xref: /openbmc/linux/tools/perf/util/evsel.c (revision f1b5618e013af28b3c78daf424436a79674423c0)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "memswap.h"
40 #include "util/parse-branch-options.h"
41 
42 #include "sane_ctype.h"
43 
44 struct perf_missing_features perf_missing_features;
45 
46 static clockid_t clockid;
47 
48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
49 {
50 	return 0;
51 }
52 
53 void __weak test_attr__ready(void) { }
54 
55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
56 {
57 }
58 
59 static struct {
60 	size_t	size;
61 	int	(*init)(struct perf_evsel *evsel);
62 	void	(*fini)(struct perf_evsel *evsel);
63 } perf_evsel__object = {
64 	.size = sizeof(struct perf_evsel),
65 	.init = perf_evsel__no_extra_init,
66 	.fini = perf_evsel__no_extra_fini,
67 };
68 
69 int perf_evsel__object_config(size_t object_size,
70 			      int (*init)(struct perf_evsel *evsel),
71 			      void (*fini)(struct perf_evsel *evsel))
72 {
73 
74 	if (object_size == 0)
75 		goto set_methods;
76 
77 	if (perf_evsel__object.size > object_size)
78 		return -EINVAL;
79 
80 	perf_evsel__object.size = object_size;
81 
82 set_methods:
83 	if (init != NULL)
84 		perf_evsel__object.init = init;
85 
86 	if (fini != NULL)
87 		perf_evsel__object.fini = fini;
88 
89 	return 0;
90 }
91 
92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
93 
94 int __perf_evsel__sample_size(u64 sample_type)
95 {
96 	u64 mask = sample_type & PERF_SAMPLE_MASK;
97 	int size = 0;
98 	int i;
99 
100 	for (i = 0; i < 64; i++) {
101 		if (mask & (1ULL << i))
102 			size++;
103 	}
104 
105 	size *= sizeof(u64);
106 
107 	return size;
108 }
109 
110 /**
111  * __perf_evsel__calc_id_pos - calculate id_pos.
112  * @sample_type: sample type
113  *
114  * This function returns the position of the event id (PERF_SAMPLE_ID or
115  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
116  * sample_event.
117  */
118 static int __perf_evsel__calc_id_pos(u64 sample_type)
119 {
120 	int idx = 0;
121 
122 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
123 		return 0;
124 
125 	if (!(sample_type & PERF_SAMPLE_ID))
126 		return -1;
127 
128 	if (sample_type & PERF_SAMPLE_IP)
129 		idx += 1;
130 
131 	if (sample_type & PERF_SAMPLE_TID)
132 		idx += 1;
133 
134 	if (sample_type & PERF_SAMPLE_TIME)
135 		idx += 1;
136 
137 	if (sample_type & PERF_SAMPLE_ADDR)
138 		idx += 1;
139 
140 	return idx;
141 }
142 
143 /**
144  * __perf_evsel__calc_is_pos - calculate is_pos.
145  * @sample_type: sample type
146  *
147  * This function returns the position (counting backwards) of the event id
148  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
149  * sample_id_all is used there is an id sample appended to non-sample events.
150  */
151 static int __perf_evsel__calc_is_pos(u64 sample_type)
152 {
153 	int idx = 1;
154 
155 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
156 		return 1;
157 
158 	if (!(sample_type & PERF_SAMPLE_ID))
159 		return -1;
160 
161 	if (sample_type & PERF_SAMPLE_CPU)
162 		idx += 1;
163 
164 	if (sample_type & PERF_SAMPLE_STREAM_ID)
165 		idx += 1;
166 
167 	return idx;
168 }
169 
170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
171 {
172 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
173 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
174 }
175 
176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
177 				  enum perf_event_sample_format bit)
178 {
179 	if (!(evsel->attr.sample_type & bit)) {
180 		evsel->attr.sample_type |= bit;
181 		evsel->sample_size += sizeof(u64);
182 		perf_evsel__calc_id_pos(evsel);
183 	}
184 }
185 
186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
187 				    enum perf_event_sample_format bit)
188 {
189 	if (evsel->attr.sample_type & bit) {
190 		evsel->attr.sample_type &= ~bit;
191 		evsel->sample_size -= sizeof(u64);
192 		perf_evsel__calc_id_pos(evsel);
193 	}
194 }
195 
196 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
197 			       bool can_sample_identifier)
198 {
199 	if (can_sample_identifier) {
200 		perf_evsel__reset_sample_bit(evsel, ID);
201 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
202 	} else {
203 		perf_evsel__set_sample_bit(evsel, ID);
204 	}
205 	evsel->attr.read_format |= PERF_FORMAT_ID;
206 }
207 
208 /**
209  * perf_evsel__is_function_event - Return whether given evsel is a function
210  * trace event
211  *
212  * @evsel - evsel selector to be tested
213  *
214  * Return %true if event is function trace event
215  */
216 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
217 {
218 #define FUNCTION_EVENT "ftrace:function"
219 
220 	return evsel->name &&
221 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
222 
223 #undef FUNCTION_EVENT
224 }
225 
226 void perf_evsel__init(struct perf_evsel *evsel,
227 		      struct perf_event_attr *attr, int idx)
228 {
229 	evsel->idx	   = idx;
230 	evsel->tracking	   = !idx;
231 	evsel->attr	   = *attr;
232 	evsel->leader	   = evsel;
233 	evsel->unit	   = "";
234 	evsel->scale	   = 1.0;
235 	evsel->max_events  = ULONG_MAX;
236 	evsel->evlist	   = NULL;
237 	evsel->bpf_fd	   = -1;
238 	INIT_LIST_HEAD(&evsel->node);
239 	INIT_LIST_HEAD(&evsel->config_terms);
240 	perf_evsel__object.init(evsel);
241 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
242 	perf_evsel__calc_id_pos(evsel);
243 	evsel->cmdline_group_boundary = false;
244 	evsel->metric_expr   = NULL;
245 	evsel->metric_name   = NULL;
246 	evsel->metric_events = NULL;
247 	evsel->collect_stat  = false;
248 	evsel->pmu_name      = NULL;
249 }
250 
251 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
252 {
253 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
254 
255 	if (!evsel)
256 		return NULL;
257 	perf_evsel__init(evsel, attr, idx);
258 
259 	if (perf_evsel__is_bpf_output(evsel)) {
260 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
261 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
262 		evsel->attr.sample_period = 1;
263 	}
264 
265 	if (perf_evsel__is_clock(evsel)) {
266 		/*
267 		 * The evsel->unit points to static alias->unit
268 		 * so it's ok to use static string in here.
269 		 */
270 		static const char *unit = "msec";
271 
272 		evsel->unit = unit;
273 		evsel->scale = 1e-6;
274 	}
275 
276 	return evsel;
277 }
278 
279 static bool perf_event_can_profile_kernel(void)
280 {
281 	return geteuid() == 0 || perf_event_paranoid() == -1;
282 }
283 
284 struct perf_evsel *perf_evsel__new_cycles(bool precise)
285 {
286 	struct perf_event_attr attr = {
287 		.type	= PERF_TYPE_HARDWARE,
288 		.config	= PERF_COUNT_HW_CPU_CYCLES,
289 		.exclude_kernel	= !perf_event_can_profile_kernel(),
290 	};
291 	struct perf_evsel *evsel;
292 
293 	event_attr_init(&attr);
294 
295 	if (!precise)
296 		goto new_event;
297 
298 	perf_event_attr__set_max_precise_ip(&attr);
299 	/*
300 	 * Now let the usual logic to set up the perf_event_attr defaults
301 	 * to kick in when we return and before perf_evsel__open() is called.
302 	 */
303 new_event:
304 	evsel = perf_evsel__new(&attr);
305 	if (evsel == NULL)
306 		goto out;
307 
308 	/* use asprintf() because free(evsel) assumes name is allocated */
309 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
310 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
311 		     attr.exclude_kernel ? "u" : "",
312 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
313 		goto error_free;
314 out:
315 	return evsel;
316 error_free:
317 	perf_evsel__delete(evsel);
318 	evsel = NULL;
319 	goto out;
320 }
321 
322 /*
323  * Returns pointer with encoded error via <linux/err.h> interface.
