1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <errno.h> 12 #include <inttypes.h> 13 #include <linux/bitops.h> 14 #include <api/fs/tracing_path.h> 15 #include <traceevent/event-parse.h> 16 #include <linux/hw_breakpoint.h> 17 #include <linux/perf_event.h> 18 #include <linux/err.h> 19 #include <sys/ioctl.h> 20 #include <sys/resource.h> 21 #include "asm/bug.h" 22 #include "callchain.h" 23 #include "cgroup.h" 24 #include "event.h" 25 #include "evsel.h" 26 #include "evlist.h" 27 #include "util.h" 28 #include "cpumap.h" 29 #include "thread_map.h" 30 #include "target.h" 31 #include "perf_regs.h" 32 #include "debug.h" 33 #include "trace-event.h" 34 #include "stat.h" 35 #include "util/parse-branch-options.h" 36 37 #include "sane_ctype.h" 38 39 static struct { 40 bool sample_id_all; 41 bool exclude_guest; 42 bool mmap2; 43 bool cloexec; 44 bool clockid; 45 bool clockid_wrong; 46 bool lbr_flags; 47 bool write_backward; 48 } perf_missing_features; 49 50 static clockid_t clockid; 51 52 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 53 { 54 return 0; 55 } 56 57 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 58 { 59 } 60 61 static struct { 62 size_t size; 63 int (*init)(struct perf_evsel *evsel); 64 void (*fini)(struct perf_evsel *evsel); 65 } perf_evsel__object = { 66 .size = sizeof(struct perf_evsel), 67 .init = perf_evsel__no_extra_init, 68 .fini = perf_evsel__no_extra_fini, 69 }; 70 71 int perf_evsel__object_config(size_t object_size, 72 int (*init)(struct perf_evsel *evsel), 73 void (*fini)(struct perf_evsel *evsel)) 74 { 75 76 if (object_size == 0) 77 goto set_methods; 78 79 if (perf_evsel__object.size > object_size) 80 return -EINVAL; 81 82 perf_evsel__object.size = object_size; 83 84 set_methods: 85 if (init != NULL) 86 perf_evsel__object.init = init; 87 88 if (fini != NULL) 89 perf_evsel__object.fini = fini; 90 91 return 0; 92 } 93 94 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 95 96 int __perf_evsel__sample_size(u64 sample_type) 97 { 98 u64 mask = sample_type & PERF_SAMPLE_MASK; 99 int size = 0; 100 int i; 101 102 for (i = 0; i < 64; i++) { 103 if (mask & (1ULL << i)) 104 size++; 105 } 106 107 size *= sizeof(u64); 108 109 return size; 110 } 111 112 /** 113 * __perf_evsel__calc_id_pos - calculate id_pos. 114 * @sample_type: sample type 115 * 116 * This function returns the position of the event id (PERF_SAMPLE_ID or 117 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 118 * sample_event. 119 */ 120 static int __perf_evsel__calc_id_pos(u64 sample_type) 121 { 122 int idx = 0; 123 124 if (sample_type & PERF_SAMPLE_IDENTIFIER) 125 return 0; 126 127 if (!(sample_type & PERF_SAMPLE_ID)) 128 return -1; 129 130 if (sample_type & PERF_SAMPLE_IP) 131 idx += 1; 132 133 if (sample_type & PERF_SAMPLE_TID) 134 idx += 1; 135 136 if (sample_type & PERF_SAMPLE_TIME) 137 idx += 1; 138 139 if (sample_type & PERF_SAMPLE_ADDR) 140 idx += 1; 141 142 return idx; 143 } 144 145 /** 146 * __perf_evsel__calc_is_pos - calculate is_pos. 147 * @sample_type: sample type 148 * 149 * This function returns the position (counting backwards) of the event id 150 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 151 * sample_id_all is used there is an id sample appended to non-sample events. 152 */ 153 static int __perf_evsel__calc_is_pos(u64 sample_type) 154 { 155 int idx = 1; 156 157 if (sample_type & PERF_SAMPLE_IDENTIFIER) 158 return 1; 159 160 if (!(sample_type & PERF_SAMPLE_ID)) 161 return -1; 162 163 if (sample_type & PERF_SAMPLE_CPU) 164 idx += 1; 165 166 if (sample_type & PERF_SAMPLE_STREAM_ID) 167 idx += 1; 168 169 return idx; 170 } 171 172 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 173 { 174 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 175 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 176 } 177 178 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 179 enum perf_event_sample_format bit) 180 { 181 if (!(evsel->attr.sample_type & bit)) { 182 evsel->attr.sample_type |= bit; 183 evsel->sample_size += sizeof(u64); 184 perf_evsel__calc_id_pos(evsel); 185 } 186 } 187 188 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 189 enum perf_event_sample_format bit) 190 { 191 if (evsel->attr.sample_type & bit) { 192 evsel->attr.sample_type &= ~bit; 193 evsel->sample_size -= sizeof(u64); 194 perf_evsel__calc_id_pos(evsel); 195 } 196 } 197 198 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 199 bool can_sample_identifier) 200 { 201 if (can_sample_identifier) { 202 perf_evsel__reset_sample_bit(evsel, ID); 203 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 204 } else { 205 perf_evsel__set_sample_bit(evsel, ID); 206 } 207 evsel->attr.read_format |= PERF_FORMAT_ID; 208 } 209 210 /** 211 * perf_evsel__is_function_event - Return whether given evsel is a function 212 * trace event 213 * 214 * @evsel - evsel selector to be tested 215 * 216 * Return %true if event is function trace event 217 */ 218 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 219 { 220 #define FUNCTION_EVENT "ftrace:function" 221 222 return evsel->name && 223 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 224 225 #undef FUNCTION_EVENT 226 } 227 228 void perf_evsel__init(struct perf_evsel *evsel, 229 struct perf_event_attr *attr, int idx) 230 { 231 evsel->idx = idx; 232 evsel->tracking = !idx; 233 evsel->attr = *attr; 234 evsel->leader = evsel; 235 evsel->unit = ""; 236 evsel->scale = 1.0; 237 evsel->evlist = NULL; 238 evsel->bpf_fd = -1; 239 INIT_LIST_HEAD(&evsel->node); 240 INIT_LIST_HEAD(&evsel->config_terms); 241 perf_evsel__object.init(evsel); 242 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 243 perf_evsel__calc_id_pos(evsel); 244 evsel->cmdline_group_boundary = false; 245 evsel->metric_expr = NULL; 246 evsel->metric_name = NULL; 247 evsel->metric_events = NULL; 248 evsel->collect_stat = false; 249 } 250 251 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 252 { 253 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 254 255 if (evsel != NULL) 256 perf_evsel__init(evsel, attr, idx); 257 258 if (perf_evsel__is_bpf_output(evsel)) { 259 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 260 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 261 evsel->attr.sample_period = 1; 262 } 263 264 return evsel; 265 } 266 267 struct perf_evsel *perf_evsel__new_cycles(void) 268 { 269 struct perf_event_attr attr = { 270 .type = PERF_TYPE_HARDWARE, 271 .config = PERF_COUNT_HW_CPU_CYCLES, 272 }; 273 struct perf_evsel *evsel; 274 275 event_attr_init(&attr); 276 /* 277 * Unnamed union member, not supported as struct member named 278 * initializer in older compilers such as gcc 4.4.7 279 * 280 * Just for probing the precise_ip: 281 */ 282 attr.sample_period = 1; 283 284 perf_event_attr__set_max_precise_ip(&attr); 285 /* 286 * Now let the usual logic to set up the perf_event_attr defaults 287 * to kick in when we return and before perf_evsel__open() is called. 288 */ 289 attr.sample_period = 0; 290 291 evsel = perf_evsel__new(&attr); 292 if (evsel == NULL) 293 goto out; 294 295 /* use asprintf() because free(evsel) assumes name is allocated */ 296 if (asprintf(&evsel->name, "cycles%.*s", 297 attr.precise_ip ? attr.precise_ip + 1 : 0, ":ppp") < 0) 298 goto error_free; 299 out: 300 return evsel; 301 error_free: 302 perf_evsel__delete(evsel); 303 evsel = NULL; 304 goto out; 305 } 306 307 /* 308 * Returns pointer with encoded error via <linux/err.h> interface. 