xref: /openbmc/linux/tools/perf/util/evsel.c (revision feac8c8b)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "memswap.h"
40 #include "util/parse-branch-options.h"
41 
42 #include "sane_ctype.h"
43 
44 struct perf_missing_features perf_missing_features;
45 
46 static clockid_t clockid;
47 
48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
49 {
50 	return 0;
51 }
52 
53 void __weak test_attr__ready(void) { }
54 
55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
56 {
57 }
58 
59 static struct {
60 	size_t	size;
61 	int	(*init)(struct perf_evsel *evsel);
62 	void	(*fini)(struct perf_evsel *evsel);
63 } perf_evsel__object = {
64 	.size = sizeof(struct perf_evsel),
65 	.init = perf_evsel__no_extra_init,
66 	.fini = perf_evsel__no_extra_fini,
67 };
68 
69 int perf_evsel__object_config(size_t object_size,
70 			      int (*init)(struct perf_evsel *evsel),
71 			      void (*fini)(struct perf_evsel *evsel))
72 {
73 
74 	if (object_size == 0)
75 		goto set_methods;
76 
77 	if (perf_evsel__object.size > object_size)
78 		return -EINVAL;
79 
80 	perf_evsel__object.size = object_size;
81 
82 set_methods:
83 	if (init != NULL)
84 		perf_evsel__object.init = init;
85 
86 	if (fini != NULL)
87 		perf_evsel__object.fini = fini;
88 
89 	return 0;
90 }
91 
92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
93 
94 int __perf_evsel__sample_size(u64 sample_type)
95 {
96 	u64 mask = sample_type & PERF_SAMPLE_MASK;
97 	int size = 0;
98 	int i;
99 
100 	for (i = 0; i < 64; i++) {
101 		if (mask & (1ULL << i))
102 			size++;
103 	}
104 
105 	size *= sizeof(u64);
106 
107 	return size;
108 }
109 
110 /**
111  * __perf_evsel__calc_id_pos - calculate id_pos.
112  * @sample_type: sample type
113  *
114  * This function returns the position of the event id (PERF_SAMPLE_ID or
115  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
116  * sample_event.
117  */
118 static int __perf_evsel__calc_id_pos(u64 sample_type)
119 {
120 	int idx = 0;
121 
122 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
123 		return 0;
124 
125 	if (!(sample_type & PERF_SAMPLE_ID))
126 		return -1;
127 
128 	if (sample_type & PERF_SAMPLE_IP)
129 		idx += 1;
130 
131 	if (sample_type & PERF_SAMPLE_TID)
132 		idx += 1;
133 
134 	if (sample_type & PERF_SAMPLE_TIME)
135 		idx += 1;
136 
137 	if (sample_type & PERF_SAMPLE_ADDR)
138 		idx += 1;
139 
140 	return idx;
141 }
142 
143 /**
144  * __perf_evsel__calc_is_pos - calculate is_pos.
145  * @sample_type: sample type
146  *
147  * This function returns the position (counting backwards) of the event id
148  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
149  * sample_id_all is used there is an id sample appended to non-sample events.
150  */
151 static int __perf_evsel__calc_is_pos(u64 sample_type)
152 {
153 	int idx = 1;
154 
155 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
156 		return 1;
157 
158 	if (!(sample_type & PERF_SAMPLE_ID))
159 		return -1;
160 
161 	if (sample_type & PERF_SAMPLE_CPU)
162 		idx += 1;
163 
164 	if (sample_type & PERF_SAMPLE_STREAM_ID)
165 		idx += 1;
166 
167 	return idx;
168 }
169 
170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
171 {
172 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
173 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
174 }
175 
176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
177 				  enum perf_event_sample_format bit)
178 {
179 	if (!(evsel->attr.sample_type & bit)) {
180 		evsel->attr.sample_type |= bit;
181 		evsel->sample_size += sizeof(u64);
182 		perf_evsel__calc_id_pos(evsel);
183 	}
184 }
185 
186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
187 				    enum perf_event_sample_format bit)
188 {
189 	if (evsel->attr.sample_type & bit) {
190 		evsel->attr.sample_type &= ~bit;
191 		evsel->sample_size -= sizeof(u64);
192 		perf_evsel__calc_id_pos(evsel);
193 	}
194 }
195 
196 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
197 			       bool can_sample_identifier)
198 {
199 	if (can_sample_identifier) {
200 		perf_evsel__reset_sample_bit(evsel, ID);
201 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
202 	} else {
203 		perf_evsel__set_sample_bit(evsel, ID);
204 	}
205 	evsel->attr.read_format |= PERF_FORMAT_ID;
206 }
207 
208 /**
209  * perf_evsel__is_function_event - Return whether given evsel is a function
210  * trace event
211  *
212  * @evsel - evsel selector to be tested
213  *
214  * Return %true if event is function trace event
215  */
216 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
217 {
218 #define FUNCTION_EVENT "ftrace:function"
219 
220 	return evsel->name &&
221 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
222 
223 #undef FUNCTION_EVENT
224 }
225 
226 void perf_evsel__init(struct perf_evsel *evsel,
227 		      struct perf_event_attr *attr, int idx)
228 {
229 	evsel->idx	   = idx;
230 	evsel->tracking	   = !idx;
231 	evsel->attr	   = *attr;
232 	evsel->leader	   = evsel;
233 	evsel->unit	   = "";
234 	evsel->scale	   = 1.0;
235 	evsel->evlist	   = NULL;
236 	evsel->bpf_fd	   = -1;
237 	INIT_LIST_HEAD(&evsel->node);
238 	INIT_LIST_HEAD(&evsel->config_terms);
239 	perf_evsel__object.init(evsel);
240 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
241 	perf_evsel__calc_id_pos(evsel);
242 	evsel->cmdline_group_boundary = false;
243 	evsel->metric_expr   = NULL;
244 	evsel->metric_name   = NULL;
245 	evsel->metric_events = NULL;
246 	evsel->collect_stat  = false;
247 }
248 
249 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
250 {
251 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
252 
253 	if (evsel != NULL)
254 		perf_evsel__init(evsel, attr, idx);
255 
256 	if (perf_evsel__is_bpf_output(evsel)) {
257 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
258 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
259 		evsel->attr.sample_period = 1;
260 	}
261 
262 	return evsel;
263 }
264 
265 static bool perf_event_can_profile_kernel(void)
266 {
267 	return geteuid() == 0 || perf_event_paranoid() == -1;
268 }
269 
270 struct perf_evsel *perf_evsel__new_cycles(bool precise)
271 {
272 	struct perf_event_attr attr = {
273 		.type	= PERF_TYPE_HARDWARE,
274 		.config	= PERF_COUNT_HW_CPU_CYCLES,
275 		.exclude_kernel	= !perf_event_can_profile_kernel(),
276 	};
277 	struct perf_evsel *evsel;
278 
279 	event_attr_init(&attr);
280 
281 	if (!precise)
282 		goto new_event;
283 	/*
284 	 * Unnamed union member, not supported as struct member named
285 	 * initializer in older compilers such as gcc 4.4.7
286 	 *
287 	 * Just for probing the precise_ip:
288 	 */
289 	attr.sample_period = 1;
290 
291 	perf_event_attr__set_max_precise_ip(&attr);
292 	/*
293 	 * Now let the usual logic to set up the perf_event_attr defaults
294 	 * to kick in when we return and before perf_evsel__open() is called.
295 	 */
296 	attr.sample_period = 0;
297 new_event:
298 	evsel = perf_evsel__new(&attr);
299 	if (evsel == NULL)
300 		goto out;
301 
302 	/* use asprintf() because free(evsel) assumes name is allocated */
303 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
304 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
305 		     attr.exclude_kernel ? "u" : "",
306 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
307 		goto error_free;
308 out:
309 	return evsel;
310 error_free:
311 	perf_evsel__delete(evsel);
312 	evsel = NULL;
313 	goto out;
314 }
315 
316 /*
317  * Returns pointer with encoded error via <linux/err.h> interface.