324  */
325 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
326 {
327 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
328 	int err = -ENOMEM;
329 
330 	if (evsel == NULL) {
331 		goto out_err;
332 	} else {
333 		struct perf_event_attr attr = {
334 			.type	       = PERF_TYPE_TRACEPOINT,
335 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
336 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
337 		};
338 
339 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
340 			goto out_free;
341 
342 		evsel->tp_format = trace_event__tp_format(sys, name);
343 		if (IS_ERR(evsel->tp_format)) {
344 			err = PTR_ERR(evsel->tp_format);
345 			goto out_free;
346 		}
347 
348 		event_attr_init(&attr);
349 		attr.config = evsel->tp_format->id;
350 		attr.sample_period = 1;
351 		perf_evsel__init(evsel, &attr, idx);
352 	}
353 
354 	return evsel;
355 
356 out_free:
357 	zfree(&evsel->name);
358 	free(evsel);
359 out_err:
360 	return ERR_PTR(err);
361 }
362 
363 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
364 	"cycles",
365 	"instructions",
366 	"cache-references",
367 	"cache-misses",
368 	"branches",
369 	"branch-misses",
370 	"bus-cycles",
371 	"stalled-cycles-frontend",
372 	"stalled-cycles-backend",
373 	"ref-cycles",
374 };
375 
376 static const char *__perf_evsel__hw_name(u64 config)
377 {
378 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
379 		return perf_evsel__hw_names[config];
380 
381 	return "unknown-hardware";
382 }
383 
384 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
385 {
386 	int colon = 0, r = 0;
387 	struct perf_event_attr *attr = &evsel->attr;
388 	bool exclude_guest_default = false;
389 
390 #define MOD_PRINT(context, mod)	do {					\
391 		if (!attr->exclude_##context) {				\
392 			if (!colon) colon = ++r;			\
393 			r += scnprintf(bf + r, size - r, "%c", mod);	\
394 		} } while(0)
395 
396 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
397 		MOD_PRINT(kernel, 'k');
398 		MOD_PRINT(user, 'u');
399 		MOD_PRINT(hv, 'h');
400 		exclude_guest_default = true;
401 	}
402 
403 	if (attr->precise_ip) {
404 		if (!colon)
405 			colon = ++r;
406 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
407 		exclude_guest_default = true;
408 	}
409 
410 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
411 		MOD_PRINT(host, 'H');
412 		MOD_PRINT(guest, 'G');
413 	}
414 #undef MOD_PRINT
415 	if (colon)
416 		bf[colon - 1] = ':';
417 	return r;
418 }
419 
420 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
421 {
422 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
423 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
424 }
425 
426 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
427 	"cpu-clock",
428 	"task-clock",
429 	"page-faults",
430 	"context-switches",
431 	"cpu-migrations",
432 	"minor-faults",
433 	"major-faults",
434 	"alignment-faults",
435 	"emulation-faults",
436 	"dummy",
437 };
438 
439 static const char *__perf_evsel__sw_name(u64 config)
440 {
441 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
442 		return perf_evsel__sw_names[config];
443 	return "unknown-software";
444 }
445 
446 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
447 {
448 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
449 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
450 }
451 
452 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
453 {
454 	int r;
455 
456 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
457 
458 	if (type & HW_BREAKPOINT_R)
459 		r += scnprintf(bf + r, size - r, "r");
460 
461 	if (type & HW_BREAKPOINT_W)
462 		r += scnprintf(bf + r, size - r, "w");
463 
464 	if (type & HW_BREAKPOINT_X)
465 		r += scnprintf(bf + r, size - r, "x");
466 
467 	return r;
468 }
469 
470 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
471 {
472 	struct perf_event_attr *attr = &evsel->attr;
473 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
474 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
475 }
476 
477 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
478 				[PERF_EVSEL__MAX_ALIASES] = {
479  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
480  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
481  { "LLC",	"L2",							},
482  { "dTLB",	"d-tlb",	"Data-TLB",				},
483  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
484  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
485  { "node",								},
486 };
487 
488 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
489 				   [PERF_EVSEL__MAX_ALIASES] = {
490  { "load",	"loads",	"read",					},
491  { "store",	"stores",	"write",				},
492  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
493 };
494 
495 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
496 				       [PERF_EVSEL__MAX_ALIASES] = {
497  { "refs",	"Reference",	"ops",		"access",		},
498  { "misses",	"miss",							},
499 };
500 
501 #define C(x)		PERF_COUNT_HW_CACHE_##x
502 #define CACHE_READ	(1 << C(OP_READ))
503 #define CACHE_WRITE	(1 << C(OP_WRITE))
504 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
505 #define COP(x)		(1 << x)
506 
507 /*
508  * cache operartion stat
509  * L1I : Read and prefetch only
510  * ITLB and BPU : Read-only
511  */
512 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
513  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
514  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
515  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
516  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
517  [C(ITLB)]	= (CACHE_READ),
518  [C(BPU)]	= (CACHE_READ),
519  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
520 };
521 
522 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
523 {
524 	if (perf_evsel__hw_cache_stat[type] & COP(op))
525 		return true;	/* valid */
526 	else
527 		return false;	/* invalid */
528 }
529 
530 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
531 					    char *bf, size_t size)
532 {
533 	if (result) {
534 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
535 				 perf_evsel__hw_cache_op[op][0],
536 				 perf_evsel__hw_cache_result[result][0]);
537 	}
538 
539 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
540 			 perf_evsel__hw_cache_op[op][1]);
541 }
542 
543 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
544 {
545 	u8 op, result, type = (config >>  0) & 0xff;
546 	const char *err = "unknown-ext-hardware-cache-type";
547 
548 	if (type >= PERF_COUNT_HW_CACHE_MAX)
549 		goto out_err;
550 
551 	op = (config >>  8) & 0xff;
552 	err = "unknown-ext-hardware-cache-op";
553 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
554 		goto out_err;
555 
556 	result = (config >> 16) & 0xff;
557 	err = "unknown-ext-hardware-cache-result";
558 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
559 		goto out_err;
560 
561 	err = "invalid-cache";
562 	if (!perf_evsel__is_cache_op_valid(type, op))
563 		goto out_err;
564 
565 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
566 out_err:
567 	return scnprintf(bf, size, "%s", err);
568 }
569 
570 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
571 {
572 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
573 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
574 }
575 
576 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
577 {
578 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
579 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
580 }
581 
582 const char *perf_evsel__name(struct perf_evsel *evsel)
583 {
584 	char bf[128];
585 
586 	if (evsel->name)
587 		return evsel->name;
588 
589 	switch (evsel->attr.type) {
590 	case PERF_TYPE_RAW:
591 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
592 		break;
593 
594 	case PERF_TYPE_HARDWARE:
595 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
596 		break;
597 
598 	case PERF_TYPE_HW_CACHE:
599 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
600 		break;
601 
602 	case PERF_TYPE_SOFTWARE:
603 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
604 		break;
605 
606 	case PERF_TYPE_TRACEPOINT:
607 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
608 		break;
609 
610 	case PERF_TYPE_BREAKPOINT:
611 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
612 		break;
613 
614 	default:
615 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
616 			  evsel->attr.type);
617 		break;
618 	}
619 
620 	evsel->name = strdup(bf);
621 
622 	return evsel->name ?: "unknown";
623 }
624 
625 const char *perf_evsel__group_name(struct perf_evsel *evsel)
626 {
627 	return evsel->group_name ?: "anon group";
628 }
629 
630 /*
631  * Returns the group details for the specified leader,
632  * with following rules.
633  *
634  *  For record -e '{cycles,instructions}'
635  *    'anon group { cycles:u, instructions:u }'
636  *
637  *  For record -e 'cycles,instructions' and report --group
638  *    'cycles:u, instructions:u'
639  */
640 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
641 {
642 	int ret = 0;
643 	struct perf_evsel *pos;
644 	const char *group_name = perf_evsel__group_name(evsel);
645 
646 	if (!evsel->forced_leader)
647 		ret = scnprintf(buf, size, "%s { ", group_name);
648 
649 	ret += scnprintf(buf + ret, size - ret, "%s",
650 			 perf_evsel__name(evsel));
651 
652 	for_each_group_member(pos, evsel)
653 		ret += scnprintf(buf + ret, size - ret, ", %s",
654 				 perf_evsel__name(pos));
655 
656 	if (!evsel->forced_leader)
657 		ret += scnprintf(buf + ret, size - ret, " }");
658 
659 	return ret;
660 }
661 
662 static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
663 					   struct record_opts *opts,
664 					   struct callchain_param *param)
665 {
666 	bool function = perf_evsel__is_function_event(evsel);
667 	struct perf_event_attr *attr = &evsel->attr;
668 
669 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
670 
671 	attr->sample_max_stack = param->max_stack;
672 
673 	if (param->record_mode == CALLCHAIN_LBR) {
674 		if (!opts->branch_stack) {
675 			if (attr->exclude_user) {
676 				pr_warning("LBR callstack option is only available "
677 					   "to get user callchain information. "
678 					   "Falling back to framepointers.\n");
679 			} else {
680 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
681 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
682 							PERF_SAMPLE_BRANCH_CALL_STACK |
683 							PERF_SAMPLE_BRANCH_NO_CYCLES |
684 							PERF_SAMPLE_BRANCH_NO_FLAGS;
685 			}
686 		} else
687 			 pr_warning("Cannot use LBR callstack with branch stack. "
688 				    "Falling back to framepointers.\n");
689 	}
690 
691 	if (param->record_mode == CALLCHAIN_DWARF) {
692 		if (!function) {
693 			perf_evsel__set_sample_bit(evsel, REGS_USER);
694 			perf_evsel__set_sample_bit(evsel, STACK_USER);
695 			attr->sample_regs_user |= PERF_REGS_MASK;
696 			attr->sample_stack_user = param->dump_size;
697 			attr->exclude_callchain_user = 1;
698 		} else {
699 			pr_info("Cannot use DWARF unwind for function trace event,"
700 				" falling back to framepointers.\n");
701 		}
702 	}
703 
704 	if (function) {
705 		pr_info("Disabling user space callchains for function trace event.\n");
706 		attr->exclude_callchain_user = 1;
707 	}
708 }
709 
710 void perf_evsel__config_callchain(struct perf_evsel *evsel,
711 				  struct record_opts *opts,
712 				  struct callchain_param *param)
713 {
714 	if (param->enabled)
715 		return __perf_evsel__config_callchain(evsel, opts, param);
716 }
717 
718 static void
719 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
720 			    struct callchain_param *param)
721 {
722 	struct perf_event_attr *attr = &evsel->attr;
723 
724 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
725 	if (param->record_mode == CALLCHAIN_LBR) {
726 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
727 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
728 					      PERF_SAMPLE_BRANCH_CALL_STACK);
729 	}
730 	if (param->record_mode == CALLCHAIN_DWARF) {
731 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
732 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
733 	}
734 }
735 
736 static void apply_config_terms(struct perf_evsel *evsel,
737 			       struct record_opts *opts, bool track)
738 {
739 	struct perf_evsel_config_term *term;
740 	struct list_head *config_terms = &evsel->config_terms;
741 	struct perf_event_attr *attr = &evsel->attr;
742 	/* callgraph default */
743 	struct callchain_param param = {
744 		.record_mode = callchain_param.record_mode,
745 	};
746 	u32 dump_size = 0;
747 	int max_stack = 0;
748 	const char *callgraph_buf = NULL;
749 
750 	list_for_each_entry(term, config_terms, list) {
751 		switch (term->type) {
752 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
753 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
754 				attr->sample_period = term->val.period;
755 				attr->freq = 0;
756 				perf_evsel__reset_sample_bit(evsel, PERIOD);
757 			}
758 			break;
759 		case PERF_EVSEL__CONFIG_TERM_FREQ:
760 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
761 				attr->sample_freq = term->val.freq;
762 				attr->freq = 1;
763 				perf_evsel__set_sample_bit(evsel, PERIOD);
764 			}
765 			break;
766 		case PERF_EVSEL__CONFIG_TERM_TIME:
767 			if (term->val.time)
768 				perf_evsel__set_sample_bit(evsel, TIME);
769 			else
770 				perf_evsel__reset_sample_bit(evsel, TIME);
771 			break;
772 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
773 			callgraph_buf = term->val.callgraph;
774 			break;
775 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
776 			if (term->val.branch && strcmp(term->val.branch, "no")) {
777 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
778 				parse_branch_str(term->val.branch,
779 						 &attr->branch_sample_type);
780 			} else
781 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
782 			break;
783 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
784 			dump_size = term->val.stack_user;
785 			break;
786 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
787 			max_stack = term->val.max_stack;
788 			break;
789 		case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS:
790 			evsel->max_events = term->val.max_events;
791 			break;
792 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
793 			/*
794 			 * attr->inherit should has already been set by
795 			 * perf_evsel__config. If user explicitly set
796 			 * inherit using config terms, override global
797 			 * opt->no_inherit setting.
798 			 */
799 			attr->inherit = term->val.inherit ? 1 : 0;
800 			break;
801 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
802 			attr->write_backward = term->val.overwrite ? 1 : 0;
803 			break;
804 		case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
805 			break;
806 		default:
807 			break;
808 		}
809 	}
810 
811 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
812 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
813 		bool sample_address = false;
814 
815 		if (max_stack) {
816 			param.max_stack = max_stack;
817 			if (callgraph_buf == NULL)
818 				callgraph_buf = "fp";
819 		}
820 
821 		/* parse callgraph parameters */
822 		if (callgraph_buf != NULL) {
823 			if (!strcmp(callgraph_buf, "no")) {
824 				param.enabled = false;
825 				param.record_mode = CALLCHAIN_NONE;
826 			} else {
827 				param.enabled = true;
828 				if (parse_callchain_record(callgraph_buf, &param)) {
829 					pr_err("per-event callgraph setting for %s failed. "
830 					       "Apply callgraph global setting for it\n",
831 					       evsel->name);
832 					return;
833 				}
834 				if (param.record_mode == CALLCHAIN_DWARF)
835 					sample_address = true;
836 			}
837 		}
838 		if (dump_size > 0) {
839 			dump_size = round_up(dump_size, sizeof(u64));
840 			param.dump_size = dump_size;
841 		}
842 
843 		/* If global callgraph set, clear it */
844 		if (callchain_param.enabled)
845 			perf_evsel__reset_callgraph(evsel, &callchain_param);
846 
847 		/* set perf-event callgraph */
848 		if (param.enabled) {
849 			if (sample_address) {
850 				perf_evsel__set_sample_bit(evsel, ADDR);
851 				perf_evsel__set_sample_bit(evsel, DATA_SRC);
852 				evsel->attr.mmap_data = track;
853 			}
854 			perf_evsel__config_callchain(evsel, opts, &param);
855 		}
856 	}
857 }
858 
859 static bool is_dummy_event(struct perf_evsel *evsel)
860 {
861 	return (evsel->attr.type == PERF_TYPE_SOFTWARE) &&
862 	       (evsel->attr.config == PERF_COUNT_SW_DUMMY);
863 }
864 
865 /*
866  * The enable_on_exec/disabled value strategy:
867  *
868  *  1) For any type of traced program:
869  *    - all independent events and group leaders are disabled
870  *    - all group members are enabled
871  *
872  *     Group members are ruled by group leaders. They need to
873  *     be enabled, because the group scheduling relies on that.
