xref: /openbmc/linux/tools/perf/util/evsel.c (revision d003d772)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "memswap.h"
40 #include "util/parse-branch-options.h"
41 
42 #include "sane_ctype.h"
43 
44 struct perf_missing_features perf_missing_features;
45 
46 static clockid_t clockid;
47 
48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
49 {
50 	return 0;
51 }
52 
53 void __weak test_attr__ready(void) { }
54 
55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
56 {
57 }
58 
59 static struct {
60 	size_t	size;
61 	int	(*init)(struct perf_evsel *evsel);
62 	void	(*fini)(struct perf_evsel *evsel);
63 } perf_evsel__object = {
64 	.size = sizeof(struct perf_evsel),
65 	.init = perf_evsel__no_extra_init,
66 	.fini = perf_evsel__no_extra_fini,
67 };
68 
69 int perf_evsel__object_config(size_t object_size,
70 			      int (*init)(struct perf_evsel *evsel),
71 			      void (*fini)(struct perf_evsel *evsel))
72 {
73 
74 	if (object_size == 0)
75 		goto set_methods;
76 
77 	if (perf_evsel__object.size > object_size)
78 		return -EINVAL;
79 
80 	perf_evsel__object.size = object_size;
81 
82 set_methods:
83 	if (init != NULL)
84 		perf_evsel__object.init = init;
85 
86 	if (fini != NULL)
87 		perf_evsel__object.fini = fini;
88 
89 	return 0;
90 }
91 
92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
93 
94 int __perf_evsel__sample_size(u64 sample_type)
95 {
96 	u64 mask = sample_type & PERF_SAMPLE_MASK;
97 	int size = 0;
98 	int i;
99 
100 	for (i = 0; i < 64; i++) {
101 		if (mask & (1ULL << i))
102 			size++;
103 	}
104 
105 	size *= sizeof(u64);
106 
107 	return size;
108 }
109 
110 /**
111  * __perf_evsel__calc_id_pos - calculate id_pos.
112  * @sample_type: sample type
113  *
114  * This function returns the position of the event id (PERF_SAMPLE_ID or
115  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
116  * sample_event.
117  */
118 static int __perf_evsel__calc_id_pos(u64 sample_type)
119 {
120 	int idx = 0;
121 
122 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
123 		return 0;
124 
125 	if (!(sample_type & PERF_SAMPLE_ID))
126 		return -1;
127 
128 	if (sample_type & PERF_SAMPLE_IP)
129 		idx += 1;
130 
131 	if (sample_type & PERF_SAMPLE_TID)
132 		idx += 1;
133 
134 	if (sample_type & PERF_SAMPLE_TIME)
135 		idx += 1;
136 
137 	if (sample_type & PERF_SAMPLE_ADDR)
138 		idx += 1;
139 
140 	return idx;
141 }
142 
143 /**
144  * __perf_evsel__calc_is_pos - calculate is_pos.
145  * @sample_type: sample type
146  *
147  * This function returns the position (counting backwards) of the event id
148  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
149  * sample_id_all is used there is an id sample appended to non-sample events.
150  */
151 static int __perf_evsel__calc_is_pos(u64 sample_type)
152 {
153 	int idx = 1;
154 
155 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
156 		return 1;
157 
158 	if (!(sample_type & PERF_SAMPLE_ID))
159 		return -1;
160 
161 	if (sample_type & PERF_SAMPLE_CPU)
162 		idx += 1;
163 
164 	if (sample_type & PERF_SAMPLE_STREAM_ID)
165 		idx += 1;
166 
167 	return idx;
168 }
169 
170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
171 {
172 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
173 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
174 }
175 
176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
177 				  enum perf_event_sample_format bit)
178 {
179 	if (!(evsel->attr.sample_type & bit)) {
180 		evsel->attr.sample_type |= bit;
181 		evsel->sample_size += sizeof(u64);
182 		perf_evsel__calc_id_pos(evsel);
183 	}
184 }
185 
186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
187 				    enum perf_event_sample_format bit)
188 {
189 	if (evsel->attr.sample_type & bit) {
190 		evsel->attr.sample_type &= ~bit;
191 		evsel->sample_size -= sizeof(u64);
192 		perf_evsel__calc_id_pos(evsel);
193 	}
194 }
195 
196 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
197 			       bool can_sample_identifier)
198 {
199 	if (can_sample_identifier) {
200 		perf_evsel__reset_sample_bit(evsel, ID);
201 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
202 	} else {
203 		perf_evsel__set_sample_bit(evsel, ID);
204 	}
205 	evsel->attr.read_format |= PERF_FORMAT_ID;
206 }
207 
208 /**
209  * perf_evsel__is_function_event - Return whether given evsel is a function
210  * trace event
211  *
212  * @evsel - evsel selector to be tested
213  *
214  * Return %true if event is function trace event
215  */
216 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
217 {
218 #define FUNCTION_EVENT "ftrace:function"
219 
220 	return evsel->name &&
221 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
222 
223 #undef FUNCTION_EVENT
224 }
225 
226 void perf_evsel__init(struct perf_evsel *evsel,
227 		      struct perf_event_attr *attr, int idx)
228 {
229 	evsel->idx	   = idx;
230 	evsel->tracking	   = !idx;
231 	evsel->attr	   = *attr;
232 	evsel->leader	   = evsel;
233 	evsel->unit	   = "";
234 	evsel->scale	   = 1.0;
235 	evsel->max_events  = ULONG_MAX;
236 	evsel->evlist	   = NULL;
237 	evsel->bpf_fd	   = -1;
238 	INIT_LIST_HEAD(&evsel->node);
239 	INIT_LIST_HEAD(&evsel->config_terms);
240 	perf_evsel__object.init(evsel);
241 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
242 	perf_evsel__calc_id_pos(evsel);
243 	evsel->cmdline_group_boundary = false;
244 	evsel->metric_expr   = NULL;
245 	evsel->metric_name   = NULL;
246 	evsel->metric_events = NULL;
247 	evsel->collect_stat  = false;
248 	evsel->pmu_name      = NULL;
249 }
250 
251 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
252 {
253 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
254 
255 	if (!evsel)
256 		return NULL;
257 	perf_evsel__init(evsel, attr, idx);
258 
259 	if (perf_evsel__is_bpf_output(evsel)) {
260 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
261 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
262 		evsel->attr.sample_period = 1;
263 	}
264 
265 	if (perf_evsel__is_clock(evsel)) {
266 		/*
267 		 * The evsel->unit points to static alias->unit
268 		 * so it's ok to use static string in here.
269 		 */
270 		static const char *unit = "msec";
271 
272 		evsel->unit = unit;
273 		evsel->scale = 1e-6;
274 	}
275 
276 	return evsel;
277 }
278 
279 static bool perf_event_can_profile_kernel(void)
280 {
281 	return geteuid() == 0 || perf_event_paranoid() == -1;
282 }
283 
284 struct perf_evsel *perf_evsel__new_cycles(bool precise)
285 {
286 	struct perf_event_attr attr = {
287 		.type	= PERF_TYPE_HARDWARE,
288 		.config	= PERF_COUNT_HW_CPU_CYCLES,
289 		.exclude_kernel	= !perf_event_can_profile_kernel(),
290 	};
291 	struct perf_evsel *evsel;
292 
293 	event_attr_init(&attr);
294 
295 	if (!precise)
296 		goto new_event;
297 
298 	/*
299 	 * Now let the usual logic to set up the perf_event_attr defaults
300 	 * to kick in when we return and before perf_evsel__open() is called.
301 	 */
302 new_event:
303 	evsel = perf_evsel__new(&attr);
304 	if (evsel == NULL)
305 		goto out;
306 
307 	evsel->precise_max = true;
308 
309 	/* use asprintf() because free(evsel) assumes name is allocated */
310 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
311 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
312 		     attr.exclude_kernel ? "u" : "",
313 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
314 		goto error_free;
315 out:
316 	return evsel;
317 error_free:
318 	perf_evsel__delete(evsel);
319 	evsel = NULL;
320 	goto out;
321 }
322 
323 /*
324  * Returns pointer with encoded error via <linux/err.h> interface.
