xref: /openbmc/linux/tools/perf/util/expr.c (revision e9adcfec)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <stdbool.h>
3 #include <assert.h>
4 #include <errno.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include "metricgroup.h"
8 #include "cpumap.h"
9 #include "cputopo.h"
10 #include "debug.h"
11 #include "expr.h"
12 #include "expr-bison.h"
13 #include "expr-flex.h"
14 #include "util/hashmap.h"
15 #include "smt.h"
16 #include "tsc.h"
17 #include <linux/err.h>
18 #include <linux/kernel.h>
19 #include <linux/zalloc.h>
20 #include <ctype.h>
21 #include <math.h>
22 
23 #ifdef PARSER_DEBUG
24 extern int expr_debug;
25 #endif
26 
27 struct expr_id_data {
28 	union {
29 		struct {
30 			double val;
31 			int source_count;
32 		} val;
33 		struct {
34 			double val;
35 			const char *metric_name;
36 			const char *metric_expr;
37 		} ref;
38 	};
39 
40 	enum {
41 		/* Holding a double value. */
42 		EXPR_ID_DATA__VALUE,
43 		/* Reference to another metric. */
44 		EXPR_ID_DATA__REF,
45 		/* A reference but the value has been computed. */
46 		EXPR_ID_DATA__REF_VALUE,
47 	} kind;
48 };
49 
50 static size_t key_hash(long key, void *ctx __maybe_unused)
51 {
52 	const char *str = (const char *)key;
53 	size_t hash = 0;
54 
55 	while (*str != '\0') {
56 		hash *= 31;
57 		hash += *str;
58 		str++;
59 	}
60 	return hash;
61 }
62 
63 static bool key_equal(long key1, long key2, void *ctx __maybe_unused)
64 {
65 	return !strcmp((const char *)key1, (const char *)key2);
66 }
67 
68 struct hashmap *ids__new(void)
69 {
70 	struct hashmap *hash;
71 
72 	hash = hashmap__new(key_hash, key_equal, NULL);
73 	if (IS_ERR(hash))
74 		return NULL;
75 	return hash;
76 }
77 
78 void ids__free(struct hashmap *ids)
79 {
80 	struct hashmap_entry *cur;
81 	size_t bkt;
82 
83 	if (ids == NULL)
84 		return;
85 
86 	hashmap__for_each_entry(ids, cur, bkt) {
87 		free((void *)cur->pkey);
88 		free((void *)cur->pvalue);
89 	}
90 
91 	hashmap__free(ids);
92 }
93 
94 int ids__insert(struct hashmap *ids, const char *id)
95 {
96 	struct expr_id_data *data_ptr = NULL, *old_data = NULL;
97 	char *old_key = NULL;
98 	int ret;
99 
100 	ret = hashmap__set(ids, id, data_ptr, &old_key, &old_data);
101 	if (ret)
102 		free(data_ptr);
103 	free(old_key);
104 	free(old_data);
105 	return ret;
106 }
107 
108 struct hashmap *ids__union(struct hashmap *ids1, struct hashmap *ids2)
109 {
110 	size_t bkt;
111 	struct hashmap_entry *cur;
112 	int ret;
113 	struct expr_id_data *old_data = NULL;
114 	char *old_key = NULL;
115 
116 	if (!ids1)
117 		return ids2;
118 
119 	if (!ids2)
120 		return ids1;
121 
122 	if (hashmap__size(ids1) <  hashmap__size(ids2)) {
123 		struct hashmap *tmp = ids1;
124 
125 		ids1 = ids2;
126 		ids2 = tmp;
127 	}
128 	hashmap__for_each_entry(ids2, cur, bkt) {
129 		ret = hashmap__set(ids1, cur->key, cur->value, &old_key, &old_data);
130 		free(old_key);
131 		free(old_data);
132 
133 		if (ret) {
134 			hashmap__free(ids1);
135 			hashmap__free(ids2);
136 			return NULL;
137 		}
138 	}
139 	hashmap__free(ids2);
140 	return ids1;
141 }
142 
143 /* Caller must make sure id is allocated */
144 int expr__add_id(struct expr_parse_ctx *ctx, const char *id)
145 {
146 	return ids__insert(ctx->ids, id);
147 }
148 
149 /* Caller must make sure id is allocated */
150 int expr__add_id_val(struct expr_parse_ctx *ctx, const char *id, double val)
151 {
152 	return expr__add_id_val_source_count(ctx, id, val, /*source_count=*/1);
153 }
154 
155 /* Caller must make sure id is allocated */
156 int expr__add_id_val_source_count(struct expr_parse_ctx *ctx, const char *id,
157 				  double val, int source_count)
158 {
159 	struct expr_id_data *data_ptr = NULL, *old_data = NULL;
160 	char *old_key = NULL;
161 	int ret;
162 
163 	data_ptr = malloc(sizeof(*data_ptr));
164 	if (!data_ptr)
165 		return -ENOMEM;
166 	data_ptr->val.val = val;
167 	data_ptr->val.source_count = source_count;
168 	data_ptr->kind = EXPR_ID_DATA__VALUE;
169 
170 	ret = hashmap__set(ctx->ids, id, data_ptr, &old_key, &old_data);
171 	if (ret)
172 		free(data_ptr);
173 	free(old_key);
174 	free(old_data);
175 	return ret;
176 }
177 
178 int expr__add_ref(struct expr_parse_ctx *ctx, struct metric_ref *ref)
179 {
180 	struct expr_id_data *data_ptr = NULL, *old_data = NULL;
181 	char *old_key = NULL;
182 	char *name;
183 	int ret;
184 
185 	data_ptr = zalloc(sizeof(*data_ptr));
186 	if (!data_ptr)
187 		return -ENOMEM;
188 
189 	name = strdup(ref->metric_name);
190 	if (!name) {
191 		free(data_ptr);
192 		return -ENOMEM;
193 	}
194 
195 	/*
196 	 * Intentionally passing just const char pointers,
197 	 * originally from 'struct pmu_event' object.