318  */
319 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
320 {
321 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
322 	int err = -ENOMEM;
323 
324 	if (evsel == NULL) {
325 		goto out_err;
326 	} else {
327 		struct perf_event_attr attr = {
328 			.type	       = PERF_TYPE_TRACEPOINT,
329 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
330 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
331 		};
332 
333 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
334 			goto out_free;
335 
336 		evsel->tp_format = trace_event__tp_format(sys, name);
337 		if (IS_ERR(evsel->tp_format)) {
338 			err = PTR_ERR(evsel->tp_format);
339 			goto out_free;
340 		}
341 
342 		event_attr_init(&attr);
343 		attr.config = evsel->tp_format->id;
344 		attr.sample_period = 1;
345 		perf_evsel__init(evsel, &attr, idx);
346 	}
347 
348 	return evsel;
349 
350 out_free:
351 	zfree(&evsel->name);
352 	free(evsel);
353 out_err:
354 	return ERR_PTR(err);
355 }
356 
357 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
358 	"cycles",
359 	"instructions",
360 	"cache-references",
361 	"cache-misses",
362 	"branches",
363 	"branch-misses",
364 	"bus-cycles",
365 	"stalled-cycles-frontend",
366 	"stalled-cycles-backend",
367 	"ref-cycles",
368 };
369 
370 static const char *__perf_evsel__hw_name(u64 config)
371 {
372 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
373 		return perf_evsel__hw_names[config];
374 
375 	return "unknown-hardware";
376 }
377 
378 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
379 {
380 	int colon = 0, r = 0;
381 	struct perf_event_attr *attr = &evsel->attr;
382 	bool exclude_guest_default = false;
383 
384 #define MOD_PRINT(context, mod)	do {					\
385 		if (!attr->exclude_##context) {				\
386 			if (!colon) colon = ++r;			\
387 			r += scnprintf(bf + r, size - r, "%c", mod);	\
388 		} } while(0)
389 
390 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
391 		MOD_PRINT(kernel, 'k');
392 		MOD_PRINT(user, 'u');
393 		MOD_PRINT(hv, 'h');
394 		exclude_guest_default = true;
395 	}
396 
397 	if (attr->precise_ip) {
398 		if (!colon)
399 			colon = ++r;
400 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
401 		exclude_guest_default = true;
402 	}
403 
404 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
405 		MOD_PRINT(host, 'H');
406 		MOD_PRINT(guest, 'G');
407 	}
408 #undef MOD_PRINT
409 	if (colon)
410 		bf[colon - 1] = ':';
411 	return r;
412 }
413 
414 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
415 {
416 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
417 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
418 }
419 
420 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
421 	"cpu-clock",
422 	"task-clock",
423 	"page-faults",
424 	"context-switches",
425 	"cpu-migrations",
426 	"minor-faults",
427 	"major-faults",
428 	"alignment-faults",
429 	"emulation-faults",
430 	"dummy",
431 };
432 
433 static const char *__perf_evsel__sw_name(u64 config)
434 {
435 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
436 		return perf_evsel__sw_names[config];
437 	return "unknown-software";
438 }
439 
440 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
441 {
442 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
443 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
444 }
445 
446 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
447 {
448 	int r;
449 
450 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
451 
452 	if (type & HW_BREAKPOINT_R)
453 		r += scnprintf(bf + r, size - r, "r");
454 
455 	if (type & HW_BREAKPOINT_W)
456 		r += scnprintf(bf + r, size - r, "w");
457 
458 	if (type & HW_BREAKPOINT_X)
459 		r += scnprintf(bf + r, size - r, "x");
460 
461 	return r;
462 }
463 
464 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
465 {
466 	struct perf_event_attr *attr = &evsel->attr;
467 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
468 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
469 }
470 
471 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
472 				[PERF_EVSEL__MAX_ALIASES] = {
473  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
474  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
475  { "LLC",	"L2",							},
476  { "dTLB",	"d-tlb",	"Data-TLB",				},
477  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
478  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
479  { "node",								},
480 };
481 
482 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
483 				   [PERF_EVSEL__MAX_ALIASES] = {
484  { "load",	"loads",	"read",					},
485  { "store",	"stores",	"write",				},
486  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
487 };
488 
489 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
490 				       [PERF_EVSEL__MAX_ALIASES] = {
491  { "refs",	"Reference",	"ops",		"access",		},
492  { "misses",	"miss",							},
493 };
494 
495 #define C(x)		PERF_COUNT_HW_CACHE_##x
496 #define CACHE_READ	(1 << C(OP_READ))
497 #define CACHE_WRITE	(1 << C(OP_WRITE))
498 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
499 #define COP(x)		(1 << x)
500 
501 /*
502  * cache operartion stat
503  * L1I : Read and prefetch only
504  * ITLB and BPU : Read-only
505  */
506 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
507  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
508  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
509  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
510  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
511  [C(ITLB)]	= (CACHE_READ),
512  [C(BPU)]	= (CACHE_READ),
513  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
514 };
515 
516 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
517 {
518 	if (perf_evsel__hw_cache_stat[type] & COP(op))
519 		return true;	/* valid */
520 	else
521 		return false;	/* invalid */
522 }
523 
524 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
525 					    char *bf, size_t size)
526 {
527 	if (result) {
528 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
529 				 perf_evsel__hw_cache_op[op][0],
530 				 perf_evsel__hw_cache_result[result][0]);
531 	}
532 
533 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
534 			 perf_evsel__hw_cache_op[op][1]);
535 }
536 
537 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
538 {
539 	u8 op, result, type = (config >>  0) & 0xff;
540 	const char *err = "unknown-ext-hardware-cache-type";
541 
542 	if (type >= PERF_COUNT_HW_CACHE_MAX)
543 		goto out_err;
544 
545 	op = (config >>  8) & 0xff;
546 	err = "unknown-ext-hardware-cache-op";
547 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
548 		goto out_err;
549 
550 	result = (config >> 16) & 0xff;
551 	err = "unknown-ext-hardware-cache-result";
552 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
553 		goto out_err;
554 
555 	err = "invalid-cache";
556 	if (!perf_evsel__is_cache_op_valid(type, op))
557 		goto out_err;
558 
559 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
560 out_err:
561 	return scnprintf(bf, size, "%s", err);
562 }
563 
564 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
565 {
566 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
567 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
568 }
569 
570 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
571 {
572 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
573 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
574 }
575 
576 const char *perf_evsel__name(struct perf_evsel *evsel)
577 {
578 	char bf[128];
579 
580 	if (evsel->name)
581 		return evsel->name;
582 
583 	switch (evsel->attr.type) {
584 	case PERF_TYPE_RAW:
585 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
586 		break;
587 
588 	case PERF_TYPE_HARDWARE:
589 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
590 		break;
591 
592 	case PERF_TYPE_HW_CACHE:
593 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
594 		break;
595 
596 	case PERF_TYPE_SOFTWARE:
597 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
598 		break;
599 
600 	case PERF_TYPE_TRACEPOINT:
601 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
602 		break;
603 
604 	case PERF_TYPE_BREAKPOINT:
605 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
606 		break;
607 
608 	default:
609 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
610 			  evsel->attr.type);
611 		break;
612 	}
613 
614 	evsel->name = strdup(bf);
615 
616 	return evsel->name ?: "unknown";
617 }
618 
619 const char *perf_evsel__group_name(struct perf_evsel *evsel)
620 {
621 	return evsel->group_name ?: "anon group";
622 }
623 
624 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
625 {
626 	int ret;
627 	struct perf_evsel *pos;
628 	const char *group_name = perf_evsel__group_name(evsel);
629 
630 	ret = scnprintf(buf, size, "%s", group_name);
631 
632 	ret += scnprintf(buf + ret, size - ret, " { %s",
633 			 perf_evsel__name(evsel));
634 
635 	for_each_group_member(pos, evsel)
636 		ret += scnprintf(buf + ret, size - ret, ", %s",
637 				 perf_evsel__name(pos));
638 
639 	ret += scnprintf(buf + ret, size - ret, " }");
640 
641 	return ret;
642 }
643 
644 static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
645 					   struct record_opts *opts,
646 					   struct callchain_param *param)
647 {
648 	bool function = perf_evsel__is_function_event(evsel);
649 	struct perf_event_attr *attr = &evsel->attr;
650 
651 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
652 
653 	attr->sample_max_stack = param->max_stack;
654 
655 	if (param->record_mode == CALLCHAIN_LBR) {
656 		if (!opts->branch_stack) {
657 			if (attr->exclude_user) {
658 				pr_warning("LBR callstack option is only available "
659 					   "to get user callchain information. "
660 					   "Falling back to framepointers.\n");
661 			} else {
662 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
663 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
664 							PERF_SAMPLE_BRANCH_CALL_STACK |
665 							PERF_SAMPLE_BRANCH_NO_CYCLES |
666 							PERF_SAMPLE_BRANCH_NO_FLAGS;
667 			}
668 		} else
669 			 pr_warning("Cannot use LBR callstack with branch stack. "
670 				    "Falling back to framepointers.\n");
671 	}
672 
673 	if (param->record_mode == CALLCHAIN_DWARF) {
674 		if (!function) {
675 			perf_evsel__set_sample_bit(evsel, REGS_USER);
676 			perf_evsel__set_sample_bit(evsel, STACK_USER);
677 			attr->sample_regs_user |= PERF_REGS_MASK;
678 			attr->sample_stack_user = param->dump_size;
679 			attr->exclude_callchain_user = 1;
680 		} else {
681 			pr_info("Cannot use DWARF unwind for function trace event,"
682 				" falling back to framepointers.\n");
683 		}
684 	}
685 
686 	if (function) {
687 		pr_info("Disabling user space callchains for function trace event.\n");
688 		attr->exclude_callchain_user = 1;
689 	}
690 }
691 
692 void perf_evsel__config_callchain(struct perf_evsel *evsel,
693 				  struct record_opts *opts,
694 				  struct callchain_param *param)
695 {
696 	if (param->enabled)
697 		return __perf_evsel__config_callchain(evsel, opts, param);
698 }
699 
700 static void
701 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
702 			    struct callchain_param *param)
703 {
704 	struct perf_event_attr *attr = &evsel->attr;
705 
706 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
707 	if (param->record_mode == CALLCHAIN_LBR) {
708 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
709 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
710 					      PERF_SAMPLE_BRANCH_CALL_STACK);
711 	}
712 	if (param->record_mode == CALLCHAIN_DWARF) {
713 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
714 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
715 	}
716 }
717 
718 static void apply_config_terms(struct perf_evsel *evsel,
719 			       struct record_opts *opts, bool track)
720 {
721 	struct perf_evsel_config_term *term;
722 	struct list_head *config_terms = &evsel->config_terms;
723 	struct perf_event_attr *attr = &evsel->attr;
724 	/* callgraph default */
725 	struct callchain_param param = {
726 		.record_mode = callchain_param.record_mode,
727 	};
728 	u32 dump_size = 0;
729 	int max_stack = 0;
730 	const char *callgraph_buf = NULL;
731 
732 	list_for_each_entry(term, config_terms, list) {
733 		switch (term->type) {
734 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
735 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
736 				attr->sample_period = term->val.period;
737 				attr->freq = 0;
738 				perf_evsel__reset_sample_bit(evsel, PERIOD);
739 			}
740 			break;
741 		case PERF_EVSEL__CONFIG_TERM_FREQ:
742 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
743 				attr->sample_freq = term->val.freq;
744 				attr->freq = 1;
745 				perf_evsel__set_sample_bit(evsel, PERIOD);
746 			}
747 			break;
748 		case PERF_EVSEL__CONFIG_TERM_TIME:
749 			if (term->val.time)
750 				perf_evsel__set_sample_bit(evsel, TIME);
751 			else
752 				perf_evsel__reset_sample_bit(evsel, TIME);
753 			break;
754 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
755 			callgraph_buf = term->val.callgraph;
756 			break;
757 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
758 			if (term->val.branch && strcmp(term->val.branch, "no")) {
759 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
760 				parse_branch_str(term->val.branch,
761 						 &attr->branch_sample_type);
762 			} else
763 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
764 			break;
765 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
766 			dump_size = term->val.stack_user;
767 			break;
768 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
769 			max_stack = term->val.max_stack;
770 			break;
771 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
772 			/*
773 			 * attr->inherit should has already been set by
774 			 * perf_evsel__config. If user explicitly set
775 			 * inherit using config terms, override global
776 			 * opt->no_inherit setting.
