1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <errno.h> 12 #include <inttypes.h> 13 #include <linux/bitops.h> 14 #include <api/fs/fs.h> 15 #include <api/fs/tracing_path.h> 16 #include <traceevent/event-parse.h> 17 #include <linux/hw_breakpoint.h> 18 #include <linux/perf_event.h> 19 #include <linux/compiler.h> 20 #include <linux/err.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include "asm/bug.h" 26 #include "callchain.h" 27 #include "cgroup.h" 28 #include "event.h" 29 #include "evsel.h" 30 #include "evlist.h" 31 #include "util.h" 32 #include "cpumap.h" 33 #include "thread_map.h" 34 #include "target.h" 35 #include "perf_regs.h" 36 #include "debug.h" 37 #include "trace-event.h" 38 #include "stat.h" 39 #include "memswap.h" 40 #include "util/parse-branch-options.h" 41 42 #include "sane_ctype.h" 43 44 struct perf_missing_features perf_missing_features; 45 46 static clockid_t clockid; 47 48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 49 { 50 return 0; 51 } 52 53 void __weak test_attr__ready(void) { } 54 55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 56 { 57 } 58 59 static struct { 60 size_t size; 61 int (*init)(struct perf_evsel *evsel); 62 void (*fini)(struct perf_evsel *evsel); 63 } perf_evsel__object = { 64 .size = sizeof(struct perf_evsel), 65 .init = perf_evsel__no_extra_init, 66 .fini = perf_evsel__no_extra_fini, 67 }; 68 69 int perf_evsel__object_config(size_t object_size, 70 int (*init)(struct perf_evsel *evsel), 71 void (*fini)(struct perf_evsel *evsel)) 72 { 73 74 if (object_size == 0) 75 goto set_methods; 76 77 if (perf_evsel__object.size > object_size) 78 return -EINVAL; 79 80 perf_evsel__object.size = object_size; 81 82 set_methods: 83 if (init != NULL) 84 perf_evsel__object.init = init; 85 86 if (fini != NULL) 87 perf_evsel__object.fini = fini; 88 89 return 0; 90 } 91 92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 93 94 int __perf_evsel__sample_size(u64 sample_type) 95 { 96 u64 mask = sample_type & PERF_SAMPLE_MASK; 97 int size = 0; 98 int i; 99 100 for (i = 0; i < 64; i++) { 101 if (mask & (1ULL << i)) 102 size++; 103 } 104 105 size *= sizeof(u64); 106 107 return size; 108 } 109 110 /** 111 * __perf_evsel__calc_id_pos - calculate id_pos. 112 * @sample_type: sample type 113 * 114 * This function returns the position of the event id (PERF_SAMPLE_ID or 115 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 116 * sample_event. 117 */ 118 static int __perf_evsel__calc_id_pos(u64 sample_type) 119 { 120 int idx = 0; 121 122 if (sample_type & PERF_SAMPLE_IDENTIFIER) 123 return 0; 124 125 if (!(sample_type & PERF_SAMPLE_ID)) 126 return -1; 127 128 if (sample_type & PERF_SAMPLE_IP) 129 idx += 1; 130 131 if (sample_type & PERF_SAMPLE_TID) 132 idx += 1; 133 134 if (sample_type & PERF_SAMPLE_TIME) 135 idx += 1; 136 137 if (sample_type & PERF_SAMPLE_ADDR) 138 idx += 1; 139 140 return idx; 141 } 142 143 /** 144 * __perf_evsel__calc_is_pos - calculate is_pos. 145 * @sample_type: sample type 146 * 147 * This function returns the position (counting backwards) of the event id 148 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 149 * sample_id_all is used there is an id sample appended to non-sample events. 150 */ 151 static int __perf_evsel__calc_is_pos(u64 sample_type) 152 { 153 int idx = 1; 154 155 if (sample_type & PERF_SAMPLE_IDENTIFIER) 156 return 1; 157 158 if (!(sample_type & PERF_SAMPLE_ID)) 159 return -1; 160 161 if (sample_type & PERF_SAMPLE_CPU) 162 idx += 1; 163 164 if (sample_type & PERF_SAMPLE_STREAM_ID) 165 idx += 1; 166 167 return idx; 168 } 169 170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 171 { 172 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 173 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 174 } 175 176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 177 enum perf_event_sample_format bit) 178 { 179 if (!(evsel->attr.sample_type & bit)) { 180 evsel->attr.sample_type |= bit; 181 evsel->sample_size += sizeof(u64); 182 perf_evsel__calc_id_pos(evsel); 183 } 184 } 185 186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 187 enum perf_event_sample_format bit) 188 { 189 if (evsel->attr.sample_type & bit) { 190 evsel->attr.sample_type &= ~bit; 191 evsel->sample_size -= sizeof(u64); 192 perf_evsel__calc_id_pos(evsel); 193 } 194 } 195 196 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 197 bool can_sample_identifier) 198 { 199 if (can_sample_identifier) { 200 perf_evsel__reset_sample_bit(evsel, ID); 201 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 202 } else { 203 perf_evsel__set_sample_bit(evsel, ID); 204 } 205 evsel->attr.read_format |= PERF_FORMAT_ID; 206 } 207 208 /** 209 * perf_evsel__is_function_event - Return whether given evsel is a function 210 * trace event 211 * 212 * @evsel - evsel selector to be tested 213 * 214 * Return %true if event is function trace event 215 */ 216 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 217 { 218 #define FUNCTION_EVENT "ftrace:function" 219 220 return evsel->name && 221 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 222 223 #undef FUNCTION_EVENT 224 } 225 226 void perf_evsel__init(struct perf_evsel *evsel, 227 struct perf_event_attr *attr, int idx) 228 { 229 evsel->idx = idx; 230 evsel->tracking = !idx; 231 evsel->attr = *attr; 232 evsel->leader = evsel; 233 evsel->unit = ""; 234 evsel->scale = 1.0; 235 evsel->evlist = NULL; 236 evsel->bpf_fd = -1; 237 INIT_LIST_HEAD(&evsel->node); 238 INIT_LIST_HEAD(&evsel->config_terms); 239 perf_evsel__object.init(evsel); 240 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 241 perf_evsel__calc_id_pos(evsel); 242 evsel->cmdline_group_boundary = false; 243 evsel->metric_expr = NULL; 244 evsel->metric_name = NULL; 245 evsel->metric_events = NULL; 246 evsel->collect_stat = false; 247 } 248 249 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 250 { 251 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 252 253 if (evsel != NULL) 254 perf_evsel__init(evsel, attr, idx); 255 256 if (perf_evsel__is_bpf_output(evsel)) { 257 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 258 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 259 evsel->attr.sample_period = 1; 260 } 261 262 return evsel; 263 } 264 265 static bool perf_event_can_profile_kernel(void) 266 { 267 return geteuid() == 0 || perf_event_paranoid() == -1; 268 } 269 270 struct perf_evsel *perf_evsel__new_cycles(bool precise) 271 { 272 struct perf_event_attr attr = { 273 .type = PERF_TYPE_HARDWARE, 274 .config = PERF_COUNT_HW_CPU_CYCLES, 275 .exclude_kernel = !perf_event_can_profile_kernel(), 276 }; 277 struct perf_evsel *evsel; 278 279 event_attr_init(&attr); 280 281 if (!precise) 282 goto new_event; 283 /* 284 * Unnamed union member, not supported as struct member named 285 * initializer in older compilers such as gcc 4.4.7 286 * 287 * Just for probing the precise_ip: 288 */ 289 attr.sample_period = 1; 290 291 perf_event_attr__set_max_precise_ip(&attr); 292 /* 293 * Now let the usual logic to set up the perf_event_attr defaults 294 * to kick in when we return and before perf_evsel__open() is called. 295 */ 296 attr.sample_period = 0; 297 new_event: 298 evsel = perf_evsel__new(&attr); 299 if (evsel == NULL) 300 goto out; 301 302 /* use asprintf() because free(evsel) assumes name is allocated */ 303 if (asprintf(&evsel->name, "cycles%s%s%.*s", 304 (attr.precise_ip || attr.exclude_kernel) ? ":" : "", 305 attr.exclude_kernel ? "u" : "", 306 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) 307 goto error_free; 308 out: 309 return evsel; 310 error_free: 311 perf_evsel__delete(evsel); 312 evsel = NULL; 313 goto out; 314 } 315 316 /* 317 * Returns pointer with encoded error via <linux/err.h> interface. 318 */ 319 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 320 { 321 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 322 int err = -ENOMEM; 323 324 if (evsel == NULL) { 325 goto out_err; 326 } else { 327 struct perf_event_attr attr = { 328 .type = PERF_TYPE_TRACEPOINT, 329 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 330 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 331 }; 332 333 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 334 goto out_free; 335 336 evsel->tp_format = trace_event__tp_format(sys, name); 337 if (IS_ERR(evsel->tp_format)) { 338 err = PTR_ERR(evsel->tp_format); 339 goto out_free; 340 } 341 342 event_attr_init(&attr); 343 attr.config = evsel->tp_format->id; 344 attr.sample_period = 1; 345 perf_evsel__init(evsel, &attr, idx); 346 } 347 348 return evsel; 349 350 out_free: 351 zfree(&evsel->name); 352 free(evsel); 353 out_err: 354 return ERR_PTR(err); 355 } 356 357 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 358 "cycles", 359 "instructions", 360 "cache-references", 361 "cache-misses", 362 "branches", 363 "branch-misses", 364 "bus-cycles", 365 "stalled-cycles-frontend", 366 "stalled-cycles-backend", 367 "ref-cycles", 368 }; 369 370 static const char *__perf_evsel__hw_name(u64 config) 371 { 372 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 373 return perf_evsel__hw_names[config]; 374 375 return "unknown-hardware"; 376 } 377 378 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 379 { 380 int colon = 0, r = 0; 381 struct perf_event_attr *attr = &evsel->attr; 382 bool exclude_guest_default = false; 383 384 #define MOD_PRINT(context, mod) do { \ 385 if (!attr->exclude_##context) { \ 386 if (!colon) colon = ++r; \ 387 r += scnprintf(bf + r, size - r, "%c", mod); \ 388 } } while(0) 389 390 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 391 MOD_PRINT(kernel, 'k'); 392 MOD_PRINT(user, 'u'); 393 MOD_PRINT(hv, 'h'); 394 exclude_guest_default = true; 395 } 396 397 if (attr->precise_ip) { 398 if (!colon) 399 colon = ++r; 400 