xref: /openbmc/linux/tools/perf/util/evsel.c (revision f5b06569)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/tracing_path.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <linux/err.h>
17 #include <sys/resource.h>
18 #include "asm/bug.h"
19 #include "callchain.h"
20 #include "cgroup.h"
21 #include "evsel.h"
22 #include "evlist.h"
23 #include "util.h"
24 #include "cpumap.h"
25 #include "thread_map.h"
26 #include "target.h"
27 #include "perf_regs.h"
28 #include "debug.h"
29 #include "trace-event.h"
30 #include "stat.h"
31 
32 static struct {
33 	bool sample_id_all;
34 	bool exclude_guest;
35 	bool mmap2;
36 	bool cloexec;
37 	bool clockid;
38 	bool clockid_wrong;
39 	bool lbr_flags;
40 	bool write_backward;
41 } perf_missing_features;
42 
43 static clockid_t clockid;
44 
45 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
46 {
47 	return 0;
48 }
49 
50 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
51 {
52 }
53 
54 static struct {
55 	size_t	size;
56 	int	(*init)(struct perf_evsel *evsel);
57 	void	(*fini)(struct perf_evsel *evsel);
58 } perf_evsel__object = {
59 	.size = sizeof(struct perf_evsel),
60 	.init = perf_evsel__no_extra_init,
61 	.fini = perf_evsel__no_extra_fini,
62 };
63 
64 int perf_evsel__object_config(size_t object_size,
65 			      int (*init)(struct perf_evsel *evsel),
66 			      void (*fini)(struct perf_evsel *evsel))
67 {
68 
69 	if (object_size == 0)
70 		goto set_methods;
71 
72 	if (perf_evsel__object.size > object_size)
73 		return -EINVAL;
74 
75 	perf_evsel__object.size = object_size;
76 
77 set_methods:
78 	if (init != NULL)
79 		perf_evsel__object.init = init;
80 
81 	if (fini != NULL)
82 		perf_evsel__object.fini = fini;
83 
84 	return 0;
85 }
86 
87 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
88 
89 int __perf_evsel__sample_size(u64 sample_type)
90 {
91 	u64 mask = sample_type & PERF_SAMPLE_MASK;
92 	int size = 0;
93 	int i;
94 
95 	for (i = 0; i < 64; i++) {
96 		if (mask & (1ULL << i))
97 			size++;
98 	}
99 
100 	size *= sizeof(u64);
101 
102 	return size;
103 }
104 
105 /**
106  * __perf_evsel__calc_id_pos - calculate id_pos.
107  * @sample_type: sample type
108  *
109  * This function returns the position of the event id (PERF_SAMPLE_ID or
110  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
111  * sample_event.
112  */
113 static int __perf_evsel__calc_id_pos(u64 sample_type)
114 {
115 	int idx = 0;
116 
117 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
118 		return 0;
119 
120 	if (!(sample_type & PERF_SAMPLE_ID))
121 		return -1;
122 
123 	if (sample_type & PERF_SAMPLE_IP)
124 		idx += 1;
125 
126 	if (sample_type & PERF_SAMPLE_TID)
127 		idx += 1;
128 
129 	if (sample_type & PERF_SAMPLE_TIME)
130 		idx += 1;
131 
132 	if (sample_type & PERF_SAMPLE_ADDR)
133 		idx += 1;
134 
135 	return idx;
136 }
137 
138 /**
139  * __perf_evsel__calc_is_pos - calculate is_pos.
140  * @sample_type: sample type
141  *
142  * This function returns the position (counting backwards) of the event id
143  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
144  * sample_id_all is used there is an id sample appended to non-sample events.
145  */
146 static int __perf_evsel__calc_is_pos(u64 sample_type)
147 {
148 	int idx = 1;
149 
150 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
151 		return 1;
152 
153 	if (!(sample_type & PERF_SAMPLE_ID))
154 		return -1;
155 
156 	if (sample_type & PERF_SAMPLE_CPU)
157 		idx += 1;
158 
159 	if (sample_type & PERF_SAMPLE_STREAM_ID)
160 		idx += 1;
161 
162 	return idx;
163 }
164 
165 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
166 {
167 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
168 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
169 }
170 
171 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
172 				  enum perf_event_sample_format bit)
173 {
174 	if (!(evsel->attr.sample_type & bit)) {
175 		evsel->attr.sample_type |= bit;
176 		evsel->sample_size += sizeof(u64);
177 		perf_evsel__calc_id_pos(evsel);
178 	}
179 }
180 
181 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
182 				    enum perf_event_sample_format bit)
183 {
184 	if (evsel->attr.sample_type & bit) {
185 		evsel->attr.sample_type &= ~bit;
186 		evsel->sample_size -= sizeof(u64);
187 		perf_evsel__calc_id_pos(evsel);
188 	}
189 }
190 
191 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
192 			       bool can_sample_identifier)
193 {
194 	if (can_sample_identifier) {
195 		perf_evsel__reset_sample_bit(evsel, ID);
196 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
197 	} else {
198 		perf_evsel__set_sample_bit(evsel, ID);
199 	}
200 	evsel->attr.read_format |= PERF_FORMAT_ID;
201 }
202 
203 /**
204  * perf_evsel__is_function_event - Return whether given evsel is a function
205  * trace event
206  *
207  * @evsel - evsel selector to be tested
208  *
209  * Return %true if event is function trace event
210  */
211 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
212 {
213 #define FUNCTION_EVENT "ftrace:function"
214 
215 	return evsel->name &&
216 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
217 
218 #undef FUNCTION_EVENT
219 }
220 
221 void perf_evsel__init(struct perf_evsel *evsel,
222 		      struct perf_event_attr *attr, int idx)
223 {
224 	evsel->idx	   = idx;
225 	evsel->tracking	   = !idx;
226 	evsel->attr	   = *attr;
227 	evsel->leader	   = evsel;
228 	evsel->unit	   = "";
229 	evsel->scale	   = 1.0;
230 	evsel->evlist	   = NULL;
231 	evsel->bpf_fd	   = -1;
232 	INIT_LIST_HEAD(&evsel->node);
233 	INIT_LIST_HEAD(&evsel->config_terms);
234 	perf_evsel__object.init(evsel);
235 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
236 	perf_evsel__calc_id_pos(evsel);
237 	evsel->cmdline_group_boundary = false;
238 }
239 
240 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
241 {
242 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
243 
244 	if (evsel != NULL)
245 		perf_evsel__init(evsel, attr, idx);
246 
247 	if (perf_evsel__is_bpf_output(evsel)) {
248 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
249 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
250 		evsel->attr.sample_period = 1;
251 	}
252 
253 	return evsel;
254 }
255 
256 struct perf_evsel *perf_evsel__new_cycles(void)
257 {
258 	struct perf_event_attr attr = {
259 		.type	= PERF_TYPE_HARDWARE,
260 		.config	= PERF_COUNT_HW_CPU_CYCLES,
261 	};
262 	struct perf_evsel *evsel;
263 
264 	event_attr_init(&attr);
265 
266 	perf_event_attr__set_max_precise_ip(&attr);
267 
268 	evsel = perf_evsel__new(&attr);
269 	if (evsel == NULL)
270 		goto out;
271 
272 	/* use asprintf() because free(evsel) assumes name is allocated */
273 	if (asprintf(&evsel->name, "cycles%.*s",
274 		     attr.precise_ip ? attr.precise_ip + 1 : 0, ":ppp") < 0)
275 		goto error_free;
276 out:
277 	return evsel;
278 error_free:
279 	perf_evsel__delete(evsel);
280 	evsel = NULL;
281 	goto out;
282 }
283 
284 /*
285  * Returns pointer with encoded error via <linux/err.h> interface.