777 			 */
778 			attr->inherit = term->val.inherit ? 1 : 0;
779 			break;
780 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
781 			attr->write_backward = term->val.overwrite ? 1 : 0;
782 			break;
783 		case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
784 			break;
785 		default:
786 			break;
787 		}
788 	}
789 
790 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
791 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
792 		bool sample_address = false;
793 
794 		if (max_stack) {
795 			param.max_stack = max_stack;
796 			if (callgraph_buf == NULL)
797 				callgraph_buf = "fp";
798 		}
799 
800 		/* parse callgraph parameters */
801 		if (callgraph_buf != NULL) {
802 			if (!strcmp(callgraph_buf, "no")) {
803 				param.enabled = false;
804 				param.record_mode = CALLCHAIN_NONE;
805 			} else {
806 				param.enabled = true;
807 				if (parse_callchain_record(callgraph_buf, &param)) {
808 					pr_err("per-event callgraph setting for %s failed. "
809 					       "Apply callgraph global setting for it\n",
810 					       evsel->name);
811 					return;
812 				}
813 				if (param.record_mode == CALLCHAIN_DWARF)
814 					sample_address = true;
815 			}
816 		}
817 		if (dump_size > 0) {
818 			dump_size = round_up(dump_size, sizeof(u64));
819 			param.dump_size = dump_size;
820 		}
821 
822 		/* If global callgraph set, clear it */
823 		if (callchain_param.enabled)
824 			perf_evsel__reset_callgraph(evsel, &callchain_param);
825 
826 		/* set perf-event callgraph */
827 		if (param.enabled) {
828 			if (sample_address) {
829 				perf_evsel__set_sample_bit(evsel, ADDR);
830 				perf_evsel__set_sample_bit(evsel, DATA_SRC);
831 				evsel->attr.mmap_data = track;
832 			}
833 			perf_evsel__config_callchain(evsel, opts, &param);
834 		}
835 	}
836 }
837 
838 /*
839  * The enable_on_exec/disabled value strategy:
840  *
841  *  1) For any type of traced program:
842  *    - all independent events and group leaders are disabled
843  *    - all group members are enabled
844  *
845  *     Group members are ruled by group leaders. They need to
846  *     be enabled, because the group scheduling relies on that.
847  *
848  *  2) For traced programs executed by perf:
849  *     - all independent events and group leaders have
850  *       enable_on_exec set
851  *     - we don't specifically enable or disable any event during
852  *       the record command
853  *
854  *     Independent events and group leaders are initially disabled
855  *     and get enabled by exec. Group members are ruled by group
856  *     leaders as stated in 1).
857  *
858  *  3) For traced programs attached by perf (pid/tid):
859  *     - we specifically enable or disable all events during
860  *       the record command
861  *
862  *     When attaching events to already running traced we
863  *     enable/disable events specifically, as there's no
864  *     initial traced exec call.
865  */
866 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
867 			struct callchain_param *callchain)
868 {
869 	struct perf_evsel *leader = evsel->leader;
870 	struct perf_event_attr *attr = &evsel->attr;
871 	int track = evsel->tracking;
872 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
873 
874 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
875 	attr->inherit	    = !opts->no_inherit;
876 	attr->write_backward = opts->overwrite ? 1 : 0;
877 
878 	perf_evsel__set_sample_bit(evsel, IP);
879 	perf_evsel__set_sample_bit(evsel, TID);
880 
881 	if (evsel->sample_read) {
882 		perf_evsel__set_sample_bit(evsel, READ);
883 
884 		/*
885 		 * We need ID even in case of single event, because
886 		 * PERF_SAMPLE_READ process ID specific data.
887 		 */
888 		perf_evsel__set_sample_id(evsel, false);
889 
890 		/*
891 		 * Apply group format only if we belong to group
892 		 * with more than one members.
893 		 */
894 		if (leader->nr_members > 1) {
895 			attr->read_format |= PERF_FORMAT_GROUP;
896 			attr->inherit = 0;
897 		}
898 	}
899 
900 	/*
901 	 * We default some events to have a default interval. But keep
902 	 * it a weak assumption overridable by the user.
903 	 */
904 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
905 				     opts->user_interval != ULLONG_MAX)) {
906 		if (opts->freq) {
907 			perf_evsel__set_sample_bit(evsel, PERIOD);
908 			attr->freq		= 1;
909 			attr->sample_freq	= opts->freq;
910 		} else {
911 			attr->sample_period = opts->default_interval;
912 		}
913 	}
914 
915 	/*
916 	 * Disable sampling for all group members other
917 	 * than leader in case leader 'leads' the sampling.
918 	 */
919 	if ((leader != evsel) && leader->sample_read) {
920 		attr->sample_freq   = 0;
921 		attr->sample_period = 0;
922 	}
923 
924 	if (opts->no_samples)
925 		attr->sample_freq = 0;
926 
927 	if (opts->inherit_stat) {
928 		evsel->attr.read_format |=
929 			PERF_FORMAT_TOTAL_TIME_ENABLED |
930 			PERF_FORMAT_TOTAL_TIME_RUNNING |
931 			PERF_FORMAT_ID;
932 		attr->inherit_stat = 1;
933 	}
934 
935 	if (opts->sample_address) {
936 		perf_evsel__set_sample_bit(evsel, ADDR);
937 		attr->mmap_data = track;
938 	}
939 
940 	/*
941 	 * We don't allow user space callchains for  function trace
942 	 * event, due to issues with page faults while tracing page
943 	 * fault handler and its overall trickiness nature.
944 	 */
945 	if (perf_evsel__is_function_event(evsel))
946 		evsel->attr.exclude_callchain_user = 1;
947 
948 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
949 		perf_evsel__config_callchain(evsel, opts, callchain);
950 
951 	if (opts->sample_intr_regs) {
952 		attr->sample_regs_intr = opts->sample_intr_regs;
953 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
954 	}
955 
956 	if (opts->sample_user_regs) {
957 		attr->sample_regs_user |= opts->sample_user_regs;
958 		perf_evsel__set_sample_bit(evsel, REGS_USER);
959 	}
960 
961 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
962 		perf_evsel__set_sample_bit(evsel, CPU);
963 
964 	/*
965 	 * When the user explicitly disabled time don't force it here.
966 	 */
967 	if (opts->sample_time &&
968 	    (!perf_missing_features.sample_id_all &&
969 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
970 	     opts->sample_time_set)))
971 		perf_evsel__set_sample_bit(evsel, TIME);
972 
973 	if (opts->raw_samples && !evsel->no_aux_samples) {
974 		perf_evsel__set_sample_bit(evsel, TIME);
975 		perf_evsel__set_sample_bit(evsel, RAW);
976 		perf_evsel__set_sample_bit(evsel, CPU);
977 	}
978 
979 	if (opts->sample_address)
980 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
981 
982 	if (opts->sample_phys_addr)
983 		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
984 
985 	if (opts->no_buffering) {
986 		attr->watermark = 0;
987 		attr->wakeup_events = 1;
988 	}
989 	if (opts->branch_stack && !evsel->no_aux_samples) {
990 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
991 		attr->branch_sample_type = opts->branch_stack;
992 	}
993 
994 	if (opts->sample_weight)
995 		perf_evsel__set_sample_bit(evsel, WEIGHT);
996 
997 	attr->task  = track;
998 	attr->mmap  = track;
999 	attr->mmap2 = track && !perf_missing_features.mmap2;
1000 	attr->comm  = track;
1001 
1002 	if (opts->record_namespaces)
1003 		attr->namespaces  = track;
1004 
1005 	if (opts->record_switch_events)
1006 		attr->context_switch = track;
1007 
1008 	if (opts->sample_transaction)
1009 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
1010 
1011 	if (opts->running_time) {
1012 		evsel->attr.read_format |=
1013 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1014 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1015 	}
1016 
1017 	/*
1018 	 * XXX see the function comment above
1019 	 *
1020 	 * Disabling only independent events or group leaders,
1021 	 * keeping group members enabled.
1022 	 */
1023 	if (perf_evsel__is_group_leader(evsel))
1024 		attr->disabled = 1;
1025 
1026 	/*
1027 	 * Setting enable_on_exec for independent events and
1028 	 * group leaders for traced executed by perf.
1029 	 */
1030 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1031 		!opts->initial_delay)
1032 		attr->enable_on_exec = 1;
1033 
1034 	if (evsel->immediate) {
1035 		attr->disabled = 0;
1036 		attr->enable_on_exec = 0;
1037 	}
1038 
1039 	clockid = opts->clockid;
1040 	if (opts->use_clockid) {
1041 		attr->use_clockid = 1;
1042 		attr->clockid = opts->clockid;
1043 	}
1044 
1045 	if (evsel->precise_max)
1046 		perf_event_attr__set_max_precise_ip(attr);
1047 
1048 	if (opts->all_user) {
1049 		attr->exclude_kernel = 1;
1050 		attr->exclude_user   = 0;
1051 	}
1052 
1053 	if (opts->all_kernel) {
1054 		attr->exclude_kernel = 0;
1055 		attr->exclude_user   = 1;
1056 	}
1057 
1058 	/*
1059 	 * Apply event specific term settings,
1060 	 * it overloads any global configuration.
