1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <errno.h> 12 #include <inttypes.h> 13 #include <linux/bitops.h> 14 #include <api/fs/fs.h> 15 #include <api/fs/tracing_path.h> 16 #include <traceevent/event-parse.h> 17 #include <linux/hw_breakpoint.h> 18 #include <linux/perf_event.h> 19 #include <linux/compiler.h> 20 #include <linux/err.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include "asm/bug.h" 26 #include "callchain.h" 27 #include "cgroup.h" 28 #include "event.h" 29 #include "evsel.h" 30 #include "evlist.h" 31 #include "util.h" 32 #include "cpumap.h" 33 #include "thread_map.h" 34 #include "target.h" 35 #include "perf_regs.h" 36 #include "debug.h" 37 #include "trace-event.h" 38 #include "stat.h" 39 #include "util/parse-branch-options.h" 40 41 #include "sane_ctype.h" 42 43 static struct { 44 bool sample_id_all; 45 bool exclude_guest; 46 bool mmap2; 47 bool cloexec; 48 bool clockid; 49 bool clockid_wrong; 50 bool lbr_flags; 51 bool write_backward; 52 bool group_read; 53 } perf_missing_features; 54 55 static clockid_t clockid; 56 57 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 58 { 59 return 0; 60 } 61 62 void __weak test_attr__ready(void) { } 63 64 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 65 { 66 } 67 68 static struct { 69 size_t size; 70 int (*init)(struct perf_evsel *evsel); 71 void (*fini)(struct perf_evsel *evsel); 72 } perf_evsel__object = { 73 .size = sizeof(struct perf_evsel), 74 .init = perf_evsel__no_extra_init, 75 .fini = perf_evsel__no_extra_fini, 76 }; 77 78 int perf_evsel__object_config(size_t object_size, 79 int (*init)(struct perf_evsel *evsel), 80 void (*fini)(struct perf_evsel *evsel)) 81 { 82 83 if (object_size == 0) 84 goto set_methods; 85 86 if (perf_evsel__object.size > object_size) 87 return -EINVAL; 88 89 perf_evsel__object.size = object_size; 90 91 set_methods: 92 if (init != NULL) 93 perf_evsel__object.init = init; 94 95 if (fini != NULL) 96 perf_evsel__object.fini = fini; 97 98 return 0; 99 } 100 101 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 102 103 int __perf_evsel__sample_size(u64 sample_type) 104 { 105 u64 mask = sample_type & PERF_SAMPLE_MASK; 106 int size = 0; 107 int i; 108 109 for (i = 0; i < 64; i++) { 110 if (mask & (1ULL << i)) 111 size++; 112 } 113 114 size *= sizeof(u64); 115 116 return size; 117 } 118 119 /** 120 * __perf_evsel__calc_id_pos - calculate id_pos. 121 * @sample_type: sample type 122 * 123 * This function returns the position of the event id (PERF_SAMPLE_ID or 124 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 125 * sample_event. 126 */ 127 static int __perf_evsel__calc_id_pos(u64 sample_type) 128 { 129 int idx = 0; 130 131 if (sample_type & PERF_SAMPLE_IDENTIFIER) 132 return 0; 133 134 if (!(sample_type & PERF_SAMPLE_ID)) 135 return -1; 136 137 if (sample_type & PERF_SAMPLE_IP) 138 idx += 1; 139 140 if (sample_type & PERF_SAMPLE_TID) 141 idx += 1; 142 143 if (sample_type & PERF_SAMPLE_TIME) 144 idx += 1; 145 146 if (sample_type & PERF_SAMPLE_ADDR) 147 idx += 1; 148 149 return idx; 150 } 151 152 /** 153 * __perf_evsel__calc_is_pos - calculate is_pos. 154 * @sample_type: sample type 155 * 156 * This function returns the position (counting backwards) of the event id 157 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 158 * sample_id_all is used there is an id sample appended to non-sample events. 159 */ 160 static int __perf_evsel__calc_is_pos(u64 sample_type) 161 { 162 int idx = 1; 163 164 if (sample_type & PERF_SAMPLE_IDENTIFIER) 165 return 1; 166 167 if (!(sample_type & PERF_SAMPLE_ID)) 168 return -1; 169 170 if (sample_type & PERF_SAMPLE_CPU) 171 idx += 1; 172 173 if (sample_type & PERF_SAMPLE_STREAM_ID) 174 idx += 1; 175 176 return idx; 177 } 178 179 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 180 { 181 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 182 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 183 } 184 185 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 186 enum perf_event_sample_format bit) 187 { 188 if (!(evsel->attr.sample_type & bit)) { 189 evsel->attr.sample_type |= bit; 190 evsel->sample_size += sizeof(u64); 191 perf_evsel__calc_id_pos(evsel); 192 } 193 } 194 195 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 196 enum perf_event_sample_format bit) 197 { 198 if (evsel->attr.sample_type & bit) { 199 evsel->attr.sample_type &= ~bit; 200 evsel->sample_size -= sizeof(u64); 201 perf_evsel__calc_id_pos(evsel); 202 } 203 } 204 205 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 206 bool can_sample_identifier) 207 { 208 if (can_sample_identifier) { 209 perf_evsel__reset_sample_bit(evsel, ID); 210 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 211 } else { 212 perf_evsel__set_sample_bit(evsel, ID); 213 } 214 evsel->attr.read_format |= PERF_FORMAT_ID; 215 } 216 217 /** 218 * perf_evsel__is_function_event - Return whether given evsel is a function 219 * trace event 220 * 221 * @evsel - evsel selector to be tested 222 * 223 * Return %true if event is function trace event 224 */ 225 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 226 { 227 #define FUNCTION_EVENT "ftrace:function" 228 229 return evsel->name && 230 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 231 232 #undef FUNCTION_EVENT 233 } 234 235 void perf_evsel__init(struct perf_evsel *evsel, 236 struct perf_event_attr *attr, int idx) 237 { 238 evsel->idx = idx; 239 evsel->tracking = !idx; 240 evsel->attr = *attr; 241 evsel->leader = evsel; 242 evsel->unit = ""; 243 evsel->scale = 1.0; 244 evsel->evlist = NULL; 245 evsel->bpf_fd = -1; 246 INIT_LIST_HEAD(&evsel->node); 247 INIT_LIST_HEAD(&evsel->config_terms); 248 perf_evsel__object.init(evsel); 249 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 250 perf_evsel__calc_id_pos(evsel); 251 evsel->cmdline_group_boundary = false; 252 evsel->metric_expr = NULL; 253 evsel->metric_name = NULL; 254 evsel->metric_events = NULL; 255 evsel->collect_stat = false; 256 } 257 258 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 259 { 260 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 261 262 if (evsel != NULL) 263 perf_evsel__init(evsel, attr, idx); 264 265 if (perf_evsel__is_bpf_output(evsel)) { 266 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 267 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 268 evsel->attr.sample_period = 1; 269 } 270 271 return evsel; 272 } 273 274 static bool perf_event_can_profile_kernel(void) 275 { 276 return geteuid() == 0 || perf_event_paranoid() == -1; 277 } 278 279 struct perf_evsel *perf_evsel__new_cycles(bool precise) 280 { 281 struct perf_event_attr attr = { 282 .type = PERF_TYPE_HARDWARE, 283 .config = PERF_COUNT_HW_CPU_CYCLES, 284 .exclude_kernel = !perf_event_can_profile_kernel(), 285 }; 286 struct perf_evsel *evsel; 287 288 event_attr_init(&attr); 289 290 if (!precise) 291 goto new_event; 292 /* 293 * Unnamed union member, not supported as struct member named 294 * initializer in older compilers such as gcc 4.4.7 295 * 296 * Just for probing the precise_ip: 297 */ 298 attr.sample_period = 1; 299 300 perf_event_attr__set_max_precise_ip(&attr); 301 /* 302 * Now let the usual logic to set up the perf_event_attr defaults 303 * to kick in when we return and before perf_evsel__open() is called. 304 */ 305 attr.sample_period = 0; 306 new_event: 307 evsel = perf_evsel__new(&attr); 308 if (evsel == NULL) 309 goto out; 310 311 /* use asprintf() because free(evsel) assumes name is allocated */ 312 if (asprintf(&evsel->name, "cycles%s%s%.*s", 313 (attr.precise_ip || attr.exclude_kernel) ? ":" : "", 314 attr.exclude_kernel ? "u" : "", 315 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) 316 goto error_free; 317 out: 318 return evsel; 319 error_free: 320 perf_evsel__delete(evsel); 321 evsel = NULL; 322 goto out; 323 } 324 325 /* 326 * Returns pointer with encoded error via <linux/err.h> interface. 327 */ 328 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 329 { 330 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 331 int err = -ENOMEM; 332 333 if (evsel == NULL) { 334 goto out_err; 335 } else { 336 struct perf_event_attr attr = { 337 .type = PERF_TYPE_TRACEPOINT, 338 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 339 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 340 }; 341 342 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 343 goto out_free; 344 345 evsel->tp_format = trace_event__tp_format(sys, name); 346 if (IS_ERR(evsel->tp_format)) { 347 err = PTR_ERR(evsel->tp_format); 348 goto out_free; 349 } 350 351 event_attr_init(&attr); 352 attr.config = evsel->tp_format->id; 353 attr.sample_period = 1; 354 perf_evsel__init(evsel, &attr, idx); 355 } 356 357 return evsel; 358 359 out_free: 360 zfree(&evsel->name); 361 free(evsel); 362 out_err: 363 return ERR_PTR(err); 364 } 365 366 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 367 "cycles", 368 "instructions", 369 "cache-references", 370 "cache-misses", 371 "branches", 372 "branch-misses", 373 "bus-cycles", 374 "stalled-cycles-frontend", 375 "stalled-cycles-backend", 376 "ref-cycles", 377 }; 378 379 static const char *__perf_evsel__hw_name(u64 config) 380 { 381 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 382 return perf_evsel__hw_names[config]; 383 384 return "unknown-hardware"; 385 } 386 387 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 388 { 389 int colon = 0, r = 0; 390 struct perf_event_attr *attr = &evsel->attr; 391 