286  */
287 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
288 {
289 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
290 	int err = -ENOMEM;
291 
292 	if (evsel == NULL) {
293 		goto out_err;
294 	} else {
295 		struct perf_event_attr attr = {
296 			.type	       = PERF_TYPE_TRACEPOINT,
297 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
298 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
299 		};
300 
301 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
302 			goto out_free;
303 
304 		evsel->tp_format = trace_event__tp_format(sys, name);
305 		if (IS_ERR(evsel->tp_format)) {
306 			err = PTR_ERR(evsel->tp_format);
307 			goto out_free;
308 		}
309 
310 		event_attr_init(&attr);
311 		attr.config = evsel->tp_format->id;
312 		attr.sample_period = 1;
313 		perf_evsel__init(evsel, &attr, idx);
314 	}
315 
316 	return evsel;
317 
318 out_free:
319 	zfree(&evsel->name);
320 	free(evsel);
321 out_err:
322 	return ERR_PTR(err);
323 }
324 
325 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
326 	"cycles",
327 	"instructions",
328 	"cache-references",
329 	"cache-misses",
330 	"branches",
331 	"branch-misses",
332 	"bus-cycles",
333 	"stalled-cycles-frontend",
334 	"stalled-cycles-backend",
335 	"ref-cycles",
336 };
337 
338 static const char *__perf_evsel__hw_name(u64 config)
339 {
340 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
341 		return perf_evsel__hw_names[config];
342 
343 	return "unknown-hardware";
344 }
345 
346 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
347 {
348 	int colon = 0, r = 0;
349 	struct perf_event_attr *attr = &evsel->attr;
350 	bool exclude_guest_default = false;
351 
352 #define MOD_PRINT(context, mod)	do {					\
353 		if (!attr->exclude_##context) {				\
354 			if (!colon) colon = ++r;			\
355 			r += scnprintf(bf + r, size - r, "%c", mod);	\
356 		} } while(0)
357 
358 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
359 		MOD_PRINT(kernel, 'k');
360 		MOD_PRINT(user, 'u');
361 		MOD_PRINT(hv, 'h');
362 		exclude_guest_default = true;
363 	}
364 
365 	if (attr->precise_ip) {
366 		if (!colon)
367 			colon = ++r;
368 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
369 		exclude_guest_default = true;
370 	}
371 
372 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
373 		MOD_PRINT(host, 'H');
374 		MOD_PRINT(guest, 'G');
375 	}
376 #undef MOD_PRINT
377 	if (colon)
378 		bf[colon - 1] = ':';
379 	return r;
380 }
381 
382 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
383 {
384 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
385 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
386 }
387 
388 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
389 	"cpu-clock",
390 	"task-clock",
391 	"page-faults",
392 	"context-switches",
393 	"cpu-migrations",
394 	"minor-faults",
395 	"major-faults",
396 	"alignment-faults",
397 	"emulation-faults",
398 	"dummy",
399 };
400 
401 static const char *__perf_evsel__sw_name(u64 config)
402 {
403 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
404 		return perf_evsel__sw_names[config];
405 	return "unknown-software";
406 }
407 
408 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
409 {
410 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
411 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
412 }
413 
414 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
415 {
416 	int r;
417 
418 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
419 
420 	if (type & HW_BREAKPOINT_R)
421 		r += scnprintf(bf + r, size - r, "r");
422 
423 	if (type & HW_BREAKPOINT_W)
424 		r += scnprintf(bf + r, size - r, "w");
425 
426 	if (type & HW_BREAKPOINT_X)
427 		r += scnprintf(bf + r, size - r, "x");
428 
429 	return r;
430 }
431 
432 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
433 {
434 	struct perf_event_attr *attr = &evsel->attr;
435 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
436 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
437 }
438 
439 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
440 				[PERF_EVSEL__MAX_ALIASES] = {
441  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
442  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
443  { "LLC",	"L2",							},
444  { "dTLB",	"d-tlb",	"Data-TLB",				},
445  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
446  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
447  { "node",								},
448 };
449 
450 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
451 				   [PERF_EVSEL__MAX_ALIASES] = {
452  { "load",	"loads",	"read",					},
453  { "store",	"stores",	"write",				},
454  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
455 };
456 
457 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
458 				       [PERF_EVSEL__MAX_ALIASES] = {
459  { "refs",	"Reference",	"ops",		"access",		},
460  { "misses",	"miss",							},
461 };
462 
463 #define C(x)		PERF_COUNT_HW_CACHE_##x
464 #define CACHE_READ	(1 << C(OP_READ))
465 #define CACHE_WRITE	(1 << C(OP_WRITE))
466 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
467 #define COP(x)		(1 << x)
468 
469 /*
470  * cache operartion stat
471  * L1I : Read and prefetch only
472  * ITLB and BPU : Read-only
473  */
474 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
475  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
476  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
477  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
478  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
479  [C(ITLB)]	= (CACHE_READ),
480  [C(BPU)]	= (CACHE_READ),
481  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
482 };
483 
484 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
485 {
486 	if (perf_evsel__hw_cache_stat[type] & COP(op))
487 		return true;	/* valid */
488 	else
489 		return false;	/* invalid */
490 }
491 
492 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
493 					    char *bf, size_t size)
494 {
495 	if (result) {
496 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
497 				 perf_evsel__hw_cache_op[op][0],
498 				 perf_evsel__hw_cache_result[result][0]);
499 	}
500 
501 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
502 			 perf_evsel__hw_cache_op[op][1]);
503 }
504 
505 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
506 {
507 	u8 op, result, type = (config >>  0) & 0xff;
508 	const char *err = "unknown-ext-hardware-cache-type";
509 
510 	if (type >= PERF_COUNT_HW_CACHE_MAX)
511 		goto out_err;
512 
513 	op = (config >>  8) & 0xff;
514 	err = "unknown-ext-hardware-cache-op";
515 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
516 		goto out_err;
517 
518 	result = (config >> 16) & 0xff;
519 	err = "unknown-ext-hardware-cache-result";
520 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
521 		goto out_err;
522 
523 	err = "invalid-cache";
524 	if (!perf_evsel__is_cache_op_valid(type, op))
525 		goto out_err;
526 
527 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
528 out_err:
529 	return scnprintf(bf, size, "%s", err);
530 }
531 
532 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
533 {
534 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
535 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
536 }
537 
538 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
539 {
540 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
541 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
542 }
543 
544 const char *perf_evsel__name(struct perf_evsel *evsel)
545 {
546 	char bf[128];
547 
548 	if (evsel->name)
549 		return evsel->name;
550 
551 	switch (evsel->attr.type) {
552 	case PERF_TYPE_RAW:
553 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
554 		break;
555 
556 	case PERF_TYPE_HARDWARE:
557 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
558 		break;
559 
560 	case PERF_TYPE_HW_CACHE:
561 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
562 		break;
563 
564 	case PERF_TYPE_SOFTWARE:
565 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
566 		break;
567 
568 	case PERF_TYPE_TRACEPOINT:
569 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
570 		break;
571 
572 	case PERF_TYPE_BREAKPOINT:
573 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
574 		break;
575 
576 	default:
577 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
578 			  evsel->attr.type);
579 		break;
580 	}
581 
582 	evsel->name = strdup(bf);
583 
584 	return evsel->name ?: "unknown";
585 }
586 
587 const char *perf_evsel__group_name(struct perf_evsel *evsel)
588 {
589 	return evsel->group_name ?: "anon group";
590 }
591 
592 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
593 {
594 	int ret;
595 	struct perf_evsel *pos;
596 	const char *group_name = perf_evsel__group_name(evsel);
597 
598 	ret = scnprintf(buf, size, "%s", group_name);
599 
600 	ret += scnprintf(buf + ret, size - ret, " { %s",
601 			 perf_evsel__name(evsel));
602 
603 	for_each_group_member(pos, evsel)
604 		ret += scnprintf(buf + ret, size - ret, ", %s",
605 				 perf_evsel__name(pos));
606 
607 	ret += scnprintf(buf + ret, size - ret, " }");
608 
609 	return ret;
610 }
611 
612 void perf_evsel__config_callchain(struct perf_evsel *evsel,
613 				  struct record_opts *opts,
614 				  struct callchain_param *param)
615 {
616 	bool function = perf_evsel__is_function_event(evsel);
617 	struct perf_event_attr *attr = &evsel->attr;
618 
619 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
620 
621 	attr->sample_max_stack = param->max_stack;
622 
623 	if (param->record_mode == CALLCHAIN_LBR) {
624 		if (!opts->branch_stack) {
625 			if (attr->exclude_user) {
626 				pr_warning("LBR callstack option is only available "
627 					   "to get user callchain information. "
628 					   "Falling back to framepointers.\n");
629 			} else {
630 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
631 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
632 							PERF_SAMPLE_BRANCH_CALL_STACK |
633 							PERF_SAMPLE_BRANCH_NO_CYCLES |
634 							PERF_SAMPLE_BRANCH_NO_FLAGS;
635 			}
636 		} else
637 			 pr_warning("Cannot use LBR callstack with branch stack. "
638 				    "Falling back to framepointers.\n");
639 	}
640 
641 	if (param->record_mode == CALLCHAIN_DWARF) {
642 		if (!function) {
643 			perf_evsel__set_sample_bit(evsel, REGS_USER);
644 			perf_evsel__set_sample_bit(evsel, STACK_USER);
645 			attr->sample_regs_user = PERF_REGS_MASK;
646 			attr->sample_stack_user = param->dump_size;
647 			attr->exclude_callchain_user = 1;
648 		} else {
649 			pr_info("Cannot use DWARF unwind for function trace event,"
650 				" falling back to framepointers.\n");
651 		}
652 	}
653 
654 	if (function) {
655 		pr_info("Disabling user space callchains for function trace event.\n");
656 		attr->exclude_callchain_user = 1;
657 	}
658 }
659 
660 static void
661 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
662 			    struct callchain_param *param)
663 {
664 	struct perf_event_attr *attr = &evsel->attr;
665 
666 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
667 	if (param->record_mode == CALLCHAIN_LBR) {
668 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
669 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
670 					      PERF_SAMPLE_BRANCH_CALL_STACK);
671 	}
672 	if (param->record_mode == CALLCHAIN_DWARF) {
673 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
674 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
675 	}
676 }
677 
678 static void apply_config_terms(struct perf_evsel *evsel,
679 			       struct record_opts *opts)
680 {
681 	struct perf_evsel_config_term *term;
682 	struct list_head *config_terms = &evsel->config_terms;
683 	struct perf_event_attr *attr = &evsel->attr;
684 	struct callchain_param param;
685 	u32 dump_size = 0;
686 	int max_stack = 0;
687 	const char *callgraph_buf = NULL;
688 
689 	/* callgraph default */
690 	param.record_mode = callchain_param.record_mode;
691 
692 	list_for_each_entry(term, config_terms, list) {
693 		switch (term->type) {
694 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
695 			attr->sample_period = term->val.period;
696 			attr->freq = 0;
697 			break;
698 		case PERF_EVSEL__CONFIG_TERM_FREQ:
699 			attr->sample_freq = term->val.freq;
700 			attr->freq = 1;
701 			break;
702 		case PERF_EVSEL__CONFIG_TERM_TIME:
703 			if (term->val.time)
704 				perf_evsel__set_sample_bit(evsel, TIME);
705 			else
706 				perf_evsel__reset_sample_bit(evsel, TIME);
707 			break;
708 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
709 			callgraph_buf = term->val.callgraph;
710 			break;
711 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
712 			dump_size = term->val.stack_user;
713 			break;
714 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
715 			max_stack = term->val.max_stack;
716 			break;
717 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
718 			/*
719 			 * attr->inherit should has already been set by
720 			 * perf_evsel__config. If user explicitly set
721 			 * inherit using config terms, override global
722 			 * opt->no_inherit setting.
