xref: /openbmc/linux/tools/perf/util/evsel.c (revision cfbb9be8)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "memswap.h"
40 #include "util/parse-branch-options.h"
41 
42 #include "sane_ctype.h"
43 
44 struct perf_missing_features perf_missing_features;
45 
46 static clockid_t clockid;
47 
48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
49 {
50 	return 0;
51 }
52 
53 void __weak test_attr__ready(void) { }
54 
55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
56 {
57 }
58 
59 static struct {
60 	size_t	size;
61 	int	(*init)(struct perf_evsel *evsel);
62 	void	(*fini)(struct perf_evsel *evsel);
63 } perf_evsel__object = {
64 	.size = sizeof(struct perf_evsel),
65 	.init = perf_evsel__no_extra_init,
66 	.fini = perf_evsel__no_extra_fini,
67 };
68 
69 int perf_evsel__object_config(size_t object_size,
70 			      int (*init)(struct perf_evsel *evsel),
71 			      void (*fini)(struct perf_evsel *evsel))
72 {
73 
74 	if (object_size == 0)
75 		goto set_methods;
76 
77 	if (perf_evsel__object.size > object_size)
78 		return -EINVAL;
79 
80 	perf_evsel__object.size = object_size;
81 
82 set_methods:
83 	if (init != NULL)
84 		perf_evsel__object.init = init;
85 
86 	if (fini != NULL)
87 		perf_evsel__object.fini = fini;
88 
89 	return 0;
90 }
91 
92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
93 
94 int __perf_evsel__sample_size(u64 sample_type)
95 {
96 	u64 mask = sample_type & PERF_SAMPLE_MASK;
97 	int size = 0;
98 	int i;
99 
100 	for (i = 0; i < 64; i++) {
101 		if (mask & (1ULL << i))
102 			size++;
103 	}
104 
105 	size *= sizeof(u64);
106 
107 	return size;
108 }
109 
110 /**
111  * __perf_evsel__calc_id_pos - calculate id_pos.
112  * @sample_type: sample type
113  *
114  * This function returns the position of the event id (PERF_SAMPLE_ID or
115  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
116  * sample_event.
117  */
118 static int __perf_evsel__calc_id_pos(u64 sample_type)
119 {
120 	int idx = 0;
121 
122 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
123 		return 0;
124 
125 	if (!(sample_type & PERF_SAMPLE_ID))
126 		return -1;
127 
128 	if (sample_type & PERF_SAMPLE_IP)
129 		idx += 1;
130 
131 	if (sample_type & PERF_SAMPLE_TID)
132 		idx += 1;
133 
134 	if (sample_type & PERF_SAMPLE_TIME)
135 		idx += 1;
136 
137 	if (sample_type & PERF_SAMPLE_ADDR)
138 		idx += 1;
139 
140 	return idx;
141 }
142 
143 /**
144  * __perf_evsel__calc_is_pos - calculate is_pos.
145  * @sample_type: sample type
146  *
147  * This function returns the position (counting backwards) of the event id
148  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
149  * sample_id_all is used there is an id sample appended to non-sample events.
150  */
151 static int __perf_evsel__calc_is_pos(u64 sample_type)
152 {
153 	int idx = 1;
154 
155 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
156 		return 1;
157 
158 	if (!(sample_type & PERF_SAMPLE_ID))
159 		return -1;
160 
161 	if (sample_type & PERF_SAMPLE_CPU)
162 		idx += 1;
163 
164 	if (sample_type & PERF_SAMPLE_STREAM_ID)
165 		idx += 1;
166 
167 	return idx;
168 }
169 
170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
171 {
172 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
173 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
174 }
175 
176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
177 				  enum perf_event_sample_format bit)
178 {
179 	if (!(evsel->attr.sample_type & bit)) {
180 		evsel->attr.sample_type |= bit;
181 		evsel->sample_size += sizeof(u64);
182 		perf_evsel__calc_id_pos(evsel);
183 	}
184 }
185 
186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
187 				    enum perf_event_sample_format bit)
188 {
189 	if (evsel->attr.sample_type & bit) {
190 		evsel->attr.sample_type &= ~bit;
191 		evsel->sample_size -= sizeof(u64);
192 		perf_evsel__calc_id_pos(evsel);
193 	}
194 }
195 
196 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
197 			       bool can_sample_identifier)
198 {
199 	if (can_sample_identifier) {
200 		perf_evsel__reset_sample_bit(evsel, ID);
201 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
202 	} else {
203 		perf_evsel__set_sample_bit(evsel, ID);
204 	}
205 	evsel->attr.read_format |= PERF_FORMAT_ID;
206 }
207 
208 /**
209  * perf_evsel__is_function_event - Return whether given evsel is a function
210  * trace event
211  *
212  * @evsel - evsel selector to be tested
213  *
214  * Return %true if event is function trace event
215  */
216 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
217 {
218 #define FUNCTION_EVENT "ftrace:function"
219 
220 	return evsel->name &&
221 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
222 
223 #undef FUNCTION_EVENT
224 }
225 
226 void perf_evsel__init(struct perf_evsel *evsel,
227 		      struct perf_event_attr *attr, int idx)
228 {
229 	evsel->idx	   = idx;
230 	evsel->tracking	   = !idx;
231 	evsel->attr	   = *attr;
232 	evsel->leader	   = evsel;
233 	evsel->unit	   = "";
234 	evsel->scale	   = 1.0;
235 	evsel->evlist	   = NULL;
236 	evsel->bpf_fd	   = -1;
237 	INIT_LIST_HEAD(&evsel->node);
238 	INIT_LIST_HEAD(&evsel->config_terms);
239 	perf_evsel__object.init(evsel);
240 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
241 	perf_evsel__calc_id_pos(evsel);
242 	evsel->cmdline_group_boundary = false;
243 	evsel->metric_expr   = NULL;
244 	evsel->metric_name   = NULL;
245 	evsel->metric_events = NULL;
246 	evsel->collect_stat  = false;
247 	evsel->pmu_name      = NULL;
248 }
249 
250 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
251 {
252 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
253 
254 	if (evsel != NULL)
255 		perf_evsel__init(evsel, attr, idx);
256 
257 	if (perf_evsel__is_bpf_output(evsel)) {
258 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
259 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
260 		evsel->attr.sample_period = 1;
261 	}
262 
263 	return evsel;
264 }
265 
266 static bool perf_event_can_profile_kernel(void)
267 {
268 	return geteuid() == 0 || perf_event_paranoid() == -1;
269 }
270 
271 struct perf_evsel *perf_evsel__new_cycles(bool precise)
272 {
273 	struct perf_event_attr attr = {
274 		.type	= PERF_TYPE_HARDWARE,
275 		.config	= PERF_COUNT_HW_CPU_CYCLES,
276 		.exclude_kernel	= !perf_event_can_profile_kernel(),
277 	};
278 	struct perf_evsel *evsel;
279 
280 	event_attr_init(&attr);
281 
282 	if (!precise)
283 		goto new_event;
284 	/*
285 	 * Unnamed union member, not supported as struct member named
286 	 * initializer in older compilers such as gcc 4.4.7
287 	 *
288 	 * Just for probing the precise_ip:
289 	 */
290 	attr.sample_period = 1;
291 
292 	perf_event_attr__set_max_precise_ip(&attr);
293 	/*
294 	 * Now let the usual logic to set up the perf_event_attr defaults
295 	 * to kick in when we return and before perf_evsel__open() is called.
296 	 */
297 	attr.sample_period = 0;
298 new_event:
299 	evsel = perf_evsel__new(&attr);
300 	if (evsel == NULL)
301 		goto out;
302 
303 	/* use asprintf() because free(evsel) assumes name is allocated */
304 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
305 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
306 		     attr.exclude_kernel ? "u" : "",
307 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
308 		goto error_free;
309 out:
310 	return evsel;
311 error_free:
312 	perf_evsel__delete(evsel);
313 	evsel = NULL;
314 	goto out;
315 }
316 
317 /*
318  * Returns pointer with encoded error via <linux/err.h> interface.