bool exclude_guest_default = false; 392 393 #define MOD_PRINT(context, mod) do { \ 394 if (!attr->exclude_##context) { \ 395 if (!colon) colon = ++r; \ 396 r += scnprintf(bf + r, size - r, "%c", mod); \ 397 } } while(0) 398 399 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 400 MOD_PRINT(kernel, 'k'); 401 MOD_PRINT(user, 'u'); 402 MOD_PRINT(hv, 'h'); 403 exclude_guest_default = true; 404 } 405 406 if (attr->precise_ip) { 407 if (!colon) 408 colon = ++r; 409 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 410 exclude_guest_default = true; 411 } 412 413 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 414 MOD_PRINT(host, 'H'); 415 MOD_PRINT(guest, 'G'); 416 } 417 #undef MOD_PRINT 418 if (colon) 419 bf[colon - 1] = ':'; 420 return r; 421 } 422 423 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 424 { 425 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 426 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 427 } 428 429 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 430 "cpu-clock", 431 "task-clock", 432 "page-faults", 433 "context-switches", 434 "cpu-migrations", 435 "minor-faults", 436 "major-faults", 437 "alignment-faults", 438 "emulation-faults", 439 "dummy", 440 }; 441 442 static const char *__perf_evsel__sw_name(u64 config) 443 { 444 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 445 return perf_evsel__sw_names[config]; 446 return "unknown-software"; 447 } 448 449 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 450 { 451 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 452 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 453 } 454 455 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 456 { 457 int r; 458 459 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 460 461 if (type & HW_BREAKPOINT_R) 462 r += scnprintf(bf + r, size - r, "r"); 463 464 if (type & HW_BREAKPOINT_W) 465 r += scnprintf(bf + r, size - r, "w"); 466 467 if (type & HW_BREAKPOINT_X) 468 r += scnprintf(bf + r, size - r, "x"); 469 470 return r; 471 } 472 473 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 474 { 475 struct perf_event_attr *attr = &evsel->attr; 476 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 477 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 478 } 479 480 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 481 [PERF_EVSEL__MAX_ALIASES] = { 482 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 483 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 484 { "LLC", "L2", }, 485 { "dTLB", "d-tlb", "Data-TLB", }, 486 { "iTLB", "i-tlb", "Instruction-TLB", }, 487 { "branch", "branches", "bpu", "btb", "bpc", }, 488 { "node", }, 489 }; 490 491 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 492 [PERF_EVSEL__MAX_ALIASES] = { 493 { "load", "loads", "read", }, 494 { "store", "stores", "write", }, 495 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 496 }; 497 498 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 499 [PERF_EVSEL__MAX_ALIASES] = { 500 { "refs", "Reference", "ops", "access", }, 501 { "misses", "miss", }, 502 }; 503 504 #define C(x) PERF_COUNT_HW_CACHE_##x 505 #define CACHE_READ (1 << C(OP_READ)) 506 #define CACHE_WRITE (1 << C(OP_WRITE)) 507 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 508 #define COP(x) (1 << x) 509 510 /* 511 * cache operartion stat 512 * L1I : Read and prefetch only 513 * ITLB and BPU : Read-only 514 */ 515 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 516 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 517 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 518 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 519 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 520 [C(ITLB)] = (CACHE_READ), 521 [C(BPU)] = (CACHE_READ), 522 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 523 }; 524 525 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 526 { 527 if (perf_evsel__hw_cache_stat[type] & COP(op)) 528 return true; /* valid */ 529 else 530 return false; /* invalid */ 531 } 532 533 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 534 char *bf, size_t size) 535 { 536 if (result) { 537 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 538 perf_evsel__hw_cache_op[op][0], 539 perf_evsel__hw_cache_result[result][0]); 540 } 541 542 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 543 perf_evsel__hw_cache_op[op][1]); 544 } 545 546 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 547 { 548 u8 op, result, type = (config >> 0) & 0xff; 549 const char *err = "unknown-ext-hardware-cache-type"; 550 551 if (type >= PERF_COUNT_HW_CACHE_MAX) 552 goto out_err; 553 554 op = (config >> 8) & 0xff; 555 err = "unknown-ext-hardware-cache-op"; 556 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 557 goto out_err; 558 559 result = (config >> 16) & 0xff; 560 err = "unknown-ext-hardware-cache-result"; 561 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 562 goto out_err; 563 564 err = "invalid-cache"; 565 if (!perf_evsel__is_cache_op_valid(type, op)) 566 goto out_err; 567 568 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 569 out_err: 570 return scnprintf(bf, size, "%s", err); 571 } 572 573 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 574 { 575 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 576 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 577 } 578 579 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 580 { 581 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 582 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 583 } 584 585 const char *perf_evsel__name(struct perf_evsel *evsel) 586 { 587 char bf[128]; 588 589 if (evsel->name) 590 return evsel->name; 591 592 switch (evsel->attr.type) { 593 case PERF_TYPE_RAW: 594 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 595 break; 596 597 case PERF_TYPE_HARDWARE: 598 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 599 break; 600 601 case PERF_TYPE_HW_CACHE: 602 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 603 break; 604 605 case PERF_TYPE_SOFTWARE: 606 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 607 break; 608 609 case PERF_TYPE_TRACEPOINT: 610 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 611 break; 612 613 case PERF_TYPE_BREAKPOINT: 614 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 615 break; 616 617 default: 618 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 619 evsel->attr.type); 620 break; 621 } 622 623 evsel->name = strdup(bf); 624 625 return evsel->name ?: "unknown"; 626 } 627 628 const char *perf_evsel__group_name(struct perf_evsel *evsel) 629 { 630 return evsel->group_name ?: "anon group"; 631 } 632 633 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 634 { 635 int ret; 636 struct perf_evsel *pos; 637 const char *group_name = perf_evsel__group_name(evsel); 638 639 ret = scnprintf(buf, size, "%s", group_name); 640 641 ret += scnprintf(buf + ret, size - ret, " { %s", 642 perf_evsel__name(evsel)); 643 644 for_each_group_member(pos, evsel) 645 ret += scnprintf(buf + ret, size - ret, ", %s", 646 perf_evsel__name(pos)); 647 648 ret += scnprintf(buf + ret, size - ret, " }"); 649 650 return ret; 651 } 652 653 void perf_evsel__config_callchain(struct perf_evsel *evsel, 654 struct record_opts *opts, 655 struct callchain_param *param) 656 { 657 bool function = perf_evsel__is_function_event(evsel); 658 struct perf_event_attr *attr = &evsel->attr; 659 660 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 661 662 attr->sample_max_stack = param->max_stack; 663 664 if (param->record_mode == CALLCHAIN_LBR) { 665 if (!opts->branch_stack) { 666 if (attr->exclude_user) { 667 pr_warning("LBR callstack option is only available " 668 "to get user callchain information. " 669 "Falling back to framepointers.\n"); 670 } else { 671 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 672 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 673 PERF_SAMPLE_BRANCH_CALL_STACK | 674 PERF_SAMPLE_BRANCH_NO_CYCLES | 675 PERF_SAMPLE_BRANCH_NO_FLAGS; 676 } 677 } else 678 pr_warning("Cannot use LBR callstack with branch stack. " 679 "Falling back to framepointers.\n"); 680 } 681 682 if (param->record_mode == CALLCHAIN_DWARF) { 683 if (!function) { 684 perf_evsel__set_sample_bit(evsel, REGS_USER); 685 perf_evsel__set_sample_bit(evsel, STACK_USER); 686 attr->sample_regs_user |= PERF_REGS_MASK; 687 attr->sample_stack_user = param->dump_size; 688 attr->exclude_callchain_user = 1; 689 } else { 690 pr_info("Cannot use DWARF unwind for function trace event," 691 " falling back to framepointers.\n"); 692 } 693 } 694 695 if (function) { 696 pr_info("Disabling user space callchains for function trace event.