723 			 */
724 			attr->inherit = term->val.inherit ? 1 : 0;
725 			break;
726 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
727 			attr->write_backward = term->val.overwrite ? 1 : 0;
728 			break;
729 		default:
730 			break;
731 		}
732 	}
733 
734 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
735 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
736 		if (max_stack) {
737 			param.max_stack = max_stack;
738 			if (callgraph_buf == NULL)
739 				callgraph_buf = "fp";
740 		}
741 
742 		/* parse callgraph parameters */
743 		if (callgraph_buf != NULL) {
744 			if (!strcmp(callgraph_buf, "no")) {
745 				param.enabled = false;
746 				param.record_mode = CALLCHAIN_NONE;
747 			} else {
748 				param.enabled = true;
749 				if (parse_callchain_record(callgraph_buf, &param)) {
750 					pr_err("per-event callgraph setting for %s failed. "
751 					       "Apply callgraph global setting for it\n",
752 					       evsel->name);
753 					return;
754 				}
755 			}
756 		}
757 		if (dump_size > 0) {
758 			dump_size = round_up(dump_size, sizeof(u64));
759 			param.dump_size = dump_size;
760 		}
761 
762 		/* If global callgraph set, clear it */
763 		if (callchain_param.enabled)
764 			perf_evsel__reset_callgraph(evsel, &callchain_param);
765 
766 		/* set perf-event callgraph */
767 		if (param.enabled)
768 			perf_evsel__config_callchain(evsel, opts, &param);
769 	}
770 }
771 
772 /*
773  * The enable_on_exec/disabled value strategy:
774  *
775  *  1) For any type of traced program:
776  *    - all independent events and group leaders are disabled
777  *    - all group members are enabled
778  *
779  *     Group members are ruled by group leaders. They need to
780  *     be enabled, because the group scheduling relies on that.
781  *
782  *  2) For traced programs executed by perf:
783  *     - all independent events and group leaders have
784  *       enable_on_exec set
785  *     - we don't specifically enable or disable any event during
786  *       the record command
787  *
788  *     Independent events and group leaders are initially disabled
789  *     and get enabled by exec. Group members are ruled by group
790  *     leaders as stated in 1).
791  *
792  *  3) For traced programs attached by perf (pid/tid):
793  *     - we specifically enable or disable all events during
794  *       the record command
795  *
796  *     When attaching events to already running traced we
797  *     enable/disable events specifically, as there's no
798  *     initial traced exec call.
799  */
800 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
801 			struct callchain_param *callchain)
802 {
803 	struct perf_evsel *leader = evsel->leader;
804 	struct perf_event_attr *attr = &evsel->attr;
805 	int track = evsel->tracking;
806 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
807 
808 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
809 	attr->inherit	    = !opts->no_inherit;
810 	attr->write_backward = opts->overwrite ? 1 : 0;
811 
812 	perf_evsel__set_sample_bit(evsel, IP);
813 	perf_evsel__set_sample_bit(evsel, TID);
814 
815 	if (evsel->sample_read) {
816 		perf_evsel__set_sample_bit(evsel, READ);
817 
818 		/*
819 		 * We need ID even in case of single event, because
820 		 * PERF_SAMPLE_READ process ID specific data.
821 		 */
822 		perf_evsel__set_sample_id(evsel, false);
823 
824 		/*
825 		 * Apply group format only if we belong to group
826 		 * with more than one members.
827 		 */
828 		if (leader->nr_members > 1) {
829 			attr->read_format |= PERF_FORMAT_GROUP;
830 			attr->inherit = 0;
831 		}
832 	}
833 
834 	/*
835 	 * We default some events to have a default interval. But keep
836 	 * it a weak assumption overridable by the user.
837 	 */
838 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
839 				     opts->user_interval != ULLONG_MAX)) {
840 		if (opts->freq) {
841 			perf_evsel__set_sample_bit(evsel, PERIOD);
842 			attr->freq		= 1;
843 			attr->sample_freq	= opts->freq;
844 		} else {
845 			attr->sample_period = opts->default_interval;
846 		}
847 	}
848 
849 	/*
850 	 * Disable sampling for all group members other
851 	 * than leader in case leader 'leads' the sampling.
852 	 */
853 	if ((leader != evsel) && leader->sample_read) {
854 		attr->sample_freq   = 0;
855 		attr->sample_period = 0;
856 	}
857 
858 	if (opts->no_samples)
859 		attr->sample_freq = 0;
860 
861 	if (opts->inherit_stat)
862 		attr->inherit_stat = 1;
863 
864 	if (opts->sample_address) {
865 		perf_evsel__set_sample_bit(evsel, ADDR);
866 		attr->mmap_data = track;
867 	}
868 
869 	/*
870 	 * We don't allow user space callchains for  function trace
871 	 * event, due to issues with page faults while tracing page
872 	 * fault handler and its overall trickiness nature.
873 	 */
874 	if (perf_evsel__is_function_event(evsel))
875 		evsel->attr.exclude_callchain_user = 1;
876 
877 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
878 		perf_evsel__config_callchain(evsel, opts, callchain);
879 
880 	if (opts->sample_intr_regs) {
881 		attr->sample_regs_intr = opts->sample_intr_regs;
882 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
883 	}
884 
885 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
886 		perf_evsel__set_sample_bit(evsel, CPU);
887 
888 	if (opts->period)
889 		perf_evsel__set_sample_bit(evsel, PERIOD);
890 
891 	/*
892 	 * When the user explicitly disabled time don't force it here.
893 	 */
894 	if (opts->sample_time &&
895 	    (!perf_missing_features.sample_id_all &&
896 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
897 	     opts->sample_time_set)))
898 		perf_evsel__set_sample_bit(evsel, TIME);
899 
900 	if (opts->raw_samples && !evsel->no_aux_samples) {
901 		perf_evsel__set_sample_bit(evsel, TIME);
902 		perf_evsel__set_sample_bit(evsel, RAW);
903 		perf_evsel__set_sample_bit(evsel, CPU);
904 	}
905 
906 	if (opts->sample_address)
907 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
908 
909 	if (opts->no_buffering) {
910 		attr->watermark = 0;
911 		attr->wakeup_events = 1;
912 	}
913 	if (opts->branch_stack && !evsel->no_aux_samples) {
914 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
915 		attr->branch_sample_type = opts->branch_stack;
916 	}
917 
918 	if (opts->sample_weight)
919 		perf_evsel__set_sample_bit(evsel, WEIGHT);
920 
921 	attr->task  = track;
922 	attr->mmap  = track;
923 	attr->mmap2 = track && !perf_missing_features.mmap2;
924 	attr->comm  = track;
925 
926 	if (opts->record_switch_events)
927 		attr->context_switch = track;
928 
929 	if (opts->sample_transaction)
930 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
931 
932 	if (opts->running_time) {
933 		evsel->attr.read_format |=
934 			PERF_FORMAT_TOTAL_TIME_ENABLED |
935 			PERF_FORMAT_TOTAL_TIME_RUNNING;
936 	}
937 
938 	/*
939 	 * XXX see the function comment above
940 	 *
941 	 * Disabling only independent events or group leaders,
942 	 * keeping group members enabled.
943 	 */
944 	if (perf_evsel__is_group_leader(evsel))
945 		attr->disabled = 1;
946 
947 	/*
948 	 * Setting enable_on_exec for independent events and
949 	 * group leaders for traced executed by perf.
950 	 */
951 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
952 		!opts->initial_delay)
953 		attr->enable_on_exec = 1;
954 
955 	if (evsel->immediate) {
956 		attr->disabled = 0;
957 		attr->enable_on_exec = 0;
958 	}
959 
960 	clockid = opts->clockid;
961 	if (opts->use_clockid) {
962 		attr->use_clockid = 1;
963 		attr->clockid = opts->clockid;
964 	}
965 
966 	if (evsel->precise_max)
967 		perf_event_attr__set_max_precise_ip(attr);
968 
969 	if (opts->all_user) {
970 		attr->exclude_kernel = 1;
971 		attr->exclude_user   = 0;
972 	}
973 
974 	if (opts->all_kernel) {
975 		attr->exclude_kernel = 0;
976 		attr->exclude_user   = 1;
977 	}
978 
979 	/*
980 	 * Apply event specific term settings,
981 	 * it overloads any global configuration.