319  */
320 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
321 {
322 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
323 	int err = -ENOMEM;
324 
325 	if (evsel == NULL) {
326 		goto out_err;
327 	} else {
328 		struct perf_event_attr attr = {
329 			.type	       = PERF_TYPE_TRACEPOINT,
330 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
331 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
332 		};
333 
334 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
335 			goto out_free;
336 
337 		evsel->tp_format = trace_event__tp_format(sys, name);
338 		if (IS_ERR(evsel->tp_format)) {
339 			err = PTR_ERR(evsel->tp_format);
340 			goto out_free;
341 		}
342 
343 		event_attr_init(&attr);
344 		attr.config = evsel->tp_format->id;
345 		attr.sample_period = 1;
346 		perf_evsel__init(evsel, &attr, idx);
347 	}
348 
349 	return evsel;
350 
351 out_free:
352 	zfree(&evsel->name);
353 	free(evsel);
354 out_err:
355 	return ERR_PTR(err);
356 }
357 
358 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
359 	"cycles",
360 	"instructions",
361 	"cache-references",
362 	"cache-misses",
363 	"branches",
364 	"branch-misses",
365 	"bus-cycles",
366 	"stalled-cycles-frontend",
367 	"stalled-cycles-backend",
368 	"ref-cycles",
369 };
370 
371 static const char *__perf_evsel__hw_name(u64 config)
372 {
373 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
374 		return perf_evsel__hw_names[config];
375 
376 	return "unknown-hardware";
377 }
378 
379 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
380 {
381 	int colon = 0, r = 0;
382 	struct perf_event_attr *attr = &evsel->attr;
383 	bool exclude_guest_default = false;
384 
385 #define MOD_PRINT(context, mod)	do {					\
386 		if (!attr->exclude_##context) {				\
387 			if (!colon) colon = ++r;			\
388 			r += scnprintf(bf + r, size - r, "%c", mod);	\
389 		} } while(0)
390 
391 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
392 		MOD_PRINT(kernel, 'k');
393 		MOD_PRINT(user, 'u');
394 		MOD_PRINT(hv, 'h');
395 		exclude_guest_default = true;
396 	}
397 
398 	if (attr->precise_ip) {
399 		if (!colon)
400 			colon = ++r;
401 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
402 		exclude_guest_default = true;
403 	}
404 
405 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
406 		MOD_PRINT(host, 'H');
407 		MOD_PRINT(guest, 'G');
408 	}
409 #undef MOD_PRINT
410 	if (colon)
411 		bf[colon - 1] = ':';
412 	return r;
413 }
414 
415 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
416 {
417 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
418 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
419 }
420 
421 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
422 	"cpu-clock",
423 	"task-clock",
424 	"page-faults",
425 	"context-switches",
426 	"cpu-migrations",
427 	"minor-faults",
428 	"major-faults",
429 	"alignment-faults",
430 	"emulation-faults",
431 	"dummy",
432 };
433 
434 static const char *__perf_evsel__sw_name(u64 config)
435 {
436 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
437 		return perf_evsel__sw_names[config];
438 	return "unknown-software";
439 }
440 
441 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
442 {
443 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
444 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
445 }
446 
447 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
448 {
449 	int r;
450 
451 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
452 
453 	if (type & HW_BREAKPOINT_R)
454 		r += scnprintf(bf + r, size - r, "r");
455 
456 	if (type & HW_BREAKPOINT_W)
457 		r += scnprintf(bf + r, size - r, "w");
458 
459 	if (type & HW_BREAKPOINT_X)
460 		r += scnprintf(bf + r, size - r, "x");
461 
462 	return r;
463 }
464 
465 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
466 {
467 	struct perf_event_attr *attr = &evsel->attr;
468 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
469 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
470 }
471 
472 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
473 				[PERF_EVSEL__MAX_ALIASES] = {
474  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
475  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
476  { "LLC",	"L2",							},
477  { "dTLB",	"d-tlb",	"Data-TLB",				},
478  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
479  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
480  { "node",								},
481 };
482 
483 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
484 				   [PERF_EVSEL__MAX_ALIASES] = {
485  { "load",	"loads",	"read",					},
486  { "store",	"stores",	"write",				},
487  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
488 };
489 
490 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
491 				       [PERF_EVSEL__MAX_ALIASES] = {
492  { "refs",	"Reference",	"ops",		"access",		},
493  { "misses",	"miss",							},
494 };
495 
496 #define C(x)		PERF_COUNT_HW_CACHE_##x
497 #define CACHE_READ	(1 << C(OP_READ))
498 #define CACHE_WRITE	(1 << C(OP_WRITE))
499 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
500 #define COP(x)		(1 << x)
501 
502 /*
503  * cache operartion stat
504  * L1I : Read and prefetch only
505  * ITLB and BPU : Read-only
506  */
507 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
508  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
509  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
510  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
511  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
512  [C(ITLB)]	= (CACHE_READ),
513  [C(BPU)]	= (CACHE_READ),
514  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
515 };
516 
517 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
518 {
519 	if (perf_evsel__hw_cache_stat[type] & COP(op))
520 		return true;	/* valid */
521 	else
522 		return false;	/* invalid */
523 }
524 
525 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
526 					    char *bf, size_t size)
527 {
528 	if (result) {
529 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
530 				 perf_evsel__hw_cache_op[op][0],
531 				 perf_evsel__hw_cache_result[result][0]);
532 	}
533 
534 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
535 			 perf_evsel__hw_cache_op[op][1]);
536 }
537 
538 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
539 {
540 	u8 op, result, type = (config >>  0) & 0xff;
541 	const char *err = "unknown-ext-hardware-cache-type";
542 
543 	if (type >= PERF_COUNT_HW_CACHE_MAX)
544 		goto out_err;
545 
546 	op = (config >>  8) & 0xff;
547 	err = "unknown-ext-hardware-cache-op";
548 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
549 		goto out_err;
550 
551 	result = (config >> 16) & 0xff;
552 	err = "unknown-ext-hardware-cache-result";
553 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
554 		goto out_err;
555 
556 	err = "invalid-cache";
557 	if (!perf_evsel__is_cache_op_valid(type, op))
558 		goto out_err;
559 
560 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
561 out_err:
562 	return scnprintf(bf, size, "%s", err);
563 }
564 
565 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
566 {
567 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
568 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
569 }
570 
571 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
572 {
573 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
574 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
575 }
576 
577 const char *perf_evsel__name(struct perf_evsel *evsel)
578 {
579 	char bf[128];
580 
581 	if (evsel->name)
582 		return evsel->name;
583 
584 	switch (evsel->attr.type) {
585 	case PERF_TYPE_RAW:
586 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
587 		break;
588 
589 	case PERF_TYPE_HARDWARE:
590 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
591 		break;
592 
593 	case PERF_TYPE_HW_CACHE:
594 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
595 		break;
596 
597 	case PERF_TYPE_SOFTWARE:
598 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
599 		break;
600 
601 	case PERF_TYPE_TRACEPOINT:
602 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
603 		break;
604 
605 	case PERF_TYPE_BREAKPOINT:
606 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
607 		break;
608 
609 	default:
610 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
611 			  evsel->attr.type);
612 		break;
613 	}
614 
615 	evsel->name = strdup(bf);
616 
617 	return evsel->name ?: "unknown";
618 }
619 
620 const char *perf_evsel__group_name(struct perf_evsel *evsel)
621 {
622 	return evsel->group_name ?: "anon group";
623 }
624 
625 /*
626  * Returns the group details for the specified leader,
627  * with following rules.