309 */ 310 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 311 { 312 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 313 int err = -ENOMEM; 314 315 if (evsel == NULL) { 316 goto out_err; 317 } else { 318 struct perf_event_attr attr = { 319 .type = PERF_TYPE_TRACEPOINT, 320 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 321 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 322 }; 323 324 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 325 goto out_free; 326 327 evsel->tp_format = trace_event__tp_format(sys, name); 328 if (IS_ERR(evsel->tp_format)) { 329 err = PTR_ERR(evsel->tp_format); 330 goto out_free; 331 } 332 333 event_attr_init(&attr); 334 attr.config = evsel->tp_format->id; 335 attr.sample_period = 1; 336 perf_evsel__init(evsel, &attr, idx); 337 } 338 339 return evsel; 340 341 out_free: 342 zfree(&evsel->name); 343 free(evsel); 344 out_err: 345 return ERR_PTR(err); 346 } 347 348 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 349 "cycles", 350 "instructions", 351 "cache-references", 352 "cache-misses", 353 "branches", 354 "branch-misses", 355 "bus-cycles", 356 "stalled-cycles-frontend", 357 "stalled-cycles-backend", 358 "ref-cycles", 359 }; 360 361 static const char *__perf_evsel__hw_name(u64 config) 362 { 363 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 364 return perf_evsel__hw_names[config]; 365 366 return "unknown-hardware"; 367 } 368 369 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 370 { 371 int colon = 0, r = 0; 372 struct perf_event_attr *attr = &evsel->attr; 373 bool exclude_guest_default = false; 374 375 #define MOD_PRINT(context, mod) do { \ 376 if (!attr->exclude_##context) { \ 377 if (!colon) colon = ++r; \ 378 r += scnprintf(bf + r, size - r, "%c", mod); \ 379 } } while(0) 380 381 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 382 MOD_PRINT(kernel, 'k'); 383 MOD_PRINT(user, 'u'); 384 MOD_PRINT(hv, 'h'); 385 exclude_guest_default = true; 386 } 387 388 if (attr->precise_ip) { 389 if (!colon) 390 colon = ++r; 391 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 392 exclude_guest_default = true; 393 } 394 395 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 396 MOD_PRINT(host, 'H'); 397 MOD_PRINT(guest, 'G'); 398 } 399 #undef MOD_PRINT 400 if (colon) 401 bf[colon - 1] = ':'; 402 return r; 403 } 404 405 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 406 { 407 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 408 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 409 } 410 411 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 412 "cpu-clock", 413 "task-clock", 414 "page-faults", 415 "context-switches", 416 "cpu-migrations", 417 "minor-faults", 418 "major-faults", 419 "alignment-faults", 420 "emulation-faults", 421 "dummy", 422 }; 423 424 static const char *__perf_evsel__sw_name(u64 config) 425 { 426 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 427 return perf_evsel__sw_names[config]; 428 return "unknown-software"; 429 } 430 431 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 432 { 433 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 434 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 435 } 436 437 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 438 { 439 int r; 440 441 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 442 443 if (type & HW_BREAKPOINT_R) 444 r += scnprintf(bf + r, size - r, "r"); 445 446 if (type & HW_BREAKPOINT_W) 447 r += scnprintf(bf + r, size - r, "w"); 448 449 if (type & HW_BREAKPOINT_X) 450 r += scnprintf(bf + r, size - r, "x"); 451 452 return r; 453 } 454 455 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 456 { 457 struct perf_event_attr *attr = &evsel->attr; 458 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 459 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 460 } 461 462 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 463 [PERF_EVSEL__MAX_ALIASES] = { 464 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 465 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 466 { "LLC", "L2", }, 467 { "dTLB", "d-tlb", "Data-TLB", }, 468 { "iTLB", "i-tlb", "Instruction-TLB", }, 469 { "branch", "branches", "bpu", "btb", "bpc", }, 470 { "node", }, 471 }; 472 473 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 474 [PERF_EVSEL__MAX_ALIASES] = { 475 { "load", "loads", "read", }, 476 { "store", "stores", "write", }, 477 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 478 }; 479 480 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 481 [PERF_EVSEL__MAX_ALIASES] = { 482 { "refs", "Reference", "ops", "access", }, 483 { "misses", "miss", }, 484 }; 485 486 #define C(x) PERF_COUNT_HW_CACHE_##x 487 #define CACHE_READ (1 << C(OP_READ)) 488 #define CACHE_WRITE (1 << C(OP_WRITE)) 489 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 490 #define COP(x) (1 << x) 491 492 /* 493 * cache operartion stat 494 * L1I : Read and prefetch only 495 * ITLB and BPU : Read-only 496 */ 497 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 498 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 499 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 500 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 501 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 502 [C(ITLB)] = (CACHE_READ), 503 [C(BPU)] = (CACHE_READ), 504 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 505 }; 506 507 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 508 { 509 if (perf_evsel__hw_cache_stat[type] & COP(op)) 510 return true; /* valid */ 511 else 512 return false; /* invalid */ 513 } 514 515 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 516 char *bf, size_t size) 517 { 518 if (result) { 519 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 520 perf_evsel__hw_cache_op[op][0], 521 perf_evsel__hw_cache_result[result][0]); 522 } 523 524 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 525 perf_evsel__hw_cache_op[op][1]); 526 } 527 528 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 529 { 530 u8 op, result, type = (config >> 0) & 0xff; 531 const char *err = "unknown-ext-hardware-cache-type"; 532 533 if (type >= PERF_COUNT_HW_CACHE_MAX) 534 goto out_err; 535 536 op = (config >> 8) & 0xff; 537 err = "unknown-ext-hardware-cache-op"; 538 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 539 goto out_err; 540 541 result = (config >> 16) & 0xff; 542 err = "unknown-ext-hardware-cache-result"; 543 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 544 goto out_err; 545 546 err = "invalid-cache"; 547 if (!perf_evsel__is_cache_op_valid(type, op)) 548 goto out_err; 549 550 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 551 out_err: 552 return scnprintf(bf, size, "%s", err); 553 } 554 555 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 556 { 557 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 558 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 559 } 560 561 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 562 { 563 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 564 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 565 } 566 567 const char *perf_evsel__name(struct perf_evsel *evsel) 568 { 569 char bf[128]; 570 571 if (evsel->name) 572 return evsel->name; 573 574 switch (evsel->attr.type) { 575 case PERF_TYPE_RAW: 576 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 577 break; 578 579 case PERF_TYPE_HARDWARE: 580 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 581 break; 582 583 case PERF_TYPE_HW_CACHE: 584 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 585 break; 586 587 case PERF_TYPE_SOFTWARE: 588 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 589 break; 590 591 case PERF_TYPE_TRACEPOINT: 592 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 593 break; 594 595 case PERF_TYPE_BREAKPOINT: 596 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 597 break; 598 599 default: 600 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 601 evsel->attr.type); 602 break; 603 } 604 605 evsel->name = strdup(bf); 606 607 return evsel->name ?: "unknown"; 608 } 609 610 const char *perf_evsel__group_name(struct perf_evsel *evsel) 611 { 612 return evsel->group_name ?: "anon group"; 613 } 614 615 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 616 { 617 int ret; 618 struct perf_evsel *pos; 619 const char *group_name = perf_evsel__group_name(evsel); 620 621 ret = scnprintf(buf, size, "%s", group_name); 622 623 ret += scnprintf(buf + ret, size - ret, " { %s", 624 perf_evsel__name(evsel)); 625 626 for_each_group_member(pos, evsel) 627 ret += scnprintf(buf + ret, size - ret, ", %s", 628 perf_evsel__name(pos)); 629 630 ret += scnprintf(buf + ret, size - ret, " }"); 631 632 return ret; 633 } 634 635 void perf_evsel__config_callchain(struct perf_evsel *evsel, 636 struct record_opts *opts, 637 struct callchain_param *param) 638 { 639 bool function = perf_evsel__is_function_event(evsel); 640 struct perf_event_attr *attr = &evsel->attr; 641 642 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 643 644 attr->sample_max_stack = param->max_stack; 645 646 if (param->record_mode == CALLCHAIN_LBR) { 647 if (!opts->branch_stack) { 648 if (attr->exclude_user) { 649 pr_warning("LBR callstack option is only available " 650 "to get user callchain information. " 651 "Falling back to framepointers.\n"); 652 } else { 653 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 654 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 655 PERF_SAMPLE_BRANCH_CALL_STACK | 656 PERF_SAMPLE_BRANCH_NO_CYCLES | 657 PERF_SAMPLE_BRANCH_NO_FLAGS; 658 } 659 } else 660 pr_warning("Cannot use LBR callstack with branch stack. " 661 "Falling back to framepointers.\n"); 662 } 663 664 if (param->record_mode == CALLCHAIN_DWARF) { 665 if (!function) { 666 perf_evsel__set_sample_bit(evsel, REGS_USER); 667 perf_evsel__set_sample_bit(evsel, STACK_USER); 668 attr->sample_regs_user = PERF_REGS_MASK; 669 attr->sample_stack_user = param->dump_size; 670 attr->exclude_callchain_user = 1; 671 } else { 672 pr_info("Cannot use DWARF unwind for function trace event," 673 " falling back to framepointers.