1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <errno.h> 12 #include <inttypes.h> 13 #include <linux/bitops.h> 14 #include <api/fs/fs.h> 15 #include <api/fs/tracing_path.h> 16 #include <traceevent/event-parse.h> 17 #include <linux/hw_breakpoint.h> 18 #include <linux/perf_event.h> 19 #include <linux/compiler.h> 20 #include <linux/err.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include "asm/bug.h" 26 #include "callchain.h" 27 #include "cgroup.h" 28 #include "event.h" 29 #include "evsel.h" 30 #include "evlist.h" 31 #include "util.h" 32 #include "cpumap.h" 33 #include "thread_map.h" 34 #include "target.h" 35 #include "perf_regs.h" 36 #include "debug.h" 37 #include "trace-event.h" 38 #include "stat.h" 39 #include "memswap.h" 40 #include "util/parse-branch-options.h" 41 42 #include "sane_ctype.h" 43 44 struct perf_missing_features perf_missing_features; 45 46 static clockid_t clockid; 47 48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 49 { 50 return 0; 51 } 52 53 void __weak test_attr__ready(void) { } 54 55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 56 { 57 } 58 59 static struct { 60 size_t size; 61 int (*init)(struct perf_evsel *evsel); 62 void (*fini)(struct perf_evsel *evsel); 63 } perf_evsel__object = { 64 .size = sizeof(struct perf_evsel), 65 .init = perf_evsel__no_extra_init, 66 .fini = perf_evsel__no_extra_fini, 67 }; 68 69 int perf_evsel__object_config(size_t object_size, 70 int (*init)(struct perf_evsel *evsel), 71 void (*fini)(struct perf_evsel *evsel)) 72 { 73 74 if (object_size == 0) 75 goto set_methods; 76 77 if (perf_evsel__object.size > object_size) 78 return -EINVAL; 79 80 perf_evsel__object.size = object_size; 81 82 set_methods: 83 if (init != NULL) 84 perf_evsel__object.init = init; 85 86 if (fini != NULL) 87 perf_evsel__object.fini = fini; 88 89 return 0; 90 } 91 92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 93 94 int __perf_evsel__sample_size(u64 sample_type) 95 { 96 u64 mask = sample_type & PERF_SAMPLE_MASK; 97 int size = 0; 98 int i; 99 100 for (i = 0; i < 64; i++) { 101 if (mask & (1ULL << i)) 102 size++; 103 } 104 105 size *= sizeof(u64); 106 107 return size; 108 } 109 110 /** 111 * __perf_evsel__calc_id_pos - calculate id_pos. 112 * @sample_type: sample type 113 * 114 * This function returns the position of the event id (PERF_SAMPLE_ID or 115 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 116 * sample_event. 117 */ 118 static int __perf_evsel__calc_id_pos(u64 sample_type) 119 { 120 int idx = 0; 121 122 if (sample_type & PERF_SAMPLE_IDENTIFIER) 123 return 0; 124 125 if (!(sample_type & PERF_SAMPLE_ID)) 126 return -1; 127 128 if (sample_type & PERF_SAMPLE_IP) 129 idx += 1; 130 131 if (sample_type & PERF_SAMPLE_TID) 132 idx += 1; 133 134 if (sample_type & PERF_SAMPLE_TIME) 135 idx += 1; 136 137 if (sample_type & PERF_SAMPLE_ADDR) 138 idx += 1; 139 140 return idx; 141 } 142 143 /** 144 * __perf_evsel__calc_is_pos - calculate is_pos. 145 * @sample_type: sample type 146 * 147 * This function returns the position (counting backwards) of the event id 148 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 149 * sample_id_all is used there is an id sample appended to non-sample events. 150 */ 151 static int __perf_evsel__calc_is_pos(u64 sample_type) 152 { 153 int idx = 1; 154 155 if (sample_type & PERF_SAMPLE_IDENTIFIER) 156 return 1; 157 158 if (!(sample_type & PERF_SAMPLE_ID)) 159 return -1; 160 161 if (sample_type & PERF_SAMPLE_CPU) 162 idx += 1; 163 164 if (sample_type & PERF_SAMPLE_STREAM_ID) 165 idx += 1; 166 167 return idx; 168 } 169 170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 171 { 172 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 173 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 174 } 175 176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 177 enum perf_event_sample_format bit) 178 { 179 if (!(evsel->attr.sample_type & bit)) { 180 evsel->attr.sample_type |= bit; 181 evsel->sample_size += sizeof(u64); 182 perf_evsel__calc_id_pos(evsel); 183 } 184 } 185 186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 187 enum perf_event_sample_format bit) 188 { 189 if (evsel->attr.sample_type & bit) { 190 evsel->attr.sample_type &= ~bit; 191 evsel->sample_size -= sizeof(u64); 192 perf_evsel__calc_id_pos(evsel); 193 } 194 } 195 196 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 197 bool can_sample_identifier) 198 { 199 if (can_sample_identifier) { 200 perf_evsel__reset_sample_bit(evsel, ID); 201 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 202 } else { 203 perf_evsel__set_sample_bit(evsel, ID); 204 } 205 evsel->attr.read_format |= PERF_FORMAT_ID; 206 } 207 208 /** 209 * perf_evsel__is_function_event - Return whether given evsel is a function 210 * trace event 211 * 212 * @evsel - evsel selector to be tested 213 * 214 * Return %true if event is function trace event 215 */ 216 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 217 { 218 #define FUNCTION_EVENT "ftrace:function" 219 220 return evsel->name && 221 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 222 223 #undef FUNCTION_EVENT 224 } 225 226 void perf_evsel__init(struct perf_evsel *evsel, 227 struct perf_event_attr *attr, int idx) 228 { 229 evsel->idx = idx; 230 evsel->tracking = !idx; 231 evsel->attr = *attr; 232 evsel->leader = evsel; 233 evsel->unit = ""; 234 evsel->scale = 1.0; 235 evsel->max_events = ULONG_MAX; 236 evsel->evlist = NULL; 237 evsel->bpf_fd = -1; 238 INIT_LIST_HEAD(&evsel->node); 239 INIT_LIST_HEAD(&evsel->config_terms); 240 perf_evsel__object.init(evsel); 241 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 242 perf_evsel__calc_id_pos(evsel); 243 evsel->cmdline_group_boundary = false; 244 evsel->metric_expr = NULL; 245 evsel->metric_name = NULL; 246 evsel->metric_events = NULL; 247 evsel->collect_stat = false; 248 evsel->pmu_name = NULL; 249 } 250 251 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 252 { 253 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 254 255 if (!evsel) 256 return NULL; 257 perf_evsel__init(evsel, attr, idx); 258 259 if (perf_evsel__is_bpf_output(evsel)) { 260 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 261 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 262 evsel->attr.sample_period = 1; 263 } 264 265 if (perf_evsel__is_clock(evsel)) { 266 /* 267 * The evsel->unit points to static alias->unit 268 * so it's ok to use static string in here. 269 */ 270 static const char *unit = "msec"; 271 272 evsel->unit = unit; 273 evsel->scale = 1e-6; 274 } 275 276 return evsel; 277 } 278 279 static bool perf_event_can_profile_kernel(void) 280 { 281 return geteuid() == 0 || perf_event_paranoid() == -1; 282 } 283 284 struct perf_evsel *perf_evsel__new_cycles(bool precise) 285 { 286 struct perf_event_attr attr = { 287 .type = PERF_TYPE_HARDWARE, 288 .config = PERF_COUNT_HW_CPU_CYCLES, 289 .exclude_kernel = !perf_event_can_profile_kernel(), 290 }; 291 struct perf_evsel *evsel; 292 293 event_attr_init(&attr); 294 295 if (!precise) 296 goto new_event; 297 298 perf_event_attr__set_max_precise_ip(&attr); 299 /* 300 * Now let the usual logic to set up the perf_event_attr defaults 301 * to kick in when we return and before perf_evsel__open() is called. 302 */ 303 new_event: 304 evsel = perf_evsel__new(&attr); 305 if (evsel == NULL) 306 goto out; 307 308 /* use asprintf() because free(evsel) assumes name is allocated */ 309 if (asprintf(&evsel->name, "cycles%s%s%.*s", 310 (attr.precise_ip || attr.exclude_kernel) ? ":" : "", 311 attr.exclude_kernel ? "u" : "", 312 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) 313 goto error_free; 314 out: 315 return evsel; 316 error_free: 317 perf_evsel__delete(evsel); 318 evsel = NULL; 319 goto out; 320 } 321 322 /* 323 * Returns pointer with encoded error via <linux/err.h> interface. 324 */ 325 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 326 { 327 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 328 int err = -ENOMEM; 329 330 if (evsel == NULL) { 331 goto out_err; 332 } else { 333 struct perf_event_attr attr = { 334 .type = PERF_TYPE_TRACEPOINT, 335 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 336 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 337 }; 338 339 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 340 goto out_free; 341 342 evsel->tp_format = trace_event__tp_format(sys, name); 343 if (IS_ERR(evsel->tp_format)) { 344 err = PTR_ERR(evsel->tp_format); 345 goto out_free; 346 } 347 348 event_attr_init(&attr); 349 attr.config = evsel->tp_format->id; 350 attr.sample_period = 1; 351 perf_evsel__init(evsel, &attr, idx); 352 } 353 354 return evsel; 355 356 out_free: 357 zfree(&evsel->name); 358 free(evsel); 359 out_err: 360 return ERR_PTR(err); 361 } 362 363 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 364 "cycles", 365 "instructions", 366 "cache-references", 367 "cache-misses", 368 "branches", 369 "branch-misses", 370 "bus-cycles", 371 "stalled-cycles-frontend", 372 "stalled-cycles-backend", 373 "ref-cycles", 374 }; 375 376 static const char *__perf_evsel__hw_name(u64 config) 377 { 378 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 379 return perf_evsel__hw_names[config]; 380 381 return "unknown-hardware"; 382 } 383 384 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 385 { 386 int colon = 0, r = 0; 387 struct perf_event_attr *attr = &evsel->attr; 388 bool exclude_guest_default = false; 389 390 #define MOD_PRINT(context, mod) do { \ 391 if (!attr->exclude_##context) { \ 392 if (!colon) colon = ++r; \ 393 r += scnprintf(bf + r, size - r, "%c", mod); \ 394 } } while(0) 395 396 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 397 MOD_PRINT(kernel, 'k'); 398 MOD_PRINT(user, 'u'); 399 MOD_PRINT(hv, 'h'); 400 exclude_guest_default = true; 401 } 402 403 if (attr->precise_ip) { 404 if (!colon) 405 colon = ++r; 406 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 407 exclude_guest_default = true; 408 } 409 410 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 411 MOD_PRINT(host, 'H'); 412 MOD_PRINT(guest, 'G'); 413 } 414 #undef MOD_PRINT 415 if (colon) 416 bf[colon - 1] = ':'; 417 return r; 418 } 419 420 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 421 { 422 