874  *
875  *  2) For traced programs executed by perf:
876  *     - all independent events and group leaders have
877  *       enable_on_exec set
878  *     - we don't specifically enable or disable any event during
879  *       the record command
880  *
881  *     Independent events and group leaders are initially disabled
882  *     and get enabled by exec. Group members are ruled by group
883  *     leaders as stated in 1).
884  *
885  *  3) For traced programs attached by perf (pid/tid):
886  *     - we specifically enable or disable all events during
887  *       the record command
888  *
889  *     When attaching events to already running traced we
890  *     enable/disable events specifically, as there's no
891  *     initial traced exec call.
892  */
893 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
894 			struct callchain_param *callchain)
895 {
896 	struct perf_evsel *leader = evsel->leader;
897 	struct perf_event_attr *attr = &evsel->attr;
898 	int track = evsel->tracking;
899 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
900 
901 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
902 	attr->inherit	    = !opts->no_inherit;
903 	attr->write_backward = opts->overwrite ? 1 : 0;
904 
905 	perf_evsel__set_sample_bit(evsel, IP);
906 	perf_evsel__set_sample_bit(evsel, TID);
907 
908 	if (evsel->sample_read) {
909 		perf_evsel__set_sample_bit(evsel, READ);
910 
911 		/*
912 		 * We need ID even in case of single event, because
913 		 * PERF_SAMPLE_READ process ID specific data.
914 		 */
915 		perf_evsel__set_sample_id(evsel, false);
916 
917 		/*
918 		 * Apply group format only if we belong to group
919 		 * with more than one members.
920 		 */
921 		if (leader->nr_members > 1) {
922 			attr->read_format |= PERF_FORMAT_GROUP;
923 			attr->inherit = 0;
924 		}
925 	}
926 
927 	/*
928 	 * We default some events to have a default interval. But keep
929 	 * it a weak assumption overridable by the user.
930 	 */
931 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
932 				     opts->user_interval != ULLONG_MAX)) {
933 		if (opts->freq) {
934 			perf_evsel__set_sample_bit(evsel, PERIOD);
935 			attr->freq		= 1;
936 			attr->sample_freq	= opts->freq;
937 		} else {
938 			attr->sample_period = opts->default_interval;
939 		}
940 	}
941 
942 	/*
943 	 * Disable sampling for all group members other
944 	 * than leader in case leader 'leads' the sampling.
945 	 */
946 	if ((leader != evsel) && leader->sample_read) {
947 		attr->freq           = 0;
948 		attr->sample_freq    = 0;
949 		attr->sample_period  = 0;
950 		attr->write_backward = 0;
951 
952 		/*
953 		 * We don't get sample for slave events, we make them
954 		 * when delivering group leader sample. Set the slave
955 		 * event to follow the master sample_type to ease up
956 		 * report.
957 		 */
958 		attr->sample_type = leader->attr.sample_type;
959 	}
960 
961 	if (opts->no_samples)
962 		attr->sample_freq = 0;
963 
964 	if (opts->inherit_stat) {
965 		evsel->attr.read_format |=
966 			PERF_FORMAT_TOTAL_TIME_ENABLED |
967 			PERF_FORMAT_TOTAL_TIME_RUNNING |
968 			PERF_FORMAT_ID;
969 		attr->inherit_stat = 1;
970 	}
971 
972 	if (opts->sample_address) {
973 		perf_evsel__set_sample_bit(evsel, ADDR);
974 		attr->mmap_data = track;
975 	}
976 
977 	/*
978 	 * We don't allow user space callchains for  function trace
979 	 * event, due to issues with page faults while tracing page
980 	 * fault handler and its overall trickiness nature.
981 	 */
982 	if (perf_evsel__is_function_event(evsel))
983 		evsel->attr.exclude_callchain_user = 1;
984 
985 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
986 		perf_evsel__config_callchain(evsel, opts, callchain);
987 
988 	if (opts->sample_intr_regs) {
989 		attr->sample_regs_intr = opts->sample_intr_regs;
990 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
991 	}
992 
993 	if (opts->sample_user_regs) {
994 		attr->sample_regs_user |= opts->sample_user_regs;
995 		perf_evsel__set_sample_bit(evsel, REGS_USER);
996 	}
997 
998 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
999 		perf_evsel__set_sample_bit(evsel, CPU);
1000 
1001 	/*
1002 	 * When the user explicitly disabled time don't force it here.
1003 	 */
1004 	if (opts->sample_time &&
1005 	    (!perf_missing_features.sample_id_all &&
1006 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1007 	     opts->sample_time_set)))
1008 		perf_evsel__set_sample_bit(evsel, TIME);
1009 
1010 	if (opts->raw_samples && !evsel->no_aux_samples) {
1011 		perf_evsel__set_sample_bit(evsel, TIME);
1012 		perf_evsel__set_sample_bit(evsel, RAW);
1013 		perf_evsel__set_sample_bit(evsel, CPU);
1014 	}
1015 
1016 	if (opts->sample_address)
1017 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
1018 
1019 	if (opts->sample_phys_addr)
1020 		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1021 
1022 	if (opts->no_buffering) {
1023 		attr->watermark = 0;
1024 		attr->wakeup_events = 1;
1025 	}
1026 	if (opts->branch_stack && !evsel->no_aux_samples) {
1027 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1028 		attr->branch_sample_type = opts->branch_stack;
1029 	}
1030 
1031 	if (opts->sample_weight)
1032 		perf_evsel__set_sample_bit(evsel, WEIGHT);
1033 
1034 	attr->task  = track;
1035 	attr->mmap  = track;
1036 	attr->mmap2 = track && !perf_missing_features.mmap2;
1037 	attr->comm  = track;
1038 	attr->ksymbol = track && !perf_missing_features.ksymbol;
1039 	attr->bpf_event = track && opts->bpf_event &&
1040 		!perf_missing_features.bpf_event;
1041 
1042 	if (opts->record_namespaces)
1043 		attr->namespaces  = track;
1044 
1045 	if (opts->record_switch_events)
1046 		attr->context_switch = track;
1047 
1048 	if (opts->sample_transaction)
1049 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
1050 
1051 	if (opts->running_time) {
1052 		evsel->attr.read_format |=
1053 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1054 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1055 	}
1056 
1057 	/*
1058 	 * XXX see the function comment above
1059 	 *
1060 	 * Disabling only independent events or group leaders,
1061 	 * keeping group members enabled.
1062 	 */
1063 	if (perf_evsel__is_group_leader(evsel))
1064 		attr->disabled = 1;
1065 
1066 	/*
1067 	 * Setting enable_on_exec for independent events and
1068 	 * group leaders for traced executed by perf.
1069 	 */
1070 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1071 		!opts->initial_delay)
1072 		attr->enable_on_exec = 1;
1073 
1074 	if (evsel->immediate) {
1075 		attr->disabled = 0;
1076 		attr->enable_on_exec = 0;
1077 	}
1078 
1079 	clockid = opts->clockid;
1080 	if (opts->use_clockid) {
1081 		attr->use_clockid = 1;
1082 		attr->clockid = opts->clockid;
1083 	}
1084 
1085 	if (evsel->precise_max)
1086 		perf_event_attr__set_max_precise_ip(attr);
1087 
1088 	if (opts->all_user) {
1089 		attr->exclude_kernel = 1;
1090 		attr->exclude_user   = 0;
1091 	}
1092 
1093 	if (opts->all_kernel) {
1094 		attr->exclude_kernel = 0;
1095 		attr->exclude_user   = 1;
1096 	}
1097 
1098 	if (evsel->own_cpus || evsel->unit)
1099 		evsel->attr.read_format |= PERF_FORMAT_ID;
1100 
1101 	/*
1102 	 * Apply event specific term settings,
1103 	 * it overloads any global configuration.
1104 	 */
1105 	apply_config_terms(evsel, opts, track);
1106 
1107 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1108 
1109 	/* The --period option takes the precedence. */
1110 	if (opts->period_set) {
1111 		if (opts->period)
1112 			perf_evsel__set_sample_bit(evsel, PERIOD);
1113 		else
1114 			perf_evsel__reset_sample_bit(evsel, PERIOD);
1115 	}
1116 
1117 	/*
1118 	 * For initial_delay, a dummy event is added implicitly.
1119 	 * The software event will trigger -EOPNOTSUPP error out,
1120 	 * if BRANCH_STACK bit is set.
1121 	 */
1122 	if (opts->initial_delay && is_dummy_event(evsel))
1123 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1124 }
1125 
1126 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1127 {
1128 	if (evsel->system_wide)
1129 		nthreads = 1;
1130 
1131 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1132 
1133 	if (evsel->fd) {
1134 		int cpu, thread;
1135 		for (cpu = 0; cpu < ncpus; cpu++) {
1136 			for (thread = 0; thread < nthreads; thread++) {
1137 				FD(evsel, cpu, thread) = -1;
1138 			}
1139 		}
1140 	}
1141 
1142 	return evsel->fd != NULL ? 0 : -ENOMEM;
1143 }
1144 
1145 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1146 			  int ioc,  void *arg)
1147 {
1148 	int cpu, thread;
1149 
1150 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1151 		for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1152 			int fd = FD(evsel, cpu, thread),
1153 			    err = ioctl(fd, ioc, arg);
1154 
1155 			if (err)
1156 				return err;
1157 		}
1158 	}
1159 
1160 	return 0;
1161 }
1162 
1163 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1164 {
1165 	return perf_evsel__run_ioctl(evsel,
1166 				     PERF_EVENT_IOC_SET_FILTER,
1167 				     (void *)filter);
1168 }
1169 
1170 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1171 {
1172 	char *new_filter = strdup(filter);
1173 
1174 	if (new_filter != NULL) {
1175 		free(evsel->filter);
1176 		evsel->filter = new_filter;
1177 		return 0;
1178 	}
1179 
1180 	return -1;
1181 }
1182 
1183 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1184 				     const char *fmt, const char *filter)
1185 {
1186 	char *new_filter;
1187 
1188 	if (evsel->filter == NULL)
1189 		return perf_evsel__set_filter(evsel, filter);
1190 
1191 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1192 		free(evsel->filter);
1193 		evsel->filter = new_filter;
1194 		return 0;
1195 	}
1196 
1197 	return -1;
1198 }
1199 
1200 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1201 {
1202 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1203 }
1204 
1205 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1206 {
1207 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1208 }
1209 
1210 int perf_evsel__enable(struct perf_evsel *evsel)
1211 {
1212 	int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0);
1213 
1214 	if (!err)
1215 		evsel->disabled = false;
1216 
1217 	return err;
1218 }
1219 
1220 int perf_evsel__disable(struct perf_evsel *evsel)
1221 {
1222 	int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0);
1223 	/*
1224 	 * We mark it disabled here so that tools that disable a event can
1225 	 * ignore events after they disable it. I.e. the ring buffer may have
1226 	 * already a few more events queued up before the kernel got the stop
1227 	 * request.
