xref: /openbmc/linux/tools/perf/util/expr.c (revision d3402925)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <stdbool.h>
3 #include <assert.h>
4 #include <errno.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include "metricgroup.h"
8 #include "cpumap.h"
9 #include "cputopo.h"
10 #include "debug.h"
11 #include "expr.h"
12 #include "expr-bison.h"
13 #include "expr-flex.h"
14 #include "util/hashmap.h"
15 #include "smt.h"
16 #include "tsc.h"
17 #include <linux/err.h>
18 #include <linux/kernel.h>
19 #include <linux/zalloc.h>
20 #include <ctype.h>
21 #include <math.h>
22 #include "pmu.h"
23 
24 #ifdef PARSER_DEBUG
25 extern int expr_debug;
26 #endif
27 
28 struct expr_id_data {
29 	union {
30 		struct {
31 			double val;
32 			int source_count;
33 		} val;
34 		struct {
35 			double val;
36 			const char *metric_name;
37 			const char *metric_expr;
38 		} ref;
39 	};
40 
41 	enum {
42 		/* Holding a double value. */
43 		EXPR_ID_DATA__VALUE,
44 		/* Reference to another metric. */
45 		EXPR_ID_DATA__REF,
46 		/* A reference but the value has been computed. */
47 		EXPR_ID_DATA__REF_VALUE,
48 	} kind;
49 };
50 
51 static size_t key_hash(long key, void *ctx __maybe_unused)
52 {
53 	const char *str = (const char *)key;
54 	size_t hash = 0;
55 
56 	while (*str != '\0') {
57 		hash *= 31;
58 		hash += *str;
59 		str++;
60 	}
61 	return hash;
62 }
63 
64 static bool key_equal(long key1, long key2, void *ctx __maybe_unused)
65 {
66 	return !strcmp((const char *)key1, (const char *)key2);
67 }
68 
69 struct hashmap *ids__new(void)
70 {
71 	struct hashmap *hash;
72 
73 	hash = hashmap__new(key_hash, key_equal, NULL);
74 	if (IS_ERR(hash))
75 		return NULL;
76 	return hash;
77 }
78 
79 void ids__free(struct hashmap *ids)
80 {
81 	struct hashmap_entry *cur;
82 	size_t bkt;
83 
84 	if (ids == NULL)
85 		return;
86 
87 	hashmap__for_each_entry(ids, cur, bkt) {
88 		free((void *)cur->pkey);
89 		free((void *)cur->pvalue);
90 	}
91 
92 	hashmap__free(ids);
93 }
94 
95 int ids__insert(struct hashmap *ids, const char *id)
96 {
97 	struct expr_id_data *data_ptr = NULL, *old_data = NULL;
98 	char *old_key = NULL;
99 	int ret;
100 
101 	ret = hashmap__set(ids, id, data_ptr, &old_key, &old_data);
102 	if (ret)
103 		free(data_ptr);
104 	free(old_key);
105 	free(old_data);
106 	return ret;
107 }
108 
109 struct hashmap *ids__union(struct hashmap *ids1, struct hashmap *ids2)
110 {
111 	size_t bkt;
112 	struct hashmap_entry *cur;
113 	int ret;
114 	struct expr_id_data *old_data = NULL;
115 	char *old_key = NULL;
116 
117 	if (!ids1)
118 		return ids2;
119 
120 	if (!ids2)
121 		return ids1;
122 
123 	if (hashmap__size(ids1) <  hashmap__size(ids2)) {
124 		struct hashmap *tmp = ids1;
125 
126 		ids1 = ids2;
127 		ids2 = tmp;
128 	}
129 	hashmap__for_each_entry(ids2, cur, bkt) {
130 		ret = hashmap__set(ids1, cur->key, cur->value, &old_key, &old_data);
131 		free(old_key);
132 		free(old_data);
133 
134 		if (ret) {
135 			hashmap__free(ids1);
136 			hashmap__free(ids2);
137 			return NULL;
138 		}
139 	}
140 	hashmap__free(ids2);
141 	return ids1;
142 }
143 
144 /* Caller must make sure id is allocated */
145 int expr__add_id(struct expr_parse_ctx *ctx, const char *id)
146 {
147 	return ids__insert(ctx->ids, id);
148 }
149 
150 /* Caller must make sure id is allocated */
151 int expr__add_id_val(struct expr_parse_ctx *ctx, const char *id, double val)
152 {
153 	return expr__add_id_val_source_count(ctx, id, val, /*source_count=*/1);
154 }
155 
156 /* Caller must make sure id is allocated */
157 int expr__add_id_val_source_count(struct expr_parse_ctx *ctx, const char *id,
158 				  double val, int source_count)
159 {
160 	struct expr_id_data *data_ptr = NULL, *old_data = NULL;
161 	char *old_key = NULL;
162 	int ret;
163 
164 	data_ptr = malloc(sizeof(*data_ptr));
165 	if (!data_ptr)
166 		return -ENOMEM;
167 	data_ptr->val.val = val;
168 	data_ptr->val.source_count = source_count;
169 	data_ptr->kind = EXPR_ID_DATA__VALUE;
170 
171 	ret = hashmap__set(ctx->ids, id, data_ptr, &old_key, &old_data);
172 	if (ret)
173 		free(data_ptr);
174 	free(old_key);
175 	free(old_data);
176 	return ret;
177 }
178 
179 int expr__add_ref(struct expr_parse_ctx *ctx, struct metric_ref *ref)
180 {
181 	struct expr_id_data *data_ptr = NULL, *old_data = NULL;
182 	char *old_key = NULL;
183 	char *name;
184 	int ret;
185 
186 	data_ptr = zalloc(sizeof(*data_ptr));
187 	if (!data_ptr)
188 		return -ENOMEM;
189 
190 	name = strdup(ref->metric_name);
191 	if (!name) {
192 		free(data_ptr);
193 		return -ENOMEM;
194 	}
195 
196 	/*
197 	 * Intentionally passing just const char pointers,
198 	 * originally from 'struct pmu_event' object.
