
1295
1296 _W(level)
1297 _W(line_size)
1298 _W(sets)
1299 _W(ways)
1300 #undef _W
1301
1302 #define _W(v) \
1303 ret = do_write_string(ff, (const char *) c->v); \
1304 if (ret < 0) \
1305 goto out;
1306
1307 _W(type)
1308 _W(size)
1309 _W(map)
1310 #undef _W
1311 }
1312
1313 out:
1314 for (i = 0; i < cnt; i++)
1315 cpu_cache_level__free(&caches[i]);
1316 return ret;
1317 }
1318
write_stat(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1319 static int write_stat(struct feat_fd *ff __maybe_unused,
1320 struct evlist *evlist __maybe_unused)
1321 {
1322 return 0;
1323 }
1324
write_sample_time(struct feat_fd * ff,struct evlist * evlist)1325 static int write_sample_time(struct feat_fd *ff,
1326 struct evlist *evlist)
1327 {
1328 int ret;
1329
1330 ret = do_write(ff, &evlist->first_sample_time,
1331 sizeof(evlist->first_sample_time));
1332 if (ret < 0)
1333 return ret;
1334
1335 return do_write(ff, &evlist->last_sample_time,
1336 sizeof(evlist->last_sample_time));
1337 }
1338
1339
memory_node__read(struct memory_node * n,unsigned long idx)1340 static int memory_node__read(struct memory_node *n, unsigned long idx)
1341 {
1342 unsigned int phys, size = 0;
1343 char path[PATH_MAX];
1344 struct dirent *ent;
1345 DIR *dir;
1346
1347 #define for_each_memory(mem, dir) \
1348 while ((ent = readdir(dir))) \
1349 if (strcmp(ent->d_name, ".") && \
1350 strcmp(ent->d_name, "..") && \
1351 sscanf(ent->d_name, "memory%u", &mem) == 1)
1352
1353 scnprintf(path, PATH_MAX,
1354 "%s/devices/system/node/node%lu",
1355 sysfs__mountpoint(), idx);
1356
1357 dir = opendir(path);
1358 if (!dir) {
1359 pr_warning("failed: can't open memory sysfs data\n");
1360 return -1;
1361 }
1362
1363 for_each_memory(phys, dir) {
1364 size = max(phys, size);
1365 }
1366
1367 size++;
1368
1369 n->set = bitmap_zalloc(size);
1370 if (!n->set) {
1371 closedir(dir);
1372 return -ENOMEM;
1373 }
1374
1375 n->node = idx;
1376 n->size = size;
1377
1378 rewinddir(dir);
1379
1380 for_each_memory(phys, dir) {
1381 __set_bit(phys, n->set);
1382 }
1383
1384 closedir(dir);
1385 return 0;
1386 }
1387
memory_node__delete_nodes(struct memory_node * nodesp,u64 cnt)1388 static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt)
1389 {
1390 for (u64 i = 0; i < cnt; i++)
1391 bitmap_free(nodesp[i].set);
1392
1393 free(nodesp);
1394 }
1395
memory_node__sort(const void * a,const void * b)1396 static int memory_node__sort(const void *a, const void *b)
1397 {
1398 const struct memory_node *na = a;
1399 const struct memory_node *nb = b;
1400
1401 return na->node - nb->node;
1402 }
1403
build_mem_topology(struct memory_node ** nodesp,u64 * cntp)1404 static int build_mem_topology(struct memory_node **nodesp, u64 *cntp)
1405 {
1406 char path[PATH_MAX];
1407 struct dirent *ent;
1408 DIR *dir;
1409 int ret = 0;
1410 size_t cnt = 0, size = 0;
1411 struct memory_node *nodes = NULL;
1412
1413 scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1414 sysfs__mountpoint());
1415
1416 dir = opendir(path);
1417 if (!dir) {
1418 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1419 __func__, path);
1420 return -1;
1421 }
1422
1423 while (!ret && (ent = readdir(dir))) {
1424 unsigned int idx;
1425 int r;
1426
1427 if (!strcmp(ent->d_name, ".") ||
1428 !strcmp(ent->d_name, ".."))
1429 continue;
1430
1431 r = sscanf(ent->d_name, "node%u", &idx);
1432 if (r != 1)
1433 continue;
1434
1435 if (cnt >= size) {
1436 struct memory_node *new_nodes =
1437 reallocarray(nodes, cnt + 4, sizeof(*nodes));
1438
1439 if (!new_nodes) {
1440 pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size);
1441 ret = -ENOMEM;
1442 goto out;
1443 }
1444 nodes = new_nodes;
1445 size += 4;
1446 }
1447 ret = memory_node__read(&nodes[cnt], idx);
1448 if (!ret)
1449 cnt += 1;
1450 }
1451 out:
1452 closedir(dir);
1453 if (!ret) {
1454 *cntp = cnt;
1455 *nodesp = nodes;
1456 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1457 } else
1458 memory_node__delete_nodes(nodes, cnt);
1459
1460 return ret;
1461 }
1462
1463 /*
1464 * The MEM_TOPOLOGY holds physical memory map for every
1465 * node in system. The format of data is as follows:
1466 *
1467 * 0 - version | for future changes
1468 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1469 * 16 - count | number of nodes
1470 *
1471 * For each node we store map of physical indexes for
1472 * each node:
1473 *
1474 * 32 - node id | node index
1475 * 40 - size | size of bitmap
1476 * 48 - bitmap | bitmap of memory indexes that belongs to node
1477 */
write_mem_topology(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1478 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1479 struct evlist *evlist __maybe_unused)
1480 {
1481 struct memory_node *nodes = NULL;
1482 u64 bsize, version = 1, i, nr = 0;
1483 int ret;
1484
1485 ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1486 (unsigned long long *) &bsize);
1487 if (ret)
1488 return ret;
1489
1490 ret = build_mem_topology(&nodes, &nr);
1491 if (ret)
1492 return ret;
1493
1494 ret = do_write(ff, &version, sizeof(version));
1495 if (ret < 0)
1496 goto out;
1497
1498 ret = do_write(ff, &bsize, sizeof(bsize));
1499 if (ret < 0)
1500 goto out;
1501
1502 ret = do_write(ff, &nr, sizeof(nr));
1503 if (ret < 0)
1504 goto out;
1505
1506 for (i = 0; i < nr; i++) {
1507 struct memory_node *n = &nodes[i];
1508
1509 #define _W(v) \
1510 ret = do_write(ff, &n->v, sizeof(n->v)); \
1511 if (ret < 0) \
1512 goto out;
1513
1514 _W(node)
1515 _W(size)
1516
1517 #undef _W
1518
1519 ret = do_write_bitmap(ff, n->set, n->size);
1520 if (ret < 0)
1521 goto out;
1522 }
1523
1524 out:
1525 memory_node__delete_nodes(nodes, nr);
1526 return ret;
1527 }
1528
write_compressed(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1529 static int write_compressed(struct feat_fd *ff __maybe_unused,
1530 struct evlist *evlist __maybe_unused)
1531 {
1532 int ret;
1533
1534 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1535 if (ret)
1536 return ret;
1537
1538 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1539 if (ret)
1540 return ret;
1541
1542 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1543 if (ret)
1544 return ret;
1545
1546 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1547 if (ret)
1548 return ret;
1549
1550 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1551 }
1552
__write_pmu_caps(struct feat_fd * ff,struct perf_pmu * pmu,bool write_pmu)1553 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1554 bool write_pmu)
1555 {
1556 struct perf_pmu_caps *caps = NULL;
1557 int ret;
1558
1559 ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1560 if (ret < 0)
1561 return ret;
1562
1563 list_for_each_entry(caps, &pmu->caps, list) {
1564 ret = do_write_string(ff, caps->name);
1565 if (ret < 0)
1566 return ret;
1567
1568 ret = do_write_string(ff, caps->value);
1569 if (ret < 0)
1570 return ret;
1571 }
1572
1573 if (write_pmu) {
1574 ret = do_write_string(ff, pmu->name);
1575 if (ret < 0)
1576 return ret;
1577 }
1578
1579 return ret;
1580 }
1581
write_cpu_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1582 static int write_cpu_pmu_caps(struct feat_fd *ff,
1583 struct evlist *evlist __maybe_unused)
1584 {
1585 struct perf_pmu *cpu_pmu = perf_pmus__find("cpu");
1586 int ret;
1587
1588 if (!cpu_pmu)
1589 return -ENOENT;
1590
1591 ret = perf_pmu__caps_parse(cpu_pmu);
1592 if (ret < 0)
1593 return ret;
1594
1595 return __write_pmu_caps(ff, cpu_pmu, false);
1596 }
1597
write_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1598 static int write_pmu_caps(struct feat_fd *ff,
1599 struct evlist *evlist __maybe_unused)
1600 {
1601 struct perf_pmu *pmu = NULL;
1602 int nr_pmu = 0;
1603 int ret;
1604
1605 while ((pmu = perf_pmus__scan(pmu))) {
1606 if (!strcmp(pmu->name, "cpu")) {
1607 /*
1608 * The "cpu" PMU is special and covered by
1609 * HEADER_CPU_PMU_CAPS. Note, core PMUs are
1610 * counted/written here for ARM, s390 and Intel hybrid.
1611 */
1612 continue;
1613 }
1614 if (perf_pmu__caps_parse(pmu) <= 0)
1615 continue;
1616 nr_pmu++;
1617 }
1618
1619 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1620 if (ret < 0)
1621 return ret;
1622
1623 if (!nr_pmu)
1624 return 0;
1625
1626 /*
1627 * Note older perf tools assume core PMUs come first, this is a property
1628 * of perf_pmus__scan.
