xref: /openbmc/linux/tools/perf/util/expr.c (revision 586cb1d6)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <stdbool.h>
3 #include <assert.h>
4 #include <errno.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include "metricgroup.h"
8 #include "cpumap.h"
9 #include "cputopo.h"
10 #include "debug.h"
11 #include "expr.h"
12 #include "expr-bison.h"
13 #include "expr-flex.h"
14 #include "util/hashmap.h"
15 #include "smt.h"
16 #include "tsc.h"
17 #include <linux/err.h>
18 #include <linux/kernel.h>
19 #include <linux/zalloc.h>
20 #include <ctype.h>
21 #include <math.h>
22 
23 #ifdef PARSER_DEBUG
24 extern int expr_debug;
25 #endif
26 
27 struct expr_id_data {
28 	union {
29 		struct {
30 			double val;
31 			int source_count;
32 		} val;
33 		struct {
34 			double val;
35 			const char *metric_name;
36 			const char *metric_expr;
37 		} ref;
38 	};
39 
40 	enum {
41 		/* Holding a double value. */
42 		EXPR_ID_DATA__VALUE,
43 		/* Reference to another metric. */
44 		EXPR_ID_DATA__REF,
45 		/* A reference but the value has been computed. */
46 		EXPR_ID_DATA__REF_VALUE,
47 	} kind;
48 };
49 
50 static size_t key_hash(const void *key, void *ctx __maybe_unused)
51 {
52 	const char *str = (const char *)key;
53 	size_t hash = 0;
54 
55 	while (*str != '\0') {
56 		hash *= 31;
57 		hash += *str;
58 		str++;
59 	}
60 	return hash;
61 }
62 
63 static bool key_equal(const void *key1, const void *key2,
64 		    void *ctx __maybe_unused)
65 {
66 	return !strcmp((const char *)key1, (const char *)key2);
67 }
68 
69 struct hashmap *ids__new(void)
70 {
71 	struct hashmap *hash;
72 
73 	hash = hashmap__new(key_hash, key_equal, NULL);
74 	if (IS_ERR(hash))
75 		return NULL;
76 	return hash;
77 }
78 
79 void ids__free(struct hashmap *ids)
80 {
81 	struct hashmap_entry *cur;
82 	size_t bkt;
83 
84 	if (ids == NULL)
85 		return;
86 
87 	hashmap__for_each_entry(ids, cur, bkt) {
88 		free((char *)cur->key);
89 		free(cur->value);
90 	}
91 
92 	hashmap__free(ids);
93 }
94 
95 int ids__insert(struct hashmap *ids, const char *id)
96 {
97 	struct expr_id_data *data_ptr = NULL, *old_data = NULL;
98 	char *old_key = NULL;
99 	int ret;
100 
101 	ret = hashmap__set(ids, id, data_ptr,
102 			   (const void **)&old_key, (void **)&old_data);
103 	if (ret)
104 		free(data_ptr);
105 	free(old_key);
106 	free(old_data);
107 	return ret;
108 }
109 
110 struct hashmap *ids__union(struct hashmap *ids1, struct hashmap *ids2)
111 {
112 	size_t bkt;
113 	struct hashmap_entry *cur;
114 	int ret;
115 	struct expr_id_data *old_data = NULL;
116 	char *old_key = NULL;
117 
118 	if (!ids1)
119 		return ids2;
120 
121 	if (!ids2)
122 		return ids1;
123 
124 	if (hashmap__size(ids1) <  hashmap__size(ids2)) {
125 		struct hashmap *tmp = ids1;
126 
127 		ids1 = ids2;
128 		ids2 = tmp;
129 	}
130 	hashmap__for_each_entry(ids2, cur, bkt) {
131 		ret = hashmap__set(ids1, cur->key, cur->value,
132 				(const void **)&old_key, (void **)&old_data);
133 		free(old_key);
134 		free(old_data);
135 
136 		if (ret) {
137 			hashmap__free(ids1);
138 			hashmap__free(ids2);
139 			return NULL;
140 		}
141 	}
142 	hashmap__free(ids2);
143 	return ids1;
144 }
145 
146 /* Caller must make sure id is allocated */
147 int expr__add_id(struct expr_parse_ctx *ctx, const char *id)
148 {
149 	return ids__insert(ctx->ids, id);
150 }
151 
152 /* Caller must make sure id is allocated */
153 int expr__add_id_val(struct expr_parse_ctx *ctx, const char *id, double val)
154 {
155 	return expr__add_id_val_source_count(ctx, id, val, /*source_count=*/1);
156 }
157 
158 /* Caller must make sure id is allocated */
159 int expr__add_id_val_source_count(struct expr_parse_ctx *ctx, const char *id,
160 				  double val, int source_count)
161 {
162 	struct expr_id_data *data_ptr = NULL, *old_data = NULL;
163 	char *old_key = NULL;
164 	int ret;
165 
166 	data_ptr = malloc(sizeof(*data_ptr));
167 	if (!data_ptr)
168 		return -ENOMEM;
169 	data_ptr->val.val = val;
170 	data_ptr->val.source_count = source_count;
171 	data_ptr->kind = EXPR_ID_DATA__VALUE;
172 
173 	ret = hashmap__set(ctx->ids, id, data_ptr,
174 			   (const void **)&old_key, (void **)&old_data);
175 	if (ret)
176 		free(data_ptr);
177 	free(old_key);
178 	free(old_data);
179 	return ret;
180 }
181 
182 int expr__add_ref(struct expr_parse_ctx *ctx, struct metric_ref *ref)
183 {
184 	struct expr_id_data *data_ptr = NULL, *old_data = NULL;
185 	char *old_key = NULL;
186 	char *name;
187 	int ret;
188 
189 	data_ptr = zalloc(sizeof(*data_ptr));
190 	if (!data_ptr)
191 		return -ENOMEM;
192 
193 	name = strdup(ref->metric_name);
194 	if (!name) {
195 		free(data_ptr);
196 		return -ENOMEM;
197 	}
198 
199 	/*
200 	 * Intentionally passing just const char pointers,
201 	 * originally from 'struct pmu_event' object.