\n"); 697 attr->exclude_callchain_user = 1; 698 } 699 } 700 701 static void 702 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 703 struct callchain_param *param) 704 { 705 struct perf_event_attr *attr = &evsel->attr; 706 707 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 708 if (param->record_mode == CALLCHAIN_LBR) { 709 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 710 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 711 PERF_SAMPLE_BRANCH_CALL_STACK); 712 } 713 if (param->record_mode == CALLCHAIN_DWARF) { 714 perf_evsel__reset_sample_bit(evsel, REGS_USER); 715 perf_evsel__reset_sample_bit(evsel, STACK_USER); 716 } 717 } 718 719 static void apply_config_terms(struct perf_evsel *evsel, 720 struct record_opts *opts) 721 { 722 struct perf_evsel_config_term *term; 723 struct list_head *config_terms = &evsel->config_terms; 724 struct perf_event_attr *attr = &evsel->attr; 725 struct callchain_param param; 726 u32 dump_size = 0; 727 int max_stack = 0; 728 const char *callgraph_buf = NULL; 729 730 /* callgraph default */ 731 param.record_mode = callchain_param.record_mode; 732 733 list_for_each_entry(term, config_terms, list) { 734 switch (term->type) { 735 case PERF_EVSEL__CONFIG_TERM_PERIOD: 736 attr->sample_period = term->val.period; 737 attr->freq = 0; 738 break; 739 case PERF_EVSEL__CONFIG_TERM_FREQ: 740 attr->sample_freq = term->val.freq; 741 attr->freq = 1; 742 break; 743 case PERF_EVSEL__CONFIG_TERM_TIME: 744 if (term->val.time) 745 perf_evsel__set_sample_bit(evsel, TIME); 746 else 747 perf_evsel__reset_sample_bit(evsel, TIME); 748 break; 749 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 750 callgraph_buf = term->val.callgraph; 751 break; 752 case PERF_EVSEL__CONFIG_TERM_BRANCH: 753 if (term->val.branch && strcmp(term->val.branch, "no")) { 754 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 755 parse_branch_str(term->val.branch, 756 &attr->branch_sample_type); 757 } else 758 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 759 break; 760 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 761 dump_size = term->val.stack_user; 762 break; 763 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 764 max_stack = term->val.max_stack; 765 break; 766 case PERF_EVSEL__CONFIG_TERM_INHERIT: 767 /* 768 * attr->inherit should has already been set by 769 * perf_evsel__config. If user explicitly set 770 * inherit using config terms, override global 771 * opt->no_inherit setting. 772 */ 773 attr->inherit = term->val.inherit ? 1 : 0; 774 break; 775 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 776 attr->write_backward = term->val.overwrite ? 1 : 0; 777 break; 778 default: 779 break; 780 } 781 } 782 783 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 784 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 785 if (max_stack) { 786 param.max_stack = max_stack; 787 if (callgraph_buf == NULL) 788 callgraph_buf = "fp"; 789 } 790 791 /* parse callgraph parameters */ 792 if (callgraph_buf != NULL) { 793 if (!strcmp(callgraph_buf, "no")) { 794 param.enabled = false; 795 param.record_mode = CALLCHAIN_NONE; 796 } else { 797 param.enabled = true; 798 if (parse_callchain_record(callgraph_buf, ¶m)) { 799 pr_err("per-event callgraph setting for %s failed. " 800 "Apply callgraph global setting for it\n", 801 evsel->name); 802 return; 803 } 804 } 805 } 806 if (dump_size > 0) { 807 dump_size = round_up(dump_size, sizeof(u64)); 808 param.dump_size = dump_size; 809 } 810 811 /* If global callgraph set, clear it */ 812 if (callchain_param.enabled) 813 perf_evsel__reset_callgraph(evsel, &callchain_param); 814 815 /* set perf-event callgraph */ 816 if (param.enabled) 817 perf_evsel__config_callchain(evsel, opts, ¶m); 818 } 819 } 820 821 /* 822 * The enable_on_exec/disabled value strategy: 823 * 824 * 1) For any type of traced program: 825 * - all independent events and group leaders are disabled 826 * - all group members are enabled 827 * 828 * Group members are ruled by group leaders. They need to 829 * be enabled, because the group scheduling relies on that. 830 * 831 * 2) For traced programs executed by perf: 832 * - all independent events and group leaders have 833 * enable_on_exec set 834 * - we don't specifically enable or disable any event during 835 * the record command 836 * 837 * Independent events and group leaders are initially disabled 838 * and get enabled by exec. Group members are ruled by group 839 * leaders as stated in 1). 840 * 841 * 3) For traced programs attached by perf (pid/tid): 842 * - we specifically enable or disable all events during 843 * the record command 844 * 845 * When attaching events to already running traced we 846 * enable/disable events specifically, as there's no 847 * initial traced exec call. 848 */ 849 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 850 struct callchain_param *callchain) 851 { 852 struct perf_evsel *leader = evsel->leader; 853 struct perf_event_attr *attr = &evsel->attr; 854 int track = evsel->tracking; 855 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 856 857 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 858 attr->inherit = !opts->no_inherit; 859 attr->write_backward = opts->overwrite ? 1 : 0; 860 861 perf_evsel__set_sample_bit(evsel, IP); 862 perf_evsel__set_sample_bit(evsel, TID); 863 864 if (evsel->sample_read) { 865 perf_evsel__set_sample_bit(evsel, READ); 866 867 /* 868 * We need ID even in case of single event, because 869 * PERF_SAMPLE_READ process ID specific data. 870 */ 871 perf_evsel__set_sample_id(evsel, false); 872 873 /* 874 * Apply group format only if we belong to group 875 * with more than one members. 876 */ 877 if (leader->nr_members > 1) { 878 attr->read_format |= PERF_FORMAT_GROUP; 879 attr->inherit = 0; 880 } 881 } 882 883 /* 884 * We default some events to have a default interval. But keep 885 * it a weak assumption overridable by the user. 886 */ 887 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 888 opts->user_interval != ULLONG_MAX)) { 889 if (opts->freq) { 890 perf_evsel__set_sample_bit(evsel, PERIOD); 891 attr->freq = 1; 892 attr->sample_freq = opts->freq; 893 } else { 894 attr->sample_period = opts->default_interval; 895 } 896 } 897 898 /* 899 * Disable sampling for all group members other 900 * than leader in case leader 'leads' the sampling. 901 */ 902 if ((leader != evsel) && leader->sample_read) { 903 attr->sample_freq = 0; 904 attr->sample_period = 0; 905 } 906 907 if (opts->no_samples) 908 attr->sample_freq = 0; 909 910 if (opts->inherit_stat) { 911 evsel->attr.read_format |= 912 PERF_FORMAT_TOTAL_TIME_ENABLED | 913 PERF_FORMAT_TOTAL_TIME_RUNNING | 914 PERF_FORMAT_ID; 915 attr->inherit_stat = 1; 916 } 917 918 if (opts->sample_address) { 919 perf_evsel__set_sample_bit(evsel, ADDR); 920 attr->mmap_data = track; 921 } 922 923 /* 924 * We don't allow user space callchains for function trace 925 * event, due to issues with page faults while tracing page 926 * fault handler and its overall trickiness nature. 927 */ 928 if (perf_evsel__is_function_event(evsel)) 929 evsel->attr.exclude_callchain_user = 1; 930 931 if (callchain && callchain->enabled && !evsel->no_aux_samples) 932 perf_evsel__config_callchain(evsel, opts, callchain); 933 934 if (opts->sample_intr_regs) { 935 attr->sample_regs_intr = opts->sample_intr_regs; 936 perf_evsel__set_sample_bit(evsel, REGS_INTR); 937 } 938 939 if (opts->sample_user_regs) { 940 attr->sample_regs_user |= opts->sample_user_regs; 941 perf_evsel__set_sample_bit(evsel, REGS_USER); 942 } 943 944 if (target__has_cpu(&opts->target) || opts->sample_cpu) 945 perf_evsel__set_sample_bit(evsel, CPU); 946 947 if (opts->period) 948 perf_evsel__set_sample_bit(evsel, PERIOD); 949 950 /* 951 * When the user explicitly disabled time don't force it here. 952 */ 953 if (opts->sample_time && 954 (!perf_missing_features.sample_id_all && 955 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 956 opts->sample_time_set))) 957 perf_evsel__set_sample_bit(evsel, TIME); 958 959 if (opts->raw_samples && !evsel->no_aux_samples) { 960 perf_evsel__set_sample_bit(evsel, TIME); 961 perf_evsel__set_sample_bit(evsel, RAW); 962 perf_evsel__set_sample_bit(evsel, CPU); 963 } 964 965 if (opts->sample_address) 966 perf_evsel__set_sample_bit(evsel, DATA_SRC); 967 968 if (opts->sample_phys_addr) 969 perf_evsel__set_sample_bit(evsel, PHYS_ADDR); 970 971 if (opts->no_buffering) { 972 attr->watermark = 0; 973 attr->wakeup_events = 1; 974 } 975 if (opts->branch_stack && !evsel->no_aux_samples) { 976 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 977 attr->branch_sample_type = opts->branch_stack; 978 } 979 980 if (opts->sample_weight) 981 perf_evsel__set_sample_bit(evsel, WEIGHT); 982 983 attr->task = track; 984 attr->mmap = track; 985 attr->mmap2 = track && !perf_missing_features.mmap2; 986 attr->comm = track; 987 988 if (opts->record_namespaces) 989 attr->namespaces = track; 990 991 if (opts->record_switch_events) 992 attr->context_switch = track; 993 994 if (opts->sample_transaction) 995 perf_evsel__set_sample_bit(evsel, TRANSACTION); 996 997 if (opts->running_time) { 998 evsel->attr.read_format |= 999 PERF_FORMAT_TOTAL_TIME_ENABLED | 1000 PERF_FORMAT_TOTAL_TIME_RUNNING; 1001 } 1002 1003 /* 1004 * XXX see the function comment above 1005 * 1006 * Disabling only independent events or group leaders, 1007 * keeping group members enabled. 1008 */ 1009 if (perf_evsel__is_group_leader(evsel)) 1010 attr->disabled = 1; 1011 1012 /* 1013 * Setting enable_on_exec for independent events and 1014 * group leaders for traced executed by perf. 1015 */ 1016 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 1017 !opts->initial_delay) 1018 attr->enable_on_exec = 1; 1019 1020 if (evsel->immediate) { 1021 attr->disabled = 0; 1022 attr->enable_on_exec = 0; 1023 } 1024 1025 clockid = opts->clockid; 1026 if (opts->use_clockid) { 1027 attr->use_clockid = 1; 1028 attr->clockid = opts->clockid; 1029 } 1030 1031 if (evsel->precise_max) 1032 perf_event_attr__set_max_precise_ip(attr); 1033 1034 if (opts->all_user) { 1035 attr->exclude_kernel = 1; 1036 attr->exclude_user = 0; 1037 } 1038 1039 if (opts->all_kernel) { 1040 attr->exclude_kernel = 0; 1041 attr->exclude_user = 1; 1042 } 1043 1044 /* 1045 * Apply event specific term settings, 1046 * it overloads any global configuration. 