628  *
629  *  For record -e '{cycles,instructions}'
630  *    'anon group { cycles:u, instructions:u }'
631  *
632  *  For record -e 'cycles,instructions' and report --group
633  *    'cycles:u, instructions:u'
634  */
635 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
636 {
637 	int ret = 0;
638 	struct perf_evsel *pos;
639 	const char *group_name = perf_evsel__group_name(evsel);
640 
641 	if (!evsel->forced_leader)
642 		ret = scnprintf(buf, size, "%s { ", group_name);
643 
644 	ret += scnprintf(buf + ret, size - ret, "%s",
645 			 perf_evsel__name(evsel));
646 
647 	for_each_group_member(pos, evsel)
648 		ret += scnprintf(buf + ret, size - ret, ", %s",
649 				 perf_evsel__name(pos));
650 
651 	if (!evsel->forced_leader)
652 		ret += scnprintf(buf + ret, size - ret, " }");
653 
654 	return ret;
655 }
656 
657 static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
658 					   struct record_opts *opts,
659 					   struct callchain_param *param)
660 {
661 	bool function = perf_evsel__is_function_event(evsel);
662 	struct perf_event_attr *attr = &evsel->attr;
663 
664 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
665 
666 	attr->sample_max_stack = param->max_stack;
667 
668 	if (param->record_mode == CALLCHAIN_LBR) {
669 		if (!opts->branch_stack) {
670 			if (attr->exclude_user) {
671 				pr_warning("LBR callstack option is only available "
672 					   "to get user callchain information. "
673 					   "Falling back to framepointers.\n");
674 			} else {
675 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
676 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
677 							PERF_SAMPLE_BRANCH_CALL_STACK |
678 							PERF_SAMPLE_BRANCH_NO_CYCLES |
679 							PERF_SAMPLE_BRANCH_NO_FLAGS;
680 			}
681 		} else
682 			 pr_warning("Cannot use LBR callstack with branch stack. "
683 				    "Falling back to framepointers.\n");
684 	}
685 
686 	if (param->record_mode == CALLCHAIN_DWARF) {
687 		if (!function) {
688 			perf_evsel__set_sample_bit(evsel, REGS_USER);
689 			perf_evsel__set_sample_bit(evsel, STACK_USER);
690 			attr->sample_regs_user |= PERF_REGS_MASK;
691 			attr->sample_stack_user = param->dump_size;
692 			attr->exclude_callchain_user = 1;
693 		} else {
694 			pr_info("Cannot use DWARF unwind for function trace event,"
695 				" falling back to framepointers.\n");
696 		}
697 	}
698 
699 	if (function) {
700 		pr_info("Disabling user space callchains for function trace event.\n");
701 		attr->exclude_callchain_user = 1;
702 	}
703 }
704 
705 void perf_evsel__config_callchain(struct perf_evsel *evsel,
706 				  struct record_opts *opts,
707 				  struct callchain_param *param)
708 {
709 	if (param->enabled)
710 		return __perf_evsel__config_callchain(evsel, opts, param);
711 }
712 
713 static void
714 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
715 			    struct callchain_param *param)
716 {
717 	struct perf_event_attr *attr = &evsel->attr;
718 
719 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
720 	if (param->record_mode == CALLCHAIN_LBR) {
721 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
722 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
723 					      PERF_SAMPLE_BRANCH_CALL_STACK);
724 	}
725 	if (param->record_mode == CALLCHAIN_DWARF) {
726 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
727 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
728 	}
729 }
730 
731 static void apply_config_terms(struct perf_evsel *evsel,
732 			       struct record_opts *opts, bool track)
733 {
734 	struct perf_evsel_config_term *term;
735 	struct list_head *config_terms = &evsel->config_terms;
736 	struct perf_event_attr *attr = &evsel->attr;
737 	/* callgraph default */
738 	struct callchain_param param = {
739 		.record_mode = callchain_param.record_mode,
740 	};
741 	u32 dump_size = 0;
742 	int max_stack = 0;
743 	const char *callgraph_buf = NULL;
744 
745 	list_for_each_entry(term, config_terms, list) {
746 		switch (term->type) {
747 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
748 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
749 				attr->sample_period = term->val.period;
750 				attr->freq = 0;
751 				perf_evsel__reset_sample_bit(evsel, PERIOD);
752 			}
753 			break;
754 		case PERF_EVSEL__CONFIG_TERM_FREQ:
755 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
756 				attr->sample_freq = term->val.freq;
757 				attr->freq = 1;
758 				perf_evsel__set_sample_bit(evsel, PERIOD);
759 			}
760 			break;
761 		case PERF_EVSEL__CONFIG_TERM_TIME:
762 			if (term->val.time)
763 				perf_evsel__set_sample_bit(evsel, TIME);
764 			else
765 				perf_evsel__reset_sample_bit(evsel, TIME);
766 			break;
767 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
768 			callgraph_buf = term->val.callgraph;
769 			break;
770 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
771 			if (term->val.branch && strcmp(term->val.branch, "no")) {
772 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
773 				parse_branch_str(term->val.branch,
774 						 &attr->branch_sample_type);
775 			} else
776 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
777 			break;
778 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
779 			dump_size = term->val.stack_user;
780 			break;
781 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
782 			max_stack = term->val.max_stack;
783 			break;
784 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
785 			/*
786 			 * attr->inherit should has already been set by
787 			 * perf_evsel__config. If user explicitly set
788 			 * inherit using config terms, override global
789 			 * opt->no_inherit setting.
790 			 */
791 			attr->inherit = term->val.inherit ? 1 : 0;
792 			break;
793 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
794 			attr->write_backward = term->val.overwrite ? 1 : 0;
795 			break;
796 		case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
797 			break;
798 		default:
799 			break;
800 		}
801 	}
802 
803 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
804 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
805 		bool sample_address = false;
806 
807 		if (max_stack) {
808 			param.max_stack = max_stack;
809 			if (callgraph_buf == NULL)
810 				callgraph_buf = "fp";
811 		}
812 
813 		/* parse callgraph parameters */
814 		if (callgraph_buf != NULL) {
815 			if (!strcmp(callgraph_buf, "no")) {
816 				param.enabled = false;
817 				param.record_mode = CALLCHAIN_NONE;
818 			} else {
819 				param.enabled = true;
820 				if (parse_callchain_record(callgraph_buf, &param)) {
821 					pr_err("per-event callgraph setting for %s failed. "
822 					       "Apply callgraph global setting for it\n",
823 					       evsel->name);
824 					return;
825 				}
826 				if (param.record_mode == CALLCHAIN_DWARF)
827 					sample_address = true;
828 			}
829 		}
830 		if (dump_size > 0) {
831 			dump_size = round_up(dump_size, sizeof(u64));
832 			param.dump_size = dump_size;
833 		}
834 
835 		/* If global callgraph set, clear it */
836 		if (callchain_param.enabled)
837 			perf_evsel__reset_callgraph(evsel, &callchain_param);
838 
839 		/* set perf-event callgraph */
840 		if (param.enabled) {
841 			if (sample_address) {
842 				perf_evsel__set_sample_bit(evsel, ADDR);
843 				perf_evsel__set_sample_bit(evsel, DATA_SRC);
844 				evsel->attr.mmap_data = track;
845 			}
846 			perf_evsel__config_callchain(evsel, opts, &param);
847 		}
848 	}
849 }
850 
851 /*
852  * The enable_on_exec/disabled value strategy:
853  *
854  *  1) For any type of traced program:
855  *    - all independent events and group leaders are disabled
856  *    - all group members are enabled
857  *
858  *     Group members are ruled by group leaders. They need to
859  *     be enabled, because the group scheduling relies on that.
860  *
861  *  2) For traced programs executed by perf:
862  *     - all independent events and group leaders have
863  *       enable_on_exec set
864  *     - we don't specifically enable or disable any event during
865  *       the record command
866  *
867  *     Independent events and group leaders are initially disabled
868  *     and get enabled by exec. Group members are ruled by group
869  *     leaders as stated in 1).
870  *
871  *  3) For traced programs attached by perf (pid/tid):
872  *     - we specifically enable or disable all events during
873  *       the record command
874  *
875  *     When attaching events to already running traced we
876  *     enable/disable events specifically, as there's no
877  *     initial traced exec call.
878  */
879 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
880 			struct callchain_param *callchain)
881 {
882 	struct perf_evsel *leader = evsel->leader;
883 	struct perf_event_attr *attr = &evsel->attr;
884 	int track = evsel->tracking;
885 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
886 
887 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
888 	attr->inherit	    = !opts->no_inherit;
889 	attr->write_backward = opts->overwrite ? 1 : 0;
890 
891 	perf_evsel__set_sample_bit(evsel, IP);
892 	perf_evsel__set_sample_bit(evsel, TID);
893 
894 	if (evsel->sample_read) {
895 		perf_evsel__set_sample_bit(evsel, READ);
896 
897 		/*
898 		 * We need ID even in case of single event, because
899 		 * PERF_SAMPLE_READ process ID specific data.
900 		 */
901 		perf_evsel__set_sample_id(evsel, false);
902 
903 		/*
904 		 * Apply group format only if we belong to group
905 		 * with more than one members.
906 		 */
907 		if (leader->nr_members > 1) {
908 			attr->read_format |= PERF_FORMAT_GROUP;
909 			attr->inherit = 0;
910 		}
911 	}
912 
913 	/*
914 	 * We default some events to have a default interval. But keep
915 	 * it a weak assumption overridable by the user.
916 	 */
917 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
918 				     opts->user_interval != ULLONG_MAX)) {
919 		if (opts->freq) {
920 			perf_evsel__set_sample_bit(evsel, PERIOD);
921 			attr->freq		= 1;
922 			attr->sample_freq	= opts->freq;
923 		} else {
924 			attr->sample_period = opts->default_interval;
925 		}
926 	}
927 
928 	/*
929 	 * Disable sampling for all group members other
930 	 * than leader in case leader 'leads' the sampling.
