1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <linux/bitops.h> 12 #include <api/fs/tracing_path.h> 13 #include <traceevent/event-parse.h> 14 #include <linux/hw_breakpoint.h> 15 #include <linux/perf_event.h> 16 #include <linux/err.h> 17 #include <sys/resource.h> 18 #include "asm/bug.h" 19 #include "callchain.h" 20 #include "cgroup.h" 21 #include "evsel.h" 22 #include "evlist.h" 23 #include "util.h" 24 #include "cpumap.h" 25 #include "thread_map.h" 26 #include "target.h" 27 #include "perf_regs.h" 28 #include "debug.h" 29 #include "trace-event.h" 30 #include "stat.h" 31 32 static struct { 33 bool sample_id_all; 34 bool exclude_guest; 35 bool mmap2; 36 bool cloexec; 37 bool clockid; 38 bool clockid_wrong; 39 bool lbr_flags; 40 bool write_backward; 41 } perf_missing_features; 42 43 static clockid_t clockid; 44 45 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 46 { 47 return 0; 48 } 49 50 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 51 { 52 } 53 54 static struct { 55 size_t size; 56 int (*init)(struct perf_evsel *evsel); 57 void (*fini)(struct perf_evsel *evsel); 58 } perf_evsel__object = { 59 .size = sizeof(struct perf_evsel), 60 .init = perf_evsel__no_extra_init, 61 .fini = perf_evsel__no_extra_fini, 62 }; 63 64 int perf_evsel__object_config(size_t object_size, 65 int (*init)(struct perf_evsel *evsel), 66 void (*fini)(struct perf_evsel *evsel)) 67 { 68 69 if (object_size == 0) 70 goto set_methods; 71 72 if (perf_evsel__object.size > object_size) 73 return -EINVAL; 74 75 perf_evsel__object.size = object_size; 76 77 set_methods: 78 if (init != NULL) 79 perf_evsel__object.init = init; 80 81 if (fini != NULL) 82 perf_evsel__object.fini = fini; 83 84 return 0; 85 } 86 87 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 88 89 int __perf_evsel__sample_size(u64 sample_type) 90 { 91 u64 mask = sample_type & PERF_SAMPLE_MASK; 92 int size = 0; 93 int i; 94 95 for (i = 0; i < 64; i++) { 96 if (mask & (1ULL << i)) 97 size++; 98 } 99 100 size *= sizeof(u64); 101 102 return size; 103 } 104 105 /** 106 * __perf_evsel__calc_id_pos - calculate id_pos. 107 * @sample_type: sample type 108 * 109 * This function returns the position of the event id (PERF_SAMPLE_ID or 110 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 111 * sample_event. 112 */ 113 static int __perf_evsel__calc_id_pos(u64 sample_type) 114 { 115 int idx = 0; 116 117 if (sample_type & PERF_SAMPLE_IDENTIFIER) 118 return 0; 119 120 if (!(sample_type & PERF_SAMPLE_ID)) 121 return -1; 122 123 if (sample_type & PERF_SAMPLE_IP) 124 idx += 1; 125 126 if (sample_type & PERF_SAMPLE_TID) 127 idx += 1; 128 129 if (sample_type & PERF_SAMPLE_TIME) 130 idx += 1; 131 132 if (sample_type & PERF_SAMPLE_ADDR) 133 idx += 1; 134 135 return idx; 136 } 137 138 /** 139 * __perf_evsel__calc_is_pos - calculate is_pos. 140 * @sample_type: sample type 141 * 142 * This function returns the position (counting backwards) of the event id 143 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 144 * sample_id_all is used there is an id sample appended to non-sample events. 145 */ 146 static int __perf_evsel__calc_is_pos(u64 sample_type) 147 { 148 int idx = 1; 149 150 if (sample_type & PERF_SAMPLE_IDENTIFIER) 151 return 1; 152 153 if (!(sample_type & PERF_SAMPLE_ID)) 154 return -1; 155 156 if (sample_type & PERF_SAMPLE_CPU) 157 idx += 1; 158 159 if (sample_type & PERF_SAMPLE_STREAM_ID) 160 idx += 1; 161 162 return idx; 163 } 164 165 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 166 { 167 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 168 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 169 } 170 171 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 172 enum perf_event_sample_format bit) 173 { 174 if (!(evsel->attr.sample_type & bit)) { 175 evsel->attr.sample_type |= bit; 176 evsel->sample_size += sizeof(u64); 177 perf_evsel__calc_id_pos(evsel); 178 } 179 } 180 181 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 182 enum perf_event_sample_format bit) 183 { 184 if (evsel->attr.sample_type & bit) { 185 evsel->attr.sample_type &= ~bit; 186 evsel->sample_size -= sizeof(u64); 187 perf_evsel__calc_id_pos(evsel); 188 } 189 } 190 191 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 192 bool can_sample_identifier) 193 { 194 if (can_sample_identifier) { 195 perf_evsel__reset_sample_bit(evsel, ID); 196 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 197 } else { 198 perf_evsel__set_sample_bit(evsel, ID); 199 } 200 evsel->attr.read_format |= PERF_FORMAT_ID; 201 } 202 203 /** 204 * perf_evsel__is_function_event - Return whether given evsel is a function 205 * trace event 206 * 207 * @evsel - evsel selector to be tested 208 * 209 * Return %true if event is function trace event 210 */ 211 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 212 { 213 #define FUNCTION_EVENT "ftrace:function" 214 215 return evsel->name && 216 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 217 218 #undef FUNCTION_EVENT 219 } 220 221 void perf_evsel__init(struct perf_evsel *evsel, 222 struct perf_event_attr *attr, int idx) 223 { 224 evsel->idx = idx; 225 evsel->tracking = !idx; 226 evsel->attr = *attr; 227 evsel->leader = evsel; 228 evsel->unit = ""; 229 evsel->scale = 1.0; 230 evsel->evlist = NULL; 231 evsel->bpf_fd = -1; 232 INIT_LIST_HEAD(&evsel->node); 233 INIT_LIST_HEAD(&evsel->config_terms); 234 perf_evsel__object.init(evsel); 235 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 236 perf_evsel__calc_id_pos(evsel); 237 evsel->cmdline_group_boundary = false; 238 } 239 240 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 241 { 242 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 243 244 if (evsel != NULL) 245 perf_evsel__init(evsel, attr, idx); 246 247 if (perf_evsel__is_bpf_output(evsel)) { 248 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 249 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 250 evsel->attr.sample_period = 1; 251 } 252 253 return evsel; 254 } 255 256 struct perf_evsel *perf_evsel__new_cycles(void) 257 { 258 struct perf_event_attr attr = { 259 .type = PERF_TYPE_HARDWARE, 260 .config = PERF_COUNT_HW_CPU_CYCLES, 261 }; 262 struct perf_evsel *evsel; 263 264 event_attr_init(&attr); 265 266 perf_event_attr__set_max_precise_ip(&attr); 267 268 evsel = perf_evsel__new(&attr); 269 if (evsel == NULL) 270 goto out; 271 272 /* use asprintf() because free(evsel) assumes name is allocated */ 273 if (asprintf(&evsel->name, "cycles%.*s", 274 attr.precise_ip ? attr.precise_ip + 1 : 0, ":ppp") < 0) 275 goto error_free; 276 out: 277 return evsel; 278 error_free: 279 perf_evsel__delete(evsel); 280 evsel = NULL; 281 goto out; 282 } 283 284 /* 285 * Returns pointer with encoded error via <linux/err.h> interface. 286 */ 287 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 288 { 289 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 290 int err = -ENOMEM; 291 292 if (evsel == NULL) { 293 goto out_err; 294 } else { 295 struct perf_event_attr attr = { 296 .type = PERF_TYPE_TRACEPOINT, 297 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 298 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 299 }; 300 301 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 302 goto out_free; 303 304 evsel->tp_format = trace_event__tp_format(sys, name); 305 if (IS_ERR(evsel->tp_format)) { 306 err = PTR_ERR(evsel->tp_format); 307 goto out_free; 308 } 309 310 event_attr_init(&attr); 311 attr.config = evsel->tp_format->id; 312 attr.sample_period = 1; 313 perf_evsel__init(evsel, &attr, idx); 314 } 315 316 return evsel; 317 318 out_free: 319 zfree(&evsel->name); 320 free(evsel); 321 out_err: 322 return ERR_PTR(err); 323 } 324 325 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 326 "cycles", 327 "instructions", 328 "cache-references", 329 "cache-misses", 330 "branches", 331 "branch-misses", 332 "bus-cycles", 333 "stalled-cycles-frontend", 334 "stalled-cycles-backend", 335 "ref-cycles", 336 }; 337 338 static const char *__perf_evsel__hw_name(u64 config) 339 { 340 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 341 return perf_evsel__hw_names[config]; 342 343 return "unknown-hardware"; 344 } 345 346 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 347 { 348 int colon = 0, r = 0; 349 struct perf_event_attr *attr = &evsel->attr; 350 bool exclude_guest_default = false; 351 352 #define MOD_PRINT(context, mod) do { \ 353 if (!attr->exclude_##context) { \ 354 if (!colon) colon = ++r; \ 355 r += scnprintf(bf + r, size - r, "%c", mod); \ 356 } } while(0) 357 358 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 359 MOD_PRINT(kernel, 'k'); 360 MOD_PRINT(user, 'u'); 361 MOD_PRINT(hv, 'h'); 362 exclude_guest_default = true; 363 } 364 365 if (attr->precise_ip) { 366 if (!colon) 367 colon = ++r; 368 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 369 exclude_guest_default = true; 370 } 371 372 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 373 MOD_PRINT(host, 'H'); 374 MOD_PRINT(guest, 'G'); 375 } 376 #undef MOD_PRINT 377 if (colon) 378 bf[colon - 1] = ':'; 379 return r; 380 } 381 382 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 383 { 384 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 385 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 386 } 387 388 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 389 "cpu-clock", 390 "task-clock", 391 "page-faults", 392 "context-switches", 393 "cpu-migrations", 394 "minor-faults", 395 "major-faults", 396 "alignment-faults", 397 "emulation-faults", 398 "dummy", 399 }; 400 401 static const char *__perf_evsel__sw_name(u64 config) 402 { 403 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 404 return perf_evsel__sw_names[config]; 405 return "unknown-software"; 406 } 407 408 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 409 { 410 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 411 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 412 } 413 414 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 415 { 416 int r; 417 418 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 419 420 if (type & HW_BREAKPOINT_R) 421 r += scnprintf(bf + r, size - r, "r"); 422 423 if (type & HW_BREAKPOINT_W) 424 r += scnprintf(bf + r, size - r, "w"); 425 426 if (type & HW_BREAKPOINT_X) 427 r += scnprintf(bf + r, size - r, "x"); 428 429 return r; 430 } 431 432 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 433 { 434 struct perf_event_attr *attr = &evsel->attr; 435 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 436 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 437 } 438 439 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 440 [PERF_EVSEL__MAX_ALIASES] = { 441 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 442 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 443 { "LLC", "L2", }, 444 { "dTLB", "d-tlb", "Data-TLB", }, 445 { "iTLB", "i-tlb", "Instruction-TLB", }, 446 { "branch", "branches", "bpu", "btb", "bpc", }, 447 { "node", }, 448 }; 449 450 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 451 [PERF_EVSEL__MAX_ALIASES] = { 452 { "load", "loads", "read", }, 453 { "store", "stores", "write", }, 454 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 455 }; 456 457 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 458 [PERF_EVSEL__MAX_ALIASES] = { 459 { "refs", "Reference", "ops", "access", }, 460 { "misses", "miss", }, 461 }; 462 463 #define C(x) PERF_COUNT_HW_CACHE_##x 464 #define CACHE_READ (1 << C(OP_READ)) 465 #define CACHE_WRITE (1 << C(OP_WRITE)) 466 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 467 #define COP(x) (1 << x) 468 469 /* 470 * cache operartion stat 471 * L1I : Read and prefetch only 472 * ITLB and BPU : Read-only 473 */ 474 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 475 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 476 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 477 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 478 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 479 [C(ITLB)] = (CACHE_READ), 480 [C(BPU)] = (CACHE_READ), 481 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 482 }; 483 484 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 485 { 486 if (perf_evsel__hw_cache_stat[type] & COP(op)) 487 return true; /* valid */ 488 else 489 return false; /* invalid */ 490 } 491 492 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 493 char *bf, size_t size) 494 { 495 if (result) { 496 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 497 perf_evsel__hw_cache_op[op][0], 498 perf_evsel__hw_cache_result[result][0]); 499 } 500 501 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 502 perf_evsel__hw_cache_op[op][1]); 503 } 504 505 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 506 { 507 u8 op, result, type = (config >> 0) & 0xff; 508 const char *err = "unknown-ext-hardware-cache-type"; 509 510 if (type >= PERF_COUNT_HW_CACHE_MAX) 511 goto out_err; 512 513 op = (config >> 8) & 0xff; 514 err = "unknown-ext-hardware-cache-op"; 515 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 516 goto out_err; 517 518 result = (config >> 16) & 0xff; 519 err = "unknown-ext-hardware-cache-result"; 520 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 521 goto out_err; 522 523 err = "invalid-cache"; 524 if (!perf_evsel__is_cache_op_valid(type, op)) 525 goto out_err; 526 527 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 528 out_err: 529 return scnprintf(bf, size, "%s", err); 530 } 531 532 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 533 { 534 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 535 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 536 } 537 538 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 539 { 540 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 541 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 542 } 543 544 const char *perf_evsel__name(struct perf_evsel *evsel) 545 { 546 char bf[128]; 547 548 if (evsel->name) 549 return evsel->name; 550 551 switch (evsel->attr.type) { 552 case PERF_TYPE_RAW: 553 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 554 break; 555 556 case PERF_TYPE_HARDWARE: 557 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 558 break; 559 560 case PERF_TYPE_HW_CACHE: 561 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 562 break; 563 564 case PERF_TYPE_SOFTWARE: 565 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 566 break; 567 568 case PERF_TYPE_TRACEPOINT: 569 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 570 break; 571 572 case PERF_TYPE_BREAKPOINT: 573 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 574 break; 575 576 default: 577 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 578 evsel->attr.type); 579 break; 580 } 581 582 evsel->name = strdup(bf); 583 584 return evsel->name ?: "unknown"; 585 } 586 587 const char *perf_evsel__group_name(struct perf_evsel *evsel) 588 { 589 return evsel->group_name ?: "anon group"; 590 } 591 592 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 593 { 594 int ret; 595 struct perf_evsel *pos; 596 const char *group_name = perf_evsel__group_name(evsel); 597 598 ret = scnprintf(buf, size, "%s", group_name); 599 600 ret += scnprintf(buf + ret, size - ret, " { %s", 601 perf_evsel__name(evsel)); 602 603 for_each_group_member(pos, evsel) 604 ret += scnprintf(buf + ret, size - ret, ", %s", 605 perf_evsel__name(pos)); 606 607 ret += scnprintf(buf + ret, size - ret, " }"); 608 609 return ret; 610 } 611 612 void perf_evsel__config_callchain(struct perf_evsel *evsel, 613 struct record_opts *opts, 614 struct callchain_param *param) 615 { 616 bool function = perf_evsel__is_function_event(evsel); 617 struct perf_event_attr *attr = &evsel->attr; 618 619 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 620 621 attr->sample_max_stack = param->max_stack; 622 623 if (param->record_mode == CALLCHAIN_LBR) { 624 if (!opts->branch_stack) { 625 if (attr->exclude_user) { 626 pr_warning("LBR callstack option is only available " 627 "to get user callchain information. " 628 "Falling back to framepointers.\n"); 629 } else { 630 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 631 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 632 PERF_SAMPLE_BRANCH_CALL_STACK | 633 PERF_SAMPLE_BRANCH_NO_CYCLES | 634 PERF_SAMPLE_BRANCH_NO_FLAGS; 635 } 636 } else 637 pr_warning("Cannot use LBR callstack with branch stack. " 638 "Falling back to framepointers.\n"); 639 } 640 641 if (param->record_mode == CALLCHAIN_DWARF) { 642 if (!function) { 643 perf_evsel__set_sample_bit(evsel, REGS_USER); 644 perf_evsel__set_sample_bit(evsel, STACK_USER); 645 attr->sample_regs_user = PERF_REGS_MASK; 646 attr->sample_stack_user = param->dump_size; 647 attr->exclude_callchain_user = 1; 648 } else { 649 pr_info("Cannot use DWARF unwind for function trace event," 650 " falling back to framepointers.