1228 	 */
1229 	if (!err)
1230 		evsel->disabled = true;
1231 
1232 	return err;
1233 }
1234 
1235 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1236 {
1237 	if (ncpus == 0 || nthreads == 0)
1238 		return 0;
1239 
1240 	if (evsel->system_wide)
1241 		nthreads = 1;
1242 
1243 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1244 	if (evsel->sample_id == NULL)
1245 		return -ENOMEM;
1246 
1247 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1248 	if (evsel->id == NULL) {
1249 		xyarray__delete(evsel->sample_id);
1250 		evsel->sample_id = NULL;
1251 		return -ENOMEM;
1252 	}
1253 
1254 	return 0;
1255 }
1256 
1257 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1258 {
1259 	xyarray__delete(evsel->fd);
1260 	evsel->fd = NULL;
1261 }
1262 
1263 static void perf_evsel__free_id(struct perf_evsel *evsel)
1264 {
1265 	xyarray__delete(evsel->sample_id);
1266 	evsel->sample_id = NULL;
1267 	zfree(&evsel->id);
1268 }
1269 
1270 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1271 {
1272 	struct perf_evsel_config_term *term, *h;
1273 
1274 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1275 		list_del(&term->list);
1276 		free(term);
1277 	}
1278 }
1279 
1280 void perf_evsel__close_fd(struct perf_evsel *evsel)
1281 {
1282 	int cpu, thread;
1283 
1284 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1285 		for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1286 			close(FD(evsel, cpu, thread));
1287 			FD(evsel, cpu, thread) = -1;
1288 		}
1289 }
1290 
1291 void perf_evsel__exit(struct perf_evsel *evsel)
1292 {
1293 	assert(list_empty(&evsel->node));
1294 	assert(evsel->evlist == NULL);
1295 	perf_evsel__free_fd(evsel);
1296 	perf_evsel__free_id(evsel);
1297 	perf_evsel__free_config_terms(evsel);
1298 	cgroup__put(evsel->cgrp);
1299 	cpu_map__put(evsel->cpus);
1300 	cpu_map__put(evsel->own_cpus);
1301 	thread_map__put(evsel->threads);
1302 	zfree(&evsel->group_name);
1303 	zfree(&evsel->name);
1304 	perf_evsel__object.fini(evsel);
1305 }
1306 
1307 void perf_evsel__delete(struct perf_evsel *evsel)
1308 {
1309 	perf_evsel__exit(evsel);
1310 	free(evsel);
1311 }
1312 
1313 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1314 				struct perf_counts_values *count)
1315 {
1316 	struct perf_counts_values tmp;
1317 
1318 	if (!evsel->prev_raw_counts)
1319 		return;
1320 
1321 	if (cpu == -1) {
1322 		tmp = evsel->prev_raw_counts->aggr;
1323 		evsel->prev_raw_counts->aggr = *count;
1324 	} else {
1325 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1326 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1327 	}
1328 
1329 	count->val = count->val - tmp.val;
1330 	count->ena = count->ena - tmp.ena;
1331 	count->run = count->run - tmp.run;
1332 }
1333 
1334 void perf_counts_values__scale(struct perf_counts_values *count,
1335 			       bool scale, s8 *pscaled)
1336 {
1337 	s8 scaled = 0;
1338 
1339 	if (scale) {
1340 		if (count->run == 0) {
1341 			scaled = -1;
1342 			count->val = 0;
1343 		} else if (count->run < count->ena) {
1344 			scaled = 1;
1345 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1346 		}
1347 	} else
1348 		count->ena = count->run = 0;
1349 
1350 	if (pscaled)
1351 		*pscaled = scaled;
1352 }
1353 
1354 static int perf_evsel__read_size(struct perf_evsel *evsel)
1355 {
1356 	u64 read_format = evsel->attr.read_format;
1357 	int entry = sizeof(u64); /* value */
1358 	int size = 0;
1359 	int nr = 1;
1360 
1361 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1362 		size += sizeof(u64);
1363 
1364 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1365 		size += sizeof(u64);
1366 
1367 	if (read_format & PERF_FORMAT_ID)
1368 		entry += sizeof(u64);
1369 
1370 	if (read_format & PERF_FORMAT_GROUP) {
1371 		nr = evsel->nr_members;
1372 		size += sizeof(u64);
1373 	}
1374 
1375 	size += entry * nr;
1376 	return size;
1377 }
1378 
1379 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1380 		     struct perf_counts_values *count)
1381 {
1382 	size_t size = perf_evsel__read_size(evsel);
1383 
1384 	memset(count, 0, sizeof(*count));
1385 
1386 	if (FD(evsel, cpu, thread) < 0)
1387 		return -EINVAL;
1388 
1389 	if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1390 		return -errno;
1391 
1392 	return 0;
1393 }
1394 
1395 static int
1396 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1397 {
1398 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1399 
1400 	return perf_evsel__read(evsel, cpu, thread, count);
1401 }
1402 
1403 static void
1404 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1405 		      u64 val, u64 ena, u64 run)
1406 {
1407 	struct perf_counts_values *count;
1408 
1409 	count = perf_counts(counter->counts, cpu, thread);
1410 
1411 	count->val    = val;
1412 	count->ena    = ena;
1413 	count->run    = run;
1414 	count->loaded = true;
1415 }
1416 
1417 static int
1418 perf_evsel__process_group_data(struct perf_evsel *leader,
1419 			       int cpu, int thread, u64 *data)
1420 {
1421 	u64 read_format = leader->attr.read_format;
1422 	struct sample_read_value *v;
1423 	u64 nr, ena = 0, run = 0, i;
1424 
1425 	nr = *data++;
1426 
1427 	if (nr != (u64) leader->nr_members)
1428 		return -EINVAL;
1429 
1430 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1431 		ena = *data++;
1432 
1433 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1434 		run = *data++;
1435 
1436 	v = (struct sample_read_value *) data;
1437 
1438 	perf_evsel__set_count(leader, cpu, thread,
1439 			      v[0].value, ena, run);
1440 
1441 	for (i = 1; i < nr; i++) {
1442 		struct perf_evsel *counter;
1443 
1444 		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1445 		if (!counter)
1446 			return -EINVAL;
1447 
1448 		perf_evsel__set_count(counter, cpu, thread,
1449 				      v[i].value, ena, run);
1450 	}
1451 
1452 	return 0;
1453 }
1454 
1455 static int
1456 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1457 {
1458 	struct perf_stat_evsel *ps = leader->stats;
1459 	u64 read_format = leader->attr.read_format;
1460 	int size = perf_evsel__read_size(leader);
1461 	u64 *data = ps->group_data;
1462 
1463 	if (!(read_format & PERF_FORMAT_ID))
1464 		return -EINVAL;
1465 
1466 	if (!perf_evsel__is_group_leader(leader))
1467 		return -EINVAL;
1468 
1469 	if (!data) {
1470 		data = zalloc(size);
1471 		if (!data)
1472 			return -ENOMEM;
1473 
1474 		ps->group_data = data;
1475 	}
1476 
1477 	if (FD(leader, cpu, thread) < 0)
1478 		return -EINVAL;
1479 
1480 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1481 		return -errno;
1482 
1483 	return perf_evsel__process_group_data(leader, cpu, thread, data);
1484 }
1485 
1486 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1487 {
1488 	u64 read_format = evsel->attr.read_format;
1489 
1490 	if (read_format & PERF_FORMAT_GROUP)
1491 		return perf_evsel__read_group(evsel, cpu, thread);
1492 	else
1493 		return perf_evsel__read_one(evsel, cpu, thread);
1494 }
1495 
1496 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1497 			      int cpu, int thread, bool scale)
1498 {
1499 	struct perf_counts_values count;
1500 	size_t nv = scale ? 3 : 1;
1501 
1502 	if (FD(evsel, cpu, thread) < 0)
1503 		return -EINVAL;
1504 
1505 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1506 		return -ENOMEM;
1507 
1508 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1509 		return -errno;
1510 
1511 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1512 	perf_counts_values__scale(&count, scale, NULL);
1513 	*perf_counts(evsel->counts, cpu, thread) = count;
1514 	return 0;
1515 }
1516 
1517 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1518 {
1519 	struct perf_evsel *leader = evsel->leader;
1520 	int fd;
1521 
1522 	if (perf_evsel__is_group_leader(evsel))
1523 		return -1;
1524 
1525 	/*
1526 	 * Leader must be already processed/open,
1527 	 * if not it's a bug.