931 	 */
932 	if ((leader != evsel) && leader->sample_read) {
933 		attr->sample_freq   = 0;
934 		attr->sample_period = 0;
935 	}
936 
937 	if (opts->no_samples)
938 		attr->sample_freq = 0;
939 
940 	if (opts->inherit_stat) {
941 		evsel->attr.read_format |=
942 			PERF_FORMAT_TOTAL_TIME_ENABLED |
943 			PERF_FORMAT_TOTAL_TIME_RUNNING |
944 			PERF_FORMAT_ID;
945 		attr->inherit_stat = 1;
946 	}
947 
948 	if (opts->sample_address) {
949 		perf_evsel__set_sample_bit(evsel, ADDR);
950 		attr->mmap_data = track;
951 	}
952 
953 	/*
954 	 * We don't allow user space callchains for  function trace
955 	 * event, due to issues with page faults while tracing page
956 	 * fault handler and its overall trickiness nature.
957 	 */
958 	if (perf_evsel__is_function_event(evsel))
959 		evsel->attr.exclude_callchain_user = 1;
960 
961 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
962 		perf_evsel__config_callchain(evsel, opts, callchain);
963 
964 	if (opts->sample_intr_regs) {
965 		attr->sample_regs_intr = opts->sample_intr_regs;
966 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
967 	}
968 
969 	if (opts->sample_user_regs) {
970 		attr->sample_regs_user |= opts->sample_user_regs;
971 		perf_evsel__set_sample_bit(evsel, REGS_USER);
972 	}
973 
974 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
975 		perf_evsel__set_sample_bit(evsel, CPU);
976 
977 	/*
978 	 * When the user explicitly disabled time don't force it here.
979 	 */
980 	if (opts->sample_time &&
981 	    (!perf_missing_features.sample_id_all &&
982 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
983 	     opts->sample_time_set)))
984 		perf_evsel__set_sample_bit(evsel, TIME);
985 
986 	if (opts->raw_samples && !evsel->no_aux_samples) {
987 		perf_evsel__set_sample_bit(evsel, TIME);
988 		perf_evsel__set_sample_bit(evsel, RAW);
989 		perf_evsel__set_sample_bit(evsel, CPU);
990 	}
991 
992 	if (opts->sample_address)
993 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
994 
995 	if (opts->sample_phys_addr)
996 		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
997 
998 	if (opts->no_buffering) {
999 		attr->watermark = 0;
1000 		attr->wakeup_events = 1;
1001 	}
1002 	if (opts->branch_stack && !evsel->no_aux_samples) {
1003 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1004 		attr->branch_sample_type = opts->branch_stack;
1005 	}
1006 
1007 	if (opts->sample_weight)
1008 		perf_evsel__set_sample_bit(evsel, WEIGHT);
1009 
1010 	attr->task  = track;
1011 	attr->mmap  = track;
1012 	attr->mmap2 = track && !perf_missing_features.mmap2;
1013 	attr->comm  = track;
1014 
1015 	if (opts->record_namespaces)
1016 		attr->namespaces  = track;
1017 
1018 	if (opts->record_switch_events)
1019 		attr->context_switch = track;
1020 
1021 	if (opts->sample_transaction)
1022 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
1023 
1024 	if (opts->running_time) {
1025 		evsel->attr.read_format |=
1026 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1027 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1028 	}
1029 
1030 	/*
1031 	 * XXX see the function comment above
1032 	 *
1033 	 * Disabling only independent events or group leaders,
1034 	 * keeping group members enabled.
1035 	 */
1036 	if (perf_evsel__is_group_leader(evsel))
1037 		attr->disabled = 1;
1038 
1039 	/*
1040 	 * Setting enable_on_exec for independent events and
1041 	 * group leaders for traced executed by perf.
1042 	 */
1043 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1044 		!opts->initial_delay)
1045 		attr->enable_on_exec = 1;
1046 
1047 	if (evsel->immediate) {
1048 		attr->disabled = 0;
1049 		attr->enable_on_exec = 0;
1050 	}
1051 
1052 	clockid = opts->clockid;
1053 	if (opts->use_clockid) {
1054 		attr->use_clockid = 1;
1055 		attr->clockid = opts->clockid;
1056 	}
1057 
1058 	if (evsel->precise_max)
1059 		perf_event_attr__set_max_precise_ip(attr);
1060 
1061 	if (opts->all_user) {
1062 		attr->exclude_kernel = 1;
1063 		attr->exclude_user   = 0;
1064 	}
1065 
1066 	if (opts->all_kernel) {
1067 		attr->exclude_kernel = 0;
1068 		attr->exclude_user   = 1;
1069 	}
1070 
1071 	/*
1072 	 * Apply event specific term settings,
1073 	 * it overloads any global configuration.
1074 	 */
1075 	apply_config_terms(evsel, opts, track);
1076 
1077 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1078 
1079 	/* The --period option takes the precedence. */
1080 	if (opts->period_set) {
1081 		if (opts->period)
1082 			perf_evsel__set_sample_bit(evsel, PERIOD);
1083 		else
1084 			perf_evsel__reset_sample_bit(evsel, PERIOD);
1085 	}
1086 }
1087 
1088 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1089 {
1090 	if (evsel->system_wide)
1091 		nthreads = 1;
1092 
1093 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1094 
1095 	if (evsel->fd) {
1096 		int cpu, thread;
1097 		for (cpu = 0; cpu < ncpus; cpu++) {
1098 			for (thread = 0; thread < nthreads; thread++) {
1099 				FD(evsel, cpu, thread) = -1;
1100 			}
1101 		}
1102 	}
1103 
1104 	return evsel->fd != NULL ? 0 : -ENOMEM;
1105 }
1106 
1107 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1108 			  int ioc,  void *arg)
1109 {
1110 	int cpu, thread;
1111 
1112 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1113 		for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1114 			int fd = FD(evsel, cpu, thread),
1115 			    err = ioctl(fd, ioc, arg);
1116 
1117 			if (err)
1118 				return err;
1119 		}
1120 	}
1121 
1122 	return 0;
1123 }
1124 
1125 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1126 {
1127 	return perf_evsel__run_ioctl(evsel,
1128 				     PERF_EVENT_IOC_SET_FILTER,
1129 				     (void *)filter);
1130 }
1131 
1132 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1133 {
1134 	char *new_filter = strdup(filter);
1135 
1136 	if (new_filter != NULL) {
1137 		free(evsel->filter);
1138 		evsel->filter = new_filter;
1139 		return 0;
1140 	}
1141 
1142 	return -1;
1143 }
1144 
1145 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1146 				     const char *fmt, const char *filter)
1147 {
1148 	char *new_filter;
1149 
1150 	if (evsel->filter == NULL)
1151 		return perf_evsel__set_filter(evsel, filter);
1152 
1153 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1154 		free(evsel->filter);
1155 		evsel->filter = new_filter;
1156 		return 0;
1157 	}
1158 
1159 	return -1;
1160 }
1161 
1162 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1163 {
1164 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1165 }
1166 
1167 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1168 {
1169 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1170 }
1171 
1172 int perf_evsel__enable(struct perf_evsel *evsel)
1173 {
1174 	return perf_evsel__run_ioctl(evsel,
1175 				     PERF_EVENT_IOC_ENABLE,
1176 				     0);
1177 }
1178 
1179 int perf_evsel__disable(struct perf_evsel *evsel)
1180 {
1181 	return perf_evsel__run_ioctl(evsel,
1182 				     PERF_EVENT_IOC_DISABLE,
1183 				     0);
1184 }
1185 
1186 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1187 {
1188 	if (ncpus == 0 || nthreads == 0)
1189 		return 0;
1190 
1191 	if (evsel->system_wide)
1192 		nthreads = 1;
1193 
1194 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1195 	if (evsel->sample_id == NULL)
1196 		return -ENOMEM;
1197 
1198 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1199 	if (evsel->id == NULL) {