1047 */ 1048 apply_config_terms(evsel, opts); 1049 1050 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1051 } 1052 1053 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1054 { 1055 if (evsel->system_wide) 1056 nthreads = 1; 1057 1058 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1059 1060 if (evsel->fd) { 1061 int cpu, thread; 1062 for (cpu = 0; cpu < ncpus; cpu++) { 1063 for (thread = 0; thread < nthreads; thread++) { 1064 FD(evsel, cpu, thread) = -1; 1065 } 1066 } 1067 } 1068 1069 return evsel->fd != NULL ? 0 : -ENOMEM; 1070 } 1071 1072 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, 1073 int ioc, void *arg) 1074 { 1075 int cpu, thread; 1076 1077 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 1078 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) { 1079 int fd = FD(evsel, cpu, thread), 1080 err = ioctl(fd, ioc, arg); 1081 1082 if (err) 1083 return err; 1084 } 1085 } 1086 1087 return 0; 1088 } 1089 1090 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter) 1091 { 1092 return perf_evsel__run_ioctl(evsel, 1093 PERF_EVENT_IOC_SET_FILTER, 1094 (void *)filter); 1095 } 1096 1097 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1098 { 1099 char *new_filter = strdup(filter); 1100 1101 if (new_filter != NULL) { 1102 free(evsel->filter); 1103 evsel->filter = new_filter; 1104 return 0; 1105 } 1106 1107 return -1; 1108 } 1109 1110 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1111 const char *fmt, const char *filter) 1112 { 1113 char *new_filter; 1114 1115 if (evsel->filter == NULL) 1116 return perf_evsel__set_filter(evsel, filter); 1117 1118 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1119 free(evsel->filter); 1120 evsel->filter = new_filter; 1121 return 0; 1122 } 1123 1124 return -1; 1125 } 1126 1127 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1128 { 1129 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1130 } 1131 1132 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1133 { 1134 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1135 } 1136 1137 int perf_evsel__enable(struct perf_evsel *evsel) 1138 { 1139 return perf_evsel__run_ioctl(evsel, 1140 PERF_EVENT_IOC_ENABLE, 1141 0); 1142 } 1143 1144 int perf_evsel__disable(struct perf_evsel *evsel) 1145 { 1146 return perf_evsel__run_ioctl(evsel, 1147 PERF_EVENT_IOC_DISABLE, 1148 0); 1149 } 1150 1151 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1152 { 1153 if (ncpus == 0 || nthreads == 0) 1154 return 0; 1155 1156 if (evsel->system_wide) 1157 nthreads = 1; 1158 1159 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1160 if (evsel->sample_id == NULL) 1161 return -ENOMEM; 1162 1163 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1164 if (evsel->id == NULL) { 1165 xyarray__delete(evsel->sample_id); 1166 evsel->sample_id = NULL; 1167 return -ENOMEM; 1168 } 1169 1170 return 0; 1171 } 1172 1173 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1174 { 1175 xyarray__delete(evsel->fd); 1176 evsel->fd = NULL; 1177 } 1178 1179 static void perf_evsel__free_id(struct perf_evsel *evsel) 1180 { 1181 xyarray__delete(evsel->sample_id); 1182 evsel->sample_id = NULL; 1183 zfree(&evsel->id); 1184 } 1185 1186 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1187 { 1188 struct perf_evsel_config_term *term, *h; 1189 1190 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1191 list_del(&term->list); 1192 free(term); 1193 } 1194 } 1195 1196 void perf_evsel__close_fd(struct perf_evsel *evsel) 1197 { 1198 int cpu, thread; 1199 1200 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) 1201 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) { 1202 close(FD(evsel, cpu, thread)); 1203 FD(evsel, cpu, thread) = -1; 1204 } 1205 } 1206 1207 void perf_evsel__exit(struct perf_evsel *evsel) 1208 { 1209 assert(list_empty(&evsel->node)); 1210 assert(evsel->evlist == NULL); 1211 perf_evsel__free_fd(evsel); 1212 perf_evsel__free_id(evsel); 1213 perf_evsel__free_config_terms(evsel); 1214 close_cgroup(evsel->cgrp); 1215 cpu_map__put(evsel->cpus); 1216 cpu_map__put(evsel->own_cpus); 1217 thread_map__put(evsel->threads); 1218 zfree(&evsel->group_name); 1219 zfree(&evsel->name); 1220 perf_evsel__object.fini(evsel); 1221 } 1222 1223 void perf_evsel__delete(struct perf_evsel *evsel) 1224 { 1225 perf_evsel__exit(evsel); 1226 free(evsel); 1227 } 1228 1229 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1230 struct perf_counts_values *count) 1231 { 1232 struct perf_counts_values tmp; 1233 1234 if (!evsel->prev_raw_counts) 1235 return; 1236 1237 if (cpu == -1) { 1238 tmp = evsel->prev_raw_counts->aggr; 1239 evsel->prev_raw_counts->aggr = *count; 1240 } else { 1241 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1242 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1243 } 1244 1245 count->val = count->val - tmp.val; 1246 count->ena = count->ena - tmp.ena; 1247 count->run = count->run - tmp.run; 1248 } 1249 1250 void perf_counts_values__scale(struct perf_counts_values *count, 1251 bool scale, s8 *pscaled) 1252 { 1253 s8 scaled = 0; 1254 1255 if (scale) { 1256 if (count->run == 0) { 1257 scaled = -1; 1258 count->val = 0; 1259 } else if (count->run < count->ena) { 1260 scaled = 1; 1261 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1262 } 1263 } else 1264 count->ena = count->run = 0; 1265 1266 if (pscaled) 1267 *pscaled = scaled; 1268 } 1269 1270 static int perf_evsel__read_size(struct perf_evsel *evsel) 1271 { 1272 u64 read_format = evsel->attr.read_format; 1273 int entry = sizeof(u64); /* value */ 1274 int size = 0; 1275 int nr = 1; 1276 1277 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1278 size += sizeof(u64); 1279 1280 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1281 size += sizeof(u64); 1282 1283 if (read_format & PERF_FORMAT_ID) 1284 entry += sizeof(u64); 1285 1286 if (read_format & PERF_FORMAT_GROUP) { 1287 nr = evsel->nr_members; 1288 size += sizeof(u64); 1289 } 1290 1291 size += entry * nr; 1292 return size; 1293 } 1294 1295 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1296 struct perf_counts_values *count) 1297 { 1298 size_t size = perf_evsel__read_size(evsel); 1299 1300 memset(count, 0, sizeof(*count)); 1301 1302 if (FD(evsel, cpu, thread) < 0) 1303 return -EINVAL; 1304 1305 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0) 1306 return -errno; 1307 1308 return 0; 1309 } 1310 1311 static int 1312 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread) 1313 { 1314 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread); 1315 1316 return perf_evsel__read(evsel, cpu, thread, count); 1317 } 1318 1319 static void 1320 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread, 1321 u64 val, u64 ena, u64 run) 1322 { 1323 struct perf_counts_values *count; 1324 1325 count = perf_counts(counter->counts, cpu, thread); 1326 1327 count->val = val; 1328 count->ena = ena; 1329 count->run = run; 1330 count->loaded = true; 1331 } 1332 1333 static int 1334 perf_evsel__process_group_data(struct perf_evsel *leader, 1335 int cpu, int thread, u64 *data) 1336 { 1337 u64 read_format = leader->attr.read_format; 1338 struct sample_read_value *v; 1339 u64 nr, ena = 0, run = 0, i; 1340 1341 nr = *data++; 1342 1343 if (nr != (u64) leader->nr_members) 1344 return -EINVAL; 1345 1346 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1347 ena = *data++; 1348 1349 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1350 run = *data++; 1351 1352 v = (struct sample_read_value *) data; 1353 1354 perf_evsel__set_count(leader, cpu, thread, 1355 v[0].value, ena, run); 1356 1357 for (i = 1; i < nr; i++) { 1358 struct perf_evsel *counter; 1359 1360 counter = perf_evlist__id2evsel(leader->evlist, v[i].id); 1361 if (!counter) 1362 return -EINVAL; 1363 1364 perf_evsel__set_count(counter, cpu, thread, 1365 v[i].value, ena, run); 1366 } 1367 1368 return 0; 1369 } 1370 1371 static int 1372 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread) 1373 { 1374 struct perf_stat_evsel *ps = leader->priv; 1375 u64 read_format = leader->attr.read_format; 1376 int size = perf_evsel__read_size(leader); 1377 u64 *data = ps->group_data; 1378 1379 if (!(read_format & PERF_FORMAT_ID)) 1380 return -EINVAL; 1381 1382 if (!perf_evsel__is_group_leader(leader)) 1383 return -EINVAL; 1384 1385 if (!data) { 1386 data = zalloc(size); 1387 if (!data) 1388 return -ENOMEM; 1389 1390 ps->group_data = data; 1391 } 1392 1393 if (FD(leader, cpu, thread) < 0) 1394 return -EINVAL; 1395 1396 if (readn(FD(leader, cpu, thread), data, size) <= 0) 1397 return -errno; 1398 1399 return perf_evsel__process_group_data(leader, cpu, thread, data); 1400 } 1401 1402 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread) 1403 { 1404 u64 read_format = evsel->attr.read_format; 1405 1406 if (read_format & PERF_FORMAT_GROUP) 1407 return perf_evsel__read_group(evsel, cpu, thread); 1408 else 1409 return perf_evsel__read_one(evsel, cpu, thread); 1410 } 1411 1412 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1413 int cpu, int thread, bool scale) 1414 { 1415 struct perf_counts_values count; 1416 size_t nv = scale ? 