982 	 */
983 	apply_config_terms(evsel, opts);
984 }
985 
986 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
987 {
988 	int cpu, thread;
989 
990 	if (evsel->system_wide)
991 		nthreads = 1;
992 
993 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
994 
995 	if (evsel->fd) {
996 		for (cpu = 0; cpu < ncpus; cpu++) {
997 			for (thread = 0; thread < nthreads; thread++) {
998 				FD(evsel, cpu, thread) = -1;
999 			}
1000 		}
1001 	}
1002 
1003 	return evsel->fd != NULL ? 0 : -ENOMEM;
1004 }
1005 
1006 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
1007 			  int ioc,  void *arg)
1008 {
1009 	int cpu, thread;
1010 
1011 	if (evsel->system_wide)
1012 		nthreads = 1;
1013 
1014 	for (cpu = 0; cpu < ncpus; cpu++) {
1015 		for (thread = 0; thread < nthreads; thread++) {
1016 			int fd = FD(evsel, cpu, thread),
1017 			    err = ioctl(fd, ioc, arg);
1018 
1019 			if (err)
1020 				return err;
1021 		}
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
1028 			     const char *filter)
1029 {
1030 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1031 				     PERF_EVENT_IOC_SET_FILTER,
1032 				     (void *)filter);
1033 }
1034 
1035 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1036 {
1037 	char *new_filter = strdup(filter);
1038 
1039 	if (new_filter != NULL) {
1040 		free(evsel->filter);
1041 		evsel->filter = new_filter;
1042 		return 0;
1043 	}
1044 
1045 	return -1;
1046 }
1047 
1048 int perf_evsel__append_filter(struct perf_evsel *evsel,
1049 			      const char *op, const char *filter)
1050 {
1051 	char *new_filter;
1052 
1053 	if (evsel->filter == NULL)
1054 		return perf_evsel__set_filter(evsel, filter);
1055 
1056 	if (asprintf(&new_filter,"(%s) %s (%s)", evsel->filter, op, filter) > 0) {
1057 		free(evsel->filter);
1058 		evsel->filter = new_filter;
1059 		return 0;
1060 	}
1061 
1062 	return -1;
1063 }
1064 
1065 int perf_evsel__enable(struct perf_evsel *evsel)
1066 {
1067 	int nthreads = thread_map__nr(evsel->threads);
1068 	int ncpus = cpu_map__nr(evsel->cpus);
1069 
1070 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1071 				     PERF_EVENT_IOC_ENABLE,
1072 				     0);
1073 }
1074 
1075 int perf_evsel__disable(struct perf_evsel *evsel)
1076 {
1077 	int nthreads = thread_map__nr(evsel->threads);
1078 	int ncpus = cpu_map__nr(evsel->cpus);
1079 
1080 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1081 				     PERF_EVENT_IOC_DISABLE,
1082 				     0);
1083 }
1084 
1085 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1086 {
1087 	if (ncpus == 0 || nthreads == 0)
1088 		return 0;
1089 
1090 	if (evsel->system_wide)
1091 		nthreads = 1;
1092 
1093 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1094 	if (evsel->sample_id == NULL)
1095 		return -ENOMEM;
1096 
1097 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1098 	if (evsel->id == NULL) {
1099 		xyarray__delete(evsel->sample_id);
1100 		evsel->sample_id = NULL;
1101 		return -ENOMEM;
1102 	}
1103 
1104 	return 0;
1105 }
1106 
1107 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1108 {
1109 	xyarray__delete(evsel->fd);
1110 	evsel->fd = NULL;
1111 }
1112 
1113 static void perf_evsel__free_id(struct perf_evsel *evsel)
1114 {
1115 	xyarray__delete(evsel->sample_id);
1116 	evsel->sample_id = NULL;
1117 	zfree(&evsel->id);
1118 }
1119 
1120 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1121 {
1122 	struct perf_evsel_config_term *term, *h;
1123 
1124 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1125 		list_del(&term->list);
1126 		free(term);
1127 	}
1128 }
1129 
1130 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1131 {
1132 	int cpu, thread;
1133 
1134 	if (evsel->system_wide)
1135 		nthreads = 1;
1136 
1137 	for (cpu = 0; cpu < ncpus; cpu++)
1138 		for (thread = 0; thread < nthreads; ++thread) {
1139 			close(FD(evsel, cpu, thread));
1140 			FD(evsel, cpu, thread) = -1;
1141 		}
1142 }
1143 
1144 void perf_evsel__exit(struct perf_evsel *evsel)
1145 {
1146 	assert(list_empty(&evsel->node));
1147 	assert(evsel->evlist == NULL);
1148 	perf_evsel__free_fd(evsel);
1149 	perf_evsel__free_id(evsel);
1150 	perf_evsel__free_config_terms(evsel);
1151 	close_cgroup(evsel->cgrp);
1152 	cpu_map__put(evsel->cpus);
1153 	cpu_map__put(evsel->own_cpus);
1154 	thread_map__put(evsel->threads);
1155 	zfree(&evsel->group_name);
1156 	zfree(&evsel->name);
1157 	perf_evsel__object.fini(evsel);
1158 }
1159 
1160 void perf_evsel__delete(struct perf_evsel *evsel)
1161 {
1162 	perf_evsel__exit(evsel);
1163 	free(evsel);
1164 }
1165 
1166 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1167 				struct perf_counts_values *count)
1168 {
1169 	struct perf_counts_values tmp;
1170 
1171 	if (!evsel->prev_raw_counts)
1172 		return;
1173 
1174 	if (cpu == -1) {
1175 		tmp = evsel->prev_raw_counts->aggr;
1176 		evsel->prev_raw_counts->aggr = *count;
1177 	} else {
1178 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1179 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1180 	}
1181 
1182 	count->val = count->val - tmp.val;
1183 	count->ena = count->ena - tmp.ena;
1184 	count->run = count->run - tmp.run;
1185 }
1186 
1187 void perf_counts_values__scale(struct perf_counts_values *count,
1188 			       bool scale, s8 *pscaled)
1189 {
1190 	s8 scaled = 0;
1191 
1192 	if (scale) {
1193 		if (count->run == 0) {
1194 			scaled = -1;
1195 			count->val = 0;
1196 		} else if (count->run < count->ena) {
1197 			scaled = 1;
1198 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1199 		}
1200 	} else
1201 		count->ena = count->run = 0;
1202 
1203 	if (pscaled)
1204 		*pscaled = scaled;
1205 }
1206 
1207 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1208 		     struct perf_counts_values *count)
1209 {
1210 	memset(count, 0, sizeof(*count));
1211 
1212 	if (FD(evsel, cpu, thread) < 0)
1213 		return -EINVAL;
1214 
1215 	if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0)
1216 		return -errno;
1217 
1218 	return 0;
1219 }
1220 
1221 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1222 			      int cpu, int thread, bool scale)
1223 {
1224 	struct perf_counts_values count;
1225 	size_t nv = scale ? 3 : 1;
1226 
1227 	if (FD(evsel, cpu, thread) < 0)
1228 		return -EINVAL;
1229 
1230 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1231 		return -ENOMEM;
1232 
1233 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
1234 		return -errno;
1235 
1236 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1237 	perf_counts_values__scale(&count, scale, NULL);
1238 	*perf_counts(evsel->counts, cpu, thread) = count;
1239 	return 0;
1240 }
1241 
1242 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1243 {
1244 	struct perf_evsel *leader = evsel->leader;
1245 	int fd;
1246 
1247 	if (perf_evsel__is_group_leader(evsel))
1248 		return -1;
1249 
1250 	/*
1251 	 * Leader must be already processed/open,
1252 	 * if not it's a bug.