1200 		xyarray__delete(evsel->sample_id);
1201 		evsel->sample_id = NULL;
1202 		return -ENOMEM;
1203 	}
1204 
1205 	return 0;
1206 }
1207 
1208 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1209 {
1210 	xyarray__delete(evsel->fd);
1211 	evsel->fd = NULL;
1212 }
1213 
1214 static void perf_evsel__free_id(struct perf_evsel *evsel)
1215 {
1216 	xyarray__delete(evsel->sample_id);
1217 	evsel->sample_id = NULL;
1218 	zfree(&evsel->id);
1219 }
1220 
1221 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1222 {
1223 	struct perf_evsel_config_term *term, *h;
1224 
1225 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1226 		list_del(&term->list);
1227 		free(term);
1228 	}
1229 }
1230 
1231 void perf_evsel__close_fd(struct perf_evsel *evsel)
1232 {
1233 	int cpu, thread;
1234 
1235 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1236 		for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1237 			close(FD(evsel, cpu, thread));
1238 			FD(evsel, cpu, thread) = -1;
1239 		}
1240 }
1241 
1242 void perf_evsel__exit(struct perf_evsel *evsel)
1243 {
1244 	assert(list_empty(&evsel->node));
1245 	assert(evsel->evlist == NULL);
1246 	perf_evsel__free_fd(evsel);
1247 	perf_evsel__free_id(evsel);
1248 	perf_evsel__free_config_terms(evsel);
1249 	cgroup__put(evsel->cgrp);
1250 	cpu_map__put(evsel->cpus);
1251 	cpu_map__put(evsel->own_cpus);
1252 	thread_map__put(evsel->threads);
1253 	zfree(&evsel->group_name);
1254 	zfree(&evsel->name);
1255 	perf_evsel__object.fini(evsel);
1256 }
1257 
1258 void perf_evsel__delete(struct perf_evsel *evsel)
1259 {
1260 	perf_evsel__exit(evsel);
1261 	free(evsel);
1262 }
1263 
1264 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1265 				struct perf_counts_values *count)
1266 {
1267 	struct perf_counts_values tmp;
1268 
1269 	if (!evsel->prev_raw_counts)
1270 		return;
1271 
1272 	if (cpu == -1) {
1273 		tmp = evsel->prev_raw_counts->aggr;
1274 		evsel->prev_raw_counts->aggr = *count;
1275 	} else {
1276 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1277 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1278 	}
1279 
1280 	count->val = count->val - tmp.val;
1281 	count->ena = count->ena - tmp.ena;
1282 	count->run = count->run - tmp.run;
1283 }
1284 
1285 void perf_counts_values__scale(struct perf_counts_values *count,
1286 			       bool scale, s8 *pscaled)
1287 {
1288 	s8 scaled = 0;
1289 
1290 	if (scale) {
1291 		if (count->run == 0) {
1292 			scaled = -1;
1293 			count->val = 0;
1294 		} else if (count->run < count->ena) {
1295 			scaled = 1;
1296 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1297 		}
1298 	} else
1299 		count->ena = count->run = 0;
1300 
1301 	if (pscaled)
1302 		*pscaled = scaled;
1303 }
1304 
1305 static int perf_evsel__read_size(struct perf_evsel *evsel)
1306 {
1307 	u64 read_format = evsel->attr.read_format;
1308 	int entry = sizeof(u64); /* value */
1309 	int size = 0;
1310 	int nr = 1;
1311 
1312 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1313 		size += sizeof(u64);
1314 
1315 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1316 		size += sizeof(u64);
1317 
1318 	if (read_format & PERF_FORMAT_ID)
1319 		entry += sizeof(u64);
1320 
1321 	if (read_format & PERF_FORMAT_GROUP) {
1322 		nr = evsel->nr_members;
1323 		size += sizeof(u64);
1324 	}
1325 
1326 	size += entry * nr;
1327 	return size;
1328 }
1329 
1330 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1331 		     struct perf_counts_values *count)
1332 {
1333 	size_t size = perf_evsel__read_size(evsel);
1334 
1335 	memset(count, 0, sizeof(*count));
1336 
1337 	if (FD(evsel, cpu, thread) < 0)
1338 		return -EINVAL;
1339 
1340 	if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1341 		return -errno;
1342 
1343 	return 0;
1344 }
1345 
1346 static int
1347 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1348 {
1349 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1350 
1351 	return perf_evsel__read(evsel, cpu, thread, count);
1352 }
1353 
1354 static void
1355 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1356 		      u64 val, u64 ena, u64 run)
1357 {
1358 	struct perf_counts_values *count;
1359 
1360 	count = perf_counts(counter->counts, cpu, thread);
1361 
1362 	count->val    = val;
1363 	count->ena    = ena;
1364 	count->run    = run;
1365 	count->loaded = true;
1366 }
1367 
1368 static int
1369 perf_evsel__process_group_data(struct perf_evsel *leader,
1370 			       int cpu, int thread, u64 *data)
1371 {
1372 	u64 read_format = leader->attr.read_format;
1373 	struct sample_read_value *v;
1374 	u64 nr, ena = 0, run = 0, i;
1375 
1376 	nr = *data++;
1377 
1378 	if (nr != (u64) leader->nr_members)
1379 		return -EINVAL;
1380 
1381 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1382 		ena = *data++;
1383 
1384 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1385 		run = *data++;
1386 
1387 	v = (struct sample_read_value *) data;
1388 
1389 	perf_evsel__set_count(leader, cpu, thread,
1390 			      v[0].value, ena, run);
1391 
1392 	for (i = 1; i < nr; i++) {
1393 		struct perf_evsel *counter;
1394 
1395 		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1396 		if (!counter)
1397 			return -EINVAL;
1398 
1399 		perf_evsel__set_count(counter, cpu, thread,
1400 				      v[i].value, ena, run);
1401 	}
1402 
1403 	return 0;
1404 }
1405 
1406 static int
1407 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1408 {
1409 	struct perf_stat_evsel *ps = leader->stats;
1410 	u64 read_format = leader->attr.read_format;
1411 	int size = perf_evsel__read_size(leader);
1412 	u64 *data = ps->group_data;
1413 
1414 	if (!(read_format & PERF_FORMAT_ID))
1415 		return -EINVAL;
1416 
1417 	if (!perf_evsel__is_group_leader(leader))
1418 		return -EINVAL;
1419 
1420 	if (!data) {
1421 		data = zalloc(size);
1422 		if (!data)
1423 			return -ENOMEM;
1424 
1425 		ps->group_data = data;
1426 	}
1427 
1428 	if (FD(leader, cpu, thread) < 0)
1429 		return -EINVAL;
1430 
1431 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1432 		return -errno;
1433 
1434 	return perf_evsel__process_group_data(leader, cpu, thread, data);
1435 }
1436 
1437 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1438 {
1439 	u64 read_format = evsel->attr.read_format;
1440 
1441 	if (read_format & PERF_FORMAT_GROUP)
1442 		return perf_evsel__read_group(evsel, cpu, thread);
1443 	else
1444 		return perf_evsel__read_one(evsel, cpu, thread);
1445 }
1446 
1447 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1448 			      int cpu, int thread, bool scale)
1449 {
1450 	struct perf_counts_values count;
1451 	size_t nv = scale ? 3 : 1;
1452 
1453 	if (FD(evsel, cpu, thread) < 0)
1454 		return -EINVAL;
1455 
1456 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1457 		return -ENOMEM;
1458 
1459 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1460 		return -errno;
1461 
1462 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1463 	perf_counts_values__scale(&count, scale, NULL);
1464 	*perf_counts(evsel->counts, cpu, thread) = count;
1465 	return 0;
1466 }
1467 
1468 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1469 {
1470 	struct perf_evsel *leader = evsel->leader;
1471 	int fd;
1472 
1473 	if (perf_evsel__is_group_leader(evsel))
1474 		return -1;
1475 
1476 	/*
1477 	 * Leader must be already processed/open,
1478 	 * if not it's a bug.