1061 	 */
1062 	apply_config_terms(evsel, opts, track);
1063 
1064 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1065 
1066 	/* The --period option takes the precedence. */
1067 	if (opts->period_set) {
1068 		if (opts->period)
1069 			perf_evsel__set_sample_bit(evsel, PERIOD);
1070 		else
1071 			perf_evsel__reset_sample_bit(evsel, PERIOD);
1072 	}
1073 }
1074 
1075 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1076 {
1077 	if (evsel->system_wide)
1078 		nthreads = 1;
1079 
1080 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1081 
1082 	if (evsel->fd) {
1083 		int cpu, thread;
1084 		for (cpu = 0; cpu < ncpus; cpu++) {
1085 			for (thread = 0; thread < nthreads; thread++) {
1086 				FD(evsel, cpu, thread) = -1;
1087 			}
1088 		}
1089 	}
1090 
1091 	return evsel->fd != NULL ? 0 : -ENOMEM;
1092 }
1093 
1094 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1095 			  int ioc,  void *arg)
1096 {
1097 	int cpu, thread;
1098 
1099 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1100 		for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1101 			int fd = FD(evsel, cpu, thread),
1102 			    err = ioctl(fd, ioc, arg);
1103 
1104 			if (err)
1105 				return err;
1106 		}
1107 	}
1108 
1109 	return 0;
1110 }
1111 
1112 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1113 {
1114 	return perf_evsel__run_ioctl(evsel,
1115 				     PERF_EVENT_IOC_SET_FILTER,
1116 				     (void *)filter);
1117 }
1118 
1119 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1120 {
1121 	char *new_filter = strdup(filter);
1122 
1123 	if (new_filter != NULL) {
1124 		free(evsel->filter);
1125 		evsel->filter = new_filter;
1126 		return 0;
1127 	}
1128 
1129 	return -1;
1130 }
1131 
1132 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1133 				     const char *fmt, const char *filter)
1134 {
1135 	char *new_filter;
1136 
1137 	if (evsel->filter == NULL)
1138 		return perf_evsel__set_filter(evsel, filter);
1139 
1140 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1141 		free(evsel->filter);
1142 		evsel->filter = new_filter;
1143 		return 0;
1144 	}
1145 
1146 	return -1;
1147 }
1148 
1149 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1150 {
1151 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1152 }
1153 
1154 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1155 {
1156 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1157 }
1158 
1159 int perf_evsel__enable(struct perf_evsel *evsel)
1160 {
1161 	return perf_evsel__run_ioctl(evsel,
1162 				     PERF_EVENT_IOC_ENABLE,
1163 				     0);
1164 }
1165 
1166 int perf_evsel__disable(struct perf_evsel *evsel)
1167 {
1168 	return perf_evsel__run_ioctl(evsel,
1169 				     PERF_EVENT_IOC_DISABLE,
1170 				     0);
1171 }
1172 
1173 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1174 {
1175 	if (ncpus == 0 || nthreads == 0)
1176 		return 0;
1177 
1178 	if (evsel->system_wide)
1179 		nthreads = 1;
1180 
1181 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1182 	if (evsel->sample_id == NULL)
1183 		return -ENOMEM;
1184 
1185 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1186 	if (evsel->id == NULL) {
1187 		xyarray__delete(evsel->sample_id);
1188 		evsel->sample_id = NULL;
1189 		return -ENOMEM;
1190 	}
1191 
1192 	return 0;
1193 }
1194 
1195 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1196 {
1197 	xyarray__delete(evsel->fd);
1198 	evsel->fd = NULL;
1199 }
1200 
1201 static void perf_evsel__free_id(struct perf_evsel *evsel)
1202 {
1203 	xyarray__delete(evsel->sample_id);
1204 	evsel->sample_id = NULL;
1205 	zfree(&evsel->id);
1206 }
1207 
1208 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1209 {
1210 	struct perf_evsel_config_term *term, *h;
1211 
1212 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1213 		list_del(&term->list);
1214 		free(term);
1215 	}
1216 }
1217 
1218 void perf_evsel__close_fd(struct perf_evsel *evsel)
1219 {
1220 	int cpu, thread;
1221 
1222 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1223 		for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1224 			close(FD(evsel, cpu, thread));
1225 			FD(evsel, cpu, thread) = -1;
1226 		}
1227 }
1228 
1229 void perf_evsel__exit(struct perf_evsel *evsel)
1230 {
1231 	assert(list_empty(&evsel->node));
1232 	assert(evsel->evlist == NULL);
1233 	perf_evsel__free_fd(evsel);
1234 	perf_evsel__free_id(evsel);
1235 	perf_evsel__free_config_terms(evsel);
1236 	close_cgroup(evsel->cgrp);
1237 	cpu_map__put(evsel->cpus);
1238 	cpu_map__put(evsel->own_cpus);
1239 	thread_map__put(evsel->threads);
1240 	zfree(&evsel->group_name);
1241 	zfree(&evsel->name);
1242 	perf_evsel__object.fini(evsel);
1243 }
1244 
1245 void perf_evsel__delete(struct perf_evsel *evsel)
1246 {
1247 	perf_evsel__exit(evsel);
1248 	free(evsel);
1249 }
1250 
1251 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1252 				struct perf_counts_values *count)
1253 {
1254 	struct perf_counts_values tmp;
1255 
1256 	if (!evsel->prev_raw_counts)
1257 		return;
1258 
1259 	if (cpu == -1) {
1260 		tmp = evsel->prev_raw_counts->aggr;
1261 		evsel->prev_raw_counts->aggr = *count;
1262 	} else {
1263 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1264 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1265 	}
1266 
1267 	count->val = count->val - tmp.val;
1268 	count->ena = count->ena - tmp.ena;
1269 	count->run = count->run - tmp.run;
1270 }
1271 
1272 void perf_counts_values__scale(struct perf_counts_values *count,
1273 			       bool scale, s8 *pscaled)
1274 {
1275 	s8 scaled = 0;
1276 
1277 	if (scale) {
1278 		if (count->run == 0) {
1279 			scaled = -1;
1280 			count->val = 0;
1281 		} else if (count->run < count->ena) {
1282 			scaled = 1;
1283 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1284 		}
1285 	} else
1286 		count->ena = count->run = 0;
1287 
1288 	if (pscaled)
1289 		*pscaled = scaled;
1290 }
1291 
1292 static int perf_evsel__read_size(struct perf_evsel *evsel)
1293 {
1294 	u64 read_format = evsel->attr.read_format;
1295 	int entry = sizeof(u64); /* value */
1296 	int size = 0;
1297 	int nr = 1;
1298 
1299 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1300 		size += sizeof(u64);
1301 
1302 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1303 		size += sizeof(u64);
1304 
1305 	if (read_format & PERF_FORMAT_ID)
1306 		entry += sizeof(u64);
1307 
1308 	if (read_format & PERF_FORMAT_GROUP) {
1309 		nr = evsel->nr_members;
1310 		size += sizeof(u64);
1311 	}
1312 
1313 	size += entry * nr;
1314 	return size;
1315 }
1316 
1317 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1318 		     struct perf_counts_values *count)
1319 {
1320 	size_t size = perf_evsel__read_size(evsel);
1321 
1322 	memset(count, 0, sizeof(*count));
1323 
1324 	if (FD(evsel, cpu, thread) < 0)
1325 		return -EINVAL;
1326 
1327 	if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1328 		return -errno;
1329 
1330 	return 0;
1331 }
1332 
1333 static int
1334 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1335 {
1336 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1337 
1338 	return perf_evsel__read(evsel, cpu, thread, count);
1339 }
1340 
1341 static void
1342 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1343 		      u64 val, u64 ena, u64 run)
1344 {
1345 	struct perf_counts_values *count;
1346 
1347 	count = perf_counts(counter->counts, cpu, thread);
1348 
1349 	count->val    = val;
1350 	count->ena    = ena;
1351 	count->run    = run;
1352 	count->loaded = true;
1353 }
1354 
1355 static int
1356 perf_evsel__process_group_data(struct perf_evsel *leader,
1357 			       int cpu, int thread, u64 *data)
1358 {
1359 	u64 read_format = leader->attr.read_format;
1360 	struct sample_read_value *v;
1361 	u64 nr, ena = 0, run = 0, i;
1362 
1363 	nr = *data++;
1364 
1365 	if (nr != (u64) leader->nr_members)
1366 		return -EINVAL;
1367 
1368 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1369 		ena = *data++;
1370 
1371 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1372 		run = *data++;
1373 
1374 	v = (struct sample_read_value *) data;
1375 
1376 	perf_evsel__set_count(leader, cpu, thread,
1377 			      v[0].value, ena, run);
1378 
1379 	for (i = 1; i < nr; i++) {
1380 		struct perf_evsel *counter;
1381 
1382 		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1383 		if (!counter)
1384 			return -EINVAL;
1385 
1386 		perf_evsel__set_count(counter, cpu, thread,
1387 				      v[i].value, ena, run);
1388 	}
1389 
1390 	return 0;
1391 }
1392 
1393 static int
1394 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1395 {
1396 	struct perf_stat_evsel *ps = leader->stats;
1397 	u64 read_format = leader->attr.read_format;
1398 	int size = perf_evsel__read_size(leader);
1399 	u64 *data = ps->group_data;
1400 
1401 	if (!(read_format & PERF_FORMAT_ID))
1402 		return -EINVAL;
1403 
1404 	if (!perf_evsel__is_group_leader(leader))
1405 		return -EINVAL;
1406 
1407 	if (!data) {
1408 		data = zalloc(size);
1409 		if (!data)
1410 			return -ENOMEM;
1411 
1412 		ps->group_data = data;
1413 	}
1414 
1415 	if (FD(leader, cpu, thread) < 0)
1416 		return -EINVAL;
1417 
1418 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1419 		return -errno;
1420 
1421 	return perf_evsel__process_group_data(leader, cpu, thread, data);
1422 }
1423 
1424 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1425 {
1426 	u64 read_format = evsel->attr.read_format;
1427 
1428 	if (read_format & PERF_FORMAT_GROUP)
1429 		return perf_evsel__read_group(evsel, cpu, thread);
1430 	else
1431 		return perf_evsel__read_one(evsel, cpu, thread);
1432 }
1433 
1434 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1435 			      int cpu, int thread, bool scale)
1436 {
1437 	struct perf_counts_values count;
1438 	size_t nv = scale ? 3 : 1;
1439 
1440 	if (FD(evsel, cpu, thread) < 0)
1441 		return -EINVAL;
1442 
1443 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1444 		return -ENOMEM;
1445 
1446 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1447 		return -errno;
1448 
1449 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1450 	perf_counts_values__scale(&count, scale, NULL);
1451 	*perf_counts(evsel->counts, cpu, thread) = count;
1452 	return 0;
1453 }
1454 
1455 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1456 {
1457 	struct perf_evsel *leader = evsel->leader;
1458 	int fd;
1459 
1460 	if (perf_evsel__is_group_leader(evsel))
1461 		return -1;
1462 
1463 	/*
1464 	 * Leader must be already processed/open,
1465 	 * if not it's a bug.