3 : 1; 1417 1418 if (FD(evsel, cpu, thread) < 0) 1419 return -EINVAL; 1420 1421 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1422 return -ENOMEM; 1423 1424 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1425 return -errno; 1426 1427 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1428 perf_counts_values__scale(&count, scale, NULL); 1429 *perf_counts(evsel->counts, cpu, thread) = count; 1430 return 0; 1431 } 1432 1433 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1434 { 1435 struct perf_evsel *leader = evsel->leader; 1436 int fd; 1437 1438 if (perf_evsel__is_group_leader(evsel)) 1439 return -1; 1440 1441 /* 1442 * Leader must be already processed/open, 1443 * if not it's a bug. 1444 */ 1445 BUG_ON(!leader->fd); 1446 1447 fd = FD(leader, cpu, thread); 1448 BUG_ON(fd == -1); 1449 1450 return fd; 1451 } 1452 1453 struct bit_names { 1454 int bit; 1455 const char *name; 1456 }; 1457 1458 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1459 { 1460 bool first_bit = true; 1461 int i = 0; 1462 1463 do { 1464 if (value & bits[i].bit) { 1465 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1466 first_bit = false; 1467 } 1468 } while (bits[++i].name != NULL); 1469 } 1470 1471 static void __p_sample_type(char *buf, size_t size, u64 value) 1472 { 1473 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1474 struct bit_names bits[] = { 1475 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1476 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1477 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1478 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1479 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1480 bit_name(WEIGHT), bit_name(PHYS_ADDR), 1481 { .name = NULL, } 1482 }; 1483 #undef bit_name 1484 __p_bits(buf, size, value, bits); 1485 } 1486 1487 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1488 { 1489 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1490 struct bit_names bits[] = { 1491 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1492 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1493 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1494 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1495 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1496 { .name = NULL, } 1497 }; 1498 #undef bit_name 1499 __p_bits(buf, size, value, bits); 1500 } 1501 1502 static void __p_read_format(char *buf, size_t size, u64 value) 1503 { 1504 #define bit_name(n) { PERF_FORMAT_##n, #n } 1505 struct bit_names bits[] = { 1506 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1507 bit_name(ID), bit_name(GROUP), 1508 { .name = NULL, } 1509 }; 1510 #undef bit_name 1511 __p_bits(buf, size, value, bits); 1512 } 1513 1514 #define BUF_SIZE 1024 1515 1516 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1517 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1518 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1519 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1520 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1521 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1522 1523 #define PRINT_ATTRn(_n, _f, _p) \ 1524 do { \ 1525 if (attr->_f) { \ 1526 _p(attr->_f); \ 1527 ret += attr__fprintf(fp, _n, buf, priv);\ 1528 } \ 1529 } while (0) 1530 1531 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1532 1533 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1534 attr__fprintf_f attr__fprintf, void *priv) 1535 { 1536 char buf[BUF_SIZE]; 1537 int ret = 0; 1538 1539 PRINT_ATTRf(type, p_unsigned); 1540 PRINT_ATTRf(size, p_unsigned); 1541 PRINT_ATTRf(config, p_hex); 1542 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1543 PRINT_ATTRf(sample_type, p_sample_type); 1544 PRINT_ATTRf(read_format, p_read_format); 1545 1546 PRINT_ATTRf(disabled, p_unsigned); 1547 PRINT_ATTRf(inherit, p_unsigned); 1548 PRINT_ATTRf(pinned, p_unsigned); 1549 PRINT_ATTRf(exclusive, p_unsigned); 1550 PRINT_ATTRf(exclude_user, p_unsigned); 1551 PRINT_ATTRf(exclude_kernel, p_unsigned); 1552 PRINT_ATTRf(exclude_hv, p_unsigned); 1553 PRINT_ATTRf(exclude_idle, p_unsigned); 1554 PRINT_ATTRf(mmap, p_unsigned); 1555 PRINT_ATTRf(comm, p_unsigned); 1556 PRINT_ATTRf(freq, p_unsigned); 1557 PRINT_ATTRf(inherit_stat, p_unsigned); 1558 PRINT_ATTRf(enable_on_exec, p_unsigned); 1559 PRINT_ATTRf(task, p_unsigned); 1560 PRINT_ATTRf(watermark, p_unsigned); 1561 PRINT_ATTRf(precise_ip, p_unsigned); 1562 PRINT_ATTRf(mmap_data, p_unsigned); 1563 PRINT_ATTRf(sample_id_all, p_unsigned); 1564 PRINT_ATTRf(exclude_host, p_unsigned); 1565 PRINT_ATTRf(exclude_guest, p_unsigned); 1566 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1567 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1568 PRINT_ATTRf(mmap2, p_unsigned); 1569 PRINT_ATTRf(comm_exec, p_unsigned); 1570 PRINT_ATTRf(use_clockid, p_unsigned); 1571 PRINT_ATTRf(context_switch, p_unsigned); 1572 PRINT_ATTRf(write_backward, p_unsigned); 1573 1574 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1575 PRINT_ATTRf(bp_type, p_unsigned); 1576 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1577 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1578 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1579 PRINT_ATTRf(sample_regs_user, p_hex); 1580 PRINT_ATTRf(sample_stack_user, p_unsigned); 1581 PRINT_ATTRf(clockid, p_signed); 1582 PRINT_ATTRf(sample_regs_intr, p_hex); 1583 PRINT_ATTRf(aux_watermark, p_unsigned); 1584 PRINT_ATTRf(sample_max_stack, p_unsigned); 1585 1586 return ret; 1587 } 1588 1589 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1590 void *priv __maybe_unused) 1591 { 1592 return fprintf(fp, " %-32s %s\n", name, val); 1593 } 1594 1595 static bool ignore_missing_thread(struct perf_evsel *evsel, 1596 struct thread_map *threads, 1597 int thread, int err) 1598 { 1599 if (!evsel->ignore_missing_thread) 1600 return false; 1601 1602 /* The system wide setup does not work with threads. */ 1603 if (evsel->system_wide) 1604 return false; 1605 1606 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1607 if (err != -ESRCH) 1608 return false; 1609 1610 /* If there's only one thread, let it fail. */ 1611 if (threads->nr == 1) 1612 return false; 1613 1614 if (thread_map__remove(threads, thread)) 1615 return false; 1616 1617 pr_warning("WARNING: Ignored open failure for pid %d\n", 1618 thread_map__pid(threads, thread)); 1619 return true; 1620 } 1621 1622 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1623 struct thread_map *threads) 1624 { 1625 int cpu, thread, nthreads; 1626 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1627 int pid = -1, err; 1628 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1629 1630 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1631 return -EINVAL; 1632 1633 if (cpus == NULL) { 1634 static struct cpu_map *empty_cpu_map; 1635 1636 if (empty_cpu_map == NULL) { 1637 empty_cpu_map = cpu_map__dummy_new(); 1638 if (empty_cpu_map == NULL) 1639 return -ENOMEM; 1640 } 1641 1642 cpus = empty_cpu_map; 1643 } 1644 1645 if (threads == NULL) { 1646 static struct thread_map *empty_thread_map; 1647 1648 if (empty_thread_map == NULL) { 1649 empty_thread_map = thread_map__new_by_tid(-1); 1650 if (empty_thread_map == NULL) 1651 return -ENOMEM; 1652 } 1653 1654 threads = empty_thread_map; 1655 } 1656 1657 if (evsel->system_wide) 1658 nthreads = 1; 1659 else 1660 nthreads = threads->nr; 1661 1662 if (evsel->fd == NULL && 1663 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1664 return -ENOMEM; 1665 1666 if (evsel->cgrp) { 1667 flags |= PERF_FLAG_PID_CGROUP; 1668 pid = evsel->cgrp->fd; 1669 } 1670 1671 fallback_missing_features: 1672 if (perf_missing_features.clockid_wrong) 1673 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1674 if (perf_missing_features.clockid) { 1675 evsel->attr.use_clockid = 0; 1676 evsel->attr.clockid = 0; 1677 } 1678 if (perf_missing_features.cloexec) 1679 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1680 if (perf_missing_features.mmap2) 1681 evsel->attr.mmap2 = 0; 1682 if (perf_missing_features.exclude_guest) 1683 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1684 if (perf_missing_features.lbr_flags) 1685 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1686 PERF_SAMPLE_BRANCH_NO_CYCLES); 1687 if (perf_missing_features.group_read && evsel->attr.inherit) 1688 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); 1689 retry_sample_id: 1690 if (perf_missing_features.sample_id_all) 1691 evsel->attr.sample_id_all = 0; 1692 1693 if (verbose >= 2) { 1694 fprintf(stderr, "%.60s\n", graph_dotted_line); 1695 fprintf(stderr, "perf_event_attr:\n"); 1696 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1697 fprintf(stderr, "%.60s\n", graph_dotted_line); 1698 } 1699 1700 for (cpu = 0; cpu < cpus->nr; cpu++) { 1701 1702 for (thread = 0; thread < nthreads; thread++) { 1703 int fd, group_fd; 1704 1705 if (!evsel->cgrp && !evsel->system_wide) 1706 pid = thread_map__pid(threads, thread); 1707 1708 group_fd = get_group_fd(evsel, cpu, thread); 1709 retry_open: 1710 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1711 pid, cpus->map[cpu], group_fd, flags); 1712 1713 test_attr__ready(); 1714 1715 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu], 1716 group_fd, flags); 1717 1718 FD(evsel, cpu, thread) = fd; 1719 1720 if (fd < 0) { 1721 err = -errno; 1722 1723 if (ignore_missing_thread(evsel, threads, thread, err)) { 1724 /* 1725 * We just removed 1 thread, so take a step 1726 * back on thread index and lower the upper 1727 * nthreads limit. 