1629 */
1630 pmu = NULL;
1631 while ((pmu = perf_pmus__scan(pmu))) {
1632 if (!strcmp(pmu->name, "cpu")) {
1633 /* Skip as above. */
1634 continue;
1635 }
1636 if (perf_pmu__caps_parse(pmu) <= 0)
1637 continue;
1638 ret = __write_pmu_caps(ff, pmu, true);
1639 if (ret < 0)
1640 return ret;
1641 }
1642 return 0;
1643 }
1644
print_hostname(struct feat_fd * ff,FILE * fp)1645 static void print_hostname(struct feat_fd *ff, FILE *fp)
1646 {
1647 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1648 }
1649
print_osrelease(struct feat_fd * ff,FILE * fp)1650 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1651 {
1652 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1653 }
1654
print_arch(struct feat_fd * ff,FILE * fp)1655 static void print_arch(struct feat_fd *ff, FILE *fp)
1656 {
1657 fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1658 }
1659
print_cpudesc(struct feat_fd * ff,FILE * fp)1660 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1661 {
1662 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1663 }
1664
print_nrcpus(struct feat_fd * ff,FILE * fp)1665 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1666 {
1667 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1668 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1669 }
1670
print_version(struct feat_fd * ff,FILE * fp)1671 static void print_version(struct feat_fd *ff, FILE *fp)
1672 {
1673 fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1674 }
1675
print_cmdline(struct feat_fd * ff,FILE * fp)1676 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1677 {
1678 int nr, i;
1679
1680 nr = ff->ph->env.nr_cmdline;
1681
1682 fprintf(fp, "# cmdline : ");
1683
1684 for (i = 0; i < nr; i++) {
1685 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1686 if (!argv_i) {
1687 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1688 } else {
1689 char *mem = argv_i;
1690 do {
1691 char *quote = strchr(argv_i, '\'');
1692 if (!quote)
1693 break;
1694 *quote++ = '\0';
1695 fprintf(fp, "%s\\\'", argv_i);
1696 argv_i = quote;
1697 } while (1);
1698 fprintf(fp, "%s ", argv_i);
1699 free(mem);
1700 }
1701 }
1702 fputc('\n', fp);
1703 }
1704
print_cpu_topology(struct feat_fd * ff,FILE * fp)1705 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1706 {
1707 struct perf_header *ph = ff->ph;
1708 int cpu_nr = ph->env.nr_cpus_avail;
1709 int nr, i;
1710 char *str;
1711
1712 nr = ph->env.nr_sibling_cores;
1713 str = ph->env.sibling_cores;
1714
1715 for (i = 0; i < nr; i++) {
1716 fprintf(fp, "# sibling sockets : %s\n", str);
1717 str += strlen(str) + 1;
1718 }
1719
1720 if (ph->env.nr_sibling_dies) {
1721 nr = ph->env.nr_sibling_dies;
1722 str = ph->env.sibling_dies;
1723
1724 for (i = 0; i < nr; i++) {
1725 fprintf(fp, "# sibling dies : %s\n", str);
1726 str += strlen(str) + 1;
1727 }
1728 }
1729
1730 nr = ph->env.nr_sibling_threads;
1731 str = ph->env.sibling_threads;
1732
1733 for (i = 0; i < nr; i++) {
1734 fprintf(fp, "# sibling threads : %s\n", str);
1735 str += strlen(str) + 1;
1736 }
1737
1738 if (ph->env.nr_sibling_dies) {
1739 if (ph->env.cpu != NULL) {
1740 for (i = 0; i < cpu_nr; i++)
1741 fprintf(fp, "# CPU %d: Core ID %d, "
1742 "Die ID %d, Socket ID %d\n",
1743 i, ph->env.cpu[i].core_id,
1744 ph->env.cpu[i].die_id,
1745 ph->env.cpu[i].socket_id);
1746 } else
1747 fprintf(fp, "# Core ID, Die ID and Socket ID "
1748 "information is not available\n");
1749 } else {
1750 if (ph->env.cpu != NULL) {
1751 for (i = 0; i < cpu_nr; i++)
1752 fprintf(fp, "# CPU %d: Core ID %d, "
1753 "Socket ID %d\n",
1754 i, ph->env.cpu[i].core_id,
1755 ph->env.cpu[i].socket_id);
1756 } else
1757 fprintf(fp, "# Core ID and Socket ID "
1758 "information is not available\n");
1759 }
1760 }
1761
print_clockid(struct feat_fd * ff,FILE * fp)1762 static void print_clockid(struct feat_fd *ff, FILE *fp)
1763 {
1764 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1765 ff->ph->env.clock.clockid_res_ns * 1000);
1766 }
1767
print_clock_data(struct feat_fd * ff,FILE * fp)1768 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1769 {
1770 struct timespec clockid_ns;
1771 char tstr[64], date[64];
1772 struct timeval tod_ns;
1773 clockid_t clockid;
1774 struct tm ltime;
1775 u64 ref;
1776
1777 if (!ff->ph->env.clock.enabled) {
1778 fprintf(fp, "# reference time disabled\n");
1779 return;
1780 }
1781
1782 /* Compute TOD time. */
1783 ref = ff->ph->env.clock.tod_ns;
1784 tod_ns.tv_sec = ref / NSEC_PER_SEC;
1785 ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1786 tod_ns.tv_usec = ref / NSEC_PER_USEC;
1787
1788 /* Compute clockid time. */
1789 ref = ff->ph->env.clock.clockid_ns;
1790 clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1791 ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1792 clockid_ns.tv_nsec = ref;
1793
1794 clockid = ff->ph->env.clock.clockid;
1795
1796 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL)
1797 snprintf(tstr, sizeof(tstr), "<error>");
1798 else {
1799 strftime(date, sizeof(date), "%F %T", <ime);
1800 scnprintf(tstr, sizeof(tstr), "%s.%06d",
1801 date, (int) tod_ns.tv_usec);
1802 }
1803
1804 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1805 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1806 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1807 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1808 clockid_name(clockid));
1809 }
1810
print_hybrid_topology(struct feat_fd * ff,FILE * fp)1811 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1812 {
1813 int i;
1814 struct hybrid_node *n;
1815
1816 fprintf(fp, "# hybrid cpu system:\n");
1817 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1818 n = &ff->ph->env.hybrid_nodes[i];
1819 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1820 }
1821 }
1822
print_dir_format(struct feat_fd * ff,FILE * fp)1823 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1824 {
1825 struct perf_session *session;
1826 struct perf_data *data;
1827
1828 session = container_of(ff->ph, struct perf_session, header);
1829 data = session->data;
1830
1831 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1832 }
1833
1834 #ifdef HAVE_LIBBPF_SUPPORT
print_bpf_prog_info(struct feat_fd * ff,FILE * fp)1835 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1836 {
1837 struct perf_env *env = &ff->ph->env;
1838 struct rb_root *root;
1839 struct rb_node *next;
1840
1841 down_read(&env->bpf_progs.lock);
1842
1843 root = &env->bpf_progs.infos;
1844 next = rb_first(root);
1845
1846 while (next) {
1847 struct bpf_prog_info_node *node;
1848
1849 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1850 next = rb_next(&node->rb_node);
1851
1852 __bpf_event__print_bpf_prog_info(&node->info_linear->info,
1853 env, fp);
1854 }
1855
1856 up_read(&env->bpf_progs.lock);
1857 }
1858
print_bpf_btf(struct feat_fd * ff,FILE * fp)1859 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1860 {
1861 struct perf_env *env = &ff->ph->env;
1862 struct rb_root *root;
1863 struct rb_node *next;
1864
1865 down_read(&env->bpf_progs.lock);
1866
1867 root = &env->bpf_progs.btfs;
1868 next = rb_first(root);
1869
1870 while (next) {
1871 struct btf_node *node;
1872
1873 node = rb_entry(next, struct btf_node, rb_node);
1874 next = rb_next(&node->rb_node);
1875 fprintf(fp, "# btf info of id %u\n", node->id);
1876 }
1877
1878 up_read(&env->bpf_progs.lock);
1879 }
1880 #endif // HAVE_LIBBPF_SUPPORT
1881
free_event_desc(struct evsel * events)1882 static void free_event_desc(struct evsel *events)
1883 {
1884 struct evsel *evsel;
1885
1886 if (!events)
1887 return;
1888
1889 for (evsel = events; evsel->core.attr.size; evsel++) {
1890 zfree(&evsel->name);
1891 zfree(&evsel->core.id);
1892 }
1893
1894 free(events);
1895 }
1896
perf_attr_check(struct perf_event_attr * attr)1897 static bool perf_attr_check(struct perf_event_attr *attr)
1898 {
1899 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1900 pr_warning("Reserved bits are set unexpectedly. "
1901 "Please update perf tool.\n");
1902 return false;
1903 }
1904
1905 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1906 pr_warning("Unknown sample type (0x%llx) is detected. "
1907 "Please update perf tool.\n",
1908 attr->sample_type);
1909 return false;
1910 }
1911
1912 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1913 pr_warning("Unknown read format (0x%llx) is detected. "
1914 "Please update perf tool.\n",
1915 attr->read_format);
1916 return false;
1917 }
1918
1919 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1920 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1921 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1922 "Please update perf tool.\n",
1923 attr->branch_sample_type);
1924
1925 return false;
1926 }
1927
1928 return true;
1929 }
1930
read_event_desc(struct feat_fd * ff)1931 static struct evsel *read_event_desc(struct feat_fd *ff)
1932 {
1933 struct evsel *evsel, *events = NULL;
1934 u64 *id;
1935 void *buf = NULL;
1936 u32 nre, sz, nr, i, j;
1937 size_t msz;
1938
1939 /* number of events */
1940 if (do_read_u32(ff, &nre))
1941 goto error;
1942
1943 if (do_read_u32(ff, &sz))
1944 goto error;
1945
1946 /* buffer to hold on file attr struct */
1947 buf = malloc(sz);
1948 if (!buf)
1949 goto error;
1950
1951 /* the last event terminates with evsel->core.attr.size == 0: */
1952 events = calloc(nre + 1, sizeof(*events));
1953 if (!events)
1954 goto error;
1955
1956 msz = sizeof(evsel->core.attr);
1957 if (sz < msz)
1958 msz = sz;
1959
1960 for (i = 0, evsel = events; i < nre; evsel++, i++) {
1961 evsel->core.idx = i;
1962
1963 /*
1964 * must read entire on-file attr struct to
1965 * sync up with layout.
1966 */
1967 if (__do_read(ff, buf, sz))
1968 goto error;
1969
1970 if (ff->ph->needs_swap)
1971 perf_event__attr_swap(buf);
1972
1973 memcpy(&evsel->core.attr, buf, msz);
1974
1975 if (!perf_attr_check(&evsel->core.attr))
1976 goto error;
1977
1978 if (do_read_u32(ff, &nr))
1979 goto error;
1980
1981 if (ff->ph->needs_swap)
1982 evsel->needs_swap = true;
1983
1984 evsel->name = do_read_string(ff);
1985 if (!evsel->name)
1986 goto error;
1987
1988 if (!nr)
1989 continue;
1990
1991 id = calloc(nr, sizeof(*id));
1992 if (!id)
1993 goto error;
1994 evsel->core.ids = nr;
1995 evsel->core.id = id;
1996
1997 for (j = 0 ; j < nr; j++) {
1998 if (do_read_u64(ff, id))
1999 goto error;
2000 id++;
2001 }
2002 }
2003 out:
2004 free(buf);
2005 return events;
2006 error:
2007 free_event_desc(events);
2008 events = NULL;
2009 goto out;
2010 }
2011
__desc_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv __maybe_unused)2012 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
2013 void *priv __maybe_unused)
2014 {
2015 return fprintf(fp, ", %s = %s", name, val);
2016 }
2017
print_event_desc(struct feat_fd * ff,FILE * fp)2018 static void print_event_desc(struct feat_fd *ff, FILE *fp)
2019 {
2020 struct evsel *evsel, *events;
2021 u32 j;
2022 u64 *id;
2023
2024 if (ff->events)
2025 events = ff->events;
2026 else
2027 events = read_event_desc(ff);
2028
2029 if (!events) {
2030 fprintf(fp, "# event desc: not available or unable to read\n");
2031 return;
2032 }
2033
2034 for (evsel = events; evsel->core.attr.size; evsel++) {
2035 fprintf(fp, "# event : name = %s, ", evsel->name);
2036
2037 if (evsel->core.ids) {
2038 fprintf(fp, ", id = {");
2039 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2040 if (j)
2041 fputc(',', fp);
2042 fprintf(fp, " %"PRIu64, *id);
2043 }
2044 fprintf(fp, " }");
2045 }
2046
2047 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2048
2049 fputc('\n', fp);
2050 }
2051
2052 free_event_desc(events);
2053 ff->events = NULL;
2054 }
2055
print_total_mem(struct feat_fd * ff,FILE * fp)2056 static void print_total_mem(struct feat_fd *ff, FILE *fp)
2057 {
2058 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2059 }
2060
print_numa_topology(struct feat_fd * ff,FILE * fp)2061 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2062 {
2063 int i;
2064 struct numa_node *n;
2065
2066 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2067 n = &ff->ph->env.numa_nodes[i];
2068
2069 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
2070 " free = %"PRIu64" kB\n",
2071 n->node, n->mem_total, n->mem_free);
2072
2073 fprintf(fp, "# node%u cpu list : ", n->node);
2074 cpu_map__fprintf(n->map, fp);
2075 }
2076 }
2077
print_cpuid(struct feat_fd * ff,FILE * fp)2078 static void print_cpuid(struct feat_fd *ff, FILE *fp)
2079 {
2080 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2081 }
2082
print_branch_stack(struct feat_fd * ff __maybe_unused,FILE * fp)2083 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2084 {
2085 fprintf(fp, "# contains samples with branch stack\n");
2086 }
2087
print_auxtrace(struct feat_fd * ff __maybe_unused,FILE * fp)2088 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2089 {
2090 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2091 }
2092
print_stat(struct feat_fd * ff __maybe_unused,FILE * fp)2093 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2094 {
2095 fprintf(fp, "# contains stat data\n");
2096 }
2097
print_cache(struct feat_fd * ff,FILE * fp __maybe_unused)2098 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2099 {
2100 int i;
2101
2102 fprintf(fp, "# CPU cache info:\n");
2103 for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2104 fprintf(fp, "# ");
2105 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2106 }
2107 }
2108
print_compressed(struct feat_fd * ff,FILE * fp)2109 static void print_compressed(struct feat_fd *ff, FILE *fp)
2110 {
2111 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2112 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2113 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2114 }
2115
__print_pmu_caps(FILE * fp,int nr_caps,char ** caps,char * pmu_name)2116 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2117 {
2118 const char *delimiter = "";
2119 int i;
2120
2121 if (!nr_caps) {
2122 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2123 return;
2124 }
2125
2126 fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2127 for (i = 0; i < nr_caps; i++) {
2128 fprintf(fp, "%s%s", delimiter, caps[i]);
2129 delimiter = ", ";
2130 }
2131
2132 fprintf(fp, "\n");
2133 }
2134
print_cpu_pmu_caps(struct feat_fd * ff,FILE * fp)2135 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2136 {