1528 	 */
1529 	BUG_ON(!leader->fd);
1530 
1531 	fd = FD(leader, cpu, thread);
1532 	BUG_ON(fd == -1);
1533 
1534 	return fd;
1535 }
1536 
1537 struct bit_names {
1538 	int bit;
1539 	const char *name;
1540 };
1541 
1542 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1543 {
1544 	bool first_bit = true;
1545 	int i = 0;
1546 
1547 	do {
1548 		if (value & bits[i].bit) {
1549 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1550 			first_bit = false;
1551 		}
1552 	} while (bits[++i].name != NULL);
1553 }
1554 
1555 static void __p_sample_type(char *buf, size_t size, u64 value)
1556 {
1557 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1558 	struct bit_names bits[] = {
1559 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1560 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1561 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1562 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1563 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1564 		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1565 		{ .name = NULL, }
1566 	};
1567 #undef bit_name
1568 	__p_bits(buf, size, value, bits);
1569 }
1570 
1571 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1572 {
1573 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1574 	struct bit_names bits[] = {
1575 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1576 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1577 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1578 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1579 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1580 		{ .name = NULL, }
1581 	};
1582 #undef bit_name
1583 	__p_bits(buf, size, value, bits);
1584 }
1585 
1586 static void __p_read_format(char *buf, size_t size, u64 value)
1587 {
1588 #define bit_name(n) { PERF_FORMAT_##n, #n }
1589 	struct bit_names bits[] = {
1590 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1591 		bit_name(ID), bit_name(GROUP),
1592 		{ .name = NULL, }
1593 	};
1594 #undef bit_name
1595 	__p_bits(buf, size, value, bits);
1596 }
1597 
1598 #define BUF_SIZE		1024
1599 
1600 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1601 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1602 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1603 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1604 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1605 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1606 
1607 #define PRINT_ATTRn(_n, _f, _p)				\
1608 do {							\
1609 	if (attr->_f) {					\
1610 		_p(attr->_f);				\
1611 		ret += attr__fprintf(fp, _n, buf, priv);\
1612 	}						\
1613 } while (0)
1614 
1615 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1616 
1617 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1618 			     attr__fprintf_f attr__fprintf, void *priv)
1619 {
1620 	char buf[BUF_SIZE];
1621 	int ret = 0;
1622 
1623 	PRINT_ATTRf(type, p_unsigned);
1624 	PRINT_ATTRf(size, p_unsigned);
1625 	PRINT_ATTRf(config, p_hex);
1626 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1627 	PRINT_ATTRf(sample_type, p_sample_type);
1628 	PRINT_ATTRf(read_format, p_read_format);
1629 
1630 	PRINT_ATTRf(disabled, p_unsigned);
1631 	PRINT_ATTRf(inherit, p_unsigned);
1632 	PRINT_ATTRf(pinned, p_unsigned);
1633 	PRINT_ATTRf(exclusive, p_unsigned);
1634 	PRINT_ATTRf(exclude_user, p_unsigned);
1635 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1636 	PRINT_ATTRf(exclude_hv, p_unsigned);
1637 	PRINT_ATTRf(exclude_idle, p_unsigned);
1638 	PRINT_ATTRf(mmap, p_unsigned);
1639 	PRINT_ATTRf(comm, p_unsigned);
1640 	PRINT_ATTRf(freq, p_unsigned);
1641 	PRINT_ATTRf(inherit_stat, p_unsigned);
1642 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1643 	PRINT_ATTRf(task, p_unsigned);
1644 	PRINT_ATTRf(watermark, p_unsigned);
1645 	PRINT_ATTRf(precise_ip, p_unsigned);
1646 	PRINT_ATTRf(mmap_data, p_unsigned);
1647 	PRINT_ATTRf(sample_id_all, p_unsigned);
1648 	PRINT_ATTRf(exclude_host, p_unsigned);
1649 	PRINT_ATTRf(exclude_guest, p_unsigned);
1650 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1651 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1652 	PRINT_ATTRf(mmap2, p_unsigned);
1653 	PRINT_ATTRf(comm_exec, p_unsigned);
1654 	PRINT_ATTRf(use_clockid, p_unsigned);
1655 	PRINT_ATTRf(context_switch, p_unsigned);
1656 	PRINT_ATTRf(write_backward, p_unsigned);
1657 	PRINT_ATTRf(namespaces, p_unsigned);
1658 	PRINT_ATTRf(ksymbol, p_unsigned);
1659 	PRINT_ATTRf(bpf_event, p_unsigned);
1660 
1661 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1662 	PRINT_ATTRf(bp_type, p_unsigned);
1663 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1664 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1665 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1666 	PRINT_ATTRf(sample_regs_user, p_hex);
1667 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1668 	PRINT_ATTRf(clockid, p_signed);
1669 	PRINT_ATTRf(sample_regs_intr, p_hex);
1670 	PRINT_ATTRf(aux_watermark, p_unsigned);
1671 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1672 
1673 	return ret;
1674 }
1675 
1676 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1677 				void *priv __maybe_unused)
1678 {
1679 	return fprintf(fp, "  %-32s %s\n", name, val);
1680 }
1681 
1682 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1683 				  int nr_cpus, int nr_threads,
1684 				  int thread_idx)
1685 {
1686 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1687 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1688 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1689 }
1690 
1691 static int update_fds(struct perf_evsel *evsel,
1692 		      int nr_cpus, int cpu_idx,
1693 		      int nr_threads, int thread_idx)
1694 {
1695 	struct perf_evsel *pos;
1696 
1697 	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1698 		return -EINVAL;
1699 
1700 	evlist__for_each_entry(evsel->evlist, pos) {
1701 		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1702 
1703 		perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1704 
1705 		/*
1706 		 * Since fds for next evsel has not been created,
1707 		 * there is no need to iterate whole event list.
1708 		 */
1709 		if (pos == evsel)
1710 			break;
1711 	}
1712 	return 0;
1713 }
1714 
1715 static bool ignore_missing_thread(struct perf_evsel *evsel,
1716 				  int nr_cpus, int cpu,
1717 				  struct thread_map *threads,
1718 				  int thread, int err)
1719 {
1720 	pid_t ignore_pid = thread_map__pid(threads, thread);
1721 
1722 	if (!evsel->ignore_missing_thread)
1723 		return false;
1724 
1725 	/* The system wide setup does not work with threads. */
1726 	if (evsel->system_wide)
1727 		return false;
1728 
1729 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1730 	if (err != -ESRCH)
1731 		return false;
1732 
1733 	/* If there's only one thread, let it fail. */
1734 	if (threads->nr == 1)
1735 		return false;
1736 
1737 	/*
1738 	 * We should remove fd for missing_thread first
1739 	 * because thread_map__remove() will decrease threads->nr.
1740 	 */
1741 	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1742 		return false;
1743 
1744 	if (thread_map__remove(threads, thread))
1745 		return false;
1746 
1747 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1748 		   ignore_pid);
1749 	return true;
1750 }
1751 
1752 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1753 		     struct thread_map *threads)
1754 {
1755 	int cpu, thread, nthreads;
1756 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1757 	int pid = -1, err;
1758 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1759 
1760 	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1761 		return -EINVAL;
1762 
1763 	if (cpus == NULL) {
1764 		static struct cpu_map *empty_cpu_map;
1765 
1766 		if (empty_cpu_map == NULL) {
1767 			empty_cpu_map = cpu_map__dummy_new();
1768 			if (empty_cpu_map == NULL)
1769 				return -ENOMEM;
1770 		}
1771 
1772 		cpus = empty_cpu_map;
1773 	}
1774 
1775 	if (threads == NULL) {
1776 		static struct thread_map *empty_thread_map;
1777 
1778 		if (empty_thread_map == NULL) {
1779 			empty_thread_map = thread_map__new_by_tid(-1);
1780 			if (empty_thread_map == NULL)
1781 				return -ENOMEM;
1782 		}
1783 
1784 		threads = empty_thread_map;
1785 	}
1786 
1787 	if (evsel->system_wide)
1788 		nthreads = 1;
1789 	else
1790 		nthreads = threads->nr;
1791 
1792 	if (evsel->fd == NULL &&
1793 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1794 		return -ENOMEM;
1795 
1796 	if (evsel->cgrp) {
1797 		flags |= PERF_FLAG_PID_CGROUP;
1798 		pid = evsel->cgrp->fd;
1799 	}
1800 
1801 fallback_missing_features:
1802 	if (perf_missing_features.clockid_wrong)
1803 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1804 	if (perf_missing_features.clockid) {
1805 		evsel->attr.use_clockid = 0;
1806 		evsel->attr.clockid = 0;
1807 	}
1808 	if (perf_missing_features.cloexec)
1809 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1810 	if (perf_missing_features.mmap2)
1811 		evsel->attr.mmap2 = 0;
1812 	if (perf_missing_features.exclude_guest)
1813 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1814 	if (perf_missing_features.lbr_flags)
1815 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1816 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1817 	if (perf_missing_features.group_read && evsel->attr.inherit)
1818 		evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1819 	if (perf_missing_features.ksymbol)
1820 		evsel->attr.ksymbol = 0;
1821 	if (perf_missing_features.bpf_event)
1822 		evsel->attr.bpf_event = 0;
1823 retry_sample_id:
1824 	if (perf_missing_features.sample_id_all)
1825 		evsel->attr.sample_id_all = 0;
1826 
1827 	if (verbose >= 2) {
1828 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1829 		fprintf(stderr, "perf_event_attr:\n");
1830 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1831 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1832 	}
1833 
1834 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1835 
1836 		for (thread = 0; thread < nthreads; thread++) {
1837 			int fd, group_fd;
1838 
1839 			if (!evsel->cgrp && !evsel->system_wide)
1840 				pid = thread_map__pid(threads, thread);
1841 
1842 			group_fd = get_group_fd(evsel, cpu, thread);
1843 retry_open:
1844 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1845 				  pid, cpus->map[cpu], group_fd, flags);
1846 
1847 			test_attr__ready();
1848 
1849 			fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1850 						 group_fd, flags);
1851 
1852 			FD(evsel, cpu, thread) = fd;
1853 
1854 			if (fd < 0) {
1855 				err = -errno;
1856 
1857 				if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1858 					/*
1859 					 * We just removed 1 thread, so take a step
1860 					 * back on thread index and lower the upper
1861 					 * nthreads limit.
1862 					 */
1863 					nthreads--;
1864 					thread--;
1865 
1866 					/* ... and pretend like nothing have happened. */
1867 					err = 0;
1868 					continue;
1869 				}
1870 
1871 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1872 					  err);
1873 				goto try_fallback;
1874 			}
1875 
1876 			pr_debug2(" = %d\n", fd);
1877 
1878 			if (evsel->bpf_fd >= 0) {
1879 				int evt_fd = fd;
1880 				int bpf_fd = evsel->bpf_fd;
1881 
1882 				err = ioctl(evt_fd,
1883 					    PERF_EVENT_IOC_SET_BPF,
1884 					    bpf_fd);
1885 				if (err && errno != EEXIST) {
1886 					pr_err("failed to attach bpf fd %d: %s\n",
1887 					       bpf_fd, strerror(errno));
1888 					err = -EINVAL;
1889 					goto out_close;
1890 				}
1891 			}
1892 
1893 			set_rlimit = NO_CHANGE;
1894 
1895 			/*
1896 			 * If we succeeded but had to kill clockid, fail and
1897 			 * have perf_evsel__open_strerror() print us a nice
1898 			 * error.
1899 			 */
1900 			if (perf_missing_features.clockid ||
1901 			    perf_missing_features.clockid_wrong) {
1902 				err = -EINVAL;
1903 				goto out_close;
1904 			}
1905 		}
1906 	}
1907 
1908 	return 0;
1909 
1910 try_fallback:
1911 	/*
1912 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1913 	 * of them try to increase the limits.
1914 	 */
1915 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1916 		struct rlimit l;
1917 		int old_errno = errno;
1918 
1919 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1920 			if (set_rlimit == NO_CHANGE)
1921 				l.rlim_cur = l.rlim_max;
1922 			else {
1923 				l.rlim_cur = l.rlim_max + 1000;
1924 				l.rlim_max = l.rlim_cur;
1925 			}
1926 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1927 				set_rlimit++;
1928 				errno = old_errno;
1929 				goto retry_open;
1930 			}
1931 		}
1932 		errno = old_errno;
1933 	}
1934 
1935 	if (err != -EINVAL || cpu > 0 || thread > 0)
1936 		goto out_close;
1937 
1938 	/*
1939 	 * Must probe features in the order they were added to the
1940 	 * perf_event_attr interface.