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 423 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 424 } 425 426 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 427 "cpu-clock", 428 "task-clock", 429 "page-faults", 430 "context-switches", 431 "cpu-migrations", 432 "minor-faults", 433 "major-faults", 434 "alignment-faults", 435 "emulation-faults", 436 "dummy", 437 }; 438 439 static const char *__perf_evsel__sw_name(u64 config) 440 { 441 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 442 return perf_evsel__sw_names[config]; 443 return "unknown-software"; 444 } 445 446 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 447 { 448 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 449 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 450 } 451 452 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 453 { 454 int r; 455 456 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 457 458 if (type & HW_BREAKPOINT_R) 459 r += scnprintf(bf + r, size - r, "r"); 460 461 if (type & HW_BREAKPOINT_W) 462 r += scnprintf(bf + r, size - r, "w"); 463 464 if (type & HW_BREAKPOINT_X) 465 r += scnprintf(bf + r, size - r, "x"); 466 467 return r; 468 } 469 470 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 471 { 472 struct perf_event_attr *attr = &evsel->attr; 473 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 474 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 475 } 476 477 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 478 [PERF_EVSEL__MAX_ALIASES] = { 479 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 480 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 481 { "LLC", "L2", }, 482 { "dTLB", "d-tlb", "Data-TLB", }, 483 { "iTLB", "i-tlb", "Instruction-TLB", }, 484 { "branch", "branches", "bpu", "btb", "bpc", }, 485 { "node", }, 486 }; 487 488 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 489 [PERF_EVSEL__MAX_ALIASES] = { 490 { "load", "loads", "read", }, 491 { "store", "stores", "write", }, 492 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 493 }; 494 495 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 496 [PERF_EVSEL__MAX_ALIASES] = { 497 { "refs", "Reference", "ops", "access", }, 498 { "misses", "miss", }, 499 }; 500 501 #define C(x) PERF_COUNT_HW_CACHE_##x 502 #define CACHE_READ (1 << C(OP_READ)) 503 #define CACHE_WRITE (1 << C(OP_WRITE)) 504 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 505 #define COP(x) (1 << x) 506 507 /* 508 * cache operartion stat 509 * L1I : Read and prefetch only 510 * ITLB and BPU : Read-only 511 */ 512 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 513 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 514 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 515 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 516 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 517 [C(ITLB)] = (CACHE_READ), 518 [C(BPU)] = (CACHE_READ), 519 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 520 }; 521 522 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 523 { 524 if (perf_evsel__hw_cache_stat[type] & COP(op)) 525 return true; /* valid */ 526 else 527 return false; /* invalid */ 528 } 529 530 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 531 char *bf, size_t size) 532 { 533 if (result) { 534 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 535 perf_evsel__hw_cache_op[op][0], 536 perf_evsel__hw_cache_result[result][0]); 537 } 538 539 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 540 perf_evsel__hw_cache_op[op][1]); 541 } 542 543 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 544 { 545 u8 op, result, type = (config >> 0) & 0xff; 546 const char *err = "unknown-ext-hardware-cache-type"; 547 548 if (type >= PERF_COUNT_HW_CACHE_MAX) 549 goto out_err; 550 551 op = (config >> 8) & 0xff; 552 err = "unknown-ext-hardware-cache-op"; 553 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 554 goto out_err; 555 556 result = (config >> 16) & 0xff; 557 err = "unknown-ext-hardware-cache-result"; 558 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 559 goto out_err; 560 561 err = "invalid-cache"; 562 if (!perf_evsel__is_cache_op_valid(type, op)) 563 goto out_err; 564 565 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 566 out_err: 567 return scnprintf(bf, size, "%s", err); 568 } 569 570 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 571 { 572 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 573 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 574 } 575 576 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 577 { 578 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 579 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 580 } 581 582 const char *perf_evsel__name(struct perf_evsel *evsel) 583 { 584 char bf[128]; 585 586 if (evsel->name) 587 return evsel->name; 588 589 switch (evsel->attr.type) { 590 case PERF_TYPE_RAW: 591 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 592 break; 593 594 case PERF_TYPE_HARDWARE: 595 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 596 break; 597 598 case PERF_TYPE_HW_CACHE: 599 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 600 break; 601 602 case PERF_TYPE_SOFTWARE: 603 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 604 break; 605 606 case PERF_TYPE_TRACEPOINT: 607 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 608 break; 609 610 case PERF_TYPE_BREAKPOINT: 611 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 612 break; 613 614 default: 615 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 616 evsel->attr.type); 617 break; 618 } 619 620 evsel->name = strdup(bf); 621 622 return evsel->name ?: "unknown"; 623 } 624 625 const char *perf_evsel__group_name(struct perf_evsel *evsel) 626 { 627 return evsel->group_name ?: "anon group"; 628 } 629 630 /* 631 * Returns the group details for the specified leader, 632 * with following rules. 633 * 634 * For record -e '{cycles,instructions}' 635 * 'anon group { cycles:u, instructions:u }' 636 * 637 * For record -e 'cycles,instructions' and report --group 638 * 'cycles:u, instructions:u' 639 */ 640 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 641 { 642 int ret = 0; 643 struct perf_evsel *pos; 644 const char *group_name = perf_evsel__group_name(evsel); 645 646 if (!evsel->forced_leader) 647 ret = scnprintf(buf, size, "%s { ", group_name); 648 649 ret += scnprintf(buf + ret, size - ret, "%s", 650 perf_evsel__name(evsel)); 651 652 for_each_group_member(pos, evsel) 653 ret += scnprintf(buf + ret, size - ret, ", %s", 654 perf_evsel__name(pos)); 655 656 if (!evsel->forced_leader) 657 ret += scnprintf(buf + ret, size - ret, " }"); 658 659 return ret; 660 } 661 662 static void __perf_evsel__config_callchain(struct perf_evsel *evsel, 663 struct record_opts *opts, 664 struct callchain_param *param) 665 { 666 bool function = perf_evsel__is_function_event(evsel); 667 struct perf_event_attr *attr = &evsel->attr; 668 669 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 670 671 attr->sample_max_stack = param->max_stack; 672 673 if (param->record_mode == CALLCHAIN_LBR) { 674 if (!opts->branch_stack) { 675 if (attr->exclude_user) { 676 pr_warning("LBR callstack option is only available " 677 "to get user callchain information. " 678 "Falling back to framepointers.\n"); 679 } else { 680 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 681 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 682 PERF_SAMPLE_BRANCH_CALL_STACK | 683 PERF_SAMPLE_BRANCH_NO_CYCLES | 684 PERF_SAMPLE_BRANCH_NO_FLAGS; 685 } 686 } else 687 pr_warning("Cannot use LBR callstack with branch stack. " 688 "Falling back to framepointers.\n"); 689 } 690 691 if (param->record_mode == CALLCHAIN_DWARF) { 692 if (!function) { 693 perf_evsel__set_sample_bit(evsel, REGS_USER); 694 perf_evsel__set_sample_bit(evsel, STACK_USER); 695 attr->sample_regs_user |= PERF_REGS_MASK; 696 attr->sample_stack_user = param->dump_size; 697 attr->exclude_callchain_user = 1; 698 } else { 699 pr_info("Cannot use DWARF unwind for function trace event," 700 " falling back to framepointers.\n"); 701 } 702 } 703 704 if (function) { 705 pr_info("Disabling user space callchains for function trace event.\n"); 706 attr->exclude_callchain_user = 1; 707 } 708 } 709 710 void perf_evsel__config_callchain(struct perf_evsel *evsel, 711 struct record_opts *opts, 712 struct callchain_param *param) 713 { 714 if (param->enabled) 715 return __perf_evsel__config_callchain(evsel, opts, param); 716 } 717 718 static void 719 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 720 struct callchain_param *param) 721 { 722 struct perf_event_attr *attr = &evsel->attr; 723 724 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 725 if (param->record_mode == CALLCHAIN_LBR) { 726 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 727 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 728 PERF_SAMPLE_BRANCH_CALL_STACK); 729 } 730 if (param->record_mode == CALLCHAIN_DWARF) { 731 perf_evsel__reset_sample_bit(evsel, REGS_USER); 732 perf_evsel__reset_sample_bit(evsel, STACK_USER); 733 } 734 } 735 736 static void apply_config_terms(struct perf_evsel *evsel, 737 struct record_opts *opts, bool track) 738 { 739 struct perf_evsel_config_term *term; 740 struct list_head *config_terms = &evsel->config_terms; 741 struct perf_event_attr *attr = &evsel->attr; 742 /* callgraph default */ 743 struct callchain_param param = { 744 .record_mode = callchain_param.record_mode, 745 }; 746 u32 dump_size = 0; 747 int max_stack = 0; 748 const char *callgraph_buf = NULL; 749 750 list_for_each_entry(term, config_terms, list) { 751 switch (term->type) { 752 case PERF_EVSEL__CONFIG_TERM_PERIOD: 753 if (!(term->weak && opts->user_interval != ULLONG_MAX)) { 754 attr->sample_period = term->val.period; 755 attr->freq = 0; 756 perf_evsel__reset_sample_bit(evsel, PERIOD); 757 } 758 break; 759 case PERF_EVSEL__CONFIG_TERM_FREQ: 760 if (!