1253 	 */
1254 	BUG_ON(!leader->fd);
1255 
1256 	fd = FD(leader, cpu, thread);
1257 	BUG_ON(fd == -1);
1258 
1259 	return fd;
1260 }
1261 
1262 struct bit_names {
1263 	int bit;
1264 	const char *name;
1265 };
1266 
1267 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1268 {
1269 	bool first_bit = true;
1270 	int i = 0;
1271 
1272 	do {
1273 		if (value & bits[i].bit) {
1274 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1275 			first_bit = false;
1276 		}
1277 	} while (bits[++i].name != NULL);
1278 }
1279 
1280 static void __p_sample_type(char *buf, size_t size, u64 value)
1281 {
1282 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1283 	struct bit_names bits[] = {
1284 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1285 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1286 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1287 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1288 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1289 		bit_name(WEIGHT),
1290 		{ .name = NULL, }
1291 	};
1292 #undef bit_name
1293 	__p_bits(buf, size, value, bits);
1294 }
1295 
1296 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1297 {
1298 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1299 	struct bit_names bits[] = {
1300 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1301 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1302 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1303 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1304 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1305 		{ .name = NULL, }
1306 	};
1307 #undef bit_name
1308 	__p_bits(buf, size, value, bits);
1309 }
1310 
1311 static void __p_read_format(char *buf, size_t size, u64 value)
1312 {
1313 #define bit_name(n) { PERF_FORMAT_##n, #n }
1314 	struct bit_names bits[] = {
1315 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1316 		bit_name(ID), bit_name(GROUP),
1317 		{ .name = NULL, }
1318 	};
1319 #undef bit_name
1320 	__p_bits(buf, size, value, bits);
1321 }
1322 
1323 #define BUF_SIZE		1024
1324 
1325 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1326 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1327 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1328 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1329 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1330 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1331 
1332 #define PRINT_ATTRn(_n, _f, _p)				\
1333 do {							\
1334 	if (attr->_f) {					\
1335 		_p(attr->_f);				\
1336 		ret += attr__fprintf(fp, _n, buf, priv);\
1337 	}						\
1338 } while (0)
1339 
1340 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1341 
1342 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1343 			     attr__fprintf_f attr__fprintf, void *priv)
1344 {
1345 	char buf[BUF_SIZE];
1346 	int ret = 0;
1347 
1348 	PRINT_ATTRf(type, p_unsigned);
1349 	PRINT_ATTRf(size, p_unsigned);
1350 	PRINT_ATTRf(config, p_hex);
1351 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1352 	PRINT_ATTRf(sample_type, p_sample_type);
1353 	PRINT_ATTRf(read_format, p_read_format);
1354 
1355 	PRINT_ATTRf(disabled, p_unsigned);
1356 	PRINT_ATTRf(inherit, p_unsigned);
1357 	PRINT_ATTRf(pinned, p_unsigned);
1358 	PRINT_ATTRf(exclusive, p_unsigned);
1359 	PRINT_ATTRf(exclude_user, p_unsigned);
1360 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1361 	PRINT_ATTRf(exclude_hv, p_unsigned);
1362 	PRINT_ATTRf(exclude_idle, p_unsigned);
1363 	PRINT_ATTRf(mmap, p_unsigned);
1364 	PRINT_ATTRf(comm, p_unsigned);
1365 	PRINT_ATTRf(freq, p_unsigned);
1366 	PRINT_ATTRf(inherit_stat, p_unsigned);
1367 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1368 	PRINT_ATTRf(task, p_unsigned);
1369 	PRINT_ATTRf(watermark, p_unsigned);
1370 	PRINT_ATTRf(precise_ip, p_unsigned);
1371 	PRINT_ATTRf(mmap_data, p_unsigned);
1372 	PRINT_ATTRf(sample_id_all, p_unsigned);
1373 	PRINT_ATTRf(exclude_host, p_unsigned);
1374 	PRINT_ATTRf(exclude_guest, p_unsigned);
1375 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1376 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1377 	PRINT_ATTRf(mmap2, p_unsigned);
1378 	PRINT_ATTRf(comm_exec, p_unsigned);
1379 	PRINT_ATTRf(use_clockid, p_unsigned);
1380 	PRINT_ATTRf(context_switch, p_unsigned);
1381 	PRINT_ATTRf(write_backward, p_unsigned);
1382 
1383 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1384 	PRINT_ATTRf(bp_type, p_unsigned);
1385 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1386 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1387 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1388 	PRINT_ATTRf(sample_regs_user, p_hex);
1389 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1390 	PRINT_ATTRf(clockid, p_signed);
1391 	PRINT_ATTRf(sample_regs_intr, p_hex);
1392 	PRINT_ATTRf(aux_watermark, p_unsigned);
1393 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1394 
1395 	return ret;
1396 }
1397 
1398 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1399 				void *priv __attribute__((unused)))
1400 {
1401 	return fprintf(fp, "  %-32s %s\n", name, val);
1402 }
1403 
1404 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1405 			      struct thread_map *threads)
1406 {
1407 	int cpu, thread, nthreads;
1408 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1409 	int pid = -1, err;
1410 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1411 
1412 	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1413 		return -EINVAL;
1414 
1415 	if (evsel->system_wide)
1416 		nthreads = 1;
1417 	else
1418 		nthreads = threads->nr;
1419 
1420 	if (evsel->fd == NULL &&
1421 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1422 		return -ENOMEM;
1423 
1424 	if (evsel->cgrp) {
1425 		flags |= PERF_FLAG_PID_CGROUP;
1426 		pid = evsel->cgrp->fd;
1427 	}
1428 
1429 fallback_missing_features:
1430 	if (perf_missing_features.clockid_wrong)
1431 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1432 	if (perf_missing_features.clockid) {
1433 		evsel->attr.use_clockid = 0;
1434 		evsel->attr.clockid = 0;
1435 	}
1436 	if (perf_missing_features.cloexec)
1437 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1438 	if (perf_missing_features.mmap2)
1439 		evsel->attr.mmap2 = 0;
1440 	if (perf_missing_features.exclude_guest)
1441 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1442 	if (perf_missing_features.lbr_flags)
1443 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1444 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1445 retry_sample_id:
1446 	if (perf_missing_features.sample_id_all)
1447 		evsel->attr.sample_id_all = 0;
1448 
1449 	if (verbose >= 2) {
1450 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1451 		fprintf(stderr, "perf_event_attr:\n");
1452 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1453 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1454 	}
1455 
1456 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1457 
1458 		for (thread = 0; thread < nthreads; thread++) {
1459 			int group_fd;
1460 
1461 			if (!evsel->cgrp && !evsel->system_wide)
1462 				pid = thread_map__pid(threads, thread);
1463 
1464 			group_fd = get_group_fd(evsel, cpu, thread);
1465 retry_open:
1466 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1467 				  pid, cpus->map[cpu], group_fd, flags);
1468 
1469 			FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1470 								     pid,
1471 								     cpus->map[cpu],
1472 								     group_fd, flags);
1473 			if (FD(evsel, cpu, thread) < 0) {
1474 				err = -errno;
1475 				pr_debug2("sys_perf_event_open failed, error %d\n",
1476 					  err);
1477 				goto try_fallback;
1478 			}
1479 
1480 			if (evsel->bpf_fd >= 0) {
1481 				int evt_fd = FD(evsel, cpu, thread);
1482 				int bpf_fd = evsel->bpf_fd;
1483 
1484 				err = ioctl(evt_fd,
1485 					    PERF_EVENT_IOC_SET_BPF,
1486 					    bpf_fd);
1487 				if (err && errno != EEXIST) {
1488 					pr_err("failed to attach bpf fd %d: %s\n",
1489 					       bpf_fd, strerror(errno));
1490 					err = -EINVAL;
1491 					goto out_close;
1492 				}
1493 			}
1494 
1495 			set_rlimit = NO_CHANGE;
1496 
1497 			/*
1498 			 * If we succeeded but had to kill clockid, fail and
1499 			 * have perf_evsel__open_strerror() print us a nice
1500 			 * error.
1501 			 */
1502 			if (perf_missing_features.clockid ||
1503 			    perf_missing_features.clockid_wrong) {
1504 				err = -EINVAL;
1505 				goto out_close;
1506 			}
1507 		}
1508 	}
1509 
1510 	return 0;
1511 
1512 try_fallback:
1513 	/*
1514 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1515 	 * of them try to increase the limits.
1516 	 */
1517 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1518 		struct rlimit l;
1519 		int old_errno = errno;
1520 
1521 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1522 			if (set_rlimit == NO_CHANGE)
1523 				l.rlim_cur = l.rlim_max;
1524 			else {
1525 				l.rlim_cur = l.rlim_max + 1000;
1526 				l.rlim_max = l.rlim_cur;
1527 			}
1528 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1529 				set_rlimit++;
1530 				errno = old_errno;
1531 				goto retry_open;
1532 			}
1533 		}
1534 		errno = old_errno;
1535 	}
1536 
1537 	if (err != -EINVAL || cpu > 0 || thread > 0)
1538 		goto out_close;
1539 
1540 	/*
1541 	 * Must probe features in the order they were added to the
1542 	 * perf_event_attr interface.