1941 	 */
1942 	if (!perf_missing_features.bpf_event && evsel->attr.bpf_event) {
1943 		perf_missing_features.bpf_event = true;
1944 		pr_debug2("switching off bpf_event\n");
1945 		goto fallback_missing_features;
1946 	} else if (!perf_missing_features.ksymbol && evsel->attr.ksymbol) {
1947 		perf_missing_features.ksymbol = true;
1948 		pr_debug2("switching off ksymbol\n");
1949 		goto fallback_missing_features;
1950 	} else if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1951 		perf_missing_features.write_backward = true;
1952 		pr_debug2("switching off write_backward\n");
1953 		goto out_close;
1954 	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1955 		perf_missing_features.clockid_wrong = true;
1956 		pr_debug2("switching off clockid\n");
1957 		goto fallback_missing_features;
1958 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1959 		perf_missing_features.clockid = true;
1960 		pr_debug2("switching off use_clockid\n");
1961 		goto fallback_missing_features;
1962 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1963 		perf_missing_features.cloexec = true;
1964 		pr_debug2("switching off cloexec flag\n");
1965 		goto fallback_missing_features;
1966 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1967 		perf_missing_features.mmap2 = true;
1968 		pr_debug2("switching off mmap2\n");
1969 		goto fallback_missing_features;
1970 	} else if (!perf_missing_features.exclude_guest &&
1971 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1972 		perf_missing_features.exclude_guest = true;
1973 		pr_debug2("switching off exclude_guest, exclude_host\n");
1974 		goto fallback_missing_features;
1975 	} else if (!perf_missing_features.sample_id_all) {
1976 		perf_missing_features.sample_id_all = true;
1977 		pr_debug2("switching off sample_id_all\n");
1978 		goto retry_sample_id;
1979 	} else if (!perf_missing_features.lbr_flags &&
1980 			(evsel->attr.branch_sample_type &
1981 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1982 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1983 		perf_missing_features.lbr_flags = true;
1984 		pr_debug2("switching off branch sample type no (cycles/flags)\n");
1985 		goto fallback_missing_features;
1986 	} else if (!perf_missing_features.group_read &&
1987 		    evsel->attr.inherit &&
1988 		   (evsel->attr.read_format & PERF_FORMAT_GROUP) &&
1989 		   perf_evsel__is_group_leader(evsel)) {
1990 		perf_missing_features.group_read = true;
1991 		pr_debug2("switching off group read\n");
1992 		goto fallback_missing_features;
1993 	}
1994 out_close:
1995 	if (err)
1996 		threads->err_thread = thread;
1997 
1998 	do {
1999 		while (--thread >= 0) {
2000 			close(FD(evsel, cpu, thread));
2001 			FD(evsel, cpu, thread) = -1;
2002 		}
2003 		thread = nthreads;
2004 	} while (--cpu >= 0);
2005 	return err;
2006 }
2007 
2008 void perf_evsel__close(struct perf_evsel *evsel)
2009 {
2010 	if (evsel->fd == NULL)
2011 		return;
2012 
2013 	perf_evsel__close_fd(evsel);
2014 	perf_evsel__free_fd(evsel);
2015 }
2016 
2017 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
2018 			     struct cpu_map *cpus)
2019 {
2020 	return perf_evsel__open(evsel, cpus, NULL);
2021 }
2022 
2023 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
2024 				struct thread_map *threads)
2025 {
2026 	return perf_evsel__open(evsel, NULL, threads);
2027 }
2028 
2029 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
2030 				       const union perf_event *event,
2031 				       struct perf_sample *sample)
2032 {
2033 	u64 type = evsel->attr.sample_type;
2034 	const u64 *array = event->sample.array;
2035 	bool swapped = evsel->needs_swap;
2036 	union u64_swap u;
2037 
2038 	array += ((event->header.size -
2039 		   sizeof(event->header)) / sizeof(u64)) - 1;
2040 
2041 	if (type & PERF_SAMPLE_IDENTIFIER) {
2042 		sample->id = *array;
2043 		array--;
2044 	}
2045 
2046 	if (type & PERF_SAMPLE_CPU) {
2047 		u.val64 = *array;
2048 		if (swapped) {
2049 			/* undo swap of u64, then swap on individual u32s */
2050 			u.val64 = bswap_64(u.val64);
2051 			u.val32[0] = bswap_32(u.val32[0]);
2052 		}
2053 
2054 		sample->cpu = u.val32[0];
2055 		array--;
2056 	}
2057 
2058 	if (type & PERF_SAMPLE_STREAM_ID) {
2059 		sample->stream_id = *array;
2060 		array--;
2061 	}
2062 
2063 	if (type & PERF_SAMPLE_ID) {
2064 		sample->id = *array;
2065 		array--;
2066 	}
2067 
2068 	if (type & PERF_SAMPLE_TIME) {
2069 		sample->time = *array;
2070 		array--;
2071 	}
2072 
2073 	if (type & PERF_SAMPLE_TID) {
2074 		u.val64 = *array;
2075 		if (swapped) {
2076 			/* undo swap of u64, then swap on individual u32s */
2077 			u.val64 = bswap_64(u.val64);
2078 			u.val32[0] = bswap_32(u.val32[0]);
2079 			u.val32[1] = bswap_32(u.val32[1]);
2080 		}
2081 
2082 		sample->pid = u.val32[0];
2083 		sample->tid = u.val32[1];
2084 		array--;
2085 	}
2086 
2087 	return 0;
2088 }
2089 
2090 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2091 			    u64 size)
2092 {
2093 	return size > max_size || offset + size > endp;
2094 }
2095 
2096 #define OVERFLOW_CHECK(offset, size, max_size)				\
2097 	do {								\
2098 		if (overflow(endp, (max_size), (offset), (size)))	\
2099 			return -EFAULT;					\
2100 	} while (0)
2101 
2102 #define OVERFLOW_CHECK_u64(offset) \
2103 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2104 
2105 static int
2106 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2107 {
2108 	/*
2109 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2110 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2111 	 * check the format does not go past the end of the event.
2112 	 */
2113 	if (sample_size + sizeof(event->header) > event->header.size)
2114 		return -EFAULT;
2115 
2116 	return 0;
2117 }
2118 
2119 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2120 			     struct perf_sample *data)
2121 {
2122 	u64 type = evsel->attr.sample_type;
2123 	bool swapped = evsel->needs_swap;
2124 	const u64 *array;
2125 	u16 max_size = event->header.size;
2126 	const void *endp = (void *)event + max_size;
2127 	u64 sz;
2128 
2129 	/*
2130 	 * used for cross-endian analysis. See git commit 65014ab3
2131 	 * for why this goofiness is needed.
2132 	 */
2133 	union u64_swap u;
2134 
2135 	memset(data, 0, sizeof(*data));
2136 	data->cpu = data->pid = data->tid = -1;
2137 	data->stream_id = data->id = data->time = -1ULL;
2138 	data->period = evsel->attr.sample_period;
2139 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2140 	data->misc    = event->header.misc;
2141 	data->id = -1ULL;
2142 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2143 
2144 	if (event->header.type != PERF_RECORD_SAMPLE) {
2145 		if (!evsel->attr.sample_id_all)
2146 			return 0;
2147 		return perf_evsel__parse_id_sample(evsel, event, data);
2148 	}
2149 
2150 	array = event->sample.array;
2151 
2152 	if (perf_event__check_size(event, evsel->sample_size))
2153 		return -EFAULT;
2154 
2155 	if (type & PERF_SAMPLE_IDENTIFIER) {
2156 		data->id = *array;
2157 		array++;
2158 	}
2159 
2160 	if (type & PERF_SAMPLE_IP) {
2161 		data->ip = *array;
2162 		array++;
2163 	}
2164 
2165 	if (type & PERF_SAMPLE_TID) {
2166 		u.val64 = *array;
2167 		if (swapped) {
2168 			/* undo swap of u64, then swap on individual u32s */
2169 			u.val64 = bswap_64(u.val64);
2170 			u.val32[0] = bswap_32(u.val32[0]);
2171 			u.val32[1] = bswap_32(u.val32[1]);
2172 		}
2173 
2174 		data->pid = u.val32[0];
2175 		data->tid = u.val32[1];
2176 		array++;
2177 	}
2178 
2179 	if (type & PERF_SAMPLE_TIME) {
2180 		data->time = *array;
2181 		array++;
2182 	}
2183 
2184 	if (type & PERF_SAMPLE_ADDR) {
2185 		data->addr = *array;
2186 		array++;
2187 	}
2188 
2189 	if (type & PERF_SAMPLE_ID) {
2190 		data->id = *array;
2191 		array++;
2192 	}
2193 
2194 	if (type & PERF_SAMPLE_STREAM_ID) {
2195 		data->stream_id = *array;
2196 		array++;
2197 	}
2198 
2199 	if (type & PERF_SAMPLE_CPU) {
2200 
2201 		u.val64 = *array;
2202 		if (swapped) {
2203 			/* undo swap of u64, then swap on individual u32s */
2204 			u.val64 = bswap_64(u.val64);
2205 			u.val32[0] = bswap_32(u.val32[0]);
2206 		}
2207 
2208 		data->cpu = u.val32[0];
2209 		array++;
2210 	}
2211 
2212 	if (type & PERF_SAMPLE_PERIOD) {
2213 		data->period = *array;
2214 		array++;
2215 	}
2216 
2217 	if (type & PERF_SAMPLE_READ) {
2218 		u64 read_format = evsel->attr.read_format;
2219 
2220 		OVERFLOW_CHECK_u64(array);
2221 		if (read_format & PERF_FORMAT_GROUP)
2222 			data->read.group.nr = *array;
2223 		else
2224 			data->read.one.value = *array;
2225 
2226 		array++;
2227 
2228 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2229 			OVERFLOW_CHECK_u64(array);
2230 			data->read.time_enabled = *array;
2231 			array++;
2232 		}
2233 
2234 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2235 			OVERFLOW_CHECK_u64(array);
2236 			data->read.time_running = *array;
2237 			array++;
2238 		}
2239 
2240 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2241 		if (read_format & PERF_FORMAT_GROUP) {
2242 			const u64 max_group_nr = UINT64_MAX /
2243 					sizeof(struct sample_read_value);
2244 
2245 			if (data->read.group.nr > max_group_nr)
2246 				return -EFAULT;
2247 			sz = data->read.group.nr *
2248 			     sizeof(struct sample_read_value);
2249 			OVERFLOW_CHECK(array, sz, max_size);
2250 			data->read.group.values =
2251 					(struct sample_read_value *)array;
2252 			array = (void *)array + sz;
2253 		} else {
2254 			OVERFLOW_CHECK_u64(array);
2255 			data->read.one.id = *array;
2256 			array++;
2257 		}
2258 	}
2259 
2260 	if (evsel__has_callchain(evsel)) {
2261 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2262 
2263 		OVERFLOW_CHECK_u64(array);
2264 		data->callchain = (struct ip_callchain *)array++;
2265 		if (data->callchain->nr > max_callchain_nr)
2266 			return -EFAULT;
2267 		sz = data->callchain->nr * sizeof(u64);
2268 		OVERFLOW_CHECK(array, sz, max_size);
2269 		array = (void *)array + sz;
2270 	}
2271 
2272 	if (type & PERF_SAMPLE_RAW) {
2273 		OVERFLOW_CHECK_u64(array);
2274 		u.val64 = *array;
2275 
2276 		/*
2277 		 * Undo swap of u64, then swap on individual u32s,
2278 		 * get the size of the raw area and undo all of the
2279 		 * swap. The pevent interface handles endianity by
2280 		 * itself.