(term->weak && opts->user_freq != UINT_MAX)) { 761 attr->sample_freq = term->val.freq; 762 attr->freq = 1; 763 perf_evsel__set_sample_bit(evsel, PERIOD); 764 } 765 break; 766 case PERF_EVSEL__CONFIG_TERM_TIME: 767 if (term->val.time) 768 perf_evsel__set_sample_bit(evsel, TIME); 769 else 770 perf_evsel__reset_sample_bit(evsel, TIME); 771 break; 772 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 773 callgraph_buf = term->val.callgraph; 774 break; 775 case PERF_EVSEL__CONFIG_TERM_BRANCH: 776 if (term->val.branch && strcmp(term->val.branch, "no")) { 777 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 778 parse_branch_str(term->val.branch, 779 &attr->branch_sample_type); 780 } else 781 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 782 break; 783 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 784 dump_size = term->val.stack_user; 785 break; 786 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 787 max_stack = term->val.max_stack; 788 break; 789 case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS: 790 evsel->max_events = term->val.max_events; 791 break; 792 case PERF_EVSEL__CONFIG_TERM_INHERIT: 793 /* 794 * attr->inherit should has already been set by 795 * perf_evsel__config. If user explicitly set 796 * inherit using config terms, override global 797 * opt->no_inherit setting. 798 */ 799 attr->inherit = term->val.inherit ? 1 : 0; 800 break; 801 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 802 attr->write_backward = term->val.overwrite ? 1 : 0; 803 break; 804 case PERF_EVSEL__CONFIG_TERM_DRV_CFG: 805 break; 806 default: 807 break; 808 } 809 } 810 811 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 812 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 813 bool sample_address = false; 814 815 if (max_stack) { 816 param.max_stack = max_stack; 817 if (callgraph_buf == NULL) 818 callgraph_buf = "fp"; 819 } 820 821 /* parse callgraph parameters */ 822 if (callgraph_buf != NULL) { 823 if (!strcmp(callgraph_buf, "no")) { 824 param.enabled = false; 825 param.record_mode = CALLCHAIN_NONE; 826 } else { 827 param.enabled = true; 828 if (parse_callchain_record(callgraph_buf, ¶m)) { 829 pr_err("per-event callgraph setting for %s failed. " 830 "Apply callgraph global setting for it\n", 831 evsel->name); 832 return; 833 } 834 if (param.record_mode == CALLCHAIN_DWARF) 835 sample_address = true; 836 } 837 } 838 if (dump_size > 0) { 839 dump_size = round_up(dump_size, sizeof(u64)); 840 param.dump_size = dump_size; 841 } 842 843 /* If global callgraph set, clear it */ 844 if (callchain_param.enabled) 845 perf_evsel__reset_callgraph(evsel, &callchain_param); 846 847 /* set perf-event callgraph */ 848 if (param.enabled) { 849 if (sample_address) { 850 perf_evsel__set_sample_bit(evsel, ADDR); 851 perf_evsel__set_sample_bit(evsel, DATA_SRC); 852 evsel->attr.mmap_data = track; 853 } 854 perf_evsel__config_callchain(evsel, opts, ¶m); 855 } 856 } 857 } 858 859 static bool is_dummy_event(struct perf_evsel *evsel) 860 { 861 return (evsel->attr.type == PERF_TYPE_SOFTWARE) && 862 (evsel->attr.config == PERF_COUNT_SW_DUMMY); 863 } 864 865 /* 866 * The enable_on_exec/disabled value strategy: 867 * 868 * 1) For any type of traced program: 869 * - all independent events and group leaders are disabled 870 * - all group members are enabled 871 * 872 * Group members are ruled by group leaders. They need to 873 * be enabled, because the group scheduling relies on that. 874 * 875 * 2) For traced programs executed by perf: 876 * - all independent events and group leaders have 877 * enable_on_exec set 878 * - we don't specifically enable or disable any event during 879 * the record command 880 * 881 * Independent events and group leaders are initially disabled 882 * and get enabled by exec. Group members are ruled by group 883 * leaders as stated in 1). 884 * 885 * 3) For traced programs attached by perf (pid/tid): 886 * - we specifically enable or disable all events during 887 * the record command 888 * 889 * When attaching events to already running traced we 890 * enable/disable events specifically, as there's no 891 * initial traced exec call. 892 */ 893 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 894 struct callchain_param *callchain) 895 { 896 struct perf_evsel *leader = evsel->leader; 897 struct perf_event_attr *attr = &evsel->attr; 898 int track = evsel->tracking; 899 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 900 901 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 902 attr->inherit = !opts->no_inherit; 903 attr->write_backward = opts->overwrite ? 1 : 0; 904 905 perf_evsel__set_sample_bit(evsel, IP); 906 perf_evsel__set_sample_bit(evsel, TID); 907 908 if (evsel->sample_read) { 909 perf_evsel__set_sample_bit(evsel, READ); 910 911 /* 912 * We need ID even in case of single event, because 913 * PERF_SAMPLE_READ process ID specific data. 914 */ 915 perf_evsel__set_sample_id(evsel, false); 916 917 /* 918 * Apply group format only if we belong to group 919 * with more than one members. 920 */ 921 if (leader->nr_members > 1) { 922 attr->read_format |= PERF_FORMAT_GROUP; 923 attr->inherit = 0; 924 } 925 } 926 927 /* 928 * We default some events to have a default interval. But keep 929 * it a weak assumption overridable by the user. 930 */ 931 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 932 opts->user_interval != ULLONG_MAX)) { 933 if (opts->freq) { 934 perf_evsel__set_sample_bit(evsel, PERIOD); 935 attr->freq = 1; 936 attr->sample_freq = opts->freq; 937 } else { 938 attr->sample_period = opts->default_interval; 939 } 940 } 941 942 /* 943 * Disable sampling for all group members other 944 * than leader in case leader 'leads' the sampling. 945 */ 946 if ((leader != evsel) && leader->sample_read) { 947 attr->freq = 0; 948 attr->sample_freq = 0; 949 attr->sample_period = 0; 950 attr->write_backward = 0; 951 952 /* 953 * We don't get sample for slave events, we make them 954 * when delivering group leader sample. Set the slave 955 * event to follow the master sample_type to ease up 956 * report. 957 */ 958 attr->sample_type = leader->attr.sample_type; 959 } 960 961 if (opts->no_samples) 962 attr->sample_freq = 0; 963 964 if (opts->inherit_stat) { 965 evsel->attr.read_format |= 966 PERF_FORMAT_TOTAL_TIME_ENABLED | 967 PERF_FORMAT_TOTAL_TIME_RUNNING | 968 PERF_FORMAT_ID; 969 attr->inherit_stat = 1; 970 } 971 972 if (opts->sample_address) { 973 perf_evsel__set_sample_bit(evsel, ADDR); 974 attr->mmap_data = track; 975 } 976 977 /* 978 * We don't allow user space callchains for function trace 979 * event, due to issues with page faults while tracing page 980 * fault handler and its overall trickiness nature. 981 */ 982 if (perf_evsel__is_function_event(evsel)) 983 evsel->attr.exclude_callchain_user = 1; 984 985 if (callchain && callchain->enabled && !evsel->no_aux_samples) 986 perf_evsel__config_callchain(evsel, opts, callchain); 987 988 if (opts->sample_intr_regs) { 989 attr->sample_regs_intr = opts->sample_intr_regs; 990 perf_evsel__set_sample_bit(evsel, REGS_INTR); 991 } 992 993 if (opts->sample_user_regs) { 994 attr->sample_regs_user |= opts->sample_user_regs; 995 perf_evsel__set_sample_bit(evsel, REGS_USER); 996 } 997 998 if (target__has_cpu(&opts->target) || opts->sample_cpu) 999 perf_evsel__set_sample_bit(evsel, CPU); 1000 1001 /* 1002 * When the user explicitly disabled time don't force it here. 1003 */ 1004 if (opts->sample_time && 1005 (!perf_missing_features.sample_id_all && 1006 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 1007 opts->sample_time_set))) 1008 perf_evsel__set_sample_bit(evsel, TIME); 1009 1010 if (opts->raw_samples && !evsel->no_aux_samples) { 1011 perf_evsel__set_sample_bit(evsel, TIME); 1012 perf_evsel__set_sample_bit(evsel, RAW); 1013 perf_evsel__set_sample_bit(evsel, CPU); 1014 } 1015 1016 if (opts->sample_address) 1017 perf_evsel__set_sample_bit(evsel, DATA_SRC); 1018 1019 if (opts->sample_phys_addr) 1020 perf_evsel__set_sample_bit(evsel, PHYS_ADDR); 1021 1022 if (opts->no_buffering) { 1023 attr->watermark = 0; 1024 attr->wakeup_events = 1; 1025 } 1026 if (opts->branch_stack && !evsel->no_aux_samples) { 1027 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 1028 attr->branch_sample_type = opts->branch_stack; 1029 } 1030 1031 if (opts->sample_weight) 1032 perf_evsel__set_sample_bit(evsel, WEIGHT); 1033 1034 attr->task = track; 1035 attr->mmap = track; 1036 attr->mmap2 = track && !perf_missing_features.mmap2; 1037 attr->comm = track; 1038 attr->ksymbol = track && !perf_missing_features.ksymbol; 1039 attr->bpf_event = track && opts->bpf_event && 1040 !perf_missing_features.bpf_event; 1041 1042 if (opts->record_namespaces) 1043 attr->namespaces = track; 1044 1045 if (opts->record_switch_events) 1046 attr->context_switch = track; 1047 1048 if (opts->sample_transaction) 1049 perf_evsel__set_sample_bit(evsel, TRANSACTION); 1050 1051 if (opts->running_time) { 1052 evsel->attr.read_format |= 1053 PERF_FORMAT_TOTAL_TIME_ENABLED | 1054 PERF_FORMAT_TOTAL_TIME_RUNNING; 1055 } 1056 1057 /* 1058 * XXX see the function comment above 1059 * 1060 * Disabling only independent events or group leaders, 1061 * keeping group members enabled. 1062 */ 1063 if (perf_evsel__is_group_leader(evsel)) 1064 attr->disabled = 1; 1065 1066 /* 1067 * Setting enable_on_exec for independent events and 1068 * group leaders for traced executed by perf. 1069 */ 1070 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 1071 !opts->initial_delay) 1072 attr->enable_on_exec = 1; 1073 1074 if (evsel->immediate) { 1075 attr->disabled = 0; 1076 attr->enable_on_exec = 0; 1077 } 1078 1079 clockid = opts->clockid; 1080 if (opts->use_clockid) { 1081 attr->use_clockid = 1; 1082 attr->clockid = opts->clockid; 1083 } 1084 1085 if (evsel->precise_max) 1086 perf_event_attr__set_max_precise_ip(attr); 1087 1088 if (opts->all_user) { 1089 attr->exclude_kernel = 1; 1090 attr->exclude_user = 0; 1091 } 1092 1093 if (opts->all_kernel) { 1094 attr->exclude_kernel = 0; 1095 attr->exclude_user = 1; 1096 } 1097 1098 if (evsel->own_cpus || evsel->unit) 1099 evsel->attr.read_format |= PERF_FORMAT_ID; 1100 1101 /* 1102 * Apply event specific term settings, 1103 * it overloads any global configuration. 1104 */ 1105 apply_config_terms(evsel, opts, track); 1106 1107 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1108 1109 /* The --period option takes the precedence. */ 1110 if (opts->period_set) { 1111 if (opts->period) 1112 perf_evsel__set_sample_bit(evsel, PERIOD); 1113 else 1114 perf_evsel__reset_sample_bit(evsel, PERIOD); 1115 } 1116 1117 /* 1118 * For initial_delay, a dummy event is added implicitly. 