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 401 exclude_guest_default = true; 402 } 403 404 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 405 MOD_PRINT(host, 'H'); 406 MOD_PRINT(guest, 'G'); 407 } 408 #undef MOD_PRINT 409 if (colon) 410 bf[colon - 1] = ':'; 411 return r; 412 } 413 414 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 415 { 416 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 417 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 418 } 419 420 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 421 "cpu-clock", 422 "task-clock", 423 "page-faults", 424 "context-switches", 425 "cpu-migrations", 426 "minor-faults", 427 "major-faults", 428 "alignment-faults", 429 "emulation-faults", 430 "dummy", 431 }; 432 433 static const char *__perf_evsel__sw_name(u64 config) 434 { 435 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 436 return perf_evsel__sw_names[config]; 437 return "unknown-software"; 438 } 439 440 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 441 { 442 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 443 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 444 } 445 446 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 447 { 448 int r; 449 450 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 451 452 if (type & HW_BREAKPOINT_R) 453 r += scnprintf(bf + r, size - r, "r"); 454 455 if (type & HW_BREAKPOINT_W) 456 r += scnprintf(bf + r, size - r, "w"); 457 458 if (type & HW_BREAKPOINT_X) 459 r += scnprintf(bf + r, size - r, "x"); 460 461 return r; 462 } 463 464 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 465 { 466 struct perf_event_attr *attr = &evsel->attr; 467 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 468 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 469 } 470 471 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 472 [PERF_EVSEL__MAX_ALIASES] = { 473 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 474 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 475 { "LLC", "L2", }, 476 { "dTLB", "d-tlb", "Data-TLB", }, 477 { "iTLB", "i-tlb", "Instruction-TLB", }, 478 { "branch", "branches", "bpu", "btb", "bpc", }, 479 { "node", }, 480 }; 481 482 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 483 [PERF_EVSEL__MAX_ALIASES] = { 484 { "load", "loads", "read", }, 485 { "store", "stores", "write", }, 486 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 487 }; 488 489 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 490 [PERF_EVSEL__MAX_ALIASES] = { 491 { "refs", "Reference", "ops", "access", }, 492 { "misses", "miss", }, 493 }; 494 495 #define C(x) PERF_COUNT_HW_CACHE_##x 496 #define CACHE_READ (1 << C(OP_READ)) 497 #define CACHE_WRITE (1 << C(OP_WRITE)) 498 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 499 #define COP(x) (1 << x) 500 501 /* 502 * cache operartion stat 503 * L1I : Read and prefetch only 504 * ITLB and BPU : Read-only 505 */ 506 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 507 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 508 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 509 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 510 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 511 [C(ITLB)] = (CACHE_READ), 512 [C(BPU)] = (CACHE_READ), 513 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 514 }; 515 516 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 517 { 518 if (perf_evsel__hw_cache_stat[type] & COP(op)) 519 return true; /* valid */ 520 else 521 return false; /* invalid */ 522 } 523 524 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 525 char *bf, size_t size) 526 { 527 if (result) { 528 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 529 perf_evsel__hw_cache_op[op][0], 530 perf_evsel__hw_cache_result[result][0]); 531 } 532 533 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 534 perf_evsel__hw_cache_op[op][1]); 535 } 536 537 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 538 { 539 u8 op, result, type = (config >> 0) & 0xff; 540 const char *err = "unknown-ext-hardware-cache-type"; 541 542 if (type >= PERF_COUNT_HW_CACHE_MAX) 543 goto out_err; 544 545 op = (config >> 8) & 0xff; 546 err = "unknown-ext-hardware-cache-op"; 547 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 548 goto out_err; 549 550 result = (config >> 16) & 0xff; 551 err = "unknown-ext-hardware-cache-result"; 552 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 553 goto out_err; 554 555 err = "invalid-cache"; 556 if (!perf_evsel__is_cache_op_valid(type, op)) 557 goto out_err; 558 559 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 560 out_err: 561 return scnprintf(bf, size, "%s", err); 562 } 563 564 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 565 { 566 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 567 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 568 } 569 570 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 571 { 572 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 573 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 574 } 575 576 const char *perf_evsel__name(struct perf_evsel *evsel) 577 { 578 char bf[128]; 579 580 if (evsel->name) 581 return evsel->name; 582 583 switch (evsel->attr.type) { 584 case PERF_TYPE_RAW: 585 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 586 break; 587 588 case PERF_TYPE_HARDWARE: 589 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 590 break; 591 592 case PERF_TYPE_HW_CACHE: 593 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 594 break; 595 596 case PERF_TYPE_SOFTWARE: 597 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 598 break; 599 600 case PERF_TYPE_TRACEPOINT: 601 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 602 break; 603 604 case PERF_TYPE_BREAKPOINT: 605 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 606 break; 607 608 default: 609 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 610 evsel->attr.type); 611 break; 612 } 613 614 evsel->name = strdup(bf); 615 616 return evsel->name ?: "unknown"; 617 } 618 619 const char *perf_evsel__group_name(struct perf_evsel *evsel) 620 { 621 return evsel->group_name ?: "anon group"; 622 } 623 624 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 625 { 626 int ret; 627 struct perf_evsel *pos; 628 const char *group_name = perf_evsel__group_name(evsel); 629 630 ret = scnprintf(buf, size, "%s", group_name); 631 632 ret += scnprintf(buf + ret, size - ret, " { %s", 633 perf_evsel__name(evsel)); 634 635 for_each_group_member(pos, evsel) 636 ret += scnprintf(buf + ret, size - ret, ", %s", 637 perf_evsel__name(pos)); 638 639 ret += scnprintf(buf + ret, size - ret, " }"); 640 641 return ret; 642 } 643 644 static void __perf_evsel__config_callchain(struct perf_evsel *evsel, 645 struct record_opts *opts, 646 struct callchain_param *param) 647 { 648 bool function = perf_evsel__is_function_event(evsel); 649 struct perf_event_attr *attr = &evsel->attr; 650 651 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 652 653 attr->sample_max_stack = param->max_stack; 654 655 if (param->record_mode == CALLCHAIN_LBR) { 656 if (!opts->branch_stack) { 657 if (attr->exclude_user) { 658 pr_warning("LBR callstack option is only available " 659 "to get user callchain information. " 660 "Falling back to framepointers.\n"); 661 } else { 662 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 663 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 664 PERF_SAMPLE_BRANCH_CALL_STACK | 665 PERF_SAMPLE_BRANCH_NO_CYCLES | 666 PERF_SAMPLE_BRANCH_NO_FLAGS; 667 } 668 } else 669 pr_warning("Cannot use LBR callstack with branch stack. " 670 "Falling back to framepointers.\n"); 671 } 672 673 if (param->record_mode == CALLCHAIN_DWARF) { 674 if (!function) { 675 perf_evsel__set_sample_bit(evsel, REGS_USER); 676 perf_evsel__set_sample_bit(evsel, STACK_USER); 677 attr->sample_regs_user |= PERF_REGS_MASK; 678 attr->sample_stack_user = param->dump_size; 679 attr->exclude_callchain_user = 1; 680 } else { 681 pr_info("Cannot use DWARF unwind for function trace event," 682 " falling back to framepointers.\n"); 683 } 684 } 685 686 if (function) { 687 pr_info("Disabling user space callchains for function trace event.\n"); 688 attr->exclude_callchain_user = 1; 689 } 690 } 691 692 void perf_evsel__config_callchain(struct perf_evsel *evsel, 693 struct record_opts *opts, 694 struct callchain_param *param) 695 { 696 if (param->enabled) 697 return __perf_evsel__config_callchain(evsel, opts, param); 698 } 699 700 static void 701 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 702 struct callchain_param *param) 703 { 704 struct perf_event_attr *attr = &evsel->attr; 705 706 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 707 if (param->record_mode == CALLCHAIN_LBR) { 708 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 709 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 710 PERF_SAMPLE_BRANCH_CALL_STACK); 711 } 712 if (param->record_mode == CALLCHAIN_DWARF) { 713 perf_evsel__reset_sample_bit(evsel, REGS_USER); 714 perf_evsel__reset_sample_bit(evsel, STACK_USER); 715 } 716 } 717 718 static void apply_config_terms(struct perf_evsel *evsel, 719 struct record_opts *opts, bool track) 720 { 721 struct perf_evsel_config_term *term; 722 struct list_head *config_terms = &evsel->config_terms; 723 struct perf_event_attr *attr = &evsel->attr; 724 /* callgraph default */ 725 struct callchain_param param = { 726 .record_mode = callchain_param.record_mode, 727 }; 728 u32 dump_size = 0; 729 int max_stack = 0; 730 const char *callgraph_buf = NULL; 731 732 list_for_each_entry(term, config_terms, list) { 733 switch (term->type) { 734 case PERF_EVSEL__CONFIG_TERM_PERIOD: 735 if (!(term->weak && opts->user_interval != ULLONG_MAX)) { 736 attr->sample_period = term->val.period; 737 attr->freq = 0; 738 perf_evsel__reset_sample_bit(evsel, PERIOD); 739 } 740 break; 741 case PERF_EVSEL__CONFIG_TERM_FREQ: 742 if (!