325  */
326 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
327 {
328 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
329 	int err = -ENOMEM;
330 
331 	if (evsel == NULL) {
332 		goto out_err;
333 	} else {
334 		struct perf_event_attr attr = {
335 			.type	       = PERF_TYPE_TRACEPOINT,
336 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
337 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
338 		};
339 
340 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
341 			goto out_free;
342 
343 		evsel->tp_format = trace_event__tp_format(sys, name);
344 		if (IS_ERR(evsel->tp_format)) {
345 			err = PTR_ERR(evsel->tp_format);
346 			goto out_free;
347 		}
348 
349 		event_attr_init(&attr);
350 		attr.config = evsel->tp_format->id;
351 		attr.sample_period = 1;
352 		perf_evsel__init(evsel, &attr, idx);
353 	}
354 
355 	return evsel;
356 
357 out_free:
358 	zfree(&evsel->name);
359 	free(evsel);
360 out_err:
361 	return ERR_PTR(err);
362 }
363 
364 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
365 	"cycles",
366 	"instructions",
367 	"cache-references",
368 	"cache-misses",
369 	"branches",
370 	"branch-misses",
371 	"bus-cycles",
372 	"stalled-cycles-frontend",
373 	"stalled-cycles-backend",
374 	"ref-cycles",
375 };
376 
377 static const char *__perf_evsel__hw_name(u64 config)
378 {
379 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
380 		return perf_evsel__hw_names[config];
381 
382 	return "unknown-hardware";
383 }
384 
385 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
386 {
387 	int colon = 0, r = 0;
388 	struct perf_event_attr *attr = &evsel->attr;
389 	bool exclude_guest_default = false;
390 
391 #define MOD_PRINT(context, mod)	do {					\
392 		if (!attr->exclude_##context) {				\
393 			if (!colon) colon = ++r;			\
394 			r += scnprintf(bf + r, size - r, "%c", mod);	\
395 		} } while(0)
396 
397 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
398 		MOD_PRINT(kernel, 'k');
399 		MOD_PRINT(user, 'u');
400 		MOD_PRINT(hv, 'h');
401 		exclude_guest_default = true;
402 	}
403 
404 	if (attr->precise_ip) {
405 		if (!colon)
406 			colon = ++r;
407 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
408 		exclude_guest_default = true;
409 	}
410 
411 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
412 		MOD_PRINT(host, 'H');
413 		MOD_PRINT(guest, 'G');
414 	}
415 #undef MOD_PRINT
416 	if (colon)
417 		bf[colon - 1] = ':';
418 	return r;
419 }
420 
421 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
422 {
423 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
424 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
425 }
426 
427 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
428 	"cpu-clock",
429 	"task-clock",
430 	"page-faults",
431 	"context-switches",
432 	"cpu-migrations",
433 	"minor-faults",
434 	"major-faults",
435 	"alignment-faults",
436 	"emulation-faults",
437 	"dummy",
438 };
439 
440 static const char *__perf_evsel__sw_name(u64 config)
441 {
442 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
443 		return perf_evsel__sw_names[config];
444 	return "unknown-software";
445 }
446 
447 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
448 {
449 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
450 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
451 }
452 
453 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
454 {
455 	int r;
456 
457 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
458 
459 	if (type & HW_BREAKPOINT_R)
460 		r += scnprintf(bf + r, size - r, "r");
461 
462 	if (type & HW_BREAKPOINT_W)
463 		r += scnprintf(bf + r, size - r, "w");
464 
465 	if (type & HW_BREAKPOINT_X)
466 		r += scnprintf(bf + r, size - r, "x");
467 
468 	return r;
469 }
470 
471 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
472 {
473 	struct perf_event_attr *attr = &evsel->attr;
474 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
475 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
476 }
477 
478 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
479 				[PERF_EVSEL__MAX_ALIASES] = {
480  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
481  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
482  { "LLC",	"L2",							},
483  { "dTLB",	"d-tlb",	"Data-TLB",				},
484  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
485  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
486  { "node",								},
487 };
488 
489 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
490 				   [PERF_EVSEL__MAX_ALIASES] = {
491  { "load",	"loads",	"read",					},
492  { "store",	"stores",	"write",				},
493  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
494 };
495 
496 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
497 				       [PERF_EVSEL__MAX_ALIASES] = {
498  { "refs",	"Reference",	"ops",		"access",		},
499  { "misses",	"miss",							},
500 };
501 
502 #define C(x)		PERF_COUNT_HW_CACHE_##x
503 #define CACHE_READ	(1 << C(OP_READ))
504 #define CACHE_WRITE	(1 << C(OP_WRITE))
505 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
506 #define COP(x)		(1 << x)
507 
508 /*
509  * cache operartion stat
510  * L1I : Read and prefetch only
511  * ITLB and BPU : Read-only
512  */
513 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
514  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
515  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
516  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
517  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
518  [C(ITLB)]	= (CACHE_READ),
519  [C(BPU)]	= (CACHE_READ),
520  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
521 };
522 
523 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
524 {
525 	if (perf_evsel__hw_cache_stat[type] & COP(op))
526 		return true;	/* valid */
527 	else
528 		return false;	/* invalid */
529 }
530 
531 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
532 					    char *bf, size_t size)
533 {
534 	if (result) {
535 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
536 				 perf_evsel__hw_cache_op[op][0],
537 				 perf_evsel__hw_cache_result[result][0]);
538 	}
539 
540 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
541 			 perf_evsel__hw_cache_op[op][1]);
542 }
543 
544 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
545 {
546 	u8 op, result, type = (config >>  0) & 0xff;
547 	const char *err = "unknown-ext-hardware-cache-type";
548 
549 	if (type >= PERF_COUNT_HW_CACHE_MAX)
550 		goto out_err;
551 
552 	op = (config >>  8) & 0xff;
553 	err = "unknown-ext-hardware-cache-op";
554 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
555 		goto out_err;
556 
557 	result = (config >> 16) & 0xff;
558 	err = "unknown-ext-hardware-cache-result";
559 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
560 		goto out_err;
561 
562 	err = "invalid-cache";
563 	if (!perf_evsel__is_cache_op_valid(type, op))
564 		goto out_err;
565 
566 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
567 out_err:
568 	return scnprintf(bf, size, "%s", err);
569 }
570 
571 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
572 {
573 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
574 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
575 }
576 
577 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
578 {
579 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
580 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
581 }
582 
583 const char *perf_evsel__name(struct perf_evsel *evsel)
584 {
585 	char bf[128];
586 
587 	if (evsel->name)
588 		return evsel->name;
589 
590 	switch (evsel->attr.type) {
591 	case PERF_TYPE_RAW:
592 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
593 		break;
594 
595 	case PERF_TYPE_HARDWARE:
596 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
597 		break;
598 
599 	case PERF_TYPE_HW_CACHE:
600 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
601 		break;
602 
603 	case PERF_TYPE_SOFTWARE:
604 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
605 		break;
606 
607 	case PERF_TYPE_TRACEPOINT:
608 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
609 		break;
610 
611 	case PERF_TYPE_BREAKPOINT:
612 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
613 		break;
614 
615 	default:
616 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
617 			  evsel->attr.type);
618 		break;
619 	}
620 
621 	evsel->name = strdup(bf);
622 
623 	return evsel->name ?: "unknown";
624 }
625 
626 const char *perf_evsel__group_name(struct perf_evsel *evsel)
627 {
628 	return evsel->group_name ?: "anon group";
629 }
630 
631 /*
632  * Returns the group details for the specified leader,
633  * with following rules.
634  *
635  *  For record -e '{cycles,instructions}'
636  *    'anon group { cycles:u, instructions:u }'
637  *
638  *  For record -e 'cycles,instructions' and report --group
639  *    'cycles:u, instructions:u'
640  */
641 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
642 {
643 	int ret = 0;
644 	struct perf_evsel *pos;
645 	const char *group_name = perf_evsel__group_name(evsel);
646 
647 	if (!evsel->forced_leader)
648 		ret = scnprintf(buf, size, "%s { ", group_name);
649 
650 	ret += scnprintf(buf + ret, size - ret, "%s",
651 			 perf_evsel__name(evsel));
652 
653 	for_each_group_member(pos, evsel)
654 		ret += scnprintf(buf + ret, size - ret, ", %s",
655 				 perf_evsel__name(pos));
656 
657 	if (!evsel->forced_leader)
658 		ret += scnprintf(buf + ret, size - ret, " }");
659 
660 	return ret;
661 }
662 
663 static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
664 					   struct record_opts *opts,
665 					   struct callchain_param *param)
666 {
667 	bool function = perf_evsel__is_function_event(evsel);
668 	struct perf_event_attr *attr = &evsel->attr;
669 
670 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
671 
672 	attr->sample_max_stack = param->max_stack;
673 
674 	if (param->record_mode == CALLCHAIN_LBR) {
675 		if (!opts->branch_stack) {
676 			if (attr->exclude_user) {
677 				pr_warning("LBR callstack option is only available "
678 					   "to get user callchain information. "
679 					   "Falling back to framepointers.\n");
680 			} else {
681 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
682 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
683 							PERF_SAMPLE_BRANCH_CALL_STACK |
684 							PERF_SAMPLE_BRANCH_NO_CYCLES |
685 							PERF_SAMPLE_BRANCH_NO_FLAGS;
686 			}
687 		} else
688 			 pr_warning("Cannot use LBR callstack with branch stack. "
689 				    "Falling back to framepointers.\n");
690 	}
691 
692 	if (param->record_mode == CALLCHAIN_DWARF) {
693 		if (!function) {
694 			perf_evsel__set_sample_bit(evsel, REGS_USER);
695 			perf_evsel__set_sample_bit(evsel, STACK_USER);
696 			attr->sample_regs_user |= PERF_REGS_MASK;
697 			attr->sample_stack_user = param->dump_size;
698 			attr->exclude_callchain_user = 1;
699 		} else {
700 			pr_info("Cannot use DWARF unwind for function trace event,"
701 				" falling back to framepointers.\n");
702 		}
703 	}
704 
705 	if (function) {
706 		pr_info("Disabling user space callchains for function trace event.\n");
707 		attr->exclude_callchain_user = 1;
708 	}
709 }
710 
711 void perf_evsel__config_callchain(struct perf_evsel *evsel,
712 				  struct record_opts *opts,
713 				  struct callchain_param *param)
714 {
715 	if (param->enabled)
716 		return __perf_evsel__config_callchain(evsel, opts, param);
717 }
718 
719 static void
720 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
721 			    struct callchain_param *param)
722 {
723 	struct perf_event_attr *attr = &evsel->attr;
724 
725 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
726 	if (param->record_mode == CALLCHAIN_LBR) {
727 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
728 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
729 					      PERF_SAMPLE_BRANCH_CALL_STACK);
730 	}
731 	if (param->record_mode == CALLCHAIN_DWARF) {
732 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
733 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
734 	}
735 }
736 
737 static void apply_config_terms(struct perf_evsel *evsel,
738 			       struct record_opts *opts, bool track)
739 {
740 	struct perf_evsel_config_term *term;
741 	struct list_head *config_terms = &evsel->config_terms;
742 	struct perf_event_attr *attr = &evsel->attr;
743 	/* callgraph default */
744 	struct callchain_param param = {
745 		.record_mode = callchain_param.record_mode,
746 	};
747 	u32 dump_size = 0;
748 	int max_stack = 0;
749 	const char *callgraph_buf = NULL;
750 
751 	list_for_each_entry(term, config_terms, list) {
752 		switch (term->type) {
753 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
754 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
755 				attr->sample_period = term->val.period;
756 				attr->freq = 0;
757 				perf_evsel__reset_sample_bit(evsel, PERIOD);
758 			}
759 			break;
760 		case PERF_EVSEL__CONFIG_TERM_FREQ:
761 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
762 				attr->sample_freq = term->val.freq;
763 				attr->freq = 1;
764 				perf_evsel__set_sample_bit(evsel, PERIOD);
765 			}
766 			break;
767 		case PERF_EVSEL__CONFIG_TERM_TIME:
768 			if (term->val.time)
769 				perf_evsel__set_sample_bit(evsel, TIME);
770 			else
771 				perf_evsel__reset_sample_bit(evsel, TIME);
772 			break;
773 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
774 			callgraph_buf = term->val.callgraph;
775 			break;
776 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
777 			if (term->val.branch && strcmp(term->val.branch, "no")) {
778 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
779 				parse_branch_str(term->val.branch,
780 						 &attr->branch_sample_type);
781 			} else
782 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
783 			break;
784 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
785 			dump_size = term->val.stack_user;
786 			break;
787 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
788 			max_stack = term->val.max_stack;
789 			break;
790 		case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS:
791 			evsel->max_events = term->val.max_events;
792 			break;
793 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
794 			/*
795 			 * attr->inherit should has already been set by
796 			 * perf_evsel__config. If user explicitly set
797 			 * inherit using config terms, override global
798 			 * opt->no_inherit setting.
799 			 */
800 			attr->inherit = term->val.inherit ? 1 : 0;
801 			break;
802 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
803 			attr->write_backward = term->val.overwrite ? 1 : 0;
804 			break;
805 		case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
806 			break;
807 		default:
808 			break;
809 		}
810 	}
811 
812 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
813 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
814 		bool sample_address = false;
815 
816 		if (max_stack) {
817 			param.max_stack = max_stack;
818 			if (callgraph_buf == NULL)
819 				callgraph_buf = "fp";
820 		}
821 
822 		/* parse callgraph parameters */
823 		if (callgraph_buf != NULL) {
824 			if (!strcmp(callgraph_buf, "no")) {
825 				param.enabled = false;
826 				param.record_mode = CALLCHAIN_NONE;
827 			} else {
828 				param.enabled = true;
829 				if (parse_callchain_record(callgraph_buf, &param)) {
830 					pr_err("per-event callgraph setting for %s failed. "
831 					       "Apply callgraph global setting for it\n",
832 					       evsel->name);
833 					return;
834 				}
835 				if (param.record_mode == CALLCHAIN_DWARF)
836 					sample_address = true;
837 			}
838 		}
839 		if (dump_size > 0) {
840 			dump_size = round_up(dump_size, sizeof(u64));
841 			param.dump_size = dump_size;
842 		}
843 
844 		/* If global callgraph set, clear it */
845 		if (callchain_param.enabled)
846 			perf_evsel__reset_callgraph(evsel, &callchain_param);
847 
848 		/* set perf-event callgraph */
849 		if (param.enabled) {
850 			if (sample_address) {
851 				perf_evsel__set_sample_bit(evsel, ADDR);
852 				perf_evsel__set_sample_bit(evsel, DATA_SRC);
853 				evsel->attr.mmap_data = track;
854 			}
855 			perf_evsel__config_callchain(evsel, opts, &param);
856 		}
857 	}
858 }
859 
860 static bool is_dummy_event(struct perf_evsel *evsel)
861 {
862 	return (evsel->attr.type == PERF_TYPE_SOFTWARE) &&
863 	       (evsel->attr.config == PERF_COUNT_SW_DUMMY);
864 }
865 
866 /*
867  * The enable_on_exec/disabled value strategy:
868  *
869  *  1) For any type of traced program:
870  *    - all independent events and group leaders are disabled
871  *    - all group members are enabled
872  *
873  *     Group members are ruled by group leaders. They need to
874  *     be enabled, because the group scheduling relies on that.