2137 __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2138 ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2139 }
2140
print_pmu_caps(struct feat_fd * ff,FILE * fp)2141 static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2142 {
2143 struct pmu_caps *pmu_caps;
2144
2145 for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) {
2146 pmu_caps = &ff->ph->env.pmu_caps[i];
2147 __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2148 pmu_caps->pmu_name);
2149 }
2150 }
2151
print_pmu_mappings(struct feat_fd * ff,FILE * fp)2152 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2153 {
2154 const char *delimiter = "# pmu mappings: ";
2155 char *str, *tmp;
2156 u32 pmu_num;
2157 u32 type;
2158
2159 pmu_num = ff->ph->env.nr_pmu_mappings;
2160 if (!pmu_num) {
2161 fprintf(fp, "# pmu mappings: not available\n");
2162 return;
2163 }
2164
2165 str = ff->ph->env.pmu_mappings;
2166
2167 while (pmu_num) {
2168 type = strtoul(str, &tmp, 0);
2169 if (*tmp != ':')
2170 goto error;
2171
2172 str = tmp + 1;
2173 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2174
2175 delimiter = ", ";
2176 str += strlen(str) + 1;
2177 pmu_num--;
2178 }
2179
2180 fprintf(fp, "\n");
2181
2182 if (!pmu_num)
2183 return;
2184 error:
2185 fprintf(fp, "# pmu mappings: unable to read\n");
2186 }
2187
print_group_desc(struct feat_fd * ff,FILE * fp)2188 static void print_group_desc(struct feat_fd *ff, FILE *fp)
2189 {
2190 struct perf_session *session;
2191 struct evsel *evsel;
2192 u32 nr = 0;
2193
2194 session = container_of(ff->ph, struct perf_session, header);
2195
2196 evlist__for_each_entry(session->evlist, evsel) {
2197 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2198 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2199
2200 nr = evsel->core.nr_members - 1;
2201 } else if (nr) {
2202 fprintf(fp, ",%s", evsel__name(evsel));
2203
2204 if (--nr == 0)
2205 fprintf(fp, "}\n");
2206 }
2207 }
2208 }
2209
print_sample_time(struct feat_fd * ff,FILE * fp)2210 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2211 {
2212 struct perf_session *session;
2213 char time_buf[32];
2214 double d;
2215
2216 session = container_of(ff->ph, struct perf_session, header);
2217
2218 timestamp__scnprintf_usec(session->evlist->first_sample_time,
2219 time_buf, sizeof(time_buf));
2220 fprintf(fp, "# time of first sample : %s\n", time_buf);
2221
2222 timestamp__scnprintf_usec(session->evlist->last_sample_time,
2223 time_buf, sizeof(time_buf));
2224 fprintf(fp, "# time of last sample : %s\n", time_buf);
2225
2226 d = (double)(session->evlist->last_sample_time -
2227 session->evlist->first_sample_time) / NSEC_PER_MSEC;
2228
2229 fprintf(fp, "# sample duration : %10.3f ms\n", d);
2230 }
2231
memory_node__fprintf(struct memory_node * n,unsigned long long bsize,FILE * fp)2232 static void memory_node__fprintf(struct memory_node *n,
2233 unsigned long long bsize, FILE *fp)
2234 {
2235 char buf_map[100], buf_size[50];
2236 unsigned long long size;
2237
2238 size = bsize * bitmap_weight(n->set, n->size);
2239 unit_number__scnprintf(buf_size, 50, size);
2240
2241 bitmap_scnprintf(n->set, n->size, buf_map, 100);
2242 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2243 }
2244
print_mem_topology(struct feat_fd * ff,FILE * fp)2245 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2246 {
2247 struct memory_node *nodes;
2248 int i, nr;
2249
2250 nodes = ff->ph->env.memory_nodes;
2251 nr = ff->ph->env.nr_memory_nodes;
2252
2253 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2254 nr, ff->ph->env.memory_bsize);
2255
2256 for (i = 0; i < nr; i++) {
2257 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2258 }
2259 }
2260
__event_process_build_id(struct perf_record_header_build_id * bev,char * filename,struct perf_session * session)2261 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2262 char *filename,
2263 struct perf_session *session)
2264 {
2265 int err = -1;
2266 struct machine *machine;
2267 u16 cpumode;
2268 struct dso *dso;
2269 enum dso_space_type dso_space;
2270
2271 machine = perf_session__findnew_machine(session, bev->pid);
2272 if (!machine)
2273 goto out;
2274
2275 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2276
2277 switch (cpumode) {
2278 case PERF_RECORD_MISC_KERNEL:
2279 dso_space = DSO_SPACE__KERNEL;
2280 break;
2281 case PERF_RECORD_MISC_GUEST_KERNEL:
2282 dso_space = DSO_SPACE__KERNEL_GUEST;
2283 break;
2284 case PERF_RECORD_MISC_USER:
2285 case PERF_RECORD_MISC_GUEST_USER:
2286 dso_space = DSO_SPACE__USER;
2287 break;
2288 default:
2289 goto out;
2290 }
2291
2292 dso = machine__findnew_dso(machine, filename);
2293 if (dso != NULL) {
2294 char sbuild_id[SBUILD_ID_SIZE];
2295 struct build_id bid;
2296 size_t size = BUILD_ID_SIZE;
2297
2298 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2299 size = bev->size;
2300
2301 build_id__init(&bid, bev->data, size);
2302 dso__set_build_id(dso, &bid);
2303 dso->header_build_id = 1;
2304
2305 if (dso_space != DSO_SPACE__USER) {
2306 struct kmod_path m = { .name = NULL, };
2307
2308 if (!kmod_path__parse_name(&m, filename) && m.kmod)
2309 dso__set_module_info(dso, &m, machine);
2310
2311 dso->kernel = dso_space;
2312 free(m.name);
2313 }
2314
2315 build_id__sprintf(&dso->bid, sbuild_id);
2316 pr_debug("build id event received for %s: %s [%zu]\n",
2317 dso->long_name, sbuild_id, size);
2318 dso__put(dso);
2319 }
2320
2321 err = 0;
2322 out:
2323 return err;
2324 }
2325
perf_header__read_build_ids_abi_quirk(struct perf_header * header,int input,u64 offset,u64 size)2326 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2327 int input, u64 offset, u64 size)
2328 {
2329 struct perf_session *session = container_of(header, struct perf_session, header);
2330 struct {
2331 struct perf_event_header header;
2332 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2333 char filename[0];
2334 } old_bev;
2335 struct perf_record_header_build_id bev;
2336 char filename[PATH_MAX];
2337 u64 limit = offset + size;
2338
2339 while (offset < limit) {
2340 ssize_t len;
2341
2342 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2343 return -1;
2344
2345 if (header->needs_swap)
2346 perf_event_header__bswap(&old_bev.header);
2347
2348 len = old_bev.header.size - sizeof(old_bev);
2349 if (readn(input, filename, len) != len)
2350 return -1;
2351
2352 bev.header = old_bev.header;
2353
2354 /*
2355 * As the pid is the missing value, we need to fill
2356 * it properly. The header.misc value give us nice hint.
2357 */
2358 bev.pid = HOST_KERNEL_ID;
2359 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2360 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2361 bev.pid = DEFAULT_GUEST_KERNEL_ID;
2362
2363 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2364 __event_process_build_id(&bev, filename, session);
2365
2366 offset += bev.header.size;
2367 }
2368
2369 return 0;
2370 }
2371
perf_header__read_build_ids(struct perf_header * header,int input,u64 offset,u64 size)2372 static int perf_header__read_build_ids(struct perf_header *header,
2373 int input, u64 offset, u64 size)
2374 {
2375 struct perf_session *session = container_of(header, struct perf_session, header);
2376 struct perf_record_header_build_id bev;
2377 char filename[PATH_MAX];
2378 u64 limit = offset + size, orig_offset = offset;
2379 int err = -1;
2380
2381 while (offset < limit) {
2382 ssize_t len;
2383
2384 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2385 goto out;
2386
2387 if (header->needs_swap)
2388 perf_event_header__bswap(&bev.header);
2389
2390 len = bev.header.size - sizeof(bev);
2391 if (readn(input, filename, len) != len)
2392 goto out;
2393 /*
2394 * The a1645ce1 changeset:
2395 *
2396 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2397 *
2398 * Added a field to struct perf_record_header_build_id that broke the file
2399 * format.
2400 *
2401 * Since the kernel build-id is the first entry, process the
2402 * table using the old format if the well known
2403 * '[kernel.kallsyms]' string for the kernel build-id has the
2404 * first 4 characters chopped off (where the pid_t sits).
2405 */
2406 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2407 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2408 return -1;
2409 return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2410 }
2411
2412 __event_process_build_id(&bev, filename, session);
2413
2414 offset += bev.header.size;
2415 }
2416 err = 0;
2417 out:
2418 return err;
2419 }
2420
2421 /* Macro for features that simply need to read and store a string. */
2422 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2423 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2424 {\
2425 free(ff->ph->env.__feat_env); \
2426 ff->ph->env.__feat_env = do_read_string(ff); \
2427 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2428 }
2429
2430 FEAT_PROCESS_STR_FUN(hostname, hostname);
2431 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2432 FEAT_PROCESS_STR_FUN(version, version);
2433 FEAT_PROCESS_STR_FUN(arch, arch);
2434 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2435 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2436
2437 #ifdef HAVE_LIBTRACEEVENT
process_tracing_data(struct feat_fd * ff,void * data)2438 static int process_tracing_data(struct feat_fd *ff, void *data)
2439 {
2440 ssize_t ret = trace_report(ff->fd, data, false);
2441
2442 return ret < 0 ? -1 : 0;
2443 }
2444 #endif
2445
process_build_id(struct feat_fd * ff,void * data __maybe_unused)2446 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2447 {
2448 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2449 pr_debug("Failed to read buildids, continuing...\n");
2450 return 0;
2451 }
2452
process_nrcpus(struct feat_fd * ff,void * data __maybe_unused)2453 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2454 {
2455 int ret;
2456 u32 nr_cpus_avail, nr_cpus_online;
2457
2458 ret = do_read_u32(ff, &nr_cpus_avail);
2459 if (ret)
2460 return ret;
2461
2462 ret = do_read_u32(ff, &nr_cpus_online);
2463 if (ret)
2464 return ret;
2465 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2466 ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2467 return 0;
2468 }
2469
process_total_mem(struct feat_fd * ff,void * data __maybe_unused)2470 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2471 {
2472 u64 total_mem;
2473 int ret;
2474
2475 ret = do_read_u64(ff, &total_mem);
2476 if (ret)
2477 return -1;
2478 ff->ph->env.total_mem = (unsigned long long)total_mem;
2479 return 0;
2480 }
2481
evlist__find_by_index(struct evlist * evlist,int idx)2482 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2483 {
2484 struct evsel *evsel;
2485
2486 evlist__for_each_entry(evlist, evsel) {
2487 if (evsel->core.idx == idx)
2488 return evsel;
2489 }
2490
2491 return NULL;
2492 }
2493
evlist__set_event_name(struct evlist * evlist,struct evsel * event)2494 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2495 {
2496 struct evsel *evsel;
2497
2498 if (!event->name)
2499 return;
2500
2501 evsel = evlist__find_by_index(evlist, event->core.idx);
2502 if (!evsel)
2503 return;
2504
2505 if (evsel->name)
2506 return;
2507
2508 evsel->name = strdup(event->name);
2509 }
2510
2511 static int
process_event_desc(struct feat_fd * ff,void * data __maybe_unused)2512 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2513 {
2514 struct perf_session *session;
2515 struct evsel *evsel, *events = read_event_desc(ff);
2516
2517 if (!events)
2518 return 0;
2519
2520 session = container_of(ff->ph, struct perf_session, header);
2521
2522 if (session->data->is_pipe) {
2523 /* Save events for reading later by print_event_desc,
2524 * since they can't be read again in pipe mode. */
2525 ff->events = events;
2526 }
2527
2528 for (evsel = events; evsel->core.attr.size; evsel++)
2529 evlist__set_event_name(session->evlist, evsel);
2530
2531 if (!session->data->is_pipe)
2532 free_event_desc(events);
2533
2534 return 0;
2535 }
2536
process_cmdline(struct feat_fd * ff,void * data __maybe_unused)2537 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2538 {
2539 char *str, *cmdline = NULL, **argv = NULL;
2540 u32 nr, i, len = 0;
2541
2542 if (do_read_u32(ff, &nr))
2543 return -1;
2544
2545 ff->ph->env.nr_cmdline = nr;
2546
2547 cmdline = zalloc(ff->size + nr + 1);
2548 if (!cmdline)
2549 return -1;
2550
2551 argv = zalloc(sizeof(char *) * (nr + 1));
2552 if (!argv)
2553 goto error;
2554
2555 for (i = 0; i < nr; i++) {
2556 str = do_read_string(ff);
2557 if (!str)
2558 goto error;
2559
2560 argv[i] = cmdline + len;
2561 memcpy(argv[i], str, strlen(str) + 1);
2562 len += strlen(str) + 1;
2563 free(str);
2564 }
2565 ff->ph->env.cmdline = cmdline;
2566 ff->ph->env.cmdline_argv = (const char **) argv;
2567 return 0;
2568
2569 error:
2570 free(argv);
2571 free(cmdline);
2572 return -1;
2573 }
2574
process_cpu_topology(struct feat_fd * ff,void * data __maybe_unused)2575 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2576 {
2577 u32 nr, i;
2578 char *str;
2579 struct strbuf sb;
2580 int cpu_nr = ff->ph->env.nr_cpus_avail;
2581 u64 size = 0;
2582 struct perf_header *ph = ff->ph;
2583 bool do_core_id_test = true;
2584
2585 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2586 if (!ph->env.cpu)
2587 return -1;
2588
2589 if (do_read_u32(ff, &nr))
2590 goto free_cpu;
2591
2592 ph->env.nr_sibling_cores = nr;
2593 size += sizeof(u32);
2594 if (strbuf_init(&sb, 128) < 0)
2595 goto free_cpu;
2596
2597 for (i = 0; i < nr; i++) {
2598 str = do_read_string(ff);
2599 if (!str)
2600 goto error;
2601
2602 /* include a NULL character at the end */
2603 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2604 goto error;
2605 size += string_size(str);
2606 free(str);
2607 }
2608 ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2609
2610 if (do_read_u32(ff, &nr))
2611 return -1;
2612
2613 ph->env.nr_sibling_threads = nr;
2614 size += sizeof(u32);
2615
2616 for (i = 0; i < nr; i++) {
2617 str = do_read_string(ff);
2618 if (!str)
2619 goto error;
2620
2621 /* include a NULL character at the end */
2622 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2623 goto error;
2624 size += string_size(str);
2625 free(str);
2626 }
2627 ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2628
2629 /*
2630 * The header may be from old perf,
2631 * which doesn't include core id and socket id information.
