1 // SPDX-License-Identifier: GPL-2.0 2 #include <stdbool.h> 3 #include <assert.h> 4 #include <errno.h> 5 #include <stdlib.h> 6 #include <string.h> 7 #include "metricgroup.h" 8 #include "cpumap.h" 9 #include "cputopo.h" 10 #include "debug.h" 11 #include "expr.h" 12 #include "expr-bison.h" 13 #include "expr-flex.h" 14 #include "smt.h" 15 #include <linux/err.h> 16 #include <linux/kernel.h> 17 #include <linux/zalloc.h> 18 #include <ctype.h> 19 #include <math.h> 20 21 #ifdef PARSER_DEBUG 22 extern int expr_debug; 23 #endif 24 25 struct expr_id_data { 26 union { 27 struct { 28 double val; 29 int source_count; 30 } val; 31 struct { 32 double val; 33 const char *metric_name; 34 const char *metric_expr; 35 } ref; 36 }; 37 38 enum { 39 /* Holding a double value. */ 40 EXPR_ID_DATA__VALUE, 41 /* Reference to another metric. */ 42 EXPR_ID_DATA__REF, 43 /* A reference but the value has been computed. */ 44 EXPR_ID_DATA__REF_VALUE, 45 } kind; 46 }; 47 48 static size_t key_hash(const void *key, void *ctx __maybe_unused) 49 { 50 const char *str = (const char *)key; 51 size_t hash = 0; 52 53 while (*str != '\0') { 54 hash *= 31; 55 hash += *str; 56 str++; 57 } 58 return hash; 59 } 60 61 static bool key_equal(const void *key1, const void *key2, 62 void *ctx __maybe_unused) 63 { 64 return !strcmp((const char *)key1, (const char *)key2); 65 } 66 67 struct hashmap *ids__new(void) 68 { 69 return hashmap__new(key_hash, key_equal, NULL); 70 } 71 72 void ids__free(struct hashmap *ids) 73 { 74 struct hashmap_entry *cur; 75 size_t bkt; 76 77 if (ids == NULL) 78 return; 79 80 hashmap__for_each_entry(ids, cur, bkt) { 81 free((char *)cur->key); 82 free(cur->value); 83 } 84 85 hashmap__free(ids); 86 } 87 88 int ids__insert(struct hashmap *ids, const char *id) 89 { 90 struct expr_id_data *data_ptr = NULL, *old_data = NULL; 91 char *old_key = NULL; 92 int ret; 93 94 ret = hashmap__set(ids, id, data_ptr, 95 (const void **)&old_key, (void **)&old_data); 96 if (ret) 97 free(data_ptr); 98 free(old_key); 99 free(old_data); 100 return ret; 101 } 102 103 struct hashmap *ids__union(struct hashmap *ids1, struct hashmap *ids2) 104 { 105 size_t bkt; 106 struct hashmap_entry *cur; 107 int ret; 108 struct expr_id_data *old_data = NULL; 109 char *old_key = NULL; 110 111 if (!ids1) 112 return ids2; 113 114 if (!ids2) 115 return ids1; 116 117 if (hashmap__size(ids1) < hashmap__size(ids2)) { 118 struct hashmap *tmp = ids1; 119 120 ids1 = ids2; 121 ids2 = tmp; 122 } 123 hashmap__for_each_entry(ids2, cur, bkt) { 124 ret = hashmap__set(ids1, cur->key, cur->value, 125 (const void **)&old_key, (void **)&old_data); 126 free(old_key); 127 free(old_data); 128 129 if (ret) { 130 hashmap__free(ids1); 131 hashmap__free(ids2); 132 return NULL; 133 } 134 } 135 hashmap__free(ids2); 136 return ids1; 137 } 138 139 /* Caller must make sure id is allocated */ 140 int expr__add_id(struct expr_parse_ctx *ctx, const char *id) 141 { 142 return ids__insert(ctx->ids, id); 143 } 144 145 /* Caller must make sure id is allocated */ 146 int expr__add_id_val(struct expr_parse_ctx *ctx, const char *id, double val) 147 { 148 return expr__add_id_val_source_count(ctx, id, val, /*source_count=*/1); 149 } 150 151 /* Caller must make sure id is allocated */ 152 int expr__add_id_val_source_count(struct expr_parse_ctx *ctx, const char *id, 153 double val, int source_count) 154 { 155 struct expr_id_data *data_ptr = NULL, *old_data = NULL; 156 char *old_key = NULL; 157 int ret; 158 159 