\n"); 651 } 652 } 653 654 if (function) { 655 pr_info("Disabling user space callchains for function trace event.\n"); 656 attr->exclude_callchain_user = 1; 657 } 658 } 659 660 static void 661 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 662 struct callchain_param *param) 663 { 664 struct perf_event_attr *attr = &evsel->attr; 665 666 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 667 if (param->record_mode == CALLCHAIN_LBR) { 668 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 669 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 670 PERF_SAMPLE_BRANCH_CALL_STACK); 671 } 672 if (param->record_mode == CALLCHAIN_DWARF) { 673 perf_evsel__reset_sample_bit(evsel, REGS_USER); 674 perf_evsel__reset_sample_bit(evsel, STACK_USER); 675 } 676 } 677 678 static void apply_config_terms(struct perf_evsel *evsel, 679 struct record_opts *opts) 680 { 681 struct perf_evsel_config_term *term; 682 struct list_head *config_terms = &evsel->config_terms; 683 struct perf_event_attr *attr = &evsel->attr; 684 struct callchain_param param; 685 u32 dump_size = 0; 686 int max_stack = 0; 687 const char *callgraph_buf = NULL; 688 689 /* callgraph default */ 690 param.record_mode = callchain_param.record_mode; 691 692 list_for_each_entry(term, config_terms, list) { 693 switch (term->type) { 694 case PERF_EVSEL__CONFIG_TERM_PERIOD: 695 attr->sample_period = term->val.period; 696 attr->freq = 0; 697 break; 698 case PERF_EVSEL__CONFIG_TERM_FREQ: 699 attr->sample_freq = term->val.freq; 700 attr->freq = 1; 701 break; 702 case PERF_EVSEL__CONFIG_TERM_TIME: 703 if (term->val.time) 704 perf_evsel__set_sample_bit(evsel, TIME); 705 else 706 perf_evsel__reset_sample_bit(evsel, TIME); 707 break; 708 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 709 callgraph_buf = term->val.callgraph; 710 break; 711 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 712 dump_size = term->val.stack_user; 713 break; 714 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 715 max_stack = term->val.max_stack; 716 break; 717 case PERF_EVSEL__CONFIG_TERM_INHERIT: 718 /* 719 * attr->inherit should has already been set by 720 * perf_evsel__config. If user explicitly set 721 * inherit using config terms, override global 722 * opt->no_inherit setting. 723 */ 724 attr->inherit = term->val.inherit ? 1 : 0; 725 break; 726 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 727 attr->write_backward = term->val.overwrite ? 1 : 0; 728 break; 729 default: 730 break; 731 } 732 } 733 734 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 735 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 736 if (max_stack) { 737 param.max_stack = max_stack; 738 if (callgraph_buf == NULL) 739 callgraph_buf = "fp"; 740 } 741 742 /* parse callgraph parameters */ 743 if (callgraph_buf != NULL) { 744 if (!strcmp(callgraph_buf, "no")) { 745 param.enabled = false; 746 param.record_mode = CALLCHAIN_NONE; 747 } else { 748 param.enabled = true; 749 if (parse_callchain_record(callgraph_buf, ¶m)) { 750 pr_err("per-event callgraph setting for %s failed. " 751 "Apply callgraph global setting for it\n", 752 evsel->name); 753 return; 754 } 755 } 756 } 757 if (dump_size > 0) { 758 dump_size = round_up(dump_size, sizeof(u64)); 759 param.dump_size = dump_size; 760 } 761 762 /* If global callgraph set, clear it */ 763 if (callchain_param.enabled) 764 perf_evsel__reset_callgraph(evsel, &callchain_param); 765 766 /* set perf-event callgraph */ 767 if (param.enabled) 768 perf_evsel__config_callchain(evsel, opts, ¶m); 769 } 770 } 771 772 /* 773 * The enable_on_exec/disabled value strategy: 774 * 775 * 1) For any type of traced program: 776 * - all independent events and group leaders are disabled 777 * - all group members are enabled 778 * 779 * Group members are ruled by group leaders. They need to 780 * be enabled, because the group scheduling relies on that. 781 * 782 * 2) For traced programs executed by perf: 783 * - all independent events and group leaders have 784 * enable_on_exec set 785 * - we don't specifically enable or disable any event during 786 * the record command 787 * 788 * Independent events and group leaders are initially disabled 789 * and get enabled by exec. Group members are ruled by group 790 * leaders as stated in 1). 791 * 792 * 3) For traced programs attached by perf (pid/tid): 793 * - we specifically enable or disable all events during 794 * the record command 795 * 796 * When attaching events to already running traced we 797 * enable/disable events specifically, as there's no 798 * initial traced exec call. 799 */ 800 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 801 struct callchain_param *callchain) 802 { 803 struct perf_evsel *leader = evsel->leader; 804 struct perf_event_attr *attr = &evsel->attr; 805 int track = evsel->tracking; 806 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 807 808 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 809 attr->inherit = !opts->no_inherit; 810 attr->write_backward = opts->overwrite ? 1 : 0; 811 812 perf_evsel__set_sample_bit(evsel, IP); 813 perf_evsel__set_sample_bit(evsel, TID); 814 815 if (evsel->sample_read) { 816 perf_evsel__set_sample_bit(evsel, READ); 817 818 /* 819 * We need ID even in case of single event, because 820 * PERF_SAMPLE_READ process ID specific data. 821 */ 822 perf_evsel__set_sample_id(evsel, false); 823 824 /* 825 * Apply group format only if we belong to group 826 * with more than one members. 827 */ 828 if (leader->nr_members > 1) { 829 attr->read_format |= PERF_FORMAT_GROUP; 830 attr->inherit = 0; 831 } 832 } 833 834 /* 835 * We default some events to have a default interval. But keep 836 * it a weak assumption overridable by the user. 837 */ 838 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 839 opts->user_interval != ULLONG_MAX)) { 840 if (opts->freq) { 841 perf_evsel__set_sample_bit(evsel, PERIOD); 842 attr->freq = 1; 843 attr->sample_freq = opts->freq; 844 } else { 845 attr->sample_period = opts->default_interval; 846 } 847 } 848 849 /* 850 * Disable sampling for all group members other 851 * than leader in case leader 'leads' the sampling. 852 */ 853 if ((leader != evsel) && leader->sample_read) { 854 attr->sample_freq = 0; 855 attr->sample_period = 0; 856 } 857 858 if (opts->no_samples) 859 attr->sample_freq = 0; 860 861 if (opts->inherit_stat) 862 attr->inherit_stat = 1; 863 864 if (opts->sample_address) { 865 perf_evsel__set_sample_bit(evsel, ADDR); 866 attr->mmap_data = track; 867 } 868 869 /* 870 * We don't allow user space callchains for function trace 871 * event, due to issues with page faults while tracing page 872 * fault handler and its overall trickiness nature. 873 */ 874 if (perf_evsel__is_function_event(evsel)) 875 evsel->attr.exclude_callchain_user = 1; 876 877 if (callchain && callchain->enabled && !evsel->no_aux_samples) 878 perf_evsel__config_callchain(evsel, opts, callchain); 879 880 if (opts->sample_intr_regs) { 881 attr->sample_regs_intr = opts->sample_intr_regs; 882 perf_evsel__set_sample_bit(evsel, REGS_INTR); 883 } 884 885 if (target__has_cpu(&opts->target) || opts->sample_cpu) 886 perf_evsel__set_sample_bit(evsel, CPU); 887 888 if (opts->period) 889 perf_evsel__set_sample_bit(evsel, PERIOD); 890 891 /* 892 * When the user explicitly disabled time don't force it here. 893 */ 894 if (opts->sample_time && 895 (!perf_missing_features.sample_id_all && 896 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 897 opts->sample_time_set))) 898 perf_evsel__set_sample_bit(evsel, TIME); 899 900 if (opts->raw_samples && !evsel->no_aux_samples) { 901 perf_evsel__set_sample_bit(evsel, TIME); 902 perf_evsel__set_sample_bit(evsel, RAW); 903 perf_evsel__set_sample_bit(evsel, CPU); 904 } 905 906 if (opts->sample_address) 907 perf_evsel__set_sample_bit(evsel, DATA_SRC); 908 909 if (opts->no_buffering) { 910 attr->watermark = 0; 911 attr->wakeup_events = 1; 912 } 913 if (opts->branch_stack && !evsel->no_aux_samples) { 914 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 915 attr->branch_sample_type = opts->branch_stack; 916 } 917 918 if (opts->sample_weight) 919 perf_evsel__set_sample_bit(evsel, WEIGHT); 920 921 attr->task = track; 922 attr->mmap = track; 923 attr->mmap2 = track && !perf_missing_features.mmap2; 924 attr->comm = track; 925 926 if (opts->record_switch_events) 927 attr->context_switch = track; 928 929 if (opts->sample_transaction) 930 perf_evsel__set_sample_bit(evsel, TRANSACTION); 931 932 if (opts->running_time) { 933 evsel->attr.read_format |= 934 PERF_FORMAT_TOTAL_TIME_ENABLED | 935 PERF_FORMAT_TOTAL_TIME_RUNNING; 936 } 937 938 /* 939 * XXX see the function comment above 940 * 941 * Disabling only independent events or group leaders, 942 * keeping group members enabled. 