2632 */
2633 if (ff->size <= size) {
2634 zfree(&ph->env.cpu);
2635 return 0;
2636 }
2637
2638 /* On s390 the socket_id number is not related to the numbers of cpus.
2639 * The socket_id number might be higher than the numbers of cpus.
2640 * This depends on the configuration.
2641 * AArch64 is the same.
2642 */
2643 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2644 || !strncmp(ph->env.arch, "aarch64", 7)))
2645 do_core_id_test = false;
2646
2647 for (i = 0; i < (u32)cpu_nr; i++) {
2648 if (do_read_u32(ff, &nr))
2649 goto free_cpu;
2650
2651 ph->env.cpu[i].core_id = nr;
2652 size += sizeof(u32);
2653
2654 if (do_read_u32(ff, &nr))
2655 goto free_cpu;
2656
2657 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2658 pr_debug("socket_id number is too big."
2659 "You may need to upgrade the perf tool.\n");
2660 goto free_cpu;
2661 }
2662
2663 ph->env.cpu[i].socket_id = nr;
2664 size += sizeof(u32);
2665 }
2666
2667 /*
2668 * The header may be from old perf,
2669 * which doesn't include die information.
2670 */
2671 if (ff->size <= size)
2672 return 0;
2673
2674 if (do_read_u32(ff, &nr))
2675 return -1;
2676
2677 ph->env.nr_sibling_dies = nr;
2678 size += sizeof(u32);
2679
2680 for (i = 0; i < nr; i++) {
2681 str = do_read_string(ff);
2682 if (!str)
2683 goto error;
2684
2685 /* include a NULL character at the end */
2686 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2687 goto error;
2688 size += string_size(str);
2689 free(str);
2690 }
2691 ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2692
2693 for (i = 0; i < (u32)cpu_nr; i++) {
2694 if (do_read_u32(ff, &nr))
2695 goto free_cpu;
2696
2697 ph->env.cpu[i].die_id = nr;
2698 }
2699
2700 return 0;
2701
2702 error:
2703 strbuf_release(&sb);
2704 free_cpu:
2705 zfree(&ph->env.cpu);
2706 return -1;
2707 }
2708
process_numa_topology(struct feat_fd * ff,void * data __maybe_unused)2709 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2710 {
2711 struct numa_node *nodes, *n;
2712 u32 nr, i;
2713 char *str;
2714
2715 /* nr nodes */
2716 if (do_read_u32(ff, &nr))
2717 return -1;
2718
2719 nodes = zalloc(sizeof(*nodes) * nr);
2720 if (!nodes)
2721 return -ENOMEM;
2722
2723 for (i = 0; i < nr; i++) {
2724 n = &nodes[i];
2725
2726 /* node number */
2727 if (do_read_u32(ff, &n->node))
2728 goto error;
2729
2730 if (do_read_u64(ff, &n->mem_total))
2731 goto error;
2732
2733 if (do_read_u64(ff, &n->mem_free))
2734 goto error;
2735
2736 str = do_read_string(ff);
2737 if (!str)
2738 goto error;
2739
2740 n->map = perf_cpu_map__new(str);
2741 if (!n->map)
2742 goto error;
2743
2744 free(str);
2745 }
2746 ff->ph->env.nr_numa_nodes = nr;
2747 ff->ph->env.numa_nodes = nodes;
2748 return 0;
2749
2750 error:
2751 free(nodes);
2752 return -1;
2753 }
2754
process_pmu_mappings(struct feat_fd * ff,void * data __maybe_unused)2755 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2756 {
2757 char *name;
2758 u32 pmu_num;
2759 u32 type;
2760 struct strbuf sb;
2761
2762 if (do_read_u32(ff, &pmu_num))
2763 return -1;
2764
2765 if (!pmu_num) {
2766 pr_debug("pmu mappings not available\n");
2767 return 0;
2768 }
2769
2770 ff->ph->env.nr_pmu_mappings = pmu_num;
2771 if (strbuf_init(&sb, 128) < 0)
2772 return -1;
2773
2774 while (pmu_num) {
2775 if (do_read_u32(ff, &type))
2776 goto error;
2777
2778 name = do_read_string(ff);
2779 if (!name)
2780 goto error;
2781
2782 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2783 goto error;
2784 /* include a NULL character at the end */
2785 if (strbuf_add(&sb, "", 1) < 0)
2786 goto error;
2787
2788 if (!strcmp(name, "msr"))
2789 ff->ph->env.msr_pmu_type = type;
2790
2791 free(name);
2792 pmu_num--;
2793 }
2794 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2795 return 0;
2796
2797 error:
2798 strbuf_release(&sb);
2799 return -1;
2800 }
2801
process_group_desc(struct feat_fd * ff,void * data __maybe_unused)2802 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2803 {
2804 size_t ret = -1;
2805 u32 i, nr, nr_groups;
2806 struct perf_session *session;
2807 struct evsel *evsel, *leader = NULL;
2808 struct group_desc {
2809 char *name;
2810 u32 leader_idx;
2811 u32 nr_members;
2812 } *desc;
2813
2814 if (do_read_u32(ff, &nr_groups))
2815 return -1;
2816
2817 ff->ph->env.nr_groups = nr_groups;
2818 if (!nr_groups) {
2819 pr_debug("group desc not available\n");
2820 return 0;
2821 }
2822
2823 desc = calloc(nr_groups, sizeof(*desc));
2824 if (!desc)
2825 return -1;
2826
2827 for (i = 0; i < nr_groups; i++) {
2828 desc[i].name = do_read_string(ff);
2829 if (!desc[i].name)
2830 goto out_free;
2831
2832 if (do_read_u32(ff, &desc[i].leader_idx))
2833 goto out_free;
2834
2835 if (do_read_u32(ff, &desc[i].nr_members))
2836 goto out_free;
2837 }
2838
2839 /*
2840 * Rebuild group relationship based on the group_desc
2841 */
2842 session = container_of(ff->ph, struct perf_session, header);
2843
2844 i = nr = 0;
2845 evlist__for_each_entry(session->evlist, evsel) {
2846 if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) {
2847 evsel__set_leader(evsel, evsel);
2848 /* {anon_group} is a dummy name */
2849 if (strcmp(desc[i].name, "{anon_group}")) {
2850 evsel->group_name = desc[i].name;
2851 desc[i].name = NULL;
2852 }
2853 evsel->core.nr_members = desc[i].nr_members;
2854
2855 if (i >= nr_groups || nr > 0) {
2856 pr_debug("invalid group desc\n");
2857 goto out_free;
2858 }
2859
2860 leader = evsel;
2861 nr = evsel->core.nr_members - 1;
2862 i++;
2863 } else if (nr) {
2864 /* This is a group member */
2865 evsel__set_leader(evsel, leader);
2866
2867 nr--;
2868 }
2869 }
2870
2871 if (i != nr_groups || nr != 0) {
2872 pr_debug("invalid group desc\n");
2873 goto out_free;
2874 }
2875
2876 ret = 0;
2877 out_free:
2878 for (i = 0; i < nr_groups; i++)
2879 zfree(&desc[i].name);
2880 free(desc);
2881
2882 return ret;
2883 }
2884
process_auxtrace(struct feat_fd * ff,void * data __maybe_unused)2885 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2886 {
2887 struct perf_session *session;
2888 int err;
2889
2890 session = container_of(ff->ph, struct perf_session, header);
2891
2892 err = auxtrace_index__process(ff->fd, ff->size, session,
2893 ff->ph->needs_swap);
2894 if (err < 0)
2895 pr_err("Failed to process auxtrace index\n");
2896 return err;
2897 }
2898
process_cache(struct feat_fd * ff,void * data __maybe_unused)2899 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2900 {
2901 struct cpu_cache_level *caches;
2902 u32 cnt, i, version;
2903
2904 if (do_read_u32(ff, &version))
2905 return -1;
2906
2907 if (version != 1)
2908 return -1;
2909
2910 if (do_read_u32(ff, &cnt))
2911 return -1;
2912
2913 caches = zalloc(sizeof(*caches) * cnt);
2914 if (!caches)
2915 return -1;
2916
2917 for (i = 0; i < cnt; i++) {
2918 struct cpu_cache_level c;
2919
2920 #define _R(v) \
2921 if (do_read_u32(ff, &c.v))\
2922 goto out_free_caches; \
2923
2924 _R(level)
2925 _R(line_size)
2926 _R(sets)
2927 _R(ways)
2928 #undef _R
2929
2930 #define _R(v) \
2931 c.v = do_read_string(ff); \
2932 if (!c.v) \
2933 goto out_free_caches;
2934
2935 _R(type)
2936 _R(size)
2937 _R(map)
2938 #undef _R
2939
2940 caches[i] = c;
2941 }
2942
2943 ff->ph->env.caches = caches;
2944 ff->ph->env.caches_cnt = cnt;
2945 return 0;
2946 out_free_caches:
2947 free(caches);
2948 return -1;
2949 }
2950
process_sample_time(struct feat_fd * ff,void * data __maybe_unused)2951 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2952 {
2953 struct perf_session *session;
2954 u64 first_sample_time, last_sample_time;
2955 int ret;
2956
2957 session = container_of(ff->ph, struct perf_session, header);
2958
2959 ret = do_read_u64(ff, &first_sample_time);
2960 if (ret)
2961 return -1;
2962
2963 ret = do_read_u64(ff, &last_sample_time);
2964 if (ret)
2965 return -1;
2966
2967 session->evlist->first_sample_time = first_sample_time;
2968 session->evlist->last_sample_time = last_sample_time;
2969 return 0;
2970 }
2971
process_mem_topology(struct feat_fd * ff,void * data __maybe_unused)2972 static int process_mem_topology(struct feat_fd *ff,
2973 void *data __maybe_unused)
2974 {
2975 struct memory_node *nodes;
2976 u64 version, i, nr, bsize;
2977 int ret = -1;
2978
2979 if (do_read_u64(ff, &version))
2980 return -1;
2981
2982 if (version != 1)
2983 return -1;
2984
2985 if (do_read_u64(ff, &bsize))
2986 return -1;
2987
2988 if (do_read_u64(ff, &nr))
2989 return -1;
2990
2991 nodes = zalloc(sizeof(*nodes) * nr);
2992 if (!nodes)
2993 return -1;
2994
2995 for (i = 0; i < nr; i++) {
2996 struct memory_node n;
2997
2998 #define _R(v) \
2999 if (do_read_u64(ff, &n.v)) \
3000 goto out; \
3001
3002 _R(node)
3003 _R(size)
3004
3005 #undef _R
3006
3007 if (do_read_bitmap(ff, &n.set, &n.size))
3008 goto out;
3009
3010 nodes[i] = n;
3011 }
3012
3013 ff->ph->env.memory_bsize = bsize;
3014 ff->ph->env.memory_nodes = nodes;
3015 ff->ph->env.nr_memory_nodes = nr;
3016 ret = 0;
3017
3018 out:
3019 if (ret)
3020 free(nodes);
3021 return ret;
3022 }
3023
process_clockid(struct feat_fd * ff,void * data __maybe_unused)3024 static int process_clockid(struct feat_fd *ff,
3025 void *data __maybe_unused)
3026 {
3027 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
3028 return -1;
3029
3030 return 0;
3031 }
3032
process_clock_data(struct feat_fd * ff,void * _data __maybe_unused)3033 static int process_clock_data(struct feat_fd *ff,
3034 void *_data __maybe_unused)
3035 {
3036 u32 data32;
3037 u64 data64;
3038
3039 /* version */
3040 if (do_read_u32(ff, &data32))
3041 return -1;
3042
3043 if (data32 != 1)
3044 return -1;
3045
3046 /* clockid */
3047 if (do_read_u32(ff, &data32))
3048 return -1;
3049
3050 ff->ph->env.clock.clockid = data32;
3051
3052 /* TOD ref time */
3053 if (do_read_u64(ff, &data64))
3054 return -1;
3055
3056 ff->ph->env.clock.tod_ns = data64;
3057
3058 /* clockid ref time */
3059 if (do_read_u64(ff, &data64))
3060 return -1;
3061
3062 ff->ph->env.clock.clockid_ns = data64;
3063 ff->ph->env.clock.enabled = true;
3064 return 0;
3065 }
3066
process_hybrid_topology(struct feat_fd * ff,void * data __maybe_unused)3067 static int process_hybrid_topology(struct feat_fd *ff,
3068 void *data __maybe_unused)
3069 {
3070 struct hybrid_node *nodes, *n;
3071 u32 nr, i;
3072
3073 /* nr nodes */
3074 if (do_read_u32(ff, &nr))
3075 return -1;
3076
3077 nodes = zalloc(sizeof(*nodes) * nr);
3078 if (!nodes)
3079 return -ENOMEM;
3080
3081 for (i = 0; i < nr; i++) {
3082 n = &nodes[i];
3083
3084 n->pmu_name = do_read_string(ff);
3085 if (!n->pmu_name)