2281 		 */
2282 		if (swapped) {
2283 			u.val64 = bswap_64(u.val64);
2284 			u.val32[0] = bswap_32(u.val32[0]);
2285 			u.val32[1] = bswap_32(u.val32[1]);
2286 		}
2287 		data->raw_size = u.val32[0];
2288 
2289 		/*
2290 		 * The raw data is aligned on 64bits including the
2291 		 * u32 size, so it's safe to use mem_bswap_64.
2292 		 */
2293 		if (swapped)
2294 			mem_bswap_64((void *) array, data->raw_size);
2295 
2296 		array = (void *)array + sizeof(u32);
2297 
2298 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2299 		data->raw_data = (void *)array;
2300 		array = (void *)array + data->raw_size;
2301 	}
2302 
2303 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2304 		const u64 max_branch_nr = UINT64_MAX /
2305 					  sizeof(struct branch_entry);
2306 
2307 		OVERFLOW_CHECK_u64(array);
2308 		data->branch_stack = (struct branch_stack *)array++;
2309 
2310 		if (data->branch_stack->nr > max_branch_nr)
2311 			return -EFAULT;
2312 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2313 		OVERFLOW_CHECK(array, sz, max_size);
2314 		array = (void *)array + sz;
2315 	}
2316 
2317 	if (type & PERF_SAMPLE_REGS_USER) {
2318 		OVERFLOW_CHECK_u64(array);
2319 		data->user_regs.abi = *array;
2320 		array++;
2321 
2322 		if (data->user_regs.abi) {
2323 			u64 mask = evsel->attr.sample_regs_user;
2324 
2325 			sz = hweight_long(mask) * sizeof(u64);
2326 			OVERFLOW_CHECK(array, sz, max_size);
2327 			data->user_regs.mask = mask;
2328 			data->user_regs.regs = (u64 *)array;
2329 			array = (void *)array + sz;
2330 		}
2331 	}
2332 
2333 	if (type & PERF_SAMPLE_STACK_USER) {
2334 		OVERFLOW_CHECK_u64(array);
2335 		sz = *array++;
2336 
2337 		data->user_stack.offset = ((char *)(array - 1)
2338 					  - (char *) event);
2339 
2340 		if (!sz) {
2341 			data->user_stack.size = 0;
2342 		} else {
2343 			OVERFLOW_CHECK(array, sz, max_size);
2344 			data->user_stack.data = (char *)array;
2345 			array = (void *)array + sz;
2346 			OVERFLOW_CHECK_u64(array);
2347 			data->user_stack.size = *array++;
2348 			if (WARN_ONCE(data->user_stack.size > sz,
2349 				      "user stack dump failure\n"))
2350 				return -EFAULT;
2351 		}
2352 	}
2353 
2354 	if (type & PERF_SAMPLE_WEIGHT) {
2355 		OVERFLOW_CHECK_u64(array);
2356 		data->weight = *array;
2357 		array++;
2358 	}
2359 
2360 	if (type & PERF_SAMPLE_DATA_SRC) {
2361 		OVERFLOW_CHECK_u64(array);
2362 		data->data_src = *array;
2363 		array++;
2364 	}
2365 
2366 	if (type & PERF_SAMPLE_TRANSACTION) {
2367 		OVERFLOW_CHECK_u64(array);
2368 		data->transaction = *array;
2369 		array++;
2370 	}
2371 
2372 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2373 	if (type & PERF_SAMPLE_REGS_INTR) {
2374 		OVERFLOW_CHECK_u64(array);
2375 		data->intr_regs.abi = *array;
2376 		array++;
2377 
2378 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2379 			u64 mask = evsel->attr.sample_regs_intr;
2380 
2381 			sz = hweight_long(mask) * sizeof(u64);
2382 			OVERFLOW_CHECK(array, sz, max_size);
2383 			data->intr_regs.mask = mask;
2384 			data->intr_regs.regs = (u64 *)array;
2385 			array = (void *)array + sz;
2386 		}
2387 	}
2388 
2389 	data->phys_addr = 0;
2390 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2391 		data->phys_addr = *array;
2392 		array++;
2393 	}
2394 
2395 	return 0;
2396 }
2397 
2398 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2399 				       union perf_event *event,
2400 				       u64 *timestamp)
2401 {
2402 	u64 type = evsel->attr.sample_type;
2403 	const u64 *array;
2404 
2405 	if (!(type & PERF_SAMPLE_TIME))
2406 		return -1;
2407 
2408 	if (event->header.type != PERF_RECORD_SAMPLE) {
2409 		struct perf_sample data = {
2410 			.time = -1ULL,
2411 		};
2412 
2413 		if (!evsel->attr.sample_id_all)
2414 			return -1;
2415 		if (perf_evsel__parse_id_sample(evsel, event, &data))
2416 			return -1;
2417 
2418 		*timestamp = data.time;
2419 		return 0;
2420 	}
2421 
2422 	array = event->sample.array;
2423 
2424 	if (perf_event__check_size(event, evsel->sample_size))
2425 		return -EFAULT;
2426 
2427 	if (type & PERF_SAMPLE_IDENTIFIER)
2428 		array++;
2429 
2430 	if (type & PERF_SAMPLE_IP)
2431 		array++;
2432 
2433 	if (type & PERF_SAMPLE_TID)
2434 		array++;
2435 
2436 	if (type & PERF_SAMPLE_TIME)
2437 		*timestamp = *array;
2438 
2439 	return 0;
2440 }
2441 
2442 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2443 				     u64 read_format)
2444 {
2445 	size_t sz, result = sizeof(struct sample_event);
2446 
2447 	if (type & PERF_SAMPLE_IDENTIFIER)
2448 		result += sizeof(u64);
2449 
2450 	if (type & PERF_SAMPLE_IP)
2451 		result += sizeof(u64);
2452 
2453 	if (type & PERF_SAMPLE_TID)
2454 		result += sizeof(u64);
2455 
2456 	if (type & PERF_SAMPLE_TIME)
2457 		result += sizeof(u64);
2458 
2459 	if (type & PERF_SAMPLE_ADDR)
2460 		result += sizeof(u64);
2461 
2462 	if (type & PERF_SAMPLE_ID)
2463 		result += sizeof(u64);
2464 
2465 	if (type & PERF_SAMPLE_STREAM_ID)
2466 		result += sizeof(u64);
2467 
2468 	if (type & PERF_SAMPLE_CPU)
2469 		result += sizeof(u64);
2470 
2471 	if (type & PERF_SAMPLE_PERIOD)
2472 		result += sizeof(u64);
2473 
2474 	if (type & PERF_SAMPLE_READ) {
2475 		result += sizeof(u64);
2476 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2477 			result += sizeof(u64);
2478 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2479 			result += sizeof(u64);
2480 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2481 		if (read_format & PERF_FORMAT_GROUP) {
2482 			sz = sample->read.group.nr *
2483 			     sizeof(struct sample_read_value);
2484 			result += sz;
2485 		} else {
2486 			result += sizeof(u64);
2487 		}
2488 	}
2489 
2490 	if (type & PERF_SAMPLE_CALLCHAIN) {
2491 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2492 		result += sz;
2493 	}
2494 
2495 	if (type & PERF_SAMPLE_RAW) {
2496 		result += sizeof(u32);
2497 		result += sample->raw_size;
2498 	}
2499 
2500 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2501 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2502 		sz += sizeof(u64);
2503 		result += sz;
2504 	}
2505 
2506 	if (type & PERF_SAMPLE_REGS_USER) {
2507 		if (sample->user_regs.abi) {
2508 			result += sizeof(u64);
2509 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2510 			result += sz;
2511 		} else {
2512 			result += sizeof(u64);
2513 		}
2514 	}
2515 
2516 	if (type & PERF_SAMPLE_STACK_USER) {
2517 		sz = sample->user_stack.size;
2518 		result += sizeof(u64);
2519 		if (sz) {
2520 			result += sz;
2521 			result += sizeof(u64);
2522 		}
2523 	}
2524 
2525 	if (type & PERF_SAMPLE_WEIGHT)
2526 		result += sizeof(u64);
2527 
2528 	if (type & PERF_SAMPLE_DATA_SRC)
2529 		result += sizeof(u64);
2530 
2531 	if (type & PERF_SAMPLE_TRANSACTION)
2532 		result += sizeof(u64);
2533 
2534 	if (type & PERF_SAMPLE_REGS_INTR) {
2535 		if (sample->intr_regs.abi) {
2536 			result += sizeof(u64);
2537 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2538 			result += sz;
2539 		} else {
2540 			result += sizeof(u64);
2541 		}
2542 	}
2543 
2544 	if (type & PERF_SAMPLE_PHYS_ADDR)
2545 		result += sizeof(u64);
2546 
2547 	return result;
2548 }
2549 
2550 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2551 				  u64 read_format,
2552 				  const struct perf_sample *sample)
2553 {
2554 	u64 *array;
2555 	size_t sz;
2556 	/*
2557 	 * used for cross-endian analysis. See git commit 65014ab3
2558 	 * for why this goofiness is needed.