1728 */ 1729 nthreads--; 1730 thread--; 1731 1732 /* ... and pretend like nothing have happened. */ 1733 err = 0; 1734 continue; 1735 } 1736 1737 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1738 err); 1739 goto try_fallback; 1740 } 1741 1742 pr_debug2(" = %d\n", fd); 1743 1744 if (evsel->bpf_fd >= 0) { 1745 int evt_fd = fd; 1746 int bpf_fd = evsel->bpf_fd; 1747 1748 err = ioctl(evt_fd, 1749 PERF_EVENT_IOC_SET_BPF, 1750 bpf_fd); 1751 if (err && errno != EEXIST) { 1752 pr_err("failed to attach bpf fd %d: %s\n", 1753 bpf_fd, strerror(errno)); 1754 err = -EINVAL; 1755 goto out_close; 1756 } 1757 } 1758 1759 set_rlimit = NO_CHANGE; 1760 1761 /* 1762 * If we succeeded but had to kill clockid, fail and 1763 * have perf_evsel__open_strerror() print us a nice 1764 * error. 1765 */ 1766 if (perf_missing_features.clockid || 1767 perf_missing_features.clockid_wrong) { 1768 err = -EINVAL; 1769 goto out_close; 1770 } 1771 } 1772 } 1773 1774 return 0; 1775 1776 try_fallback: 1777 /* 1778 * perf stat needs between 5 and 22 fds per CPU. When we run out 1779 * of them try to increase the limits. 1780 */ 1781 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1782 struct rlimit l; 1783 int old_errno = errno; 1784 1785 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1786 if (set_rlimit == NO_CHANGE) 1787 l.rlim_cur = l.rlim_max; 1788 else { 1789 l.rlim_cur = l.rlim_max + 1000; 1790 l.rlim_max = l.rlim_cur; 1791 } 1792 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1793 set_rlimit++; 1794 errno = old_errno; 1795 goto retry_open; 1796 } 1797 } 1798 errno = old_errno; 1799 } 1800 1801 if (err != -EINVAL || cpu > 0 || thread > 0) 1802 goto out_close; 1803 1804 /* 1805 * Must probe features in the order they were added to the 1806 * perf_event_attr interface. 1807 */ 1808 if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 1809 perf_missing_features.write_backward = true; 1810 pr_debug2("switching off write_backward\n"); 1811 goto out_close; 1812 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1813 perf_missing_features.clockid_wrong = true; 1814 pr_debug2("switching off clockid\n"); 1815 goto fallback_missing_features; 1816 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1817 perf_missing_features.clockid = true; 1818 pr_debug2("switching off use_clockid\n"); 1819 goto fallback_missing_features; 1820 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1821 perf_missing_features.cloexec = true; 1822 pr_debug2("switching off cloexec flag\n"); 1823 goto fallback_missing_features; 1824 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1825 perf_missing_features.mmap2 = true; 1826 pr_debug2("switching off mmap2\n"); 1827 goto fallback_missing_features; 1828 } else if (!perf_missing_features.exclude_guest && 1829 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1830 perf_missing_features.exclude_guest = true; 1831 pr_debug2("switching off exclude_guest, exclude_host\n"); 1832 goto fallback_missing_features; 1833 } else if (!perf_missing_features.sample_id_all) { 1834 perf_missing_features.sample_id_all = true; 1835 pr_debug2("switching off sample_id_all\n"); 1836 goto retry_sample_id; 1837 } else if (!perf_missing_features.lbr_flags && 1838 (evsel->attr.branch_sample_type & 1839 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1840 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1841 perf_missing_features.lbr_flags = true; 1842 pr_debug2("switching off branch sample type no (cycles/flags)\n"); 1843 goto fallback_missing_features; 1844 } else if (!perf_missing_features.group_read && 1845 evsel->attr.inherit && 1846 (evsel->attr.read_format & PERF_FORMAT_GROUP)) { 1847 perf_missing_features.group_read = true; 1848 pr_debug2("switching off group read\n"); 1849 goto fallback_missing_features; 1850 } 1851 out_close: 1852 do { 1853 while (--thread >= 0) { 1854 close(FD(evsel, cpu, thread)); 1855 FD(evsel, cpu, thread) = -1; 1856 } 1857 thread = nthreads; 1858 } while (--cpu >= 0); 1859 return err; 1860 } 1861 1862 void perf_evsel__close(struct perf_evsel *evsel) 1863 { 1864 if (evsel->fd == NULL) 1865 return; 1866 1867 perf_evsel__close_fd(evsel); 1868 perf_evsel__free_fd(evsel); 1869 } 1870 1871 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1872 struct cpu_map *cpus) 1873 { 1874 return perf_evsel__open(evsel, cpus, NULL); 1875 } 1876 1877 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1878 struct thread_map *threads) 1879 { 1880 return perf_evsel__open(evsel, NULL, threads); 1881 } 1882 1883 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1884 const union perf_event *event, 1885 struct perf_sample *sample) 1886 { 1887 u64 type = evsel->attr.sample_type; 1888 const u64 *array = event->sample.array; 1889 bool swapped = evsel->needs_swap; 1890 union u64_swap u; 1891 1892 array += ((event->header.size - 1893 sizeof(event->header)) / sizeof(u64)) - 1; 1894 1895 if (type & PERF_SAMPLE_IDENTIFIER) { 1896 sample->id = *array; 1897 array--; 1898 } 1899 1900 if (type & PERF_SAMPLE_CPU) { 1901 u.val64 = *array; 1902 if (swapped) { 1903 /* undo swap of u64, then swap on individual u32s */ 1904 u.val64 = bswap_64(u.val64); 1905 u.val32[0] = bswap_32(u.val32[0]); 1906 } 1907 1908 sample->cpu = u.val32[0]; 1909 array--; 1910 } 1911 1912 if (type & PERF_SAMPLE_STREAM_ID) { 1913 sample->stream_id = *array; 1914 array--; 1915 } 1916 1917 if (type & PERF_SAMPLE_ID) { 1918 sample->id = *array; 1919 array--; 1920 } 1921 1922 if (type & PERF_SAMPLE_TIME) { 1923 sample->time = *array; 1924 array--; 1925 } 1926 1927 if (type & PERF_SAMPLE_TID) { 1928 u.val64 = *array; 1929 if (swapped) { 1930 /* undo swap of u64, then swap on individual u32s */ 1931 u.val64 = bswap_64(u.val64); 1932 u.val32[0] = bswap_32(u.val32[0]); 1933 u.val32[1] = bswap_32(u.val32[1]); 1934 } 1935 1936 sample->pid = u.val32[0]; 1937 sample->tid = u.val32[1]; 1938 array--; 1939 } 1940 1941 return 0; 1942 } 1943 1944 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 1945 u64 size) 1946 { 1947 return size > max_size || offset + size > endp; 1948 } 1949 1950 #define OVERFLOW_CHECK(offset, size, max_size) \ 1951 do { \ 1952 if (overflow(endp, (max_size), (offset), (size))) \ 1953 return -EFAULT; \ 1954 } while (0) 1955 1956 #define OVERFLOW_CHECK_u64(offset) \ 1957 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 1958 1959 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 1960 struct perf_sample *data) 1961 { 1962 u64 type = evsel->attr.sample_type; 1963 bool swapped = evsel->needs_swap; 1964 const u64 *array; 1965 u16 max_size = event->header.size; 1966 const void *endp = (void *)event + max_size; 1967 u64 sz; 1968 1969 /* 1970 * used for cross-endian analysis. See git commit 65014ab3 1971 * for why this goofiness is needed. 1972 */ 1973 union u64_swap u; 1974 1975 memset(data, 0, sizeof(*data)); 1976 data->cpu = data->pid = data->tid = -1; 1977 data->stream_id = data->id = data->time = -1ULL; 1978 data->period = evsel->attr.sample_period; 1979 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1980 1981 if (event->header.type != PERF_RECORD_SAMPLE) { 1982 if (!evsel->attr.sample_id_all) 1983 return 0; 1984 return perf_evsel__parse_id_sample(evsel, event, data); 1985 } 1986 1987 array = event->sample.array; 1988 1989 /* 1990 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 1991 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 1992 * check the format does not go past the end of the event. 1993 */ 1994 if (evsel->sample_size + sizeof(event->header) > event->header.size) 1995 return -EFAULT; 1996 1997 data->id = -1ULL; 1998 if (type & PERF_SAMPLE_IDENTIFIER) { 1999 data->id = *array; 2000 array++; 2001 } 2002 2003 if (type & PERF_SAMPLE_IP) { 2004 data->ip = *array; 2005 array++; 2006 } 2007 2008 if (type & PERF_SAMPLE_TID) { 2009 u.val64 = *array; 2010 if (swapped) { 2011 /* undo swap of u64, then swap on individual u32s */ 2012 u.val64 = bswap_64(u.val64); 2013 u.val32[0] = bswap_32(u.val32[0]); 2014 u.val32[1] = bswap_32(u.val32[1]); 2015 } 2016 2017 data->pid = u.val32[0]; 2018 data->tid = u.val32[1]; 2019 array++; 2020 } 2021 2022 if (type & PERF_SAMPLE_TIME) { 2023 data->time = *array; 2024 array++; 2025 } 2026 2027 data->addr = 0; 2028 if (type & PERF_SAMPLE_ADDR) { 2029 data->addr = *array; 2030 array++; 2031 } 2032 2033 if (type & PERF_SAMPLE_ID) { 2034 data->id = *array; 2035 array++; 2036 } 2037 2038 if (type & PERF_SAMPLE_STREAM_ID) { 2039 data->stream_id = *array; 2040 array++; 2041 } 2042 2043 if (type & PERF_SAMPLE_CPU) { 2044 2045 u.val64 = *array; 2046 if (swapped) { 2047 /* undo swap of u64, then swap on individual u32s */ 2048 u.val64 = bswap_64(u.val64); 2049 u.val32[0] = bswap_32(u.val32[0]); 2050 } 2051 2052 data->cpu = u.val32[0]; 2053 array++; 2054 } 2055 2056 if (type & PERF_SAMPLE_PERIOD) { 2057 data->period = *array; 2058 array++; 2059 } 2060 2061 if (type & PERF_SAMPLE_READ) { 2062 u64 read_format = evsel->attr.read_format; 2063 2064 OVERFLOW_CHECK_u64(array); 2065 if (read_format & PERF_FORMAT_GROUP) 2066 data->read.group.nr = *array; 2067 else 2068 data->read.one.value = *array; 2069 2070 array++; 2071 2072 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2073 OVERFLOW_CHECK_u64(array); 2074 data->read.time_enabled = *array; 2075 array++; 2076 } 2077 2078 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2079 OVERFLOW_CHECK_u64(array); 2080 data->read.time_running = *array; 2081 array++; 2082 } 2083 2084 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2085 if (read_format & PERF_FORMAT_GROUP) { 2086 const u64 max_group_nr = UINT64_MAX / 2087 sizeof(struct sample_read_value); 2088 2089 if (data->read.group.nr > max_group_nr) 2090 return -EFAULT; 2091 sz = data->read.group.nr * 2092 sizeof(struct sample_read_value); 2093 OVERFLOW_CHECK(array, sz, max_size); 2094 data->read.group.values = 2095 (struct sample_read_value *)array; 2096 array = (void *)array + sz; 2097 } else { 2098 OVERFLOW_CHECK_u64(array); 2099 data->read.one.id = *array; 2100 array++; 2101 } 2102 } 2103 2104 if (type & PERF_SAMPLE_CALLCHAIN) { 2105 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 2106 2107 OVERFLOW_CHECK_u64(array); 2108 data->callchain = (struct ip_callchain *)array++; 2109 if (data->callchain->nr > max_callchain_nr) 2110 return -EFAULT; 2111 sz = data->callchain->nr * sizeof(u64); 2112 OVERFLOW_CHECK(array, sz, max_size); 2113 array = (void *)array + sz; 2114 } 2115 2116 if (type & PERF_SAMPLE_RAW) { 2117 OVERFLOW_CHECK_u64(array); 2118 u.val64 = *array; 2119 if (WARN_ONCE(swapped, 2120 "Endianness of raw data not corrected!