3086 goto error;
3087
3088 n->cpus = do_read_string(ff);
3089 if (!n->cpus)
3090 goto error;
3091 }
3092
3093 ff->ph->env.nr_hybrid_nodes = nr;
3094 ff->ph->env.hybrid_nodes = nodes;
3095 return 0;
3096
3097 error:
3098 for (i = 0; i < nr; i++) {
3099 free(nodes[i].pmu_name);
3100 free(nodes[i].cpus);
3101 }
3102
3103 free(nodes);
3104 return -1;
3105 }
3106
process_dir_format(struct feat_fd * ff,void * _data __maybe_unused)3107 static int process_dir_format(struct feat_fd *ff,
3108 void *_data __maybe_unused)
3109 {
3110 struct perf_session *session;
3111 struct perf_data *data;
3112
3113 session = container_of(ff->ph, struct perf_session, header);
3114 data = session->data;
3115
3116 if (WARN_ON(!perf_data__is_dir(data)))
3117 return -1;
3118
3119 return do_read_u64(ff, &data->dir.version);
3120 }
3121
3122 #ifdef HAVE_LIBBPF_SUPPORT
process_bpf_prog_info(struct feat_fd * ff,void * data __maybe_unused)3123 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3124 {
3125 struct bpf_prog_info_node *info_node;
3126 struct perf_env *env = &ff->ph->env;
3127 struct perf_bpil *info_linear;
3128 u32 count, i;
3129 int err = -1;
3130
3131 if (ff->ph->needs_swap) {
3132 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3133 return 0;
3134 }
3135
3136 if (do_read_u32(ff, &count))
3137 return -1;
3138
3139 down_write(&env->bpf_progs.lock);
3140
3141 for (i = 0; i < count; ++i) {
3142 u32 info_len, data_len;
3143
3144 info_linear = NULL;
3145 info_node = NULL;
3146 if (do_read_u32(ff, &info_len))
3147 goto out;
3148 if (do_read_u32(ff, &data_len))
3149 goto out;
3150
3151 if (info_len > sizeof(struct bpf_prog_info)) {
3152 pr_warning("detected invalid bpf_prog_info\n");
3153 goto out;
3154 }
3155
3156 info_linear = malloc(sizeof(struct perf_bpil) +
3157 data_len);
3158 if (!info_linear)
3159 goto out;
3160 info_linear->info_len = sizeof(struct bpf_prog_info);
3161 info_linear->data_len = data_len;
3162 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3163 goto out;
3164 if (__do_read(ff, &info_linear->info, info_len))
3165 goto out;
3166 if (info_len < sizeof(struct bpf_prog_info))
3167 memset(((void *)(&info_linear->info)) + info_len, 0,
3168 sizeof(struct bpf_prog_info) - info_len);
3169
3170 if (__do_read(ff, info_linear->data, data_len))
3171 goto out;
3172
3173 info_node = malloc(sizeof(struct bpf_prog_info_node));
3174 if (!info_node)
3175 goto out;
3176
3177 /* after reading from file, translate offset to address */
3178 bpil_offs_to_addr(info_linear);
3179 info_node->info_linear = info_linear;
3180 __perf_env__insert_bpf_prog_info(env, info_node);
3181 }
3182
3183 up_write(&env->bpf_progs.lock);
3184 return 0;
3185 out:
3186 free(info_linear);
3187 free(info_node);
3188 up_write(&env->bpf_progs.lock);
3189 return err;
3190 }
3191
process_bpf_btf(struct feat_fd * ff,void * data __maybe_unused)3192 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3193 {
3194 struct perf_env *env = &ff->ph->env;
3195 struct btf_node *node = NULL;
3196 u32 count, i;
3197 int err = -1;
3198
3199 if (ff->ph->needs_swap) {
3200 pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3201 return 0;
3202 }
3203
3204 if (do_read_u32(ff, &count))
3205 return -1;
3206
3207 down_write(&env->bpf_progs.lock);
3208
3209 for (i = 0; i < count; ++i) {
3210 u32 id, data_size;
3211
3212 if (do_read_u32(ff, &id))
3213 goto out;
3214 if (do_read_u32(ff, &data_size))
3215 goto out;
3216
3217 node = malloc(sizeof(struct btf_node) + data_size);
3218 if (!node)
3219 goto out;
3220
3221 node->id = id;
3222 node->data_size = data_size;
3223
3224 if (__do_read(ff, node->data, data_size))
3225 goto out;
3226
3227 __perf_env__insert_btf(env, node);
3228 node = NULL;
3229 }
3230
3231 err = 0;
3232 out:
3233 up_write(&env->bpf_progs.lock);
3234 free(node);
3235 return err;
3236 }
3237 #endif // HAVE_LIBBPF_SUPPORT
3238
process_compressed(struct feat_fd * ff,void * data __maybe_unused)3239 static int process_compressed(struct feat_fd *ff,
3240 void *data __maybe_unused)
3241 {
3242 if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3243 return -1;
3244
3245 if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3246 return -1;
3247
3248 if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3249 return -1;
3250
3251 if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3252 return -1;
3253
3254 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3255 return -1;
3256
3257 return 0;
3258 }
3259
__process_pmu_caps(struct feat_fd * ff,int * nr_caps,char *** caps,unsigned int * max_branches)3260 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3261 char ***caps, unsigned int *max_branches)
3262 {
3263 char *name, *value, *ptr;
3264 u32 nr_pmu_caps, i;
3265
3266 *nr_caps = 0;
3267 *caps = NULL;
3268
3269 if (do_read_u32(ff, &nr_pmu_caps))
3270 return -1;
3271
3272 if (!nr_pmu_caps)
3273 return 0;
3274
3275 *caps = zalloc(sizeof(char *) * nr_pmu_caps);
3276 if (!*caps)
3277 return -1;
3278
3279 for (i = 0; i < nr_pmu_caps; i++) {
3280 name = do_read_string(ff);
3281 if (!name)
3282 goto error;
3283
3284 value = do_read_string(ff);
3285 if (!value)
3286 goto free_name;
3287
3288 if (asprintf(&ptr, "%s=%s", name, value) < 0)
3289 goto free_value;
3290
3291 (*caps)[i] = ptr;
3292
3293 if (!strcmp(name, "branches"))
3294 *max_branches = atoi(value);
3295
3296 free(value);
3297 free(name);
3298 }
3299 *nr_caps = nr_pmu_caps;
3300 return 0;
3301
3302 free_value:
3303 free(value);
3304 free_name:
3305 free(name);
3306 error:
3307 for (; i > 0; i--)
3308 free((*caps)[i - 1]);
3309 free(*caps);
3310 *caps = NULL;
3311 *nr_caps = 0;
3312 return -1;
3313 }
3314
process_cpu_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3315 static int process_cpu_pmu_caps(struct feat_fd *ff,
3316 void *data __maybe_unused)
3317 {
3318 int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3319 &ff->ph->env.cpu_pmu_caps,
3320 &ff->ph->env.max_branches);
3321
3322 if (!ret && !ff->ph->env.cpu_pmu_caps)
3323 pr_debug("cpu pmu capabilities not available\n");
3324 return ret;
3325 }
3326
process_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3327 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3328 {
3329 struct pmu_caps *pmu_caps;
3330 u32 nr_pmu, i;
3331 int ret;
3332 int j;
3333
3334 if (do_read_u32(ff, &nr_pmu))
3335 return -1;
3336
3337 if (!nr_pmu) {
3338 pr_debug("pmu capabilities not available\n");
3339 return 0;
3340 }
3341
3342 pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3343 if (!pmu_caps)
3344 return -ENOMEM;
3345
3346 for (i = 0; i < nr_pmu; i++) {
3347 ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3348 &pmu_caps[i].caps,
3349 &pmu_caps[i].max_branches);
3350 if (ret)
3351 goto err;
3352
3353 pmu_caps[i].pmu_name = do_read_string(ff);
3354 if (!pmu_caps[i].pmu_name) {
3355 ret = -1;
3356 goto err;
3357 }
3358 if (!pmu_caps[i].nr_caps) {
3359 pr_debug("%s pmu capabilities not available\n",
3360 pmu_caps[i].pmu_name);
3361 }
3362 }
3363
3364 ff->ph->env.nr_pmus_with_caps = nr_pmu;
3365 ff->ph->env.pmu_caps = pmu_caps;
3366 return 0;
3367
3368 err:
3369 for (i = 0; i < nr_pmu; i++) {
3370 for (j = 0; j < pmu_caps[i].nr_caps; j++)
3371 free(pmu_caps[i].caps[j]);
3372 free(pmu_caps[i].caps);
3373 free(pmu_caps[i].pmu_name);
3374 }
3375
3376 free(pmu_caps);
3377 return ret;
3378 }
3379
3380 #define FEAT_OPR(n, func, __full_only) \
3381 [HEADER_##n] = { \
3382 .name = __stringify(n), \
3383 .write = write_##func, \
3384 .print = print_##func, \
3385 .full_only = __full_only, \
3386 .process = process_##func, \
3387 .synthesize = true \
3388 }
3389
3390 #define FEAT_OPN(n, func, __full_only) \
3391 [HEADER_##n] = { \
3392 .name = __stringify(n), \
3393 .write = write_##func, \
3394 .print = print_##func, \
3395 .full_only = __full_only, \
3396 .process = process_##func \
3397 }
3398
3399 /* feature_ops not implemented: */
3400 #define print_tracing_data NULL
3401 #define print_build_id NULL
3402
3403 #define process_branch_stack NULL
3404 #define process_stat NULL
3405
3406 // Only used in util/synthetic-events.c
3407 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3408
3409 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3410 #ifdef HAVE_LIBTRACEEVENT
3411 FEAT_OPN(TRACING_DATA, tracing_data, false),
3412 #endif
3413 FEAT_OPN(BUILD_ID, build_id, false),
3414 FEAT_OPR(HOSTNAME, hostname, false),
3415 FEAT_OPR(OSRELEASE, osrelease, false),
3416 FEAT_OPR(VERSION, version, false),
3417 FEAT_OPR(ARCH, arch, false),
3418 FEAT_OPR(NRCPUS, nrcpus, false),
3419 FEAT_OPR(CPUDESC, cpudesc, false),
3420 FEAT_OPR(CPUID, cpuid, false),
3421 FEAT_OPR(TOTAL_MEM, total_mem, false),
3422 FEAT_OPR(EVENT_DESC, event_desc, false),
3423 FEAT_OPR(CMDLINE, cmdline, false),
3424 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true),
3425 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true),
3426 FEAT_OPN(BRANCH_STACK, branch_stack, false),
3427 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false),
3428 FEAT_OPR(GROUP_DESC, group_desc, false),
3429 FEAT_OPN(AUXTRACE, auxtrace, false),
3430 FEAT_OPN(STAT, stat, false),
3431 FEAT_OPN(CACHE, cache, true),
3432 FEAT_OPR(SAMPLE_TIME, sample_time, false),
3433 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true),
3434 FEAT_OPR(CLOCKID, clockid, false),
3435 FEAT_OPN(DIR_FORMAT, dir_format, false),
3436 #ifdef HAVE_LIBBPF_SUPPORT
3437 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false),
3438 FEAT_OPR(BPF_BTF, bpf_btf, false),
3439 #endif
3440 FEAT_OPR(COMPRESSED, compressed, false),
3441 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false),
3442 FEAT_OPR(CLOCK_DATA, clock_data, false),
3443 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true),
3444 FEAT_OPR(PMU_CAPS, pmu_caps, false),
3445 };
3446
3447 struct header_print_data {
3448 FILE *fp;
3449 bool full; /* extended list of headers */
3450 };
3451
perf_file_section__fprintf_info(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)3452 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3453 struct perf_header *ph,
3454 int feat, int fd, void *data)
3455 {
3456 struct header_print_data *hd = data;
3457 struct feat_fd ff;
3458
3459 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3460 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3461 "%d, continuing...\n", section->offset, feat);
3462 return 0;
3463 }
3464 if (feat >= HEADER_LAST_FEATURE) {
3465 pr_warning("unknown feature %d\n", feat);
3466 return 0;
3467 }