875  *
876  *  2) For traced programs executed by perf:
877  *     - all independent events and group leaders have
878  *       enable_on_exec set
879  *     - we don't specifically enable or disable any event during
880  *       the record command
881  *
882  *     Independent events and group leaders are initially disabled
883  *     and get enabled by exec. Group members are ruled by group
884  *     leaders as stated in 1).
885  *
886  *  3) For traced programs attached by perf (pid/tid):
887  *     - we specifically enable or disable all events during
888  *       the record command
889  *
890  *     When attaching events to already running traced we
891  *     enable/disable events specifically, as there's no
892  *     initial traced exec call.
893  */
894 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
895 			struct callchain_param *callchain)
896 {
897 	struct perf_evsel *leader = evsel->leader;
898 	struct perf_event_attr *attr = &evsel->attr;
899 	int track = evsel->tracking;
900 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
901 
902 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
903 	attr->inherit	    = !opts->no_inherit;
904 	attr->write_backward = opts->overwrite ? 1 : 0;
905 
906 	perf_evsel__set_sample_bit(evsel, IP);
907 	perf_evsel__set_sample_bit(evsel, TID);
908 
909 	if (evsel->sample_read) {
910 		perf_evsel__set_sample_bit(evsel, READ);
911 
912 		/*
913 		 * We need ID even in case of single event, because
914 		 * PERF_SAMPLE_READ process ID specific data.
915 		 */
916 		perf_evsel__set_sample_id(evsel, false);
917 
918 		/*
919 		 * Apply group format only if we belong to group
920 		 * with more than one members.
921 		 */
922 		if (leader->nr_members > 1) {
923 			attr->read_format |= PERF_FORMAT_GROUP;
924 			attr->inherit = 0;
925 		}
926 	}
927 
928 	/*
929 	 * We default some events to have a default interval. But keep
930 	 * it a weak assumption overridable by the user.
931 	 */
932 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
933 				     opts->user_interval != ULLONG_MAX)) {
934 		if (opts->freq) {
935 			perf_evsel__set_sample_bit(evsel, PERIOD);
936 			attr->freq		= 1;
937 			attr->sample_freq	= opts->freq;
938 		} else {
939 			attr->sample_period = opts->default_interval;
940 		}
941 	}
942 
943 	/*
944 	 * Disable sampling for all group members other
945 	 * than leader in case leader 'leads' the sampling.
946 	 */
947 	if ((leader != evsel) && leader->sample_read) {
948 		attr->freq           = 0;
949 		attr->sample_freq    = 0;
950 		attr->sample_period  = 0;
951 		attr->write_backward = 0;
952 
953 		/*
954 		 * We don't get sample for slave events, we make them
955 		 * when delivering group leader sample. Set the slave
956 		 * event to follow the master sample_type to ease up
957 		 * report.
958 		 */
959 		attr->sample_type = leader->attr.sample_type;
960 	}
961 
962 	if (opts->no_samples)
963 		attr->sample_freq = 0;
964 
965 	if (opts->inherit_stat) {
966 		evsel->attr.read_format |=
967 			PERF_FORMAT_TOTAL_TIME_ENABLED |
968 			PERF_FORMAT_TOTAL_TIME_RUNNING |
969 			PERF_FORMAT_ID;
970 		attr->inherit_stat = 1;
971 	}
972 
973 	if (opts->sample_address) {
974 		perf_evsel__set_sample_bit(evsel, ADDR);
975 		attr->mmap_data = track;
976 	}
977 
978 	/*
979 	 * We don't allow user space callchains for  function trace
980 	 * event, due to issues with page faults while tracing page
981 	 * fault handler and its overall trickiness nature.
982 	 */
983 	if (perf_evsel__is_function_event(evsel))
984 		evsel->attr.exclude_callchain_user = 1;
985 
986 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
987 		perf_evsel__config_callchain(evsel, opts, callchain);
988 
989 	if (opts->sample_intr_regs) {
990 		attr->sample_regs_intr = opts->sample_intr_regs;
991 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
992 	}
993 
994 	if (opts->sample_user_regs) {
995 		attr->sample_regs_user |= opts->sample_user_regs;
996 		perf_evsel__set_sample_bit(evsel, REGS_USER);
997 	}
998 
999 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
1000 		perf_evsel__set_sample_bit(evsel, CPU);
1001 
1002 	/*
1003 	 * When the user explicitly disabled time don't force it here.
1004 	 */
1005 	if (opts->sample_time &&
1006 	    (!perf_missing_features.sample_id_all &&
1007 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1008 	     opts->sample_time_set)))
1009 		perf_evsel__set_sample_bit(evsel, TIME);
1010 
1011 	if (opts->raw_samples && !evsel->no_aux_samples) {
1012 		perf_evsel__set_sample_bit(evsel, TIME);
1013 		perf_evsel__set_sample_bit(evsel, RAW);
1014 		perf_evsel__set_sample_bit(evsel, CPU);
1015 	}
1016 
1017 	if (opts->sample_address)
1018 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
1019 
1020 	if (opts->sample_phys_addr)
1021 		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1022 
1023 	if (opts->no_buffering) {
1024 		attr->watermark = 0;
1025 		attr->wakeup_events = 1;
1026 	}
1027 	if (opts->branch_stack && !evsel->no_aux_samples) {
1028 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1029 		attr->branch_sample_type = opts->branch_stack;
1030 	}
1031 
1032 	if (opts->sample_weight)
1033 		perf_evsel__set_sample_bit(evsel, WEIGHT);
1034 
1035 	attr->task  = track;
1036 	attr->mmap  = track;
1037 	attr->mmap2 = track && !perf_missing_features.mmap2;
1038 	attr->comm  = track;
1039 	attr->ksymbol = track && !perf_missing_features.ksymbol;
1040 	attr->bpf_event = track && !opts->no_bpf_event &&
1041 		!perf_missing_features.bpf_event;
1042 
1043 	if (opts->record_namespaces)
1044 		attr->namespaces  = track;
1045 
1046 	if (opts->record_switch_events)
1047 		attr->context_switch = track;
1048 
1049 	if (opts->sample_transaction)
1050 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
1051 
1052 	if (opts->running_time) {
1053 		evsel->attr.read_format |=
1054 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1055 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1056 	}
1057 
1058 	/*
1059 	 * XXX see the function comment above
1060 	 *
1061 	 * Disabling only independent events or group leaders,
1062 	 * keeping group members enabled.
1063 	 */
1064 	if (perf_evsel__is_group_leader(evsel))
1065 		attr->disabled = 1;
1066 
1067 	/*
1068 	 * Setting enable_on_exec for independent events and
1069 	 * group leaders for traced executed by perf.
1070 	 */
1071 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1072 		!opts->initial_delay)
1073 		attr->enable_on_exec = 1;
1074 
1075 	if (evsel->immediate) {
1076 		attr->disabled = 0;
1077 		attr->enable_on_exec = 0;
1078 	}
1079 
1080 	clockid = opts->clockid;
1081 	if (opts->use_clockid) {
1082 		attr->use_clockid = 1;
1083 		attr->clockid = opts->clockid;
1084 	}
1085 
1086 	if (evsel->precise_max)
1087 		attr->precise_ip = 3;
1088 
1089 	if (opts->all_user) {
1090 		attr->exclude_kernel = 1;
1091 		attr->exclude_user   = 0;
1092 	}
1093 
1094 	if (opts->all_kernel) {
1095 		attr->exclude_kernel = 0;
1096 		attr->exclude_user   = 1;
1097 	}
1098 
1099 	if (evsel->own_cpus || evsel->unit)
1100 		evsel->attr.read_format |= PERF_FORMAT_ID;
1101 
1102 	/*
1103 	 * Apply event specific term settings,
1104 	 * it overloads any global configuration.
1105 	 */
1106 	apply_config_terms(evsel, opts, track);
1107 
1108 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1109 
1110 	/* The --period option takes the precedence. */
1111 	if (opts->period_set) {
1112 		if (opts->period)
1113 			perf_evsel__set_sample_bit(evsel, PERIOD);
1114 		else
1115 			perf_evsel__reset_sample_bit(evsel, PERIOD);
1116 	}
1117 
1118 	/*
1119 	 * For initial_delay, a dummy event is added implicitly.
1120 	 * The software event will trigger -EOPNOTSUPP error out,
1121 	 * if BRANCH_STACK bit is set.
1122 	 */
1123 	if (opts->initial_delay && is_dummy_event(evsel))
1124 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1125 }
1126 
1127 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1128 {
1129 	if (evsel->system_wide)
1130 		nthreads = 1;
1131 
1132 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1133 
1134 	if (evsel->fd) {
1135 		int cpu, thread;
1136 		for (cpu = 0; cpu < ncpus; cpu++) {
1137 			for (thread = 0; thread < nthreads; thread++) {
1138 				FD(evsel, cpu, thread) = -1;
1139 			}
1140 		}
1141 	}
1142 
1143 	return evsel->fd != NULL ? 0 : -ENOMEM;
1144 }
1145 
1146 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1147 			  int ioc,  void *arg)
1148 {
1149 	int cpu, thread;
1150 
1151 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1152 		for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1153 			int fd = FD(evsel, cpu, thread),
1154 			    err = ioctl(fd, ioc, arg);
1155 
1156 			if (err)
1157 				return err;
1158 		}
1159 	}
1160 
1161 	return 0;
1162 }
1163 
1164 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1165 {
1166 	return perf_evsel__run_ioctl(evsel,
1167 				     PERF_EVENT_IOC_SET_FILTER,
1168 				     (void *)filter);
1169 }
1170 
1171 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1172 {
1173 	char *new_filter = strdup(filter);
1174 
1175 	if (new_filter != NULL) {
1176 		free(evsel->filter);
1177 		evsel->filter = new_filter;
1178 		return 0;
1179 	}
1180 
1181 	return -1;
1182 }
1183 
1184 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1185 				     const char *fmt, const char *filter)
1186 {
1187 	char *new_filter;
1188 
1189 	if (evsel->filter == NULL)
1190 		return perf_evsel__set_filter(evsel, filter);
1191 
1192 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1193 		free(evsel->filter);
1194 		evsel->filter = new_filter;
1195 		return 0;
1196 	}
1197 
1198 	return -1;
1199 }
1200 
1201 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1202 {
1203 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1204 }
1205 
1206 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1207 {
1208 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1209 }
1210 
1211 int perf_evsel__enable(struct perf_evsel *evsel)
1212 {
1213 	int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0);
1214 
1215 	if (!err)
1216 		evsel->disabled = false;
1217 
1218 	return err;
1219 }
1220 
1221 int perf_evsel__disable(struct perf_evsel *evsel)
1222 {
1223 	int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0);
1224 	/*
1225 	 * We mark it disabled here so that tools that disable a event can
1226 	 * ignore events after they disable it. I.e. the ring buffer may have
1227 	 * already a few more events queued up before the kernel got the stop
1228 	 * request.