1466 	 */
1467 	BUG_ON(!leader->fd);
1468 
1469 	fd = FD(leader, cpu, thread);
1470 	BUG_ON(fd == -1);
1471 
1472 	return fd;
1473 }
1474 
1475 struct bit_names {
1476 	int bit;
1477 	const char *name;
1478 };
1479 
1480 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1481 {
1482 	bool first_bit = true;
1483 	int i = 0;
1484 
1485 	do {
1486 		if (value & bits[i].bit) {
1487 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1488 			first_bit = false;
1489 		}
1490 	} while (bits[++i].name != NULL);
1491 }
1492 
1493 static void __p_sample_type(char *buf, size_t size, u64 value)
1494 {
1495 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1496 	struct bit_names bits[] = {
1497 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1498 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1499 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1500 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1501 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1502 		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1503 		{ .name = NULL, }
1504 	};
1505 #undef bit_name
1506 	__p_bits(buf, size, value, bits);
1507 }
1508 
1509 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1510 {
1511 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1512 	struct bit_names bits[] = {
1513 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1514 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1515 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1516 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1517 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1518 		{ .name = NULL, }
1519 	};
1520 #undef bit_name
1521 	__p_bits(buf, size, value, bits);
1522 }
1523 
1524 static void __p_read_format(char *buf, size_t size, u64 value)
1525 {
1526 #define bit_name(n) { PERF_FORMAT_##n, #n }
1527 	struct bit_names bits[] = {
1528 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1529 		bit_name(ID), bit_name(GROUP),
1530 		{ .name = NULL, }
1531 	};
1532 #undef bit_name
1533 	__p_bits(buf, size, value, bits);
1534 }
1535 
1536 #define BUF_SIZE		1024
1537 
1538 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1539 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1540 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1541 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1542 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1543 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1544 
1545 #define PRINT_ATTRn(_n, _f, _p)				\
1546 do {							\
1547 	if (attr->_f) {					\
1548 		_p(attr->_f);				\
1549 		ret += attr__fprintf(fp, _n, buf, priv);\
1550 	}						\
1551 } while (0)
1552 
1553 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1554 
1555 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1556 			     attr__fprintf_f attr__fprintf, void *priv)
1557 {
1558 	char buf[BUF_SIZE];
1559 	int ret = 0;
1560 
1561 	PRINT_ATTRf(type, p_unsigned);
1562 	PRINT_ATTRf(size, p_unsigned);
1563 	PRINT_ATTRf(config, p_hex);
1564 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1565 	PRINT_ATTRf(sample_type, p_sample_type);
1566 	PRINT_ATTRf(read_format, p_read_format);
1567 
1568 	PRINT_ATTRf(disabled, p_unsigned);
1569 	PRINT_ATTRf(inherit, p_unsigned);
1570 	PRINT_ATTRf(pinned, p_unsigned);
1571 	PRINT_ATTRf(exclusive, p_unsigned);
1572 	PRINT_ATTRf(exclude_user, p_unsigned);
1573 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1574 	PRINT_ATTRf(exclude_hv, p_unsigned);
1575 	PRINT_ATTRf(exclude_idle, p_unsigned);
1576 	PRINT_ATTRf(mmap, p_unsigned);
1577 	PRINT_ATTRf(comm, p_unsigned);
1578 	PRINT_ATTRf(freq, p_unsigned);
1579 	PRINT_ATTRf(inherit_stat, p_unsigned);
1580 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1581 	PRINT_ATTRf(task, p_unsigned);
1582 	PRINT_ATTRf(watermark, p_unsigned);
1583 	PRINT_ATTRf(precise_ip, p_unsigned);
1584 	PRINT_ATTRf(mmap_data, p_unsigned);
1585 	PRINT_ATTRf(sample_id_all, p_unsigned);
1586 	PRINT_ATTRf(exclude_host, p_unsigned);
1587 	PRINT_ATTRf(exclude_guest, p_unsigned);
1588 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1589 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1590 	PRINT_ATTRf(mmap2, p_unsigned);
1591 	PRINT_ATTRf(comm_exec, p_unsigned);
1592 	PRINT_ATTRf(use_clockid, p_unsigned);
1593 	PRINT_ATTRf(context_switch, p_unsigned);
1594 	PRINT_ATTRf(write_backward, p_unsigned);
1595 	PRINT_ATTRf(namespaces, p_unsigned);
1596 
1597 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1598 	PRINT_ATTRf(bp_type, p_unsigned);
1599 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1600 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1601 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1602 	PRINT_ATTRf(sample_regs_user, p_hex);
1603 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1604 	PRINT_ATTRf(clockid, p_signed);
1605 	PRINT_ATTRf(sample_regs_intr, p_hex);
1606 	PRINT_ATTRf(aux_watermark, p_unsigned);
1607 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1608 
1609 	return ret;
1610 }
1611 
1612 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1613 				void *priv __maybe_unused)
1614 {
1615 	return fprintf(fp, "  %-32s %s\n", name, val);
1616 }
1617 
1618 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1619 				  int nr_cpus, int nr_threads,
1620 				  int thread_idx)
1621 {
1622 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1623 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1624 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1625 }
1626 
1627 static int update_fds(struct perf_evsel *evsel,
1628 		      int nr_cpus, int cpu_idx,
1629 		      int nr_threads, int thread_idx)
1630 {
1631 	struct perf_evsel *pos;
1632 
1633 	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1634 		return -EINVAL;
1635 
1636 	evlist__for_each_entry(evsel->evlist, pos) {
1637 		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1638 
1639 		perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1640 
1641 		/*
1642 		 * Since fds for next evsel has not been created,
1643 		 * there is no need to iterate whole event list.
1644 		 */
1645 		if (pos == evsel)
1646 			break;
1647 	}
1648 	return 0;
1649 }
1650 
1651 static bool ignore_missing_thread(struct perf_evsel *evsel,
1652 				  int nr_cpus, int cpu,
1653 				  struct thread_map *threads,
1654 				  int thread, int err)
1655 {
1656 	pid_t ignore_pid = thread_map__pid(threads, thread);
1657 
1658 	if (!evsel->ignore_missing_thread)
1659 		return false;
1660 
1661 	/* The system wide setup does not work with threads. */
1662 	if (evsel->system_wide)
1663 		return false;
1664 
1665 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1666 	if (err != -ESRCH)
1667 		return false;
1668 
1669 	/* If there's only one thread, let it fail. */
1670 	if (threads->nr == 1)
1671 		return false;
1672 
1673 	/*
1674 	 * We should remove fd for missing_thread first
1675 	 * because thread_map__remove() will decrease threads->nr.
1676 	 */
1677 	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1678 		return false;
1679 
1680 	if (thread_map__remove(threads, thread))
1681 		return false;
1682 
1683 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1684 		   ignore_pid);
1685 	return true;
1686 }
1687 
1688 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1689 		     struct thread_map *threads)
1690 {
1691 	int cpu, thread, nthreads;
1692 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1693 	int pid = -1, err;
1694 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1695 
1696 	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1697 		return -EINVAL;
1698 
1699 	if (cpus == NULL) {
1700 		static struct cpu_map *empty_cpu_map;
1701 
1702 		if (empty_cpu_map == NULL) {
1703 			empty_cpu_map = cpu_map__dummy_new();
1704 			if (empty_cpu_map == NULL)
1705 				return -ENOMEM;
1706 		}
1707 
1708 		cpus = empty_cpu_map;
1709 	}
1710 
1711 	if (threads == NULL) {
1712 		static struct thread_map *empty_thread_map;
1713 
1714 		if (empty_thread_map == NULL) {
1715 			empty_thread_map = thread_map__new_by_tid(-1);
1716 			if (empty_thread_map == NULL)
1717 				return -ENOMEM;
1718 		}
1719 
1720 		threads = empty_thread_map;
1721 	}
1722 
1723 	if (evsel->system_wide)
1724 		nthreads = 1;
1725 	else
1726 		nthreads = threads->nr;
1727 
1728 	if (evsel->fd == NULL &&
1729 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1730 		return -ENOMEM;
1731 
1732 	if (evsel->cgrp) {
1733 		flags |= PERF_FLAG_PID_CGROUP;
1734 		pid = evsel->cgrp->fd;
1735 	}
1736 
1737 fallback_missing_features:
1738 	if (perf_missing_features.clockid_wrong)
1739 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1740 	if (perf_missing_features.clockid) {
1741 		evsel->attr.use_clockid = 0;
1742 		evsel->attr.clockid = 0;
1743 	}
1744 	if (perf_missing_features.cloexec)
1745 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1746 	if (perf_missing_features.mmap2)
1747 		evsel->attr.mmap2 = 0;
1748 	if (perf_missing_features.exclude_guest)
1749 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1750 	if (perf_missing_features.lbr_flags)
1751 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1752 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1753 	if (perf_missing_features.group_read && evsel->attr.inherit)
1754 		evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1755 retry_sample_id:
1756 	if (perf_missing_features.sample_id_all)
1757 		evsel->attr.sample_id_all = 0;
1758 
1759 	if (verbose >= 2) {
1760 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1761 		fprintf(stderr, "perf_event_attr:\n");
1762 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1763 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1764 	}
1765 
1766 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1767 
1768 		for (thread = 0; thread < nthreads; thread++) {
1769 			int fd, group_fd;
1770 
1771 			if (!evsel->cgrp && !evsel->system_wide)
1772 				pid = thread_map__pid(threads, thread);
1773 
1774 			group_fd = get_group_fd(evsel, cpu, thread);
1775 retry_open:
1776 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1777 				  pid, cpus->map[cpu], group_fd, flags);
1778 
1779 			test_attr__ready();
1780 
1781 			fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1782 						 group_fd, flags);
1783 
1784 			FD(evsel, cpu, thread) = fd;
1785 
1786 			if (fd < 0) {
1787 				err = -errno;
1788 
1789 				if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1790 					/*
1791 					 * We just removed 1 thread, so take a step
1792 					 * back on thread index and lower the upper
1793 					 * nthreads limit.
1794 					 */
1795 					nthreads--;
1796 					thread--;
1797 
1798 					/* ... and pretend like nothing have happened. */
1799 					err = 0;
1800 					continue;
1801 				}
1802 
1803 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1804 					  err);
1805 				goto try_fallback;
1806 			}
1807 
1808 			pr_debug2(" = %d\n", fd);
1809 
1810 			if (evsel->bpf_fd >= 0) {
1811 				int evt_fd = fd;
1812 				int bpf_fd = evsel->bpf_fd;
1813 
1814 				err = ioctl(evt_fd,
1815 					    PERF_EVENT_IOC_SET_BPF,
1816 					    bpf_fd);
1817 				if (err && errno != EEXIST) {
1818 					pr_err("failed to attach bpf fd %d: %s\n",
1819 					       bpf_fd, strerror(errno));
1820 					err = -EINVAL;
1821 					goto out_close;
1822 				}
1823 			}
1824 
1825 			set_rlimit = NO_CHANGE;
1826 
1827 			/*
1828 			 * If we succeeded but had to kill clockid, fail and
1829 			 * have perf_evsel__open_strerror() print us a nice
1830 			 * error.
1831 			 */
1832 			if (perf_missing_features.clockid ||
1833 			    perf_missing_features.clockid_wrong) {
1834 				err = -EINVAL;
1835 				goto out_close;
1836 			}
1837 		}
1838 	}
1839 
1840 	return 0;
1841 
1842 try_fallback:
1843 	/*
1844 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1845 	 * of them try to increase the limits.
1846 	 */
1847 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1848 		struct rlimit l;
1849 		int old_errno = errno;
1850 
1851 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1852 			if (set_rlimit == NO_CHANGE)
1853 				l.rlim_cur = l.rlim_max;
1854 			else {
1855 				l.rlim_cur = l.rlim_max + 1000;
1856 				l.rlim_max = l.rlim_cur;
1857 			}
1858 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1859 				set_rlimit++;
1860 				errno = old_errno;
1861 				goto retry_open;
1862 			}
1863 		}
1864 		errno = old_errno;
1865 	}
1866 
1867 	if (err != -EINVAL || cpu > 0 || thread > 0)
1868 		goto out_close;
1869 
1870 	/*
1871 	 * Must probe features in the order they were added to the
1872 	 * perf_event_attr interface.