202 	 * We don't need to change them, so there's no
203 	 * need to create our own copy.
204 	 */
205 	data_ptr->ref.metric_name = ref->metric_name;
206 	data_ptr->ref.metric_expr = ref->metric_expr;
207 	data_ptr->kind = EXPR_ID_DATA__REF;
208 
209 	ret = hashmap__set(ctx->ids, name, data_ptr,
210 			   (const void **)&old_key, (void **)&old_data);
211 	if (ret)
212 		free(data_ptr);
213 
214 	pr_debug2("adding ref metric %s: %s\n",
215 		  ref->metric_name, ref->metric_expr);
216 
217 	free(old_key);
218 	free(old_data);
219 	return ret;
220 }
221 
222 int expr__get_id(struct expr_parse_ctx *ctx, const char *id,
223 		 struct expr_id_data **data)
224 {
225 	return hashmap__find(ctx->ids, id, (void **)data) ? 0 : -1;
226 }
227 
228 bool expr__subset_of_ids(struct expr_parse_ctx *haystack,
229 			 struct expr_parse_ctx *needles)
230 {
231 	struct hashmap_entry *cur;
232 	size_t bkt;
233 	struct expr_id_data *data;
234 
235 	hashmap__for_each_entry(needles->ids, cur, bkt) {
236 		if (expr__get_id(haystack, cur->key, &data))
237 			return false;
238 	}
239 	return true;
240 }
241 
242 
243 int expr__resolve_id(struct expr_parse_ctx *ctx, const char *id,
244 		     struct expr_id_data **datap)
245 {
246 	struct expr_id_data *data;
247 
248 	if (expr__get_id(ctx, id, datap) || !*datap) {
249 		pr_debug("%s not found\n", id);
250 		return -1;
251 	}
252 
253 	data = *datap;
254 
255 	switch (data->kind) {
256 	case EXPR_ID_DATA__VALUE:
257 		pr_debug2("lookup(%s): val %f\n", id, data->val.val);
258 		break;
259 	case EXPR_ID_DATA__REF:
260 		pr_debug2("lookup(%s): ref metric name %s\n", id,
261 			data->ref.metric_name);
262 		pr_debug("processing metric: %s ENTRY\n", id);
263 		data->kind = EXPR_ID_DATA__REF_VALUE;
264 		if (expr__parse(&data->ref.val, ctx, data->ref.metric_expr)) {
265 			pr_debug("%s failed to count\n", id);
266 			return -1;
267 		}
268 		pr_debug("processing metric: %s EXIT: %f\n", id, data->ref.val);
269 		break;
270 	case EXPR_ID_DATA__REF_VALUE:
271 		pr_debug2("lookup(%s): ref val %f metric name %s\n", id,
272 			data->ref.val, data->ref.metric_name);
273 		break;
274 	default:
275 		assert(0);  /* Unreachable. */
276 	}
277 
278 	return 0;
279 }
280 
281 void expr__del_id(struct expr_parse_ctx *ctx, const char *id)
282 {
283 	struct expr_id_data *old_val = NULL;
284 	char *old_key = NULL;
285 
286 	hashmap__delete(ctx->ids, id,
287 			(const void **)&old_key, (void **)&old_val);
288 	free(old_key);
289 	free(old_val);
290 }
291 
292 struct expr_parse_ctx *expr__ctx_new(void)
293 {
294 	struct expr_parse_ctx *ctx;
295 
296 	ctx = malloc(sizeof(struct expr_parse_ctx));
297 	if (!ctx)
298 		return NULL;
299 
300 	ctx->ids = hashmap__new(key_hash, key_equal, NULL);
301 	if (IS_ERR(ctx->ids)) {
302 		free(ctx);
303 		return NULL;
304 	}
305 	ctx->sctx.user_requested_cpu_list = NULL;
306 	ctx->sctx.runtime = 0;
307 	ctx->sctx.system_wide = false;
308 
309 	return ctx;
310 }
311 
312 void expr__ctx_clear(struct expr_parse_ctx *ctx)
313 {
314 	struct hashmap_entry *cur;
315 	size_t bkt;
316 
317 	hashmap__for_each_entry(ctx->ids, cur, bkt) {
318 		free((char *)cur->key);
319 		free(cur->value);
320 	}
321 	hashmap__clear(ctx->ids);
322 }
323 
324 void expr__ctx_free(struct expr_parse_ctx *ctx)
325 {
326 	struct hashmap_entry *cur;
327 	size_t bkt;
328 
329 	if (!ctx)
330 		return;
331 
332 	free(ctx->sctx.user_requested_cpu_list);