3468 if (!feat_ops[feat].print)
3469 return 0;
3470
3471 ff = (struct feat_fd) {
3472 .fd = fd,
3473 .ph = ph,
3474 };
3475
3476 if (!feat_ops[feat].full_only || hd->full)
3477 feat_ops[feat].print(&ff, hd->fp);
3478 else
3479 fprintf(hd->fp, "# %s info available, use -I to display\n",
3480 feat_ops[feat].name);
3481
3482 return 0;
3483 }
3484
perf_header__fprintf_info(struct perf_session * session,FILE * fp,bool full)3485 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3486 {
3487 struct header_print_data hd;
3488 struct perf_header *header = &session->header;
3489 int fd = perf_data__fd(session->data);
3490 struct stat st;
3491 time_t stctime;
3492 int ret, bit;
3493
3494 hd.fp = fp;
3495 hd.full = full;
3496
3497 ret = fstat(fd, &st);
3498 if (ret == -1)
3499 return -1;
3500
3501 stctime = st.st_mtime;
3502 fprintf(fp, "# captured on : %s", ctime(&stctime));
3503
3504 fprintf(fp, "# header version : %u\n", header->version);
3505 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset);
3506 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size);
3507 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset);
3508
3509 perf_header__process_sections(header, fd, &hd,
3510 perf_file_section__fprintf_info);
3511
3512 if (session->data->is_pipe)
3513 return 0;
3514
3515 fprintf(fp, "# missing features: ");
3516 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3517 if (bit)
3518 fprintf(fp, "%s ", feat_ops[bit].name);
3519 }
3520
3521 fprintf(fp, "\n");
3522 return 0;
3523 }
3524
3525 struct header_fw {
3526 struct feat_writer fw;
3527 struct feat_fd *ff;
3528 };
3529
feat_writer_cb(struct feat_writer * fw,void * buf,size_t sz)3530 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3531 {
3532 struct header_fw *h = container_of(fw, struct header_fw, fw);
3533
3534 return do_write(h->ff, buf, sz);
3535 }
3536
do_write_feat(struct feat_fd * ff,int type,struct perf_file_section ** p,struct evlist * evlist,struct feat_copier * fc)3537 static int do_write_feat(struct feat_fd *ff, int type,
3538 struct perf_file_section **p,
3539 struct evlist *evlist,
3540 struct feat_copier *fc)
3541 {
3542 int err;
3543 int ret = 0;
3544
3545 if (perf_header__has_feat(ff->ph, type)) {
3546 if (!feat_ops[type].write)
3547 return -1;
3548
3549 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3550 return -1;
3551
3552 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3553
3554 /*
3555 * Hook to let perf inject copy features sections from the input
3556 * file.
3557 */
3558 if (fc && fc->copy) {
3559 struct header_fw h = {
3560 .fw.write = feat_writer_cb,
3561 .ff = ff,
3562 };
3563
3564 /* ->copy() returns 0 if the feature was not copied */
3565 err = fc->copy(fc, type, &h.fw);
3566 } else {
3567 err = 0;
3568 }
3569 if (!err)
3570 err = feat_ops[type].write(ff, evlist);
3571 if (err < 0) {
3572 pr_debug("failed to write feature %s\n", feat_ops[type].name);
3573
3574 /* undo anything written */
3575 lseek(ff->fd, (*p)->offset, SEEK_SET);
3576
3577 return -1;
3578 }
3579 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3580 (*p)++;
3581 }
3582 return ret;
3583 }
3584
perf_header__adds_write(struct perf_header * header,struct evlist * evlist,int fd,struct feat_copier * fc)3585 static int perf_header__adds_write(struct perf_header *header,
3586 struct evlist *evlist, int fd,
3587 struct feat_copier *fc)
3588 {
3589 int nr_sections;
3590 struct feat_fd ff;
3591 struct perf_file_section *feat_sec, *p;
3592 int sec_size;
3593 u64 sec_start;
3594 int feat;
3595 int err;
3596
3597 ff = (struct feat_fd){
3598 .fd = fd,
3599 .ph = header,
3600 };
3601
3602 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3603 if (!nr_sections)
3604 return 0;
3605
3606 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3607 if (feat_sec == NULL)
3608 return -ENOMEM;
3609
3610 sec_size = sizeof(*feat_sec) * nr_sections;
3611
3612 sec_start = header->feat_offset;
3613 lseek(fd, sec_start + sec_size, SEEK_SET);
3614
3615 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3616 if (do_write_feat(&ff, feat, &p, evlist, fc))
3617 perf_header__clear_feat(header, feat);
3618 }
3619
3620 lseek(fd, sec_start, SEEK_SET);
3621 /*
3622 * may write more than needed due to dropped feature, but
3623 * this is okay, reader will skip the missing entries
3624 */
3625 err = do_write(&ff, feat_sec, sec_size);
3626 if (err < 0)
3627 pr_debug("failed to write feature section\n");
3628 free(feat_sec);
3629 return err;
3630 }
3631
perf_header__write_pipe(int fd)3632 int perf_header__write_pipe(int fd)
3633 {
3634 struct perf_pipe_file_header f_header;
3635 struct feat_fd ff;
3636 int err;
3637
3638 ff = (struct feat_fd){ .fd = fd };
3639
3640 f_header = (struct perf_pipe_file_header){
3641 .magic = PERF_MAGIC,
3642 .size = sizeof(f_header),
3643 };
3644
3645 err = do_write(&ff, &f_header, sizeof(f_header));
3646 if (err < 0) {
3647 pr_debug("failed to write perf pipe header\n");
3648 return err;
3649 }
3650
3651 return 0;
3652 }
3653
perf_session__do_write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit,struct feat_copier * fc)3654 static int perf_session__do_write_header(struct perf_session *session,
3655 struct evlist *evlist,
3656 int fd, bool at_exit,
3657 struct feat_copier *fc)
3658 {
3659 struct perf_file_header f_header;
3660 struct perf_file_attr f_attr;
3661 struct perf_header *header = &session->header;
3662 struct evsel *evsel;
3663 struct feat_fd ff;
3664 u64 attr_offset;
3665 int err;
3666
3667 ff = (struct feat_fd){ .fd = fd};
3668 lseek(fd, sizeof(f_header), SEEK_SET);
3669
3670 evlist__for_each_entry(session->evlist, evsel) {
3671 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3672 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3673 if (err < 0) {
3674 pr_debug("failed to write perf header\n");
3675 return err;
3676 }
3677 }
3678
3679 attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3680
3681 evlist__for_each_entry(evlist, evsel) {
3682 if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3683 /*
3684 * We are likely in "perf inject" and have read
3685 * from an older file. Update attr size so that
3686 * reader gets the right offset to the ids.
3687 */
3688 evsel->core.attr.size = sizeof(evsel->core.attr);
3689 }
3690 f_attr = (struct perf_file_attr){
3691 .attr = evsel->core.attr,
3692 .ids = {
3693 .offset = evsel->id_offset,
3694 .size = evsel->core.ids * sizeof(u64),
3695 }
3696 };
3697 err = do_write(&ff, &f_attr, sizeof(f_attr));
3698 if (err < 0) {
3699 pr_debug("failed to write perf header attribute\n");
3700 return err;
3701 }
3702 }
3703
3704 if (!header->data_offset)
3705 header->data_offset = lseek(fd, 0, SEEK_CUR);
3706 header->feat_offset = header->data_offset + header->data_size;
3707
3708 if (at_exit) {
3709 err = perf_header__adds_write(header, evlist, fd, fc);
3710 if (err < 0)
3711 return err;
3712 }
3713
3714 f_header = (struct perf_file_header){
3715 .magic = PERF_MAGIC,
3716 .size = sizeof(f_header),
3717 .attr_size = sizeof(f_attr),
3718 .attrs = {
3719 .offset = attr_offset,
3720 .size = evlist->core.nr_entries * sizeof(f_attr),
3721 },
3722 .data = {
3723 .offset = header->data_offset,
3724 .size = header->data_size,
3725 },
3726 /* event_types is ignored, store zeros */
3727 };
3728
3729 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3730
3731 lseek(fd, 0, SEEK_SET);
3732 err = do_write(&ff, &f_header, sizeof(f_header));
3733 if (err < 0) {
3734 pr_debug("failed to write perf header\n");
3735 return err;
3736 }
3737 lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3738
3739 return 0;
3740 }
3741
perf_session__write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit)3742 int perf_session__write_header(struct perf_session *session,
3743 struct evlist *evlist,
3744 int fd, bool at_exit)
3745 {
3746 return perf_session__do_write_header(session, evlist, fd, at_exit, NULL);
3747 }
3748
perf_session__data_offset(const struct evlist * evlist)3749 size_t perf_session__data_offset(const struct evlist *evlist)
3750 {
3751 struct evsel *evsel;
3752 size_t data_offset;
3753
3754 data_offset = sizeof(struct perf_file_header);
3755 evlist__for_each_entry(evlist, evsel) {
3756 data_offset += evsel->core.ids * sizeof(u64);
3757 }
3758 data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3759
3760 return data_offset;
3761 }
3762
perf_session__inject_header(struct perf_session * session,struct evlist * evlist,int fd,struct feat_copier * fc)3763 int perf_session__inject_header(struct perf_session *session,
3764 struct evlist *evlist,
3765 int fd,
3766 struct feat_copier *fc)
3767 {
3768 return perf_session__do_write_header(session, evlist, fd, true, fc);
3769 }
3770
perf_header__getbuffer64(struct perf_header * header,int fd,void * buf,size_t size)3771 static int perf_header__getbuffer64(struct perf_header *header,
3772 int fd, void *buf, size_t size)
3773 {
3774 if (readn(fd, buf, size) <= 0)
3775 return -1;
3776
3777 if (header->needs_swap)
3778 mem_bswap_64(buf, size);
3779
3780 return 0;
3781 }
3782
perf_header__process_sections(struct perf_header * header,int fd,void * data,int (* process)(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data))3783 int perf_header__process_sections(struct perf_header *header, int fd,
3784 void *data,
3785 int (*process)(struct perf_file_section *section,
3786 struct perf_header *ph,
3787 int feat, int fd, void *data))
3788 {
3789 struct perf_file_section *feat_sec, *sec;
3790 int nr_sections;
3791 int sec_size;
3792 int feat;
3793 int err;
3794
3795 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3796 if (!nr_sections)
3797 return 0;
3798
3799 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3800 if (!feat_sec)
3801 return -1;
3802
3803 sec_size = sizeof(*feat_sec) * nr_sections;
3804
3805 lseek(fd, header->feat_offset, SEEK_SET);
3806
3807 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3808 if (err < 0)
3809 goto out_free;
3810
3811 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3812 err = process(sec++, header, feat, fd, data);
3813 if (err < 0)
3814 goto out_free;
3815 }
3816 err = 0;
3817 out_free:
3818 free(feat_sec);
3819 return err;
3820 }
3821
3822 static const int attr_file_abi_sizes[] = {
3823 [0] = PERF_ATTR_SIZE_VER0,
3824 [1] = PERF_ATTR_SIZE_VER1,
3825 [2] = PERF_ATTR_SIZE_VER2,
3826 [3] = PERF_ATTR_SIZE_VER3,
3827 [4] = PERF_ATTR_SIZE_VER4,
3828 0,
3829 };
3830
3831 /*
3832 * In the legacy file format, the magic number is not used to encode endianness.