1543 	 */
1544 	if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1545 		perf_missing_features.write_backward = true;
1546 		goto out_close;
1547 	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1548 		perf_missing_features.clockid_wrong = true;
1549 		goto fallback_missing_features;
1550 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1551 		perf_missing_features.clockid = true;
1552 		goto fallback_missing_features;
1553 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1554 		perf_missing_features.cloexec = true;
1555 		goto fallback_missing_features;
1556 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1557 		perf_missing_features.mmap2 = true;
1558 		goto fallback_missing_features;
1559 	} else if (!perf_missing_features.exclude_guest &&
1560 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1561 		perf_missing_features.exclude_guest = true;
1562 		goto fallback_missing_features;
1563 	} else if (!perf_missing_features.sample_id_all) {
1564 		perf_missing_features.sample_id_all = true;
1565 		goto retry_sample_id;
1566 	} else if (!perf_missing_features.lbr_flags &&
1567 			(evsel->attr.branch_sample_type &
1568 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1569 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1570 		perf_missing_features.lbr_flags = true;
1571 		goto fallback_missing_features;
1572 	}
1573 out_close:
1574 	do {
1575 		while (--thread >= 0) {
1576 			close(FD(evsel, cpu, thread));
1577 			FD(evsel, cpu, thread) = -1;
1578 		}
1579 		thread = nthreads;
1580 	} while (--cpu >= 0);
1581 	return err;
1582 }
1583 
1584 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1585 {
1586 	if (evsel->fd == NULL)
1587 		return;
1588 
1589 	perf_evsel__close_fd(evsel, ncpus, nthreads);
1590 	perf_evsel__free_fd(evsel);
1591 }
1592 
1593 static struct {
1594 	struct cpu_map map;
1595 	int cpus[1];
1596 } empty_cpu_map = {
1597 	.map.nr	= 1,
1598 	.cpus	= { -1, },
1599 };
1600 
1601 static struct {
1602 	struct thread_map map;
1603 	int threads[1];
1604 } empty_thread_map = {
1605 	.map.nr	 = 1,
1606 	.threads = { -1, },
1607 };
1608 
1609 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1610 		     struct thread_map *threads)
1611 {
1612 	if (cpus == NULL) {
1613 		/* Work around old compiler warnings about strict aliasing */
1614 		cpus = &empty_cpu_map.map;
1615 	}
1616 
1617 	if (threads == NULL)
1618 		threads = &empty_thread_map.map;
1619 
1620 	return __perf_evsel__open(evsel, cpus, threads);
1621 }
1622 
1623 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1624 			     struct cpu_map *cpus)
1625 {
1626 	return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1627 }
1628 
1629 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1630 				struct thread_map *threads)
1631 {
1632 	return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1633 }
1634 
1635 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1636 				       const union perf_event *event,
1637 				       struct perf_sample *sample)
1638 {
1639 	u64 type = evsel->attr.sample_type;
1640 	const u64 *array = event->sample.array;
1641 	bool swapped = evsel->needs_swap;
1642 	union u64_swap u;
1643 
1644 	array += ((event->header.size -
1645 		   sizeof(event->header)) / sizeof(u64)) - 1;
1646 
1647 	if (type & PERF_SAMPLE_IDENTIFIER) {
1648 		sample->id = *array;
1649 		array--;
1650 	}
1651 
1652 	if (type & PERF_SAMPLE_CPU) {
1653 		u.val64 = *array;
1654 		if (swapped) {
1655 			/* undo swap of u64, then swap on individual u32s */
1656 			u.val64 = bswap_64(u.val64);
1657 			u.val32[0] = bswap_32(u.val32[0]);
1658 		}
1659 
1660 		sample->cpu = u.val32[0];
1661 		array--;
1662 	}
1663 
1664 	if (type & PERF_SAMPLE_STREAM_ID) {
1665 		sample->stream_id = *array;
1666 		array--;
1667 	}
1668 
1669 	if (type & PERF_SAMPLE_ID) {
1670 		sample->id = *array;
1671 		array--;
1672 	}
1673 
1674 	if (type & PERF_SAMPLE_TIME) {
1675 		sample->time = *array;
1676 		array--;
1677 	}
1678 
1679 	if (type & PERF_SAMPLE_TID) {
1680 		u.val64 = *array;
1681 		if (swapped) {
1682 			/* undo swap of u64, then swap on individual u32s */
1683 			u.val64 = bswap_64(u.val64);
1684 			u.val32[0] = bswap_32(u.val32[0]);
1685 			u.val32[1] = bswap_32(u.val32[1]);
1686 		}
1687 
1688 		sample->pid = u.val32[0];
1689 		sample->tid = u.val32[1];
1690 		array--;
1691 	}
1692 
1693 	return 0;
1694 }
1695 
1696 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1697 			    u64 size)
1698 {
1699 	return size > max_size || offset + size > endp;
1700 }
1701 
1702 #define OVERFLOW_CHECK(offset, size, max_size)				\
1703 	do {								\
1704 		if (overflow(endp, (max_size), (offset), (size)))	\
1705 			return -EFAULT;					\
1706 	} while (0)
1707 
1708 #define OVERFLOW_CHECK_u64(offset) \
1709 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1710 
1711 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1712 			     struct perf_sample *data)
1713 {
1714 	u64 type = evsel->attr.sample_type;
1715 	bool swapped = evsel->needs_swap;
1716 	const u64 *array;
1717 	u16 max_size = event->header.size;
1718 	const void *endp = (void *)event + max_size;
1719 	u64 sz;
1720 
1721 	/*
1722 	 * used for cross-endian analysis. See git commit 65014ab3
1723 	 * for why this goofiness is needed.
1724 	 */
1725 	union u64_swap u;
1726 
1727 	memset(data, 0, sizeof(*data));
1728 	data->cpu = data->pid = data->tid = -1;
1729 	data->stream_id = data->id = data->time = -1ULL;
1730 	data->period = evsel->attr.sample_period;
1731 	data->weight = 0;
1732 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1733 
1734 	if (event->header.type != PERF_RECORD_SAMPLE) {
1735 		if (!evsel->attr.sample_id_all)
1736 			return 0;
1737 		return perf_evsel__parse_id_sample(evsel, event, data);
1738 	}
1739 
1740 	array = event->sample.array;
1741 
1742 	/*
1743 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1744 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1745 	 * check the format does not go past the end of the event.
1746 	 */
1747 	if (evsel->sample_size + sizeof(event->header) > event->header.size)
1748 		return -EFAULT;
1749 
1750 	data->id = -1ULL;
1751 	if (type & PERF_SAMPLE_IDENTIFIER) {
1752 		data->id = *array;
1753 		array++;
1754 	}
1755 
1756 	if (type & PERF_SAMPLE_IP) {
1757 		data->ip = *array;
1758 		array++;
1759 	}
1760 
1761 	if (type & PERF_SAMPLE_TID) {
1762 		u.val64 = *array;
1763 		if (swapped) {
1764 			/* undo swap of u64, then swap on individual u32s */
1765 			u.val64 = bswap_64(u.val64);
1766 			u.val32[0] = bswap_32(u.val32[0]);
1767 			u.val32[1] = bswap_32(u.val32[1]);
1768 		}
1769 
1770 		data->pid = u.val32[0];
1771 		data->tid = u.val32[1];
1772 		array++;
1773 	}
1774 
1775 	if (type & PERF_SAMPLE_TIME) {
1776 		data->time = *array;
1777 		array++;
1778 	}
1779 
1780 	data->addr = 0;
1781 	if (type & PERF_SAMPLE_ADDR) {
1782 		data->addr = *array;
1783 		array++;
1784 	}
1785 
1786 	if (type & PERF_SAMPLE_ID) {
1787 		data->id = *array;
1788 		array++;
1789 	}
1790 
1791 	if (type & PERF_SAMPLE_STREAM_ID) {
1792 		data->stream_id = *array;
1793 		array++;
1794 	}
1795 
1796 	if (type & PERF_SAMPLE_CPU) {
1797 
1798 		u.val64 = *array;
1799 		if (swapped) {
1800 			/* undo swap of u64, then swap on individual u32s */
1801 			u.val64 = bswap_64(u.val64);
1802 			u.val32[0] = bswap_32(u.val32[0]);
1803 		}
1804 
1805 		data->cpu = u.val32[0];
1806 		array++;
1807 	}
1808 
1809 	if (type & PERF_SAMPLE_PERIOD) {
1810 		data->period = *array;
1811 		array++;
1812 	}
1813 
1814 	if (type & PERF_SAMPLE_READ) {
1815 		u64 read_format = evsel->attr.read_format;
1816 
1817 		OVERFLOW_CHECK_u64(array);
1818 		if (read_format & PERF_FORMAT_GROUP)
1819 			data->read.group.nr = *array;
1820 		else