\n"); 674 } 675 } 676 677 if (function) { 678 pr_info("Disabling user space callchains for function trace event.\n"); 679 attr->exclude_callchain_user = 1; 680 } 681 } 682 683 static void 684 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 685 struct callchain_param *param) 686 { 687 struct perf_event_attr *attr = &evsel->attr; 688 689 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 690 if (param->record_mode == CALLCHAIN_LBR) { 691 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 692 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 693 PERF_SAMPLE_BRANCH_CALL_STACK); 694 } 695 if (param->record_mode == CALLCHAIN_DWARF) { 696 perf_evsel__reset_sample_bit(evsel, REGS_USER); 697 perf_evsel__reset_sample_bit(evsel, STACK_USER); 698 } 699 } 700 701 static void apply_config_terms(struct perf_evsel *evsel, 702 struct record_opts *opts) 703 { 704 struct perf_evsel_config_term *term; 705 struct list_head *config_terms = &evsel->config_terms; 706 struct perf_event_attr *attr = &evsel->attr; 707 struct callchain_param param; 708 u32 dump_size = 0; 709 int max_stack = 0; 710 const char *callgraph_buf = NULL; 711 712 /* callgraph default */ 713 param.record_mode = callchain_param.record_mode; 714 715 list_for_each_entry(term, config_terms, list) { 716 switch (term->type) { 717 case PERF_EVSEL__CONFIG_TERM_PERIOD: 718 attr->sample_period = term->val.period; 719 attr->freq = 0; 720 break; 721 case PERF_EVSEL__CONFIG_TERM_FREQ: 722 attr->sample_freq = term->val.freq; 723 attr->freq = 1; 724 break; 725 case PERF_EVSEL__CONFIG_TERM_TIME: 726 if (term->val.time) 727 perf_evsel__set_sample_bit(evsel, TIME); 728 else 729 perf_evsel__reset_sample_bit(evsel, TIME); 730 break; 731 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 732 callgraph_buf = term->val.callgraph; 733 break; 734 case PERF_EVSEL__CONFIG_TERM_BRANCH: 735 if (term->val.branch && strcmp(term->val.branch, "no")) { 736 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 737 parse_branch_str(term->val.branch, 738 &attr->branch_sample_type); 739 } else 740 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 741 break; 742 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 743 dump_size = term->val.stack_user; 744 break; 745 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 746 max_stack = term->val.max_stack; 747 break; 748 case PERF_EVSEL__CONFIG_TERM_INHERIT: 749 /* 750 * attr->inherit should has already been set by 751 * perf_evsel__config. If user explicitly set 752 * inherit using config terms, override global 753 * opt->no_inherit setting. 754 */ 755 attr->inherit = term->val.inherit ? 1 : 0; 756 break; 757 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 758 attr->write_backward = term->val.overwrite ? 1 : 0; 759 break; 760 default: 761 break; 762 } 763 } 764 765 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 766 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 767 if (max_stack) { 768 param.max_stack = max_stack; 769 if (callgraph_buf == NULL) 770 callgraph_buf = "fp"; 771 } 772 773 /* parse callgraph parameters */ 774 if (callgraph_buf != NULL) { 775 if (!strcmp(callgraph_buf, "no")) { 776 param.enabled = false; 777 param.record_mode = CALLCHAIN_NONE; 778 } else { 779 param.enabled = true; 780 if (parse_callchain_record(callgraph_buf, ¶m)) { 781 pr_err("per-event callgraph setting for %s failed. " 782 "Apply callgraph global setting for it\n", 783 evsel->name); 784 return; 785 } 786 } 787 } 788 if (dump_size > 0) { 789 dump_size = round_up(dump_size, sizeof(u64)); 790 param.dump_size = dump_size; 791 } 792 793 /* If global callgraph set, clear it */ 794 if (callchain_param.enabled) 795 perf_evsel__reset_callgraph(evsel, &callchain_param); 796 797 /* set perf-event callgraph */ 798 if (param.enabled) 799 perf_evsel__config_callchain(evsel, opts, ¶m); 800 } 801 } 802 803 /* 804 * The enable_on_exec/disabled value strategy: 805 * 806 * 1) For any type of traced program: 807 * - all independent events and group leaders are disabled 808 * - all group members are enabled 809 * 810 * Group members are ruled by group leaders. They need to 811 * be enabled, because the group scheduling relies on that. 812 * 813 * 2) For traced programs executed by perf: 814 * - all independent events and group leaders have 815 * enable_on_exec set 816 * - we don't specifically enable or disable any event during 817 * the record command 818 * 819 * Independent events and group leaders are initially disabled 820 * and get enabled by exec. Group members are ruled by group 821 * leaders as stated in 1). 822 * 823 * 3) For traced programs attached by perf (pid/tid): 824 * - we specifically enable or disable all events during 825 * the record command 826 * 827 * When attaching events to already running traced we 828 * enable/disable events specifically, as there's no 829 * initial traced exec call. 830 */ 831 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 832 struct callchain_param *callchain) 833 { 834 struct perf_evsel *leader = evsel->leader; 835 struct perf_event_attr *attr = &evsel->attr; 836 int track = evsel->tracking; 837 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 838 839 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 840 attr->inherit = !opts->no_inherit; 841 attr->write_backward = opts->overwrite ? 1 : 0; 842 843 perf_evsel__set_sample_bit(evsel, IP); 844 perf_evsel__set_sample_bit(evsel, TID); 845 846 if (evsel->sample_read) { 847 perf_evsel__set_sample_bit(evsel, READ); 848 849 /* 850 * We need ID even in case of single event, because 851 * PERF_SAMPLE_READ process ID specific data. 852 */ 853 perf_evsel__set_sample_id(evsel, false); 854 855 /* 856 * Apply group format only if we belong to group 857 * with more than one members. 858 */ 859 if (leader->nr_members > 1) { 860 attr->read_format |= PERF_FORMAT_GROUP; 861 attr->inherit = 0; 862 } 863 } 864 865 /* 866 * We default some events to have a default interval. But keep 867 * it a weak assumption overridable by the user. 868 */ 869 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 870 opts->user_interval != ULLONG_MAX)) { 871 if (opts->freq) { 872 perf_evsel__set_sample_bit(evsel, PERIOD); 873 attr->freq = 1; 874 attr->sample_freq = opts->freq; 875 } else { 876 attr->sample_period = opts->default_interval; 877 } 878 } 879 880 /* 881 * Disable sampling for all group members other 882 * than leader in case leader 'leads' the sampling. 883 */ 884 if ((leader != evsel) && leader->sample_read) { 885 attr->sample_freq = 0; 886 attr->sample_period = 0; 887 } 888 889 if (opts->no_samples) 890 attr->sample_freq = 0; 891 892 if (opts->inherit_stat) 893 attr->inherit_stat = 1; 894 895 if (opts->sample_address) { 896 perf_evsel__set_sample_bit(evsel, ADDR); 897 attr->mmap_data = track; 898 } 899 900 /* 901 * We don't allow user space callchains for function trace 902 * event, due to issues with page faults while tracing page 903 * fault handler and its overall trickiness nature. 904 */ 905 if (perf_evsel__is_function_event(evsel)) 906 evsel->attr.exclude_callchain_user = 1; 907 908 if (callchain && callchain->enabled && !evsel->no_aux_samples) 909 perf_evsel__config_callchain(evsel, opts, callchain); 910 911 if (opts->sample_intr_regs) { 912 attr->sample_regs_intr = opts->sample_intr_regs; 913 perf_evsel__set_sample_bit(evsel, REGS_INTR); 914 } 915 916 if (target__has_cpu(&opts->target) || opts->sample_cpu) 917 perf_evsel__set_sample_bit(evsel, CPU); 918 919 if (opts->period) 920 perf_evsel__set_sample_bit(evsel, PERIOD); 921 922 /* 923 * When the user explicitly disabled time don't force it here. 924 */ 925 if (opts->sample_time && 926 (!perf_missing_features.sample_id_all && 927 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 928 opts->sample_time_set))) 929 perf_evsel__set_sample_bit(evsel, TIME); 930 931 if (opts->raw_samples && !evsel->no_aux_samples) { 932 perf_evsel__set_sample_bit(evsel, TIME); 933 perf_evsel__set_sample_bit(evsel, RAW); 934 perf_evsel__set_sample_bit(evsel, CPU); 935 } 936 937 if (opts->sample_address) 938 perf_evsel__set_sample_bit(evsel, DATA_SRC); 939 940 if (opts->no_buffering) { 941 attr->watermark = 0; 942 attr->wakeup_events = 1; 943 } 944 if (opts->branch_stack && !evsel->no_aux_samples) { 945 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 946 attr->branch_sample_type = opts->branch_stack; 947 } 948 949 if (opts->sample_weight) 950 perf_evsel__set_sample_bit(evsel, WEIGHT); 951 952 attr->task = track; 953 attr->mmap = track; 954 attr->mmap2 = track && !perf_missing_features.mmap2; 955 attr->comm = track; 956 957 if (opts->record_namespaces) 958 attr->namespaces = track; 959 960 if (opts->record_switch_events) 961 attr->context_switch = track; 962 963 if (opts->sample_transaction) 964 perf_evsel__set_sample_bit(evsel, TRANSACTION); 965 966 if (opts->running_time) { 967 evsel->attr.read_format |= 968 PERF_FORMAT_TOTAL_TIME_ENABLED | 969 PERF_FORMAT_TOTAL_TIME_RUNNING; 970 } 971 972 /* 973 * XXX see the function comment above 974 * 975 * Disabling only independent events or group leaders, 976 * keeping group members enabled. 