xref: /openbmc/linux/tools/perf/util/expr.c (revision 06ba8020)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <stdbool.h>
3 #include <assert.h>
4 #include <errno.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include "metricgroup.h"
8 #include "cpumap.h"
9 #include "cputopo.h"
10 #include "debug.h"
11 #include "expr.h"
12 #include "expr-bison.h"
13 #include "expr-flex.h"
14 #include "util/hashmap.h"
15 #include "smt.h"
16 #include "tsc.h"
17 #include <api/fs/fs.h>
18 #include <linux/err.h>
19 #include <linux/kernel.h>
20 #include <linux/zalloc.h>
21 #include <ctype.h>
22 #include <math.h>
23 #include "pmu.h"
24 
25 #ifdef PARSER_DEBUG
26 extern int expr_debug;
27 #endif
28 
29 struct expr_id_data {
30 	union {
31 		struct {
32 			double val;
33 			int source_count;
34 		} val;
35 		struct {
36 			double val;
37 			const char *metric_name;
38 			const char *metric_expr;
39 		} ref;
40 	};
41 
42 	enum {
43 		/* Holding a double value. */
44 		EXPR_ID_DATA__VALUE,
45 		/* Reference to another metric. */
46 		EXPR_ID_DATA__REF,
47 		/* A reference but the value has been computed. */
48 		EXPR_ID_DATA__REF_VALUE,
49 	} kind;
50 };
51 
52 static size_t key_hash(long key, void *ctx __maybe_unused)
53 {
54 	const char *str = (const char *)key;
55 	size_t hash = 0;
56 
57 	while (*str != '\0') {
58 		hash *= 31;
59 		hash += *str;
60 		str++;
61 	}
62 	return hash;
63 }
64 
65 static bool key_equal(long key1, long key2, void *ctx __maybe_unused)
66 {
67 	return !strcmp((const char *)key1, (const char *)key2);
68 }
69 
70 struct hashmap *ids__new(void)
71 {
72 	struct hashmap *hash;
73 
74 	hash = hashmap__new(key_hash, key_equal, NULL);
75 	if (IS_ERR(hash))
76 		return NULL;
77 	return hash;
78 }
79 
80 void ids__free(struct hashmap *ids)
81 {
82 	struct hashmap_entry *cur;
83 	size_t bkt;
84 
85 	if (ids == NULL)
86 		return;
87 
88 	hashmap__for_each_entry(ids, cur, bkt) {
89 		zfree(&cur->pkey);
90 		zfree(&cur->pvalue);
91 	}
92 
93 	hashmap__free(ids);
94 }
95 
96 int ids__insert(struct hashmap *ids, const char *id)
97 {
98 	struct expr_id_data *data_ptr = NULL, *old_data = NULL;
99 	char *old_key = NULL;
100 	int ret;
101 
102 	ret = hashmap__set(ids, id, data_ptr, &old_key, &old_data);
103 	if (ret)
104 		free(data_ptr);
105 	free(old_key);
106 	free(old_data);
107 	return ret;
108 }
109 
110 struct hashmap *ids__union(struct hashmap *ids1, struct hashmap *ids2)
111 {
112 	size_t bkt;
113 	struct hashmap_entry *cur;
114 	int ret;
115 	struct expr_id_data *old_data = NULL;
116 	char *old_key = NULL;
117 
118 	if (!ids1)
119 		return ids2;
120 
121 	if (!ids2)
122 		return ids1;
123 
124 	if (hashmap__size(ids1) <  hashmap__size(ids2)) {
125 		struct hashmap *tmp = ids1;
126 
127 		ids1 = ids2;
128 		ids2 = tmp;
129 	}
130 	hashmap__for_each_entry(ids2, cur, bkt) {
131 		ret = hashmap__set(ids1, cur->key, cur->value, &old_key, &old_data);
132 		free(old_key);
133 		free(old_data);
134 
135 		if (ret) {
136 			hashmap__free(ids1);