1479 	 */
1480 	BUG_ON(!leader->fd);
1481 
1482 	fd = FD(leader, cpu, thread);
1483 	BUG_ON(fd == -1);
1484 
1485 	return fd;
1486 }
1487 
1488 struct bit_names {
1489 	int bit;
1490 	const char *name;
1491 };
1492 
1493 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1494 {
1495 	bool first_bit = true;
1496 	int i = 0;
1497 
1498 	do {
1499 		if (value & bits[i].bit) {
1500 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1501 			first_bit = false;
1502 		}
1503 	} while (bits[++i].name != NULL);
1504 }
1505 
1506 static void __p_sample_type(char *buf, size_t size, u64 value)
1507 {
1508 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1509 	struct bit_names bits[] = {
1510 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1511 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1512 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1513 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1514 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1515 		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1516 		{ .name = NULL, }
1517 	};
1518 #undef bit_name
1519 	__p_bits(buf, size, value, bits);
1520 }
1521 
1522 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1523 {
1524 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1525 	struct bit_names bits[] = {
1526 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1527 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1528 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1529 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1530 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1531 		{ .name = NULL, }
1532 	};
1533 #undef bit_name
1534 	__p_bits(buf, size, value, bits);
1535 }
1536 
1537 static void __p_read_format(char *buf, size_t size, u64 value)
1538 {
1539 #define bit_name(n) { PERF_FORMAT_##n, #n }
1540 	struct bit_names bits[] = {
1541 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1542 		bit_name(ID), bit_name(GROUP),
1543 		{ .name = NULL, }
1544 	};
1545 #undef bit_name
1546 	__p_bits(buf, size, value, bits);
1547 }
1548 
1549 #define BUF_SIZE		1024
1550 
1551 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1552 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1553 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1554 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1555 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1556 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1557 
1558 #define PRINT_ATTRn(_n, _f, _p)				\
1559 do {							\
1560 	if (attr->_f) {					\
1561 		_p(attr->_f);				\
1562 		ret += attr__fprintf(fp, _n, buf, priv);\
1563 	}						\
1564 } while (0)
1565 
1566 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1567 
1568 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1569 			     attr__fprintf_f attr__fprintf, void *priv)
1570 {
1571 	char buf[BUF_SIZE];
1572 	int ret = 0;
1573 
1574 	PRINT_ATTRf(type, p_unsigned);
1575 	PRINT_ATTRf(size, p_unsigned);
1576 	PRINT_ATTRf(config, p_hex);
1577 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1578 	PRINT_ATTRf(sample_type, p_sample_type);
1579 	PRINT_ATTRf(read_format, p_read_format);
1580 
1581 	PRINT_ATTRf(disabled, p_unsigned);
1582 	PRINT_ATTRf(inherit, p_unsigned);
1583 	PRINT_ATTRf(pinned, p_unsigned);
1584 	PRINT_ATTRf(exclusive, p_unsigned);
1585 	PRINT_ATTRf(exclude_user, p_unsigned);
1586 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1587 	PRINT_ATTRf(exclude_hv, p_unsigned);
1588 	PRINT_ATTRf(exclude_idle, p_unsigned);
1589 	PRINT_ATTRf(mmap, p_unsigned);
1590 	PRINT_ATTRf(comm, p_unsigned);
1591 	PRINT_ATTRf(freq, p_unsigned);
1592 	PRINT_ATTRf(inherit_stat, p_unsigned);
1593 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1594 	PRINT_ATTRf(task, p_unsigned);
1595 	PRINT_ATTRf(watermark, p_unsigned);
1596 	PRINT_ATTRf(precise_ip, p_unsigned);
1597 	PRINT_ATTRf(mmap_data, p_unsigned);
1598 	PRINT_ATTRf(sample_id_all, p_unsigned);
1599 	PRINT_ATTRf(exclude_host, p_unsigned);
1600 	PRINT_ATTRf(exclude_guest, p_unsigned);
1601 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1602 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1603 	PRINT_ATTRf(mmap2, p_unsigned);
1604 	PRINT_ATTRf(comm_exec, p_unsigned);
1605 	PRINT_ATTRf(use_clockid, p_unsigned);
1606 	PRINT_ATTRf(context_switch, p_unsigned);
1607 	PRINT_ATTRf(write_backward, p_unsigned);
1608 	PRINT_ATTRf(namespaces, p_unsigned);
1609 
1610 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1611 	PRINT_ATTRf(bp_type, p_unsigned);
1612 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1613 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1614 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1615 	PRINT_ATTRf(sample_regs_user, p_hex);
1616 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1617 	PRINT_ATTRf(clockid, p_signed);
1618 	PRINT_ATTRf(sample_regs_intr, p_hex);
1619 	PRINT_ATTRf(aux_watermark, p_unsigned);
1620 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1621 
1622 	return ret;
1623 }
1624 
1625 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1626 				void *priv __maybe_unused)
1627 {
1628 	return fprintf(fp, "  %-32s %s\n", name, val);
1629 }
1630 
1631 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1632 				  int nr_cpus, int nr_threads,
1633 				  int thread_idx)
1634 {
1635 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1636 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1637 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1638 }
1639 
1640 static int update_fds(struct perf_evsel *evsel,
1641 		      int nr_cpus, int cpu_idx,
1642 		      int nr_threads, int thread_idx)
1643 {
1644 	struct perf_evsel *pos;
1645 
1646 	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1647 		return -EINVAL;
1648 
1649 	evlist__for_each_entry(evsel->evlist, pos) {
1650 		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1651 
1652 		perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1653 
1654 		/*
1655 		 * Since fds for next evsel has not been created,
1656 		 * there is no need to iterate whole event list.
1657 		 */
1658 		if (pos == evsel)
1659 			break;
1660 	}
1661 	return 0;
1662 }
1663 
1664 static bool ignore_missing_thread(struct perf_evsel *evsel,
1665 				  int nr_cpus, int cpu,
1666 				  struct thread_map *threads,
1667 				  int thread, int err)
1668 {
1669 	pid_t ignore_pid = thread_map__pid(threads, thread);
1670 
1671 	if (!evsel->ignore_missing_thread)
1672 		return false;
1673 
1674 	/* The system wide setup does not work with threads. */
1675 	if (evsel->system_wide)
1676 		return false;
1677 
1678 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1679 	if (err != -ESRCH)
1680 		return false;
1681 
1682 	/* If there's only one thread, let it fail. */
1683 	if (threads->nr == 1)
1684 		return false;
1685 
1686 	/*
1687 	 * We should remove fd for missing_thread first
1688 	 * because thread_map__remove() will decrease threads->nr.
1689 	 */
1690 	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1691 		return false;
1692 
1693 	if (thread_map__remove(threads, thread))
1694 		return false;
1695 
1696 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1697 		   ignore_pid);
1698 	return true;
1699 }
1700 
1701 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1702 		     struct thread_map *threads)
1703 {
1704 	int cpu, thread, nthreads;
1705 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1706 	int pid = -1, err;
1707 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1708 
1709 	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1710 		return -EINVAL;
1711 
1712 	if (cpus == NULL) {
1713 		static struct cpu_map *empty_cpu_map;
1714 
1715 		if (empty_cpu_map == NULL) {
1716 			empty_cpu_map = cpu_map__dummy_new();
1717 			if (empty_cpu_map == NULL)
1718 				return -ENOMEM;
1719 		}
1720 
1721 		cpus = empty_cpu_map;
1722 	}
1723 
1724 	if (threads == NULL) {
1725 		static struct thread_map *empty_thread_map;
1726 
1727 		if (empty_thread_map == NULL) {
1728 			empty_thread_map = thread_map__new_by_tid(-1);
1729 			if (empty_thread_map == NULL)
1730 				return -ENOMEM;
1731 		}
1732 
1733 		threads = empty_thread_map;
1734 	}
1735 
1736 	if (evsel->system_wide)
1737 		nthreads = 1;
1738 	else
1739 		nthreads = threads->nr;
1740 
1741 	if (evsel->fd == NULL &&
1742 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1743 		return -ENOMEM;
1744 
1745 	if (evsel->cgrp) {
1746 		flags |= PERF_FLAG_PID_CGROUP;
1747 		pid = evsel->cgrp->fd;
1748 	}
1749 
1750 fallback_missing_features:
1751 	if (perf_missing_features.clockid_wrong)
1752 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1753 	if (perf_missing_features.clockid) {
1754 		evsel->attr.use_clockid = 0;
1755 		evsel->attr.clockid = 0;
1756 	}
1757 	if (perf_missing_features.cloexec)
1758 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1759 	if (perf_missing_features.mmap2)
1760 		evsel->attr.mmap2 = 0;
1761 	if (perf_missing_features.exclude_guest)
1762 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1763 	if (perf_missing_features.lbr_flags)
1764 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1765 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1766 	if (perf_missing_features.group_read && evsel->attr.inherit)
1767 		evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1768 retry_sample_id:
1769 	if (perf_missing_features.sample_id_all)
1770 		evsel->attr.sample_id_all = 0;
1771 
1772 	if (verbose >= 2) {
1773 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1774 		fprintf(stderr, "perf_event_attr:\n");
1775 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1776 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1777 	}
1778 
1779 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1780 
1781 		for (thread = 0; thread < nthreads; thread++) {
1782 			int fd, group_fd;
1783 
1784 			if (!evsel->cgrp && !evsel->system_wide)
1785 				pid = thread_map__pid(threads, thread);
1786 
1787 			group_fd = get_group_fd(evsel, cpu, thread);
1788 retry_open:
1789 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1790 				  pid, cpus->map[cpu], group_fd, flags);
1791 
1792 			test_attr__ready();
1793 
1794 			fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1795 						 group_fd, flags);
1796 
1797 			FD(evsel, cpu, thread) = fd;
1798 
1799 			if (fd < 0) {
1800 				err = -errno;
1801 
1802 				if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1803 					/*
1804 					 * We just removed 1 thread, so take a step
1805 					 * back on thread index and lower the upper
1806 					 * nthreads limit.