(term->weak && opts->user_freq != UINT_MAX)) { 743 attr->sample_freq = term->val.freq; 744 attr->freq = 1; 745 perf_evsel__set_sample_bit(evsel, PERIOD); 746 } 747 break; 748 case PERF_EVSEL__CONFIG_TERM_TIME: 749 if (term->val.time) 750 perf_evsel__set_sample_bit(evsel, TIME); 751 else 752 perf_evsel__reset_sample_bit(evsel, TIME); 753 break; 754 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 755 callgraph_buf = term->val.callgraph; 756 break; 757 case PERF_EVSEL__CONFIG_TERM_BRANCH: 758 if (term->val.branch && strcmp(term->val.branch, "no")) { 759 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 760 parse_branch_str(term->val.branch, 761 &attr->branch_sample_type); 762 } else 763 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 764 break; 765 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 766 dump_size = term->val.stack_user; 767 break; 768 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 769 max_stack = term->val.max_stack; 770 break; 771 case PERF_EVSEL__CONFIG_TERM_INHERIT: 772 /* 773 * attr->inherit should has already been set by 774 * perf_evsel__config. If user explicitly set 775 * inherit using config terms, override global 776 * opt->no_inherit setting. 777 */ 778 attr->inherit = term->val.inherit ? 1 : 0; 779 break; 780 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 781 attr->write_backward = term->val.overwrite ? 1 : 0; 782 break; 783 case PERF_EVSEL__CONFIG_TERM_DRV_CFG: 784 break; 785 default: 786 break; 787 } 788 } 789 790 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 791 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 792 bool sample_address = false; 793 794 if (max_stack) { 795 param.max_stack = max_stack; 796 if (callgraph_buf == NULL) 797 callgraph_buf = "fp"; 798 } 799 800 /* parse callgraph parameters */ 801 if (callgraph_buf != NULL) { 802 if (!strcmp(callgraph_buf, "no")) { 803 param.enabled = false; 804 param.record_mode = CALLCHAIN_NONE; 805 } else { 806 param.enabled = true; 807 if (parse_callchain_record(callgraph_buf, ¶m)) { 808 pr_err("per-event callgraph setting for %s failed. " 809 "Apply callgraph global setting for it\n", 810 evsel->name); 811 return; 812 } 813 if (param.record_mode == CALLCHAIN_DWARF) 814 sample_address = true; 815 } 816 } 817 if (dump_size > 0) { 818 dump_size = round_up(dump_size, sizeof(u64)); 819 param.dump_size = dump_size; 820 } 821 822 /* If global callgraph set, clear it */ 823 if (callchain_param.enabled) 824 perf_evsel__reset_callgraph(evsel, &callchain_param); 825 826 /* set perf-event callgraph */ 827 if (param.enabled) { 828 if (sample_address) { 829 perf_evsel__set_sample_bit(evsel, ADDR); 830 perf_evsel__set_sample_bit(evsel, DATA_SRC); 831 evsel->attr.mmap_data = track; 832 } 833 perf_evsel__config_callchain(evsel, opts, ¶m); 834 } 835 } 836 } 837 838 /* 839 * The enable_on_exec/disabled value strategy: 840 * 841 * 1) For any type of traced program: 842 * - all independent events and group leaders are disabled 843 * - all group members are enabled 844 * 845 * Group members are ruled by group leaders. They need to 846 * be enabled, because the group scheduling relies on that. 847 * 848 * 2) For traced programs executed by perf: 849 * - all independent events and group leaders have 850 * enable_on_exec set 851 * - we don't specifically enable or disable any event during 852 * the record command 853 * 854 * Independent events and group leaders are initially disabled 855 * and get enabled by exec. Group members are ruled by group 856 * leaders as stated in 1). 857 * 858 * 3) For traced programs attached by perf (pid/tid): 859 * - we specifically enable or disable all events during 860 * the record command 861 * 862 * When attaching events to already running traced we 863 * enable/disable events specifically, as there's no 864 * initial traced exec call. 865 */ 866 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 867 struct callchain_param *callchain) 868 { 869 struct perf_evsel *leader = evsel->leader; 870 struct perf_event_attr *attr = &evsel->attr; 871 int track = evsel->tracking; 872 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 873 874 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 875 attr->inherit = !opts->no_inherit; 876 attr->write_backward = opts->overwrite ? 1 : 0; 877 878 perf_evsel__set_sample_bit(evsel, IP); 879 perf_evsel__set_sample_bit(evsel, TID); 880 881 if (evsel->sample_read) { 882 perf_evsel__set_sample_bit(evsel, READ); 883 884 /* 885 * We need ID even in case of single event, because 886 * PERF_SAMPLE_READ process ID specific data. 887 */ 888 perf_evsel__set_sample_id(evsel, false); 889 890 /* 891 * Apply group format only if we belong to group 892 * with more than one members. 893 */ 894 if (leader->nr_members > 1) { 895 attr->read_format |= PERF_FORMAT_GROUP; 896 attr->inherit = 0; 897 } 898 } 899 900 /* 901 * We default some events to have a default interval. But keep 902 * it a weak assumption overridable by the user. 903 */ 904 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 905 opts->user_interval != ULLONG_MAX)) { 906 if (opts->freq) { 907 perf_evsel__set_sample_bit(evsel, PERIOD); 908 attr->freq = 1; 909 attr->sample_freq = opts->freq; 910 } else { 911 attr->sample_period = opts->default_interval; 912 } 913 } 914 915 /* 916 * Disable sampling for all group members other 917 * than leader in case leader 'leads' the sampling. 918 */ 919 if ((leader != evsel) && leader->sample_read) { 920 attr->sample_freq = 0; 921 attr->sample_period = 0; 922 } 923 924 if (opts->no_samples) 925 attr->sample_freq = 0; 926 927 if (opts->inherit_stat) { 928 evsel->attr.read_format |= 929 PERF_FORMAT_TOTAL_TIME_ENABLED | 930 PERF_FORMAT_TOTAL_TIME_RUNNING | 931 PERF_FORMAT_ID; 932 attr->inherit_stat = 1; 933 } 934 935 if (opts->sample_address) { 936 perf_evsel__set_sample_bit(evsel, ADDR); 937 attr->mmap_data = track; 938 } 939 940 /* 941 * We don't allow user space callchains for function trace 942 * event, due to issues with page faults while tracing page 943 * fault handler and its overall trickiness nature. 944 */ 945 if (perf_evsel__is_function_event(evsel)) 946 evsel->attr.exclude_callchain_user = 1; 947 948 if (callchain && callchain->enabled && !evsel->no_aux_samples) 949 perf_evsel__config_callchain(evsel, opts, callchain); 950 951 if (opts->sample_intr_regs) { 952 attr->sample_regs_intr = opts->sample_intr_regs; 953 perf_evsel__set_sample_bit(evsel, REGS_INTR); 954 } 955 956 if (opts->sample_user_regs) { 957 attr->sample_regs_user |= opts->sample_user_regs; 958 perf_evsel__set_sample_bit(evsel, REGS_USER); 959 } 960 961 if (target__has_cpu(&opts->target) || opts->sample_cpu) 962 perf_evsel__set_sample_bit(evsel, CPU); 963 964 /* 965 * When the user explicitly disabled time don't force it here. 966 */ 967 if (opts->sample_time && 968 (!perf_missing_features.sample_id_all && 969 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 970 opts->sample_time_set))) 971 perf_evsel__set_sample_bit(evsel, TIME); 972 973 if (opts->raw_samples && !evsel->no_aux_samples) { 974 perf_evsel__set_sample_bit(evsel, TIME); 975 perf_evsel__set_sample_bit(evsel, RAW); 976 perf_evsel__set_sample_bit(evsel, CPU); 977 } 978 979 if (opts->sample_address) 980 perf_evsel__set_sample_bit(evsel, DATA_SRC); 981 982 if (opts->sample_phys_addr) 983 perf_evsel__set_sample_bit(evsel, PHYS_ADDR); 984 985 if (opts->no_buffering) { 986 attr->watermark = 0; 987 attr->wakeup_events = 1; 988 } 989 if (opts->branch_stack && !evsel->no_aux_samples) { 990 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 991 attr->branch_sample_type = opts->branch_stack; 992 } 993 994 if (opts->sample_weight) 995 perf_evsel__set_sample_bit(evsel, WEIGHT); 996 997 attr->task = track; 998 attr->mmap = track; 999 attr->mmap2 = track && !perf_missing_features.mmap2; 1000 attr->comm = track; 1001 1002 if (opts->record_namespaces) 1003 attr->namespaces = track; 1004 1005 if (opts->record_switch_events) 1006 attr->context_switch = track; 1007 1008 if (opts->sample_transaction) 1009 perf_evsel__set_sample_bit(evsel, TRANSACTION); 1010 1011 if (opts->running_time) { 1012 evsel->attr.read_format |= 1013 PERF_FORMAT_TOTAL_TIME_ENABLED | 1014 PERF_FORMAT_TOTAL_TIME_RUNNING; 1015 } 1016 1017 /* 1018 * XXX see the function comment above 1019 * 1020 * Disabling only independent events or group leaders, 1021 * keeping group members enabled. 1022 */ 1023 if (perf_evsel__is_group_leader(evsel)) 1024 attr->disabled = 1; 1025 1026 /* 1027 * Setting enable_on_exec for independent events and 1028 * group leaders for traced executed by perf. 1029 */ 1030 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 1031 !opts->initial_delay) 1032 attr->enable_on_exec = 1; 1033 1034 if (evsel->immediate) { 1035 attr->disabled = 0; 1036 attr->enable_on_exec = 0; 1037 } 1038 1039 clockid = opts->clockid; 1040 if (opts->use_clockid) { 1041 attr->use_clockid = 1; 1042 attr->clockid = opts->clockid; 1043 } 1044 1045 if (evsel->precise_max) 1046 perf_event_attr__set_max_precise_ip(attr); 1047 1048 if (opts->all_user) { 1049 attr->exclude_kernel = 1; 1050 attr->exclude_user = 0; 1051 } 1052 1053 if (opts->all_kernel) { 1054 attr->exclude_kernel = 0; 1055 attr->exclude_user = 1; 1056 } 1057 1058 /* 1059 * Apply event specific term settings, 1060 * it overloads any global configuration. 