1119 * The software event will trigger -EOPNOTSUPP error out, 1120 * if BRANCH_STACK bit is set. 1121 */ 1122 if (opts->initial_delay && is_dummy_event(evsel)) 1123 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 1124 } 1125 1126 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1127 { 1128 if (evsel->system_wide) 1129 nthreads = 1; 1130 1131 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1132 1133 if (evsel->fd) { 1134 int cpu, thread; 1135 for (cpu = 0; cpu < ncpus; cpu++) { 1136 for (thread = 0; thread < nthreads; thread++) { 1137 FD(evsel, cpu, thread) = -1; 1138 } 1139 } 1140 } 1141 1142 return evsel->fd != NULL ? 0 : -ENOMEM; 1143 } 1144 1145 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, 1146 int ioc, void *arg) 1147 { 1148 int cpu, thread; 1149 1150 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 1151 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) { 1152 int fd = FD(evsel, cpu, thread), 1153 err = ioctl(fd, ioc, arg); 1154 1155 if (err) 1156 return err; 1157 } 1158 } 1159 1160 return 0; 1161 } 1162 1163 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter) 1164 { 1165 return perf_evsel__run_ioctl(evsel, 1166 PERF_EVENT_IOC_SET_FILTER, 1167 (void *)filter); 1168 } 1169 1170 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1171 { 1172 char *new_filter = strdup(filter); 1173 1174 if (new_filter != NULL) { 1175 free(evsel->filter); 1176 evsel->filter = new_filter; 1177 return 0; 1178 } 1179 1180 return -1; 1181 } 1182 1183 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1184 const char *fmt, const char *filter) 1185 { 1186 char *new_filter; 1187 1188 if (evsel->filter == NULL) 1189 return perf_evsel__set_filter(evsel, filter); 1190 1191 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1192 free(evsel->filter); 1193 evsel->filter = new_filter; 1194 return 0; 1195 } 1196 1197 return -1; 1198 } 1199 1200 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1201 { 1202 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1203 } 1204 1205 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1206 { 1207 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1208 } 1209 1210 int perf_evsel__enable(struct perf_evsel *evsel) 1211 { 1212 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0); 1213 1214 if (!err) 1215 evsel->disabled = false; 1216 1217 return err; 1218 } 1219 1220 int perf_evsel__disable(struct perf_evsel *evsel) 1221 { 1222 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0); 1223 /* 1224 * We mark it disabled here so that tools that disable a event can 1225 * ignore events after they disable it. I.e. the ring buffer may have 1226 * already a few more events queued up before the kernel got the stop 1227 * request. 1228 */ 1229 if (!err) 1230 evsel->disabled = true; 1231 1232 return err; 1233 } 1234 1235 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1236 { 1237 if (ncpus == 0 || nthreads == 0) 1238 return 0; 1239 1240 if (evsel->system_wide) 1241 nthreads = 1; 1242 1243 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1244 if (evsel->sample_id == NULL) 1245 return -ENOMEM; 1246 1247 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1248 if (evsel->id == NULL) { 1249 xyarray__delete(evsel->sample_id); 1250 evsel->sample_id = NULL; 1251 return -ENOMEM; 1252 } 1253 1254 return 0; 1255 } 1256 1257 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1258 { 1259 xyarray__delete(evsel->fd); 1260 evsel->fd = NULL; 1261 } 1262 1263 static void perf_evsel__free_id(struct perf_evsel *evsel) 1264 { 1265 xyarray__delete(evsel->sample_id); 1266 evsel->sample_id = NULL; 1267 zfree(&evsel->id); 1268 } 1269 1270 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1271 { 1272 struct perf_evsel_config_term *term, *h; 1273 1274 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1275 list_del(&term->list); 1276 free(term); 1277 } 1278 } 1279 1280 void perf_evsel__close_fd(struct perf_evsel *evsel) 1281 { 1282 int cpu, thread; 1283 1284 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) 1285 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) { 1286 close(FD(evsel, cpu, thread)); 1287 FD(evsel, cpu, thread) = -1; 1288 } 1289 } 1290 1291 void perf_evsel__exit(struct perf_evsel *evsel) 1292 { 1293 assert(list_empty(&evsel->node)); 1294 assert(evsel->evlist == NULL); 1295 perf_evsel__free_fd(evsel); 1296 perf_evsel__free_id(evsel); 1297 perf_evsel__free_config_terms(evsel); 1298 cgroup__put(evsel->cgrp); 1299 cpu_map__put(evsel->cpus); 1300 cpu_map__put(evsel->own_cpus); 1301 thread_map__put(evsel->threads); 1302 zfree(&evsel->group_name); 1303 zfree(&evsel->name); 1304 perf_evsel__object.fini(evsel); 1305 } 1306 1307 void perf_evsel__delete(struct perf_evsel *evsel) 1308 { 1309 perf_evsel__exit(evsel); 1310 free(evsel); 1311 } 1312 1313 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1314 struct perf_counts_values *count) 1315 { 1316 struct perf_counts_values tmp; 1317 1318 if (!evsel->prev_raw_counts) 1319 return; 1320 1321 if (cpu == -1) { 1322 tmp = evsel->prev_raw_counts->aggr; 1323 evsel->prev_raw_counts->aggr = *count; 1324 } else { 1325 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1326 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1327 } 1328 1329 count->val = count->val - tmp.val; 1330 count->ena = count->ena - tmp.ena; 1331 count->run = count->run - tmp.run; 1332 } 1333 1334 void perf_counts_values__scale(struct perf_counts_values *count, 1335 bool scale, s8 *pscaled) 1336 { 1337 s8 scaled = 0; 1338 1339 if (scale) { 1340 if (count->run == 0) { 1341 scaled = -1; 1342 count->val = 0; 1343 } else if (count->run < count->ena) { 1344 scaled = 1; 1345 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1346 } 1347 } else 1348 count->ena = count->run = 0; 1349 1350 if (pscaled) 1351 *pscaled = scaled; 1352 } 1353 1354 static int perf_evsel__read_size(struct perf_evsel *evsel) 1355 { 1356 u64 read_format = evsel->attr.read_format; 1357 int entry = sizeof(u64); /* value */ 1358 int size = 0; 1359 int nr = 1; 1360 1361 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1362 size += sizeof(u64); 1363 1364 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1365 size += sizeof(u64); 1366 1367 if (read_format & PERF_FORMAT_ID) 1368 entry += sizeof(u64); 1369 1370 if (read_format & PERF_FORMAT_GROUP) { 1371 nr = evsel->nr_members; 1372 size += sizeof(u64); 1373 } 1374 1375 size += entry * nr; 1376 return size; 1377 } 1378 1379 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1380 struct perf_counts_values *count) 1381 { 1382 size_t size = perf_evsel__read_size(evsel); 1383 1384 memset(count, 0, sizeof(*count)); 1385 1386 if (FD(evsel, cpu, thread) < 0) 1387 return -EINVAL; 1388 1389 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0) 1390 return -errno; 1391 1392 return 0; 1393 } 1394 1395 static int 1396 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread) 1397 { 1398 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread); 1399 1400 return perf_evsel__read(evsel, cpu, thread, count); 1401 } 1402 1403 static void 1404 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread, 1405 u64 val, u64 ena, u64 run) 1406 { 1407 struct perf_counts_values *count; 1408 1409 count = perf_counts(counter->counts, cpu, thread); 1410 1411 count->val = val; 1412 count->ena = ena; 1413 count->run = run; 1414 count->loaded = true; 1415 } 1416 1417 static int 1418 perf_evsel__process_group_data(struct perf_evsel *leader, 1419 int cpu, int thread, u64 *data) 1420 { 1421 u64 read_format = leader->attr.read_format; 1422 struct sample_read_value *v; 1423 u64 nr, ena = 0, run = 0, i; 1424 1425 nr = *data++; 1426 1427 if (nr != (u64) leader->nr_members) 1428 return -EINVAL; 1429 1430 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1431 ena = *data++; 1432 1433 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1434 run = *data++; 1435 1436 v = (struct sample_read_value *) data; 1437 1438 perf_evsel__set_count(leader, cpu, thread, 1439 v[0].value, ena, run); 1440 1441 for (i = 1; i < nr; i++) { 1442 struct perf_evsel *counter; 1443 1444 counter = perf_evlist__id2evsel(leader->evlist, v[i].id); 1445 if (!counter) 1446 return -EINVAL; 1447 1448 perf_evsel__set_count(counter, cpu, thread, 1449 v[i].value, ena, run); 1450 } 1451 1452 return 0; 1453 } 1454 1455 static int 1456 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread) 1457 { 1458 struct perf_stat_evsel *ps = leader->stats; 1459 u64 read_format = leader->attr.read_format; 1460 int size = perf_evsel__read_size(leader); 1461 u64 *data = ps->group_data; 1462 1463 if (!(read_format & PERF_FORMAT_ID)) 1464 return -EINVAL; 1465 1466 if (!perf_evsel__is_group_leader(leader)) 1467 return -EINVAL; 1468 1469 if (!data) { 1470 data = zalloc(size); 1471 if (!data) 1472 return -ENOMEM; 1473 1474 ps->group_data = data; 1475 } 1476 1477 if (FD(leader, cpu, thread) < 0) 1478 return -EINVAL; 1479 1480 if (readn(FD(leader, cpu, thread), data, size) <= 0) 1481 return -errno; 1482 1483 return perf_evsel__process_group_data(leader, cpu, thread, data); 1484 } 1485 1486 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread) 1487 { 1488 u64 read_format = evsel->attr.read_format; 1489 1490 if (read_format & PERF_FORMAT_GROUP) 1491 return perf_evsel__read_group(evsel, cpu, thread); 1492 else 1493 return perf_evsel__read_one(evsel, cpu, thread); 1494 } 1495 1496 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1497 int cpu, int thread, bool scale) 1498 { 1499 struct perf_counts_values count; 1500 size_t nv = scale ? 