\n")) { 2121 /* undo swap of u64, then swap on individual u32s */ 2122 u.val64 = bswap_64(u.val64); 2123 u.val32[0] = bswap_32(u.val32[0]); 2124 u.val32[1] = bswap_32(u.val32[1]); 2125 } 2126 data->raw_size = u.val32[0]; 2127 array = (void *)array + sizeof(u32); 2128 2129 OVERFLOW_CHECK(array, data->raw_size, max_size); 2130 data->raw_data = (void *)array; 2131 array = (void *)array + data->raw_size; 2132 } 2133 2134 if (type & PERF_SAMPLE_BRANCH_STACK) { 2135 const u64 max_branch_nr = UINT64_MAX / 2136 sizeof(struct branch_entry); 2137 2138 OVERFLOW_CHECK_u64(array); 2139 data->branch_stack = (struct branch_stack *)array++; 2140 2141 if (data->branch_stack->nr > max_branch_nr) 2142 return -EFAULT; 2143 sz = data->branch_stack->nr * sizeof(struct branch_entry); 2144 OVERFLOW_CHECK(array, sz, max_size); 2145 array = (void *)array + sz; 2146 } 2147 2148 if (type & PERF_SAMPLE_REGS_USER) { 2149 OVERFLOW_CHECK_u64(array); 2150 data->user_regs.abi = *array; 2151 array++; 2152 2153 if (data->user_regs.abi) { 2154 u64 mask = evsel->attr.sample_regs_user; 2155 2156 sz = hweight_long(mask) * sizeof(u64); 2157 OVERFLOW_CHECK(array, sz, max_size); 2158 data->user_regs.mask = mask; 2159 data->user_regs.regs = (u64 *)array; 2160 array = (void *)array + sz; 2161 } 2162 } 2163 2164 if (type & PERF_SAMPLE_STACK_USER) { 2165 OVERFLOW_CHECK_u64(array); 2166 sz = *array++; 2167 2168 data->user_stack.offset = ((char *)(array - 1) 2169 - (char *) event); 2170 2171 if (!sz) { 2172 data->user_stack.size = 0; 2173 } else { 2174 OVERFLOW_CHECK(array, sz, max_size); 2175 data->user_stack.data = (char *)array; 2176 array = (void *)array + sz; 2177 OVERFLOW_CHECK_u64(array); 2178 data->user_stack.size = *array++; 2179 if (WARN_ONCE(data->user_stack.size > sz, 2180 "user stack dump failure\n")) 2181 return -EFAULT; 2182 } 2183 } 2184 2185 if (type & PERF_SAMPLE_WEIGHT) { 2186 OVERFLOW_CHECK_u64(array); 2187 data->weight = *array; 2188 array++; 2189 } 2190 2191 data->data_src = PERF_MEM_DATA_SRC_NONE; 2192 if (type & PERF_SAMPLE_DATA_SRC) { 2193 OVERFLOW_CHECK_u64(array); 2194 data->data_src = *array; 2195 array++; 2196 } 2197 2198 data->transaction = 0; 2199 if (type & PERF_SAMPLE_TRANSACTION) { 2200 OVERFLOW_CHECK_u64(array); 2201 data->transaction = *array; 2202 array++; 2203 } 2204 2205 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2206 if (type & PERF_SAMPLE_REGS_INTR) { 2207 OVERFLOW_CHECK_u64(array); 2208 data->intr_regs.abi = *array; 2209 array++; 2210 2211 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2212 u64 mask = evsel->attr.sample_regs_intr; 2213 2214 sz = hweight_long(mask) * sizeof(u64); 2215 OVERFLOW_CHECK(array, sz, max_size); 2216 data->intr_regs.mask = mask; 2217 data->intr_regs.regs = (u64 *)array; 2218 array = (void *)array + sz; 2219 } 2220 } 2221 2222 data->phys_addr = 0; 2223 if (type & PERF_SAMPLE_PHYS_ADDR) { 2224 data->phys_addr = *array; 2225 array++; 2226 } 2227 2228 return 0; 2229 } 2230 2231 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2232 u64 read_format) 2233 { 2234 size_t sz, result = sizeof(struct sample_event); 2235 2236 if (type & PERF_SAMPLE_IDENTIFIER) 2237 result += sizeof(u64); 2238 2239 if (type & PERF_SAMPLE_IP) 2240 result += sizeof(u64); 2241 2242 if (type & PERF_SAMPLE_TID) 2243 result += sizeof(u64); 2244 2245 if (type & PERF_SAMPLE_TIME) 2246 result += sizeof(u64); 2247 2248 if (type & PERF_SAMPLE_ADDR) 2249 result += sizeof(u64); 2250 2251 if (type & PERF_SAMPLE_ID) 2252 result += sizeof(u64); 2253 2254 if (type & PERF_SAMPLE_STREAM_ID) 2255 result += sizeof(u64); 2256 2257 if (type & PERF_SAMPLE_CPU) 2258 result += sizeof(u64); 2259 2260 if (type & PERF_SAMPLE_PERIOD) 2261 result += sizeof(u64); 2262 2263 if (type & PERF_SAMPLE_READ) { 2264 result += sizeof(u64); 2265 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2266 result += sizeof(u64); 2267 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2268 result += sizeof(u64); 2269 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2270 if (read_format & PERF_FORMAT_GROUP) { 2271 sz = sample->read.group.nr * 2272 sizeof(struct sample_read_value); 2273 result += sz; 2274 } else { 2275 result += sizeof(u64); 2276 } 2277 } 2278 2279 if (type & PERF_SAMPLE_CALLCHAIN) { 2280 sz = (sample->callchain->nr + 1) * sizeof(u64); 2281 result += sz; 2282 } 2283 2284 if (type & PERF_SAMPLE_RAW) { 2285 result += sizeof(u32); 2286 result += sample->raw_size; 2287 } 2288 2289 if (type & PERF_SAMPLE_BRANCH_STACK) { 2290 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2291 sz += sizeof(u64); 2292 result += sz; 2293 } 2294 2295 if (type & PERF_SAMPLE_REGS_USER) { 2296 if (sample->user_regs.abi) { 2297 result += sizeof(u64); 2298 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2299 result += sz; 2300 } else { 2301 result += sizeof(u64); 2302 } 2303 } 2304 2305 if (type & PERF_SAMPLE_STACK_USER) { 2306 sz = sample->user_stack.size; 2307 result += sizeof(u64); 2308 if (sz) { 2309 result += sz; 2310 result += sizeof(u64); 2311 } 2312 } 2313 2314 if (type & PERF_SAMPLE_WEIGHT) 2315 result += sizeof(u64); 2316 2317 if (type & PERF_SAMPLE_DATA_SRC) 2318 result += sizeof(u64); 2319 2320 if (type & PERF_SAMPLE_TRANSACTION) 2321 result += sizeof(u64); 2322 2323 if (type & PERF_SAMPLE_REGS_INTR) { 2324 if (sample->intr_regs.abi) { 2325 result += sizeof(u64); 2326 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2327 result += sz; 2328 } else { 2329 result += sizeof(u64); 2330 } 2331 } 2332 2333 if (type & PERF_SAMPLE_PHYS_ADDR) 2334 result += sizeof(u64); 2335 2336 return result; 2337 } 2338 2339 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2340 u64 read_format, 2341 const struct perf_sample *sample, 2342 bool swapped) 2343 { 2344 u64 *array; 2345 size_t sz; 2346 /* 2347 * used for cross-endian analysis. See git commit 65014ab3 2348 * for why this goofiness is needed. 2349 */ 2350 union u64_swap u; 2351 2352 array = event->sample.array; 2353 2354 if (type & PERF_SAMPLE_IDENTIFIER) { 2355 *array = sample->id; 2356 array++; 2357 } 2358 2359 if (type & PERF_SAMPLE_IP) { 2360 *array = sample->ip; 2361 array++; 2362 } 2363 2364 if (type & PERF_SAMPLE_TID) { 2365 u.val32[0] = sample->pid; 2366 u.val32[1] = sample->tid; 2367 if (swapped) { 2368 /* 2369 * Inverse of what is done in perf_evsel__parse_sample 2370 */ 2371 u.val32[0] = bswap_32(u.val32[0]); 2372 u.val32[1] = bswap_32(u.val32[1]); 2373 u.val64 = bswap_64(u.val64); 2374 } 2375 2376 *array = u.val64; 2377 array++; 2378 } 2379 2380 if (type & PERF_SAMPLE_TIME) { 2381 *array = sample->time; 2382 array++; 2383 } 2384 2385 if (type & PERF_SAMPLE_ADDR) { 2386 *array = sample->addr; 2387 array++; 2388 } 2389 2390 if (type & PERF_SAMPLE_ID) { 2391 *array = sample->id; 2392 array++; 2393 } 2394 2395 if (type & PERF_SAMPLE_STREAM_ID) { 2396 *array = sample->stream_id; 2397 array++; 2398 } 2399 2400 if (type & PERF_SAMPLE_CPU) { 2401 u.val32[0] = sample->cpu; 2402 if (swapped) { 2403 /* 2404 * Inverse of what is done in perf_evsel__parse_sample 2405 */ 2406 u.val32[0] = bswap_32(u.val32[0]); 2407 u.val64 = bswap_64(u.val64); 2408 } 2409 *array = u.val64; 2410 array++; 2411 } 2412 2413 if (type & PERF_SAMPLE_PERIOD) { 2414 *array = sample->period; 2415 array++; 2416 } 2417 2418 if (type & PERF_SAMPLE_READ) { 2419 if (read_format & PERF_FORMAT_GROUP) 2420 *array = sample->read.group.nr; 2421 else 2422 *array = sample->read.one.value; 2423 array++; 2424 2425 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2426 *array = sample->read.time_enabled; 2427 array++; 2428 } 2429 2430 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2431 *array = sample->read.time_running; 2432 array++; 2433 } 2434 2435 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2436 if (read_format & PERF_FORMAT_GROUP) { 2437 sz = sample->read.group.nr * 2438 sizeof(struct sample_read_value); 2439 memcpy(array, sample->read.group.values, sz); 2440 array = (void *)array + sz; 2441 } else { 2442 *array = sample->read.one.id; 2443 array++; 2444 } 2445 } 2446 2447 if (type & PERF_SAMPLE_CALLCHAIN) { 2448 sz = (sample->callchain->nr + 1) * sizeof(u64); 2449 memcpy(array, sample->callchain, sz); 2450 array = (void *)array + sz; 2451 } 2452 2453 if (type & PERF_SAMPLE_RAW) { 2454 u.val32[0] = sample->raw_size; 2455 if (WARN_ONCE(swapped, 2456 "Endianness of raw data not corrected!