1061 */ 1062 apply_config_terms(evsel, opts, track); 1063 1064 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1065 1066 /* The --period option takes the precedence. */ 1067 if (opts->period_set) { 1068 if (opts->period) 1069 perf_evsel__set_sample_bit(evsel, PERIOD); 1070 else 1071 perf_evsel__reset_sample_bit(evsel, PERIOD); 1072 } 1073 } 1074 1075 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1076 { 1077 if (evsel->system_wide) 1078 nthreads = 1; 1079 1080 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1081 1082 if (evsel->fd) { 1083 int cpu, thread; 1084 for (cpu = 0; cpu < ncpus; cpu++) { 1085 for (thread = 0; thread < nthreads; thread++) { 1086 FD(evsel, cpu, thread) = -1; 1087 } 1088 } 1089 } 1090 1091 return evsel->fd != NULL ? 0 : -ENOMEM; 1092 } 1093 1094 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, 1095 int ioc, void *arg) 1096 { 1097 int cpu, thread; 1098 1099 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 1100 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) { 1101 int fd = FD(evsel, cpu, thread), 1102 err = ioctl(fd, ioc, arg); 1103 1104 if (err) 1105 return err; 1106 } 1107 } 1108 1109 return 0; 1110 } 1111 1112 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter) 1113 { 1114 return perf_evsel__run_ioctl(evsel, 1115 PERF_EVENT_IOC_SET_FILTER, 1116 (void *)filter); 1117 } 1118 1119 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1120 { 1121 char *new_filter = strdup(filter); 1122 1123 if (new_filter != NULL) { 1124 free(evsel->filter); 1125 evsel->filter = new_filter; 1126 return 0; 1127 } 1128 1129 return -1; 1130 } 1131 1132 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1133 const char *fmt, const char *filter) 1134 { 1135 char *new_filter; 1136 1137 if (evsel->filter == NULL) 1138 return perf_evsel__set_filter(evsel, filter); 1139 1140 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1141 free(evsel->filter); 1142 evsel->filter = new_filter; 1143 return 0; 1144 } 1145 1146 return -1; 1147 } 1148 1149 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1150 { 1151 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1152 } 1153 1154 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1155 { 1156 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1157 } 1158 1159 int perf_evsel__enable(struct perf_evsel *evsel) 1160 { 1161 return perf_evsel__run_ioctl(evsel, 1162 PERF_EVENT_IOC_ENABLE, 1163 0); 1164 } 1165 1166 int perf_evsel__disable(struct perf_evsel *evsel) 1167 { 1168 return perf_evsel__run_ioctl(evsel, 1169 PERF_EVENT_IOC_DISABLE, 1170 0); 1171 } 1172 1173 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1174 { 1175 if (ncpus == 0 || nthreads == 0) 1176 return 0; 1177 1178 if (evsel->system_wide) 1179 nthreads = 1; 1180 1181 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1182 if (evsel->sample_id == NULL) 1183 return -ENOMEM; 1184 1185 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1186 if (evsel->id == NULL) { 1187 xyarray__delete(evsel->sample_id); 1188 evsel->sample_id = NULL; 1189 return -ENOMEM; 1190 } 1191 1192 return 0; 1193 } 1194 1195 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1196 { 1197 xyarray__delete(evsel->fd); 1198 evsel->fd = NULL; 1199 } 1200 1201 static void perf_evsel__free_id(struct perf_evsel *evsel) 1202 { 1203 xyarray__delete(evsel->sample_id); 1204 evsel->sample_id = NULL; 1205 zfree(&evsel->id); 1206 } 1207 1208 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1209 { 1210 struct perf_evsel_config_term *term, *h; 1211 1212 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1213 list_del(&term->list); 1214 free(term); 1215 } 1216 } 1217 1218 void perf_evsel__close_fd(struct perf_evsel *evsel) 1219 { 1220 int cpu, thread; 1221 1222 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) 1223 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) { 1224 close(FD(evsel, cpu, thread)); 1225 FD(evsel, cpu, thread) = -1; 1226 } 1227 } 1228 1229 void perf_evsel__exit(struct perf_evsel *evsel) 1230 { 1231 assert(list_empty(&evsel->node)); 1232 assert(evsel->evlist == NULL); 1233 perf_evsel__free_fd(evsel); 1234 perf_evsel__free_id(evsel); 1235 perf_evsel__free_config_terms(evsel); 1236 close_cgroup(evsel->cgrp); 1237 cpu_map__put(evsel->cpus); 1238 cpu_map__put(evsel->own_cpus); 1239 thread_map__put(evsel->threads); 1240 zfree(&evsel->group_name); 1241 zfree(&evsel->name); 1242 perf_evsel__object.fini(evsel); 1243 } 1244 1245 void perf_evsel__delete(struct perf_evsel *evsel) 1246 { 1247 perf_evsel__exit(evsel); 1248 free(evsel); 1249 } 1250 1251 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1252 struct perf_counts_values *count) 1253 { 1254 struct perf_counts_values tmp; 1255 1256 if (!evsel->prev_raw_counts) 1257 return; 1258 1259 if (cpu == -1) { 1260 tmp = evsel->prev_raw_counts->aggr; 1261 evsel->prev_raw_counts->aggr = *count; 1262 } else { 1263 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1264 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1265 } 1266 1267 count->val = count->val - tmp.val; 1268 count->ena = count->ena - tmp.ena; 1269 count->run = count->run - tmp.run; 1270 } 1271 1272 void perf_counts_values__scale(struct perf_counts_values *count, 1273 bool scale, s8 *pscaled) 1274 { 1275 s8 scaled = 0; 1276 1277 if (scale) { 1278 if (count->run == 0) { 1279 scaled = -1; 1280 count->val = 0; 1281 } else if (count->run < count->ena) { 1282 scaled = 1; 1283 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1284 } 1285 } else 1286 count->ena = count->run = 0; 1287 1288 if (pscaled) 1289 *pscaled = scaled; 1290 } 1291 1292 static int perf_evsel__read_size(struct perf_evsel *evsel) 1293 { 1294 u64 read_format = evsel->attr.read_format; 1295 int entry = sizeof(u64); /* value */ 1296 int size = 0; 1297 int nr = 1; 1298 1299 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1300 size += sizeof(u64); 1301 1302 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1303 size += sizeof(u64); 1304 1305 if (read_format & PERF_FORMAT_ID) 1306 entry += sizeof(u64); 1307 1308 if (read_format & PERF_FORMAT_GROUP) { 1309 nr = evsel->nr_members; 1310 size += sizeof(u64); 1311 } 1312 1313 size += entry * nr; 1314 return size; 1315 } 1316 1317 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1318 struct perf_counts_values *count) 1319 { 1320 size_t size = perf_evsel__read_size(evsel); 1321 1322 memset(count, 0, sizeof(*count)); 1323 1324 if (FD(evsel, cpu, thread) < 0) 1325 return -EINVAL; 1326 1327 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0) 1328 return -errno; 1329 1330 return 0; 1331 } 1332 1333 static int 1334 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread) 1335 { 1336 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread); 1337 1338 return perf_evsel__read(evsel, cpu, thread, count); 1339 } 1340 1341 static void 1342 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread, 1343 u64 val, u64 ena, u64 run) 1344 { 1345 struct perf_counts_values *count; 1346 1347 count = perf_counts(counter->counts, cpu, thread); 1348 1349 count->val = val; 1350 count->ena = ena; 1351 count->run = run; 1352 count->loaded = true; 1353 } 1354 1355 static int 1356 perf_evsel__process_group_data(struct perf_evsel *leader, 1357 int cpu, int thread, u64 *data) 1358 { 1359 u64 read_format = leader->attr.read_format; 1360 struct sample_read_value *v; 1361 u64 nr, ena = 0, run = 0, i; 1362 1363 nr = *data++; 1364 1365 if (nr != (u64) leader->nr_members) 1366 return -EINVAL; 1367 1368 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1369 ena = *data++; 1370 1371 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1372 run = *data++; 1373 1374 v = (struct sample_read_value *) data; 1375 1376 perf_evsel__set_count(leader, cpu, thread, 1377 v[0].value, ena, run); 1378 1379 for (i = 1; i < nr; i++) { 1380 struct perf_evsel *counter; 1381 1382 counter = perf_evlist__id2evsel(leader->evlist, v[i].id); 1383 if (!counter) 1384 return -EINVAL; 1385 1386 perf_evsel__set_count(counter, cpu, thread, 1387 v[i].value, ena, run); 1388 } 1389 1390 return 0; 1391 } 1392 1393 static int 1394 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread) 1395 { 1396 struct perf_stat_evsel *ps = leader->stats; 1397 u64 read_format = leader->attr.read_format; 1398 int size = perf_evsel__read_size(leader); 1399 u64 *data = ps->group_data; 1400 1401 if (!(read_format & PERF_FORMAT_ID)) 1402 return -EINVAL; 1403 1404 if (!perf_evsel__is_group_leader(leader)) 1405 return -EINVAL; 1406 1407 if (!data) { 1408 data = zalloc(size); 1409 if (!data) 1410 return -ENOMEM; 1411 1412 ps->group_data = data; 1413 } 1414 1415 if (FD(leader, cpu, thread) < 0) 1416 return -EINVAL; 1417 1418 if (readn(FD(leader, cpu, thread), data, size) <= 0) 1419 return -errno; 1420 1421 return perf_evsel__process_group_data(leader, cpu, thread, data); 1422 } 1423 1424 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread) 1425 { 1426 u64 read_format = evsel->attr.read_format; 1427 1428 if (read_format & PERF_FORMAT_GROUP) 1429 return perf_evsel__read_group(evsel, cpu, thread); 1430 else 1431 return perf_evsel__read_one(evsel, cpu, thread); 1432 } 1433 1434 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1435 int cpu, int thread, bool scale) 1436 { 1437 struct perf_counts_values count; 1438 size_t nv = scale ? 