977 */ 978 if (perf_evsel__is_group_leader(evsel)) 979 attr->disabled = 1; 980 981 /* 982 * Setting enable_on_exec for independent events and 983 * group leaders for traced executed by perf. 984 */ 985 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 986 !opts->initial_delay) 987 attr->enable_on_exec = 1; 988 989 if (evsel->immediate) { 990 attr->disabled = 0; 991 attr->enable_on_exec = 0; 992 } 993 994 clockid = opts->clockid; 995 if (opts->use_clockid) { 996 attr->use_clockid = 1; 997 attr->clockid = opts->clockid; 998 } 999 1000 if (evsel->precise_max) 1001 perf_event_attr__set_max_precise_ip(attr); 1002 1003 if (opts->all_user) { 1004 attr->exclude_kernel = 1; 1005 attr->exclude_user = 0; 1006 } 1007 1008 if (opts->all_kernel) { 1009 attr->exclude_kernel = 0; 1010 attr->exclude_user = 1; 1011 } 1012 1013 /* 1014 * Apply event specific term settings, 1015 * it overloads any global configuration. 1016 */ 1017 apply_config_terms(evsel, opts); 1018 1019 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1020 } 1021 1022 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1023 { 1024 if (evsel->system_wide) 1025 nthreads = 1; 1026 1027 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1028 1029 if (evsel->fd) { 1030 int cpu, thread; 1031 for (cpu = 0; cpu < ncpus; cpu++) { 1032 for (thread = 0; thread < nthreads; thread++) { 1033 FD(evsel, cpu, thread) = -1; 1034 } 1035 } 1036 } 1037 1038 return evsel->fd != NULL ? 0 : -ENOMEM; 1039 } 1040 1041 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads, 1042 int ioc, void *arg) 1043 { 1044 int cpu, thread; 1045 1046 if (evsel->system_wide) 1047 nthreads = 1; 1048 1049 for (cpu = 0; cpu < ncpus; cpu++) { 1050 for (thread = 0; thread < nthreads; thread++) { 1051 int fd = FD(evsel, cpu, thread), 1052 err = ioctl(fd, ioc, arg); 1053 1054 if (err) 1055 return err; 1056 } 1057 } 1058 1059 return 0; 1060 } 1061 1062 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads, 1063 const char *filter) 1064 { 1065 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1066 PERF_EVENT_IOC_SET_FILTER, 1067 (void *)filter); 1068 } 1069 1070 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1071 { 1072 char *new_filter = strdup(filter); 1073 1074 if (new_filter != NULL) { 1075 free(evsel->filter); 1076 evsel->filter = new_filter; 1077 return 0; 1078 } 1079 1080 return -1; 1081 } 1082 1083 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1084 const char *fmt, const char *filter) 1085 { 1086 char *new_filter; 1087 1088 if (evsel->filter == NULL) 1089 return perf_evsel__set_filter(evsel, filter); 1090 1091 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1092 free(evsel->filter); 1093 evsel->filter = new_filter; 1094 return 0; 1095 } 1096 1097 return -1; 1098 } 1099 1100 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1101 { 1102 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1103 } 1104 1105 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1106 { 1107 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1108 } 1109 1110 int perf_evsel__enable(struct perf_evsel *evsel) 1111 { 1112 int nthreads = thread_map__nr(evsel->threads); 1113 int ncpus = cpu_map__nr(evsel->cpus); 1114 1115 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1116 PERF_EVENT_IOC_ENABLE, 1117 0); 1118 } 1119 1120 int perf_evsel__disable(struct perf_evsel *evsel) 1121 { 1122 int nthreads = thread_map__nr(evsel->threads); 1123 int ncpus = cpu_map__nr(evsel->cpus); 1124 1125 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1126 PERF_EVENT_IOC_DISABLE, 1127 0); 1128 } 1129 1130 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1131 { 1132 if (ncpus == 0 || nthreads == 0) 1133 return 0; 1134 1135 if (evsel->system_wide) 1136 nthreads = 1; 1137 1138 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1139 if (evsel->sample_id == NULL) 1140 return -ENOMEM; 1141 1142 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1143 if (evsel->id == NULL) { 1144 xyarray__delete(evsel->sample_id); 1145 evsel->sample_id = NULL; 1146 return -ENOMEM; 1147 } 1148 1149 return 0; 1150 } 1151 1152 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1153 { 1154 xyarray__delete(evsel->fd); 1155 evsel->fd = NULL; 1156 } 1157 1158 static void perf_evsel__free_id(struct perf_evsel *evsel) 1159 { 1160 xyarray__delete(evsel->sample_id); 1161 evsel->sample_id = NULL; 1162 zfree(&evsel->id); 1163 } 1164 1165 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1166 { 1167 struct perf_evsel_config_term *term, *h; 1168 1169 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1170 list_del(&term->list); 1171 free(term); 1172 } 1173 } 1174 1175 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1176 { 1177 int cpu, thread; 1178 1179 if (evsel->system_wide) 1180 nthreads = 1; 1181 1182 for (cpu = 0; cpu < ncpus; cpu++) 1183 for (thread = 0; thread < nthreads; ++thread) { 1184 close(FD(evsel, cpu, thread)); 1185 FD(evsel, cpu, thread) = -1; 1186 } 1187 } 1188 1189 void perf_evsel__exit(struct perf_evsel *evsel) 1190 { 1191 assert(list_empty(&evsel->node)); 1192 assert(evsel->evlist == NULL); 1193 perf_evsel__free_fd(evsel); 1194 perf_evsel__free_id(evsel); 1195 perf_evsel__free_config_terms(evsel); 1196 close_cgroup(evsel->cgrp); 1197 cpu_map__put(evsel->cpus); 1198 cpu_map__put(evsel->own_cpus); 1199 thread_map__put(evsel->threads); 1200 zfree(&evsel->group_name); 1201 zfree(&evsel->name); 1202 perf_evsel__object.fini(evsel); 1203 } 1204 1205 void perf_evsel__delete(struct perf_evsel *evsel) 1206 { 1207 perf_evsel__exit(evsel); 1208 free(evsel); 1209 } 1210 1211 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1212 struct perf_counts_values *count) 1213 { 1214 struct perf_counts_values tmp; 1215 1216 if (!evsel->prev_raw_counts) 1217 return; 1218 1219 if (cpu == -1) { 1220 tmp = evsel->prev_raw_counts->aggr; 1221 evsel->prev_raw_counts->aggr = *count; 1222 } else { 1223 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1224 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1225 } 1226 1227 count->val = count->val - tmp.val; 1228 count->ena = count->ena - tmp.ena; 1229 count->run = count->run - tmp.run; 1230 } 1231 1232 void perf_counts_values__scale(struct perf_counts_values *count, 1233 bool scale, s8 *pscaled) 1234 { 1235 s8 scaled = 0; 1236 1237 if (scale) { 1238 if (count->run == 0) { 1239 scaled = -1; 1240 count->val = 0; 1241 } else if (count->run < count->ena) { 1242 scaled = 1; 1243 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1244 } 1245 } else 1246 count->ena = count->run = 0; 1247 1248 if (pscaled) 1249 *pscaled = scaled; 1250 } 1251 1252 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1253 struct perf_counts_values *count) 1254 { 1255 memset(count, 0, sizeof(*count)); 1256 1257 if (FD(evsel, cpu, thread) < 0) 1258 return -EINVAL; 1259 1260 if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) <= 0) 1261 return -errno; 1262 1263 return 0; 1264 } 1265 1266 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1267 int cpu, int thread, bool scale) 1268 { 1269 struct perf_counts_values count; 1270 size_t nv = scale ? 