1807 					 */
1808 					nthreads--;
1809 					thread--;
1810 
1811 					/* ... and pretend like nothing have happened. */
1812 					err = 0;
1813 					continue;
1814 				}
1815 
1816 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1817 					  err);
1818 				goto try_fallback;
1819 			}
1820 
1821 			pr_debug2(" = %d\n", fd);
1822 
1823 			if (evsel->bpf_fd >= 0) {
1824 				int evt_fd = fd;
1825 				int bpf_fd = evsel->bpf_fd;
1826 
1827 				err = ioctl(evt_fd,
1828 					    PERF_EVENT_IOC_SET_BPF,
1829 					    bpf_fd);
1830 				if (err && errno != EEXIST) {
1831 					pr_err("failed to attach bpf fd %d: %s\n",
1832 					       bpf_fd, strerror(errno));
1833 					err = -EINVAL;
1834 					goto out_close;
1835 				}
1836 			}
1837 
1838 			set_rlimit = NO_CHANGE;
1839 
1840 			/*
1841 			 * If we succeeded but had to kill clockid, fail and
1842 			 * have perf_evsel__open_strerror() print us a nice
1843 			 * error.
1844 			 */
1845 			if (perf_missing_features.clockid ||
1846 			    perf_missing_features.clockid_wrong) {
1847 				err = -EINVAL;
1848 				goto out_close;
1849 			}
1850 		}
1851 	}
1852 
1853 	return 0;
1854 
1855 try_fallback:
1856 	/*
1857 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1858 	 * of them try to increase the limits.
1859 	 */
1860 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1861 		struct rlimit l;
1862 		int old_errno = errno;
1863 
1864 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1865 			if (set_rlimit == NO_CHANGE)
1866 				l.rlim_cur = l.rlim_max;
1867 			else {
1868 				l.rlim_cur = l.rlim_max + 1000;
1869 				l.rlim_max = l.rlim_cur;
1870 			}
1871 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1872 				set_rlimit++;
1873 				errno = old_errno;
1874 				goto retry_open;
1875 			}
1876 		}
1877 		errno = old_errno;
1878 	}
1879 
1880 	if (err != -EINVAL || cpu > 0 || thread > 0)
1881 		goto out_close;
1882 
1883 	/*
1884 	 * Must probe features in the order they were added to the
1885 	 * perf_event_attr interface.
1886 	 */
1887 	if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1888 		perf_missing_features.write_backward = true;
1889 		pr_debug2("switching off write_backward\n");
1890 		goto out_close;
1891 	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1892 		perf_missing_features.clockid_wrong = true;
1893 		pr_debug2("switching off clockid\n");
1894 		goto fallback_missing_features;
1895 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1896 		perf_missing_features.clockid = true;
1897 		pr_debug2("switching off use_clockid\n");
1898 		goto fallback_missing_features;
1899 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1900 		perf_missing_features.cloexec = true;
1901 		pr_debug2("switching off cloexec flag\n");
1902 		goto fallback_missing_features;
1903 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1904 		perf_missing_features.mmap2 = true;
1905 		pr_debug2("switching off mmap2\n");
1906 		goto fallback_missing_features;
1907 	} else if (!perf_missing_features.exclude_guest &&
1908 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1909 		perf_missing_features.exclude_guest = true;
1910 		pr_debug2("switching off exclude_guest, exclude_host\n");
1911 		goto fallback_missing_features;
1912 	} else if (!perf_missing_features.sample_id_all) {
1913 		perf_missing_features.sample_id_all = true;
1914 		pr_debug2("switching off sample_id_all\n");
1915 		goto retry_sample_id;
1916 	} else if (!perf_missing_features.lbr_flags &&
1917 			(evsel->attr.branch_sample_type &
1918 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1919 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1920 		perf_missing_features.lbr_flags = true;
1921 		pr_debug2("switching off branch sample type no (cycles/flags)\n");
1922 		goto fallback_missing_features;
1923 	} else if (!perf_missing_features.group_read &&
1924 		    evsel->attr.inherit &&
1925 		   (evsel->attr.read_format & PERF_FORMAT_GROUP)) {
1926 		perf_missing_features.group_read = true;
1927 		pr_debug2("switching off group read\n");
1928 		goto fallback_missing_features;
1929 	}
1930 out_close:
1931 	if (err)
1932 		threads->err_thread = thread;
1933 
1934 	do {
1935 		while (--thread >= 0) {
1936 			close(FD(evsel, cpu, thread));
1937 			FD(evsel, cpu, thread) = -1;
1938 		}
1939 		thread = nthreads;
1940 	} while (--cpu >= 0);
1941 	return err;
1942 }
1943 
1944 void perf_evsel__close(struct perf_evsel *evsel)
1945 {
1946 	if (evsel->fd == NULL)
1947 		return;
1948 
1949 	perf_evsel__close_fd(evsel);
1950 	perf_evsel__free_fd(evsel);
1951 }
1952 
1953 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1954 			     struct cpu_map *cpus)
1955 {
1956 	return perf_evsel__open(evsel, cpus, NULL);
1957 }
1958 
1959 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1960 				struct thread_map *threads)
1961 {
1962 	return perf_evsel__open(evsel, NULL, threads);
1963 }
1964 
1965 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1966 				       const union perf_event *event,
1967 				       struct perf_sample *sample)
1968 {
1969 	u64 type = evsel->attr.sample_type;
1970 	const u64 *array = event->sample.array;
1971 	bool swapped = evsel->needs_swap;
1972 	union u64_swap u;
1973 
1974 	array += ((event->header.size -
1975 		   sizeof(event->header)) / sizeof(u64)) - 1;
1976 
1977 	if (type & PERF_SAMPLE_IDENTIFIER) {
1978 		sample->id = *array;
1979 		array--;
1980 	}
1981 
1982 	if (type & PERF_SAMPLE_CPU) {
1983 		u.val64 = *array;
1984 		if (swapped) {
1985 			/* undo swap of u64, then swap on individual u32s */
1986 			u.val64 = bswap_64(u.val64);
1987 			u.val32[0] = bswap_32(u.val32[0]);
1988 		}
1989 
1990 		sample->cpu = u.val32[0];
1991 		array--;
1992 	}
1993 
1994 	if (type & PERF_SAMPLE_STREAM_ID) {
1995 		sample->stream_id = *array;
1996 		array--;
1997 	}
1998 
1999 	if (type & PERF_SAMPLE_ID) {
2000 		sample->id = *array;
2001 		array--;
2002 	}
2003 
2004 	if (type & PERF_SAMPLE_TIME) {
2005 		sample->time = *array;
2006 		array--;
2007 	}
2008 
2009 	if (type & PERF_SAMPLE_TID) {
2010 		u.val64 = *array;
2011 		if (swapped) {
2012 			/* undo swap of u64, then swap on individual u32s */
2013 			u.val64 = bswap_64(u.val64);
2014 			u.val32[0] = bswap_32(u.val32[0]);
2015 			u.val32[1] = bswap_32(u.val32[1]);
2016 		}
2017 
2018 		sample->pid = u.val32[0];
2019 		sample->tid = u.val32[1];
2020 		array--;
2021 	}
2022 
2023 	return 0;
2024 }
2025 
2026 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2027 			    u64 size)
2028 {
2029 	return size > max_size || offset + size > endp;
2030 }
2031 
2032 #define OVERFLOW_CHECK(offset, size, max_size)				\
2033 	do {								\
2034 		if (overflow(endp, (max_size), (offset), (size)))	\
2035 			return -EFAULT;					\
2036 	} while (0)
2037 
2038 #define OVERFLOW_CHECK_u64(offset) \
2039 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2040 
2041 static int
2042 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2043 {
2044 	/*
2045 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2046 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2047 	 * check the format does not go past the end of the event.
2048 	 */
2049 	if (sample_size + sizeof(event->header) > event->header.size)
2050 		return -EFAULT;
2051 
2052 	return 0;
2053 }
2054 
2055 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2056 			     struct perf_sample *data)
2057 {
2058 	u64 type = evsel->attr.sample_type;
2059 	bool swapped = evsel->needs_swap;
2060 	const u64 *array;
2061 	u16 max_size = event->header.size;
2062 	const void *endp = (void *)event + max_size;
2063 	u64 sz;
2064 
2065 	/*
2066 	 * used for cross-endian analysis. See git commit 65014ab3
2067 	 * for why this goofiness is needed.