3 : 1; 1439 1440 if (FD(evsel, cpu, thread) < 0) 1441 return -EINVAL; 1442 1443 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1444 return -ENOMEM; 1445 1446 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1447 return -errno; 1448 1449 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1450 perf_counts_values__scale(&count, scale, NULL); 1451 *perf_counts(evsel->counts, cpu, thread) = count; 1452 return 0; 1453 } 1454 1455 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1456 { 1457 struct perf_evsel *leader = evsel->leader; 1458 int fd; 1459 1460 if (perf_evsel__is_group_leader(evsel)) 1461 return -1; 1462 1463 /* 1464 * Leader must be already processed/open, 1465 * if not it's a bug. 1466 */ 1467 BUG_ON(!leader->fd); 1468 1469 fd = FD(leader, cpu, thread); 1470 BUG_ON(fd == -1); 1471 1472 return fd; 1473 } 1474 1475 struct bit_names { 1476 int bit; 1477 const char *name; 1478 }; 1479 1480 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1481 { 1482 bool first_bit = true; 1483 int i = 0; 1484 1485 do { 1486 if (value & bits[i].bit) { 1487 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1488 first_bit = false; 1489 } 1490 } while (bits[++i].name != NULL); 1491 } 1492 1493 static void __p_sample_type(char *buf, size_t size, u64 value) 1494 { 1495 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1496 struct bit_names bits[] = { 1497 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1498 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1499 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1500 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1501 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1502 bit_name(WEIGHT), bit_name(PHYS_ADDR), 1503 { .name = NULL, } 1504 }; 1505 #undef bit_name 1506 __p_bits(buf, size, value, bits); 1507 } 1508 1509 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1510 { 1511 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1512 struct bit_names bits[] = { 1513 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1514 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1515 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1516 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1517 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1518 { .name = NULL, } 1519 }; 1520 #undef bit_name 1521 __p_bits(buf, size, value, bits); 1522 } 1523 1524 static void __p_read_format(char *buf, size_t size, u64 value) 1525 { 1526 #define bit_name(n) { PERF_FORMAT_##n, #n } 1527 struct bit_names bits[] = { 1528 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1529 bit_name(ID), bit_name(GROUP), 1530 { .name = NULL, } 1531 }; 1532 #undef bit_name 1533 __p_bits(buf, size, value, bits); 1534 } 1535 1536 #define BUF_SIZE 1024 1537 1538 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1539 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1540 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1541 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1542 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1543 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1544 1545 #define PRINT_ATTRn(_n, _f, _p) \ 1546 do { \ 1547 if (attr->_f) { \ 1548 _p(attr->_f); \ 1549 ret += attr__fprintf(fp, _n, buf, priv);\ 1550 } \ 1551 } while (0) 1552 1553 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1554 1555 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1556 attr__fprintf_f attr__fprintf, void *priv) 1557 { 1558 char buf[BUF_SIZE]; 1559 int ret = 0; 1560 1561 PRINT_ATTRf(type, p_unsigned); 1562 PRINT_ATTRf(size, p_unsigned); 1563 PRINT_ATTRf(config, p_hex); 1564 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1565 PRINT_ATTRf(sample_type, p_sample_type); 1566 PRINT_ATTRf(read_format, p_read_format); 1567 1568 PRINT_ATTRf(disabled, p_unsigned); 1569 PRINT_ATTRf(inherit, p_unsigned); 1570 PRINT_ATTRf(pinned, p_unsigned); 1571 PRINT_ATTRf(exclusive, p_unsigned); 1572 PRINT_ATTRf(exclude_user, p_unsigned); 1573 PRINT_ATTRf(exclude_kernel, p_unsigned); 1574 PRINT_ATTRf(exclude_hv, p_unsigned); 1575 PRINT_ATTRf(exclude_idle, p_unsigned); 1576 PRINT_ATTRf(mmap, p_unsigned); 1577 PRINT_ATTRf(comm, p_unsigned); 1578 PRINT_ATTRf(freq, p_unsigned); 1579 PRINT_ATTRf(inherit_stat, p_unsigned); 1580 PRINT_ATTRf(enable_on_exec, p_unsigned); 1581 PRINT_ATTRf(task, p_unsigned); 1582 PRINT_ATTRf(watermark, p_unsigned); 1583 PRINT_ATTRf(precise_ip, p_unsigned); 1584 PRINT_ATTRf(mmap_data, p_unsigned); 1585 PRINT_ATTRf(sample_id_all, p_unsigned); 1586 PRINT_ATTRf(exclude_host, p_unsigned); 1587 PRINT_ATTRf(exclude_guest, p_unsigned); 1588 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1589 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1590 PRINT_ATTRf(mmap2, p_unsigned); 1591 PRINT_ATTRf(comm_exec, p_unsigned); 1592 PRINT_ATTRf(use_clockid, p_unsigned); 1593 PRINT_ATTRf(context_switch, p_unsigned); 1594 PRINT_ATTRf(write_backward, p_unsigned); 1595 PRINT_ATTRf(namespaces, p_unsigned); 1596 1597 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1598 PRINT_ATTRf(bp_type, p_unsigned); 1599 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1600 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1601 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1602 PRINT_ATTRf(sample_regs_user, p_hex); 1603 PRINT_ATTRf(sample_stack_user, p_unsigned); 1604 PRINT_ATTRf(clockid, p_signed); 1605 PRINT_ATTRf(sample_regs_intr, p_hex); 1606 PRINT_ATTRf(aux_watermark, p_unsigned); 1607 PRINT_ATTRf(sample_max_stack, p_unsigned); 1608 1609 return ret; 1610 } 1611 1612 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1613 void *priv __maybe_unused) 1614 { 1615 return fprintf(fp, " %-32s %s\n", name, val); 1616 } 1617 1618 static void perf_evsel__remove_fd(struct perf_evsel *pos, 1619 int nr_cpus, int nr_threads, 1620 int thread_idx) 1621 { 1622 for (int cpu = 0; cpu < nr_cpus; cpu++) 1623 for (int thread = thread_idx; thread < nr_threads - 1; thread++) 1624 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1); 1625 } 1626 1627 static int update_fds(struct perf_evsel *evsel, 1628 int nr_cpus, int cpu_idx, 1629 int nr_threads, int thread_idx) 1630 { 1631 struct perf_evsel *pos; 1632 1633 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads) 1634 return -EINVAL; 1635 1636 evlist__for_each_entry(evsel->evlist, pos) { 1637 nr_cpus = pos != evsel ? nr_cpus : cpu_idx; 1638 1639 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx); 1640 1641 /* 1642 * Since fds for next evsel has not been created, 1643 * there is no need to iterate whole event list. 1644 */ 1645 if (pos == evsel) 1646 break; 1647 } 1648 return 0; 1649 } 1650 1651 static bool ignore_missing_thread(struct perf_evsel *evsel, 1652 int nr_cpus, int cpu, 1653 struct thread_map *threads, 1654 int thread, int err) 1655 { 1656 pid_t ignore_pid = thread_map__pid(threads, thread); 1657 1658 if (!evsel->ignore_missing_thread) 1659 return false; 1660 1661 /* The system wide setup does not work with threads. */ 1662 if (evsel->system_wide) 1663 return false; 1664 1665 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1666 if (err != -ESRCH) 1667 return false; 1668 1669 /* If there's only one thread, let it fail. */ 1670 if (threads->nr == 1) 1671 return false; 1672 1673 /* 1674 * We should remove fd for missing_thread first 1675 * because thread_map__remove() will decrease threads->nr. 1676 */ 1677 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread)) 1678 return false; 1679 1680 if (thread_map__remove(threads, thread)) 1681 return false; 1682 1683 pr_warning("WARNING: Ignored open failure for pid %d\n", 1684 ignore_pid); 1685 return true; 1686 } 1687 1688 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1689 struct thread_map *threads) 1690 { 1691 int cpu, thread, nthreads; 1692 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1693 int pid = -1, err; 1694 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1695 1696 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1697 return -EINVAL; 1698 1699 if (cpus == NULL) { 1700 static struct cpu_map *empty_cpu_map; 1701 1702 if (empty_cpu_map == NULL) { 1703 empty_cpu_map = cpu_map__dummy_new(); 1704 if (empty_cpu_map == NULL) 1705 return -ENOMEM; 1706 } 1707 1708 cpus = empty_cpu_map; 1709 } 1710 1711 if (threads == NULL) { 1712 static struct thread_map *empty_thread_map; 1713 1714 if (empty_thread_map == NULL) { 1715 empty_thread_map = thread_map__new_by_tid(-1); 1716 if (empty_thread_map == NULL) 1717 return -ENOMEM; 1718 } 1719 1720 threads = empty_thread_map; 1721 } 1722 1723 if (evsel->system_wide) 1724 nthreads = 1; 1725 else 1726 nthreads = threads->nr; 1727 1728 if (evsel->fd == NULL && 1729 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1730 return -ENOMEM; 1731 1732 if (evsel->cgrp) { 1733 flags |= PERF_FLAG_PID_CGROUP; 1734 pid = evsel->cgrp->fd; 1735 } 1736 1737 fallback_missing_features: 1738 if (perf_missing_features.clockid_wrong) 1739 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1740 if (perf_missing_features.clockid) { 1741 evsel->attr.use_clockid = 0; 1742 evsel->attr.clockid = 0; 1743 } 1744 if (perf_missing_features.cloexec) 1745 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1746 if (perf_missing_features.mmap2) 1747 evsel->attr.mmap2 = 0; 1748 if (perf_missing_features.exclude_guest) 1749 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1750 if (perf_missing_features.lbr_flags) 1751 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1752 PERF_SAMPLE_BRANCH_NO_CYCLES); 1753 if (perf_missing_features.group_read && evsel->attr.inherit) 1754 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); 1755 retry_sample_id: 1756 if (perf_missing_features.sample_id_all) 1757 evsel->attr.sample_id_all = 0; 1758 1759 if (verbose >= 2) { 1760 fprintf(stderr, "%.60s\n", graph_dotted_line); 1761 fprintf(stderr, "perf_event_attr:\n"); 1762 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1763 fprintf(stderr, "%.60s\n", graph_dotted_line); 1764 } 1765 1766 for (cpu = 0; cpu < cpus->nr; cpu++) { 1767 1768 for (thread = 0; thread < nthreads; thread++) { 1769 int fd, group_fd; 1770 1771 if (!evsel->cgrp && !evsel->system_wide) 1772 pid = thread_map__pid(threads, thread); 1773 1774 group_fd = get_group_fd(evsel, cpu, thread); 1775 retry_open: 1776 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1777 pid, cpus->map[cpu], group_fd, flags); 1778 1779 test_attr__ready(); 1780 1781 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu], 1782 group_fd, flags); 1783 1784 FD(evsel, cpu, thread) = fd; 1785 1786 if (fd < 0) { 1787 err = -errno; 1788 1789 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) { 1790 /* 1791 * We just removed 1 thread, so take a step 1792 * back on thread index and lower the upper 1793 * nthreads limit. 