3 : 1; 1271 1272 if (FD(evsel, cpu, thread) < 0) 1273 return -EINVAL; 1274 1275 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1276 return -ENOMEM; 1277 1278 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1279 return -errno; 1280 1281 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1282 perf_counts_values__scale(&count, scale, NULL); 1283 *perf_counts(evsel->counts, cpu, thread) = count; 1284 return 0; 1285 } 1286 1287 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1288 { 1289 struct perf_evsel *leader = evsel->leader; 1290 int fd; 1291 1292 if (perf_evsel__is_group_leader(evsel)) 1293 return -1; 1294 1295 /* 1296 * Leader must be already processed/open, 1297 * if not it's a bug. 1298 */ 1299 BUG_ON(!leader->fd); 1300 1301 fd = FD(leader, cpu, thread); 1302 BUG_ON(fd == -1); 1303 1304 return fd; 1305 } 1306 1307 struct bit_names { 1308 int bit; 1309 const char *name; 1310 }; 1311 1312 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1313 { 1314 bool first_bit = true; 1315 int i = 0; 1316 1317 do { 1318 if (value & bits[i].bit) { 1319 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1320 first_bit = false; 1321 } 1322 } while (bits[++i].name != NULL); 1323 } 1324 1325 static void __p_sample_type(char *buf, size_t size, u64 value) 1326 { 1327 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1328 struct bit_names bits[] = { 1329 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1330 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1331 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1332 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1333 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1334 bit_name(WEIGHT), 1335 { .name = NULL, } 1336 }; 1337 #undef bit_name 1338 __p_bits(buf, size, value, bits); 1339 } 1340 1341 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1342 { 1343 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1344 struct bit_names bits[] = { 1345 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1346 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1347 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1348 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1349 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1350 { .name = NULL, } 1351 }; 1352 #undef bit_name 1353 __p_bits(buf, size, value, bits); 1354 } 1355 1356 static void __p_read_format(char *buf, size_t size, u64 value) 1357 { 1358 #define bit_name(n) { PERF_FORMAT_##n, #n } 1359 struct bit_names bits[] = { 1360 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1361 bit_name(ID), bit_name(GROUP), 1362 { .name = NULL, } 1363 }; 1364 #undef bit_name 1365 __p_bits(buf, size, value, bits); 1366 } 1367 1368 #define BUF_SIZE 1024 1369 1370 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1371 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1372 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1373 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1374 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1375 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1376 1377 #define PRINT_ATTRn(_n, _f, _p) \ 1378 do { \ 1379 if (attr->_f) { \ 1380 _p(attr->_f); \ 1381 ret += attr__fprintf(fp, _n, buf, priv);\ 1382 } \ 1383 } while (0) 1384 1385 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1386 1387 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1388 attr__fprintf_f attr__fprintf, void *priv) 1389 { 1390 char buf[BUF_SIZE]; 1391 int ret = 0; 1392 1393 PRINT_ATTRf(type, p_unsigned); 1394 PRINT_ATTRf(size, p_unsigned); 1395 PRINT_ATTRf(config, p_hex); 1396 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1397 PRINT_ATTRf(sample_type, p_sample_type); 1398 PRINT_ATTRf(read_format, p_read_format); 1399 1400 PRINT_ATTRf(disabled, p_unsigned); 1401 PRINT_ATTRf(inherit, p_unsigned); 1402 PRINT_ATTRf(pinned, p_unsigned); 1403 PRINT_ATTRf(exclusive, p_unsigned); 1404 PRINT_ATTRf(exclude_user, p_unsigned); 1405 PRINT_ATTRf(exclude_kernel, p_unsigned); 1406 PRINT_ATTRf(exclude_hv, p_unsigned); 1407 PRINT_ATTRf(exclude_idle, p_unsigned); 1408 PRINT_ATTRf(mmap, p_unsigned); 1409 PRINT_ATTRf(comm, p_unsigned); 1410 PRINT_ATTRf(freq, p_unsigned); 1411 PRINT_ATTRf(inherit_stat, p_unsigned); 1412 PRINT_ATTRf(enable_on_exec, p_unsigned); 1413 PRINT_ATTRf(task, p_unsigned); 1414 PRINT_ATTRf(watermark, p_unsigned); 1415 PRINT_ATTRf(precise_ip, p_unsigned); 1416 PRINT_ATTRf(mmap_data, p_unsigned); 1417 PRINT_ATTRf(sample_id_all, p_unsigned); 1418 PRINT_ATTRf(exclude_host, p_unsigned); 1419 PRINT_ATTRf(exclude_guest, p_unsigned); 1420 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1421 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1422 PRINT_ATTRf(mmap2, p_unsigned); 1423 PRINT_ATTRf(comm_exec, p_unsigned); 1424 PRINT_ATTRf(use_clockid, p_unsigned); 1425 PRINT_ATTRf(context_switch, p_unsigned); 1426 PRINT_ATTRf(write_backward, p_unsigned); 1427 1428 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1429 PRINT_ATTRf(bp_type, p_unsigned); 1430 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1431 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1432 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1433 PRINT_ATTRf(sample_regs_user, p_hex); 1434 PRINT_ATTRf(sample_stack_user, p_unsigned); 1435 PRINT_ATTRf(clockid, p_signed); 1436 PRINT_ATTRf(sample_regs_intr, p_hex); 1437 PRINT_ATTRf(aux_watermark, p_unsigned); 1438 PRINT_ATTRf(sample_max_stack, p_unsigned); 1439 1440 return ret; 1441 } 1442 1443 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1444 void *priv __attribute__((unused))) 1445 { 1446 return fprintf(fp, " %-32s %s\n", name, val); 1447 } 1448 1449 static bool ignore_missing_thread(struct perf_evsel *evsel, 1450 struct thread_map *threads, 1451 int thread, int err) 1452 { 1453 if (!evsel->ignore_missing_thread) 1454 return false; 1455 1456 /* The system wide setup does not work with threads. */ 1457 if (evsel->system_wide) 1458 return false; 1459 1460 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1461 if (err != -ESRCH) 1462 return false; 1463 1464 /* If there's only one thread, let it fail. */ 1465 if (threads->nr == 1) 1466 return false; 1467 1468 if (thread_map__remove(threads, thread)) 1469 return false; 1470 1471 pr_warning("WARNING: Ignored open failure for pid %d\n", 1472 thread_map__pid(threads, thread)); 1473 return true; 1474 } 1475 1476 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1477 struct thread_map *threads) 1478 { 1479 int cpu, thread, nthreads; 1480 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1481 int pid = -1, err; 1482 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1483 1484 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1485 return -EINVAL; 1486 1487 if (cpus == NULL) { 1488 static struct cpu_map *empty_cpu_map; 1489 1490 if (empty_cpu_map == NULL) { 1491 empty_cpu_map = cpu_map__dummy_new(); 1492 if (empty_cpu_map == NULL) 1493 return -ENOMEM; 1494 } 1495 1496 cpus = empty_cpu_map; 1497 } 1498 1499 if (threads == NULL) { 1500 static struct thread_map *empty_thread_map; 1501 1502 if (empty_thread_map == NULL) { 1503 empty_thread_map = thread_map__new_by_tid(-1); 1504 if (empty_thread_map == NULL) 1505 return -ENOMEM; 1506 } 1507 1508 threads = empty_thread_map; 1509 } 1510 1511 if (evsel->system_wide) 1512 nthreads = 1; 1513 else 1514 nthreads = threads->nr; 1515 1516 if (evsel->fd == NULL && 1517 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1518 return -ENOMEM; 1519 1520 if (evsel->cgrp) { 1521 flags |= PERF_FLAG_PID_CGROUP; 1522 pid = evsel->cgrp->fd; 1523 } 1524 1525 fallback_missing_features: 1526 if (perf_missing_features.clockid_wrong) 1527 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1528 if (perf_missing_features.clockid) { 1529 evsel->attr.use_clockid = 0; 1530 evsel->attr.clockid = 0; 1531 } 1532 if (perf_missing_features.cloexec) 1533 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1534 if (perf_missing_features.mmap2) 1535 evsel->attr.mmap2 = 0; 1536 if (perf_missing_features.exclude_guest) 1537 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1538 if (perf_missing_features.lbr_flags) 1539 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1540 PERF_SAMPLE_BRANCH_NO_CYCLES); 1541 retry_sample_id: 1542 if (perf_missing_features.sample_id_all) 1543 evsel->attr.sample_id_all = 0; 1544 1545 if (verbose >= 2) { 1546 fprintf(stderr, "%.60s\n", graph_dotted_line); 1547 fprintf(stderr, "perf_event_attr:\n"); 1548 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1549 fprintf(stderr, "%.60s\n", graph_dotted_line); 1550 } 1551 1552 for (cpu = 0; cpu < cpus->nr; cpu++) { 1553 1554 for (thread = 0; thread < nthreads; thread++) { 1555 int fd, group_fd; 1556 1557 if (!evsel->cgrp && !evsel->system_wide) 1558 pid = thread_map__pid(threads, thread); 1559 1560 group_fd = get_group_fd(evsel, cpu, thread); 1561 retry_open: 1562 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1563 pid, cpus->map[cpu], group_fd, flags); 1564 1565 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu], 1566 group_fd, flags); 1567 1568 FD(evsel, cpu, thread) = fd; 1569 1570 if (fd < 0) { 1571 err = -errno; 1572 1573 if (ignore_missing_thread(evsel, threads, thread, err)) { 1574 /* 1575 * We just removed 1 thread, so take a step 1576 * back on thread index and lower the upper 1577 * nthreads limit. 1578 */ 1579 nthreads--; 1580 thread--; 1581 1582 /* ... and pretend like nothing have happened. */ 1583 err = 0; 1584 continue; 1585 } 1586 1587 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1588 err); 1589 goto try_fallback; 1590 } 1591 1592 pr_debug2(" = %d\n", fd); 1593 1594 if (evsel->bpf_fd >= 0) { 1595 int evt_fd = fd; 1596 int bpf_fd = evsel->bpf_fd; 1597 1598 err = ioctl(evt_fd, 1599 PERF_EVENT_IOC_SET_BPF, 1600 bpf_fd); 1601 if (err && errno != EEXIST) { 1602 pr_err("failed to attach bpf fd %d: %s\n", 1603 bpf_fd, strerror(errno)); 1604 err = -EINVAL; 1605 goto out_close; 1606 } 1607 } 1608 1609 set_rlimit = NO_CHANGE; 1610 1611 /* 1612 * If we succeeded but had to kill clockid, fail and 1613 * have perf_evsel__open_strerror() print us a nice 1614 * error. 