943 */ 944 if (perf_evsel__is_group_leader(evsel)) 945 attr->disabled = 1; 946 947 /* 948 * Setting enable_on_exec for independent events and 949 * group leaders for traced executed by perf. 950 */ 951 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 952 !opts->initial_delay) 953 attr->enable_on_exec = 1; 954 955 if (evsel->immediate) { 956 attr->disabled = 0; 957 attr->enable_on_exec = 0; 958 } 959 960 clockid = opts->clockid; 961 if (opts->use_clockid) { 962 attr->use_clockid = 1; 963 attr->clockid = opts->clockid; 964 } 965 966 if (evsel->precise_max) 967 perf_event_attr__set_max_precise_ip(attr); 968 969 if (opts->all_user) { 970 attr->exclude_kernel = 1; 971 attr->exclude_user = 0; 972 } 973 974 if (opts->all_kernel) { 975 attr->exclude_kernel = 0; 976 attr->exclude_user = 1; 977 } 978 979 /* 980 * Apply event specific term settings, 981 * it overloads any global configuration. 982 */ 983 apply_config_terms(evsel, opts); 984 } 985 986 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 987 { 988 int cpu, thread; 989 990 if (evsel->system_wide) 991 nthreads = 1; 992 993 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 994 995 if (evsel->fd) { 996 for (cpu = 0; cpu < ncpus; cpu++) { 997 for (thread = 0; thread < nthreads; thread++) { 998 FD(evsel, cpu, thread) = -1; 999 } 1000 } 1001 } 1002 1003 return evsel->fd != NULL ? 0 : -ENOMEM; 1004 } 1005 1006 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads, 1007 int ioc, void *arg) 1008 { 1009 int cpu, thread; 1010 1011 if (evsel->system_wide) 1012 nthreads = 1; 1013 1014 for (cpu = 0; cpu < ncpus; cpu++) { 1015 for (thread = 0; thread < nthreads; thread++) { 1016 int fd = FD(evsel, cpu, thread), 1017 err = ioctl(fd, ioc, arg); 1018 1019 if (err) 1020 return err; 1021 } 1022 } 1023 1024 return 0; 1025 } 1026 1027 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads, 1028 const char *filter) 1029 { 1030 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1031 PERF_EVENT_IOC_SET_FILTER, 1032 (void *)filter); 1033 } 1034 1035 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1036 { 1037 char *new_filter = strdup(filter); 1038 1039 if (new_filter != NULL) { 1040 free(evsel->filter); 1041 evsel->filter = new_filter; 1042 return 0; 1043 } 1044 1045 return -1; 1046 } 1047 1048 int perf_evsel__append_filter(struct perf_evsel *evsel, 1049 const char *op, const char *filter) 1050 { 1051 char *new_filter; 1052 1053 if (evsel->filter == NULL) 1054 return perf_evsel__set_filter(evsel, filter); 1055 1056 if (asprintf(&new_filter,"(%s) %s (%s)", evsel->filter, op, filter) > 0) { 1057 free(evsel->filter); 1058 evsel->filter = new_filter; 1059 return 0; 1060 } 1061 1062 return -1; 1063 } 1064 1065 int perf_evsel__enable(struct perf_evsel *evsel) 1066 { 1067 int nthreads = thread_map__nr(evsel->threads); 1068 int ncpus = cpu_map__nr(evsel->cpus); 1069 1070 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1071 PERF_EVENT_IOC_ENABLE, 1072 0); 1073 } 1074 1075 int perf_evsel__disable(struct perf_evsel *evsel) 1076 { 1077 int nthreads = thread_map__nr(evsel->threads); 1078 int ncpus = cpu_map__nr(evsel->cpus); 1079 1080 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1081 PERF_EVENT_IOC_DISABLE, 1082 0); 1083 } 1084 1085 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1086 { 1087 if (ncpus == 0 || nthreads == 0) 1088 return 0; 1089 1090 if (evsel->system_wide) 1091 nthreads = 1; 1092 1093 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1094 if (evsel->sample_id == NULL) 1095 return -ENOMEM; 1096 1097 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1098 if (evsel->id == NULL) { 1099 xyarray__delete(evsel->sample_id); 1100 evsel->sample_id = NULL; 1101 return -ENOMEM; 1102 } 1103 1104 return 0; 1105 } 1106 1107 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1108 { 1109 xyarray__delete(evsel->fd); 1110 evsel->fd = NULL; 1111 } 1112 1113 static void perf_evsel__free_id(struct perf_evsel *evsel) 1114 { 1115 xyarray__delete(evsel->sample_id); 1116 evsel->sample_id = NULL; 1117 zfree(&evsel->id); 1118 } 1119 1120 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1121 { 1122 struct perf_evsel_config_term *term, *h; 1123 1124 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1125 list_del(&term->list); 1126 free(term); 1127 } 1128 } 1129 1130 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1131 { 1132 int cpu, thread; 1133 1134 if (evsel->system_wide) 1135 nthreads = 1; 1136 1137 for (cpu = 0; cpu < ncpus; cpu++) 1138 for (thread = 0; thread < nthreads; ++thread) { 1139 close(FD(evsel, cpu, thread)); 1140 FD(evsel, cpu, thread) = -1; 1141 } 1142 } 1143 1144 void perf_evsel__exit(struct perf_evsel *evsel) 1145 { 1146 assert(list_empty(&evsel->node)); 1147 assert(evsel->evlist == NULL); 1148 perf_evsel__free_fd(evsel); 1149 perf_evsel__free_id(evsel); 1150 perf_evsel__free_config_terms(evsel); 1151 close_cgroup(evsel->cgrp); 1152 cpu_map__put(evsel->cpus); 1153 cpu_map__put(evsel->own_cpus); 1154 thread_map__put(evsel->threads); 1155 zfree(&evsel->group_name); 1156 zfree(&evsel->name); 1157 perf_evsel__object.fini(evsel); 1158 } 1159 1160 void perf_evsel__delete(struct perf_evsel *evsel) 1161 { 1162 perf_evsel__exit(evsel); 1163 free(evsel); 1164 } 1165 1166 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1167 struct perf_counts_values *count) 1168 { 1169 struct perf_counts_values tmp; 1170 1171 if (!evsel->prev_raw_counts) 1172 return; 1173 1174 if (cpu == -1) { 1175 tmp = evsel->prev_raw_counts->aggr; 1176 evsel->prev_raw_counts->aggr = *count; 1177 } else { 1178 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1179 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1180 } 1181 1182 count->val = count->val - tmp.val; 1183 count->ena = count->ena - tmp.ena; 1184 count->run = count->run - tmp.run; 1185 } 1186 1187 void perf_counts_values__scale(struct perf_counts_values *count, 1188 bool scale, s8 *pscaled) 1189 { 1190 s8 scaled = 0; 1191 1192 if (scale) { 1193 if (count->run == 0) { 1194 scaled = -1; 1195 count->val = 0; 1196 } else if (count->run < count->ena) { 1197 scaled = 1; 1198 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1199 } 1200 } else 1201 count->ena = count->run = 0; 1202 1203 if (pscaled) 1204 *pscaled = scaled; 1205 } 1206 1207 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1208 struct perf_counts_values *count) 1209 { 1210 memset(count, 0, sizeof(*count)); 1211 1212 if (FD(evsel, cpu, thread) < 0) 1213 return -EINVAL; 1214 1215 if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0) 1216 return -errno; 1217 1218 return 0; 1219 } 1220 1221 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1222 int cpu, int thread, bool scale) 1223 { 1224 struct perf_counts_values count; 1225 size_t nv = scale ? 