1229 	 */
1230 	if (!err)
1231 		evsel->disabled = true;
1232 
1233 	return err;
1234 }
1235 
1236 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1237 {
1238 	if (ncpus == 0 || nthreads == 0)
1239 		return 0;
1240 
1241 	if (evsel->system_wide)
1242 		nthreads = 1;
1243 
1244 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1245 	if (evsel->sample_id == NULL)
1246 		return -ENOMEM;
1247 
1248 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1249 	if (evsel->id == NULL) {
1250 		xyarray__delete(evsel->sample_id);
1251 		evsel->sample_id = NULL;
1252 		return -ENOMEM;
1253 	}
1254 
1255 	return 0;
1256 }
1257 
1258 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1259 {
1260 	xyarray__delete(evsel->fd);
1261 	evsel->fd = NULL;
1262 }
1263 
1264 static void perf_evsel__free_id(struct perf_evsel *evsel)
1265 {
1266 	xyarray__delete(evsel->sample_id);
1267 	evsel->sample_id = NULL;
1268 	zfree(&evsel->id);
1269 }
1270 
1271 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1272 {
1273 	struct perf_evsel_config_term *term, *h;
1274 
1275 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1276 		list_del(&term->list);
1277 		free(term);
1278 	}
1279 }
1280 
1281 void perf_evsel__close_fd(struct perf_evsel *evsel)
1282 {
1283 	int cpu, thread;
1284 
1285 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1286 		for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1287 			close(FD(evsel, cpu, thread));
1288 			FD(evsel, cpu, thread) = -1;
1289 		}
1290 }
1291 
1292 void perf_evsel__exit(struct perf_evsel *evsel)
1293 {
1294 	assert(list_empty(&evsel->node));
1295 	assert(evsel->evlist == NULL);
1296 	perf_evsel__free_counts(evsel);
1297 	perf_evsel__free_fd(evsel);
1298 	perf_evsel__free_id(evsel);
1299 	perf_evsel__free_config_terms(evsel);
1300 	cgroup__put(evsel->cgrp);
1301 	cpu_map__put(evsel->cpus);
1302 	cpu_map__put(evsel->own_cpus);
1303 	thread_map__put(evsel->threads);
1304 	zfree(&evsel->group_name);
1305 	zfree(&evsel->name);
1306 	perf_evsel__object.fini(evsel);
1307 }
1308 
1309 void perf_evsel__delete(struct perf_evsel *evsel)
1310 {
1311 	perf_evsel__exit(evsel);
1312 	free(evsel);
1313 }
1314 
1315 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1316 				struct perf_counts_values *count)
1317 {
1318 	struct perf_counts_values tmp;
1319 
1320 	if (!evsel->prev_raw_counts)
1321 		return;
1322 
1323 	if (cpu == -1) {
1324 		tmp = evsel->prev_raw_counts->aggr;
1325 		evsel->prev_raw_counts->aggr = *count;
1326 	} else {
1327 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1328 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1329 	}
1330 
1331 	count->val = count->val - tmp.val;
1332 	count->ena = count->ena - tmp.ena;
1333 	count->run = count->run - tmp.run;
1334 }
1335 
1336 void perf_counts_values__scale(struct perf_counts_values *count,
1337 			       bool scale, s8 *pscaled)
1338 {
1339 	s8 scaled = 0;
1340 
1341 	if (scale) {
1342 		if (count->run == 0) {
1343 			scaled = -1;
1344 			count->val = 0;
1345 		} else if (count->run < count->ena) {
1346 			scaled = 1;
1347 			count->val = (u64)((double) count->val * count->ena / count->run);
1348 		}
1349 	}
1350 
1351 	if (pscaled)
1352 		*pscaled = scaled;
1353 }
1354 
1355 static int perf_evsel__read_size(struct perf_evsel *evsel)
1356 {
1357 	u64 read_format = evsel->attr.read_format;
1358 	int entry = sizeof(u64); /* value */
1359 	int size = 0;
1360 	int nr = 1;
1361 
1362 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1363 		size += sizeof(u64);
1364 
1365 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1366 		size += sizeof(u64);
1367 
1368 	if (read_format & PERF_FORMAT_ID)
1369 		entry += sizeof(u64);
1370 
1371 	if (read_format & PERF_FORMAT_GROUP) {
1372 		nr = evsel->nr_members;
1373 		size += sizeof(u64);
1374 	}
1375 
1376 	size += entry * nr;
1377 	return size;
1378 }
1379 
1380 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1381 		     struct perf_counts_values *count)
1382 {
1383 	size_t size = perf_evsel__read_size(evsel);
1384 
1385 	memset(count, 0, sizeof(*count));
1386 
1387 	if (FD(evsel, cpu, thread) < 0)
1388 		return -EINVAL;
1389 
1390 	if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1391 		return -errno;
1392 
1393 	return 0;
1394 }
1395 
1396 static int
1397 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1398 {
1399 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1400 
1401 	return perf_evsel__read(evsel, cpu, thread, count);
1402 }
1403 
1404 static void
1405 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1406 		      u64 val, u64 ena, u64 run)
1407 {
1408 	struct perf_counts_values *count;
1409 
1410 	count = perf_counts(counter->counts, cpu, thread);
1411 
1412 	count->val    = val;
1413 	count->ena    = ena;
1414 	count->run    = run;
1415 	count->loaded = true;
1416 }
1417 
1418 static int
1419 perf_evsel__process_group_data(struct perf_evsel *leader,
1420 			       int cpu, int thread, u64 *data)
1421 {
1422 	u64 read_format = leader->attr.read_format;
1423 	struct sample_read_value *v;
1424 	u64 nr, ena = 0, run = 0, i;
1425 
1426 	nr = *data++;
1427 
1428 	if (nr != (u64) leader->nr_members)
1429 		return -EINVAL;
1430 
1431 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1432 		ena = *data++;
1433 
1434 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1435 		run = *data++;
1436 
1437 	v = (struct sample_read_value *) data;
1438 
1439 	perf_evsel__set_count(leader, cpu, thread,
1440 			      v[0].value, ena, run);
1441 
1442 	for (i = 1; i < nr; i++) {
1443 		struct perf_evsel *counter;
1444 
1445 		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1446 		if (!counter)
1447 			return -EINVAL;
1448 
1449 		perf_evsel__set_count(counter, cpu, thread,
1450 				      v[i].value, ena, run);
1451 	}
1452 
1453 	return 0;
1454 }
1455 
1456 static int
1457 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1458 {
1459 	struct perf_stat_evsel *ps = leader->stats;
1460 	u64 read_format = leader->attr.read_format;
1461 	int size = perf_evsel__read_size(leader);
1462 	u64 *data = ps->group_data;
1463 
1464 	if (!(read_format & PERF_FORMAT_ID))
1465 		return -EINVAL;
1466 
1467 	if (!perf_evsel__is_group_leader(leader))
1468 		return -EINVAL;
1469 
1470 	if (!data) {
1471 		data = zalloc(size);
1472 		if (!data)
1473 			return -ENOMEM;
1474 
1475 		ps->group_data = data;
1476 	}
1477 
1478 	if (FD(leader, cpu, thread) < 0)
1479 		return -EINVAL;
1480 
1481 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1482 		return -errno;
1483 
1484 	return perf_evsel__process_group_data(leader, cpu, thread, data);
1485 }
1486 
1487 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1488 {
1489 	u64 read_format = evsel->attr.read_format;
1490 
1491 	if (read_format & PERF_FORMAT_GROUP)
1492 		return perf_evsel__read_group(evsel, cpu, thread);
1493 	else
1494 		return perf_evsel__read_one(evsel, cpu, thread);
1495 }
1496 
1497 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1498 			      int cpu, int thread, bool scale)
1499 {
1500 	struct perf_counts_values count;
1501 	size_t nv = scale ? 3 : 1;
1502 
1503 	if (FD(evsel, cpu, thread) < 0)
1504 		return -EINVAL;
1505 
1506 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1507 		return -ENOMEM;
1508 
1509 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1510 		return -errno;
1511 
1512 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1513 	perf_counts_values__scale(&count, scale, NULL);
1514 	*perf_counts(evsel->counts, cpu, thread) = count;
1515 	return 0;
1516 }
1517 
1518 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1519 {
1520 	struct perf_evsel *leader = evsel->leader;
1521 	int fd;
1522 
1523 	if (perf_evsel__is_group_leader(evsel))
1524 		return -1;
1525 
1526 	/*
1527 	 * Leader must be already processed/open,
1528 	 * if not it's a bug.