1615 */ 1616 if (perf_missing_features.clockid || 1617 perf_missing_features.clockid_wrong) { 1618 err = -EINVAL; 1619 goto out_close; 1620 } 1621 } 1622 } 1623 1624 return 0; 1625 1626 try_fallback: 1627 /* 1628 * perf stat needs between 5 and 22 fds per CPU. When we run out 1629 * of them try to increase the limits. 1630 */ 1631 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1632 struct rlimit l; 1633 int old_errno = errno; 1634 1635 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1636 if (set_rlimit == NO_CHANGE) 1637 l.rlim_cur = l.rlim_max; 1638 else { 1639 l.rlim_cur = l.rlim_max + 1000; 1640 l.rlim_max = l.rlim_cur; 1641 } 1642 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1643 set_rlimit++; 1644 errno = old_errno; 1645 goto retry_open; 1646 } 1647 } 1648 errno = old_errno; 1649 } 1650 1651 if (err != -EINVAL || cpu > 0 || thread > 0) 1652 goto out_close; 1653 1654 /* 1655 * Must probe features in the order they were added to the 1656 * perf_event_attr interface. 1657 */ 1658 if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 1659 perf_missing_features.write_backward = true; 1660 goto out_close; 1661 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1662 perf_missing_features.clockid_wrong = true; 1663 goto fallback_missing_features; 1664 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1665 perf_missing_features.clockid = true; 1666 goto fallback_missing_features; 1667 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1668 perf_missing_features.cloexec = true; 1669 goto fallback_missing_features; 1670 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1671 perf_missing_features.mmap2 = true; 1672 goto fallback_missing_features; 1673 } else if (!perf_missing_features.exclude_guest && 1674 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1675 perf_missing_features.exclude_guest = true; 1676 goto fallback_missing_features; 1677 } else if (!perf_missing_features.sample_id_all) { 1678 perf_missing_features.sample_id_all = true; 1679 goto retry_sample_id; 1680 } else if (!perf_missing_features.lbr_flags && 1681 (evsel->attr.branch_sample_type & 1682 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1683 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1684 perf_missing_features.lbr_flags = true; 1685 goto fallback_missing_features; 1686 } 1687 out_close: 1688 do { 1689 while (--thread >= 0) { 1690 close(FD(evsel, cpu, thread)); 1691 FD(evsel, cpu, thread) = -1; 1692 } 1693 thread = nthreads; 1694 } while (--cpu >= 0); 1695 return err; 1696 } 1697 1698 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads) 1699 { 1700 if (evsel->fd == NULL) 1701 return; 1702 1703 perf_evsel__close_fd(evsel, ncpus, nthreads); 1704 perf_evsel__free_fd(evsel); 1705 } 1706 1707 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1708 struct cpu_map *cpus) 1709 { 1710 return perf_evsel__open(evsel, cpus, NULL); 1711 } 1712 1713 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1714 struct thread_map *threads) 1715 { 1716 return perf_evsel__open(evsel, NULL, threads); 1717 } 1718 1719 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1720 const union perf_event *event, 1721 struct perf_sample *sample) 1722 { 1723 u64 type = evsel->attr.sample_type; 1724 const u64 *array = event->sample.array; 1725 bool swapped = evsel->needs_swap; 1726 union u64_swap u; 1727 1728 array += ((event->header.size - 1729 sizeof(event->header)) / sizeof(u64)) - 1; 1730 1731 if (type & PERF_SAMPLE_IDENTIFIER) { 1732 sample->id = *array; 1733 array--; 1734 } 1735 1736 if (type & PERF_SAMPLE_CPU) { 1737 u.val64 = *array; 1738 if (swapped) { 1739 /* undo swap of u64, then swap on individual u32s */ 1740 u.val64 = bswap_64(u.val64); 1741 u.val32[0] = bswap_32(u.val32[0]); 1742 } 1743 1744 sample->cpu = u.val32[0]; 1745 array--; 1746 } 1747 1748 if (type & PERF_SAMPLE_STREAM_ID) { 1749 sample->stream_id = *array; 1750 array--; 1751 } 1752 1753 if (type & PERF_SAMPLE_ID) { 1754 sample->id = *array; 1755 array--; 1756 } 1757 1758 if (type & PERF_SAMPLE_TIME) { 1759 sample->time = *array; 1760 array--; 1761 } 1762 1763 if (type & PERF_SAMPLE_TID) { 1764 u.val64 = *array; 1765 if (swapped) { 1766 /* undo swap of u64, then swap on individual u32s */ 1767 u.val64 = bswap_64(u.val64); 1768 u.val32[0] = bswap_32(u.val32[0]); 1769 u.val32[1] = bswap_32(u.val32[1]); 1770 } 1771 1772 sample->pid = u.val32[0]; 1773 sample->tid = u.val32[1]; 1774 array--; 1775 } 1776 1777 return 0; 1778 } 1779 1780 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 1781 u64 size) 1782 { 1783 return size > max_size || offset + size > endp; 1784 } 1785 1786 #define OVERFLOW_CHECK(offset, size, max_size) \ 1787 do { \ 1788 if (overflow(endp, (max_size), (offset), (size))) \ 1789 return -EFAULT; \ 1790 } while (0) 1791 1792 #define OVERFLOW_CHECK_u64(offset) \ 1793 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 1794 1795 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 1796 struct perf_sample *data) 1797 { 1798 u64 type = evsel->attr.sample_type; 1799 bool swapped = evsel->needs_swap; 1800 const u64 *array; 1801 u16 max_size = event->header.size; 1802 const void *endp = (void *)event + max_size; 1803 u64 sz; 1804 1805 /* 1806 * used for cross-endian analysis. See git commit 65014ab3 1807 * for why this goofiness is needed. 1808 */ 1809 union u64_swap u; 1810 1811 memset(data, 0, sizeof(*data)); 1812 data->cpu = data->pid = data->tid = -1; 1813 data->stream_id = data->id = data->time = -1ULL; 1814 data->period = evsel->attr.sample_period; 1815 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1816 1817 if (event->header.type != PERF_RECORD_SAMPLE) { 1818 if (!evsel->attr.sample_id_all) 1819 return 0; 1820 return perf_evsel__parse_id_sample(evsel, event, data); 1821 } 1822 1823 array = event->sample.array; 1824 1825 /* 1826 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 1827 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 1828 * check the format does not go past the end of the event. 1829 */ 1830 if (evsel->sample_size + sizeof(event->header) > event->header.size) 1831 return -EFAULT; 1832 1833 data->id = -1ULL; 1834 if (type & PERF_SAMPLE_IDENTIFIER) { 1835 data->id = *array; 1836 array++; 1837 } 1838 1839 if (type & PERF_SAMPLE_IP) { 1840 data->ip = *array; 1841 array++; 1842 } 1843 1844 if (type & PERF_SAMPLE_TID) { 1845 u.val64 = *array; 1846 if (swapped) { 1847 /* undo swap of u64, then swap on individual u32s */ 1848 u.val64 = bswap_64(u.val64); 1849 u.val32[0] = bswap_32(u.val32[0]); 1850 u.val32[1] = bswap_32(u.val32[1]); 1851 } 1852 1853 data->pid = u.val32[0]; 1854 data->tid = u.val32[1]; 1855 array++; 1856 } 1857 1858 if (type & PERF_SAMPLE_TIME) { 1859 data->time = *array; 1860 array++; 1861 } 1862 1863 data->addr = 0; 1864 if (type & PERF_SAMPLE_ADDR) { 1865 data->addr = *array; 1866 array++; 1867 } 1868 1869 if (type & PERF_SAMPLE_ID) { 1870 data->id = *array; 1871 array++; 1872 } 1873 1874 if (type & PERF_SAMPLE_STREAM_ID) { 1875 data->stream_id = *array; 1876 array++; 1877 } 1878 1879 if (type & PERF_SAMPLE_CPU) { 1880 1881 u.val64 = *array; 1882 if (swapped) { 1883 /* undo swap of u64, then swap on individual u32s */ 1884 u.val64 = bswap_64(u.val64); 1885 u.val32[0] = bswap_32(u.val32[0]); 1886 } 1887 1888 data->cpu = u.val32[0]; 1889 array++; 1890 } 1891 1892 if (type & PERF_SAMPLE_PERIOD) { 1893 data->period = *array; 1894 array++; 1895 } 1896 1897 if (type & PERF_SAMPLE_READ) { 1898 u64 read_format = evsel->attr.read_format; 1899 1900 OVERFLOW_CHECK_u64(array); 1901 if (read_format & PERF_FORMAT_GROUP) 1902 data->read.group.nr = *array; 1903 else 1904 data->read.one.value = *array; 1905 1906 array++; 1907 1908 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 1909 OVERFLOW_CHECK_u64(array); 1910 data->read.time_enabled = *array; 1911 array++; 1912 } 1913 1914 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 1915 OVERFLOW_CHECK_u64(array); 1916 data->read.time_running = *array; 1917 array++; 1918 } 1919 1920 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1921 if (read_format & PERF_FORMAT_GROUP) { 1922 const u64 max_group_nr = UINT64_MAX / 1923 sizeof(struct sample_read_value); 1924 1925 if (data->read.group.nr > max_group_nr) 1926 return -EFAULT; 1927 sz = data->read.group.nr * 1928 sizeof(struct sample_read_value); 1929 OVERFLOW_CHECK(array, sz, max_size); 1930 data->read.group.values = 1931 (struct sample_read_value *)array; 1932 array = (void *)array + sz; 1933 } else { 1934 OVERFLOW_CHECK_u64(array); 1935 data->read.one.id = *array; 1936 array++; 1937 } 1938 } 1939 1940 if (type & PERF_SAMPLE_CALLCHAIN) { 1941 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 1942 1943 OVERFLOW_CHECK_u64(array); 1944 data->callchain = (struct ip_callchain *)array++; 1945 if (data->callchain->nr > max_callchain_nr) 1946 return -EFAULT; 1947 sz = data->callchain->nr * sizeof(u64); 1948 OVERFLOW_CHECK(array, sz, max_size); 1949 array = (void *)array + sz; 1950 } 1951 1952 if (type & PERF_SAMPLE_RAW) { 1953 OVERFLOW_CHECK_u64(array); 1954 u.val64 = *array; 1955 if (WARN_ONCE(swapped, 1956 "Endianness of raw data not corrected!