1821 			data->read.one.value = *array;
1822 
1823 		array++;
1824 
1825 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1826 			OVERFLOW_CHECK_u64(array);
1827 			data->read.time_enabled = *array;
1828 			array++;
1829 		}
1830 
1831 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1832 			OVERFLOW_CHECK_u64(array);
1833 			data->read.time_running = *array;
1834 			array++;
1835 		}
1836 
1837 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1838 		if (read_format & PERF_FORMAT_GROUP) {
1839 			const u64 max_group_nr = UINT64_MAX /
1840 					sizeof(struct sample_read_value);
1841 
1842 			if (data->read.group.nr > max_group_nr)
1843 				return -EFAULT;
1844 			sz = data->read.group.nr *
1845 			     sizeof(struct sample_read_value);
1846 			OVERFLOW_CHECK(array, sz, max_size);
1847 			data->read.group.values =
1848 					(struct sample_read_value *)array;
1849 			array = (void *)array + sz;
1850 		} else {
1851 			OVERFLOW_CHECK_u64(array);
1852 			data->read.one.id = *array;
1853 			array++;
1854 		}
1855 	}
1856 
1857 	if (type & PERF_SAMPLE_CALLCHAIN) {
1858 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1859 
1860 		OVERFLOW_CHECK_u64(array);
1861 		data->callchain = (struct ip_callchain *)array++;
1862 		if (data->callchain->nr > max_callchain_nr)
1863 			return -EFAULT;
1864 		sz = data->callchain->nr * sizeof(u64);
1865 		OVERFLOW_CHECK(array, sz, max_size);
1866 		array = (void *)array + sz;
1867 	}
1868 
1869 	if (type & PERF_SAMPLE_RAW) {
1870 		OVERFLOW_CHECK_u64(array);
1871 		u.val64 = *array;
1872 		if (WARN_ONCE(swapped,
1873 			      "Endianness of raw data not corrected!\n")) {
1874 			/* undo swap of u64, then swap on individual u32s */
1875 			u.val64 = bswap_64(u.val64);
1876 			u.val32[0] = bswap_32(u.val32[0]);
1877 			u.val32[1] = bswap_32(u.val32[1]);
1878 		}
1879 		data->raw_size = u.val32[0];
1880 		array = (void *)array + sizeof(u32);
1881 
1882 		OVERFLOW_CHECK(array, data->raw_size, max_size);
1883 		data->raw_data = (void *)array;
1884 		array = (void *)array + data->raw_size;
1885 	}
1886 
1887 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1888 		const u64 max_branch_nr = UINT64_MAX /
1889 					  sizeof(struct branch_entry);
1890 
1891 		OVERFLOW_CHECK_u64(array);
1892 		data->branch_stack = (struct branch_stack *)array++;
1893 
1894 		if (data->branch_stack->nr > max_branch_nr)
1895 			return -EFAULT;
1896 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
1897 		OVERFLOW_CHECK(array, sz, max_size);
1898 		array = (void *)array + sz;
1899 	}
1900 
1901 	if (type & PERF_SAMPLE_REGS_USER) {
1902 		OVERFLOW_CHECK_u64(array);
1903 		data->user_regs.abi = *array;
1904 		array++;
1905 
1906 		if (data->user_regs.abi) {
1907 			u64 mask = evsel->attr.sample_regs_user;
1908 
1909 			sz = hweight_long(mask) * sizeof(u64);
1910 			OVERFLOW_CHECK(array, sz, max_size);
1911 			data->user_regs.mask = mask;
1912 			data->user_regs.regs = (u64 *)array;
1913 			array = (void *)array + sz;
1914 		}
1915 	}
1916 
1917 	if (type & PERF_SAMPLE_STACK_USER) {
1918 		OVERFLOW_CHECK_u64(array);
1919 		sz = *array++;
1920 
1921 		data->user_stack.offset = ((char *)(array - 1)
1922 					  - (char *) event);
1923 
1924 		if (!sz) {
1925 			data->user_stack.size = 0;
1926 		} else {
1927 			OVERFLOW_CHECK(array, sz, max_size);
1928 			data->user_stack.data = (char *)array;
1929 			array = (void *)array + sz;
1930 			OVERFLOW_CHECK_u64(array);
1931 			data->user_stack.size = *array++;
1932 			if (WARN_ONCE(data->user_stack.size > sz,
1933 				      "user stack dump failure\n"))
1934 				return -EFAULT;
1935 		}
1936 	}
1937 
1938 	data->weight = 0;
1939 	if (type & PERF_SAMPLE_WEIGHT) {
1940 		OVERFLOW_CHECK_u64(array);
1941 		data->weight = *array;
1942 		array++;
1943 	}
1944 
1945 	data->data_src = PERF_MEM_DATA_SRC_NONE;
1946 	if (type & PERF_SAMPLE_DATA_SRC) {
1947 		OVERFLOW_CHECK_u64(array);
1948 		data->data_src = *array;
1949 		array++;
1950 	}
1951 
1952 	data->transaction = 0;
1953 	if (type & PERF_SAMPLE_TRANSACTION) {
1954 		OVERFLOW_CHECK_u64(array);
1955 		data->transaction = *array;
1956 		array++;
1957 	}
1958 
1959 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1960 	if (type & PERF_SAMPLE_REGS_INTR) {
1961 		OVERFLOW_CHECK_u64(array);
1962 		data->intr_regs.abi = *array;
1963 		array++;
1964 
1965 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1966 			u64 mask = evsel->attr.sample_regs_intr;
1967 
1968 			sz = hweight_long(mask) * sizeof(u64);
1969 			OVERFLOW_CHECK(array, sz, max_size);
1970 			data->intr_regs.mask = mask;
1971 			data->intr_regs.regs = (u64 *)array;
1972 			array = (void *)array + sz;
1973 		}
1974 	}
1975 
1976 	return 0;
1977 }
1978 
1979 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1980 				     u64 read_format)
1981 {
1982 	size_t sz, result = sizeof(struct sample_event);
1983 
1984 	if (type & PERF_SAMPLE_IDENTIFIER)
1985 		result += sizeof(u64);
1986 
1987 	if (type & PERF_SAMPLE_IP)
1988 		result += sizeof(u64);
1989 
1990 	if (type & PERF_SAMPLE_TID)
1991 		result += sizeof(u64);
1992 
1993 	if (type & PERF_SAMPLE_TIME)
1994 		result += sizeof(u64);
1995 
1996 	if (type & PERF_SAMPLE_ADDR)
1997 		result += sizeof(u64);
1998 
1999 	if (type & PERF_SAMPLE_ID)
2000 		result += sizeof(u64);
2001 
2002 	if (type & PERF_SAMPLE_STREAM_ID)
2003 		result += sizeof(u64);
2004 
2005 	if (type & PERF_SAMPLE_CPU)
2006 		result += sizeof(u64);
2007 
2008 	if (type & PERF_SAMPLE_PERIOD)
2009 		result += sizeof(u64);
2010 
2011 	if (type & PERF_SAMPLE_READ) {
2012 		result += sizeof(u64);
2013 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2014 			result += sizeof(u64);
2015 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2016 			result += sizeof(u64);
2017 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2018 		if (read_format & PERF_FORMAT_GROUP) {
2019 			sz = sample->read.group.nr *
2020 			     sizeof(struct sample_read_value);
2021 			result += sz;
2022 		} else {
2023 			result += sizeof(u64);
2024 		}
2025 	}
2026 
2027 	if (type & PERF_SAMPLE_CALLCHAIN) {
2028 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2029 		result += sz;
2030 	}
2031 
2032 	if (type & PERF_SAMPLE_RAW) {
2033 		result += sizeof(u32);
2034 		result += sample->raw_size;
2035 	}
2036 
2037 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2038 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2039 		sz += sizeof(u64);
2040 		result += sz;
2041 	}
2042 
2043 	if (type & PERF_SAMPLE_REGS_USER) {
2044 		if (sample->user_regs.abi) {
2045 			result += sizeof(u64);
2046 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2047 			result += sz;
2048 		} else {
2049 			result += sizeof(u64);
2050 		}
2051 	}
2052 
2053 	if (type & PERF_SAMPLE_STACK_USER) {
2054 		sz = sample->user_stack.size;
2055 		result += sizeof(u64);
2056 		if (sz) {
2057 			result += sz;
2058 			result += sizeof(u64);
2059 		}
2060 	}
2061 
2062 	if (type & PERF_SAMPLE_WEIGHT)
2063 		result += sizeof(u64);
2064 
2065 	if (type & PERF_SAMPLE_DATA_SRC)
2066 		result += sizeof(u64);
2067 
2068 	if (type & PERF_SAMPLE_TRANSACTION)
2069 		result += sizeof(u64);
2070 
2071 	if (type & PERF_SAMPLE_REGS_INTR) {
2072 		if (sample->intr_regs.abi) {
2073 			result += sizeof(u64);
2074 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2075 			result += sz;
2076 		} else {
2077 			result += sizeof(u64);
2078 		}
2079 	}
2080 
2081 	return result;
2082 }
2083 
2084 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2085 				  u64 read_format,
2086 				  const struct perf_sample *sample,
2087 				  bool swapped)
2088 {
2089 	u64 *array;
2090 	size_t sz;
2091 	/*
2092 	 * used for cross-endian analysis. See git commit 65014ab3
2093 	 * for why this goofiness is needed.