198 	 * We don't need to change them, so there's no
199 	 * need to create our own copy.
200 	 */
201 	data_ptr->ref.metric_name = ref->metric_name;
202 	data_ptr->ref.metric_expr = ref->metric_expr;
203 	data_ptr->kind = EXPR_ID_DATA__REF;
204 
205 	ret = hashmap__set(ctx->ids, name, data_ptr, &old_key, &old_data);
206 	if (ret)
207 		free(data_ptr);
208 
209 	pr_debug2("adding ref metric %s: %s\n",
210 		  ref->metric_name, ref->metric_expr);
211 
212 	free(old_key);
213 	free(old_data);
214 	return ret;
215 }
216 
217 int expr__get_id(struct expr_parse_ctx *ctx, const char *id,
218 		 struct expr_id_data **data)
219 {
220 	return hashmap__find(ctx->ids, id, data) ? 0 : -1;
221 }
222 
223 bool expr__subset_of_ids(struct expr_parse_ctx *haystack,
224 			 struct expr_parse_ctx *needles)
225 {
226 	struct hashmap_entry *cur;
227 	size_t bkt;
228 	struct expr_id_data *data;
229 
230 	hashmap__for_each_entry(needles->ids, cur, bkt) {
231 		if (expr__get_id(haystack, cur->pkey, &data))
232 			return false;
233 	}
234 	return true;
235 }
236 
237 
238 int expr__resolve_id(struct expr_parse_ctx *ctx, const char *id,
239 		     struct expr_id_data **datap)
240 {
241 	struct expr_id_data *data;
242 
243 	if (expr__get_id(ctx, id, datap) || !*datap) {
244 		pr_debug("%s not found\n", id);
245 		return -1;
246 	}
247 
248 	data = *datap;
249 
250 	switch (data->kind) {
251 	case EXPR_ID_DATA__VALUE:
252 		pr_debug2("lookup(%s): val %f\n", id, data->val.val);
253 		break;
254 	case EXPR_ID_DATA__REF:
255 		pr_debug2("lookup(%s): ref metric name %s\n", id,
256 			data->ref.metric_name);
257 		pr_debug("processing metric: %s ENTRY\n", id);
258 		data->kind = EXPR_ID_DATA__REF_VALUE;
259 		if (expr__parse(&data->ref.val, ctx, data->ref.metric_expr)) {
260 			pr_debug("%s failed to count\n", id);
261 			return -1;
262 		}
263 		pr_debug("processing metric: %s EXIT: %f\n", id, data->ref.val);
264 		break;
265 	case EXPR_ID_DATA__REF_VALUE:
266 		pr_debug2("lookup(%s): ref val %f metric name %s\n", id,
267 			data->ref.val, data->ref.metric_name);
268 		break;
269 	default:
270 		assert(0);  /* Unreachable. */
271 	}
272 
273 	return 0;
274 }
275 
276 void expr__del_id(struct expr_parse_ctx *ctx, const char *id)
277 {
278 	struct expr_id_data *old_val = NULL;
279 	char *old_key = NULL;
280 
281 	hashmap__delete(ctx->ids, id, &old_key, &old_val);
282 	free(old_key);
283 	free(old_val);
284 }
285 
286 struct expr_parse_ctx *expr__ctx_new(void)
287 {
288 	struct expr_parse_ctx *ctx;
289 
290 	ctx = malloc(sizeof(struct expr_parse_ctx));
291 	if (!ctx)
292 		return NULL;
293 
294 	ctx->ids = hashmap__new(key_hash, key_equal, NULL);
295 	if (IS_ERR(ctx->ids)) {
296 		free(ctx);
297 		return NULL;
298 	}
299 	ctx->sctx.user_requested_cpu_list = NULL;
300 	ctx->sctx.runtime = 0;
301 	ctx->sctx.system_wide = false;
302 
303 	return ctx;
304 }
305 
306 void expr__ctx_clear(struct expr_parse_ctx *ctx)
307 {
308 	struct hashmap_entry *cur;
309 	size_t bkt;
310 
311 	hashmap__for_each_entry(ctx->ids, cur, bkt) {
312 		free((void *)cur->pkey);
313 		free(cur->pvalue);
314 	}
315 	hashmap__clear(ctx->ids);
316 }
317 
318 void expr__ctx_free(struct expr_parse_ctx *ctx)
319 {
320 	struct hashmap_entry *cur;
321 	size_t bkt;
322 
323 	if (!ctx)
324 		return;
325 
326 	free(ctx->sctx.user_requested_cpu_list);
327 	hashmap__for_each_entry(ctx->ids, cur, bkt) {