3 : 1; 1501 1502 if (FD(evsel, cpu, thread) < 0) 1503 return -EINVAL; 1504 1505 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1506 return -ENOMEM; 1507 1508 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1509 return -errno; 1510 1511 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1512 perf_counts_values__scale(&count, scale, NULL); 1513 *perf_counts(evsel->counts, cpu, thread) = count; 1514 return 0; 1515 } 1516 1517 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1518 { 1519 struct perf_evsel *leader = evsel->leader; 1520 int fd; 1521 1522 if (perf_evsel__is_group_leader(evsel)) 1523 return -1; 1524 1525 /* 1526 * Leader must be already processed/open, 1527 * if not it's a bug. 1528 */ 1529 BUG_ON(!leader->fd); 1530 1531 fd = FD(leader, cpu, thread); 1532 BUG_ON(fd == -1); 1533 1534 return fd; 1535 } 1536 1537 struct bit_names { 1538 int bit; 1539 const char *name; 1540 }; 1541 1542 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1543 { 1544 bool first_bit = true; 1545 int i = 0; 1546 1547 do { 1548 if (value & bits[i].bit) { 1549 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1550 first_bit = false; 1551 } 1552 } while (bits[++i].name != NULL); 1553 } 1554 1555 static void __p_sample_type(char *buf, size_t size, u64 value) 1556 { 1557 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1558 struct bit_names bits[] = { 1559 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1560 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1561 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1562 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1563 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1564 bit_name(WEIGHT), bit_name(PHYS_ADDR), 1565 { .name = NULL, } 1566 }; 1567 #undef bit_name 1568 __p_bits(buf, size, value, bits); 1569 } 1570 1571 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1572 { 1573 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1574 struct bit_names bits[] = { 1575 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1576 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1577 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1578 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1579 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1580 { .name = NULL, } 1581 }; 1582 #undef bit_name 1583 __p_bits(buf, size, value, bits); 1584 } 1585 1586 static void __p_read_format(char *buf, size_t size, u64 value) 1587 { 1588 #define bit_name(n) { PERF_FORMAT_##n, #n } 1589 struct bit_names bits[] = { 1590 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1591 bit_name(ID), bit_name(GROUP), 1592 { .name = NULL, } 1593 }; 1594 #undef bit_name 1595 __p_bits(buf, size, value, bits); 1596 } 1597 1598 #define BUF_SIZE 1024 1599 1600 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1601 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1602 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1603 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1604 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1605 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1606 1607 #define PRINT_ATTRn(_n, _f, _p) \ 1608 do { \ 1609 if (attr->_f) { \ 1610 _p(attr->_f); \ 1611 ret += attr__fprintf(fp, _n, buf, priv);\ 1612 } \ 1613 } while (0) 1614 1615 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1616 1617 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1618 attr__fprintf_f attr__fprintf, void *priv) 1619 { 1620 char buf[BUF_SIZE]; 1621 int ret = 0; 1622 1623 PRINT_ATTRf(type, p_unsigned); 1624 PRINT_ATTRf(size, p_unsigned); 1625 PRINT_ATTRf(config, p_hex); 1626 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1627 PRINT_ATTRf(sample_type, p_sample_type); 1628 PRINT_ATTRf(read_format, p_read_format); 1629 1630 PRINT_ATTRf(disabled, p_unsigned); 1631 PRINT_ATTRf(inherit, p_unsigned); 1632 PRINT_ATTRf(pinned, p_unsigned); 1633 PRINT_ATTRf(exclusive, p_unsigned); 1634 PRINT_ATTRf(exclude_user, p_unsigned); 1635 PRINT_ATTRf(exclude_kernel, p_unsigned); 1636 PRINT_ATTRf(exclude_hv, p_unsigned); 1637 PRINT_ATTRf(exclude_idle, p_unsigned); 1638 PRINT_ATTRf(mmap, p_unsigned); 1639 PRINT_ATTRf(comm, p_unsigned); 1640 PRINT_ATTRf(freq, p_unsigned); 1641 PRINT_ATTRf(inherit_stat, p_unsigned); 1642 PRINT_ATTRf(enable_on_exec, p_unsigned); 1643 PRINT_ATTRf(task, p_unsigned); 1644 PRINT_ATTRf(watermark, p_unsigned); 1645 PRINT_ATTRf(precise_ip, p_unsigned); 1646 PRINT_ATTRf(mmap_data, p_unsigned); 1647 PRINT_ATTRf(sample_id_all, p_unsigned); 1648 PRINT_ATTRf(exclude_host, p_unsigned); 1649 PRINT_ATTRf(exclude_guest, p_unsigned); 1650 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1651 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1652 PRINT_ATTRf(mmap2, p_unsigned); 1653 PRINT_ATTRf(comm_exec, p_unsigned); 1654 PRINT_ATTRf(use_clockid, p_unsigned); 1655 PRINT_ATTRf(context_switch, p_unsigned); 1656 PRINT_ATTRf(write_backward, p_unsigned); 1657 PRINT_ATTRf(namespaces, p_unsigned); 1658 PRINT_ATTRf(ksymbol, p_unsigned); 1659 PRINT_ATTRf(bpf_event, p_unsigned); 1660 1661 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1662 PRINT_ATTRf(bp_type, p_unsigned); 1663 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1664 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1665 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1666 PRINT_ATTRf(sample_regs_user, p_hex); 1667 PRINT_ATTRf(sample_stack_user, p_unsigned); 1668 PRINT_ATTRf(clockid, p_signed); 1669 PRINT_ATTRf(sample_regs_intr, p_hex); 1670 PRINT_ATTRf(aux_watermark, p_unsigned); 1671 PRINT_ATTRf(sample_max_stack, p_unsigned); 1672 1673 return ret; 1674 } 1675 1676 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1677 void *priv __maybe_unused) 1678 { 1679 return fprintf(fp, " %-32s %s\n", name, val); 1680 } 1681 1682 static void perf_evsel__remove_fd(struct perf_evsel *pos, 1683 int nr_cpus, int nr_threads, 1684 int thread_idx) 1685 { 1686 for (int cpu = 0; cpu < nr_cpus; cpu++) 1687 for (int thread = thread_idx; thread < nr_threads - 1; thread++) 1688 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1); 1689 } 1690 1691 static int update_fds(struct perf_evsel *evsel, 1692 int nr_cpus, int cpu_idx, 1693 int nr_threads, int thread_idx) 1694 { 1695 struct perf_evsel *pos; 1696 1697 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads) 1698 return -EINVAL; 1699 1700 evlist__for_each_entry(evsel->evlist, pos) { 1701 nr_cpus = pos != evsel ? nr_cpus : cpu_idx; 1702 1703 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx); 1704 1705 /* 1706 * Since fds for next evsel has not been created, 1707 * there is no need to iterate whole event list. 1708 */ 1709 if (pos == evsel) 1710 break; 1711 } 1712 return 0; 1713 } 1714 1715 static bool ignore_missing_thread(struct perf_evsel *evsel, 1716 int nr_cpus, int cpu, 1717 struct thread_map *threads, 1718 int thread, int err) 1719 { 1720 pid_t ignore_pid = thread_map__pid(threads, thread); 1721 1722 if (!evsel->ignore_missing_thread) 1723 return false; 1724 1725 /* The system wide setup does not work with threads. */ 1726 if (evsel->system_wide) 1727 return false; 1728 1729 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1730 if (err != -ESRCH) 1731 return false; 1732 1733 /* If there's only one thread, let it fail. */ 1734 if (threads->nr == 1) 1735 return false; 1736 1737 /* 1738 * We should remove fd for missing_thread first 1739 * because thread_map__remove() will decrease threads->nr. 1740 */ 1741 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread)) 1742 return false; 1743 1744 if (thread_map__remove(threads, thread)) 1745 return false; 1746 1747 pr_warning("WARNING: Ignored open failure for pid %d\n", 1748 ignore_pid); 1749 return true; 1750 } 1751 1752 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1753 struct thread_map *threads) 1754 { 1755 int cpu, thread, nthreads; 1756 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1757 int pid = -1, err; 1758 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1759 1760 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1761 return -EINVAL; 1762 1763 if (cpus == NULL) { 1764 static struct cpu_map *empty_cpu_map; 1765 1766 if (empty_cpu_map == NULL) { 1767 empty_cpu_map = cpu_map__dummy_new(); 1768 if (empty_cpu_map == NULL) 1769 return -ENOMEM; 1770 } 1771 1772 cpus = empty_cpu_map; 1773 } 1774 1775 if (threads == NULL) { 1776 static struct thread_map *empty_thread_map; 1777 1778 if (empty_thread_map == NULL) { 1779 empty_thread_map = thread_map__new_by_tid(-1); 1780 if (empty_thread_map == NULL) 1781 return -ENOMEM; 1782 } 1783 1784 threads = empty_thread_map; 1785 } 1786 1787 if (evsel->system_wide) 1788 nthreads = 1; 1789 else 1790 nthreads = threads->nr; 1791 1792 if (evsel->fd == NULL && 1793 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1794 return -ENOMEM; 1795 1796 if (evsel->cgrp) { 1797 flags |= PERF_FLAG_PID_CGROUP; 1798 pid = evsel->cgrp->fd; 1799 } 1800 1801 fallback_missing_features: 1802 if (perf_missing_features.clockid_wrong) 1803 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1804 if (perf_missing_features.clockid) { 1805 evsel->attr.use_clockid = 0; 1806 evsel->attr.clockid = 0; 1807 } 1808 if (perf_missing_features.cloexec) 1809 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1810 if (perf_missing_features.mmap2) 1811 evsel->attr.mmap2 = 0; 1812 if (perf_missing_features.exclude_guest) 1813 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1814 if (perf_missing_features.lbr_flags) 1815 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1816 PERF_SAMPLE_BRANCH_NO_CYCLES); 1817 if (perf_missing_features.group_read && evsel->attr.inherit) 1818 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); 1819 if (perf_missing_features.ksymbol) 1820 evsel->attr.ksymbol = 0; 1821 if (perf_missing_features.bpf_event) 1822 evsel->attr.bpf_event = 0; 1823 retry_sample_id: 1824 if (perf_missing_features.sample_id_all) 1825 evsel->attr.sample_id_all = 0; 1826 1827 if (verbose >= 2) { 1828 fprintf(stderr, "%.60s\n", graph_dotted_line); 1829 fprintf(stderr, "perf_event_attr:\n"); 1830 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1831 fprintf(stderr, "%.60s\n", graph_dotted_line); 1832 } 1833 1834 for (cpu = 0; cpu < cpus->nr; cpu++) { 1835 1836 for (thread = 0; thread < nthreads; thread++) { 1837 int fd, group_fd; 1838 1839 if (!evsel->cgrp && !evsel->system_wide) 1840 pid = thread_map__pid(threads, thread); 1841 1842 group_fd = get_group_fd(evsel, cpu, thread); 1843 retry_open: 1844 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1845 pid, cpus->map[cpu], group_fd, flags); 1846 1847 test_attr__ready(); 1848 1849 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu], 1850 group_fd, flags); 1851 1852 FD(evsel, cpu, thread) = fd; 1853 1854 if (fd < 0) { 1855 err = -errno; 1856 1857 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) { 1858 /* 1859 * We just removed 1 thread, so take a step 1860 * back on thread index and lower the upper 1861 * nthreads limit. 