1529 	 */
1530 	BUG_ON(!leader->fd);
1531 
1532 	fd = FD(leader, cpu, thread);
1533 	BUG_ON(fd == -1);
1534 
1535 	return fd;
1536 }
1537 
1538 struct bit_names {
1539 	int bit;
1540 	const char *name;
1541 };
1542 
1543 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1544 {
1545 	bool first_bit = true;
1546 	int i = 0;
1547 
1548 	do {
1549 		if (value & bits[i].bit) {
1550 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1551 			first_bit = false;
1552 		}
1553 	} while (bits[++i].name != NULL);
1554 }
1555 
1556 static void __p_sample_type(char *buf, size_t size, u64 value)
1557 {
1558 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1559 	struct bit_names bits[] = {
1560 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1561 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1562 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1563 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1564 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1565 		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1566 		{ .name = NULL, }
1567 	};
1568 #undef bit_name
1569 	__p_bits(buf, size, value, bits);
1570 }
1571 
1572 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1573 {
1574 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1575 	struct bit_names bits[] = {
1576 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1577 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1578 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1579 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1580 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1581 		{ .name = NULL, }
1582 	};
1583 #undef bit_name
1584 	__p_bits(buf, size, value, bits);
1585 }
1586 
1587 static void __p_read_format(char *buf, size_t size, u64 value)
1588 {
1589 #define bit_name(n) { PERF_FORMAT_##n, #n }
1590 	struct bit_names bits[] = {
1591 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1592 		bit_name(ID), bit_name(GROUP),
1593 		{ .name = NULL, }
1594 	};
1595 #undef bit_name
1596 	__p_bits(buf, size, value, bits);
1597 }
1598 
1599 #define BUF_SIZE		1024
1600 
1601 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1602 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1603 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1604 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1605 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1606 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1607 
1608 #define PRINT_ATTRn(_n, _f, _p)				\
1609 do {							\
1610 	if (attr->_f) {					\
1611 		_p(attr->_f);				\
1612 		ret += attr__fprintf(fp, _n, buf, priv);\
1613 	}						\
1614 } while (0)
1615 
1616 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1617 
1618 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1619 			     attr__fprintf_f attr__fprintf, void *priv)
1620 {
1621 	char buf[BUF_SIZE];
1622 	int ret = 0;
1623 
1624 	PRINT_ATTRf(type, p_unsigned);
1625 	PRINT_ATTRf(size, p_unsigned);
1626 	PRINT_ATTRf(config, p_hex);
1627 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1628 	PRINT_ATTRf(sample_type, p_sample_type);
1629 	PRINT_ATTRf(read_format, p_read_format);
1630 
1631 	PRINT_ATTRf(disabled, p_unsigned);
1632 	PRINT_ATTRf(inherit, p_unsigned);
1633 	PRINT_ATTRf(pinned, p_unsigned);
1634 	PRINT_ATTRf(exclusive, p_unsigned);
1635 	PRINT_ATTRf(exclude_user, p_unsigned);
1636 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1637 	PRINT_ATTRf(exclude_hv, p_unsigned);
1638 	PRINT_ATTRf(exclude_idle, p_unsigned);
1639 	PRINT_ATTRf(mmap, p_unsigned);
1640 	PRINT_ATTRf(comm, p_unsigned);
1641 	PRINT_ATTRf(freq, p_unsigned);
1642 	PRINT_ATTRf(inherit_stat, p_unsigned);
1643 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1644 	PRINT_ATTRf(task, p_unsigned);
1645 	PRINT_ATTRf(watermark, p_unsigned);
1646 	PRINT_ATTRf(precise_ip, p_unsigned);
1647 	PRINT_ATTRf(mmap_data, p_unsigned);
1648 	PRINT_ATTRf(sample_id_all, p_unsigned);
1649 	PRINT_ATTRf(exclude_host, p_unsigned);
1650 	PRINT_ATTRf(exclude_guest, p_unsigned);
1651 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1652 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1653 	PRINT_ATTRf(mmap2, p_unsigned);
1654 	PRINT_ATTRf(comm_exec, p_unsigned);
1655 	PRINT_ATTRf(use_clockid, p_unsigned);
1656 	PRINT_ATTRf(context_switch, p_unsigned);
1657 	PRINT_ATTRf(write_backward, p_unsigned);
1658 	PRINT_ATTRf(namespaces, p_unsigned);
1659 	PRINT_ATTRf(ksymbol, p_unsigned);
1660 	PRINT_ATTRf(bpf_event, p_unsigned);
1661 
1662 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1663 	PRINT_ATTRf(bp_type, p_unsigned);
1664 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1665 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1666 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1667 	PRINT_ATTRf(sample_regs_user, p_hex);
1668 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1669 	PRINT_ATTRf(clockid, p_signed);
1670 	PRINT_ATTRf(sample_regs_intr, p_hex);
1671 	PRINT_ATTRf(aux_watermark, p_unsigned);
1672 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1673 
1674 	return ret;
1675 }
1676 
1677 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1678 				void *priv __maybe_unused)
1679 {
1680 	return fprintf(fp, "  %-32s %s\n", name, val);
1681 }
1682 
1683 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1684 				  int nr_cpus, int nr_threads,
1685 				  int thread_idx)
1686 {
1687 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1688 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1689 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1690 }
1691 
1692 static int update_fds(struct perf_evsel *evsel,
1693 		      int nr_cpus, int cpu_idx,
1694 		      int nr_threads, int thread_idx)
1695 {
1696 	struct perf_evsel *pos;
1697 
1698 	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1699 		return -EINVAL;
1700 
1701 	evlist__for_each_entry(evsel->evlist, pos) {
1702 		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1703 
1704 		perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1705 
1706 		/*
1707 		 * Since fds for next evsel has not been created,
1708 		 * there is no need to iterate whole event list.
1709 		 */
1710 		if (pos == evsel)
1711 			break;
1712 	}
1713 	return 0;
1714 }
1715 
1716 static bool ignore_missing_thread(struct perf_evsel *evsel,
1717 				  int nr_cpus, int cpu,
1718 				  struct thread_map *threads,
1719 				  int thread, int err)
1720 {
1721 	pid_t ignore_pid = thread_map__pid(threads, thread);
1722 
1723 	if (!evsel->ignore_missing_thread)
1724 		return false;
1725 
1726 	/* The system wide setup does not work with threads. */
1727 	if (evsel->system_wide)
1728 		return false;
1729 
1730 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1731 	if (err != -ESRCH)
1732 		return false;
1733 
1734 	/* If there's only one thread, let it fail. */
1735 	if (threads->nr == 1)
1736 		return false;
1737 
1738 	/*
1739 	 * We should remove fd for missing_thread first
1740 	 * because thread_map__remove() will decrease threads->nr.
1741 	 */
1742 	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1743 		return false;
1744 
1745 	if (thread_map__remove(threads, thread))
1746 		return false;
1747 
1748 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1749 		   ignore_pid);
1750 	return true;
1751 }
1752 
1753 static void display_attr(struct perf_event_attr *attr)
1754 {
1755 	if (verbose >= 2) {
1756 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1757 		fprintf(stderr, "perf_event_attr:\n");
1758 		perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL);
1759 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1760 	}
1761 }
1762 
1763 static int perf_event_open(struct perf_evsel *evsel,
1764 			   pid_t pid, int cpu, int group_fd,
1765 			   unsigned long flags)
1766 {
1767 	int precise_ip = evsel->attr.precise_ip;
1768 	int fd;
1769 
1770 	while (1) {
1771 		pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1772 			  pid, cpu, group_fd, flags);
1773 
1774 		fd = sys_perf_event_open(&evsel->attr, pid, cpu, group_fd, flags);
1775 		if (fd >= 0)
1776 			break;
1777 
1778 		/*
1779 		 * Do quick precise_ip fallback if:
1780 		 *  - there is precise_ip set in perf_event_attr
1781 		 *  - maximum precise is requested
1782 		 *  - sys_perf_event_open failed with ENOTSUP error,
1783 		 *    which is associated with wrong precise_ip
1784 		 */
1785 		if (!precise_ip || !evsel->precise_max || (errno != ENOTSUP))
1786 			break;
1787 
1788 		/*
1789 		 * We tried all the precise_ip values, and it's
1790 		 * still failing, so leave it to standard fallback.
1791 		 */
1792 		if (!evsel->attr.precise_ip) {
1793 			evsel->attr.precise_ip = precise_ip;
1794 			break;
1795 		}
1796 
1797 		pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP);
1798 		evsel->attr.precise_ip--;
1799 		pr_debug2("decreasing precise_ip by one (%d)\n", evsel->attr.precise_ip);
1800 		display_attr(&evsel->attr);
1801 	}
1802 
1803 	return fd;
1804 }
1805 
1806 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1807 		     struct thread_map *threads)
1808 {
1809 	int cpu, thread, nthreads;
1810 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1811 	int pid = -1, err;
1812 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1813 
1814 	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1815 		return -EINVAL;
1816 
1817 	if (cpus == NULL) {
1818 		static struct cpu_map *empty_cpu_map;
1819 
1820 		if (empty_cpu_map == NULL) {
1821 			empty_cpu_map = cpu_map__dummy_new();
1822 			if (empty_cpu_map == NULL)
1823 				return -ENOMEM;
1824 		}
1825 
1826 		cpus = empty_cpu_map;
1827 	}
1828 
1829 	if (threads == NULL) {
1830 		static struct thread_map *empty_thread_map;
1831 
1832 		if (empty_thread_map == NULL) {
1833 			empty_thread_map = thread_map__new_by_tid(-1);
1834 			if (empty_thread_map == NULL)
1835 				return -ENOMEM;
1836 		}
1837 
1838 		threads = empty_thread_map;
1839 	}
1840 
1841 	if (evsel->system_wide)
1842 		nthreads = 1;
1843 	else
1844 		nthreads = threads->nr;
1845 
1846 	if (evsel->fd == NULL &&
1847 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1848 		return -ENOMEM;
1849 
1850 	if (evsel->cgrp) {
1851 		flags |= PERF_FLAG_PID_CGROUP;
1852 		pid = evsel->cgrp->fd;
1853 	}
1854 
1855 fallback_missing_features:
1856 	if (perf_missing_features.clockid_wrong)
1857 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1858 	if (perf_missing_features.clockid) {
1859 		evsel->attr.use_clockid = 0;
1860 		evsel->attr.clockid = 0;
1861 	}
1862 	if (perf_missing_features.cloexec)
1863 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1864 	if (perf_missing_features.mmap2)
1865 		evsel->attr.mmap2 = 0;
1866 	if (perf_missing_features.exclude_guest)
1867 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1868 	if (perf_missing_features.lbr_flags)
1869 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1870 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1871 	if (perf_missing_features.group_read && evsel->attr.inherit)
1872 		evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1873 	if (perf_missing_features.ksymbol)
1874 		evsel->attr.ksymbol = 0;
1875 	if (perf_missing_features.bpf_event)
1876 		evsel->attr.bpf_event = 0;
1877 retry_sample_id:
1878 	if (perf_missing_features.sample_id_all)
1879 		evsel->attr.sample_id_all = 0;
1880 
1881 	display_attr(&evsel->attr);
1882 
1883 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1884 
1885 		for (thread = 0; thread < nthreads; thread++) {
1886 			int fd, group_fd;
1887 
1888 			if (!evsel->cgrp && !evsel->system_wide)
1889 				pid = thread_map__pid(threads, thread);
1890 
1891 			group_fd = get_group_fd(evsel, cpu, thread);
1892 retry_open:
1893 			test_attr__ready();
1894 
1895 			fd = perf_event_open(evsel, pid, cpus->map[cpu],
1896 					     group_fd, flags);
1897 
1898 			FD(evsel, cpu, thread) = fd;
1899 
1900 			if (fd < 0) {
1901 				err = -errno;
1902 
1903 				if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1904 					/*
1905 					 * We just removed 1 thread, so take a step
1906 					 * back on thread index and lower the upper
1907 					 * nthreads limit.
1908 					 */
1909 					nthreads--;
1910 					thread--;
1911 
1912 					/* ... and pretend like nothing have happened. */
1913 					err = 0;
1914 					continue;
1915 				}
1916 
1917 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1918 					  err);
1919 				goto try_fallback;
1920 			}
1921 
1922 			pr_debug2(" = %d\n", fd);
1923 
1924 			if (evsel->bpf_fd >= 0) {
1925 				int evt_fd = fd;
1926 				int bpf_fd = evsel->bpf_fd;
1927 
1928 				err = ioctl(evt_fd,
1929 					    PERF_EVENT_IOC_SET_BPF,
1930 					    bpf_fd);
1931 				if (err && errno != EEXIST) {
1932 					pr_err("failed to attach bpf fd %d: %s\n",
1933 					       bpf_fd, strerror(errno));
1934 					err = -EINVAL;
1935 					goto out_close;
1936 				}
1937 			}
1938 
1939 			set_rlimit = NO_CHANGE;
1940 
1941 			/*
1942 			 * If we succeeded but had to kill clockid, fail and
1943 			 * have perf_evsel__open_strerror() print us a nice
1944 			 * error.
1945 			 */
1946 			if (perf_missing_features.clockid ||
1947 			    perf_missing_features.clockid_wrong) {
1948 				err = -EINVAL;
1949 				goto out_close;
1950 			}
1951 		}
1952 	}
1953 
1954 	return 0;
1955 
1956 try_fallback:
1957 	/*
1958 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1959 	 * of them try to increase the limits.
1960 	 */
1961 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1962 		struct rlimit l;
1963 		int old_errno = errno;
1964 
1965 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1966 			if (set_rlimit == NO_CHANGE)
1967 				l.rlim_cur = l.rlim_max;
1968 			else {
1969 				l.rlim_cur = l.rlim_max + 1000;
1970 				l.rlim_max = l.rlim_cur;
1971 			}
1972 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1973 				set_rlimit++;
1974 				errno = old_errno;
1975 				goto retry_open;
1976 			}
1977 		}
1978 		errno = old_errno;
1979 	}
1980 
1981 	if (err != -EINVAL || cpu > 0 || thread > 0)
1982 		goto out_close;
1983 
1984 	/*
1985 	 * Must probe features in the order they were added to the
1986 	 * perf_event_attr interface.