1873 	 */
1874 	if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1875 		perf_missing_features.write_backward = true;
1876 		pr_debug2("switching off write_backward\n");
1877 		goto out_close;
1878 	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1879 		perf_missing_features.clockid_wrong = true;
1880 		pr_debug2("switching off clockid\n");
1881 		goto fallback_missing_features;
1882 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1883 		perf_missing_features.clockid = true;
1884 		pr_debug2("switching off use_clockid\n");
1885 		goto fallback_missing_features;
1886 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1887 		perf_missing_features.cloexec = true;
1888 		pr_debug2("switching off cloexec flag\n");
1889 		goto fallback_missing_features;
1890 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1891 		perf_missing_features.mmap2 = true;
1892 		pr_debug2("switching off mmap2\n");
1893 		goto fallback_missing_features;
1894 	} else if (!perf_missing_features.exclude_guest &&
1895 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1896 		perf_missing_features.exclude_guest = true;
1897 		pr_debug2("switching off exclude_guest, exclude_host\n");
1898 		goto fallback_missing_features;
1899 	} else if (!perf_missing_features.sample_id_all) {
1900 		perf_missing_features.sample_id_all = true;
1901 		pr_debug2("switching off sample_id_all\n");
1902 		goto retry_sample_id;
1903 	} else if (!perf_missing_features.lbr_flags &&
1904 			(evsel->attr.branch_sample_type &
1905 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1906 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1907 		perf_missing_features.lbr_flags = true;
1908 		pr_debug2("switching off branch sample type no (cycles/flags)\n");
1909 		goto fallback_missing_features;
1910 	} else if (!perf_missing_features.group_read &&
1911 		    evsel->attr.inherit &&
1912 		   (evsel->attr.read_format & PERF_FORMAT_GROUP)) {
1913 		perf_missing_features.group_read = true;
1914 		pr_debug2("switching off group read\n");
1915 		goto fallback_missing_features;
1916 	}
1917 out_close:
1918 	do {
1919 		while (--thread >= 0) {
1920 			close(FD(evsel, cpu, thread));
1921 			FD(evsel, cpu, thread) = -1;
1922 		}
1923 		thread = nthreads;
1924 	} while (--cpu >= 0);
1925 	return err;
1926 }
1927 
1928 void perf_evsel__close(struct perf_evsel *evsel)
1929 {
1930 	if (evsel->fd == NULL)
1931 		return;
1932 
1933 	perf_evsel__close_fd(evsel);
1934 	perf_evsel__free_fd(evsel);
1935 }
1936 
1937 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1938 			     struct cpu_map *cpus)
1939 {
1940 	return perf_evsel__open(evsel, cpus, NULL);
1941 }
1942 
1943 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1944 				struct thread_map *threads)
1945 {
1946 	return perf_evsel__open(evsel, NULL, threads);
1947 }
1948 
1949 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1950 				       const union perf_event *event,
1951 				       struct perf_sample *sample)
1952 {
1953 	u64 type = evsel->attr.sample_type;
1954 	const u64 *array = event->sample.array;
1955 	bool swapped = evsel->needs_swap;
1956 	union u64_swap u;
1957 
1958 	array += ((event->header.size -
1959 		   sizeof(event->header)) / sizeof(u64)) - 1;
1960 
1961 	if (type & PERF_SAMPLE_IDENTIFIER) {
1962 		sample->id = *array;
1963 		array--;
1964 	}
1965 
1966 	if (type & PERF_SAMPLE_CPU) {
1967 		u.val64 = *array;
1968 		if (swapped) {
1969 			/* undo swap of u64, then swap on individual u32s */
1970 			u.val64 = bswap_64(u.val64);
1971 			u.val32[0] = bswap_32(u.val32[0]);
1972 		}
1973 
1974 		sample->cpu = u.val32[0];
1975 		array--;
1976 	}
1977 
1978 	if (type & PERF_SAMPLE_STREAM_ID) {
1979 		sample->stream_id = *array;
1980 		array--;
1981 	}
1982 
1983 	if (type & PERF_SAMPLE_ID) {
1984 		sample->id = *array;
1985 		array--;
1986 	}
1987 
1988 	if (type & PERF_SAMPLE_TIME) {
1989 		sample->time = *array;
1990 		array--;
1991 	}
1992 
1993 	if (type & PERF_SAMPLE_TID) {
1994 		u.val64 = *array;
1995 		if (swapped) {
1996 			/* undo swap of u64, then swap on individual u32s */
1997 			u.val64 = bswap_64(u.val64);
1998 			u.val32[0] = bswap_32(u.val32[0]);
1999 			u.val32[1] = bswap_32(u.val32[1]);
2000 		}
2001 
2002 		sample->pid = u.val32[0];
2003 		sample->tid = u.val32[1];
2004 		array--;
2005 	}
2006 
2007 	return 0;
2008 }
2009 
2010 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2011 			    u64 size)
2012 {
2013 	return size > max_size || offset + size > endp;
2014 }
2015 
2016 #define OVERFLOW_CHECK(offset, size, max_size)				\
2017 	do {								\
2018 		if (overflow(endp, (max_size), (offset), (size)))	\
2019 			return -EFAULT;					\
2020 	} while (0)
2021 
2022 #define OVERFLOW_CHECK_u64(offset) \
2023 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2024 
2025 static int
2026 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2027 {
2028 	/*
2029 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2030 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2031 	 * check the format does not go past the end of the event.
2032 	 */
2033 	if (sample_size + sizeof(event->header) > event->header.size)
2034 		return -EFAULT;
2035 
2036 	return 0;
2037 }
2038 
2039 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2040 			     struct perf_sample *data)
2041 {
2042 	u64 type = evsel->attr.sample_type;
2043 	bool swapped = evsel->needs_swap;
2044 	const u64 *array;
2045 	u16 max_size = event->header.size;
2046 	const void *endp = (void *)event + max_size;
2047 	u64 sz;
2048 
2049 	/*
2050 	 * used for cross-endian analysis. See git commit 65014ab3
2051 	 * for why this goofiness is needed.
2052 	 */
2053 	union u64_swap u;
2054 
2055 	memset(data, 0, sizeof(*data));
2056 	data->cpu = data->pid = data->tid = -1;
2057 	data->stream_id = data->id = data->time = -1ULL;
2058 	data->period = evsel->attr.sample_period;
2059 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2060 	data->misc    = event->header.misc;
2061 	data->id = -1ULL;
2062 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2063 
2064 	if (event->header.type != PERF_RECORD_SAMPLE) {
2065 		if (!evsel->attr.sample_id_all)
2066 			return 0;
2067 		return perf_evsel__parse_id_sample(evsel, event, data);
2068 	}
2069 
2070 	array = event->sample.array;
2071 
2072 	if (perf_event__check_size(event, evsel->sample_size))
2073 		return -EFAULT;
2074 
2075 	if (type & PERF_SAMPLE_IDENTIFIER) {
2076 		data->id = *array;
2077 		array++;
2078 	}
2079 
2080 	if (type & PERF_SAMPLE_IP) {
2081 		data->ip = *array;
2082 		array++;
2083 	}
2084 
2085 	if (type & PERF_SAMPLE_TID) {
2086 		u.val64 = *array;
2087 		if (swapped) {
2088 			/* undo swap of u64, then swap on individual u32s */
2089 			u.val64 = bswap_64(u.val64);
2090 			u.val32[0] = bswap_32(u.val32[0]);
2091 			u.val32[1] = bswap_32(u.val32[1]);
2092 		}
2093 
2094 		data->pid = u.val32[0];
2095 		data->tid = u.val32[1];
2096 		array++;
2097 	}
2098 
2099 	if (type & PERF_SAMPLE_TIME) {
2100 		data->time = *array;
2101 		array++;
2102 	}
2103 
2104 	if (type & PERF_SAMPLE_ADDR) {
2105 		data->addr = *array;
2106 		array++;
2107 	}
2108 
2109 	if (type & PERF_SAMPLE_ID) {
2110 		data->id = *array;
2111 		array++;
2112 	}
2113 
2114 	if (type & PERF_SAMPLE_STREAM_ID) {
2115 		data->stream_id = *array;
2116 		array++;
2117 	}
2118 
2119 	if (type & PERF_SAMPLE_CPU) {
2120 
2121 		u.val64 = *array;
2122 		if (swapped) {
2123 			/* undo swap of u64, then swap on individual u32s */
2124 			u.val64 = bswap_64(u.val64);
2125 			u.val32[0] = bswap_32(u.val32[0]);
2126 		}
2127 
2128 		data->cpu = u.val32[0];
2129 		array++;
2130 	}
2131 
2132 	if (type & PERF_SAMPLE_PERIOD) {
2133 		data->period = *array;
2134 		array++;
2135 	}
2136 
2137 	if (type & PERF_SAMPLE_READ) {
2138 		u64 read_format = evsel->attr.read_format;
2139 
2140 		OVERFLOW_CHECK_u64(array);
2141 		if (read_format & PERF_FORMAT_GROUP)
2142 			data->read.group.nr = *array;
2143 		else
2144 			data->read.one.value = *array;
2145 
2146 		array++;
2147 
2148 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2149 			OVERFLOW_CHECK_u64(array);
2150 			data->read.time_enabled = *array;
2151 			array++;
2152 		}
2153 
2154 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2155 			OVERFLOW_CHECK_u64(array);
2156 			data->read.time_running = *array;
2157 			array++;
2158 		}
2159 
2160 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2161 		if (read_format & PERF_FORMAT_GROUP) {
2162 			const u64 max_group_nr = UINT64_MAX /
2163 					sizeof(struct sample_read_value);
2164 
2165 			if (data->read.group.nr > max_group_nr)
2166 				return -EFAULT;
2167 			sz = data->read.group.nr *
2168 			     sizeof(struct sample_read_value);
2169 			OVERFLOW_CHECK(array, sz, max_size);
2170 			data->read.group.values =
2171 					(struct sample_read_value *)array;
2172 			array = (void *)array + sz;
2173 		} else {
2174 			OVERFLOW_CHECK_u64(array);
2175 			data->read.one.id = *array;
2176 			array++;
2177 		}
2178 	}
2179 
2180 	if (type & PERF_SAMPLE_CALLCHAIN) {
2181 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2182 
2183 		OVERFLOW_CHECK_u64(array);
2184 		data->callchain = (struct ip_callchain *)array++;
2185 		if (data->callchain->nr > max_callchain_nr)
2186 			return -EFAULT;
2187 		sz = data->callchain->nr * sizeof(u64);
2188 		OVERFLOW_CHECK(array, sz, max_size);
2189 		array = (void *)array + sz;
2190 	}
2191 
2192 	if (type & PERF_SAMPLE_RAW) {
2193 		OVERFLOW_CHECK_u64(array);
2194 		u.val64 = *array;
2195 
2196 		/*
2197 		 * Undo swap of u64, then swap on individual u32s,
2198 		 * get the size of the raw area and undo all of the
2199 		 * swap. The pevent interface handles endianity by
2200 		 * itself.