\n")) { 1957 /* undo swap of u64, then swap on individual u32s */ 1958 u.val64 = bswap_64(u.val64); 1959 u.val32[0] = bswap_32(u.val32[0]); 1960 u.val32[1] = bswap_32(u.val32[1]); 1961 } 1962 data->raw_size = u.val32[0]; 1963 array = (void *)array + sizeof(u32); 1964 1965 OVERFLOW_CHECK(array, data->raw_size, max_size); 1966 data->raw_data = (void *)array; 1967 array = (void *)array + data->raw_size; 1968 } 1969 1970 if (type & PERF_SAMPLE_BRANCH_STACK) { 1971 const u64 max_branch_nr = UINT64_MAX / 1972 sizeof(struct branch_entry); 1973 1974 OVERFLOW_CHECK_u64(array); 1975 data->branch_stack = (struct branch_stack *)array++; 1976 1977 if (data->branch_stack->nr > max_branch_nr) 1978 return -EFAULT; 1979 sz = data->branch_stack->nr * sizeof(struct branch_entry); 1980 OVERFLOW_CHECK(array, sz, max_size); 1981 array = (void *)array + sz; 1982 } 1983 1984 if (type & PERF_SAMPLE_REGS_USER) { 1985 OVERFLOW_CHECK_u64(array); 1986 data->user_regs.abi = *array; 1987 array++; 1988 1989 if (data->user_regs.abi) { 1990 u64 mask = evsel->attr.sample_regs_user; 1991 1992 sz = hweight_long(mask) * sizeof(u64); 1993 OVERFLOW_CHECK(array, sz, max_size); 1994 data->user_regs.mask = mask; 1995 data->user_regs.regs = (u64 *)array; 1996 array = (void *)array + sz; 1997 } 1998 } 1999 2000 if (type & PERF_SAMPLE_STACK_USER) { 2001 OVERFLOW_CHECK_u64(array); 2002 sz = *array++; 2003 2004 data->user_stack.offset = ((char *)(array - 1) 2005 - (char *) event); 2006 2007 if (!sz) { 2008 data->user_stack.size = 0; 2009 } else { 2010 OVERFLOW_CHECK(array, sz, max_size); 2011 data->user_stack.data = (char *)array; 2012 array = (void *)array + sz; 2013 OVERFLOW_CHECK_u64(array); 2014 data->user_stack.size = *array++; 2015 if (WARN_ONCE(data->user_stack.size > sz, 2016 "user stack dump failure\n")) 2017 return -EFAULT; 2018 } 2019 } 2020 2021 if (type & PERF_SAMPLE_WEIGHT) { 2022 OVERFLOW_CHECK_u64(array); 2023 data->weight = *array; 2024 array++; 2025 } 2026 2027 data->data_src = PERF_MEM_DATA_SRC_NONE; 2028 if (type & PERF_SAMPLE_DATA_SRC) { 2029 OVERFLOW_CHECK_u64(array); 2030 data->data_src = *array; 2031 array++; 2032 } 2033 2034 data->transaction = 0; 2035 if (type & PERF_SAMPLE_TRANSACTION) { 2036 OVERFLOW_CHECK_u64(array); 2037 data->transaction = *array; 2038 array++; 2039 } 2040 2041 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2042 if (type & PERF_SAMPLE_REGS_INTR) { 2043 OVERFLOW_CHECK_u64(array); 2044 data->intr_regs.abi = *array; 2045 array++; 2046 2047 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2048 u64 mask = evsel->attr.sample_regs_intr; 2049 2050 sz = hweight_long(mask) * sizeof(u64); 2051 OVERFLOW_CHECK(array, sz, max_size); 2052 data->intr_regs.mask = mask; 2053 data->intr_regs.regs = (u64 *)array; 2054 array = (void *)array + sz; 2055 } 2056 } 2057 2058 return 0; 2059 } 2060 2061 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2062 u64 read_format) 2063 { 2064 size_t sz, result = sizeof(struct sample_event); 2065 2066 if (type & PERF_SAMPLE_IDENTIFIER) 2067 result += sizeof(u64); 2068 2069 if (type & PERF_SAMPLE_IP) 2070 result += sizeof(u64); 2071 2072 if (type & PERF_SAMPLE_TID) 2073 result += sizeof(u64); 2074 2075 if (type & PERF_SAMPLE_TIME) 2076 result += sizeof(u64); 2077 2078 if (type & PERF_SAMPLE_ADDR) 2079 result += sizeof(u64); 2080 2081 if (type & PERF_SAMPLE_ID) 2082 result += sizeof(u64); 2083 2084 if (type & PERF_SAMPLE_STREAM_ID) 2085 result += sizeof(u64); 2086 2087 if (type & PERF_SAMPLE_CPU) 2088 result += sizeof(u64); 2089 2090 if (type & PERF_SAMPLE_PERIOD) 2091 result += sizeof(u64); 2092 2093 if (type & PERF_SAMPLE_READ) { 2094 result += sizeof(u64); 2095 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2096 result += sizeof(u64); 2097 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2098 result += sizeof(u64); 2099 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2100 if (read_format & PERF_FORMAT_GROUP) { 2101 sz = sample->read.group.nr * 2102 sizeof(struct sample_read_value); 2103 result += sz; 2104 } else { 2105 result += sizeof(u64); 2106 } 2107 } 2108 2109 if (type & PERF_SAMPLE_CALLCHAIN) { 2110 sz = (sample->callchain->nr + 1) * sizeof(u64); 2111 result += sz; 2112 } 2113 2114 if (type & PERF_SAMPLE_RAW) { 2115 result += sizeof(u32); 2116 result += sample->raw_size; 2117 } 2118 2119 if (type & PERF_SAMPLE_BRANCH_STACK) { 2120 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2121 sz += sizeof(u64); 2122 result += sz; 2123 } 2124 2125 if (type & PERF_SAMPLE_REGS_USER) { 2126 if (sample->user_regs.abi) { 2127 result += sizeof(u64); 2128 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2129 result += sz; 2130 } else { 2131 result += sizeof(u64); 2132 } 2133 } 2134 2135 if (type & PERF_SAMPLE_STACK_USER) { 2136 sz = sample->user_stack.size; 2137 result += sizeof(u64); 2138 if (sz) { 2139 result += sz; 2140 result += sizeof(u64); 2141 } 2142 } 2143 2144 if (type & PERF_SAMPLE_WEIGHT) 2145 result += sizeof(u64); 2146 2147 if (type & PERF_SAMPLE_DATA_SRC) 2148 result += sizeof(u64); 2149 2150 if (type & PERF_SAMPLE_TRANSACTION) 2151 result += sizeof(u64); 2152 2153 if (type & PERF_SAMPLE_REGS_INTR) { 2154 if (sample->intr_regs.abi) { 2155 result += sizeof(u64); 2156 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2157 result += sz; 2158 } else { 2159 result += sizeof(u64); 2160 } 2161 } 2162 2163 return result; 2164 } 2165 2166 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2167 u64 read_format, 2168 const struct perf_sample *sample, 2169 bool swapped) 2170 { 2171 u64 *array; 2172 size_t sz; 2173 /* 2174 * used for cross-endian analysis. See git commit 65014ab3 2175 * for why this goofiness is needed. 2176 */ 2177 union u64_swap u; 2178 2179 array = event->sample.array; 2180 2181 if (type & PERF_SAMPLE_IDENTIFIER) { 2182 *array = sample->id; 2183 array++; 2184 } 2185 2186 if (type & PERF_SAMPLE_IP) { 2187 *array = sample->ip; 2188 array++; 2189 } 2190 2191 if (type & PERF_SAMPLE_TID) { 2192 u.val32[0] = sample->pid; 2193 u.val32[1] = sample->tid; 2194 if (swapped) { 2195 /* 2196 * Inverse of what is done in perf_evsel__parse_sample 2197 */ 2198 u.val32[0] = bswap_32(u.val32[0]); 2199 u.val32[1] = bswap_32(u.val32[1]); 2200 u.val64 = bswap_64(u.val64); 2201 } 2202 2203 *array = u.val64; 2204 array++; 2205 } 2206 2207 if (type & PERF_SAMPLE_TIME) { 2208 *array = sample->time; 2209 array++; 2210 } 2211 2212 if (type & PERF_SAMPLE_ADDR) { 2213 *array = sample->addr; 2214 array++; 2215 } 2216 2217 if (type & PERF_SAMPLE_ID) { 2218 *array = sample->id; 2219 array++; 2220 } 2221 2222 if (type & PERF_SAMPLE_STREAM_ID) { 2223 *array = sample->stream_id; 2224 array++; 2225 } 2226 2227 if (type & PERF_SAMPLE_CPU) { 2228 u.val32[0] = sample->cpu; 2229 if (swapped) { 2230 /* 2231 * Inverse of what is done in perf_evsel__parse_sample 2232 */ 2233 u.val32[0] = bswap_32(u.val32[0]); 2234 u.val64 = bswap_64(u.val64); 2235 } 2236 *array = u.val64; 2237 array++; 2238 } 2239 2240 if (type & PERF_SAMPLE_PERIOD) { 2241 *array = sample->period; 2242 array++; 2243 } 2244 2245 if (type & PERF_SAMPLE_READ) { 2246 if (read_format & PERF_FORMAT_GROUP) 2247 *array = sample->read.group.nr; 2248 else 2249 *array = sample->read.one.value; 2250 array++; 2251 2252 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2253 *array = sample->read.time_enabled; 2254 array++; 2255 } 2256 2257 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2258 *array = sample->read.time_running; 2259 array++; 2260 } 2261 2262 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2263 if (read_format & PERF_FORMAT_GROUP) { 2264 sz = sample->read.group.nr * 2265 sizeof(struct sample_read_value); 2266 memcpy(array, sample->read.group.values, sz); 2267 array = (void *)array + sz; 2268 } else { 2269 *array = sample->read.one.id; 2270 array++; 2271 } 2272 } 2273 2274 if (type & PERF_SAMPLE_CALLCHAIN) { 2275 sz = (sample->callchain->nr + 1) * sizeof(u64); 2276 memcpy(array, sample->callchain, sz); 2277 array = (void *)array + sz; 2278 } 2279 2280 if (type & PERF_SAMPLE_RAW) { 2281 u.val32[0] = sample->raw_size; 2282 if (WARN_ONCE(swapped, 2283 "Endianness of raw data not corrected!