328 		free((void *)cur->pkey);
329 		free(cur->pvalue);
330 	}
331 	hashmap__free(ctx->ids);
332 	free(ctx);
333 }
334 
335 static int
336 __expr__parse(double *val, struct expr_parse_ctx *ctx, const char *expr,
337 	      bool compute_ids)
338 {
339 	YY_BUFFER_STATE buffer;
340 	void *scanner;
341 	int ret;
342 
343 	pr_debug2("parsing metric: %s\n", expr);
344 
345 	ret = expr_lex_init_extra(&ctx->sctx, &scanner);
346 	if (ret)
347 		return ret;
348 
349 	buffer = expr__scan_string(expr, scanner);
350 
351 #ifdef PARSER_DEBUG
352 	expr_debug = 1;
353 	expr_set_debug(1, scanner);
354 #endif
355 
356 	ret = expr_parse(val, ctx, compute_ids, scanner);
357 
358 	expr__flush_buffer(buffer, scanner);
359 	expr__delete_buffer(buffer, scanner);
360 	expr_lex_destroy(scanner);
361 	return ret;
362 }
363 
364 int expr__parse(double *final_val, struct expr_parse_ctx *ctx,
365 		const char *expr)
366 {
367 	return __expr__parse(final_val, ctx, expr, /*compute_ids=*/false) ? -1 : 0;
368 }
369 
370 int expr__find_ids(const char *expr, const char *one,
371 		   struct expr_parse_ctx *ctx)
372 {
373 	int ret = __expr__parse(NULL, ctx, expr, /*compute_ids=*/true);
374 
375 	if (one)
376 		expr__del_id(ctx, one);
377 
378 	return ret;
379 }
380 
381 double expr_id_data__value(const struct expr_id_data *data)
382 {
383 	if (data->kind == EXPR_ID_DATA__VALUE)
384 		return data->val.val;
385 	assert(data->kind == EXPR_ID_DATA__REF_VALUE);
386 	return data->ref.val;
387 }
388 
389 double expr_id_data__source_count(const struct expr_id_data *data)
390 {
391 	assert(data->kind == EXPR_ID_DATA__VALUE);
392 	return data->val.source_count;
393 }
394 
395 #if !defined(__i386__) && !defined(__x86_64__)
396 double arch_get_tsc_freq(void)
397 {
398 	return 0.0;
399 }
400 #endif
401 
402 double expr__get_literal(const char *literal, const struct expr_scanner_ctx *ctx)
403 {
404 	static struct cpu_topology *topology;
405 	double result = NAN;
406 
407 	if (!strcmp("#num_cpus", literal)) {
408 		result = cpu__max_present_cpu().cpu;
409 		goto out;
410 	}
411 
412 	if (!strcasecmp("#system_tsc_freq", literal)) {
413 		result = arch_get_tsc_freq();
414 		goto out;
415 	}
416 
417 	/*
418 	 * Assume that topology strings are consistent, such as CPUs "0-1"
419 	 * wouldn't be listed as "0,1", and so after deduplication the number of
420 	 * these strings gives an indication of the number of packages, dies,
421 	 * etc.
422 	 */
423 	if (!topology) {
424 		topology = cpu_topology__new();
425 		if (!topology) {
426 			pr_err("Error creating CPU topology");
427 			goto out;
428 		}
429 	}
430 	if (!strcasecmp("#smt_on", literal)) {
431 		result = smt_on(topology) ? 1.0 : 0.0;
432 		goto out;
433 	}
434 	if (!strcmp("#core_wide", literal)) {
435 		result = core_wide(ctx->system_wide, ctx->user_requested_cpu_list, topology)
436 			? 1.0 : 0.0;
437 		goto out;
438 	}
439 	if (!strcmp("#num_packages", literal)) {
440 		result = topology->package_cpus_lists;
441 		goto out;
442 	}
443 	if (!strcmp("#num_dies", literal)) {
444 		result = topology->die_cpus_lists;
445 		goto out;
446 	}
447 	if (!strcmp("#num_cores", literal)) {
448 		result = topology->core_cpus_lists;
449 		goto out;
450 	}
451 
452 	pr_err("Unrecognized literal '%s'", literal);
453 out:
454 	pr_debug2("literal: %s = %f\n", literal, result);
455 	return result;
456 }
457