2201 		 */
2202 		if (swapped) {
2203 			u.val64 = bswap_64(u.val64);
2204 			u.val32[0] = bswap_32(u.val32[0]);
2205 			u.val32[1] = bswap_32(u.val32[1]);
2206 		}
2207 		data->raw_size = u.val32[0];
2208 
2209 		/*
2210 		 * The raw data is aligned on 64bits including the
2211 		 * u32 size, so it's safe to use mem_bswap_64.
2212 		 */
2213 		if (swapped)
2214 			mem_bswap_64((void *) array, data->raw_size);
2215 
2216 		array = (void *)array + sizeof(u32);
2217 
2218 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2219 		data->raw_data = (void *)array;
2220 		array = (void *)array + data->raw_size;
2221 	}
2222 
2223 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2224 		const u64 max_branch_nr = UINT64_MAX /
2225 					  sizeof(struct branch_entry);
2226 
2227 		OVERFLOW_CHECK_u64(array);
2228 		data->branch_stack = (struct branch_stack *)array++;
2229 
2230 		if (data->branch_stack->nr > max_branch_nr)
2231 			return -EFAULT;
2232 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2233 		OVERFLOW_CHECK(array, sz, max_size);
2234 		array = (void *)array + sz;
2235 	}
2236 
2237 	if (type & PERF_SAMPLE_REGS_USER) {
2238 		OVERFLOW_CHECK_u64(array);
2239 		data->user_regs.abi = *array;
2240 		array++;
2241 
2242 		if (data->user_regs.abi) {
2243 			u64 mask = evsel->attr.sample_regs_user;
2244 
2245 			sz = hweight_long(mask) * sizeof(u64);
2246 			OVERFLOW_CHECK(array, sz, max_size);
2247 			data->user_regs.mask = mask;
2248 			data->user_regs.regs = (u64 *)array;
2249 			array = (void *)array + sz;
2250 		}
2251 	}
2252 
2253 	if (type & PERF_SAMPLE_STACK_USER) {
2254 		OVERFLOW_CHECK_u64(array);
2255 		sz = *array++;
2256 
2257 		data->user_stack.offset = ((char *)(array - 1)
2258 					  - (char *) event);
2259 
2260 		if (!sz) {
2261 			data->user_stack.size = 0;
2262 		} else {
2263 			OVERFLOW_CHECK(array, sz, max_size);
2264 			data->user_stack.data = (char *)array;
2265 			array = (void *)array + sz;
2266 			OVERFLOW_CHECK_u64(array);
2267 			data->user_stack.size = *array++;
2268 			if (WARN_ONCE(data->user_stack.size > sz,
2269 				      "user stack dump failure\n"))
2270 				return -EFAULT;
2271 		}
2272 	}
2273 
2274 	if (type & PERF_SAMPLE_WEIGHT) {
2275 		OVERFLOW_CHECK_u64(array);
2276 		data->weight = *array;
2277 		array++;
2278 	}
2279 
2280 	if (type & PERF_SAMPLE_DATA_SRC) {
2281 		OVERFLOW_CHECK_u64(array);
2282 		data->data_src = *array;
2283 		array++;
2284 	}
2285 
2286 	if (type & PERF_SAMPLE_TRANSACTION) {
2287 		OVERFLOW_CHECK_u64(array);
2288 		data->transaction = *array;
2289 		array++;
2290 	}
2291 
2292 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2293 	if (type & PERF_SAMPLE_REGS_INTR) {
2294 		OVERFLOW_CHECK_u64(array);
2295 		data->intr_regs.abi = *array;
2296 		array++;
2297 
2298 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2299 			u64 mask = evsel->attr.sample_regs_intr;
2300 
2301 			sz = hweight_long(mask) * sizeof(u64);
2302 			OVERFLOW_CHECK(array, sz, max_size);
2303 			data->intr_regs.mask = mask;
2304 			data->intr_regs.regs = (u64 *)array;
2305 			array = (void *)array + sz;
2306 		}
2307 	}
2308 
2309 	data->phys_addr = 0;
2310 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2311 		data->phys_addr = *array;
2312 		array++;
2313 	}
2314 
2315 	return 0;
2316 }
2317 
2318 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2319 				       union perf_event *event,
2320 				       u64 *timestamp)
2321 {
2322 	u64 type = evsel->attr.sample_type;
2323 	const u64 *array;
2324 
2325 	if (!(type & PERF_SAMPLE_TIME))
2326 		return -1;
2327 
2328 	if (event->header.type != PERF_RECORD_SAMPLE) {
2329 		struct perf_sample data = {
2330 			.time = -1ULL,
2331 		};
2332 
2333 		if (!evsel->attr.sample_id_all)
2334 			return -1;
2335 		if (perf_evsel__parse_id_sample(evsel, event, &data))
2336 			return -1;
2337 
2338 		*timestamp = data.time;
2339 		return 0;
2340 	}
2341 
2342 	array = event->sample.array;
2343 
2344 	if (perf_event__check_size(event, evsel->sample_size))
2345 		return -EFAULT;
2346 
2347 	if (type & PERF_SAMPLE_IDENTIFIER)
2348 		array++;
2349 
2350 	if (type & PERF_SAMPLE_IP)
2351 		array++;
2352 
2353 	if (type & PERF_SAMPLE_TID)
2354 		array++;
2355 
2356 	if (type & PERF_SAMPLE_TIME)
2357 		*timestamp = *array;
2358 
2359 	return 0;
2360 }
2361 
2362 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2363 				     u64 read_format)
2364 {
2365 	size_t sz, result = sizeof(struct sample_event);
2366 
2367 	if (type & PERF_SAMPLE_IDENTIFIER)
2368 		result += sizeof(u64);
2369 
2370 	if (type & PERF_SAMPLE_IP)
2371 		result += sizeof(u64);
2372 
2373 	if (type & PERF_SAMPLE_TID)
2374 		result += sizeof(u64);
2375 
2376 	if (type & PERF_SAMPLE_TIME)
2377 		result += sizeof(u64);
2378 
2379 	if (type & PERF_SAMPLE_ADDR)
2380 		result += sizeof(u64);
2381 
2382 	if (type & PERF_SAMPLE_ID)
2383 		result += sizeof(u64);
2384 
2385 	if (type & PERF_SAMPLE_STREAM_ID)
2386 		result += sizeof(u64);
2387 
2388 	if (type & PERF_SAMPLE_CPU)
2389 		result += sizeof(u64);
2390 
2391 	if (type & PERF_SAMPLE_PERIOD)
2392 		result += sizeof(u64);
2393 
2394 	if (type & PERF_SAMPLE_READ) {
2395 		result += sizeof(u64);
2396 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2397 			result += sizeof(u64);
2398 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2399 			result += sizeof(u64);
2400 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2401 		if (read_format & PERF_FORMAT_GROUP) {
2402 			sz = sample->read.group.nr *
2403 			     sizeof(struct sample_read_value);
2404 			result += sz;
2405 		} else {
2406 			result += sizeof(u64);
2407 		}
2408 	}
2409 
2410 	if (type & PERF_SAMPLE_CALLCHAIN) {
2411 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2412 		result += sz;
2413 	}
2414 
2415 	if (type & PERF_SAMPLE_RAW) {
2416 		result += sizeof(u32);
2417 		result += sample->raw_size;
2418 	}
2419 
2420 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2421 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2422 		sz += sizeof(u64);
2423 		result += sz;
2424 	}
2425 
2426 	if (type & PERF_SAMPLE_REGS_USER) {
2427 		if (sample->user_regs.abi) {
2428 			result += sizeof(u64);
2429 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2430 			result += sz;
2431 		} else {
2432 			result += sizeof(u64);
2433 		}
2434 	}
2435 
2436 	if (type & PERF_SAMPLE_STACK_USER) {
2437 		sz = sample->user_stack.size;
2438 		result += sizeof(u64);
2439 		if (sz) {
2440 			result += sz;
2441 			result += sizeof(u64);
2442 		}
2443 	}
2444 
2445 	if (type & PERF_SAMPLE_WEIGHT)
2446 		result += sizeof(u64);
2447 
2448 	if (type & PERF_SAMPLE_DATA_SRC)
2449 		result += sizeof(u64);
2450 
2451 	if (type & PERF_SAMPLE_TRANSACTION)
2452 		result += sizeof(u64);
2453 
2454 	if (type & PERF_SAMPLE_REGS_INTR) {
2455 		if (sample->intr_regs.abi) {
2456 			result += sizeof(u64);
2457 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2458 			result += sz;
2459 		} else {
2460 			result += sizeof(u64);
2461 		}
2462 	}
2463 
2464 	if (type & PERF_SAMPLE_PHYS_ADDR)
2465 		result += sizeof(u64);
2466 
2467 	return result;
2468 }
2469 
2470 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2471 				  u64 read_format,
2472 				  const struct perf_sample *sample)
2473 {
2474 	u64 *array;
2475 	size_t sz;
2476 	/*
2477 	 * used for cross-endian analysis. See git commit 65014ab3
2478 	 * for why this goofiness is needed.