199 	 * We don't need to change them, so there's no
200 	 * need to create our own copy.
201 	 */
202 	data_ptr->ref.metric_name = ref->metric_name;
203 	data_ptr->ref.metric_expr = ref->metric_expr;
204 	data_ptr->kind = EXPR_ID_DATA__REF;
205 
206 	ret = hashmap__set(ctx->ids, name, data_ptr, &old_key, &old_data);
207 	if (ret)
208 		free(data_ptr);
209 
210 	pr_debug2("adding ref metric %s: %s\n",
211 		  ref->metric_name, ref->metric_expr);
212 
213 	free(old_key);
214 	free(old_data);
215 	return ret;
216 }
217 
218 int expr__get_id(struct expr_parse_ctx *ctx, const char *id,
219 		 struct expr_id_data **data)
220 {
221 	return hashmap__find(ctx->ids, id, data) ? 0 : -1;
222 }
223 
224 bool expr__subset_of_ids(struct expr_parse_ctx *haystack,
225 			 struct expr_parse_ctx *needles)
226 {
227 	struct hashmap_entry *cur;
228 	size_t bkt;
229 	struct expr_id_data *data;
230 
231 	hashmap__for_each_entry(needles->ids, cur, bkt) {
232 		if (expr__get_id(haystack, cur->pkey, &data))
233 			return false;
234 	}
235 	return true;
236 }
237 
238 
239 int expr__resolve_id(struct expr_parse_ctx *ctx, const char *id,
240 		     struct expr_id_data **datap)
241 {
242 	struct expr_id_data *data;
243 
244 	if (expr__get_id(ctx, id, datap) || !*datap) {
245 		pr_debug("%s not found\n", id);
246 		return -1;
247 	}
248 
249 	data = *datap;
250 
251 	switch (data->kind) {
252 	case EXPR_ID_DATA__VALUE:
253 		pr_debug2("lookup(%s): val %f\n", id, data->val.val);
254 		break;
255 	case EXPR_ID_DATA__REF:
256 		pr_debug2("lookup(%s): ref metric name %s\n", id,
257 			data->ref.metric_name);
258 		pr_debug("processing metric: %s ENTRY\n", id);
259 		data->kind = EXPR_ID_DATA__REF_VALUE;
260 		if (expr__parse(&data->ref.val, ctx, data->ref.metric_expr)) {
261 			pr_debug("%s failed to count\n", id);
262 			return -1;
263 		}
264 		pr_debug("processing metric: %s EXIT: %f\n", id, data->ref.val);
265 		break;
266 	case EXPR_ID_DATA__REF_VALUE:
267 		pr_debug2("lookup(%s): ref val %f metric name %s\n", id,
268 			data->ref.val, data->ref.metric_name);
269 		break;
270 	default:
271 		assert(0);  /* Unreachable. */
272 	}
273 
274 	return 0;
275 }
276 
277 void expr__del_id(struct expr_parse_ctx *ctx, const char *id)
278 {
279 	struct expr_id_data *old_val = NULL;
280 	char *old_key = NULL;
281 
282 	hashmap__delete(ctx->ids, id, &old_key, &old_val);
283 	free(old_key);
284 	free(old_val);
285 }
286 
287 struct expr_parse_ctx *expr__ctx_new(void)
288 {
289 	struct expr_parse_ctx *ctx;
290 
291 	ctx = malloc(sizeof(struct expr_parse_ctx));
292 	if (!ctx)
293 		return NULL;
294 
295 	ctx->ids = hashmap__new(key_hash, key_equal, NULL);
296 	if (IS_ERR(ctx->ids)) {
297 		free(ctx);
298 		return NULL;
299 	}
300 	ctx->sctx.user_requested_cpu_list = NULL;
301 	ctx->sctx.runtime = 0;
302 	ctx->sctx.system_wide = false;
303 
304 	return ctx;
305 }
306 
307 void expr__ctx_clear(struct expr_parse_ctx *ctx)
308 {
309 	struct hashmap_entry *cur;
310 	size_t bkt;
311 
312 	hashmap__for_each_entry(ctx->ids, cur, bkt) {
313 		free((void *)cur->pkey);
314 		free(cur->pvalue);
315 	}
316 	hashmap__clear(ctx->ids);
317 }
318 
319 void expr__ctx_free(struct expr_parse_ctx *ctx)
320 {
321 	struct hashmap_entry *cur;
322 	size_t bkt;
323 
324 	if (!ctx)
325 		return;
326 
327 	free(ctx->sctx.user_requested_cpu_list);
328 	hashmap__for_each_entry(ctx->ids, cur, bkt) {
329 		free((void *)cur->pkey);