2094 	 */
2095 	union u64_swap u;
2096 
2097 	array = event->sample.array;
2098 
2099 	if (type & PERF_SAMPLE_IDENTIFIER) {
2100 		*array = sample->id;
2101 		array++;
2102 	}
2103 
2104 	if (type & PERF_SAMPLE_IP) {
2105 		*array = sample->ip;
2106 		array++;
2107 	}
2108 
2109 	if (type & PERF_SAMPLE_TID) {
2110 		u.val32[0] = sample->pid;
2111 		u.val32[1] = sample->tid;
2112 		if (swapped) {
2113 			/*
2114 			 * Inverse of what is done in perf_evsel__parse_sample
2115 			 */
2116 			u.val32[0] = bswap_32(u.val32[0]);
2117 			u.val32[1] = bswap_32(u.val32[1]);
2118 			u.val64 = bswap_64(u.val64);
2119 		}
2120 
2121 		*array = u.val64;
2122 		array++;
2123 	}
2124 
2125 	if (type & PERF_SAMPLE_TIME) {
2126 		*array = sample->time;
2127 		array++;
2128 	}
2129 
2130 	if (type & PERF_SAMPLE_ADDR) {
2131 		*array = sample->addr;
2132 		array++;
2133 	}
2134 
2135 	if (type & PERF_SAMPLE_ID) {
2136 		*array = sample->id;
2137 		array++;
2138 	}
2139 
2140 	if (type & PERF_SAMPLE_STREAM_ID) {
2141 		*array = sample->stream_id;
2142 		array++;
2143 	}
2144 
2145 	if (type & PERF_SAMPLE_CPU) {
2146 		u.val32[0] = sample->cpu;
2147 		if (swapped) {
2148 			/*
2149 			 * Inverse of what is done in perf_evsel__parse_sample
2150 			 */
2151 			u.val32[0] = bswap_32(u.val32[0]);
2152 			u.val64 = bswap_64(u.val64);
2153 		}
2154 		*array = u.val64;
2155 		array++;
2156 	}
2157 
2158 	if (type & PERF_SAMPLE_PERIOD) {
2159 		*array = sample->period;
2160 		array++;
2161 	}
2162 
2163 	if (type & PERF_SAMPLE_READ) {
2164 		if (read_format & PERF_FORMAT_GROUP)
2165 			*array = sample->read.group.nr;
2166 		else
2167 			*array = sample->read.one.value;
2168 		array++;
2169 
2170 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2171 			*array = sample->read.time_enabled;
2172 			array++;
2173 		}
2174 
2175 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2176 			*array = sample->read.time_running;
2177 			array++;
2178 		}
2179 
2180 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2181 		if (read_format & PERF_FORMAT_GROUP) {
2182 			sz = sample->read.group.nr *
2183 			     sizeof(struct sample_read_value);
2184 			memcpy(array, sample->read.group.values, sz);
2185 			array = (void *)array + sz;
2186 		} else {
2187 			*array = sample->read.one.id;
2188 			array++;
2189 		}
2190 	}
2191 
2192 	if (type & PERF_SAMPLE_CALLCHAIN) {
2193 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2194 		memcpy(array, sample->callchain, sz);
2195 		array = (void *)array + sz;
2196 	}
2197 
2198 	if (type & PERF_SAMPLE_RAW) {
2199 		u.val32[0] = sample->raw_size;
2200 		if (WARN_ONCE(swapped,
2201 			      "Endianness of raw data not corrected!\n")) {
2202 			/*
2203 			 * Inverse of what is done in perf_evsel__parse_sample
2204 			 */
2205 			u.val32[0] = bswap_32(u.val32[0]);
2206 			u.val32[1] = bswap_32(u.val32[1]);
2207 			u.val64 = bswap_64(u.val64);
2208 		}
2209 		*array = u.val64;
2210 		array = (void *)array + sizeof(u32);
2211 
2212 		memcpy(array, sample->raw_data, sample->raw_size);
2213 		array = (void *)array + sample->raw_size;
2214 	}
2215 
2216 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2217 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2218 		sz += sizeof(u64);
2219 		memcpy(array, sample->branch_stack, sz);
2220 		array = (void *)array + sz;
2221 	}
2222 
2223 	if (type & PERF_SAMPLE_REGS_USER) {
2224 		if (sample->user_regs.abi) {
2225 			*array++ = sample->user_regs.abi;
2226 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2227 			memcpy(array, sample->user_regs.regs, sz);
2228 			array = (void *)array + sz;
2229 		} else {
2230 			*array++ = 0;
2231 		}
2232 	}
2233 
2234 	if (type & PERF_SAMPLE_STACK_USER) {
2235 		sz = sample->user_stack.size;
2236 		*array++ = sz;
2237 		if (sz) {
2238 			memcpy(array, sample->user_stack.data, sz);
2239 			array = (void *)array + sz;
2240 			*array++ = sz;
2241 		}
2242 	}
2243 
2244 	if (type & PERF_SAMPLE_WEIGHT) {
2245 		*array = sample->weight;
2246 		array++;
2247 	}
2248 
2249 	if (type & PERF_SAMPLE_DATA_SRC) {
2250 		*array = sample->data_src;
2251 		array++;
2252 	}
2253 
2254 	if (type & PERF_SAMPLE_TRANSACTION) {
2255 		*array = sample->transaction;
2256 		array++;
2257 	}
2258 
2259 	if (type & PERF_SAMPLE_REGS_INTR) {
2260 		if (sample->intr_regs.abi) {
2261 			*array++ = sample->intr_regs.abi;
2262 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2263 			memcpy(array, sample->intr_regs.regs, sz);
2264 			array = (void *)array + sz;
2265 		} else {
2266 			*array++ = 0;
2267 		}
2268 	}
2269 
2270 	return 0;
2271 }
2272 
2273 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2274 {
2275 	return pevent_find_field(evsel->tp_format, name);
2276 }
2277 
2278 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2279 			 const char *name)
2280 {
2281 	struct format_field *field = perf_evsel__field(evsel, name);
2282 	int offset;
2283 
2284 	if (!field)
2285 		return NULL;
2286 
2287 	offset = field->offset;
2288 
2289 	if (field->flags & FIELD_IS_DYNAMIC) {
2290 		offset = *(int *)(sample->raw_data + field->offset);
2291 		offset &= 0xffff;
2292 	}
2293 
2294 	return sample->raw_data + offset;
2295 }
2296 
2297 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2298 			 bool needs_swap)
2299 {
2300 	u64 value;
2301 	void *ptr = sample->raw_data + field->offset;
2302 
2303 	switch (field->size) {
2304 	case 1:
2305 		return *(u8 *)ptr;
2306 	case 2:
2307 		value = *(u16 *)ptr;
2308 		break;
2309 	case 4:
2310 		value = *(u32 *)ptr;
2311 		break;
2312 	case 8:
2313 		memcpy(&value, ptr, sizeof(u64));
2314 		break;
2315 	default:
2316 		return 0;
2317 	}
2318 
2319 	if (!needs_swap)
2320 		return value;
2321 
2322 	switch (field->size) {
2323 	case 2:
2324 		return bswap_16(value);
2325 	case 4:
2326 		return bswap_32(value);
2327 	case 8:
2328 		return bswap_64(value);
2329 	default:
2330 		return 0;
2331 	}
2332 
2333 	return 0;
2334 }
2335 
2336 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2337 		       const char *name)
2338 {
2339 	struct format_field *field = perf_evsel__field(evsel, name);
2340 
2341 	if (!field)
2342 		return 0;
2343 
2344 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2345 }
2346 
2347 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2348 			  char *msg, size_t msgsize)
2349 {
2350 	int paranoid;
2351 
2352 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2353 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2354 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2355 		/*
2356 		 * If it's cycles then fall back to hrtimer based
2357 		 * cpu-clock-tick sw counter, which is always available even if
2358 		 * no PMU support.
2359 		 *
2360 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2361 		 * b0a873e).
2362 		 */
2363 		scnprintf(msg, msgsize, "%s",
2364 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2365 
2366 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2367 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2368 
2369 		zfree(&evsel->name);
2370 		return true;
2371 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2372 		   (paranoid = perf_event_paranoid()) > 1) {
2373 		const char *name = perf_evsel__name(evsel);
2374 		char *new_name;
2375 
2376 		if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2377 			return false;
2378 
2379 		if (evsel->name)
2380 			free(evsel->name);
2381 		evsel->name = new_name;
2382 		scnprintf(msg, msgsize,
2383 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2384 		evsel->attr.exclude_kernel = 1;
2385 
2386 		return true;
2387 	}
2388 
2389 	return false;
2390 }
2391 
2392 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2393 			      int err, char *msg, size_t size)
2394 {
2395 	char sbuf[STRERR_BUFSIZE];
2396 
2397 	switch (err) {
2398 	case EPERM:
2399 	case EACCES:
2400 		return scnprintf(msg, size,
2401 		 "You may not have permission to collect %sstats.\n\n"
2402 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2403 		 "which controls use of the performance events system by\n"
2404 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2405 		 "The current value is %d:\n\n"
2406 		 "  -1: Allow use of (almost) all events by all users\n"
2407 		 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n"
2408 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2409 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN",
2410 				 target->system_wide ? "system-wide " : "",
2411 				 perf_event_paranoid());
2412 	case ENOENT:
2413 		return scnprintf(msg, size, "The %s event is not supported.",
2414 				 perf_evsel__name(evsel));
2415 	case EMFILE:
2416 		return scnprintf(msg, size, "%s",
2417 			 "Too many events are opened.\n"
2418 			 "Probably the maximum number of open file descriptors has been reached.\n"
2419 			 "Hint: Try again after reducing the number of events.\n"
2420 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2421 	case ENOMEM:
2422 		if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2423 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2424 			return scnprintf(msg, size,
2425 					 "Not enough memory to setup event with callchain.\n"
2426 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2427 					 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2428 		break;
2429 	case ENODEV:
2430 		if (target->cpu_list)
2431 			return scnprintf(msg, size, "%s",
2432 	 "No such device - did you specify an out-of-range profile CPU?");
2433 		break;
2434 	case EOPNOTSUPP:
2435 		if (evsel->attr.sample_period != 0)
2436 			return scnprintf(msg, size, "%s",
2437 	"PMU Hardware doesn't support sampling/overflow-interrupts.");
2438 		if (evsel->attr.precise_ip)
2439 			return scnprintf(msg, size, "%s",
2440 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2441 #if defined(__i386__) || defined(__x86_64__)
2442 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2443 			return scnprintf(msg, size, "%s",
2444 	"No hardware sampling interrupt available.\n"
2445 	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2446 #endif
2447 		break;
2448 	case EBUSY:
2449 		if (find_process("oprofiled"))
2450 			return scnprintf(msg, size,
2451 	"The PMU counters are busy/taken by another profiler.\n"
2452 	"We found oprofile daemon running, please stop it and try again.");
2453 		break;
2454 	case EINVAL:
2455 		if (evsel->attr.write_backward && perf_missing_features.write_backward)
2456 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2457 		if (perf_missing_features.clockid)
2458 			return scnprintf(msg, size, "clockid feature not supported.");
2459 		if (perf_missing_features.clockid_wrong)
2460 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2461 		break;
2462 	default:
2463 		break;
2464 	}
2465 
2466 	return scnprintf(msg, size,
2467 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2468 	"/bin/dmesg may provide additional information.\n"
2469 	"No CONFIG_PERF_EVENTS=y kernel support configured?",
2470 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2471 			 perf_evsel__name(evsel));
2472 }
2473 
2474 char *perf_evsel__env_arch(struct perf_evsel *evsel)
2475 {
2476 	if (evsel && evsel->evlist && evsel->evlist->env)
2477 		return evsel->evlist->env->arch;
2478 	return NULL;
2479 }
2480