137 			hashmap__free(ids2);
138 			return NULL;
139 		}
140 	}
141 	hashmap__free(ids2);
142 	return ids1;
143 }
144 
145 /* Caller must make sure id is allocated */
146 int expr__add_id(struct expr_parse_ctx *ctx, const char *id)
147 {
148 	return ids__insert(ctx->ids, id);
149 }
150 
151 /* Caller must make sure id is allocated */
152 int expr__add_id_val(struct expr_parse_ctx *ctx, const char *id, double val)
153 {
154 	return expr__add_id_val_source_count(ctx, id, val, /*source_count=*/1);
155 }
156 
157 /* Caller must make sure id is allocated */
158 int expr__add_id_val_source_count(struct expr_parse_ctx *ctx, const char *id,
159 				  double val, int source_count)
160 {
161 	struct expr_id_data *data_ptr = NULL, *old_data = NULL;
162 	char *old_key = NULL;
163 	int ret;
164 
165 	data_ptr = malloc(sizeof(*data_ptr));
166 	if (!data_ptr)
167 		return -ENOMEM;
168 	data_ptr->val.val = val;
169 	data_ptr->val.source_count = source_count;
170 	data_ptr->kind = EXPR_ID_DATA__VALUE;
171 
172 	ret = hashmap__set(ctx->ids, id, data_ptr, &old_key, &old_data);
173 	if (ret)
174 		free(data_ptr);
175 	free(old_key);
176 	free(old_data);
177 	return ret;
178 }
179 
180 int expr__add_ref(struct expr_parse_ctx *ctx, struct metric_ref *ref)
181 {
182 	struct expr_id_data *data_ptr = NULL, *old_data = NULL;
183 	char *old_key = NULL;
184 	char *name;
185 	int ret;
186 
187 	data_ptr = zalloc(sizeof(*data_ptr));
188 	if (!data_ptr)
189 		return -ENOMEM;
190 
191 	name = strdup(ref->metric_name);
192 	if (!name) {
193 		free(data_ptr);
194 		return -ENOMEM;
195 	}
196 
197 	/*
198 	 * Intentionally passing just const char pointers,
199 	 * originally from 'struct pmu_event' object.
200 	 * We don't need to change them, so there's no
201 	 * need to create our own copy.
202 	 */
203 	data_ptr->ref.metric_name = ref->metric_name;
204 	data_ptr->ref.metric_expr = ref->metric_expr;
205 	data_ptr->kind = EXPR_ID_DATA__REF;
206 
207 	ret = hashmap__set(ctx->ids, name, data_ptr, &old_key, &old_data);
208 	if (ret)
209 		free(data_ptr);
210 
211 	pr_debug2("adding ref metric %s: %s\n",
212 		  ref->metric_name, ref->metric_expr);
213 
214 	free(old_key);
215 	free(old_data);
216 	return ret;
217 }
218 
219 int expr__get_id(struct expr_parse_ctx *ctx, const char *id,
220 		 struct expr_id_data **data)
221 {
222 	return hashmap__find(ctx->ids, id, data) ? 0 : -1;
223 }
224 
225 bool expr__subset_of_ids(struct expr_parse_ctx *haystack,
226 			 struct expr_parse_ctx *needles)
227 {
228 	struct hashmap_entry *cur;
229 	size_t bkt;
230 	struct expr_id_data *data;
231 
232 	hashmap__for_each_entry(needles->ids, cur, bkt) {
233 		if (expr__get_id(haystack, cur->pkey, &data))
234 			return false;
235 	}
236 	return true;
237 }
238 
239 
240 int expr__resolve_id(struct expr_parse_ctx *ctx, const char *id,
241 		     struct expr_id_data **datap)
242 {
243 	struct expr_id_data *data;
244 
245 	if (expr__get_id(ctx, id, datap) || !*datap) {