3 : 1; 1226 1227 if (FD(evsel, cpu, thread) < 0) 1228 return -EINVAL; 1229 1230 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1231 return -ENOMEM; 1232 1233 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0) 1234 return -errno; 1235 1236 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1237 perf_counts_values__scale(&count, scale, NULL); 1238 *perf_counts(evsel->counts, cpu, thread) = count; 1239 return 0; 1240 } 1241 1242 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1243 { 1244 struct perf_evsel *leader = evsel->leader; 1245 int fd; 1246 1247 if (perf_evsel__is_group_leader(evsel)) 1248 return -1; 1249 1250 /* 1251 * Leader must be already processed/open, 1252 * if not it's a bug. 1253 */ 1254 BUG_ON(!leader->fd); 1255 1256 fd = FD(leader, cpu, thread); 1257 BUG_ON(fd == -1); 1258 1259 return fd; 1260 } 1261 1262 struct bit_names { 1263 int bit; 1264 const char *name; 1265 }; 1266 1267 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1268 { 1269 bool first_bit = true; 1270 int i = 0; 1271 1272 do { 1273 if (value & bits[i].bit) { 1274 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1275 first_bit = false; 1276 } 1277 } while (bits[++i].name != NULL); 1278 } 1279 1280 static void __p_sample_type(char *buf, size_t size, u64 value) 1281 { 1282 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1283 struct bit_names bits[] = { 1284 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1285 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1286 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1287 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1288 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1289 bit_name(WEIGHT), 1290 { .name = NULL, } 1291 }; 1292 #undef bit_name 1293 __p_bits(buf, size, value, bits); 1294 } 1295 1296 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1297 { 1298 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1299 struct bit_names bits[] = { 1300 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1301 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1302 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1303 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1304 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1305 { .name = NULL, } 1306 }; 1307 #undef bit_name 1308 __p_bits(buf, size, value, bits); 1309 } 1310 1311 static void __p_read_format(char *buf, size_t size, u64 value) 1312 { 1313 #define bit_name(n) { PERF_FORMAT_##n, #n } 1314 struct bit_names bits[] = { 1315 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1316 bit_name(ID), bit_name(GROUP), 1317 { .name = NULL, } 1318 }; 1319 #undef bit_name 1320 __p_bits(buf, size, value, bits); 1321 } 1322 1323 #define BUF_SIZE 1024 1324 1325 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1326 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1327 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1328 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1329 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1330 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1331 1332 #define PRINT_ATTRn(_n, _f, _p) \ 1333 do { \ 1334 if (attr->_f) { \ 1335 _p(attr->_f); \ 1336 ret += attr__fprintf(fp, _n, buf, priv);\ 1337 } \ 1338 } while (0) 1339 1340 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1341 1342 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1343 attr__fprintf_f attr__fprintf, void *priv) 1344 { 1345 char buf[BUF_SIZE]; 1346 int ret = 0; 1347 1348 PRINT_ATTRf(type, p_unsigned); 1349 PRINT_ATTRf(size, p_unsigned); 1350 PRINT_ATTRf(config, p_hex); 1351 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1352 PRINT_ATTRf(sample_type, p_sample_type); 1353 PRINT_ATTRf(read_format, p_read_format); 1354 1355 PRINT_ATTRf(disabled, p_unsigned); 1356 PRINT_ATTRf(inherit, p_unsigned); 1357 PRINT_ATTRf(pinned, p_unsigned); 1358 PRINT_ATTRf(exclusive, p_unsigned); 1359 PRINT_ATTRf(exclude_user, p_unsigned); 1360 PRINT_ATTRf(exclude_kernel, p_unsigned); 1361 PRINT_ATTRf(exclude_hv, p_unsigned); 1362 PRINT_ATTRf(exclude_idle, p_unsigned); 1363 PRINT_ATTRf(mmap, p_unsigned); 1364 PRINT_ATTRf(comm, p_unsigned); 1365 PRINT_ATTRf(freq, p_unsigned); 1366 PRINT_ATTRf(inherit_stat, p_unsigned); 1367 PRINT_ATTRf(enable_on_exec, p_unsigned); 1368 PRINT_ATTRf(task, p_unsigned); 1369 PRINT_ATTRf(watermark, p_unsigned); 1370 PRINT_ATTRf(precise_ip, p_unsigned); 1371 PRINT_ATTRf(mmap_data, p_unsigned); 1372 PRINT_ATTRf(sample_id_all, p_unsigned); 1373 PRINT_ATTRf(exclude_host, p_unsigned); 1374 PRINT_ATTRf(exclude_guest, p_unsigned); 1375 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1376 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1377 PRINT_ATTRf(mmap2, p_unsigned); 1378 PRINT_ATTRf(comm_exec, p_unsigned); 1379 PRINT_ATTRf(use_clockid, p_unsigned); 1380 PRINT_ATTRf(context_switch, p_unsigned); 1381 PRINT_ATTRf(write_backward, p_unsigned); 1382 1383 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1384 PRINT_ATTRf(bp_type, p_unsigned); 1385 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1386 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1387 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1388 PRINT_ATTRf(sample_regs_user, p_hex); 1389 PRINT_ATTRf(sample_stack_user, p_unsigned); 1390 PRINT_ATTRf(clockid, p_signed); 1391 PRINT_ATTRf(sample_regs_intr, p_hex); 1392 PRINT_ATTRf(aux_watermark, p_unsigned); 1393 PRINT_ATTRf(sample_max_stack, p_unsigned); 1394 1395 return ret; 1396 } 1397 1398 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1399 void *priv __attribute__((unused))) 1400 { 1401 return fprintf(fp, " %-32s %s\n", name, val); 1402 } 1403 1404 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1405 struct thread_map *threads) 1406 { 1407 int cpu, thread, nthreads; 1408 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1409 int pid = -1, err; 1410 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1411 1412 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1413 return -EINVAL; 1414 1415 if (evsel->system_wide) 1416 nthreads = 1; 1417 else 1418 nthreads = threads->nr; 1419 1420 if (evsel->fd == NULL && 1421 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1422 return -ENOMEM; 1423 1424 if (evsel->cgrp) { 1425 flags |= PERF_FLAG_PID_CGROUP; 1426 pid = evsel->cgrp->fd; 1427 } 1428 1429 fallback_missing_features: 1430 if (perf_missing_features.clockid_wrong) 1431 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1432 if (perf_missing_features.clockid) { 1433 evsel->attr.use_clockid = 0; 1434 evsel->attr.clockid = 0; 1435 } 1436 if (perf_missing_features.cloexec) 1437 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1438 if (perf_missing_features.mmap2) 1439 evsel->attr.mmap2 = 0; 1440 if (perf_missing_features.exclude_guest) 1441 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1442 if (perf_missing_features.lbr_flags) 1443 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1444 PERF_SAMPLE_BRANCH_NO_CYCLES); 1445 retry_sample_id: 1446 if (perf_missing_features.sample_id_all) 1447 evsel->attr.sample_id_all = 0; 1448 1449 if (verbose >= 2) { 1450 fprintf(stderr, "%.60s\n", graph_dotted_line); 1451 fprintf(stderr, "perf_event_attr:\n"); 1452 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1453 fprintf(stderr, "%.60s\n", graph_dotted_line); 1454 } 1455 1456 for (cpu = 0; cpu < cpus->nr; cpu++) { 1457 1458 for (thread = 0; thread < nthreads; thread++) { 1459 int group_fd; 1460 1461 if (!evsel->cgrp && !evsel->system_wide) 1462 pid = thread_map__pid(threads, thread); 1463 1464 group_fd = get_group_fd(evsel, cpu, thread); 1465 retry_open: 1466 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx\n", 1467 pid, cpus->map[cpu], group_fd, flags); 1468 1469 FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr, 1470 pid, 1471 cpus->map[cpu], 1472 group_fd, flags); 1473 if (FD(evsel, cpu, thread) < 0) { 1474 err = -errno; 1475 pr_debug2("sys_perf_event_open failed, error %d\n", 1476 err); 1477 goto try_fallback; 1478 } 1479 1480 if (evsel->bpf_fd >= 0) { 1481 int evt_fd = FD(evsel, cpu, thread); 1482 int bpf_fd = evsel->bpf_fd; 1483 1484 err = ioctl(evt_fd, 1485 PERF_EVENT_IOC_SET_BPF, 1486 bpf_fd); 1487 if (err && errno != EEXIST) { 1488 pr_err("failed to attach bpf fd %d: %s\n", 1489 bpf_fd, strerror(errno)); 1490 err = -EINVAL; 1491 goto out_close; 1492 } 1493 } 1494 1495 set_rlimit = NO_CHANGE; 1496 1497 /* 1498 * If we succeeded but had to kill clockid, fail and 1499 * have perf_evsel__open_strerror() print us a nice 1500 * error. 1501 */ 1502 if (perf_missing_features.clockid || 1503 perf_missing_features.clockid_wrong) { 1504 err = -EINVAL; 1505 goto out_close; 1506 } 1507 } 1508 } 1509 1510 return 0; 1511 1512 try_fallback: 1513 /* 1514 * perf stat needs between 5 and 22 fds per CPU. When we run out 1515 * of them try to increase the limits. 1516 */ 1517 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1518 struct rlimit l; 1519 int old_errno = errno; 1520 1521 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1522 if (set_rlimit == NO_CHANGE) 1523 l.rlim_cur = l.rlim_max; 1524 else { 1525 l.rlim_cur = l.rlim_max + 1000; 1526 l.rlim_max = l.rlim_cur; 1527 } 1528 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1529 set_rlimit++; 1530 errno = old_errno; 1531 goto retry_open; 1532 } 1533 } 1534 errno = old_errno; 1535 } 1536 1537 if (err != -EINVAL || cpu > 0 || thread > 0) 1538 goto out_close; 1539 1540 /* 1541 * Must probe features in the order they were added to the 1542 * perf_event_attr interface. 