1794 */ 1795 nthreads--; 1796 thread--; 1797 1798 /* ... and pretend like nothing have happened. */ 1799 err = 0; 1800 continue; 1801 } 1802 1803 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1804 err); 1805 goto try_fallback; 1806 } 1807 1808 pr_debug2(" = %d\n", fd); 1809 1810 if (evsel->bpf_fd >= 0) { 1811 int evt_fd = fd; 1812 int bpf_fd = evsel->bpf_fd; 1813 1814 err = ioctl(evt_fd, 1815 PERF_EVENT_IOC_SET_BPF, 1816 bpf_fd); 1817 if (err && errno != EEXIST) { 1818 pr_err("failed to attach bpf fd %d: %s\n", 1819 bpf_fd, strerror(errno)); 1820 err = -EINVAL; 1821 goto out_close; 1822 } 1823 } 1824 1825 set_rlimit = NO_CHANGE; 1826 1827 /* 1828 * If we succeeded but had to kill clockid, fail and 1829 * have perf_evsel__open_strerror() print us a nice 1830 * error. 1831 */ 1832 if (perf_missing_features.clockid || 1833 perf_missing_features.clockid_wrong) { 1834 err = -EINVAL; 1835 goto out_close; 1836 } 1837 } 1838 } 1839 1840 return 0; 1841 1842 try_fallback: 1843 /* 1844 * perf stat needs between 5 and 22 fds per CPU. When we run out 1845 * of them try to increase the limits. 1846 */ 1847 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1848 struct rlimit l; 1849 int old_errno = errno; 1850 1851 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1852 if (set_rlimit == NO_CHANGE) 1853 l.rlim_cur = l.rlim_max; 1854 else { 1855 l.rlim_cur = l.rlim_max + 1000; 1856 l.rlim_max = l.rlim_cur; 1857 } 1858 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1859 set_rlimit++; 1860 errno = old_errno; 1861 goto retry_open; 1862 } 1863 } 1864 errno = old_errno; 1865 } 1866 1867 if (err != -EINVAL || cpu > 0 || thread > 0) 1868 goto out_close; 1869 1870 /* 1871 * Must probe features in the order they were added to the 1872 * perf_event_attr interface. 1873 */ 1874 if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 1875 perf_missing_features.write_backward = true; 1876 pr_debug2("switching off write_backward\n"); 1877 goto out_close; 1878 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1879 perf_missing_features.clockid_wrong = true; 1880 pr_debug2("switching off clockid\n"); 1881 goto fallback_missing_features; 1882 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1883 perf_missing_features.clockid = true; 1884 pr_debug2("switching off use_clockid\n"); 1885 goto fallback_missing_features; 1886 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1887 perf_missing_features.cloexec = true; 1888 pr_debug2("switching off cloexec flag\n"); 1889 goto fallback_missing_features; 1890 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1891 perf_missing_features.mmap2 = true; 1892 pr_debug2("switching off mmap2\n"); 1893 goto fallback_missing_features; 1894 } else if (!perf_missing_features.exclude_guest && 1895 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1896 perf_missing_features.exclude_guest = true; 1897 pr_debug2("switching off exclude_guest, exclude_host\n"); 1898 goto fallback_missing_features; 1899 } else if (!perf_missing_features.sample_id_all) { 1900 perf_missing_features.sample_id_all = true; 1901 pr_debug2("switching off sample_id_all\n"); 1902 goto retry_sample_id; 1903 } else if (!perf_missing_features.lbr_flags && 1904 (evsel->attr.branch_sample_type & 1905 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1906 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1907 perf_missing_features.lbr_flags = true; 1908 pr_debug2("switching off branch sample type no (cycles/flags)\n"); 1909 goto fallback_missing_features; 1910 } else if (!perf_missing_features.group_read && 1911 evsel->attr.inherit && 1912 (evsel->attr.read_format & PERF_FORMAT_GROUP)) { 1913 perf_missing_features.group_read = true; 1914 pr_debug2("switching off group read\n"); 1915 goto fallback_missing_features; 1916 } 1917 out_close: 1918 do { 1919 while (--thread >= 0) { 1920 close(FD(evsel, cpu, thread)); 1921 FD(evsel, cpu, thread) = -1; 1922 } 1923 thread = nthreads; 1924 } while (--cpu >= 0); 1925 return err; 1926 } 1927 1928 void perf_evsel__close(struct perf_evsel *evsel) 1929 { 1930 if (evsel->fd == NULL) 1931 return; 1932 1933 perf_evsel__close_fd(evsel); 1934 perf_evsel__free_fd(evsel); 1935 } 1936 1937 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1938 struct cpu_map *cpus) 1939 { 1940 return perf_evsel__open(evsel, cpus, NULL); 1941 } 1942 1943 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1944 struct thread_map *threads) 1945 { 1946 return perf_evsel__open(evsel, NULL, threads); 1947 } 1948 1949 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1950 const union perf_event *event, 1951 struct perf_sample *sample) 1952 { 1953 u64 type = evsel->attr.sample_type; 1954 const u64 *array = event->sample.array; 1955 bool swapped = evsel->needs_swap; 1956 union u64_swap u; 1957 1958 array += ((event->header.size - 1959 sizeof(event->header)) / sizeof(u64)) - 1; 1960 1961 if (type & PERF_SAMPLE_IDENTIFIER) { 1962 sample->id = *array; 1963 array--; 1964 } 1965 1966 if (type & PERF_SAMPLE_CPU) { 1967 u.val64 = *array; 1968 if (swapped) { 1969 /* undo swap of u64, then swap on individual u32s */ 1970 u.val64 = bswap_64(u.val64); 1971 u.val32[0] = bswap_32(u.val32[0]); 1972 } 1973 1974 sample->cpu = u.val32[0]; 1975 array--; 1976 } 1977 1978 if (type & PERF_SAMPLE_STREAM_ID) { 1979 sample->stream_id = *array; 1980 array--; 1981 } 1982 1983 if (type & PERF_SAMPLE_ID) { 1984 sample->id = *array; 1985 array--; 1986 } 1987 1988 if (type & PERF_SAMPLE_TIME) { 1989 sample->time = *array; 1990 array--; 1991 } 1992 1993 if (type & PERF_SAMPLE_TID) { 1994 u.val64 = *array; 1995 if (swapped) { 1996 /* undo swap of u64, then swap on individual u32s */ 1997 u.val64 = bswap_64(u.val64); 1998 u.val32[0] = bswap_32(u.val32[0]); 1999 u.val32[1] = bswap_32(u.val32[1]); 2000 } 2001 2002 sample->pid = u.val32[0]; 2003 sample->tid = u.val32[1]; 2004 array--; 2005 } 2006 2007 return 0; 2008 } 2009 2010 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 2011 u64 size) 2012 { 2013 return size > max_size || offset + size > endp; 2014 } 2015 2016 #define OVERFLOW_CHECK(offset, size, max_size) \ 2017 do { \ 2018 if (overflow(endp, (max_size), (offset), (size))) \ 2019 return -EFAULT; \ 2020 } while (0) 2021 2022 #define OVERFLOW_CHECK_u64(offset) \ 2023 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 2024 2025 static int 2026 perf_event__check_size(union perf_event *event, unsigned int sample_size) 2027 { 2028 /* 2029 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 2030 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 2031 * check the format does not go past the end of the event. 2032 */ 2033 if (sample_size + sizeof(event->header) > event->header.size) 2034 return -EFAULT; 2035 2036 return 0; 2037 } 2038 2039 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 2040 struct perf_sample *data) 2041 { 2042 u64 type = evsel->attr.sample_type; 2043 bool swapped = evsel->needs_swap; 2044 const u64 *array; 2045 u16 max_size = event->header.size; 2046 const void *endp = (void *)event + max_size; 2047 u64 sz; 2048 2049 /* 2050 * used for cross-endian analysis. See git commit 65014ab3 2051 * for why this goofiness is needed. 2052 */ 2053 union u64_swap u; 2054 2055 memset(data, 0, sizeof(*data)); 2056 data->cpu = data->pid = data->tid = -1; 2057 data->stream_id = data->id = data->time = -1ULL; 2058 data->period = evsel->attr.sample_period; 2059 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2060 data->misc = event->header.misc; 2061 data->id = -1ULL; 2062 data->data_src = PERF_MEM_DATA_SRC_NONE; 2063 2064 if (event->header.type != PERF_RECORD_SAMPLE) { 2065 if (!evsel->attr.sample_id_all) 2066 return 0; 2067 return perf_evsel__parse_id_sample(evsel, event, data); 2068 } 2069 2070 array = event->sample.array; 2071 2072 if (perf_event__check_size(event, evsel->sample_size)) 2073 return -EFAULT; 2074 2075 if (type & PERF_SAMPLE_IDENTIFIER) { 2076 data->id = *array; 2077 array++; 2078 } 2079 2080 if (type & PERF_SAMPLE_IP) { 2081 data->ip = *array; 2082 array++; 2083 } 2084 2085 if (type & PERF_SAMPLE_TID) { 2086 u.val64 = *array; 2087 if (swapped) { 2088 /* undo swap of u64, then swap on individual u32s */ 2089 u.val64 = bswap_64(u.val64); 2090 u.val32[0] = bswap_32(u.val32[0]); 2091 u.val32[1] = bswap_32(u.val32[1]); 2092 } 2093 2094 data->pid = u.val32[0]; 2095 data->tid = u.val32[1]; 2096 array++; 2097 } 2098 2099 if (type & PERF_SAMPLE_TIME) { 2100 data->time = *array; 2101 array++; 2102 } 2103 2104 if (type & PERF_SAMPLE_ADDR) { 2105 data->addr = *array; 2106 array++; 2107 } 2108 2109 if (type & PERF_SAMPLE_ID) { 2110 data->id = *array; 2111 array++; 2112 } 2113 2114 if (type & PERF_SAMPLE_STREAM_ID) { 2115 data->stream_id = *array; 2116 array++; 2117 } 2118 2119 if (type & PERF_SAMPLE_CPU) { 2120 2121 u.val64 = *array; 2122 if (swapped) { 2123 /* undo swap of u64, then swap on individual u32s */ 2124 u.val64 = bswap_64(u.val64); 2125 u.val32[0] = bswap_32(u.val32[0]); 2126 } 2127 2128 data->cpu = u.val32[0]; 2129 array++; 2130 } 2131 2132 if (type & PERF_SAMPLE_PERIOD) { 2133 data->period = *array; 2134 array++; 2135 } 2136 2137 if (type & PERF_SAMPLE_READ) { 2138 u64 read_format = evsel->attr.read_format; 2139 2140 OVERFLOW_CHECK_u64(array); 2141 if (read_format & PERF_FORMAT_GROUP) 2142 data->read.group.nr = *array; 2143 else 2144 data->read.one.value = *array; 2145 2146 array++; 2147 2148 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2149 OVERFLOW_CHECK_u64(array); 2150 data->read.time_enabled = *array; 2151 array++; 2152 } 2153 2154 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2155 OVERFLOW_CHECK_u64(array); 2156 data->read.time_running = *array; 2157 array++; 2158 } 2159 2160 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2161 if (read_format & PERF_FORMAT_GROUP) { 2162 const u64 max_group_nr = UINT64_MAX / 2163 sizeof(struct sample_read_value); 2164 2165 if (data->read.group.nr > max_group_nr) 2166 return -EFAULT; 2167 sz = data->read.group.nr * 2168 sizeof(struct sample_read_value); 2169 OVERFLOW_CHECK(array, sz, max_size); 2170 data->read.group.values = 2171 (struct sample_read_value *)array; 2172 array = (void *)array + sz; 2173 } else { 2174 OVERFLOW_CHECK_u64(array); 2175 data->read.one.id = *array; 2176 array++; 2177 } 2178 } 2179 2180 if (type & PERF_SAMPLE_CALLCHAIN) { 2181 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 2182 2183 OVERFLOW_CHECK_u64(array); 2184 data->callchain = (struct ip_callchain *)array++; 2185 if (data->callchain->nr > max_callchain_nr) 2186 return -EFAULT; 2187 sz = data->callchain->nr * sizeof(u64); 2188 OVERFLOW_CHECK(array, sz, max_size); 2189 array = (void *)array + sz; 2190 } 2191 2192 if (type & PERF_SAMPLE_RAW) { 2193 OVERFLOW_CHECK_u64(array); 2194 u.val64 = *array; 2195 2196 /* 2197 * Undo swap of u64, then swap on individual u32s, 2198 * get the size of the raw area and undo all of the 2199 * swap. The pevent interface handles endianity by 2200 * itself. 