246 		pr_debug("%s not found\n", id);
247 		return -1;
248 	}
249 
250 	data = *datap;
251 
252 	switch (data->kind) {
253 	case EXPR_ID_DATA__VALUE:
254 		pr_debug2("lookup(%s): val %f\n", id, data->val.val);
255 		break;
256 	case EXPR_ID_DATA__REF:
257 		pr_debug2("lookup(%s): ref metric name %s\n", id,
258 			data->ref.metric_name);
259 		pr_debug("processing metric: %s ENTRY\n", id);
260 		data->kind = EXPR_ID_DATA__REF_VALUE;
261 		if (expr__parse(&data->ref.val, ctx, data->ref.metric_expr)) {
262 			pr_debug("%s failed to count\n", id);
263 			return -1;
264 		}
265 		pr_debug("processing metric: %s EXIT: %f\n", id, data->ref.val);
266 		break;
267 	case EXPR_ID_DATA__REF_VALUE:
268 		pr_debug2("lookup(%s): ref val %f metric name %s\n", id,
269 			data->ref.val, data->ref.metric_name);
270 		break;
271 	default:
272 		assert(0);  /* Unreachable. */
273 	}
274 
275 	return 0;
276 }
277 
278 void expr__del_id(struct expr_parse_ctx *ctx, const char *id)
279 {
280 	struct expr_id_data *old_val = NULL;
281 	char *old_key = NULL;
282 
283 	hashmap__delete(ctx->ids, id, &old_key, &old_val);
284 	free(old_key);
285 	free(old_val);
286 }
287 
288 struct expr_parse_ctx *expr__ctx_new(void)
289 {
290 	struct expr_parse_ctx *ctx;
291 
292 	ctx = malloc(sizeof(struct expr_parse_ctx));
293 	if (!ctx)
294 		return NULL;
295 
296 	ctx->ids = hashmap__new(key_hash, key_equal, NULL);
297 	if (IS_ERR(ctx->ids)) {
298 		free(ctx);
299 		return NULL;
300 	}
301 	ctx->sctx.user_requested_cpu_list = NULL;
302 	ctx->sctx.runtime = 0;
303 	ctx->sctx.system_wide = false;
304 
305 	return ctx;
306 }
307 
308 void expr__ctx_clear(struct expr_parse_ctx *ctx)
309 {
310 	struct hashmap_entry *cur;
311 	size_t bkt;
312 
313 	hashmap__for_each_entry(ctx->ids, cur, bkt) {
314 		zfree(&cur->pkey);
315 		zfree(&cur->pvalue);
316 	}
317 	hashmap__clear(ctx->ids);
318 }
319 
320 void expr__ctx_free(struct expr_parse_ctx *ctx)
321 {
322 	struct hashmap_entry *cur;
323 	size_t bkt;
324 
325 	if (!ctx)
326 		return;
327 
328 	zfree(&ctx->sctx.user_requested_cpu_list);
329 	hashmap__for_each_entry(ctx->ids, cur, bkt) {
330 		zfree(&cur->pkey);
331 		zfree(&cur->pvalue);
332 	}
333 	hashmap__free(ctx->ids);
334 	free(ctx);
335 }
336 
337 static int
338 __expr__parse(double *val, struct expr_parse_ctx *ctx, const char *expr,
339 	      bool compute_ids)
340 {
341 	YY_BUFFER_STATE buffer;
342 	void *scanner;
343 	int ret;
344 
345 	pr_debug2("parsing metric: %s\n", expr);
346 
347 	ret = expr_lex_init_extra(&ctx->sctx, &scanner);
348 	if (ret)
349 		return ret;
350 
351 	buffer = expr__scan_string(expr, scanner);
352 
353 #ifdef PARSER_DEBUG
354 	expr_debug = 1;
355 	expr_set_debug(1, scanner);
356 #endif
357 
358 	ret = expr_parse(val, ctx, compute_ids, scanner);
359 
360 	expr__flush_buffer(buffer, scanner);
361 	expr__delete_buffer(buffer, scanner);
362 	expr_lex_destroy(scanner);
363 	return ret;
364 }
365 
366 int expr__parse(double *final_val, struct expr_parse_ctx *ctx,