1543 */ 1544 if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 1545 perf_missing_features.write_backward = true; 1546 goto out_close; 1547 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1548 perf_missing_features.clockid_wrong = true; 1549 goto fallback_missing_features; 1550 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1551 perf_missing_features.clockid = true; 1552 goto fallback_missing_features; 1553 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1554 perf_missing_features.cloexec = true; 1555 goto fallback_missing_features; 1556 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1557 perf_missing_features.mmap2 = true; 1558 goto fallback_missing_features; 1559 } else if (!perf_missing_features.exclude_guest && 1560 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1561 perf_missing_features.exclude_guest = true; 1562 goto fallback_missing_features; 1563 } else if (!perf_missing_features.sample_id_all) { 1564 perf_missing_features.sample_id_all = true; 1565 goto retry_sample_id; 1566 } else if (!perf_missing_features.lbr_flags && 1567 (evsel->attr.branch_sample_type & 1568 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1569 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1570 perf_missing_features.lbr_flags = true; 1571 goto fallback_missing_features; 1572 } 1573 out_close: 1574 do { 1575 while (--thread >= 0) { 1576 close(FD(evsel, cpu, thread)); 1577 FD(evsel, cpu, thread) = -1; 1578 } 1579 thread = nthreads; 1580 } while (--cpu >= 0); 1581 return err; 1582 } 1583 1584 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads) 1585 { 1586 if (evsel->fd == NULL) 1587 return; 1588 1589 perf_evsel__close_fd(evsel, ncpus, nthreads); 1590 perf_evsel__free_fd(evsel); 1591 } 1592 1593 static struct { 1594 struct cpu_map map; 1595 int cpus[1]; 1596 } empty_cpu_map = { 1597 .map.nr = 1, 1598 .cpus = { -1, }, 1599 }; 1600 1601 static struct { 1602 struct thread_map map; 1603 int threads[1]; 1604 } empty_thread_map = { 1605 .map.nr = 1, 1606 .threads = { -1, }, 1607 }; 1608 1609 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1610 struct thread_map *threads) 1611 { 1612 if (cpus == NULL) { 1613 /* Work around old compiler warnings about strict aliasing */ 1614 cpus = &empty_cpu_map.map; 1615 } 1616 1617 if (threads == NULL) 1618 threads = &empty_thread_map.map; 1619 1620 return __perf_evsel__open(evsel, cpus, threads); 1621 } 1622 1623 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1624 struct cpu_map *cpus) 1625 { 1626 return __perf_evsel__open(evsel, cpus, &empty_thread_map.map); 1627 } 1628 1629 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1630 struct thread_map *threads) 1631 { 1632 return __perf_evsel__open(evsel, &empty_cpu_map.map, threads); 1633 } 1634 1635 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1636 const union perf_event *event, 1637 struct perf_sample *sample) 1638 { 1639 u64 type = evsel->attr.sample_type; 1640 const u64 *array = event->sample.array; 1641 bool swapped = evsel->needs_swap; 1642 union u64_swap u; 1643 1644 array += ((event->header.size - 1645 sizeof(event->header)) / sizeof(u64)) - 1; 1646 1647 if (type & PERF_SAMPLE_IDENTIFIER) { 1648 sample->id = *array; 1649 array--; 1650 } 1651 1652 if (type & PERF_SAMPLE_CPU) { 1653 u.val64 = *array; 1654 if (swapped) { 1655 /* undo swap of u64, then swap on individual u32s */ 1656 u.val64 = bswap_64(u.val64); 1657 u.val32[0] = bswap_32(u.val32[0]); 1658 } 1659 1660 sample->cpu = u.val32[0]; 1661 array--; 1662 } 1663 1664 if (type & PERF_SAMPLE_STREAM_ID) { 1665 sample->stream_id = *array; 1666 array--; 1667 } 1668 1669 if (type & PERF_SAMPLE_ID) { 1670 sample->id = *array; 1671 array--; 1672 } 1673 1674 if (type & PERF_SAMPLE_TIME) { 1675 sample->time = *array; 1676 array--; 1677 } 1678 1679 if (type & PERF_SAMPLE_TID) { 1680 u.val64 = *array; 1681 if (swapped) { 1682 /* undo swap of u64, then swap on individual u32s */ 1683 u.val64 = bswap_64(u.val64); 1684 u.val32[0] = bswap_32(u.val32[0]); 1685 u.val32[1] = bswap_32(u.val32[1]); 1686 } 1687 1688 sample->pid = u.val32[0]; 1689 sample->tid = u.val32[1]; 1690 array--; 1691 } 1692 1693 return 0; 1694 } 1695 1696 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 1697 u64 size) 1698 { 1699 return size > max_size || offset + size > endp; 1700 } 1701 1702 #define OVERFLOW_CHECK(offset, size, max_size) \ 1703 do { \ 1704 if (overflow(endp, (max_size), (offset), (size))) \ 1705 return -EFAULT; \ 1706 } while (0) 1707 1708 #define OVERFLOW_CHECK_u64(offset) \ 1709 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 1710 1711 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 1712 struct perf_sample *data) 1713 { 1714 u64 type = evsel->attr.sample_type; 1715 bool swapped = evsel->needs_swap; 1716 const u64 *array; 1717 u16 max_size = event->header.size; 1718 const void *endp = (void *)event + max_size; 1719 u64 sz; 1720 1721 /* 1722 * used for cross-endian analysis. See git commit 65014ab3 1723 * for why this goofiness is needed. 1724 */ 1725 union u64_swap u; 1726 1727 memset(data, 0, sizeof(*data)); 1728 data->cpu = data->pid = data->tid = -1; 1729 data->stream_id = data->id = data->time = -1ULL; 1730 data->period = evsel->attr.sample_period; 1731 data->weight = 0; 1732 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1733 1734 if (event->header.type != PERF_RECORD_SAMPLE) { 1735 if (!evsel->attr.sample_id_all) 1736 return 0; 1737 return perf_evsel__parse_id_sample(evsel, event, data); 1738 } 1739 1740 array = event->sample.array; 1741 1742 /* 1743 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 1744 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 1745 * check the format does not go past the end of the event. 1746 */ 1747 if (evsel->sample_size + sizeof(event->header) > event->header.size) 1748 return -EFAULT; 1749 1750 data->id = -1ULL; 1751 if (type & PERF_SAMPLE_IDENTIFIER) { 1752 data->id = *array; 1753 array++; 1754 } 1755 1756 if (type & PERF_SAMPLE_IP) { 1757 data->ip = *array; 1758 array++; 1759 } 1760 1761 if (type & PERF_SAMPLE_TID) { 1762 u.val64 = *array; 1763 if (swapped) { 1764 /* undo swap of u64, then swap on individual u32s */ 1765 u.val64 = bswap_64(u.val64); 1766 u.val32[0] = bswap_32(u.val32[0]); 1767 u.val32[1] = bswap_32(u.val32[1]); 1768 } 1769 1770 data->pid = u.val32[0]; 1771 data->tid = u.val32[1]; 1772 array++; 1773 } 1774 1775 if (type & PERF_SAMPLE_TIME) { 1776 data->time = *array; 1777 array++; 1778 } 1779 1780 data->addr = 0; 1781 if (type & PERF_SAMPLE_ADDR) { 1782 data->addr = *array; 1783 array++; 1784 } 1785 1786 if (type & PERF_SAMPLE_ID) { 1787 data->id = *array; 1788 array++; 1789 } 1790 1791 if (type & PERF_SAMPLE_STREAM_ID) { 1792 data->stream_id = *array; 1793 array++; 1794 } 1795 1796 if (type & PERF_SAMPLE_CPU) { 1797 1798 u.val64 = *array; 1799 if (swapped) { 1800 /* undo swap of u64, then swap on individual u32s */ 1801 u.val64 = bswap_64(u.val64); 1802 u.val32[0] = bswap_32(u.val32[0]); 1803 } 1804 1805 data->cpu = u.val32[0]; 1806 array++; 1807 } 1808 1809 if (type & PERF_SAMPLE_PERIOD) { 1810 data->period = *array; 1811 array++; 1812 } 1813 1814 if (type & PERF_SAMPLE_READ) { 1815 u64 read_format = evsel->attr.read_format; 1816 1817 OVERFLOW_CHECK_u64(array); 1818 if (read_format & PERF_FORMAT_GROUP) 1819 data->read.group.nr = *array; 1820 else 1821 data->read.one.value = *array; 1822 1823 array++; 1824 1825 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 1826 OVERFLOW_CHECK_u64(array); 1827 data->read.time_enabled = *array; 1828 array++; 1829 } 1830 1831 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 1832 OVERFLOW_CHECK_u64(array); 1833 data->read.time_running = *array; 1834 array++; 1835 } 1836 1837 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1838 if (read_format & PERF_FORMAT_GROUP) { 1839 const u64 max_group_nr = UINT64_MAX / 1840 sizeof(struct sample_read_value); 1841 1842 if (data->read.group.nr > max_group_nr) 1843 return -EFAULT; 1844 sz = data->read.group.nr * 1845 sizeof(struct sample_read_value); 1846 OVERFLOW_CHECK(array, sz, max_size); 1847 data->read.group.values = 1848 (struct sample_read_value *)array; 1849 array = (void *)array + sz; 1850 } else { 1851 OVERFLOW_CHECK_u64(array); 1852 data->read.one.id = *array; 1853 array++; 1854 } 1855 } 1856 1857 if (type & PERF_SAMPLE_CALLCHAIN) { 1858 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 1859 1860 OVERFLOW_CHECK_u64(array); 1861 data->callchain = (struct ip_callchain *)array++; 1862 if (data->callchain->nr > max_callchain_nr) 1863 return -EFAULT; 1864 sz = data->callchain->nr * sizeof(u64); 1865 OVERFLOW_CHECK(array, sz, max_size); 1866 array = (void *)array + sz; 1867 } 1868 1869 if (type & PERF_SAMPLE_RAW) { 1870 OVERFLOW_CHECK_u64(array); 1871 u.val64 = *array; 1872 if (WARN_ONCE(swapped, 1873 "Endianness of raw data not corrected!