1987 	 */
1988 	if (!perf_missing_features.bpf_event && evsel->attr.bpf_event) {
1989 		perf_missing_features.bpf_event = true;
1990 		pr_debug2("switching off bpf_event\n");
1991 		goto fallback_missing_features;
1992 	} else if (!perf_missing_features.ksymbol && evsel->attr.ksymbol) {
1993 		perf_missing_features.ksymbol = true;
1994 		pr_debug2("switching off ksymbol\n");
1995 		goto fallback_missing_features;
1996 	} else if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1997 		perf_missing_features.write_backward = true;
1998 		pr_debug2("switching off write_backward\n");
1999 		goto out_close;
2000 	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
2001 		perf_missing_features.clockid_wrong = true;
2002 		pr_debug2("switching off clockid\n");
2003 		goto fallback_missing_features;
2004 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
2005 		perf_missing_features.clockid = true;
2006 		pr_debug2("switching off use_clockid\n");
2007 		goto fallback_missing_features;
2008 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
2009 		perf_missing_features.cloexec = true;
2010 		pr_debug2("switching off cloexec flag\n");
2011 		goto fallback_missing_features;
2012 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
2013 		perf_missing_features.mmap2 = true;
2014 		pr_debug2("switching off mmap2\n");
2015 		goto fallback_missing_features;
2016 	} else if (!perf_missing_features.exclude_guest &&
2017 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
2018 		perf_missing_features.exclude_guest = true;
2019 		pr_debug2("switching off exclude_guest, exclude_host\n");
2020 		goto fallback_missing_features;
2021 	} else if (!perf_missing_features.sample_id_all) {
2022 		perf_missing_features.sample_id_all = true;
2023 		pr_debug2("switching off sample_id_all\n");
2024 		goto retry_sample_id;
2025 	} else if (!perf_missing_features.lbr_flags &&
2026 			(evsel->attr.branch_sample_type &
2027 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
2028 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
2029 		perf_missing_features.lbr_flags = true;
2030 		pr_debug2("switching off branch sample type no (cycles/flags)\n");
2031 		goto fallback_missing_features;
2032 	} else if (!perf_missing_features.group_read &&
2033 		    evsel->attr.inherit &&
2034 		   (evsel->attr.read_format & PERF_FORMAT_GROUP) &&
2035 		   perf_evsel__is_group_leader(evsel)) {
2036 		perf_missing_features.group_read = true;
2037 		pr_debug2("switching off group read\n");
2038 		goto fallback_missing_features;
2039 	}
2040 out_close:
2041 	if (err)
2042 		threads->err_thread = thread;
2043 
2044 	do {
2045 		while (--thread >= 0) {
2046 			close(FD(evsel, cpu, thread));
2047 			FD(evsel, cpu, thread) = -1;
2048 		}
2049 		thread = nthreads;
2050 	} while (--cpu >= 0);
2051 	return err;
2052 }
2053 
2054 void perf_evsel__close(struct perf_evsel *evsel)
2055 {
2056 	if (evsel->fd == NULL)
2057 		return;
2058 
2059 	perf_evsel__close_fd(evsel);
2060 	perf_evsel__free_fd(evsel);
2061 }
2062 
2063 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
2064 			     struct cpu_map *cpus)
2065 {
2066 	return perf_evsel__open(evsel, cpus, NULL);
2067 }
2068 
2069 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
2070 				struct thread_map *threads)
2071 {
2072 	return perf_evsel__open(evsel, NULL, threads);
2073 }
2074 
2075 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
2076 				       const union perf_event *event,
2077 				       struct perf_sample *sample)
2078 {
2079 	u64 type = evsel->attr.sample_type;
2080 	const u64 *array = event->sample.array;
2081 	bool swapped = evsel->needs_swap;
2082 	union u64_swap u;
2083 
2084 	array += ((event->header.size -
2085 		   sizeof(event->header)) / sizeof(u64)) - 1;
2086 
2087 	if (type & PERF_SAMPLE_IDENTIFIER) {
2088 		sample->id = *array;
2089 		array--;
2090 	}
2091 
2092 	if (type & PERF_SAMPLE_CPU) {
2093 		u.val64 = *array;
2094 		if (swapped) {
2095 			/* undo swap of u64, then swap on individual u32s */
2096 			u.val64 = bswap_64(u.val64);
2097 			u.val32[0] = bswap_32(u.val32[0]);
2098 		}
2099 
2100 		sample->cpu = u.val32[0];
2101 		array--;
2102 	}
2103 
2104 	if (type & PERF_SAMPLE_STREAM_ID) {
2105 		sample->stream_id = *array;
2106 		array--;
2107 	}
2108 
2109 	if (type & PERF_SAMPLE_ID) {
2110 		sample->id = *array;
2111 		array--;
2112 	}
2113 
2114 	if (type & PERF_SAMPLE_TIME) {
2115 		sample->time = *array;
2116 		array--;
2117 	}
2118 
2119 	if (type & PERF_SAMPLE_TID) {
2120 		u.val64 = *array;
2121 		if (swapped) {
2122 			/* undo swap of u64, then swap on individual u32s */
2123 			u.val64 = bswap_64(u.val64);
2124 			u.val32[0] = bswap_32(u.val32[0]);
2125 			u.val32[1] = bswap_32(u.val32[1]);
2126 		}
2127 
2128 		sample->pid = u.val32[0];
2129 		sample->tid = u.val32[1];
2130 		array--;
2131 	}
2132 
2133 	return 0;
2134 }
2135 
2136 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2137 			    u64 size)
2138 {
2139 	return size > max_size || offset + size > endp;
2140 }
2141 
2142 #define OVERFLOW_CHECK(offset, size, max_size)				\
2143 	do {								\
2144 		if (overflow(endp, (max_size), (offset), (size)))	\
2145 			return -EFAULT;					\
2146 	} while (0)
2147 
2148 #define OVERFLOW_CHECK_u64(offset) \
2149 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2150 
2151 static int
2152 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2153 {
2154 	/*
2155 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2156 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2157 	 * check the format does not go past the end of the event.
2158 	 */
2159 	if (sample_size + sizeof(event->header) > event->header.size)
2160 		return -EFAULT;
2161 
2162 	return 0;
2163 }
2164 
2165 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2166 			     struct perf_sample *data)
2167 {
2168 	u64 type = evsel->attr.sample_type;
2169 	bool swapped = evsel->needs_swap;
2170 	const u64 *array;
2171 	u16 max_size = event->header.size;
2172 	const void *endp = (void *)event + max_size;
2173 	u64 sz;
2174 
2175 	/*
2176 	 * used for cross-endian analysis. See git commit 65014ab3
2177 	 * for why this goofiness is needed.
2178 	 */
2179 	union u64_swap u;
2180 
2181 	memset(data, 0, sizeof(*data));
2182 	data->cpu = data->pid = data->tid = -1;
2183 	data->stream_id = data->id = data->time = -1ULL;
2184 	data->period = evsel->attr.sample_period;
2185 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2186 	data->misc    = event->header.misc;
2187 	data->id = -1ULL;
2188 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2189 
2190 	if (event->header.type != PERF_RECORD_SAMPLE) {
2191 		if (!evsel->attr.sample_id_all)
2192 			return 0;
2193 		return perf_evsel__parse_id_sample(evsel, event, data);
2194 	}
2195 
2196 	array = event->sample.array;
2197 
2198 	if (perf_event__check_size(event, evsel->sample_size))
2199 		return -EFAULT;
2200 
2201 	if (type & PERF_SAMPLE_IDENTIFIER) {
2202 		data->id = *array;
2203 		array++;
2204 	}
2205 
2206 	if (type & PERF_SAMPLE_IP) {
2207 		data->ip = *array;
2208 		array++;
2209 	}
2210 
2211 	if (type & PERF_SAMPLE_TID) {
2212 		u.val64 = *array;
2213 		if (swapped) {
2214 			/* undo swap of u64, then swap on individual u32s */
2215 			u.val64 = bswap_64(u.val64);
2216 			u.val32[0] = bswap_32(u.val32[0]);
2217 			u.val32[1] = bswap_32(u.val32[1]);
2218 		}
2219 
2220 		data->pid = u.val32[0];
2221 		data->tid = u.val32[1];
2222 		array++;
2223 	}
2224 
2225 	if (type & PERF_SAMPLE_TIME) {
2226 		data->time = *array;
2227 		array++;
2228 	}
2229 
2230 	if (type & PERF_SAMPLE_ADDR) {
2231 		data->addr = *array;
2232 		array++;
2233 	}
2234 
2235 	if (type & PERF_SAMPLE_ID) {
2236 		data->id = *array;
2237 		array++;
2238 	}
2239 
2240 	if (type & PERF_SAMPLE_STREAM_ID) {
2241 		data->stream_id = *array;
2242 		array++;
2243 	}
2244 
2245 	if (type & PERF_SAMPLE_CPU) {
2246 
2247 		u.val64 = *array;
2248 		if (swapped) {
2249 			/* undo swap of u64, then swap on individual u32s */
2250 			u.val64 = bswap_64(u.val64);
2251 			u.val32[0] = bswap_32(u.val32[0]);
2252 		}
2253 
2254 		data->cpu = u.val32[0];
2255 		array++;
2256 	}
2257 
2258 	if (type & PERF_SAMPLE_PERIOD) {
2259 		data->period = *array;
2260 		array++;
2261 	}
2262 
2263 	if (type & PERF_SAMPLE_READ) {
2264 		u64 read_format = evsel->attr.read_format;
2265 
2266 		OVERFLOW_CHECK_u64(array);
2267 		if (read_format & PERF_FORMAT_GROUP)
2268 			data->read.group.nr = *array;
2269 		else
2270 			data->read.one.value = *array;
2271 
2272 		array++;
2273 
2274 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2275 			OVERFLOW_CHECK_u64(array);
2276 			data->read.time_enabled = *array;
2277 			array++;
2278 		}
2279 
2280 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2281 			OVERFLOW_CHECK_u64(array);
2282 			data->read.time_running = *array;
2283 			array++;
2284 		}
2285 
2286 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2287 		if (read_format & PERF_FORMAT_GROUP) {
2288 			const u64 max_group_nr = UINT64_MAX /
2289 					sizeof(struct sample_read_value);
2290 
2291 			if (data->read.group.nr > max_group_nr)
2292 				return -EFAULT;
2293 			sz = data->read.group.nr *
2294 			     sizeof(struct sample_read_value);
2295 			OVERFLOW_CHECK(array, sz, max_size);
2296 			data->read.group.values =
2297 					(struct sample_read_value *)array;
2298 			array = (void *)array + sz;
2299 		} else {
2300 			OVERFLOW_CHECK_u64(array);
2301 			data->read.one.id = *array;
2302 			array++;
2303 		}
2304 	}
2305 
2306 	if (evsel__has_callchain(evsel)) {
2307 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2308 
2309 		OVERFLOW_CHECK_u64(array);
2310 		data->callchain = (struct ip_callchain *)array++;
2311 		if (data->callchain->nr > max_callchain_nr)
2312 			return -EFAULT;
2313 		sz = data->callchain->nr * sizeof(u64);
2314 		OVERFLOW_CHECK(array, sz, max_size);
2315 		array = (void *)array + sz;
2316 	}
2317 
2318 	if (type & PERF_SAMPLE_RAW) {
2319 		OVERFLOW_CHECK_u64(array);
2320 		u.val64 = *array;
2321 
2322 		/*
2323 		 * Undo swap of u64, then swap on individual u32s,
2324 		 * get the size of the raw area and undo all of the
2325 		 * swap. The pevent interface handles endianity by
2326 		 * itself.