\n")) { 2457 /* 2458 * Inverse of what is done in perf_evsel__parse_sample 2459 */ 2460 u.val32[0] = bswap_32(u.val32[0]); 2461 u.val32[1] = bswap_32(u.val32[1]); 2462 u.val64 = bswap_64(u.val64); 2463 } 2464 *array = u.val64; 2465 array = (void *)array + sizeof(u32); 2466 2467 memcpy(array, sample->raw_data, sample->raw_size); 2468 array = (void *)array + sample->raw_size; 2469 } 2470 2471 if (type & PERF_SAMPLE_BRANCH_STACK) { 2472 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2473 sz += sizeof(u64); 2474 memcpy(array, sample->branch_stack, sz); 2475 array = (void *)array + sz; 2476 } 2477 2478 if (type & PERF_SAMPLE_REGS_USER) { 2479 if (sample->user_regs.abi) { 2480 *array++ = sample->user_regs.abi; 2481 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2482 memcpy(array, sample->user_regs.regs, sz); 2483 array = (void *)array + sz; 2484 } else { 2485 *array++ = 0; 2486 } 2487 } 2488 2489 if (type & PERF_SAMPLE_STACK_USER) { 2490 sz = sample->user_stack.size; 2491 *array++ = sz; 2492 if (sz) { 2493 memcpy(array, sample->user_stack.data, sz); 2494 array = (void *)array + sz; 2495 *array++ = sz; 2496 } 2497 } 2498 2499 if (type & PERF_SAMPLE_WEIGHT) { 2500 *array = sample->weight; 2501 array++; 2502 } 2503 2504 if (type & PERF_SAMPLE_DATA_SRC) { 2505 *array = sample->data_src; 2506 array++; 2507 } 2508 2509 if (type & PERF_SAMPLE_TRANSACTION) { 2510 *array = sample->transaction; 2511 array++; 2512 } 2513 2514 if (type & PERF_SAMPLE_REGS_INTR) { 2515 if (sample->intr_regs.abi) { 2516 *array++ = sample->intr_regs.abi; 2517 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2518 memcpy(array, sample->intr_regs.regs, sz); 2519 array = (void *)array + sz; 2520 } else { 2521 *array++ = 0; 2522 } 2523 } 2524 2525 if (type & PERF_SAMPLE_PHYS_ADDR) { 2526 *array = sample->phys_addr; 2527 array++; 2528 } 2529 2530 return 0; 2531 } 2532 2533 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2534 { 2535 return pevent_find_field(evsel->tp_format, name); 2536 } 2537 2538 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2539 const char *name) 2540 { 2541 struct format_field *field = perf_evsel__field(evsel, name); 2542 int offset; 2543 2544 if (!field) 2545 return NULL; 2546 2547 offset = field->offset; 2548 2549 if (field->flags & FIELD_IS_DYNAMIC) { 2550 offset = *(int *)(sample->raw_data + field->offset); 2551 offset &= 0xffff; 2552 } 2553 2554 return sample->raw_data + offset; 2555 } 2556 2557 u64 format_field__intval(struct format_field *field, struct perf_sample *sample, 2558 bool needs_swap) 2559 { 2560 u64 value; 2561 void *ptr = sample->raw_data + field->offset; 2562 2563 switch (field->size) { 2564 case 1: 2565 return *(u8 *)ptr; 2566 case 2: 2567 value = *(u16 *)ptr; 2568 break; 2569 case 4: 2570 value = *(u32 *)ptr; 2571 break; 2572 case 8: 2573 memcpy(&value, ptr, sizeof(u64)); 2574 break; 2575 default: 2576 return 0; 2577 } 2578 2579 if (!needs_swap) 2580 return value; 2581 2582 switch (field->size) { 2583 case 2: 2584 return bswap_16(value); 2585 case 4: 2586 return bswap_32(value); 2587 case 8: 2588 return bswap_64(value); 2589 default: 2590 return 0; 2591 } 2592 2593 return 0; 2594 } 2595 2596 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2597 const char *name) 2598 { 2599 struct format_field *field = perf_evsel__field(evsel, name); 2600 2601 if (!field) 2602 return 0; 2603 2604 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2605 } 2606 2607 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2608 char *msg, size_t msgsize) 2609 { 2610 int paranoid; 2611 2612 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2613 evsel->attr.type == PERF_TYPE_HARDWARE && 2614 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2615 /* 2616 * If it's cycles then fall back to hrtimer based 2617 * cpu-clock-tick sw counter, which is always available even if 2618 * no PMU support. 2619 * 2620 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2621 * b0a873e). 2622 */ 2623 scnprintf(msg, msgsize, "%s", 2624 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2625 2626 evsel->attr.type = PERF_TYPE_SOFTWARE; 2627 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2628 2629 zfree(&evsel->name); 2630 return true; 2631 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2632 (paranoid = perf_event_paranoid()) > 1) { 2633 const char *name = perf_evsel__name(evsel); 2634 char *new_name; 2635 2636 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0) 2637 return false; 2638 2639 if (evsel->name) 2640 free(evsel->name); 2641 evsel->name = new_name; 2642 scnprintf(msg, msgsize, 2643 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2644 evsel->attr.exclude_kernel = 1; 2645 2646 return true; 2647 } 2648 2649 return false; 2650 } 2651 2652 static bool find_process(const char *name) 2653 { 2654 size_t len = strlen(name); 2655 DIR *dir; 2656 struct dirent *d; 2657 int ret = -1; 2658 2659 dir = opendir(procfs__mountpoint()); 2660 if (!dir) 2661 return false; 2662 2663 /* Walk through the directory. */ 2664 while (ret && (d = readdir(dir)) != NULL) { 2665 char path[PATH_MAX]; 2666 char *data; 2667 size_t size; 2668 2669 if ((d->d_type != DT_DIR) || 2670 !strcmp(".", d->d_name) || 2671 !strcmp("..", d->d_name)) 2672 continue; 2673 2674 scnprintf(path, sizeof(path), "%s/%s/comm", 2675 procfs__mountpoint(), d->d_name); 2676 2677 if (filename__read_str(path, &data, &size)) 2678 continue; 2679 2680 ret = strncmp(name, data, len); 2681 free(data); 2682 } 2683 2684 closedir(dir); 2685 return ret ? false : true; 2686 } 2687 2688 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2689 int err, char *msg, size_t size) 2690 { 2691 char sbuf[STRERR_BUFSIZE]; 2692 int printed = 0; 2693 2694 switch (err) { 2695 case EPERM: 2696 case EACCES: 2697 if (err == EPERM) 2698 printed = scnprintf(msg, size, 2699 "No permission to enable %s event.\n\n", 2700 perf_evsel__name(evsel)); 2701 2702 return scnprintf(msg + printed, size - printed, 2703 "You may not have permission to collect %sstats.\n\n" 2704 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2705 "which controls use of the performance events system by\n" 2706 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2707 "The current value is %d:\n\n" 2708 " -1: Allow use of (almost) all events by all users\n" 2709 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" 2710 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n" 2711 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n" 2712 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2713 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2714 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2715 " kernel.perf_event_paranoid = -1\n" , 2716 target->system_wide ? "system-wide " : "", 2717 perf_event_paranoid()); 2718 case ENOENT: 2719 return scnprintf(msg, size, "The %s event is not supported.", 2720 perf_evsel__name(evsel)); 2721 case EMFILE: 2722 return scnprintf(msg, size, "%s", 2723 "Too many events are opened.\n" 2724 "Probably the maximum number of open file descriptors has been reached.\n" 2725 "Hint: Try again after reducing the number of events.\n" 2726 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2727 case ENOMEM: 2728 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 && 2729 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2730 return scnprintf(msg, size, 2731 "Not enough memory to setup event with callchain.\n" 2732 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2733 "Hint: Current value: %d", sysctl_perf_event_max_stack); 2734 break; 2735 case ENODEV: 2736 if (target->cpu_list) 2737 return scnprintf(msg, size, "%s", 2738 "No such device - did you specify an out-of-range profile CPU?"); 2739 break; 2740 case EOPNOTSUPP: 2741 if (evsel->attr.sample_period != 0) 2742 return scnprintf(msg, size, "%s", 2743 "PMU Hardware doesn't support sampling/overflow-interrupts."); 2744 if (evsel->attr.precise_ip) 2745 return scnprintf(msg, size, "%s", 2746 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2747 #if defined(__i386__) || defined(__x86_64__) 2748 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2749 return scnprintf(msg, size, "%s", 2750 "No hardware sampling interrupt available.\n" 2751 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); 2752 #endif 2753 break; 2754 case EBUSY: 2755 if (find_process("oprofiled")) 2756 return scnprintf(msg, size, 2757 "The PMU counters are busy/taken by another profiler.\n" 2758 "We found oprofile daemon running, please stop it and try again."); 2759 break; 2760 case EINVAL: 2761 if (evsel->attr.write_backward && perf_missing_features.write_backward) 2762 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2763 if (perf_missing_features.clockid) 2764 return scnprintf(msg, size, "clockid feature not supported."); 2765 if (perf_missing_features.clockid_wrong) 2766 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2767 break; 2768 default: 2769 break; 2770 } 2771 2772 return scnprintf(msg, size, 2773 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2774 "/bin/dmesg may provide additional information.\n" 2775 "No CONFIG_PERF_EVENTS=y kernel support configured?", 2776 err, str_error_r(err, sbuf, sizeof(sbuf)), 2777 perf_evsel__name(evsel)); 2778 } 2779 2780 char *perf_evsel__env_arch(struct perf_evsel *evsel) 2781 { 2782 if (evsel && evsel->evlist && evsel->evlist->env) 2783 return evsel->evlist->env->arch; 2784 return NULL; 2785 } 2786 2787 char *perf_evsel__env_cpuid(struct perf_evsel *evsel) 2788 { 2789 if (evsel && evsel->evlist && evsel->evlist->env) 2790 return evsel->evlist->env->cpuid; 2791 return NULL; 2792 } 2793