1862 */ 1863 nthreads--; 1864 thread--; 1865 1866 /* ... and pretend like nothing have happened. */ 1867 err = 0; 1868 continue; 1869 } 1870 1871 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1872 err); 1873 goto try_fallback; 1874 } 1875 1876 pr_debug2(" = %d\n", fd); 1877 1878 if (evsel->bpf_fd >= 0) { 1879 int evt_fd = fd; 1880 int bpf_fd = evsel->bpf_fd; 1881 1882 err = ioctl(evt_fd, 1883 PERF_EVENT_IOC_SET_BPF, 1884 bpf_fd); 1885 if (err && errno != EEXIST) { 1886 pr_err("failed to attach bpf fd %d: %s\n", 1887 bpf_fd, strerror(errno)); 1888 err = -EINVAL; 1889 goto out_close; 1890 } 1891 } 1892 1893 set_rlimit = NO_CHANGE; 1894 1895 /* 1896 * If we succeeded but had to kill clockid, fail and 1897 * have perf_evsel__open_strerror() print us a nice 1898 * error. 1899 */ 1900 if (perf_missing_features.clockid || 1901 perf_missing_features.clockid_wrong) { 1902 err = -EINVAL; 1903 goto out_close; 1904 } 1905 } 1906 } 1907 1908 return 0; 1909 1910 try_fallback: 1911 /* 1912 * perf stat needs between 5 and 22 fds per CPU. When we run out 1913 * of them try to increase the limits. 1914 */ 1915 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1916 struct rlimit l; 1917 int old_errno = errno; 1918 1919 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1920 if (set_rlimit == NO_CHANGE) 1921 l.rlim_cur = l.rlim_max; 1922 else { 1923 l.rlim_cur = l.rlim_max + 1000; 1924 l.rlim_max = l.rlim_cur; 1925 } 1926 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1927 set_rlimit++; 1928 errno = old_errno; 1929 goto retry_open; 1930 } 1931 } 1932 errno = old_errno; 1933 } 1934 1935 if (err != -EINVAL || cpu > 0 || thread > 0) 1936 goto out_close; 1937 1938 /* 1939 * Must probe features in the order they were added to the 1940 * perf_event_attr interface. 1941 */ 1942 if (!perf_missing_features.bpf_event && evsel->attr.bpf_event) { 1943 perf_missing_features.bpf_event = true; 1944 pr_debug2("switching off bpf_event\n"); 1945 goto fallback_missing_features; 1946 } else if (!perf_missing_features.ksymbol && evsel->attr.ksymbol) { 1947 perf_missing_features.ksymbol = true; 1948 pr_debug2("switching off ksymbol\n"); 1949 goto fallback_missing_features; 1950 } else if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 1951 perf_missing_features.write_backward = true; 1952 pr_debug2("switching off write_backward\n"); 1953 goto out_close; 1954 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1955 perf_missing_features.clockid_wrong = true; 1956 pr_debug2("switching off clockid\n"); 1957 goto fallback_missing_features; 1958 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1959 perf_missing_features.clockid = true; 1960 pr_debug2("switching off use_clockid\n"); 1961 goto fallback_missing_features; 1962 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1963 perf_missing_features.cloexec = true; 1964 pr_debug2("switching off cloexec flag\n"); 1965 goto fallback_missing_features; 1966 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1967 perf_missing_features.mmap2 = true; 1968 pr_debug2("switching off mmap2\n"); 1969 goto fallback_missing_features; 1970 } else if (!perf_missing_features.exclude_guest && 1971 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1972 perf_missing_features.exclude_guest = true; 1973 pr_debug2("switching off exclude_guest, exclude_host\n"); 1974 goto fallback_missing_features; 1975 } else if (!perf_missing_features.sample_id_all) { 1976 perf_missing_features.sample_id_all = true; 1977 pr_debug2("switching off sample_id_all\n"); 1978 goto retry_sample_id; 1979 } else if (!perf_missing_features.lbr_flags && 1980 (evsel->attr.branch_sample_type & 1981 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1982 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1983 perf_missing_features.lbr_flags = true; 1984 pr_debug2("switching off branch sample type no (cycles/flags)\n"); 1985 goto fallback_missing_features; 1986 } else if (!perf_missing_features.group_read && 1987 evsel->attr.inherit && 1988 (evsel->attr.read_format & PERF_FORMAT_GROUP) && 1989 perf_evsel__is_group_leader(evsel)) { 1990 perf_missing_features.group_read = true; 1991 pr_debug2("switching off group read\n"); 1992 goto fallback_missing_features; 1993 } 1994 out_close: 1995 if (err) 1996 threads->err_thread = thread; 1997 1998 do { 1999 while (--thread >= 0) { 2000 close(FD(evsel, cpu, thread)); 2001 FD(evsel, cpu, thread) = -1; 2002 } 2003 thread = nthreads; 2004 } while (--cpu >= 0); 2005 return err; 2006 } 2007 2008 void perf_evsel__close(struct perf_evsel *evsel) 2009 { 2010 if (evsel->fd == NULL) 2011 return; 2012 2013 perf_evsel__close_fd(evsel); 2014 perf_evsel__free_fd(evsel); 2015 } 2016 2017 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 2018 struct cpu_map *cpus) 2019 { 2020 return perf_evsel__open(evsel, cpus, NULL); 2021 } 2022 2023 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 2024 struct thread_map *threads) 2025 { 2026 return perf_evsel__open(evsel, NULL, threads); 2027 } 2028 2029 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 2030 const union perf_event *event, 2031 struct perf_sample *sample) 2032 { 2033 u64 type = evsel->attr.sample_type; 2034 const u64 *array = event->sample.array; 2035 bool swapped = evsel->needs_swap; 2036 union u64_swap u; 2037 2038 array += ((event->header.size - 2039 sizeof(event->header)) / sizeof(u64)) - 1; 2040 2041 if (type & PERF_SAMPLE_IDENTIFIER) { 2042 sample->id = *array; 2043 array--; 2044 } 2045 2046 if (type & PERF_SAMPLE_CPU) { 2047 u.val64 = *array; 2048 if (swapped) { 2049 /* undo swap of u64, then swap on individual u32s */ 2050 u.val64 = bswap_64(u.val64); 2051 u.val32[0] = bswap_32(u.val32[0]); 2052 } 2053 2054 sample->cpu = u.val32[0]; 2055 array--; 2056 } 2057 2058 if (type & PERF_SAMPLE_STREAM_ID) { 2059 sample->stream_id = *array; 2060 array--; 2061 } 2062 2063 if (type & PERF_SAMPLE_ID) { 2064 sample->id = *array; 2065 array--; 2066 } 2067 2068 if (type & PERF_SAMPLE_TIME) { 2069 sample->time = *array; 2070 array--; 2071 } 2072 2073 if (type & PERF_SAMPLE_TID) { 2074 u.val64 = *array; 2075 if (swapped) { 2076 /* undo swap of u64, then swap on individual u32s */ 2077 u.val64 = bswap_64(u.val64); 2078 u.val32[0] = bswap_32(u.val32[0]); 2079 u.val32[1] = bswap_32(u.val32[1]); 2080 } 2081 2082 sample->pid = u.val32[0]; 2083 sample->tid = u.val32[1]; 2084 array--; 2085 } 2086 2087 return 0; 2088 } 2089 2090 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 2091 u64 size) 2092 { 2093 return size > max_size || offset + size > endp; 2094 } 2095 2096 #define OVERFLOW_CHECK(offset, size, max_size) \ 2097 do { \ 2098 if (overflow(endp, (max_size), (offset), (size))) \ 2099 return -EFAULT; \ 2100 } while (0) 2101 2102 #define OVERFLOW_CHECK_u64(offset) \ 2103 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 2104 2105 static int 2106 perf_event__check_size(union perf_event *event, unsigned int sample_size) 2107 { 2108 /* 2109 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 2110 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 2111 * check the format does not go past the end of the event. 2112 */ 2113 if (sample_size + sizeof(event->header) > event->header.size) 2114 return -EFAULT; 2115 2116 return 0; 2117 } 2118 2119 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 2120 struct perf_sample *data) 2121 { 2122 u64 type = evsel->attr.sample_type; 2123 bool swapped = evsel->needs_swap; 2124 const u64 *array; 2125 u16 max_size = event->header.size; 2126 const void *endp = (void *)event + max_size; 2127 u64 sz; 2128 2129 /* 2130 * used for cross-endian analysis. See git commit 65014ab3 2131 * for why this goofiness is needed. 2132 */ 2133 union u64_swap u; 2134 2135 memset(data, 0, sizeof(*data)); 2136 data->cpu = data->pid = data->tid = -1; 2137 data->stream_id = data->id = data->time = -1ULL; 2138 data->period = evsel->attr.sample_period; 2139 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2140 data->misc = event->header.misc; 2141 data->id = -1ULL; 2142 data->data_src = PERF_MEM_DATA_SRC_NONE; 2143 2144 if (event->header.type != PERF_RECORD_SAMPLE) { 2145 if (!evsel->attr.sample_id_all) 2146 return 0; 2147 return perf_evsel__parse_id_sample(evsel, event, data); 2148 } 2149 2150 array = event->sample.array; 2151 2152 if (perf_event__check_size(event, evsel->sample_size)) 2153 return -EFAULT; 2154 2155 if (type & PERF_SAMPLE_IDENTIFIER) { 2156 data->id = *array; 2157 array++; 2158 } 2159 2160 if (type & PERF_SAMPLE_IP) { 2161 data->ip = *array; 2162 array++; 2163 } 2164 2165 if (type & PERF_SAMPLE_TID) { 2166 u.val64 = *array; 2167 if (swapped) { 2168 /* undo swap of u64, then swap on individual u32s */ 2169 u.val64 = bswap_64(u.val64); 2170 u.val32[0] = bswap_32(u.val32[0]); 2171 u.val32[1] = bswap_32(u.val32[1]); 2172 } 2173 2174 data->pid = u.val32[0]; 2175 data->tid = u.val32[1]; 2176 array++; 2177 } 2178 2179 if (type & PERF_SAMPLE_TIME) { 2180 data->time = *array; 2181 array++; 2182 } 2183 2184 if (type & PERF_SAMPLE_ADDR) { 2185 data->addr = *array; 2186 array++; 2187 } 2188 2189 if (type & PERF_SAMPLE_ID) { 2190 data->id = *array; 2191 array++; 2192 } 2193 2194 if (type & PERF_SAMPLE_STREAM_ID) { 2195 data->stream_id = *array; 2196 array++; 2197 } 2198 2199 if (type & PERF_SAMPLE_CPU) { 2200 2201 u.val64 = *array; 2202 if (swapped) { 2203 /* undo swap of u64, then swap on individual u32s */ 2204 u.val64 = bswap_64(u.val64); 2205 u.val32[0] = bswap_32(u.val32[0]); 2206 } 2207 2208 data->cpu = u.val32[0]; 2209 array++; 2210 } 2211 2212 if (type & PERF_SAMPLE_PERIOD) { 2213 data->period = *array; 2214 array++; 2215 } 2216 2217 if (type & PERF_SAMPLE_READ) { 2218 u64 read_format = evsel->attr.read_format; 2219 2220 OVERFLOW_CHECK_u64(array); 2221 if (read_format & PERF_FORMAT_GROUP) 2222 data->read.group.nr = *array; 2223 else 2224 data->read.one.value = *array; 2225 2226 array++; 2227 2228 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2229 OVERFLOW_CHECK_u64(array); 2230 data->read.time_enabled = *array; 2231 array++; 2232 } 2233 2234 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2235 OVERFLOW_CHECK_u64(array); 2236 data->read.time_running = *array; 2237 array++; 2238 } 2239 2240 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2241 if (read_format & PERF_FORMAT_GROUP) { 2242 const u64 max_group_nr = UINT64_MAX / 2243 sizeof(struct sample_read_value); 2244 2245 if (data->read.group.nr > max_group_nr) 2246 return -EFAULT; 2247 sz = data->read.group.nr * 2248 sizeof(struct sample_read_value); 2249 OVERFLOW_CHECK(array, sz, max_size); 2250 data->read.group.values = 2251 (struct sample_read_value *)array; 2252 array = (void *)array + sz; 2253 } else { 2254 OVERFLOW_CHECK_u64(array); 2255 data->read.one.id = *array; 2256 array++; 2257 } 2258 } 2259 2260 if (evsel__has_callchain(evsel)) { 2261 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 2262 2263 OVERFLOW_CHECK_u64(array); 2264 data->callchain = (struct ip_callchain *)array++; 2265 if (data->callchain->nr > max_callchain_nr) 2266 return -EFAULT; 2267 sz = data->callchain->nr * sizeof(u64); 2268 OVERFLOW_CHECK(array, sz, max_size); 2269 array = (void *)array + sz; 2270 } 2271 2272 if (type & PERF_SAMPLE_RAW) { 2273 OVERFLOW_CHECK_u64(array); 2274 u.val64 = *array; 2275 2276 /* 2277 * Undo swap of u64, then swap on individual u32s, 2278 * get the size of the raw area and undo all of the 2279 * swap. The pevent interface handles endianity by 2280 * itself. 