\n")) { 1874 /* undo swap of u64, then swap on individual u32s */ 1875 u.val64 = bswap_64(u.val64); 1876 u.val32[0] = bswap_32(u.val32[0]); 1877 u.val32[1] = bswap_32(u.val32[1]); 1878 } 1879 data->raw_size = u.val32[0]; 1880 array = (void *)array + sizeof(u32); 1881 1882 OVERFLOW_CHECK(array, data->raw_size, max_size); 1883 data->raw_data = (void *)array; 1884 array = (void *)array + data->raw_size; 1885 } 1886 1887 if (type & PERF_SAMPLE_BRANCH_STACK) { 1888 const u64 max_branch_nr = UINT64_MAX / 1889 sizeof(struct branch_entry); 1890 1891 OVERFLOW_CHECK_u64(array); 1892 data->branch_stack = (struct branch_stack *)array++; 1893 1894 if (data->branch_stack->nr > max_branch_nr) 1895 return -EFAULT; 1896 sz = data->branch_stack->nr * sizeof(struct branch_entry); 1897 OVERFLOW_CHECK(array, sz, max_size); 1898 array = (void *)array + sz; 1899 } 1900 1901 if (type & PERF_SAMPLE_REGS_USER) { 1902 OVERFLOW_CHECK_u64(array); 1903 data->user_regs.abi = *array; 1904 array++; 1905 1906 if (data->user_regs.abi) { 1907 u64 mask = evsel->attr.sample_regs_user; 1908 1909 sz = hweight_long(mask) * sizeof(u64); 1910 OVERFLOW_CHECK(array, sz, max_size); 1911 data->user_regs.mask = mask; 1912 data->user_regs.regs = (u64 *)array; 1913 array = (void *)array + sz; 1914 } 1915 } 1916 1917 if (type & PERF_SAMPLE_STACK_USER) { 1918 OVERFLOW_CHECK_u64(array); 1919 sz = *array++; 1920 1921 data->user_stack.offset = ((char *)(array - 1) 1922 - (char *) event); 1923 1924 if (!sz) { 1925 data->user_stack.size = 0; 1926 } else { 1927 OVERFLOW_CHECK(array, sz, max_size); 1928 data->user_stack.data = (char *)array; 1929 array = (void *)array + sz; 1930 OVERFLOW_CHECK_u64(array); 1931 data->user_stack.size = *array++; 1932 if (WARN_ONCE(data->user_stack.size > sz, 1933 "user stack dump failure\n")) 1934 return -EFAULT; 1935 } 1936 } 1937 1938 data->weight = 0; 1939 if (type & PERF_SAMPLE_WEIGHT) { 1940 OVERFLOW_CHECK_u64(array); 1941 data->weight = *array; 1942 array++; 1943 } 1944 1945 data->data_src = PERF_MEM_DATA_SRC_NONE; 1946 if (type & PERF_SAMPLE_DATA_SRC) { 1947 OVERFLOW_CHECK_u64(array); 1948 data->data_src = *array; 1949 array++; 1950 } 1951 1952 data->transaction = 0; 1953 if (type & PERF_SAMPLE_TRANSACTION) { 1954 OVERFLOW_CHECK_u64(array); 1955 data->transaction = *array; 1956 array++; 1957 } 1958 1959 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 1960 if (type & PERF_SAMPLE_REGS_INTR) { 1961 OVERFLOW_CHECK_u64(array); 1962 data->intr_regs.abi = *array; 1963 array++; 1964 1965 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 1966 u64 mask = evsel->attr.sample_regs_intr; 1967 1968 sz = hweight_long(mask) * sizeof(u64); 1969 OVERFLOW_CHECK(array, sz, max_size); 1970 data->intr_regs.mask = mask; 1971 data->intr_regs.regs = (u64 *)array; 1972 array = (void *)array + sz; 1973 } 1974 } 1975 1976 return 0; 1977 } 1978 1979 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 1980 u64 read_format) 1981 { 1982 size_t sz, result = sizeof(struct sample_event); 1983 1984 if (type & PERF_SAMPLE_IDENTIFIER) 1985 result += sizeof(u64); 1986 1987 if (type & PERF_SAMPLE_IP) 1988 result += sizeof(u64); 1989 1990 if (type & PERF_SAMPLE_TID) 1991 result += sizeof(u64); 1992 1993 if (type & PERF_SAMPLE_TIME) 1994 result += sizeof(u64); 1995 1996 if (type & PERF_SAMPLE_ADDR) 1997 result += sizeof(u64); 1998 1999 if (type & PERF_SAMPLE_ID) 2000 result += sizeof(u64); 2001 2002 if (type & PERF_SAMPLE_STREAM_ID) 2003 result += sizeof(u64); 2004 2005 if (type & PERF_SAMPLE_CPU) 2006 result += sizeof(u64); 2007 2008 if (type & PERF_SAMPLE_PERIOD) 2009 result += sizeof(u64); 2010 2011 if (type & PERF_SAMPLE_READ) { 2012 result += sizeof(u64); 2013 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2014 result += sizeof(u64); 2015 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2016 result += sizeof(u64); 2017 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2018 if (read_format & PERF_FORMAT_GROUP) { 2019 sz = sample->read.group.nr * 2020 sizeof(struct sample_read_value); 2021 result += sz; 2022 } else { 2023 result += sizeof(u64); 2024 } 2025 } 2026 2027 if (type & PERF_SAMPLE_CALLCHAIN) { 2028 sz = (sample->callchain->nr + 1) * sizeof(u64); 2029 result += sz; 2030 } 2031 2032 if (type & PERF_SAMPLE_RAW) { 2033 result += sizeof(u32); 2034 result += sample->raw_size; 2035 } 2036 2037 if (type & PERF_SAMPLE_BRANCH_STACK) { 2038 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2039 sz += sizeof(u64); 2040 result += sz; 2041 } 2042 2043 if (type & PERF_SAMPLE_REGS_USER) { 2044 if (sample->user_regs.abi) { 2045 result += sizeof(u64); 2046 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2047 result += sz; 2048 } else { 2049 result += sizeof(u64); 2050 } 2051 } 2052 2053 if (type & PERF_SAMPLE_STACK_USER) { 2054 sz = sample->user_stack.size; 2055 result += sizeof(u64); 2056 if (sz) { 2057 result += sz; 2058 result += sizeof(u64); 2059 } 2060 } 2061 2062 if (type & PERF_SAMPLE_WEIGHT) 2063 result += sizeof(u64); 2064 2065 if (type & PERF_SAMPLE_DATA_SRC) 2066 result += sizeof(u64); 2067 2068 if (type & PERF_SAMPLE_TRANSACTION) 2069 result += sizeof(u64); 2070 2071 if (type & PERF_SAMPLE_REGS_INTR) { 2072 if (sample->intr_regs.abi) { 2073 result += sizeof(u64); 2074 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2075 result += sz; 2076 } else { 2077 result += sizeof(u64); 2078 } 2079 } 2080 2081 return result; 2082 } 2083 2084 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2085 u64 read_format, 2086 const struct perf_sample *sample, 2087 bool swapped) 2088 { 2089 u64 *array; 2090 size_t sz; 2091 /* 2092 * used for cross-endian analysis. See git commit 65014ab3 2093 * for why this goofiness is needed. 2094 */ 2095 union u64_swap u; 2096 2097 array = event->sample.array; 2098 2099 if (type & PERF_SAMPLE_IDENTIFIER) { 2100 *array = sample->id; 2101 array++; 2102 } 2103 2104 if (type & PERF_SAMPLE_IP) { 2105 *array = sample->ip; 2106 array++; 2107 } 2108 2109 if (type & PERF_SAMPLE_TID) { 2110 u.val32[0] = sample->pid; 2111 u.val32[1] = sample->tid; 2112 if (swapped) { 2113 /* 2114 * Inverse of what is done in perf_evsel__parse_sample 2115 */ 2116 u.val32[0] = bswap_32(u.val32[0]); 2117 u.val32[1] = bswap_32(u.val32[1]); 2118 u.val64 = bswap_64(u.val64); 2119 } 2120 2121 *array = u.val64; 2122 array++; 2123 } 2124 2125 if (type & PERF_SAMPLE_TIME) { 2126 *array = sample->time; 2127 array++; 2128 } 2129 2130 if (type & PERF_SAMPLE_ADDR) { 2131 *array = sample->addr; 2132 array++; 2133 } 2134 2135 if (type & PERF_SAMPLE_ID) { 2136 *array = sample->id; 2137 array++; 2138 } 2139 2140 if (type & PERF_SAMPLE_STREAM_ID) { 2141 *array = sample->stream_id; 2142 array++; 2143 } 2144 2145 if (type & PERF_SAMPLE_CPU) { 2146 u.val32[0] = sample->cpu; 2147 if (swapped) { 2148 /* 2149 * Inverse of what is done in perf_evsel__parse_sample 2150 */ 2151 u.val32[0] = bswap_32(u.val32[0]); 2152 u.val64 = bswap_64(u.val64); 2153 } 2154 *array = u.val64; 2155 array++; 2156 } 2157 2158 if (type & PERF_SAMPLE_PERIOD) { 2159 *array = sample->period; 2160 array++; 2161 } 2162 2163 if (type & PERF_SAMPLE_READ) { 2164 if (read_format & PERF_FORMAT_GROUP) 2165 *array = sample->read.group.nr; 2166 else 2167 *array = sample->read.one.value; 2168 array++; 2169 2170 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2171 *array = sample->read.time_enabled; 2172 array++; 2173 } 2174 2175 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2176 *array = sample->read.time_running; 2177 array++; 2178 } 2179 2180 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2181 if (read_format & PERF_FORMAT_GROUP) { 2182 sz = sample->read.group.nr * 2183 sizeof(struct sample_read_value); 2184 memcpy(array, sample->read.group.values, sz); 2185 array = (void *)array + sz; 2186 } else { 2187 *array = sample->read.one.id; 2188 array++; 2189 } 2190 } 2191 2192 if (type & PERF_SAMPLE_CALLCHAIN) { 2193 sz = (sample->callchain->nr + 1) * sizeof(u64); 2194 memcpy(array, sample->callchain, sz); 2195 array = (void *)array + sz; 2196 } 2197 2198 if (type & PERF_SAMPLE_RAW) { 2199 u.val32[0] = sample->raw_size; 2200 if (WARN_ONCE(swapped, 2201 "Endianness of raw data not corrected!