3833 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3834 * on ABI revisions, we need to try all combinations for all endianness to
3835 * detect the endianness.
3836 */
try_all_file_abis(uint64_t hdr_sz,struct perf_header * ph)3837 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3838 {
3839 uint64_t ref_size, attr_size;
3840 int i;
3841
3842 for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3843 ref_size = attr_file_abi_sizes[i]
3844 + sizeof(struct perf_file_section);
3845 if (hdr_sz != ref_size) {
3846 attr_size = bswap_64(hdr_sz);
3847 if (attr_size != ref_size)
3848 continue;
3849
3850 ph->needs_swap = true;
3851 }
3852 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3853 i,
3854 ph->needs_swap);
3855 return 0;
3856 }
3857 /* could not determine endianness */
3858 return -1;
3859 }
3860
3861 #define PERF_PIPE_HDR_VER0 16
3862
3863 static const size_t attr_pipe_abi_sizes[] = {
3864 [0] = PERF_PIPE_HDR_VER0,
3865 0,
3866 };
3867
3868 /*
3869 * In the legacy pipe format, there is an implicit assumption that endianness
3870 * between host recording the samples, and host parsing the samples is the
3871 * same. This is not always the case given that the pipe output may always be
3872 * redirected into a file and analyzed on a different machine with possibly a
3873 * different endianness and perf_event ABI revisions in the perf tool itself.
3874 */
try_all_pipe_abis(uint64_t hdr_sz,struct perf_header * ph)3875 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3876 {
3877 u64 attr_size;
3878 int i;
3879
3880 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3881 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3882 attr_size = bswap_64(hdr_sz);
3883 if (attr_size != hdr_sz)
3884 continue;
3885
3886 ph->needs_swap = true;
3887 }
3888 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3889 return 0;
3890 }
3891 return -1;
3892 }
3893
is_perf_magic(u64 magic)3894 bool is_perf_magic(u64 magic)
3895 {
3896 if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3897 || magic == __perf_magic2
3898 || magic == __perf_magic2_sw)
3899 return true;
3900
3901 return false;
3902 }
3903
check_magic_endian(u64 magic,uint64_t hdr_sz,bool is_pipe,struct perf_header * ph)3904 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3905 bool is_pipe, struct perf_header *ph)
3906 {
3907 int ret;
3908
3909 /* check for legacy format */
3910 ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3911 if (ret == 0) {
3912 ph->version = PERF_HEADER_VERSION_1;
3913 pr_debug("legacy perf.data format\n");
3914 if (is_pipe)
3915 return try_all_pipe_abis(hdr_sz, ph);
3916
3917 return try_all_file_abis(hdr_sz, ph);
3918 }
3919 /*
3920 * the new magic number serves two purposes:
3921 * - unique number to identify actual perf.data files
3922 * - encode endianness of file
3923 */
3924 ph->version = PERF_HEADER_VERSION_2;
3925
3926 /* check magic number with one endianness */
3927 if (magic == __perf_magic2)
3928 return 0;
3929
3930 /* check magic number with opposite endianness */
3931 if (magic != __perf_magic2_sw)
3932 return -1;
3933
3934 ph->needs_swap = true;
3935
3936 return 0;
3937 }
3938
perf_file_header__read(struct perf_file_header * header,struct perf_header * ph,int fd)3939 int perf_file_header__read(struct perf_file_header *header,
3940 struct perf_header *ph, int fd)
3941 {
3942 ssize_t ret;
3943
3944 lseek(fd, 0, SEEK_SET);
3945
3946 ret = readn(fd, header, sizeof(*header));
3947 if (ret <= 0)
3948 return -1;
3949
3950 if (check_magic_endian(header->magic,
3951 header->attr_size, false, ph) < 0) {
3952 pr_debug("magic/endian check failed\n");
3953 return -1;
3954 }
3955
3956 if (ph->needs_swap) {
3957 mem_bswap_64(header, offsetof(struct perf_file_header,
3958 adds_features));
3959 }
3960
3961 if (header->size != sizeof(*header)) {
3962 /* Support the previous format */
3963 if (header->size == offsetof(typeof(*header), adds_features))
3964 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3965 else
3966 return -1;
3967 } else if (ph->needs_swap) {
3968 /*
3969 * feature bitmap is declared as an array of unsigned longs --
3970 * not good since its size can differ between the host that
3971 * generated the data file and the host analyzing the file.
3972 *
3973 * We need to handle endianness, but we don't know the size of
3974 * the unsigned long where the file was generated. Take a best
3975 * guess at determining it: try 64-bit swap first (ie., file
3976 * created on a 64-bit host), and check if the hostname feature
3977 * bit is set (this feature bit is forced on as of fbe96f2).
3978 * If the bit is not, undo the 64-bit swap and try a 32-bit
3979 * swap. If the hostname bit is still not set (e.g., older data
3980 * file), punt and fallback to the original behavior --
3981 * clearing all feature bits and setting buildid.
3982 */
3983 mem_bswap_64(&header->adds_features,
3984 BITS_TO_U64(HEADER_FEAT_BITS));
3985
3986 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3987 /* unswap as u64 */
3988 mem_bswap_64(&header->adds_features,
3989 BITS_TO_U64(HEADER_FEAT_BITS));
3990
3991 /* unswap as u32 */
3992 mem_bswap_32(&header->adds_features,
3993 BITS_TO_U32(HEADER_FEAT_BITS));
3994 }
3995
3996 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3997 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3998 __set_bit(HEADER_BUILD_ID, header->adds_features);
3999 }
4000 }
4001
4002 memcpy(&ph->adds_features, &header->adds_features,
4003 sizeof(ph->adds_features));
4004
4005 ph->data_offset = header->data.offset;
4006 ph->data_size = header->data.size;
4007 ph->feat_offset = header->data.offset + header->data.size;
4008 return 0;
4009 }
4010
perf_file_section__process(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)4011 static int perf_file_section__process(struct perf_file_section *section,
4012 struct perf_header *ph,
4013 int feat, int fd, void *data)
4014 {
4015 struct feat_fd fdd = {
4016 .fd = fd,
4017 .ph = ph,
4018 .size = section->size,
4019 .offset = section->offset,
4020 };
4021
4022 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
4023 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
4024 "%d, continuing...\n", section->offset, feat);
4025 return 0;
4026 }
4027
4028 if (feat >= HEADER_LAST_FEATURE) {
4029 pr_debug("unknown feature %d, continuing...\n", feat);
4030 return 0;
4031 }
4032
4033 if (!feat_ops[feat].process)
4034 return 0;
4035
4036 return feat_ops[feat].process(&fdd, data);
4037 }
4038
perf_file_header__read_pipe(struct perf_pipe_file_header * header,struct perf_header * ph,struct perf_data * data,bool repipe,int repipe_fd)4039 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
4040 struct perf_header *ph,
4041 struct perf_data* data,
4042 bool repipe, int repipe_fd)
4043 {
4044 struct feat_fd ff = {
4045 .fd = repipe_fd,
4046 .ph = ph,
4047 };
4048 ssize_t ret;
4049
4050 ret = perf_data__read(data, header, sizeof(*header));
4051 if (ret <= 0)
4052 return -1;
4053
4054 if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4055 pr_debug("endian/magic failed\n");
4056 return -1;
4057 }
4058
4059 if (ph->needs_swap)
4060 header->size = bswap_64(header->size);
4061
4062 if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
4063 return -1;
4064
4065 return 0;
4066 }
4067
perf_header__read_pipe(struct perf_session * session,int repipe_fd)4068 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd)
4069 {
4070 struct perf_header *header = &session->header;
4071 struct perf_pipe_file_header f_header;
4072
4073 if (perf_file_header__read_pipe(&f_header, header, session->data,
4074 session->repipe, repipe_fd) < 0) {
4075 pr_debug("incompatible file format\n");
4076 return -EINVAL;
4077 }
4078
4079 return f_header.size == sizeof(f_header) ? 0 : -1;
4080 }
4081
read_attr(int fd,struct perf_header * ph,struct perf_file_attr * f_attr)4082 static int read_attr(int fd, struct perf_header *ph,
4083 struct perf_file_attr *f_attr)
4084 {
4085 struct perf_event_attr *attr = &f_attr->attr;
4086 size_t sz, left;
4087 size_t our_sz = sizeof(f_attr->attr);
4088 ssize_t ret;
4089
4090 memset(f_attr, 0, sizeof(*f_attr));
4091
4092 /* read minimal guaranteed structure */
4093 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4094 if (ret <= 0) {
4095 pr_debug("cannot read %d bytes of header attr\n",
4096 PERF_ATTR_SIZE_VER0);
4097 return -1;
4098 }
4099
4100 /* on file perf_event_attr size */
4101 sz = attr->size;
4102
4103 if (ph->needs_swap)
4104 sz = bswap_32(sz);
4105
4106 if (sz == 0) {
4107 /* assume ABI0 */
4108 sz = PERF_ATTR_SIZE_VER0;
4109 } else if (sz > our_sz) {
4110 pr_debug("file uses a more recent and unsupported ABI"
4111 " (%zu bytes extra)\n", sz - our_sz);
4112 return -1;
4113 }
4114 /* what we have not yet read and that we know about */
4115 left = sz - PERF_ATTR_SIZE_VER0;
4116 if (left) {
4117 void *ptr = attr;
4118 ptr += PERF_ATTR_SIZE_VER0;
4119
4120 ret = readn(fd, ptr, left);
4121 }
4122 /* read perf_file_section, ids are read in caller */
4123 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4124
4125 return ret <= 0 ? -1 : 0;
4126 }
4127
4128 #ifdef HAVE_LIBTRACEEVENT
evsel__prepare_tracepoint_event(struct evsel * evsel,struct tep_handle * pevent)4129 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4130 {
4131 struct tep_event *event;
4132 char bf[128];
4133
4134 /* already prepared */
4135 if (evsel->tp_format)
4136 return 0;
4137
4138 if (pevent == NULL) {
4139 pr_debug("broken or missing trace data\n");
4140 return -1;
4141 }
4142
4143 event = tep_find_event(pevent, evsel->core.attr.config);
4144 if (event == NULL) {
4145 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4146 return -1;
4147 }
4148
4149 if (!evsel->name) {
4150 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4151 evsel->name = strdup(bf);
4152 if (evsel->name == NULL)
4153 return -1;
4154 }
4155
4156 evsel->tp_format = event;
4157 return 0;
4158 }
4159
evlist__prepare_tracepoint_events(struct evlist * evlist,struct tep_handle * pevent)4160 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4161 {
4162 struct evsel *pos;
4163
4164 evlist__for_each_entry(evlist, pos) {
4165 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4166 evsel__prepare_tracepoint_event(pos, pevent))
4167 return -1;
4168 }
4169
4170 return 0;
4171 }
4172 #endif
4173
perf_session__read_header(struct perf_session * session,int repipe_fd)4174 int perf_session__read_header(struct perf_session *session, int repipe_fd)
4175 {
4176 struct perf_data *data = session->data;
4177 struct perf_header *header = &session->header;
4178 struct perf_file_header f_header;
4179 struct perf_file_attr f_attr;
4180 u64 f_id;
4181 int nr_attrs, nr_ids, i, j, err;
4182 int fd = perf_data__fd(data);
4183
4184 session->evlist = evlist__new();
4185 if (session->evlist == NULL)
4186 return -ENOMEM;
4187
4188 session->evlist->env = &header->env;
4189 session->machines.host.env = &header->env;
4190
4191 /*
4192 * We can read 'pipe' data event from regular file,
4193 * check for the pipe header regardless of source.