\n")) { 2284 /* 2285 * Inverse of what is done in perf_evsel__parse_sample 2286 */ 2287 u.val32[0] = bswap_32(u.val32[0]); 2288 u.val32[1] = bswap_32(u.val32[1]); 2289 u.val64 = bswap_64(u.val64); 2290 } 2291 *array = u.val64; 2292 array = (void *)array + sizeof(u32); 2293 2294 memcpy(array, sample->raw_data, sample->raw_size); 2295 array = (void *)array + sample->raw_size; 2296 } 2297 2298 if (type & PERF_SAMPLE_BRANCH_STACK) { 2299 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2300 sz += sizeof(u64); 2301 memcpy(array, sample->branch_stack, sz); 2302 array = (void *)array + sz; 2303 } 2304 2305 if (type & PERF_SAMPLE_REGS_USER) { 2306 if (sample->user_regs.abi) { 2307 *array++ = sample->user_regs.abi; 2308 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2309 memcpy(array, sample->user_regs.regs, sz); 2310 array = (void *)array + sz; 2311 } else { 2312 *array++ = 0; 2313 } 2314 } 2315 2316 if (type & PERF_SAMPLE_STACK_USER) { 2317 sz = sample->user_stack.size; 2318 *array++ = sz; 2319 if (sz) { 2320 memcpy(array, sample->user_stack.data, sz); 2321 array = (void *)array + sz; 2322 *array++ = sz; 2323 } 2324 } 2325 2326 if (type & PERF_SAMPLE_WEIGHT) { 2327 *array = sample->weight; 2328 array++; 2329 } 2330 2331 if (type & PERF_SAMPLE_DATA_SRC) { 2332 *array = sample->data_src; 2333 array++; 2334 } 2335 2336 if (type & PERF_SAMPLE_TRANSACTION) { 2337 *array = sample->transaction; 2338 array++; 2339 } 2340 2341 if (type & PERF_SAMPLE_REGS_INTR) { 2342 if (sample->intr_regs.abi) { 2343 *array++ = sample->intr_regs.abi; 2344 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2345 memcpy(array, sample->intr_regs.regs, sz); 2346 array = (void *)array + sz; 2347 } else { 2348 *array++ = 0; 2349 } 2350 } 2351 2352 return 0; 2353 } 2354 2355 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2356 { 2357 return pevent_find_field(evsel->tp_format, name); 2358 } 2359 2360 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2361 const char *name) 2362 { 2363 struct format_field *field = perf_evsel__field(evsel, name); 2364 int offset; 2365 2366 if (!field) 2367 return NULL; 2368 2369 offset = field->offset; 2370 2371 if (field->flags & FIELD_IS_DYNAMIC) { 2372 offset = *(int *)(sample->raw_data + field->offset); 2373 offset &= 0xffff; 2374 } 2375 2376 return sample->raw_data + offset; 2377 } 2378 2379 u64 format_field__intval(struct format_field *field, struct perf_sample *sample, 2380 bool needs_swap) 2381 { 2382 u64 value; 2383 void *ptr = sample->raw_data + field->offset; 2384 2385 switch (field->size) { 2386 case 1: 2387 return *(u8 *)ptr; 2388 case 2: 2389 value = *(u16 *)ptr; 2390 break; 2391 case 4: 2392 value = *(u32 *)ptr; 2393 break; 2394 case 8: 2395 memcpy(&value, ptr, sizeof(u64)); 2396 break; 2397 default: 2398 return 0; 2399 } 2400 2401 if (!needs_swap) 2402 return value; 2403 2404 switch (field->size) { 2405 case 2: 2406 return bswap_16(value); 2407 case 4: 2408 return bswap_32(value); 2409 case 8: 2410 return bswap_64(value); 2411 default: 2412 return 0; 2413 } 2414 2415 return 0; 2416 } 2417 2418 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2419 const char *name) 2420 { 2421 struct format_field *field = perf_evsel__field(evsel, name); 2422 2423 if (!field) 2424 return 0; 2425 2426 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2427 } 2428 2429 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2430 char *msg, size_t msgsize) 2431 { 2432 int paranoid; 2433 2434 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2435 evsel->attr.type == PERF_TYPE_HARDWARE && 2436 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2437 /* 2438 * If it's cycles then fall back to hrtimer based 2439 * cpu-clock-tick sw counter, which is always available even if 2440 * no PMU support. 2441 * 2442 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2443 * b0a873e). 2444 */ 2445 scnprintf(msg, msgsize, "%s", 2446 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2447 2448 evsel->attr.type = PERF_TYPE_SOFTWARE; 2449 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2450 2451 zfree(&evsel->name); 2452 return true; 2453 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2454 (paranoid = perf_event_paranoid()) > 1) { 2455 const char *name = perf_evsel__name(evsel); 2456 char *new_name; 2457 2458 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0) 2459 return false; 2460 2461 if (evsel->name) 2462 free(evsel->name); 2463 evsel->name = new_name; 2464 scnprintf(msg, msgsize, 2465 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2466 evsel->attr.exclude_kernel = 1; 2467 2468 return true; 2469 } 2470 2471 return false; 2472 } 2473 2474 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2475 int err, char *msg, size_t size) 2476 { 2477 char sbuf[STRERR_BUFSIZE]; 2478 int printed = 0; 2479 2480 switch (err) { 2481 case EPERM: 2482 case EACCES: 2483 if (err == EPERM) 2484 printed = scnprintf(msg, size, 2485 "No permission to enable %s event.\n\n", 2486 perf_evsel__name(evsel)); 2487 2488 return scnprintf(msg + printed, size - printed, 2489 "You may not have permission to collect %sstats.\n\n" 2490 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2491 "which controls use of the performance events system by\n" 2492 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2493 "The current value is %d:\n\n" 2494 " -1: Allow use of (almost) all events by all users\n" 2495 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n" 2496 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2497 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2498 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2499 " kernel.perf_event_paranoid = -1\n" , 2500 target->system_wide ? "system-wide " : "", 2501 perf_event_paranoid()); 2502 case ENOENT: 2503 return scnprintf(msg, size, "The %s event is not supported.", 2504 perf_evsel__name(evsel)); 2505 case EMFILE: 2506 return scnprintf(msg, size, "%s", 2507 "Too many events are opened.\n" 2508 "Probably the maximum number of open file descriptors has been reached.\n" 2509 "Hint: Try again after reducing the number of events.\n" 2510 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2511 case ENOMEM: 2512 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 && 2513 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2514 return scnprintf(msg, size, 2515 "Not enough memory to setup event with callchain.\n" 2516 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2517 "Hint: Current value: %d", sysctl_perf_event_max_stack); 2518 break; 2519 case ENODEV: 2520 if (target->cpu_list) 2521 return scnprintf(msg, size, "%s", 2522 "No such device - did you specify an out-of-range profile CPU?"); 2523 break; 2524 case EOPNOTSUPP: 2525 if (evsel->attr.sample_period != 0) 2526 return scnprintf(msg, size, "%s", 2527 "PMU Hardware doesn't support sampling/overflow-interrupts."); 2528 if (evsel->attr.precise_ip) 2529 return scnprintf(msg, size, "%s", 2530 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2531 #if defined(__i386__) || defined(__x86_64__) 2532 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2533 return scnprintf(msg, size, "%s", 2534 "No hardware sampling interrupt available.\n" 2535 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); 2536 #endif 2537 break; 2538 case EBUSY: 2539 if (find_process("oprofiled")) 2540 return scnprintf(msg, size, 2541 "The PMU counters are busy/taken by another profiler.\n" 2542 "We found oprofile daemon running, please stop it and try again."); 2543 break; 2544 case EINVAL: 2545 if (evsel->attr.write_backward && perf_missing_features.write_backward) 2546 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2547 if (perf_missing_features.clockid) 2548 return scnprintf(msg, size, "clockid feature not supported."); 2549 if (perf_missing_features.clockid_wrong) 2550 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2551 break; 2552 default: 2553 break; 2554 } 2555 2556 return scnprintf(msg, size, 2557 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2558 "/bin/dmesg may provide additional information.\n" 2559 "No CONFIG_PERF_EVENTS=y kernel support configured?", 2560 err, str_error_r(err, sbuf, sizeof(sbuf)), 2561 perf_evsel__name(evsel)); 2562 } 2563 2564 char *perf_evsel__env_arch(struct perf_evsel *evsel) 2565 { 2566 if (evsel && evsel->evlist && evsel->evlist->env) 2567 return evsel->evlist->env->arch; 2568 return NULL; 2569 } 2570