2559 	 */
2560 	union u64_swap u;
2561 
2562 	array = event->sample.array;
2563 
2564 	if (type & PERF_SAMPLE_IDENTIFIER) {
2565 		*array = sample->id;
2566 		array++;
2567 	}
2568 
2569 	if (type & PERF_SAMPLE_IP) {
2570 		*array = sample->ip;
2571 		array++;
2572 	}
2573 
2574 	if (type & PERF_SAMPLE_TID) {
2575 		u.val32[0] = sample->pid;
2576 		u.val32[1] = sample->tid;
2577 		*array = u.val64;
2578 		array++;
2579 	}
2580 
2581 	if (type & PERF_SAMPLE_TIME) {
2582 		*array = sample->time;
2583 		array++;
2584 	}
2585 
2586 	if (type & PERF_SAMPLE_ADDR) {
2587 		*array = sample->addr;
2588 		array++;
2589 	}
2590 
2591 	if (type & PERF_SAMPLE_ID) {
2592 		*array = sample->id;
2593 		array++;
2594 	}
2595 
2596 	if (type & PERF_SAMPLE_STREAM_ID) {
2597 		*array = sample->stream_id;
2598 		array++;
2599 	}
2600 
2601 	if (type & PERF_SAMPLE_CPU) {
2602 		u.val32[0] = sample->cpu;
2603 		u.val32[1] = 0;
2604 		*array = u.val64;
2605 		array++;
2606 	}
2607 
2608 	if (type & PERF_SAMPLE_PERIOD) {
2609 		*array = sample->period;
2610 		array++;
2611 	}
2612 
2613 	if (type & PERF_SAMPLE_READ) {
2614 		if (read_format & PERF_FORMAT_GROUP)
2615 			*array = sample->read.group.nr;
2616 		else
2617 			*array = sample->read.one.value;
2618 		array++;
2619 
2620 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2621 			*array = sample->read.time_enabled;
2622 			array++;
2623 		}
2624 
2625 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2626 			*array = sample->read.time_running;
2627 			array++;
2628 		}
2629 
2630 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2631 		if (read_format & PERF_FORMAT_GROUP) {
2632 			sz = sample->read.group.nr *
2633 			     sizeof(struct sample_read_value);
2634 			memcpy(array, sample->read.group.values, sz);
2635 			array = (void *)array + sz;
2636 		} else {
2637 			*array = sample->read.one.id;
2638 			array++;
2639 		}
2640 	}
2641 
2642 	if (type & PERF_SAMPLE_CALLCHAIN) {
2643 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2644 		memcpy(array, sample->callchain, sz);
2645 		array = (void *)array + sz;
2646 	}
2647 
2648 	if (type & PERF_SAMPLE_RAW) {
2649 		u.val32[0] = sample->raw_size;
2650 		*array = u.val64;
2651 		array = (void *)array + sizeof(u32);
2652 
2653 		memcpy(array, sample->raw_data, sample->raw_size);
2654 		array = (void *)array + sample->raw_size;
2655 	}
2656 
2657 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2658 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2659 		sz += sizeof(u64);
2660 		memcpy(array, sample->branch_stack, sz);
2661 		array = (void *)array + sz;
2662 	}
2663 
2664 	if (type & PERF_SAMPLE_REGS_USER) {
2665 		if (sample->user_regs.abi) {
2666 			*array++ = sample->user_regs.abi;
2667 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2668 			memcpy(array, sample->user_regs.regs, sz);
2669 			array = (void *)array + sz;
2670 		} else {
2671 			*array++ = 0;
2672 		}
2673 	}
2674 
2675 	if (type & PERF_SAMPLE_STACK_USER) {
2676 		sz = sample->user_stack.size;
2677 		*array++ = sz;
2678 		if (sz) {
2679 			memcpy(array, sample->user_stack.data, sz);
2680 			array = (void *)array + sz;
2681 			*array++ = sz;
2682 		}
2683 	}
2684 
2685 	if (type & PERF_SAMPLE_WEIGHT) {
2686 		*array = sample->weight;
2687 		array++;
2688 	}
2689 
2690 	if (type & PERF_SAMPLE_DATA_SRC) {
2691 		*array = sample->data_src;
2692 		array++;
2693 	}
2694 
2695 	if (type & PERF_SAMPLE_TRANSACTION) {
2696 		*array = sample->transaction;
2697 		array++;
2698 	}
2699 
2700 	if (type & PERF_SAMPLE_REGS_INTR) {
2701 		if (sample->intr_regs.abi) {
2702 			*array++ = sample->intr_regs.abi;
2703 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2704 			memcpy(array, sample->intr_regs.regs, sz);
2705 			array = (void *)array + sz;
2706 		} else {
2707 			*array++ = 0;
2708 		}
2709 	}
2710 
2711 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2712 		*array = sample->phys_addr;
2713 		array++;
2714 	}
2715 
2716 	return 0;
2717 }
2718 
2719 struct tep_format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2720 {
2721 	return tep_find_field(evsel->tp_format, name);
2722 }
2723 
2724 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2725 			 const char *name)
2726 {
2727 	struct tep_format_field *field = perf_evsel__field(evsel, name);
2728 	int offset;
2729 
2730 	if (!field)
2731 		return NULL;
2732 
2733 	offset = field->offset;
2734 
2735 	if (field->flags & TEP_FIELD_IS_DYNAMIC) {
2736 		offset = *(int *)(sample->raw_data + field->offset);
2737 		offset &= 0xffff;
2738 	}
2739 
2740 	return sample->raw_data + offset;
2741 }
2742 
2743 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample,
2744 			 bool needs_swap)
2745 {
2746 	u64 value;
2747 	void *ptr = sample->raw_data + field->offset;
2748 
2749 	switch (field->size) {
2750 	case 1:
2751 		return *(u8 *)ptr;
2752 	case 2:
2753 		value = *(u16 *)ptr;
2754 		break;
2755 	case 4:
2756 		value = *(u32 *)ptr;
2757 		break;
2758 	case 8:
2759 		memcpy(&value, ptr, sizeof(u64));
2760 		break;
2761 	default:
2762 		return 0;
2763 	}
2764 
2765 	if (!needs_swap)
2766 		return value;
2767 
2768 	switch (field->size) {
2769 	case 2:
2770 		return bswap_16(value);
2771 	case 4:
2772 		return bswap_32(value);
2773 	case 8:
2774 		return bswap_64(value);
2775 	default:
2776 		return 0;
2777 	}
2778 
2779 	return 0;
2780 }
2781 
2782 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2783 		       const char *name)
2784 {
2785 	struct tep_format_field *field = perf_evsel__field(evsel, name);
2786 
2787 	if (!field)
2788 		return 0;
2789 
2790 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2791 }
2792 
2793 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2794 			  char *msg, size_t msgsize)
2795 {
2796 	int paranoid;
2797 
2798 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2799 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2800 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2801 		/*
2802 		 * If it's cycles then fall back to hrtimer based
2803 		 * cpu-clock-tick sw counter, which is always available even if
2804 		 * no PMU support.
2805 		 *
2806 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2807 		 * b0a873e).
2808 		 */
2809 		scnprintf(msg, msgsize, "%s",
2810 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2811 
2812 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2813 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2814 
2815 		zfree(&evsel->name);
2816 		return true;
2817 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2818 		   (paranoid = perf_event_paranoid()) > 1) {
2819 		const char *name = perf_evsel__name(evsel);
2820 		char *new_name;
2821 		const char *sep = ":";
2822 
2823 		/* Is there already the separator in the name. */
2824 		if (strchr(name, '/') ||
2825 		    strchr(name, ':'))
2826 			sep = "";
2827 
2828 		if (asprintf(&new_name, "%s%su", name, sep) < 0)
2829 			return false;
2830 
2831 		if (evsel->name)
2832 			free(evsel->name);
2833 		evsel->name = new_name;
2834 		scnprintf(msg, msgsize,
2835 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2836 		evsel->attr.exclude_kernel = 1;
2837 
2838 		return true;
2839 	}
2840 
2841 	return false;
2842 }
2843 
2844 static bool find_process(const char *name)
2845 {
2846 	size_t len = strlen(name);
2847 	DIR *dir;
2848 	struct dirent *d;
2849 	int ret = -1;
2850 
2851 	dir = opendir(procfs__mountpoint());
2852 	if (!dir)
2853 		return false;
2854 
2855 	/* Walk through the directory. */
2856 	while (ret && (d = readdir(dir)) != NULL) {
2857 		char path[PATH_MAX];
2858 		char *data;
2859 		size_t size;
2860 
2861 		if ((d->d_type != DT_DIR) ||
2862 		     !strcmp(".", d->d_name) ||
2863 		     !strcmp("..", d->d_name))
2864 			continue;
2865 
2866 		scnprintf(path, sizeof(path), "%s/%s/comm",
2867 			  procfs__mountpoint(), d->d_name);
2868 
2869 		if (filename__read_str(path, &data, &size))
2870 			continue;
2871 
2872 		ret = strncmp(name, data, len);
2873 		free(data);
2874 	}
2875 
2876 	closedir(dir);
2877 	return ret ? false : true;
2878 }
2879 
2880 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2881 			      int err, char *msg, size_t size)
2882 {
2883 	char sbuf[STRERR_BUFSIZE];
2884 	int printed = 0;
2885 
2886 	switch (err) {
2887 	case EPERM:
2888 	case EACCES:
2889 		if (err == EPERM)
2890 			printed = scnprintf(msg, size,
2891 				"No permission to enable %s event.\n\n",
2892 				perf_evsel__name(evsel));
2893 
2894 		return scnprintf(msg + printed, size - printed,
2895 		 "You may not have permission to collect %sstats.\n\n"
2896 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2897 		 "which controls use of the performance events system by\n"
2898 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2899 		 "The current value is %d:\n\n"
2900 		 "  -1: Allow use of (almost) all events by all users\n"
2901 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2902 		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2903 		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2904 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2905 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2906 		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2907 		 "	kernel.perf_event_paranoid = -1\n" ,
2908 				 target->system_wide ? "system-wide " : "",
2909 				 perf_event_paranoid());
2910 	case ENOENT:
2911 		return scnprintf(msg, size, "The %s event is not supported.",
2912 				 perf_evsel__name(evsel));
2913 	case EMFILE:
2914 		return scnprintf(msg, size, "%s",
2915 			 "Too many events are opened.\n"
2916 			 "Probably the maximum number of open file descriptors has been reached.\n"
2917 			 "Hint: Try again after reducing the number of events.\n"
2918 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2919 	case ENOMEM:
2920 		if (evsel__has_callchain(evsel) &&
2921 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2922 			return scnprintf(msg, size,
2923 					 "Not enough memory to setup event with callchain.\n"
2924 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2925 					 "Hint: Current value: %d", sysctl__max_stack());
2926 		break;
2927 	case ENODEV:
2928 		if (target->cpu_list)
2929 			return scnprintf(msg, size, "%s",
2930 	 "No such device - did you specify an out-of-range profile CPU?");
2931 		break;
2932 	case EOPNOTSUPP:
2933 		if (evsel->attr.sample_period != 0)
2934 			return scnprintf(msg, size,
2935 	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2936 					 perf_evsel__name(evsel));
2937 		if (evsel->attr.precise_ip)
2938 			return scnprintf(msg, size, "%s",
2939 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2940 #if defined(__i386__) || defined(__x86_64__)
2941 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2942 			return scnprintf(msg, size, "%s",
2943 	"No hardware sampling interrupt available.\n");
2944 #endif
2945 		break;
2946 	case EBUSY:
2947 		if (find_process("oprofiled"))
2948 			return scnprintf(msg, size,
2949 	"The PMU counters are busy/taken by another profiler.\n"
2950 	"We found oprofile daemon running, please stop it and try again.");
2951 		break;
2952 	case EINVAL:
2953 		if (evsel->attr.write_backward && perf_missing_features.write_backward)
2954 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2955 		if (perf_missing_features.clockid)
2956 			return scnprintf(msg, size, "clockid feature not supported.");
2957 		if (perf_missing_features.clockid_wrong)
2958 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2959 		break;
2960 	default:
2961 		break;
2962 	}
2963 
2964 	return scnprintf(msg, size,
2965 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2966 	"/bin/dmesg | grep -i perf may provide additional information.\n",
2967 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2968 			 perf_evsel__name(evsel));
2969 }
2970 
2971 struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
2972 {
2973 	if (evsel && evsel->evlist)
2974 		return evsel->evlist->env;
2975 	return NULL;
2976 }
2977 
2978 static int store_evsel_ids(struct perf_evsel *evsel, struct perf_evlist *evlist)
2979 {
2980 	int cpu, thread;
2981 
2982 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
2983 		for (thread = 0; thread < xyarray__max_y(evsel->fd);
2984 		     thread++) {
2985 			int fd = FD(evsel, cpu, thread);
2986 
2987 			if (perf_evlist__id_add_fd(evlist, evsel,
2988 						   cpu, thread, fd) < 0)
2989 				return -1;
2990 		}
2991 	}
2992 
2993 	return 0;
2994 }
2995 
2996 int perf_evsel__store_ids(struct perf_evsel *evsel, struct perf_evlist *evlist)
2997 {
2998 	struct cpu_map *cpus = evsel->cpus;
2999 	struct thread_map *threads = evsel->threads;
3000 
3001 	if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr))
3002 		return -ENOMEM;
3003 
3004 	return store_evsel_ids(evsel, evlist);
3005 }
3006