2201 */ 2202 if (swapped) { 2203 u.val64 = bswap_64(u.val64); 2204 u.val32[0] = bswap_32(u.val32[0]); 2205 u.val32[1] = bswap_32(u.val32[1]); 2206 } 2207 data->raw_size = u.val32[0]; 2208 2209 /* 2210 * The raw data is aligned on 64bits including the 2211 * u32 size, so it's safe to use mem_bswap_64. 2212 */ 2213 if (swapped) 2214 mem_bswap_64((void *) array, data->raw_size); 2215 2216 array = (void *)array + sizeof(u32); 2217 2218 OVERFLOW_CHECK(array, data->raw_size, max_size); 2219 data->raw_data = (void *)array; 2220 array = (void *)array + data->raw_size; 2221 } 2222 2223 if (type & PERF_SAMPLE_BRANCH_STACK) { 2224 const u64 max_branch_nr = UINT64_MAX / 2225 sizeof(struct branch_entry); 2226 2227 OVERFLOW_CHECK_u64(array); 2228 data->branch_stack = (struct branch_stack *)array++; 2229 2230 if (data->branch_stack->nr > max_branch_nr) 2231 return -EFAULT; 2232 sz = data->branch_stack->nr * sizeof(struct branch_entry); 2233 OVERFLOW_CHECK(array, sz, max_size); 2234 array = (void *)array + sz; 2235 } 2236 2237 if (type & PERF_SAMPLE_REGS_USER) { 2238 OVERFLOW_CHECK_u64(array); 2239 data->user_regs.abi = *array; 2240 array++; 2241 2242 if (data->user_regs.abi) { 2243 u64 mask = evsel->attr.sample_regs_user; 2244 2245 sz = hweight_long(mask) * sizeof(u64); 2246 OVERFLOW_CHECK(array, sz, max_size); 2247 data->user_regs.mask = mask; 2248 data->user_regs.regs = (u64 *)array; 2249 array = (void *)array + sz; 2250 } 2251 } 2252 2253 if (type & PERF_SAMPLE_STACK_USER) { 2254 OVERFLOW_CHECK_u64(array); 2255 sz = *array++; 2256 2257 data->user_stack.offset = ((char *)(array - 1) 2258 - (char *) event); 2259 2260 if (!sz) { 2261 data->user_stack.size = 0; 2262 } else { 2263 OVERFLOW_CHECK(array, sz, max_size); 2264 data->user_stack.data = (char *)array; 2265 array = (void *)array + sz; 2266 OVERFLOW_CHECK_u64(array); 2267 data->user_stack.size = *array++; 2268 if (WARN_ONCE(data->user_stack.size > sz, 2269 "user stack dump failure\n")) 2270 return -EFAULT; 2271 } 2272 } 2273 2274 if (type & PERF_SAMPLE_WEIGHT) { 2275 OVERFLOW_CHECK_u64(array); 2276 data->weight = *array; 2277 array++; 2278 } 2279 2280 if (type & PERF_SAMPLE_DATA_SRC) { 2281 OVERFLOW_CHECK_u64(array); 2282 data->data_src = *array; 2283 array++; 2284 } 2285 2286 if (type & PERF_SAMPLE_TRANSACTION) { 2287 OVERFLOW_CHECK_u64(array); 2288 data->transaction = *array; 2289 array++; 2290 } 2291 2292 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2293 if (type & PERF_SAMPLE_REGS_INTR) { 2294 OVERFLOW_CHECK_u64(array); 2295 data->intr_regs.abi = *array; 2296 array++; 2297 2298 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2299 u64 mask = evsel->attr.sample_regs_intr; 2300 2301 sz = hweight_long(mask) * sizeof(u64); 2302 OVERFLOW_CHECK(array, sz, max_size); 2303 data->intr_regs.mask = mask; 2304 data->intr_regs.regs = (u64 *)array; 2305 array = (void *)array + sz; 2306 } 2307 } 2308 2309 data->phys_addr = 0; 2310 if (type & PERF_SAMPLE_PHYS_ADDR) { 2311 data->phys_addr = *array; 2312 array++; 2313 } 2314 2315 return 0; 2316 } 2317 2318 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel, 2319 union perf_event *event, 2320 u64 *timestamp) 2321 { 2322 u64 type = evsel->attr.sample_type; 2323 const u64 *array; 2324 2325 if (!(type & PERF_SAMPLE_TIME)) 2326 return -1; 2327 2328 if (event->header.type != PERF_RECORD_SAMPLE) { 2329 struct perf_sample data = { 2330 .time = -1ULL, 2331 }; 2332 2333 if (!evsel->attr.sample_id_all) 2334 return -1; 2335 if (perf_evsel__parse_id_sample(evsel, event, &data)) 2336 return -1; 2337 2338 *timestamp = data.time; 2339 return 0; 2340 } 2341 2342 array = event->sample.array; 2343 2344 if (perf_event__check_size(event, evsel->sample_size)) 2345 return -EFAULT; 2346 2347 if (type & PERF_SAMPLE_IDENTIFIER) 2348 array++; 2349 2350 if (type & PERF_SAMPLE_IP) 2351 array++; 2352 2353 if (type & PERF_SAMPLE_TID) 2354 array++; 2355 2356 if (type & PERF_SAMPLE_TIME) 2357 *timestamp = *array; 2358 2359 return 0; 2360 } 2361 2362 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2363 u64 read_format) 2364 { 2365 size_t sz, result = sizeof(struct sample_event); 2366 2367 if (type & PERF_SAMPLE_IDENTIFIER) 2368 result += sizeof(u64); 2369 2370 if (type & PERF_SAMPLE_IP) 2371 result += sizeof(u64); 2372 2373 if (type & PERF_SAMPLE_TID) 2374 result += sizeof(u64); 2375 2376 if (type & PERF_SAMPLE_TIME) 2377 result += sizeof(u64); 2378 2379 if (type & PERF_SAMPLE_ADDR) 2380 result += sizeof(u64); 2381 2382 if (type & PERF_SAMPLE_ID) 2383 result += sizeof(u64); 2384 2385 if (type & PERF_SAMPLE_STREAM_ID) 2386 result += sizeof(u64); 2387 2388 if (type & PERF_SAMPLE_CPU) 2389 result += sizeof(u64); 2390 2391 if (type & PERF_SAMPLE_PERIOD) 2392 result += sizeof(u64); 2393 2394 if (type & PERF_SAMPLE_READ) { 2395 result += sizeof(u64); 2396 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2397 result += sizeof(u64); 2398 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2399 result += sizeof(u64); 2400 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2401 if (read_format & PERF_FORMAT_GROUP) { 2402 sz = sample->read.group.nr * 2403 sizeof(struct sample_read_value); 2404 result += sz; 2405 } else { 2406 result += sizeof(u64); 2407 } 2408 } 2409 2410 if (type & PERF_SAMPLE_CALLCHAIN) { 2411 sz = (sample->callchain->nr + 1) * sizeof(u64); 2412 result += sz; 2413 } 2414 2415 if (type & PERF_SAMPLE_RAW) { 2416 result += sizeof(u32); 2417 result += sample->raw_size; 2418 } 2419 2420 if (type & PERF_SAMPLE_BRANCH_STACK) { 2421 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2422 sz += sizeof(u64); 2423 result += sz; 2424 } 2425 2426 if (type & PERF_SAMPLE_REGS_USER) { 2427 if (sample->user_regs.abi) { 2428 result += sizeof(u64); 2429 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2430 result += sz; 2431 } else { 2432 result += sizeof(u64); 2433 } 2434 } 2435 2436 if (type & PERF_SAMPLE_STACK_USER) { 2437 sz = sample->user_stack.size; 2438 result += sizeof(u64); 2439 if (sz) { 2440 result += sz; 2441 result += sizeof(u64); 2442 } 2443 } 2444 2445 if (type & PERF_SAMPLE_WEIGHT) 2446 result += sizeof(u64); 2447 2448 if (type & PERF_SAMPLE_DATA_SRC) 2449 result += sizeof(u64); 2450 2451 if (type & PERF_SAMPLE_TRANSACTION) 2452 result += sizeof(u64); 2453 2454 if (type & PERF_SAMPLE_REGS_INTR) { 2455 if (sample->intr_regs.abi) { 2456 result += sizeof(u64); 2457 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2458 result += sz; 2459 } else { 2460 result += sizeof(u64); 2461 } 2462 } 2463 2464 if (type & PERF_SAMPLE_PHYS_ADDR) 2465 result += sizeof(u64); 2466 2467 return result; 2468 } 2469 2470 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2471 u64 read_format, 2472 const struct perf_sample *sample) 2473 { 2474 u64 *array; 2475 size_t sz; 2476 /* 2477 * used for cross-endian analysis. See git commit 65014ab3 2478 * for why this goofiness is needed. 2479 */ 2480 union u64_swap u; 2481 2482 array = event->sample.array; 2483 2484 if (type & PERF_SAMPLE_IDENTIFIER) { 2485 *array = sample->id; 2486 array++; 2487 } 2488 2489 if (type & PERF_SAMPLE_IP) { 2490 *array = sample->ip; 2491 array++; 2492 } 2493 2494 if (type & PERF_SAMPLE_TID) { 2495 u.val32[0] = sample->pid; 2496 u.val32[1] = sample->tid; 2497 *array = u.val64; 2498 array++; 2499 } 2500 2501 if (type & PERF_SAMPLE_TIME) { 2502 *array = sample->time; 2503 array++; 2504 } 2505 2506 if (type & PERF_SAMPLE_ADDR) { 2507 *array = sample->addr; 2508 array++; 2509 } 2510 2511 if (type & PERF_SAMPLE_ID) { 2512 *array = sample->id; 2513 array++; 2514 } 2515 2516 if (type & PERF_SAMPLE_STREAM_ID) { 2517 *array = sample->stream_id; 2518 array++; 2519 } 2520 2521 if (type & PERF_SAMPLE_CPU) { 2522 u.val32[0] = sample->cpu; 2523 u.val32[1] = 0; 2524 *array = u.val64; 2525 array++; 2526 } 2527 2528 if (type & PERF_SAMPLE_PERIOD) { 2529 *array = sample->period; 2530 array++; 2531 } 2532 2533 if (type & PERF_SAMPLE_READ) { 2534 if (read_format & PERF_FORMAT_GROUP) 2535 *array = sample->read.group.nr; 2536 else 2537 *array = sample->read.one.value; 2538 array++; 2539 2540 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2541 *array = sample->read.time_enabled; 2542 array++; 2543 } 2544 2545 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2546 *array = sample->read.time_running; 2547 array++; 2548 } 2549 2550 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2551 