333 	hashmap__for_each_entry(ctx->ids, cur, bkt) {
334 		free((char *)cur->key);
335 		free(cur->value);
336 	}
337 	hashmap__free(ctx->ids);
338 	free(ctx);
339 }
340 
341 static int
342 __expr__parse(double *val, struct expr_parse_ctx *ctx, const char *expr,
343 	      bool compute_ids)
344 {
345 	YY_BUFFER_STATE buffer;
346 	void *scanner;
347 	int ret;
348 
349 	pr_debug2("parsing metric: %s\n", expr);
350 
351 	ret = expr_lex_init_extra(&ctx->sctx, &scanner);
352 	if (ret)
353 		return ret;
354 
355 	buffer = expr__scan_string(expr, scanner);
356 
357 #ifdef PARSER_DEBUG
358 	expr_debug = 1;
359 	expr_set_debug(1, scanner);
360 #endif
361 
362 	ret = expr_parse(val, ctx, compute_ids, scanner);
363 
364 	expr__flush_buffer(buffer, scanner);
365 	expr__delete_buffer(buffer, scanner);
366 	expr_lex_destroy(scanner);
367 	return ret;
368 }
369 
370 int expr__parse(double *final_val, struct expr_parse_ctx *ctx,
371 		const char *expr)
372 {
373 	return __expr__parse(final_val, ctx, expr, /*compute_ids=*/false) ? -1 : 0;
374 }
375 
376 int expr__find_ids(const char *expr, const char *one,
377 		   struct expr_parse_ctx *ctx)
378 {
379 	int ret = __expr__parse(NULL, ctx, expr, /*compute_ids=*/true);
380 
381 	if (one)
382 		expr__del_id(ctx, one);
383 
384 	return ret;
385 }
386 
387 double expr_id_data__value(const struct expr_id_data *data)
388 {
389 	if (data->kind == EXPR_ID_DATA__VALUE)
390 		return data->val.val;
391 	assert(data->kind == EXPR_ID_DATA__REF_VALUE);
392 	return data->ref.val;
393 }
394 
395 double expr_id_data__source_count(const struct expr_id_data *data)
396 {
397 	assert(data->kind == EXPR_ID_DATA__VALUE);
398 	return data->val.source_count;
399 }
400 
401 #if !defined(__i386__) && !defined(__x86_64__)
402 double arch_get_tsc_freq(void)
403 {
404 	return 0.0;
405 }
406 #endif
407 
408 double expr__get_literal(const char *literal, const struct expr_scanner_ctx *ctx)
409 {
410 	static struct cpu_topology *topology;
411 	double result = NAN;
412 
413 	if (!strcmp("#num_cpus", literal)) {
414 		result = cpu__max_present_cpu().cpu;
415 		goto out;
416 	}
417 
418 	if (!strcasecmp("#system_tsc_freq", literal)) {
419 		result = arch_get_tsc_freq();
420 		goto out;
421 	}
422 
423 	/*
424 	 * Assume that topology strings are consistent, such as CPUs "0-1"
425 	 * wouldn't be listed as "0,1", and so after deduplication the number of
426 	 * these strings gives an indication of the number of packages, dies,
427 	 * etc.
428 	 */
429 	if (!topology) {
430 		topology = cpu_topology__new();
431 		if (!topology) {
432 			pr_err("Error creating CPU topology");
433 			goto out;
434 		}
435 	}
436 	if (!strcasecmp("#smt_on", literal)) {
437 		result = smt_on(topology) ? 1.0 : 0.0;
438 		goto out;
439 	}
440 	if (!strcmp("#core_wide", literal)) {
441 		result = core_wide(ctx->system_wide, ctx->user_requested_cpu_list, topology)
442 			? 1.0 : 0.0;
443 		goto out;
444 	}
445 	if (!strcmp("#num_packages", literal)) {
446 		result = topology->package_cpus_lists;
447 		goto out;
448 	}
449 	if (!strcmp("#num_dies", literal)) {
450 		result = topology->die_cpus_lists;
451 		goto out;
452 	}
453 	if (!strcmp("#num_cores", literal)) {
454 		result = topology->core_cpus_lists;
455 		goto out;
456 	}
457 
458 	pr_err("Unrecognized literal '%s'", literal);
459 out:
460 	pr_debug2("literal: %s = %f\n", literal, result);
461 	return result;
462 }
463