2327 		 */
2328 		if (swapped) {
2329 			u.val64 = bswap_64(u.val64);
2330 			u.val32[0] = bswap_32(u.val32[0]);
2331 			u.val32[1] = bswap_32(u.val32[1]);
2332 		}
2333 		data->raw_size = u.val32[0];
2334 
2335 		/*
2336 		 * The raw data is aligned on 64bits including the
2337 		 * u32 size, so it's safe to use mem_bswap_64.
2338 		 */
2339 		if (swapped)
2340 			mem_bswap_64((void *) array, data->raw_size);
2341 
2342 		array = (void *)array + sizeof(u32);
2343 
2344 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2345 		data->raw_data = (void *)array;
2346 		array = (void *)array + data->raw_size;
2347 	}
2348 
2349 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2350 		const u64 max_branch_nr = UINT64_MAX /
2351 					  sizeof(struct branch_entry);
2352 
2353 		OVERFLOW_CHECK_u64(array);
2354 		data->branch_stack = (struct branch_stack *)array++;
2355 
2356 		if (data->branch_stack->nr > max_branch_nr)
2357 			return -EFAULT;
2358 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2359 		OVERFLOW_CHECK(array, sz, max_size);
2360 		array = (void *)array + sz;
2361 	}
2362 
2363 	if (type & PERF_SAMPLE_REGS_USER) {
2364 		OVERFLOW_CHECK_u64(array);
2365 		data->user_regs.abi = *array;
2366 		array++;
2367 
2368 		if (data->user_regs.abi) {
2369 			u64 mask = evsel->attr.sample_regs_user;
2370 
2371 			sz = hweight_long(mask) * sizeof(u64);
2372 			OVERFLOW_CHECK(array, sz, max_size);
2373 			data->user_regs.mask = mask;
2374 			data->user_regs.regs = (u64 *)array;
2375 			array = (void *)array + sz;
2376 		}
2377 	}
2378 
2379 	if (type & PERF_SAMPLE_STACK_USER) {
2380 		OVERFLOW_CHECK_u64(array);
2381 		sz = *array++;
2382 
2383 		data->user_stack.offset = ((char *)(array - 1)
2384 					  - (char *) event);
2385 
2386 		if (!sz) {
2387 			data->user_stack.size = 0;
2388 		} else {
2389 			OVERFLOW_CHECK(array, sz, max_size);
2390 			data->user_stack.data = (char *)array;
2391 			array = (void *)array + sz;
2392 			OVERFLOW_CHECK_u64(array);
2393 			data->user_stack.size = *array++;
2394 			if (WARN_ONCE(data->user_stack.size > sz,
2395 				      "user stack dump failure\n"))
2396 				return -EFAULT;
2397 		}
2398 	}
2399 
2400 	if (type & PERF_SAMPLE_WEIGHT) {
2401 		OVERFLOW_CHECK_u64(array);
2402 		data->weight = *array;
2403 		array++;
2404 	}
2405 
2406 	if (type & PERF_SAMPLE_DATA_SRC) {
2407 		OVERFLOW_CHECK_u64(array);
2408 		data->data_src = *array;
2409 		array++;
2410 	}
2411 
2412 	if (type & PERF_SAMPLE_TRANSACTION) {
2413 		OVERFLOW_CHECK_u64(array);
2414 		data->transaction = *array;
2415 		array++;
2416 	}
2417 
2418 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2419 	if (type & PERF_SAMPLE_REGS_INTR) {
2420 		OVERFLOW_CHECK_u64(array);
2421 		data->intr_regs.abi = *array;
2422 		array++;
2423 
2424 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2425 			u64 mask = evsel->attr.sample_regs_intr;
2426 
2427 			sz = hweight_long(mask) * sizeof(u64);
2428 			OVERFLOW_CHECK(array, sz, max_size);
2429 			data->intr_regs.mask = mask;
2430 			data->intr_regs.regs = (u64 *)array;
2431 			array = (void *)array + sz;
2432 		}
2433 	}
2434 
2435 	data->phys_addr = 0;
2436 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2437 		data->phys_addr = *array;
2438 		array++;
2439 	}
2440 
2441 	return 0;
2442 }
2443 
2444 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2445 				       union perf_event *event,
2446 				       u64 *timestamp)
2447 {
2448 	u64 type = evsel->attr.sample_type;
2449 	const u64 *array;
2450 
2451 	if (!(type & PERF_SAMPLE_TIME))
2452 		return -1;
2453 
2454 	if (event->header.type != PERF_RECORD_SAMPLE) {
2455 		struct perf_sample data = {
2456 			.time = -1ULL,
2457 		};
2458 
2459 		if (!evsel->attr.sample_id_all)
2460 			return -1;
2461 		if (perf_evsel__parse_id_sample(evsel, event, &data))
2462 			return -1;
2463 
2464 		*timestamp = data.time;
2465 		return 0;
2466 	}
2467 
2468 	array = event->sample.array;
2469 
2470 	if (perf_event__check_size(event, evsel->sample_size))
2471 		return -EFAULT;
2472 
2473 	if (type & PERF_SAMPLE_IDENTIFIER)
2474 		array++;
2475 
2476 	if (type & PERF_SAMPLE_IP)
2477 		array++;
2478 
2479 	if (type & PERF_SAMPLE_TID)
2480 		array++;
2481 
2482 	if (type & PERF_SAMPLE_TIME)
2483 		*timestamp = *array;
2484 
2485 	return 0;
2486 }
2487 
2488 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2489 				     u64 read_format)
2490 {
2491 	size_t sz, result = sizeof(struct sample_event);
2492 
2493 	if (type & PERF_SAMPLE_IDENTIFIER)
2494 		result += sizeof(u64);
2495 
2496 	if (type & PERF_SAMPLE_IP)
2497 		result += sizeof(u64);
2498 
2499 	if (type & PERF_SAMPLE_TID)
2500 		result += sizeof(u64);
2501 
2502 	if (type & PERF_SAMPLE_TIME)
2503 		result += sizeof(u64);
2504 
2505 	if (type & PERF_SAMPLE_ADDR)
2506 		result += sizeof(u64);
2507 
2508 	if (type & PERF_SAMPLE_ID)
2509 		result += sizeof(u64);
2510 
2511 	if (type & PERF_SAMPLE_STREAM_ID)
2512 		result += sizeof(u64);
2513 
2514 	if (type & PERF_SAMPLE_CPU)
2515 		result += sizeof(u64);
2516 
2517 	if (type & PERF_SAMPLE_PERIOD)
2518 		result += sizeof(u64);
2519 
2520 	if (type & PERF_SAMPLE_READ) {
2521 		result += sizeof(u64);
2522 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2523 			result += sizeof(u64);
2524 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2525 			result += sizeof(u64);
2526 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2527 		if (read_format & PERF_FORMAT_GROUP) {
2528 			sz = sample->read.group.nr *
2529 			     sizeof(struct sample_read_value);
2530 			result += sz;
2531 		} else {
2532 			result += sizeof(u64);
2533 		}
2534 	}
2535 
2536 	if (type & PERF_SAMPLE_CALLCHAIN) {
2537 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2538 		result += sz;
2539 	}
2540 
2541 	if (type & PERF_SAMPLE_RAW) {
2542 		result += sizeof(u32);
2543 		result += sample->raw_size;
2544 	}
2545 
2546 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2547 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2548 		sz += sizeof(u64);
2549 		result += sz;
2550 	}
2551 
2552 	if (type & PERF_SAMPLE_REGS_USER) {
2553 		if (sample->user_regs.abi) {
2554 			result += sizeof(u64);
2555 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2556 			result += sz;
2557 		} else {
2558 			result += sizeof(u64);
2559 		}
2560 	}
2561 
2562 	if (type & PERF_SAMPLE_STACK_USER) {
2563 		sz = sample->user_stack.size;
2564 		result += sizeof(u64);
2565 		if (sz) {
2566 			result += sz;
2567 			result += sizeof(u64);
2568 		}
2569 	}
2570 
2571 	if (type & PERF_SAMPLE_WEIGHT)
2572 		result += sizeof(u64);
2573 
2574 	if (type & PERF_SAMPLE_DATA_SRC)
2575 		result += sizeof(u64);
2576 
2577 	if (type & PERF_SAMPLE_TRANSACTION)
2578 		result += sizeof(u64);
2579 
2580 	if (type & PERF_SAMPLE_REGS_INTR) {
2581 		if (sample->intr_regs.abi) {
2582 			result += sizeof(u64);
2583 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2584 			result += sz;
2585 		} else {
2586 			result += sizeof(u64);
2587 		}
2588 	}
2589 
2590 	if (type & PERF_SAMPLE_PHYS_ADDR)
2591 		result += sizeof(u64);
2592 
2593 	return result;
2594 }
2595 
2596 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2597 				  u64 read_format,
2598 				  const struct perf_sample *sample)
2599 {
2600 	u64 *array;
2601 	size_t sz;
2602 	/*
2603 	 * used for cross-endian analysis. See git commit 65014ab3
2604 	 * for why this goofiness is needed.