\n")) { 2202 /* 2203 * Inverse of what is done in perf_evsel__parse_sample 2204 */ 2205 u.val32[0] = bswap_32(u.val32[0]); 2206 u.val32[1] = bswap_32(u.val32[1]); 2207 u.val64 = bswap_64(u.val64); 2208 } 2209 *array = u.val64; 2210 array = (void *)array + sizeof(u32); 2211 2212 memcpy(array, sample->raw_data, sample->raw_size); 2213 array = (void *)array + sample->raw_size; 2214 } 2215 2216 if (type & PERF_SAMPLE_BRANCH_STACK) { 2217 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2218 sz += sizeof(u64); 2219 memcpy(array, sample->branch_stack, sz); 2220 array = (void *)array + sz; 2221 } 2222 2223 if (type & PERF_SAMPLE_REGS_USER) { 2224 if (sample->user_regs.abi) { 2225 *array++ = sample->user_regs.abi; 2226 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2227 memcpy(array, sample->user_regs.regs, sz); 2228 array = (void *)array + sz; 2229 } else { 2230 *array++ = 0; 2231 } 2232 } 2233 2234 if (type & PERF_SAMPLE_STACK_USER) { 2235 sz = sample->user_stack.size; 2236 *array++ = sz; 2237 if (sz) { 2238 memcpy(array, sample->user_stack.data, sz); 2239 array = (void *)array + sz; 2240 *array++ = sz; 2241 } 2242 } 2243 2244 if (type & PERF_SAMPLE_WEIGHT) { 2245 *array = sample->weight; 2246 array++; 2247 } 2248 2249 if (type & PERF_SAMPLE_DATA_SRC) { 2250 *array = sample->data_src; 2251 array++; 2252 } 2253 2254 if (type & PERF_SAMPLE_TRANSACTION) { 2255 *array = sample->transaction; 2256 array++; 2257 } 2258 2259 if (type & PERF_SAMPLE_REGS_INTR) { 2260 if (sample->intr_regs.abi) { 2261 *array++ = sample->intr_regs.abi; 2262 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2263 memcpy(array, sample->intr_regs.regs, sz); 2264 array = (void *)array + sz; 2265 } else { 2266 *array++ = 0; 2267 } 2268 } 2269 2270 return 0; 2271 } 2272 2273 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2274 { 2275 return pevent_find_field(evsel->tp_format, name); 2276 } 2277 2278 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2279 const char *name) 2280 { 2281 struct format_field *field = perf_evsel__field(evsel, name); 2282 int offset; 2283 2284 if (!field) 2285 return NULL; 2286 2287 offset = field->offset; 2288 2289 if (field->flags & FIELD_IS_DYNAMIC) { 2290 offset = *(int *)(sample->raw_data + field->offset); 2291 offset &= 0xffff; 2292 } 2293 2294 return sample->raw_data + offset; 2295 } 2296 2297 u64 format_field__intval(struct format_field *field, struct perf_sample *sample, 2298 bool needs_swap) 2299 { 2300 u64 value; 2301 void *ptr = sample->raw_data + field->offset; 2302 2303 switch (field->size) { 2304 case 1: 2305 return *(u8 *)ptr; 2306 case 2: 2307 value = *(u16 *)ptr; 2308 break; 2309 case 4: 2310 value = *(u32 *)ptr; 2311 break; 2312 case 8: 2313 memcpy(&value, ptr, sizeof(u64)); 2314 break; 2315 default: 2316 return 0; 2317 } 2318 2319 if (!needs_swap) 2320 return value; 2321 2322 switch (field->size) { 2323 case 2: 2324 return bswap_16(value); 2325 case 4: 2326 return bswap_32(value); 2327 case 8: 2328 return bswap_64(value); 2329 default: 2330 return 0; 2331 } 2332 2333 return 0; 2334 } 2335 2336 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2337 const char *name) 2338 { 2339 struct format_field *field = perf_evsel__field(evsel, name); 2340 2341 if (!field) 2342 return 0; 2343 2344 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2345 } 2346 2347 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2348 char *msg, size_t msgsize) 2349 { 2350 int paranoid; 2351 2352 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2353 evsel->attr.type == PERF_TYPE_HARDWARE && 2354 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2355 /* 2356 * If it's cycles then fall back to hrtimer based 2357 * cpu-clock-tick sw counter, which is always available even if 2358 * no PMU support. 2359 * 2360 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2361 * b0a873e). 2362 */ 2363 scnprintf(msg, msgsize, "%s", 2364 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2365 2366 evsel->attr.type = PERF_TYPE_SOFTWARE; 2367 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2368 2369 zfree(&evsel->name); 2370 return true; 2371 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2372 (paranoid = perf_event_paranoid()) > 1) { 2373 const char *name = perf_evsel__name(evsel); 2374 char *new_name; 2375 2376 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0) 2377 return false; 2378 2379 if (evsel->name) 2380 free(evsel->name); 2381 evsel->name = new_name; 2382 scnprintf(msg, msgsize, 2383 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2384 evsel->attr.exclude_kernel = 1; 2385 2386 return true; 2387 } 2388 2389 return false; 2390 } 2391 2392 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2393 int err, char *msg, size_t size) 2394 { 2395 char sbuf[STRERR_BUFSIZE]; 2396 2397 switch (err) { 2398 case EPERM: 2399 case EACCES: 2400 return scnprintf(msg, size, 2401 "You may not have permission to collect %sstats.\n\n" 2402 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2403 "which controls use of the performance events system by\n" 2404 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2405 "The current value is %d:\n\n" 2406 " -1: Allow use of (almost) all events by all users\n" 2407 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n" 2408 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2409 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN", 2410 target->system_wide ? "system-wide " : "", 2411 perf_event_paranoid()); 2412 case ENOENT: 2413 return scnprintf(msg, size, "The %s event is not supported.", 2414 perf_evsel__name(evsel)); 2415 case EMFILE: 2416 return scnprintf(msg, size, "%s", 2417 "Too many events are opened.\n" 2418 "Probably the maximum number of open file descriptors has been reached.\n" 2419 "Hint: Try again after reducing the number of events.\n" 2420 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2421 case ENOMEM: 2422 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 && 2423 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2424 return scnprintf(msg, size, 2425 "Not enough memory to setup event with callchain.\n" 2426 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2427 "Hint: Current value: %d", sysctl_perf_event_max_stack); 2428 break; 2429 case ENODEV: 2430 if (target->cpu_list) 2431 return scnprintf(msg, size, "%s", 2432 "No such device - did you specify an out-of-range profile CPU?"); 2433 break; 2434 case EOPNOTSUPP: 2435 if (evsel->attr.sample_period != 0) 2436 return scnprintf(msg, size, "%s", 2437 "PMU Hardware doesn't support sampling/overflow-interrupts."); 2438 if (evsel->attr.precise_ip) 2439 return scnprintf(msg, size, "%s", 2440 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2441 #if defined(__i386__) || defined(__x86_64__) 2442 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2443 return scnprintf(msg, size, "%s", 2444 "No hardware sampling interrupt available.\n" 2445 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); 2446 #endif 2447 break; 2448 case EBUSY: 2449 if (find_process("oprofiled")) 2450 return scnprintf(msg, size, 2451 "The PMU counters are busy/taken by another profiler.\n" 2452 "We found oprofile daemon running, please stop it and try again."); 2453 break; 2454 case EINVAL: 2455 if (evsel->attr.write_backward && perf_missing_features.write_backward) 2456 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2457 if (perf_missing_features.clockid) 2458 return scnprintf(msg, size, "clockid feature not supported."); 2459 if (perf_missing_features.clockid_wrong) 2460 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2461 break; 2462 default: 2463 break; 2464 } 2465 2466 return scnprintf(msg, size, 2467 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2468 "/bin/dmesg may provide additional information.\n" 2469 "No CONFIG_PERF_EVENTS=y kernel support configured?", 2470 err, str_error_r(err, sbuf, sizeof(sbuf)), 2471 perf_evsel__name(evsel)); 2472 } 2473 2474 char *perf_evsel__env_arch(struct perf_evsel *evsel) 2475 { 2476 if (evsel && evsel->evlist && evsel->evlist->env) 2477 return evsel->evlist->env->arch; 2478 return NULL; 2479 } 2480