data_ptr = malloc(sizeof(*data_ptr)); 160 if (!data_ptr) 161 return -ENOMEM; 162 data_ptr->val.val = val; 163 data_ptr->val.source_count = source_count; 164 data_ptr->kind = EXPR_ID_DATA__VALUE; 165 166 ret = hashmap__set(ctx->ids, id, data_ptr, 167 (const void **)&old_key, (void **)&old_data); 168 if (ret) 169 free(data_ptr); 170 free(old_key); 171 free(old_data); 172 return ret; 173 } 174 175 int expr__add_ref(struct expr_parse_ctx *ctx, struct metric_ref *ref) 176 { 177 struct expr_id_data *data_ptr = NULL, *old_data = NULL; 178 char *old_key = NULL; 179 char *name, *p; 180 int ret; 181 182 data_ptr = zalloc(sizeof(*data_ptr)); 183 if (!data_ptr) 184 return -ENOMEM; 185 186 name = strdup(ref->metric_name); 187 if (!name) { 188 free(data_ptr); 189 return -ENOMEM; 190 } 191 192 /* 193 * The jevents tool converts all metric expressions 194 * to lowercase, including metric references, hence 195 * we need to add lowercase name for metric, so it's 196 * properly found. 197 */ 198 for (p = name; *p; p++) 199 *p = tolower(*p); 200 201 /* 202 * Intentionally passing just const char pointers, 203 * originally from 'struct pmu_event' object. 204 * We don't need to change them, so there's no 205 * need to create our own copy. 206 */ 207 data_ptr->ref.metric_name = ref->metric_name; 208 data_ptr->ref.metric_expr = ref->metric_expr; 209 data_ptr->kind = EXPR_ID_DATA__REF; 210 211 ret = hashmap__set(ctx->ids, name, data_ptr, 212 (const void **)&old_key, (void **)&old_data); 213 if (ret) 214 free(data_ptr); 215 216 pr_debug2("adding ref metric %s: %s\n", 217 ref->metric_name, ref->metric_expr); 218 219 free(old_key); 220 free(old_data); 221 return ret; 222 } 223 224 int expr__get_id(struct expr_parse_ctx *ctx, const char *id, 225 struct expr_id_data **data) 226 { 227 return hashmap__find(ctx->ids, id, (void **)data) ? 0 : -1; 228 } 229 230 bool expr__subset_of_ids(struct expr_parse_ctx *haystack, 231 struct expr_parse_ctx *needles) 232 { 233 struct hashmap_entry *cur; 234 size_t bkt; 235 struct expr_id_data *data; 236 237 hashmap__for_each_entry(needles->ids, cur, bkt) { 238 if (expr__get_id(haystack, cur->key, &data)) 239 return false; 240 } 241 return true; 242 } 243 244 245 int expr__resolve_id(struct expr_parse_ctx *ctx, const char *id, 246 struct expr_id_data **datap) 247 { 248 struct expr_id_data *data; 249 250 if (expr__get_id(ctx, id, datap) || !*datap) { 251 pr_debug("%s not found\n", id); 252 return -1; 253 } 254 255 data = *datap; 256 257 switch (data->kind) { 258 case EXPR_ID_DATA__VALUE: 259 pr_debug2("lookup(%s): val %f\n", id, data->val.val); 260 break; 261 case EXPR_ID_DATA__REF: 262 pr_debug2("lookup(%s): ref metric name %s\n", id, 263 data->ref.metric_name); 264 pr_debug("processing metric: %s ENTRY\n", id); 265 data->kind = EXPR_ID_DATA__REF_VALUE; 266 if (expr__parse(&data->ref.val, ctx, data->ref.metric_expr)) { 267 pr_debug("%s failed to count\n", id); 268 return -1; 269 } 270 pr_debug("processing metric: %s EXIT: %f\n", id, data->ref.val); 271 break; 272 case EXPR_ID_DATA__REF_VALUE: 273 pr_debug2("lookup(%s): ref val %f metric name %s\n", id, 274 data->ref.val, data->ref.metric_name); 275 break; 276 default: 277 assert(0); /* Unreachable. */ 278 } 279 280 return 0; 281 } 282 283 void expr__del_id(struct expr_parse_ctx *ctx, const char *id) 284 { 285 struct expr_id_data *old_val = NULL; 286 char *old_key = NULL; 287 288 hashmap__delete(ctx->ids, id, 289 (const void **)&old_key, (void **)&old_val); 290 free(old_key); 291 free(old_val); 292 } 293 294 struct expr_parse_ctx *expr__ctx_new(void) 295 { 296 struct expr_parse_ctx *ctx; 297 298 ctx = malloc(sizeof(struct expr_parse_ctx)); 299 if (!ctx) 300 return NULL; 301 302 ctx->ids = hashmap__new(key_hash, key_equal, NULL); 303 if (IS_ERR(ctx->ids)) { 304 free(ctx); 305 return NULL; 306 } 307 ctx->runtime = 0; 308 309 return ctx; 310 } 311 312 void expr__ctx_clear(struct expr_parse_ctx *ctx) 313 { 314 struct hashmap_entry *cur; 315 size_t bkt; 316 317 hashmap__for_each_entry(ctx->ids, cur, bkt) { 318 free((char *)cur->key); 319 free(cur->value); 320 } 321 hashmap__clear(ctx->ids); 322 } 323 324 void expr__ctx_free(struct expr_parse_ctx *ctx) 325 { 326 struct hashmap_entry *cur; 327 size_t bkt; 328 329 hashmap__for_each_entry(ctx->ids, cur, bkt) { 330 free((char *)cur->key); 331 free(cur->value); 332 } 333 hashmap__free(ctx->ids); 334 free(ctx); 335 } 336 337 static int 338 __expr__parse(double *val, struct expr_parse_ctx *ctx, const char *expr, 339 bool compute_ids) 340 { 341 struct expr_scanner_ctx scanner_ctx = { 342 .runtime = ctx->runtime, 343 }; 344 YY_BUFFER_STATE buffer; 345 void *scanner; 346 int ret; 347 348 pr_debug2("parsing metric: %s\n", expr); 349 350 ret = expr_lex_init_extra(&scanner_ctx, &scanner); 351 if (ret) 352 return ret; 353 354 buffer = expr__scan_string(expr, scanner); 355 356 #ifdef PARSER_DEBUG 357 expr_debug = 1; 358 expr_set_debug(1, scanner); 359 #endif 360 361 ret = expr_parse(val, ctx, compute_ids, scanner); 362 363 expr__flush_buffer(buffer, scanner); 364 expr__delete_buffer(buffer, scanner); 365 expr_lex_destroy(scanner); 366 return ret; 367 } 368 369 int expr__parse(double *final_val, struct expr_parse_ctx *ctx, 370 const char *expr) 371 { 372 return __expr__parse(final_val, ctx, expr, /*compute_ids=*/false) ? -1 : 0; 373 } 374 375 int expr__find_ids(const char *expr, const char *one, 376 struct expr_parse_ctx *ctx) 377 { 378 int ret = __expr__parse(NULL, ctx, expr, /*compute_ids=*/true); 379 380 if (one) 381 expr__del_id(ctx, one); 382 383 return ret; 384 } 385 386 double expr_id_data__value(const struct expr_id_data *data) 387 { 388 if (data->kind == EXPR_ID_DATA__VALUE) 389 return data->val.val; 390 assert(data->kind == EXPR_ID_DATA__REF_VALUE); 391 return data->ref.val; 392 } 393 394 double expr_id_data__source_count(const struct expr_id_data *data) 395 { 396 assert(data->kind == EXPR_ID_DATA__VALUE); 397 return data->val.source_count; 398 } 399 400 double expr__get_literal(const char *literal) 401 { 402 static struct cpu_topology *topology; 403 404 if (!strcmp("#smt_on", literal)) 405 return smt_on() > 0 ? 1.0 : 0.0; 406 407 if (!strcmp("#num_cpus", literal)) 408 return cpu__max_present_cpu(); 409 410 /* 411 * Assume that topology strings are consistent, such as CPUs "0-1" 412 * wouldn't be listed as "0,1", and so after deduplication the number of 413 * these strings gives an indication of the number of packages, dies, 414 * etc. 415 */ 416 if (!topology) { 417 topology = cpu_topology__new(); 418 if (!topology) { 419 pr_err("Error creating CPU topology"); 420 return NAN; 421 } 422 } 423 if (!strcmp("#num_packages", literal)) 424 return topology->package_cpus_lists; 425 if (!strcmp("#num_dies", literal)) 426 return topology->die_cpus_lists; 427 if (!strcmp("#num_cores", literal)) 428 return topology->core_cpus_lists; 429 430 pr_err("Unrecognized literal '%s'", literal); 431 return NAN; 432 } 433