330 		free(cur->pvalue);
331 	}
332 	hashmap__free(ctx->ids);
333 	free(ctx);
334 }
335 
336 static int
337 __expr__parse(double *val, struct expr_parse_ctx *ctx, const char *expr,
338 	      bool compute_ids)
339 {
340 	YY_BUFFER_STATE buffer;
341 	void *scanner;
342 	int ret;
343 
344 	pr_debug2("parsing metric: %s\n", expr);
345 
346 	ret = expr_lex_init_extra(&ctx->sctx, &scanner);
347 	if (ret)
348 		return ret;
349 
350 	buffer = expr__scan_string(expr, scanner);
351 
352 #ifdef PARSER_DEBUG
353 	expr_debug = 1;
354 	expr_set_debug(1, scanner);
355 #endif
356 
357 	ret = expr_parse(val, ctx, compute_ids, scanner);
358 
359 	expr__flush_buffer(buffer, scanner);
360 	expr__delete_buffer(buffer, scanner);
361 	expr_lex_destroy(scanner);
362 	return ret;
363 }
364 
365 int expr__parse(double *final_val, struct expr_parse_ctx *ctx,
366 		const char *expr)
367 {
368 	return __expr__parse(final_val, ctx, expr, /*compute_ids=*/false) ? -1 : 0;
369 }
370 
371 int expr__find_ids(const char *expr, const char *one,
372 		   struct expr_parse_ctx *ctx)
373 {
374 	int ret = __expr__parse(NULL, ctx, expr, /*compute_ids=*/true);
375 
376 	if (one)
377 		expr__del_id(ctx, one);
378 
379 	return ret;
380 }
381 
382 double expr_id_data__value(const struct expr_id_data *data)
383 {
384 	if (data->kind == EXPR_ID_DATA__VALUE)
385 		return data->val.val;
386 	assert(data->kind == EXPR_ID_DATA__REF_VALUE);
387 	return data->ref.val;
388 }
389 
390 double expr_id_data__source_count(const struct expr_id_data *data)
391 {
392 	assert(data->kind == EXPR_ID_DATA__VALUE);
393 	return data->val.source_count;
394 }
395 
396 #if !defined(__i386__) && !defined(__x86_64__)
397 double arch_get_tsc_freq(void)
398 {
399 	return 0.0;
400 }
401 #endif
402 
403 double expr__get_literal(const char *literal, const struct expr_scanner_ctx *ctx)
404 {
405 	static struct cpu_topology *topology;
406 	double result = NAN;
407 
408 	if (!strcmp("#num_cpus", literal)) {
409 		result = cpu__max_present_cpu().cpu;
410 		goto out;
411 	}
412 
413 	if (!strcasecmp("#system_tsc_freq", literal)) {
414 		result = arch_get_tsc_freq();
415 		goto out;
416 	}
417 
418 	/*
419 	 * Assume that topology strings are consistent, such as CPUs "0-1"
420 	 * wouldn't be listed as "0,1", and so after deduplication the number of
421 	 * these strings gives an indication of the number of packages, dies,
422 	 * etc.
423 	 */
424 	if (!topology) {
425 		topology = cpu_topology__new();
426 		if (!topology) {
427 			pr_err("Error creating CPU topology");
428 			goto out;
429 		}
430 	}
431 	if (!strcasecmp("#smt_on", literal)) {
432 		result = smt_on(topology) ? 1.0 : 0.0;
433 		goto out;
434 	}
435 	if (!strcmp("#core_wide", literal)) {
436 		result = core_wide(ctx->system_wide, ctx->user_requested_cpu_list, topology)
437 			? 1.0 : 0.0;
438 		goto out;
439 	}
440 	if (!strcmp("#num_packages", literal)) {
441 		result = topology->package_cpus_lists;
442 		goto out;
443 	}
444 	if (!strcmp("#num_dies", literal)) {
445 		result = topology->die_cpus_lists;
446 		goto out;
447 	}
448 	if (!strcmp("#num_cores", literal)) {
449 		result = topology->core_cpus_lists;
450 		goto out;
451 	}
452 	if (!strcmp("#slots", literal)) {
453 		result = perf_pmu__cpu_slots_per_cycle();
454 		goto out;
455 	}
456 
457 	pr_err("Unrecognized literal '%s'", literal);
458 out:
459 	pr_debug2("literal: %s = %f\n", literal, result);
460 	return result;
461 }
462