if (read_format & PERF_FORMAT_GROUP) { 2552 sz = sample->read.group.nr * 2553 sizeof(struct sample_read_value); 2554 memcpy(array, sample->read.group.values, sz); 2555 array = (void *)array + sz; 2556 } else { 2557 *array = sample->read.one.id; 2558 array++; 2559 } 2560 } 2561 2562 if (type & PERF_SAMPLE_CALLCHAIN) { 2563 sz = (sample->callchain->nr + 1) * sizeof(u64); 2564 memcpy(array, sample->callchain, sz); 2565 array = (void *)array + sz; 2566 } 2567 2568 if (type & PERF_SAMPLE_RAW) { 2569 u.val32[0] = sample->raw_size; 2570 *array = u.val64; 2571 array = (void *)array + sizeof(u32); 2572 2573 memcpy(array, sample->raw_data, sample->raw_size); 2574 array = (void *)array + sample->raw_size; 2575 } 2576 2577 if (type & PERF_SAMPLE_BRANCH_STACK) { 2578 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2579 sz += sizeof(u64); 2580 memcpy(array, sample->branch_stack, sz); 2581 array = (void *)array + sz; 2582 } 2583 2584 if (type & PERF_SAMPLE_REGS_USER) { 2585 if (sample->user_regs.abi) { 2586 *array++ = sample->user_regs.abi; 2587 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2588 memcpy(array, sample->user_regs.regs, sz); 2589 array = (void *)array + sz; 2590 } else { 2591 *array++ = 0; 2592 } 2593 } 2594 2595 if (type & PERF_SAMPLE_STACK_USER) { 2596 sz = sample->user_stack.size; 2597 *array++ = sz; 2598 if (sz) { 2599 memcpy(array, sample->user_stack.data, sz); 2600 array = (void *)array + sz; 2601 *array++ = sz; 2602 } 2603 } 2604 2605 if (type & PERF_SAMPLE_WEIGHT) { 2606 *array = sample->weight; 2607 array++; 2608 } 2609 2610 if (type & PERF_SAMPLE_DATA_SRC) { 2611 *array = sample->data_src; 2612 array++; 2613 } 2614 2615 if (type & PERF_SAMPLE_TRANSACTION) { 2616 *array = sample->transaction; 2617 array++; 2618 } 2619 2620 if (type & PERF_SAMPLE_REGS_INTR) { 2621 if (sample->intr_regs.abi) { 2622 *array++ = sample->intr_regs.abi; 2623 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2624 memcpy(array, sample->intr_regs.regs, sz); 2625 array = (void *)array + sz; 2626 } else { 2627 *array++ = 0; 2628 } 2629 } 2630 2631 if (type & PERF_SAMPLE_PHYS_ADDR) { 2632 *array = sample->phys_addr; 2633 array++; 2634 } 2635 2636 return 0; 2637 } 2638 2639 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2640 { 2641 return pevent_find_field(evsel->tp_format, name); 2642 } 2643 2644 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2645 const char *name) 2646 { 2647 struct format_field *field = perf_evsel__field(evsel, name); 2648 int offset; 2649 2650 if (!field) 2651 return NULL; 2652 2653 offset = field->offset; 2654 2655 if (field->flags & FIELD_IS_DYNAMIC) { 2656 offset = *(int *)(sample->raw_data + field->offset); 2657 offset &= 0xffff; 2658 } 2659 2660 return sample->raw_data + offset; 2661 } 2662 2663 u64 format_field__intval(struct format_field *field, struct perf_sample *sample, 2664 bool needs_swap) 2665 { 2666 u64 value; 2667 void *ptr = sample->raw_data + field->offset; 2668 2669 switch (field->size) { 2670 case 1: 2671 return *(u8 *)ptr; 2672 case 2: 2673 value = *(u16 *)ptr; 2674 break; 2675 case 4: 2676 value = *(u32 *)ptr; 2677 break; 2678 case 8: 2679 memcpy(&value, ptr, sizeof(u64)); 2680 break; 2681 default: 2682 return 0; 2683 } 2684 2685 if (!needs_swap) 2686 return value; 2687 2688 switch (field->size) { 2689 case 2: 2690 return bswap_16(value); 2691 case 4: 2692 return bswap_32(value); 2693 case 8: 2694 return bswap_64(value); 2695 default: 2696 return 0; 2697 } 2698 2699 return 0; 2700 } 2701 2702 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2703 const char *name) 2704 { 2705 struct format_field *field = perf_evsel__field(evsel, name); 2706 2707 if (!field) 2708 return 0; 2709 2710 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2711 } 2712 2713 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2714 char *msg, size_t msgsize) 2715 { 2716 int paranoid; 2717 2718 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2719 evsel->attr.type == PERF_TYPE_HARDWARE && 2720 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2721 /* 2722 * If it's cycles then fall back to hrtimer based 2723 * cpu-clock-tick sw counter, which is always available even if 2724 * no PMU support. 2725 * 2726 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2727 * b0a873e). 2728 */ 2729 scnprintf(msg, msgsize, "%s", 2730 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2731 2732 evsel->attr.type = PERF_TYPE_SOFTWARE; 2733 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2734 2735 zfree(&evsel->name); 2736 return true; 2737 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2738 (paranoid = perf_event_paranoid()) > 1) { 2739 const char *name = perf_evsel__name(evsel); 2740 char *new_name; 2741 2742 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0) 2743 return false; 2744 2745 if (evsel->name) 2746 free(evsel->name); 2747 evsel->name = new_name; 2748 scnprintf(msg, msgsize, 2749 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2750 evsel->attr.exclude_kernel = 1; 2751 2752 return true; 2753 } 2754 2755 return false; 2756 } 2757 2758 static bool find_process(const char *name) 2759 { 2760 size_t len = strlen(name); 2761 DIR *dir; 2762 struct dirent *d; 2763 int ret = -1; 2764 2765 dir = opendir(procfs__mountpoint()); 2766 if (!dir) 2767 return false; 2768 2769 /* Walk through the directory. */ 2770 while (ret && (d = readdir(dir)) != NULL) { 2771 char path[PATH_MAX]; 2772 char *data; 2773 size_t size; 2774 2775 if ((d->d_type != DT_DIR) || 2776 !strcmp(".", d->d_name) || 2777 !strcmp("..", d->d_name)) 2778 continue; 2779 2780 scnprintf(path, sizeof(path), "%s/%s/comm", 2781 procfs__mountpoint(), d->d_name); 2782 2783 if (filename__read_str(path, &data, &size)) 2784 continue; 2785 2786 ret = strncmp(name, data, len); 2787 free(data); 2788 } 2789 2790 closedir(dir); 2791 return ret ? false : true; 2792 } 2793 2794 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2795 int err, char *msg, size_t size) 2796 { 2797 char sbuf[STRERR_BUFSIZE]; 2798 int printed = 0; 2799 2800 switch (err) { 2801 case EPERM: 2802 case EACCES: 2803 if (err == EPERM) 2804 printed = scnprintf(msg, size, 2805 "No permission to enable %s event.\n\n", 2806 perf_evsel__name(evsel)); 2807 2808 return scnprintf(msg + printed, size - printed, 2809 "You may not have permission to collect %sstats.\n\n" 2810 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2811 "which controls use of the performance events system by\n" 2812 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2813 "The current value is %d:\n\n" 2814 " -1: Allow use of (almost) all events by all users\n" 2815 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" 2816 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n" 2817 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n" 2818 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2819 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2820 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2821 " kernel.perf_event_paranoid = -1\n" , 2822 target->system_wide ? "system-wide " : "", 2823 perf_event_paranoid()); 2824 case ENOENT: 2825 return scnprintf(msg, size, "The %s event is not supported.", 2826 perf_evsel__name(evsel)); 2827 case EMFILE: 2828 return scnprintf(msg, size, "%s", 2829 "Too many events are opened.\n" 2830 "Probably the maximum number of open file descriptors has been reached.\n" 2831 "Hint: Try again after reducing the number of events.\n" 2832 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2833 case ENOMEM: 2834 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 && 2835 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2836 return scnprintf(msg, size, 2837 "Not enough memory to setup event with callchain.\n" 2838 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2839 "Hint: Current value: %d", sysctl_perf_event_max_stack); 2840 break; 2841 case ENODEV: 2842 if (target->cpu_list) 2843 return scnprintf(msg, size, "%s", 2844 "No such device - did you specify an out-of-range profile CPU?"); 2845 break; 2846 case EOPNOTSUPP: 2847 if (evsel->attr.sample_period != 0) 2848 return scnprintf(msg, size, 2849 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'", 2850 perf_evsel__name(evsel)); 2851 if (evsel->attr.precise_ip) 2852 return scnprintf(msg, size, "%s", 2853 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2854 #if defined(__i386__) || defined(__x86_64__) 2855 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2856 return scnprintf(msg, size, "%s", 2857 "No hardware sampling interrupt available.\n" 2858 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); 2859 #endif 2860 break; 2861 case EBUSY: 2862 if (find_process("oprofiled")) 2863 return scnprintf(msg, size, 2864 "The PMU counters are busy/taken by another profiler.\n" 2865 "We found oprofile daemon running, please stop it and try again."); 2866 break; 2867 case EINVAL: 2868 if (evsel->attr.write_backward && perf_missing_features.write_backward) 2869 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2870 if (perf_missing_features.clockid) 2871 return scnprintf(msg, size, "clockid feature not supported."); 2872 if (perf_missing_features.clockid_wrong) 2873 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2874 break; 2875 default: 2876 break; 2877 } 2878 2879 return scnprintf(msg, size, 2880 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2881 "/bin/dmesg may provide additional information.\n" 2882 "No CONFIG_PERF_EVENTS=y kernel support configured?", 2883 err, str_error_r(err, sbuf, sizeof(sbuf)), 2884 perf_evsel__name(evsel)); 2885 } 2886 2887 struct perf_env *perf_evsel__env(struct perf_evsel *evsel) 2888 { 2889 if (evsel && evsel->evlist) 2890 return evsel->evlist->env; 2891 return NULL; 2892 } 2893