367 		const char *expr)
368 {
369 	return __expr__parse(final_val, ctx, expr, /*compute_ids=*/false) ? -1 : 0;
370 }
371 
372 int expr__find_ids(const char *expr, const char *one,
373 		   struct expr_parse_ctx *ctx)
374 {
375 	int ret = __expr__parse(NULL, ctx, expr, /*compute_ids=*/true);
376 
377 	if (one)
378 		expr__del_id(ctx, one);
379 
380 	return ret;
381 }
382 
383 double expr_id_data__value(const struct expr_id_data *data)
384 {
385 	if (data->kind == EXPR_ID_DATA__VALUE)
386 		return data->val.val;
387 	assert(data->kind == EXPR_ID_DATA__REF_VALUE);
388 	return data->ref.val;
389 }
390 
391 double expr_id_data__source_count(const struct expr_id_data *data)
392 {
393 	assert(data->kind == EXPR_ID_DATA__VALUE);
394 	return data->val.source_count;
395 }
396 
397 #if !defined(__i386__) && !defined(__x86_64__)
398 double arch_get_tsc_freq(void)
399 {
400 	return 0.0;
401 }
402 #endif
403 
404 static double has_pmem(void)
405 {
406 	static bool has_pmem, cached;
407 	const char *sysfs = sysfs__mountpoint();
408 	char path[PATH_MAX];
409 
410 	if (!cached) {
411 		snprintf(path, sizeof(path), "%s/firmware/acpi/tables/NFIT", sysfs);
412 		has_pmem = access(path, F_OK) == 0;
413 		cached = true;
414 	}
415 	return has_pmem ? 1.0 : 0.0;
416 }
417 
418 double expr__get_literal(const char *literal, const struct expr_scanner_ctx *ctx)
419 {
420 	const struct cpu_topology *topology;
421 	double result = NAN;
422 
423 	if (!strcmp("#num_cpus", literal)) {
424 		result = cpu__max_present_cpu().cpu;
425 		goto out;
426 	}
427 
428 	if (!strcasecmp("#system_tsc_freq", literal)) {
429 		result = arch_get_tsc_freq();
430 		goto out;
431 	}
432 
433 	/*
434 	 * Assume that topology strings are consistent, such as CPUs "0-1"
435 	 * wouldn't be listed as "0,1", and so after deduplication the number of
436 	 * these strings gives an indication of the number of packages, dies,
437 	 * etc.
438 	 */
439 	if (!strcasecmp("#smt_on", literal)) {
440 		result = smt_on() ? 1.0 : 0.0;
441 		goto out;
442 	}
443 	if (!strcmp("#core_wide", literal)) {
444 		result = core_wide(ctx->system_wide, ctx->user_requested_cpu_list)
445 			? 1.0 : 0.0;
446 		goto out;
447 	}
448 	if (!strcmp("#num_packages", literal)) {
449 		topology = online_topology();
450 		result = topology->package_cpus_lists;
451 		goto out;
452 	}
453 	if (!strcmp("#num_dies", literal)) {
454 		topology = online_topology();
455 		result = topology->die_cpus_lists;
456 		goto out;
457 	}
458 	if (!strcmp("#num_cores", literal)) {
459 		topology = online_topology();
460 		result = topology->core_cpus_lists;
461 		goto out;
462 	}
463 	if (!strcmp("#slots", literal)) {
464 		result = perf_pmu__cpu_slots_per_cycle();
465 		goto out;
466 	}
467 	if (!strcmp("#has_pmem", literal)) {
468 		result = has_pmem();
469 		goto out;
470 	}
471 
472 	pr_err("Unrecognized literal '%s'", literal);
473 out:
474 	pr_debug2("literal: %s = %f\n", literal, result);
475 	return result;
476 }
477