2605 	 */
2606 	union u64_swap u;
2607 
2608 	array = event->sample.array;
2609 
2610 	if (type & PERF_SAMPLE_IDENTIFIER) {
2611 		*array = sample->id;
2612 		array++;
2613 	}
2614 
2615 	if (type & PERF_SAMPLE_IP) {
2616 		*array = sample->ip;
2617 		array++;
2618 	}
2619 
2620 	if (type & PERF_SAMPLE_TID) {
2621 		u.val32[0] = sample->pid;
2622 		u.val32[1] = sample->tid;
2623 		*array = u.val64;
2624 		array++;
2625 	}
2626 
2627 	if (type & PERF_SAMPLE_TIME) {
2628 		*array = sample->time;
2629 		array++;
2630 	}
2631 
2632 	if (type & PERF_SAMPLE_ADDR) {
2633 		*array = sample->addr;
2634 		array++;
2635 	}
2636 
2637 	if (type & PERF_SAMPLE_ID) {
2638 		*array = sample->id;
2639 		array++;
2640 	}
2641 
2642 	if (type & PERF_SAMPLE_STREAM_ID) {
2643 		*array = sample->stream_id;
2644 		array++;
2645 	}
2646 
2647 	if (type & PERF_SAMPLE_CPU) {
2648 		u.val32[0] = sample->cpu;
2649 		u.val32[1] = 0;
2650 		*array = u.val64;
2651 		array++;
2652 	}
2653 
2654 	if (type & PERF_SAMPLE_PERIOD) {
2655 		*array = sample->period;
2656 		array++;
2657 	}
2658 
2659 	if (type & PERF_SAMPLE_READ) {
2660 		if (read_format & PERF_FORMAT_GROUP)
2661 			*array = sample->read.group.nr;
2662 		else
2663 			*array = sample->read.one.value;
2664 		array++;
2665 
2666 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2667 			*array = sample->read.time_enabled;
2668 			array++;
2669 		}
2670 
2671 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2672 			*array = sample->read.time_running;
2673 			array++;
2674 		}
2675 
2676 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2677 		if (read_format & PERF_FORMAT_GROUP) {
2678 			sz = sample->read.group.nr *
2679 			     sizeof(struct sample_read_value);
2680 			memcpy(array, sample->read.group.values, sz);
2681 			array = (void *)array + sz;
2682 		} else {
2683 			*array = sample->read.one.id;
2684 			array++;
2685 		}
2686 	}
2687 
2688 	if (type & PERF_SAMPLE_CALLCHAIN) {
2689 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2690 		memcpy(array, sample->callchain, sz);
2691 		array = (void *)array + sz;
2692 	}
2693 
2694 	if (type & PERF_SAMPLE_RAW) {
2695 		u.val32[0] = sample->raw_size;
2696 		*array = u.val64;
2697 		array = (void *)array + sizeof(u32);
2698 
2699 		memcpy(array, sample->raw_data, sample->raw_size);
2700 		array = (void *)array + sample->raw_size;
2701 	}
2702 
2703 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2704 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2705 		sz += sizeof(u64);
2706 		memcpy(array, sample->branch_stack, sz);
2707 		array = (void *)array + sz;
2708 	}
2709 
2710 	if (type & PERF_SAMPLE_REGS_USER) {
2711 		if (sample->user_regs.abi) {
2712 			*array++ = sample->user_regs.abi;
2713 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2714 			memcpy(array, sample->user_regs.regs, sz);
2715 			array = (void *)array + sz;
2716 		} else {
2717 			*array++ = 0;
2718 		}
2719 	}
2720 
2721 	if (type & PERF_SAMPLE_STACK_USER) {
2722 		sz = sample->user_stack.size;
2723 		*array++ = sz;
2724 		if (sz) {
2725 			memcpy(array, sample->user_stack.data, sz);
2726 			array = (void *)array + sz;
2727 			*array++ = sz;
2728 		}
2729 	}
2730 
2731 	if (type & PERF_SAMPLE_WEIGHT) {
2732 		*array = sample->weight;
2733 		array++;
2734 	}
2735 
2736 	if (type & PERF_SAMPLE_DATA_SRC) {
2737 		*array = sample->data_src;
2738 		array++;
2739 	}
2740 
2741 	if (type & PERF_SAMPLE_TRANSACTION) {
2742 		*array = sample->transaction;
2743 		array++;
2744 	}
2745 
2746 	if (type & PERF_SAMPLE_REGS_INTR) {
2747 		if (sample->intr_regs.abi) {
2748 			*array++ = sample->intr_regs.abi;
2749 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2750 			memcpy(array, sample->intr_regs.regs, sz);
2751 			array = (void *)array + sz;
2752 		} else {
2753 			*array++ = 0;
2754 		}
2755 	}
2756 
2757 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2758 		*array = sample->phys_addr;
2759 		array++;
2760 	}
2761 
2762 	return 0;
2763 }
2764 
2765 struct tep_format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2766 {
2767 	return tep_find_field(evsel->tp_format, name);
2768 }
2769 
2770 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2771 			 const char *name)
2772 {
2773 	struct tep_format_field *field = perf_evsel__field(evsel, name);
2774 	int offset;
2775 
2776 	if (!field)
2777 		return NULL;
2778 
2779 	offset = field->offset;
2780 
2781 	if (field->flags & TEP_FIELD_IS_DYNAMIC) {
2782 		offset = *(int *)(sample->raw_data + field->offset);
2783 		offset &= 0xffff;
2784 	}
2785 
2786 	return sample->raw_data + offset;
2787 }
2788 
2789 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample,
2790 			 bool needs_swap)
2791 {
2792 	u64 value;
2793 	void *ptr = sample->raw_data + field->offset;
2794 
2795 	switch (field->size) {
2796 	case 1:
2797 		return *(u8 *)ptr;
2798 	case 2:
2799 		value = *(u16 *)ptr;
2800 		break;
2801 	case 4:
2802 		value = *(u32 *)ptr;
2803 		break;
2804 	case 8:
2805 		memcpy(&value, ptr, sizeof(u64));
2806 		break;
2807 	default:
2808 		return 0;
2809 	}
2810 
2811 	if (!needs_swap)
2812 		return value;
2813 
2814 	switch (field->size) {
2815 	case 2:
2816 		return bswap_16(value);
2817 	case 4:
2818 		return bswap_32(value);
2819 	case 8:
2820 		return bswap_64(value);
2821 	default:
2822 		return 0;
2823 	}
2824 
2825 	return 0;
2826 }
2827 
2828 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2829 		       const char *name)
2830 {
2831 	struct tep_format_field *field = perf_evsel__field(evsel, name);
2832 
2833 	if (!field)
2834 		return 0;
2835 
2836 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2837 }
2838 
2839 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2840 			  char *msg, size_t msgsize)
2841 {
2842 	int paranoid;
2843 
2844 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2845 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2846 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2847 		/*
2848 		 * If it's cycles then fall back to hrtimer based
2849 		 * cpu-clock-tick sw counter, which is always available even if
2850 		 * no PMU support.
2851 		 *
2852 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2853 		 * b0a873e).
2854 		 */
2855 		scnprintf(msg, msgsize, "%s",
2856 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2857 
2858 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2859 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2860 
2861 		zfree(&evsel->name);
2862 		return true;
2863 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2864 		   (paranoid = perf_event_paranoid()) > 1) {
2865 		const char *name = perf_evsel__name(evsel);
2866 		char *new_name;
2867 		const char *sep = ":";
2868 
2869 		/* Is there already the separator in the name. */
2870 		if (strchr(name, '/') ||
2871 		    strchr(name, ':'))
2872 			sep = "";
2873 
2874 		if (asprintf(&new_name, "%s%su", name, sep) < 0)
2875 			return false;
2876 
2877 		if (evsel->name)
2878 			free(evsel->name);
2879 		evsel->name = new_name;
2880 		scnprintf(msg, msgsize,
2881 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2882 		evsel->attr.exclude_kernel = 1;
2883 
2884 		return true;
2885 	}
2886 
2887 	return false;
2888 }
2889 
2890 static bool find_process(const char *name)
2891 {
2892 	size_t len = strlen(name);
2893 	DIR *dir;
2894 	struct dirent *d;
2895 	int ret = -1;
2896 
2897 	dir = opendir(procfs__mountpoint());
2898 	if (!dir)
2899 		return false;
2900 
2901 	/* Walk through the directory. */
2902 	while (ret && (d = readdir(dir)) != NULL) {
2903 		char path[PATH_MAX];
2904 		char *data;
2905 		size_t size;
2906 
2907 		if ((d->d_type != DT_DIR) ||
2908 		     !strcmp(".", d->d_name) ||
2909 		     !strcmp("..", d->d_name))
2910 			continue;
2911 
2912 		scnprintf(path, sizeof(path), "%s/%s/comm",
2913 			  procfs__mountpoint(), d->d_name);
2914 
2915 		if (filename__read_str(path, &data, &size))
2916 			continue;
2917 
2918 		ret = strncmp(name, data, len);
2919 		free(data);
2920 	}
2921 
2922 	closedir(dir);
2923 	return ret ? false : true;
2924 }
2925 
2926 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2927 			      int err, char *msg, size_t size)
2928 {
2929 	char sbuf[STRERR_BUFSIZE];
2930 	int printed = 0;
2931 
2932 	switch (err) {
2933 	case EPERM:
2934 	case EACCES:
2935 		if (err == EPERM)
2936 			printed = scnprintf(msg, size,
2937 				"No permission to enable %s event.\n\n",
2938 				perf_evsel__name(evsel));
2939 
2940 		return scnprintf(msg + printed, size - printed,
2941 		 "You may not have permission to collect %sstats.\n\n"
2942 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2943 		 "which controls use of the performance events system by\n"
2944 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2945 		 "The current value is %d:\n\n"
2946 		 "  -1: Allow use of (almost) all events by all users\n"
2947 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2948 		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2949 		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2950 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2951 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2952 		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2953 		 "	kernel.perf_event_paranoid = -1\n" ,
2954 				 target->system_wide ? "system-wide " : "",
2955 				 perf_event_paranoid());
2956 	case ENOENT:
2957 		return scnprintf(msg, size, "The %s event is not supported.",
2958 				 perf_evsel__name(evsel));
2959 	case EMFILE:
2960 		return scnprintf(msg, size, "%s",
2961 			 "Too many events are opened.\n"
2962 			 "Probably the maximum number of open file descriptors has been reached.\n"
2963 			 "Hint: Try again after reducing the number of events.\n"
2964 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2965 	case ENOMEM:
2966 		if (evsel__has_callchain(evsel) &&
2967 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2968 			return scnprintf(msg, size,
2969 					 "Not enough memory to setup event with callchain.\n"
2970 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2971 					 "Hint: Current value: %d", sysctl__max_stack());
2972 		break;
2973 	case ENODEV:
2974 		if (target->cpu_list)
2975 			return scnprintf(msg, size, "%s",
2976 	 "No such device - did you specify an out-of-range profile CPU?");
2977 		break;
2978 	case EOPNOTSUPP:
2979 		if (evsel->attr.sample_period != 0)
2980 			return scnprintf(msg, size,
2981 	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2982 					 perf_evsel__name(evsel));
2983 		if (evsel->attr.precise_ip)
2984 			return scnprintf(msg, size, "%s",
2985 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2986 #if defined(__i386__) || defined(__x86_64__)
2987 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2988 			return scnprintf(msg, size, "%s",
2989 	"No hardware sampling interrupt available.\n");
2990 #endif
2991 		break;
2992 	case EBUSY:
2993 		if (find_process("oprofiled"))
2994 			return scnprintf(msg, size,
2995 	"The PMU counters are busy/taken by another profiler.\n"
2996 	"We found oprofile daemon running, please stop it and try again.");
2997 		break;
2998 	case EINVAL:
2999 		if (evsel->attr.write_backward && perf_missing_features.write_backward)
3000 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
3001 		if (perf_missing_features.clockid)
3002 			return scnprintf(msg, size, "clockid feature not supported.");
3003 		if (perf_missing_features.clockid_wrong)
3004 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
3005 		break;
3006 	default:
3007 		break;
3008 	}
3009 
3010 	return scnprintf(msg, size,
3011 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
3012 	"/bin/dmesg | grep -i perf may provide additional information.\n",
3013 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
3014 			 perf_evsel__name(evsel));
3015 }
3016 
3017 struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
3018 {
3019 	if (evsel && evsel->evlist)
3020 		return evsel->evlist->env;
3021 	return NULL;
3022 }
3023 
3024 static int store_evsel_ids(struct perf_evsel *evsel, struct perf_evlist *evlist)
3025 {
3026 	int cpu, thread;
3027 
3028 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
3029 		for (thread = 0; thread < xyarray__max_y(evsel->fd);
3030 		     thread++) {
3031 			int fd = FD(evsel, cpu, thread);
3032 
3033 			if (perf_evlist__id_add_fd(evlist, evsel,
3034 						   cpu, thread, fd) < 0)
3035 				return -1;
3036 		}
3037 	}
3038 
3039 	return 0;
3040 }
3041 
3042 int perf_evsel__store_ids(struct perf_evsel *evsel, struct perf_evlist *evlist)
3043 {
3044 	struct cpu_map *cpus = evsel->cpus;
3045 	struct thread_map *threads = evsel->threads;
3046 
3047 	if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr))
3048 		return -ENOMEM;
3049 
3050 	return store_evsel_ids(evsel, evlist);
3051 }
3052