4194 */
4195 err = perf_header__read_pipe(session, repipe_fd);
4196 if (!err || perf_data__is_pipe(data)) {
4197 data->is_pipe = true;
4198 return err;
4199 }
4200
4201 if (perf_file_header__read(&f_header, header, fd) < 0)
4202 return -EINVAL;
4203
4204 if (header->needs_swap && data->in_place_update) {
4205 pr_err("In-place update not supported when byte-swapping is required\n");
4206 return -EINVAL;
4207 }
4208
4209 /*
4210 * Sanity check that perf.data was written cleanly; data size is
4211 * initialized to 0 and updated only if the on_exit function is run.
4212 * If data size is still 0 then the file contains only partial
4213 * information. Just warn user and process it as much as it can.
4214 */
4215 if (f_header.data.size == 0) {
4216 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4217 "Was the 'perf record' command properly terminated?\n",
4218 data->file.path);
4219 }
4220
4221 if (f_header.attr_size == 0) {
4222 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4223 "Was the 'perf record' command properly terminated?\n",
4224 data->file.path);
4225 return -EINVAL;
4226 }
4227
4228 nr_attrs = f_header.attrs.size / f_header.attr_size;
4229 lseek(fd, f_header.attrs.offset, SEEK_SET);
4230
4231 for (i = 0; i < nr_attrs; i++) {
4232 struct evsel *evsel;
4233 off_t tmp;
4234
4235 if (read_attr(fd, header, &f_attr) < 0)
4236 goto out_errno;
4237
4238 if (header->needs_swap) {
4239 f_attr.ids.size = bswap_64(f_attr.ids.size);
4240 f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4241 perf_event__attr_swap(&f_attr.attr);
4242 }
4243
4244 tmp = lseek(fd, 0, SEEK_CUR);
4245 evsel = evsel__new(&f_attr.attr);
4246
4247 if (evsel == NULL)
4248 goto out_delete_evlist;
4249
4250 evsel->needs_swap = header->needs_swap;
4251 /*
4252 * Do it before so that if perf_evsel__alloc_id fails, this
4253 * entry gets purged too at evlist__delete().
4254 */
4255 evlist__add(session->evlist, evsel);
4256
4257 nr_ids = f_attr.ids.size / sizeof(u64);
4258 /*
4259 * We don't have the cpu and thread maps on the header, so
4260 * for allocating the perf_sample_id table we fake 1 cpu and
4261 * hattr->ids threads.
4262 */
4263 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4264 goto out_delete_evlist;
4265
4266 lseek(fd, f_attr.ids.offset, SEEK_SET);
4267
4268 for (j = 0; j < nr_ids; j++) {
4269 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4270 goto out_errno;
4271
4272 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4273 }
4274
4275 lseek(fd, tmp, SEEK_SET);
4276 }
4277
4278 #ifdef HAVE_LIBTRACEEVENT
4279 perf_header__process_sections(header, fd, &session->tevent,
4280 perf_file_section__process);
4281
4282 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4283 goto out_delete_evlist;
4284 #else
4285 perf_header__process_sections(header, fd, NULL, perf_file_section__process);
4286 #endif
4287
4288 return 0;
4289 out_errno:
4290 return -errno;
4291
4292 out_delete_evlist:
4293 evlist__delete(session->evlist);
4294 session->evlist = NULL;
4295 return -ENOMEM;
4296 }
4297
perf_event__process_feature(struct perf_session * session,union perf_event * event)4298 int perf_event__process_feature(struct perf_session *session,
4299 union perf_event *event)
4300 {
4301 struct perf_tool *tool = session->tool;
4302 struct feat_fd ff = { .fd = 0 };
4303 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4304 int type = fe->header.type;
4305 u64 feat = fe->feat_id;
4306 int ret = 0;
4307
4308 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4309 pr_warning("invalid record type %d in pipe-mode\n", type);
4310 return 0;
4311 }
4312 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4313 pr_warning("invalid record type %d in pipe-mode\n", type);
4314 return -1;
4315 }
4316
4317 if (!feat_ops[feat].process)
4318 return 0;
4319
4320 ff.buf = (void *)fe->data;
4321 ff.size = event->header.size - sizeof(*fe);
4322 ff.ph = &session->header;
4323
4324 if (feat_ops[feat].process(&ff, NULL)) {
4325 ret = -1;
4326 goto out;
4327 }
4328
4329 if (!feat_ops[feat].print || !tool->show_feat_hdr)
4330 goto out;
4331
4332 if (!feat_ops[feat].full_only ||
4333 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4334 feat_ops[feat].print(&ff, stdout);
4335 } else {
4336 fprintf(stdout, "# %s info available, use -I to display\n",
4337 feat_ops[feat].name);
4338 }
4339 out:
4340 free_event_desc(ff.events);
4341 return ret;
4342 }
4343
perf_event__fprintf_event_update(union perf_event * event,FILE * fp)4344 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4345 {
4346 struct perf_record_event_update *ev = &event->event_update;
4347 struct perf_cpu_map *map;
4348 size_t ret;
4349
4350 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id);
4351
4352 switch (ev->type) {
4353 case PERF_EVENT_UPDATE__SCALE:
4354 ret += fprintf(fp, "... scale: %f\n", ev->scale.scale);
4355 break;
4356 case PERF_EVENT_UPDATE__UNIT:
4357 ret += fprintf(fp, "... unit: %s\n", ev->unit);
4358 break;
4359 case PERF_EVENT_UPDATE__NAME:
4360 ret += fprintf(fp, "... name: %s\n", ev->name);
4361 break;
4362 case PERF_EVENT_UPDATE__CPUS:
4363 ret += fprintf(fp, "... ");
4364
4365 map = cpu_map__new_data(&ev->cpus.cpus);
4366 if (map) {
4367 ret += cpu_map__fprintf(map, fp);
4368 perf_cpu_map__put(map);
4369 } else
4370 ret += fprintf(fp, "failed to get cpus\n");
4371 break;
4372 default:
4373 ret += fprintf(fp, "... unknown type\n");
4374 break;
4375 }
4376
4377 return ret;
4378 }
4379
perf_event__process_attr(struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4380 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4381 union perf_event *event,
4382 struct evlist **pevlist)
4383 {
4384 u32 i, n_ids;
4385 u64 *ids;
4386 struct evsel *evsel;
4387 struct evlist *evlist = *pevlist;
4388
4389 if (evlist == NULL) {
4390 *pevlist = evlist = evlist__new();
4391 if (evlist == NULL)
4392 return -ENOMEM;
4393 }
4394
4395 evsel = evsel__new(&event->attr.attr);
4396 if (evsel == NULL)
4397 return -ENOMEM;
4398
4399 evlist__add(evlist, evsel);
4400
4401 n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size;
4402 n_ids = n_ids / sizeof(u64);
4403 /*
4404 * We don't have the cpu and thread maps on the header, so
4405 * for allocating the perf_sample_id table we fake 1 cpu and
4406 * hattr->ids threads.
4407 */
4408 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4409 return -ENOMEM;
4410
4411 ids = perf_record_header_attr_id(event);
4412 for (i = 0; i < n_ids; i++) {
4413 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]);
4414 }
4415
4416 return 0;
4417 }
4418
perf_event__process_event_update(struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4419 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4420 union perf_event *event,
4421 struct evlist **pevlist)
4422 {
4423 struct perf_record_event_update *ev = &event->event_update;
4424 struct evlist *evlist;
4425 struct evsel *evsel;
4426 struct perf_cpu_map *map;
4427
4428 if (dump_trace)
4429 perf_event__fprintf_event_update(event, stdout);
4430
4431 if (!pevlist || *pevlist == NULL)
4432 return -EINVAL;
4433
4434 evlist = *pevlist;
4435
4436 evsel = evlist__id2evsel(evlist, ev->id);
4437 if (evsel == NULL)
4438 return -EINVAL;
4439
4440 switch (ev->type) {
4441 case PERF_EVENT_UPDATE__UNIT:
4442 free((char *)evsel->unit);
4443 evsel->unit = strdup(ev->unit);
4444 break;
4445 case PERF_EVENT_UPDATE__NAME:
4446 free(evsel->name);
4447 evsel->name = strdup(ev->name);
4448 break;
4449 case PERF_EVENT_UPDATE__SCALE:
4450 evsel->scale = ev->scale.scale;
4451 break;
4452 case PERF_EVENT_UPDATE__CPUS:
4453 map = cpu_map__new_data(&ev->cpus.cpus);
4454 if (map) {
4455 perf_cpu_map__put(evsel->core.own_cpus);
4456 evsel->core.own_cpus = map;
4457 } else
4458 pr_err("failed to get event_update cpus\n");
4459 default:
4460 break;
4461 }
4462
4463 return 0;
4464 }
4465
4466 #ifdef HAVE_LIBTRACEEVENT
perf_event__process_tracing_data(struct perf_session * session,union perf_event * event)4467 int perf_event__process_tracing_data(struct perf_session *session,
4468 union perf_event *event)
4469 {
4470 ssize_t size_read, padding, size = event->tracing_data.size;
4471 int fd = perf_data__fd(session->data);
4472 char buf[BUFSIZ];
4473
4474 /*
4475 * The pipe fd is already in proper place and in any case
4476 * we can't move it, and we'd screw the case where we read
4477 * 'pipe' data from regular file. The trace_report reads
4478 * data from 'fd' so we need to set it directly behind the
4479 * event, where the tracing data starts.
4480 */
4481 if (!perf_data__is_pipe(session->data)) {
4482 off_t offset = lseek(fd, 0, SEEK_CUR);
4483
4484 /* setup for reading amidst mmap */
4485 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4486 SEEK_SET);
4487 }
4488
4489 size_read = trace_report(fd, &session->tevent,
4490 session->repipe);
4491 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4492
4493 if (readn(fd, buf, padding) < 0) {
4494 pr_err("%s: reading input file", __func__);
4495 return -1;
4496 }
4497 if (session->repipe) {
4498 int retw = write(STDOUT_FILENO, buf, padding);
4499 if (retw <= 0 || retw != padding) {
4500 pr_err("%s: repiping tracing data padding", __func__);
4501 return -1;
4502 }
4503 }
4504
4505 if (size_read + padding != size) {
4506 pr_err("%s: tracing data size mismatch", __func__);
4507 return -1;
4508 }
4509
4510 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4511
4512 return size_read + padding;
4513 }
4514 #endif
4515
perf_event__process_build_id(struct perf_session * session,union perf_event * event)4516 int perf_event__process_build_id(struct perf_session *session,
4517 union perf_event *event)
4518 {
4519 __event_process_build_id(&event->build_id,
4520 event->build_id.filename,
4521 session);
4522 return 0;
4523 }
4524