2479 	 */
2480 	union u64_swap u;
2481 
2482 	array = event->sample.array;
2483 
2484 	if (type & PERF_SAMPLE_IDENTIFIER) {
2485 		*array = sample->id;
2486 		array++;
2487 	}
2488 
2489 	if (type & PERF_SAMPLE_IP) {
2490 		*array = sample->ip;
2491 		array++;
2492 	}
2493 
2494 	if (type & PERF_SAMPLE_TID) {
2495 		u.val32[0] = sample->pid;
2496 		u.val32[1] = sample->tid;
2497 		*array = u.val64;
2498 		array++;
2499 	}
2500 
2501 	if (type & PERF_SAMPLE_TIME) {
2502 		*array = sample->time;
2503 		array++;
2504 	}
2505 
2506 	if (type & PERF_SAMPLE_ADDR) {
2507 		*array = sample->addr;
2508 		array++;
2509 	}
2510 
2511 	if (type & PERF_SAMPLE_ID) {
2512 		*array = sample->id;
2513 		array++;
2514 	}
2515 
2516 	if (type & PERF_SAMPLE_STREAM_ID) {
2517 		*array = sample->stream_id;
2518 		array++;
2519 	}
2520 
2521 	if (type & PERF_SAMPLE_CPU) {
2522 		u.val32[0] = sample->cpu;
2523 		u.val32[1] = 0;
2524 		*array = u.val64;
2525 		array++;
2526 	}
2527 
2528 	if (type & PERF_SAMPLE_PERIOD) {
2529 		*array = sample->period;
2530 		array++;
2531 	}
2532 
2533 	if (type & PERF_SAMPLE_READ) {
2534 		if (read_format & PERF_FORMAT_GROUP)
2535 			*array = sample->read.group.nr;
2536 		else
2537 			*array = sample->read.one.value;
2538 		array++;
2539 
2540 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2541 			*array = sample->read.time_enabled;
2542 			array++;
2543 		}
2544 
2545 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2546 			*array = sample->read.time_running;
2547 			array++;
2548 		}
2549 
2550 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2551 		if (read_format & PERF_FORMAT_GROUP) {
2552 			sz = sample->read.group.nr *
2553 			     sizeof(struct sample_read_value);
2554 			memcpy(array, sample->read.group.values, sz);
2555 			array = (void *)array + sz;
2556 		} else {
2557 			*array = sample->read.one.id;
2558 			array++;
2559 		}
2560 	}
2561 
2562 	if (type & PERF_SAMPLE_CALLCHAIN) {
2563 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2564 		memcpy(array, sample->callchain, sz);
2565 		array = (void *)array + sz;
2566 	}
2567 
2568 	if (type & PERF_SAMPLE_RAW) {
2569 		u.val32[0] = sample->raw_size;
2570 		*array = u.val64;
2571 		array = (void *)array + sizeof(u32);
2572 
2573 		memcpy(array, sample->raw_data, sample->raw_size);
2574 		array = (void *)array + sample->raw_size;
2575 	}
2576 
2577 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2578 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2579 		sz += sizeof(u64);
2580 		memcpy(array, sample->branch_stack, sz);
2581 		array = (void *)array + sz;
2582 	}
2583 
2584 	if (type & PERF_SAMPLE_REGS_USER) {
2585 		if (sample->user_regs.abi) {
2586 			*array++ = sample->user_regs.abi;
2587 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2588 			memcpy(array, sample->user_regs.regs, sz);
2589 			array = (void *)array + sz;
2590 		} else {
2591 			*array++ = 0;
2592 		}
2593 	}
2594 
2595 	if (type & PERF_SAMPLE_STACK_USER) {
2596 		sz = sample->user_stack.size;
2597 		*array++ = sz;
2598 		if (sz) {
2599 			memcpy(array, sample->user_stack.data, sz);
2600 			array = (void *)array + sz;
2601 			*array++ = sz;
2602 		}
2603 	}
2604 
2605 	if (type & PERF_SAMPLE_WEIGHT) {
2606 		*array = sample->weight;
2607 		array++;
2608 	}
2609 
2610 	if (type & PERF_SAMPLE_DATA_SRC) {
2611 		*array = sample->data_src;
2612 		array++;
2613 	}
2614 
2615 	if (type & PERF_SAMPLE_TRANSACTION) {
2616 		*array = sample->transaction;
2617 		array++;
2618 	}
2619 
2620 	if (type & PERF_SAMPLE_REGS_INTR) {
2621 		if (sample->intr_regs.abi) {
2622 			*array++ = sample->intr_regs.abi;
2623 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2624 			memcpy(array, sample->intr_regs.regs, sz);
2625 			array = (void *)array + sz;
2626 		} else {
2627 			*array++ = 0;
2628 		}
2629 	}
2630 
2631 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2632 		*array = sample->phys_addr;
2633 		array++;
2634 	}
2635 
2636 	return 0;
2637 }
2638 
2639 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2640 {
2641 	return pevent_find_field(evsel->tp_format, name);
2642 }
2643 
2644 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2645 			 const char *name)
2646 {
2647 	struct format_field *field = perf_evsel__field(evsel, name);
2648 	int offset;
2649 
2650 	if (!field)
2651 		return NULL;
2652 
2653 	offset = field->offset;
2654 
2655 	if (field->flags & FIELD_IS_DYNAMIC) {
2656 		offset = *(int *)(sample->raw_data + field->offset);
2657 		offset &= 0xffff;
2658 	}
2659 
2660 	return sample->raw_data + offset;
2661 }
2662 
2663 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2664 			 bool needs_swap)
2665 {
2666 	u64 value;
2667 	void *ptr = sample->raw_data + field->offset;
2668 
2669 	switch (field->size) {
2670 	case 1:
2671 		return *(u8 *)ptr;
2672 	case 2:
2673 		value = *(u16 *)ptr;
2674 		break;
2675 	case 4:
2676 		value = *(u32 *)ptr;
2677 		break;
2678 	case 8:
2679 		memcpy(&value, ptr, sizeof(u64));
2680 		break;
2681 	default:
2682 		return 0;
2683 	}
2684 
2685 	if (!needs_swap)
2686 		return value;
2687 
2688 	switch (field->size) {
2689 	case 2:
2690 		return bswap_16(value);
2691 	case 4:
2692 		return bswap_32(value);
2693 	case 8:
2694 		return bswap_64(value);
2695 	default:
2696 		return 0;
2697 	}
2698 
2699 	return 0;
2700 }
2701 
2702 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2703 		       const char *name)
2704 {
2705 	struct format_field *field = perf_evsel__field(evsel, name);
2706 
2707 	if (!field)
2708 		return 0;
2709 
2710 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2711 }
2712 
2713 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2714 			  char *msg, size_t msgsize)
2715 {
2716 	int paranoid;
2717 
2718 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2719 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2720 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2721 		/*
2722 		 * If it's cycles then fall back to hrtimer based
2723 		 * cpu-clock-tick sw counter, which is always available even if
2724 		 * no PMU support.
2725 		 *
2726 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2727 		 * b0a873e).
2728 		 */
2729 		scnprintf(msg, msgsize, "%s",
2730 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2731 
2732 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2733 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2734 
2735 		zfree(&evsel->name);
2736 		return true;
2737 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2738 		   (paranoid = perf_event_paranoid()) > 1) {
2739 		const char *name = perf_evsel__name(evsel);
2740 		char *new_name;
2741 
2742 		if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2743 			return false;
2744 
2745 		if (evsel->name)
2746 			free(evsel->name);
2747 		evsel->name = new_name;
2748 		scnprintf(msg, msgsize,
2749 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2750 		evsel->attr.exclude_kernel = 1;
2751 
2752 		return true;
2753 	}
2754 
2755 	return false;
2756 }
2757 
2758 static bool find_process(const char *name)
2759 {
2760 	size_t len = strlen(name);
2761 	DIR *dir;
2762 	struct dirent *d;
2763 	int ret = -1;
2764 
2765 	dir = opendir(procfs__mountpoint());
2766 	if (!dir)
2767 		return false;
2768 
2769 	/* Walk through the directory. */
2770 	while (ret && (d = readdir(dir)) != NULL) {
2771 		char path[PATH_MAX];
2772 		char *data;
2773 		size_t size;
2774 
2775 		if ((d->d_type != DT_DIR) ||
2776 		     !strcmp(".", d->d_name) ||
2777 		     !strcmp("..", d->d_name))
2778 			continue;
2779 
2780 		scnprintf(path, sizeof(path), "%s/%s/comm",
2781 			  procfs__mountpoint(), d->d_name);
2782 
2783 		if (filename__read_str(path, &data, &size))
2784 			continue;
2785 
2786 		ret = strncmp(name, data, len);
2787 		free(data);
2788 	}
2789 
2790 	closedir(dir);
2791 	return ret ? false : true;
2792 }
2793 
2794 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2795 			      int err, char *msg, size_t size)
2796 {
2797 	char sbuf[STRERR_BUFSIZE];
2798 	int printed = 0;
2799 
2800 	switch (err) {
2801 	case EPERM:
2802 	case EACCES:
2803 		if (err == EPERM)
2804 			printed = scnprintf(msg, size,
2805 				"No permission to enable %s event.\n\n",
2806 				perf_evsel__name(evsel));
2807 
2808 		return scnprintf(msg + printed, size - printed,
2809 		 "You may not have permission to collect %sstats.\n\n"
2810 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2811 		 "which controls use of the performance events system by\n"
2812 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2813 		 "The current value is %d:\n\n"
2814 		 "  -1: Allow use of (almost) all events by all users\n"
2815 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2816 		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2817 		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2818 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2819 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2820 		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2821 		 "	kernel.perf_event_paranoid = -1\n" ,
2822 				 target->system_wide ? "system-wide " : "",
2823 				 perf_event_paranoid());
2824 	case ENOENT:
2825 		return scnprintf(msg, size, "The %s event is not supported.",
2826 				 perf_evsel__name(evsel));
2827 	case EMFILE:
2828 		return scnprintf(msg, size, "%s",
2829 			 "Too many events are opened.\n"
2830 			 "Probably the maximum number of open file descriptors has been reached.\n"
2831 			 "Hint: Try again after reducing the number of events.\n"
2832 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2833 	case ENOMEM:
2834 		if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2835 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2836 			return scnprintf(msg, size,
2837 					 "Not enough memory to setup event with callchain.\n"
2838 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2839 					 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2840 		break;
2841 	case ENODEV:
2842 		if (target->cpu_list)
2843 			return scnprintf(msg, size, "%s",
2844 	 "No such device - did you specify an out-of-range profile CPU?");
2845 		break;
2846 	case EOPNOTSUPP:
2847 		if (evsel->attr.sample_period != 0)
2848 			return scnprintf(msg, size,
2849 	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2850 					 perf_evsel__name(evsel));
2851 		if (evsel->attr.precise_ip)
2852 			return scnprintf(msg, size, "%s",
2853 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2854 #if defined(__i386__) || defined(__x86_64__)
2855 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2856 			return scnprintf(msg, size, "%s",
2857 	"No hardware sampling interrupt available.\n"
2858 	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2859 #endif
2860 		break;
2861 	case EBUSY:
2862 		if (find_process("oprofiled"))
2863 			return scnprintf(msg, size,
2864 	"The PMU counters are busy/taken by another profiler.\n"
2865 	"We found oprofile daemon running, please stop it and try again.");
2866 		break;
2867 	case EINVAL:
2868 		if (evsel->attr.write_backward && perf_missing_features.write_backward)
2869 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2870 		if (perf_missing_features.clockid)
2871 			return scnprintf(msg, size, "clockid feature not supported.");
2872 		if (perf_missing_features.clockid_wrong)
2873 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2874 		break;
2875 	default:
2876 		break;
2877 	}
2878 
2879 	return scnprintf(msg, size,
2880 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2881 	"/bin/dmesg may provide additional information.\n"
2882 	"No CONFIG_PERF_EVENTS=y kernel support configured?",
2883 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2884 			 perf_evsel__name(evsel));
2885 }
2886 
2887 struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
2888 {
2889 	if (evsel && evsel->evlist)
2890 		return evsel->evlist->env;
2891 	return NULL;
2892 }
2893