2281 */ 2282 if (swapped) { 2283 u.val64 = bswap_64(u.val64); 2284 u.val32[0] = bswap_32(u.val32[0]); 2285 u.val32[1] = bswap_32(u.val32[1]); 2286 } 2287 data->raw_size = u.val32[0]; 2288 2289 /* 2290 * The raw data is aligned on 64bits including the 2291 * u32 size, so it's safe to use mem_bswap_64. 2292 */ 2293 if (swapped) 2294 mem_bswap_64((void *) array, data->raw_size); 2295 2296 array = (void *)array + sizeof(u32); 2297 2298 OVERFLOW_CHECK(array, data->raw_size, max_size); 2299 data->raw_data = (void *)array; 2300 array = (void *)array + data->raw_size; 2301 } 2302 2303 if (type & PERF_SAMPLE_BRANCH_STACK) { 2304 const u64 max_branch_nr = UINT64_MAX / 2305 sizeof(struct branch_entry); 2306 2307 OVERFLOW_CHECK_u64(array); 2308 data->branch_stack = (struct branch_stack *)array++; 2309 2310 if (data->branch_stack->nr > max_branch_nr) 2311 return -EFAULT; 2312 sz = data->branch_stack->nr * sizeof(struct branch_entry); 2313 OVERFLOW_CHECK(array, sz, max_size); 2314 array = (void *)array + sz; 2315 } 2316 2317 if (type & PERF_SAMPLE_REGS_USER) { 2318 OVERFLOW_CHECK_u64(array); 2319 data->user_regs.abi = *array; 2320 array++; 2321 2322 if (data->user_regs.abi) { 2323 u64 mask = evsel->attr.sample_regs_user; 2324 2325 sz = hweight_long(mask) * sizeof(u64); 2326 OVERFLOW_CHECK(array, sz, max_size); 2327 data->user_regs.mask = mask; 2328 data->user_regs.regs = (u64 *)array; 2329 array = (void *)array + sz; 2330 } 2331 } 2332 2333 if (type & PERF_SAMPLE_STACK_USER) { 2334 OVERFLOW_CHECK_u64(array); 2335 sz = *array++; 2336 2337 data->user_stack.offset = ((char *)(array - 1) 2338 - (char *) event); 2339 2340 if (!sz) { 2341 data->user_stack.size = 0; 2342 } else { 2343 OVERFLOW_CHECK(array, sz, max_size); 2344 data->user_stack.data = (char *)array; 2345 array = (void *)array + sz; 2346 OVERFLOW_CHECK_u64(array); 2347 data->user_stack.size = *array++; 2348 if (WARN_ONCE(data->user_stack.size > sz, 2349 "user stack dump failure\n")) 2350 return -EFAULT; 2351 } 2352 } 2353 2354 if (type & PERF_SAMPLE_WEIGHT) { 2355 OVERFLOW_CHECK_u64(array); 2356 data->weight = *array; 2357 array++; 2358 } 2359 2360 if (type & PERF_SAMPLE_DATA_SRC) { 2361 OVERFLOW_CHECK_u64(array); 2362 data->data_src = *array; 2363 array++; 2364 } 2365 2366 if (type & PERF_SAMPLE_TRANSACTION) { 2367 OVERFLOW_CHECK_u64(array); 2368 data->transaction = *array; 2369 array++; 2370 } 2371 2372 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2373 if (type & PERF_SAMPLE_REGS_INTR) { 2374 OVERFLOW_CHECK_u64(array); 2375 data->intr_regs.abi = *array; 2376 array++; 2377 2378 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2379 u64 mask = evsel->attr.sample_regs_intr; 2380 2381 sz = hweight_long(mask) * sizeof(u64); 2382 OVERFLOW_CHECK(array, sz, max_size); 2383 data->intr_regs.mask = mask; 2384 data->intr_regs.regs = (u64 *)array; 2385 array = (void *)array + sz; 2386 } 2387 } 2388 2389 data->phys_addr = 0; 2390 if (type & PERF_SAMPLE_PHYS_ADDR) { 2391 data->phys_addr = *array; 2392 array++; 2393 } 2394 2395 return 0; 2396 } 2397 2398 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel, 2399 union perf_event *event, 2400 u64 *timestamp) 2401 { 2402 u64 type = evsel->attr.sample_type; 2403 const u64 *array; 2404 2405 if (!(type & PERF_SAMPLE_TIME)) 2406 return -1; 2407 2408 if (event->header.type != PERF_RECORD_SAMPLE) { 2409 struct perf_sample data = { 2410 .time = -1ULL, 2411 }; 2412 2413 if (!evsel->attr.sample_id_all) 2414 return -1; 2415 if (perf_evsel__parse_id_sample(evsel, event, &data)) 2416 return -1; 2417 2418 *timestamp = data.time; 2419 return 0; 2420 } 2421 2422 array = event->sample.array; 2423 2424 if (perf_event__check_size(event, evsel->sample_size)) 2425 return -EFAULT; 2426 2427 if (type & PERF_SAMPLE_IDENTIFIER) 2428 array++; 2429 2430 if (type & PERF_SAMPLE_IP) 2431 array++; 2432 2433 if (type & PERF_SAMPLE_TID) 2434 array++; 2435 2436 if (type & PERF_SAMPLE_TIME) 2437 *timestamp = *array; 2438 2439 return 0; 2440 } 2441 2442 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2443 u64 read_format) 2444 { 2445 size_t sz, result = sizeof(struct sample_event); 2446 2447 if (type & PERF_SAMPLE_IDENTIFIER) 2448 result += sizeof(u64); 2449 2450 if (type & PERF_SAMPLE_IP) 2451 result += sizeof(u64); 2452 2453 if (type & PERF_SAMPLE_TID) 2454 result += sizeof(u64); 2455 2456 if (type & PERF_SAMPLE_TIME) 2457 result += sizeof(u64); 2458 2459 if (type & PERF_SAMPLE_ADDR) 2460 result += sizeof(u64); 2461 2462 if (type & PERF_SAMPLE_ID) 2463 result += sizeof(u64); 2464 2465 if (type & PERF_SAMPLE_STREAM_ID) 2466 result += sizeof(u64); 2467 2468 if (type & PERF_SAMPLE_CPU) 2469 result += sizeof(u64); 2470 2471 if (type & PERF_SAMPLE_PERIOD) 2472 result += sizeof(u64); 2473 2474 if (type & PERF_SAMPLE_READ) { 2475 result += sizeof(u64); 2476 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2477 result += sizeof(u64); 2478 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2479 result += sizeof(u64); 2480 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2481 if (read_format & PERF_FORMAT_GROUP) { 2482 sz = sample->read.group.nr * 2483 sizeof(struct sample_read_value); 2484 result += sz; 2485 } else { 2486 result += sizeof(u64); 2487 } 2488 } 2489 2490 if (type & PERF_SAMPLE_CALLCHAIN) { 2491 sz = (sample->callchain->nr + 1) * sizeof(u64); 2492 result += sz; 2493 } 2494 2495 if (type & PERF_SAMPLE_RAW) { 2496 result += sizeof(u32); 2497 result += sample->raw_size; 2498 } 2499 2500 if (type & PERF_SAMPLE_BRANCH_STACK) { 2501 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2502 sz += sizeof(u64); 2503 result += sz; 2504 } 2505 2506 if (type & PERF_SAMPLE_REGS_USER) { 2507 if (sample->user_regs.abi) { 2508 result += sizeof(u64); 2509 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2510 result += sz; 2511 } else { 2512 result += sizeof(u64); 2513 } 2514 } 2515 2516 if (type & PERF_SAMPLE_STACK_USER) { 2517 sz = sample->user_stack.size; 2518 result += sizeof(u64); 2519 if (sz) { 2520 result += sz; 2521 result += sizeof(u64); 2522 } 2523 } 2524 2525 if (type & PERF_SAMPLE_WEIGHT) 2526 result += sizeof(u64); 2527 2528 if (type & PERF_SAMPLE_DATA_SRC) 2529 result += sizeof(u64); 2530 2531 if (type & PERF_SAMPLE_TRANSACTION) 2532 result += sizeof(u64); 2533 2534 if (type & PERF_SAMPLE_REGS_INTR) { 2535 if (sample->intr_regs.abi) { 2536 result += sizeof(u64); 2537 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2538 result += sz; 2539 } else { 2540 result += sizeof(u64); 2541 } 2542 } 2543 2544 if (type & PERF_SAMPLE_PHYS_ADDR) 2545 result += sizeof(u64); 2546 2547 return result; 2548 } 2549 2550 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2551 u64 read_format, 2552 const struct perf_sample *sample) 2553 { 2554 u64 *array; 2555 size_t sz; 2556 /* 2557 * used for cross-endian analysis. See git commit 65014ab3 2558 * for why this goofiness is needed. 2559 */ 2560 union u64_swap u; 2561 2562 array = event->sample.array; 2563 2564 if (type & PERF_SAMPLE_IDENTIFIER) { 2565 *array = sample->id; 2566 array++; 2567 } 2568 2569 if (type & PERF_SAMPLE_IP) { 2570 *array = sample->ip; 2571 array++; 2572 } 2573 2574 if (type & PERF_SAMPLE_TID) { 2575 u.val32[0] = sample->pid; 2576 u.val32[1] = sample->tid; 2577 *array = u.val64; 2578 array++; 2579 } 2580 2581 if (type & PERF_SAMPLE_TIME) { 2582 *array = sample->time; 2583 array++; 2584 } 2585 2586 if (type & PERF_SAMPLE_ADDR) { 2587 *array = sample->addr; 2588 array++; 2589 } 2590 2591 if (type & PERF_SAMPLE_ID) { 2592 *array = sample->id; 2593 array++; 2594 } 2595 2596 if (type & PERF_SAMPLE_STREAM_ID) { 2597 *array = sample->stream_id; 2598 array++; 2599 } 2600 2601 if (type & PERF_SAMPLE_CPU) { 2602 u.val32[0] = sample->cpu; 2603 u.val32[1] = 0; 2604 *array = u.val64; 2605 array++; 2606 } 2607 2608 if (type & PERF_SAMPLE_PERIOD) { 2609 *array = sample->period; 2610 array++; 2611 } 2612 2613 if (type & PERF_SAMPLE_READ) { 2614 if (read_format & PERF_FORMAT_GROUP) 2615 *array = sample->read.group.nr; 2616 else 2617 *array = sample->read.one.value; 2618 array++; 2619 2620 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2621 *array = sample->read.time_enabled; 2622 array++; 2623 } 2624 2625 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2626 *array = sample->read.time_running; 2627 array++; 2628 } 2629 2630 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2631 if (read_format & PERF_FORMAT_GROUP) { 2632 sz = sample->read.group.nr * 2633 sizeof(struct sample_read_value); 2634 memcpy(array, sample->read.group.values, sz); 2635 array = (void *)array + sz; 2636 } else { 2637 *array = sample->read.one.id; 2638 array++; 2639 } 2640 } 2641 2642 if (type & PERF_SAMPLE_CALLCHAIN) { 2643 sz = (sample->callchain->nr + 1) * sizeof(u64); 2644 memcpy(array, sample->callchain, sz); 2645 array = (void *)array + sz; 2646 } 2647 2648 if (type & PERF_SAMPLE_RAW) { 2649 u.val32[0] = sample->raw_size; 2650 *array = u.val64; 2651 array = (void *)array + sizeof(u32); 2652 2653 memcpy(array, sample->raw_data, sample->raw_size); 2654 array = (void *)array + sample->raw_size; 2655 } 2656 2657 if (type & PERF_SAMPLE_BRANCH_STACK) { 2658 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2659 sz += sizeof(u64); 2660 memcpy(array, sample->branch_stack, sz); 2661 array = (void *)array + sz; 2662 } 2663 2664 if (type & PERF_SAMPLE_REGS_USER) { 2665 if (sample->user_regs.abi) { 2666 *array++ = sample->user_regs.abi; 2667 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2668 memcpy(array, sample->user_regs.regs, sz); 2669 array = (void *)array + sz; 2670 } else { 2671 *array++ = 0; 2672 } 2673 } 2674 2675 if (type & PERF_SAMPLE_STACK_USER) { 2676 sz = sample->user_stack.size; 2677 *array++ = sz; 2678 if (sz) { 2679 memcpy(array, sample->user_stack.data, sz); 2680 array = (void *)array + sz; 2681 *array++ = sz; 2682 } 2683 } 2684 2685 if (type & PERF_SAMPLE_WEIGHT) { 2686 *array = sample->weight; 2687 array++; 2688 } 2689 2690 if (type & PERF_SAMPLE_DATA_SRC) { 2691 *array = sample->data_src; 2692 array++; 2693 } 2694 2695 if (type & PERF_SAMPLE_TRANSACTION) { 2696 *array = sample->transaction; 2697 array++; 2698 } 2699 2700 if (type & PERF_SAMPLE_REGS_INTR) { 2701 if (sample->intr_regs.abi) { 2702 *array++ = sample->intr_regs.abi; 2703 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2704 memcpy(array, sample->intr_regs.regs, sz); 2705 array = (void *)array + sz; 2706 } else { 2707 *array++ = 0; 2708 } 2709 } 2710 2711 if (type & PERF_SAMPLE_PHYS_ADDR) { 2712 *array = sample->phys_addr; 2713 array++; 2714 } 2715 2716 return 0; 2717 } 2718 2719 struct tep_format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2720 { 2721 return tep_find_field(evsel->tp_format, name); 2722 } 2723 2724 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2725 const char *name) 2726 { 2727 struct tep_format_field *field = perf_evsel__field(evsel, name); 2728 int offset; 2729 2730 if (!field) 2731 return NULL; 2732 2733 offset = field->offset; 2734 2735 if (field->flags & TEP_FIELD_IS_DYNAMIC) { 2736 offset = *(int *)(sample->raw_data + field->offset); 2737 offset &= 0xffff; 2738 } 2739 2740 return sample->raw_data + offset; 2741 } 2742 2743 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample, 2744 bool needs_swap) 2745 { 2746 u64 value; 2747 void *ptr = sample->raw_data + field->offset; 2748 2749 switch (field->size) { 2750 case 1: 2751 return *(u8 *)ptr; 2752 case 2: 2753 value = *(u16 *)ptr; 2754 break; 2755 case 4: 2756 value = *(u32 *)ptr; 2757 break; 2758 case 8: 2759 memcpy(&value, ptr, sizeof(u64)); 2760 break; 2761 default: 2762 return 0; 2763 } 2764 2765 if (!needs_swap) 2766 return value; 2767 2768 switch (field->size) { 2769 case 2: 2770 return bswap_16(value); 2771 case 4: 2772 return bswap_32(value); 2773 case 8: 2774 return bswap_64(value); 2775 default: 2776 return 0; 2777 } 2778 2779 return 0; 2780 } 2781 2782 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2783 const char *name) 2784 { 2785 struct tep_format_field *field = perf_evsel__field(evsel, name); 2786 2787 if (!field) 2788 return 0; 2789 2790 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2791 } 2792 2793 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2794 char *msg, size_t msgsize) 2795 { 2796 int paranoid; 2797 2798 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2799 evsel->attr.type == PERF_TYPE_HARDWARE && 2800 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2801 /* 2802 * If it's cycles then fall back to hrtimer based 2803 * cpu-clock-tick sw counter, which is always available even if 2804 * no PMU support. 2805 * 2806 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2807 * b0a873e). 2808 */ 2809 scnprintf(msg, msgsize, "%s", 2810 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2811 2812 evsel->attr.type = PERF_TYPE_SOFTWARE; 2813 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2814 2815 zfree(&evsel->name); 2816 return true; 2817 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2818 (paranoid = perf_event_paranoid()) > 1) { 2819 const char *name = perf_evsel__name(evsel); 2820 char *new_name; 2821 const char *sep = ":"; 2822 2823 /* Is there already the separator in the name. */ 2824 if (strchr(name, '/') || 2825 strchr(name, ':')) 2826 sep = ""; 2827 2828 if (asprintf(&new_name, "%s%su", name, sep) < 0) 2829 return false; 2830 2831 if (evsel->name) 2832 free(evsel->name); 2833 evsel->name = new_name; 2834 scnprintf(msg, msgsize, 2835 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2836 evsel->attr.exclude_kernel = 1; 2837 2838 return true; 2839 } 2840 2841 return false; 2842 } 2843 2844 static bool find_process(const char *name) 2845 { 2846 size_t len = strlen(name); 2847 DIR *dir; 2848 struct dirent *d; 2849 int ret = -1; 2850 2851 dir = opendir(procfs__mountpoint()); 2852 if (!dir) 2853 return false; 2854 2855 /* Walk through the directory. */ 2856 while (ret && (d = readdir(dir)) != NULL) { 2857 char path[PATH_MAX]; 2858 char *data; 2859 size_t size; 2860 2861 if ((d->d_type != DT_DIR) || 2862 !strcmp(".", d->d_name) || 2863 !strcmp("..", d->d_name)) 2864 continue; 2865 2866 scnprintf(path, sizeof(path), "%s/%s/comm", 2867 procfs__mountpoint(), d->d_name); 2868 2869 if (filename__read_str(path, &data, &size)) 2870 continue; 2871 2872 ret = strncmp(name, data, len); 2873 free(data); 2874 } 2875 2876 closedir(dir); 2877 return ret ? false : true; 2878 } 2879 2880 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2881 int err, char *msg, size_t size) 2882 { 2883 char sbuf[STRERR_BUFSIZE]; 2884 int printed = 0; 2885 2886 switch (err) { 2887 case EPERM: 2888 case EACCES: 2889 if (err == EPERM) 2890 printed = scnprintf(msg, size, 2891 "No permission to enable %s event.\n\n", 2892 perf_evsel__name(evsel)); 2893 2894 return scnprintf(msg + printed, size - printed, 2895 "You may not have permission to collect %sstats.\n\n" 2896 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2897 "which controls use of the performance events system by\n" 2898 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2899 "The current value is %d:\n\n" 2900 " -1: Allow use of (almost) all events by all users\n" 2901 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" 2902 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n" 2903 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n" 2904 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2905 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2906 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2907 " kernel.perf_event_paranoid = -1\n" , 2908 target->system_wide ? "system-wide " : "", 2909 perf_event_paranoid()); 2910 case ENOENT: 2911 return scnprintf(msg, size, "The %s event is not supported.", 2912 perf_evsel__name(evsel)); 2913 case EMFILE: 2914 return scnprintf(msg, size, "%s", 2915 "Too many events are opened.\n" 2916 "Probably the maximum number of open file descriptors has been reached.\n" 2917 "Hint: Try again after reducing the number of events.\n" 2918 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2919 case ENOMEM: 2920 if (evsel__has_callchain(evsel) && 2921 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2922 return scnprintf(msg, size, 2923 "Not enough memory to setup event with callchain.\n" 2924 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2925 "Hint: Current value: %d", sysctl__max_stack()); 2926 break; 2927 case ENODEV: 2928 if (target->cpu_list) 2929 return scnprintf(msg, size, "%s", 2930 "No such device - did you specify an out-of-range profile CPU?"); 2931 break; 2932 case EOPNOTSUPP: 2933 if (evsel->attr.sample_period != 0) 2934 return scnprintf(msg, size, 2935 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'", 2936 perf_evsel__name(evsel)); 2937 if (evsel->attr.precise_ip) 2938 return scnprintf(msg, size, "%s", 2939 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2940 #if defined(__i386__) || defined(__x86_64__) 2941 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2942 return scnprintf(msg, size, "%s", 2943 "No hardware sampling interrupt available.\n"); 2944 #endif 2945 break; 2946 case EBUSY: 2947 if (find_process("oprofiled")) 2948 return scnprintf(msg, size, 2949 "The PMU counters are busy/taken by another profiler.\n" 2950 "We found oprofile daemon running, please stop it and try again."); 2951 break; 2952 case EINVAL: 2953 if (evsel->attr.write_backward && perf_missing_features.write_backward) 2954 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2955 if (perf_missing_features.clockid) 2956 return scnprintf(msg, size, "clockid feature not supported."); 2957 if (perf_missing_features.clockid_wrong) 2958 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2959 break; 2960 default: 2961 break; 2962 } 2963 2964 return scnprintf(msg, size, 2965 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2966 "/bin/dmesg | grep -i perf may provide additional information.\n", 2967 err, str_error_r(err, sbuf, sizeof(sbuf)), 2968 perf_evsel__name(evsel)); 2969 } 2970 2971 struct perf_env *perf_evsel__env(struct perf_evsel *evsel) 2972 { 2973 if (evsel && evsel->evlist) 2974 return evsel->evlist->env; 2975 return NULL; 2976 } 2977 2978 static int store_evsel_ids(struct perf_evsel *evsel, struct perf_evlist *evlist) 2979 { 2980 int cpu, thread; 2981 2982 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 2983 for (thread = 0; thread < xyarray__max_y(evsel->fd); 2984 thread++) { 2985 int fd = FD(evsel, cpu, thread); 2986 2987 if (perf_evlist__id_add_fd(evlist, evsel, 2988 cpu, thread, fd) < 0) 2989 return -1; 2990 } 2991 } 2992 2993 return 0; 2994 } 2995 2996 int perf_evsel__store_ids(struct perf_evsel *evsel, struct perf_evlist *evlist) 2997 { 2998 struct cpu_map *cpus = evsel->cpus; 2999 struct thread_map *threads = evsel->threads; 3000 3001 if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr)) 3002 return -ENOMEM; 3003 3004 return store_evsel_ids(evsel, evlist); 3005 } 3006