2068 	 */
2069 	union u64_swap u;
2070 
2071 	memset(data, 0, sizeof(*data));
2072 	data->cpu = data->pid = data->tid = -1;
2073 	data->stream_id = data->id = data->time = -1ULL;
2074 	data->period = evsel->attr.sample_period;
2075 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2076 	data->misc    = event->header.misc;
2077 	data->id = -1ULL;
2078 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2079 
2080 	if (event->header.type != PERF_RECORD_SAMPLE) {
2081 		if (!evsel->attr.sample_id_all)
2082 			return 0;
2083 		return perf_evsel__parse_id_sample(evsel, event, data);
2084 	}
2085 
2086 	array = event->sample.array;
2087 
2088 	if (perf_event__check_size(event, evsel->sample_size))
2089 		return -EFAULT;
2090 
2091 	if (type & PERF_SAMPLE_IDENTIFIER) {
2092 		data->id = *array;
2093 		array++;
2094 	}
2095 
2096 	if (type & PERF_SAMPLE_IP) {
2097 		data->ip = *array;
2098 		array++;
2099 	}
2100 
2101 	if (type & PERF_SAMPLE_TID) {
2102 		u.val64 = *array;
2103 		if (swapped) {
2104 			/* undo swap of u64, then swap on individual u32s */
2105 			u.val64 = bswap_64(u.val64);
2106 			u.val32[0] = bswap_32(u.val32[0]);
2107 			u.val32[1] = bswap_32(u.val32[1]);
2108 		}
2109 
2110 		data->pid = u.val32[0];
2111 		data->tid = u.val32[1];
2112 		array++;
2113 	}
2114 
2115 	if (type & PERF_SAMPLE_TIME) {
2116 		data->time = *array;
2117 		array++;
2118 	}
2119 
2120 	if (type & PERF_SAMPLE_ADDR) {
2121 		data->addr = *array;
2122 		array++;
2123 	}
2124 
2125 	if (type & PERF_SAMPLE_ID) {
2126 		data->id = *array;
2127 		array++;
2128 	}
2129 
2130 	if (type & PERF_SAMPLE_STREAM_ID) {
2131 		data->stream_id = *array;
2132 		array++;
2133 	}
2134 
2135 	if (type & PERF_SAMPLE_CPU) {
2136 
2137 		u.val64 = *array;
2138 		if (swapped) {
2139 			/* undo swap of u64, then swap on individual u32s */
2140 			u.val64 = bswap_64(u.val64);
2141 			u.val32[0] = bswap_32(u.val32[0]);
2142 		}
2143 
2144 		data->cpu = u.val32[0];
2145 		array++;
2146 	}
2147 
2148 	if (type & PERF_SAMPLE_PERIOD) {
2149 		data->period = *array;
2150 		array++;
2151 	}
2152 
2153 	if (type & PERF_SAMPLE_READ) {
2154 		u64 read_format = evsel->attr.read_format;
2155 
2156 		OVERFLOW_CHECK_u64(array);
2157 		if (read_format & PERF_FORMAT_GROUP)
2158 			data->read.group.nr = *array;
2159 		else
2160 			data->read.one.value = *array;
2161 
2162 		array++;
2163 
2164 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2165 			OVERFLOW_CHECK_u64(array);
2166 			data->read.time_enabled = *array;
2167 			array++;
2168 		}
2169 
2170 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2171 			OVERFLOW_CHECK_u64(array);
2172 			data->read.time_running = *array;
2173 			array++;
2174 		}
2175 
2176 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2177 		if (read_format & PERF_FORMAT_GROUP) {
2178 			const u64 max_group_nr = UINT64_MAX /
2179 					sizeof(struct sample_read_value);
2180 
2181 			if (data->read.group.nr > max_group_nr)
2182 				return -EFAULT;
2183 			sz = data->read.group.nr *
2184 			     sizeof(struct sample_read_value);
2185 			OVERFLOW_CHECK(array, sz, max_size);
2186 			data->read.group.values =
2187 					(struct sample_read_value *)array;
2188 			array = (void *)array + sz;
2189 		} else {
2190 			OVERFLOW_CHECK_u64(array);
2191 			data->read.one.id = *array;
2192 			array++;
2193 		}
2194 	}
2195 
2196 	if (type & PERF_SAMPLE_CALLCHAIN) {
2197 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2198 
2199 		OVERFLOW_CHECK_u64(array);
2200 		data->callchain = (struct ip_callchain *)array++;
2201 		if (data->callchain->nr > max_callchain_nr)
2202 			return -EFAULT;
2203 		sz = data->callchain->nr * sizeof(u64);
2204 		OVERFLOW_CHECK(array, sz, max_size);
2205 		array = (void *)array + sz;
2206 	}
2207 
2208 	if (type & PERF_SAMPLE_RAW) {
2209 		OVERFLOW_CHECK_u64(array);
2210 		u.val64 = *array;
2211 
2212 		/*
2213 		 * Undo swap of u64, then swap on individual u32s,
2214 		 * get the size of the raw area and undo all of the
2215 		 * swap. The pevent interface handles endianity by
2216 		 * itself.
2217 		 */
2218 		if (swapped) {
2219 			u.val64 = bswap_64(u.val64);
2220 			u.val32[0] = bswap_32(u.val32[0]);
2221 			u.val32[1] = bswap_32(u.val32[1]);
2222 		}
2223 		data->raw_size = u.val32[0];
2224 
2225 		/*
2226 		 * The raw data is aligned on 64bits including the
2227 		 * u32 size, so it's safe to use mem_bswap_64.
2228 		 */
2229 		if (swapped)
2230 			mem_bswap_64((void *) array, data->raw_size);
2231 
2232 		array = (void *)array + sizeof(u32);
2233 
2234 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2235 		data->raw_data = (void *)array;
2236 		array = (void *)array + data->raw_size;
2237 	}
2238 
2239 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2240 		const u64 max_branch_nr = UINT64_MAX /
2241 					  sizeof(struct branch_entry);
2242 
2243 		OVERFLOW_CHECK_u64(array);
2244 		data->branch_stack = (struct branch_stack *)array++;
2245 
2246 		if (data->branch_stack->nr > max_branch_nr)
2247 			return -EFAULT;
2248 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2249 		OVERFLOW_CHECK(array, sz, max_size);
2250 		array = (void *)array + sz;
2251 	}
2252 
2253 	if (type & PERF_SAMPLE_REGS_USER) {
2254 		OVERFLOW_CHECK_u64(array);
2255 		data->user_regs.abi = *array;
2256 		array++;
2257 
2258 		if (data->user_regs.abi) {
2259 			u64 mask = evsel->attr.sample_regs_user;
2260 
2261 			sz = hweight_long(mask) * sizeof(u64);
2262 			OVERFLOW_CHECK(array, sz, max_size);
2263 			data->user_regs.mask = mask;
2264 			data->user_regs.regs = (u64 *)array;
2265 			array = (void *)array + sz;
2266 		}
2267 	}
2268 
2269 	if (type & PERF_SAMPLE_STACK_USER) {
2270 		OVERFLOW_CHECK_u64(array);
2271 		sz = *array++;
2272 
2273 		data->user_stack.offset = ((char *)(array - 1)
2274 					  - (char *) event);
2275 
2276 		if (!sz) {
2277 			data->user_stack.size = 0;
2278 		} else {
2279 			OVERFLOW_CHECK(array, sz, max_size);
2280 			data->user_stack.data = (char *)array;
2281 			array = (void *)array + sz;
2282 			OVERFLOW_CHECK_u64(array);
2283 			data->user_stack.size = *array++;
2284 			if (WARN_ONCE(data->user_stack.size > sz,
2285 				      "user stack dump failure\n"))
2286 				return -EFAULT;
2287 		}
2288 	}
2289 
2290 	if (type & PERF_SAMPLE_WEIGHT) {
2291 		OVERFLOW_CHECK_u64(array);
2292 		data->weight = *array;
2293 		array++;
2294 	}
2295 
2296 	if (type & PERF_SAMPLE_DATA_SRC) {
2297 		OVERFLOW_CHECK_u64(array);
2298 		data->data_src = *array;
2299 		array++;
2300 	}
2301 
2302 	if (type & PERF_SAMPLE_TRANSACTION) {
2303 		OVERFLOW_CHECK_u64(array);
2304 		data->transaction = *array;
2305 		array++;
2306 	}
2307 
2308 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2309 	if (type & PERF_SAMPLE_REGS_INTR) {
2310 		OVERFLOW_CHECK_u64(array);
2311 		data->intr_regs.abi = *array;
2312 		array++;
2313 
2314 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2315 			u64 mask = evsel->attr.sample_regs_intr;
2316 
2317 			sz = hweight_long(mask) * sizeof(u64);
2318 			OVERFLOW_CHECK(array, sz, max_size);
2319 			data->intr_regs.mask = mask;
2320 			data->intr_regs.regs = (u64 *)array;
2321 			array = (void *)array + sz;
2322 		}
2323 	}
2324 
2325 	data->phys_addr = 0;
2326 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2327 		data->phys_addr = *array;
2328 		array++;
2329 	}
2330 
2331 	return 0;
2332 }
2333 
2334 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2335 				       union perf_event *event,
2336 				       u64 *timestamp)
2337 {
2338 	u64 type = evsel->attr.sample_type;
2339 	const u64 *array;
2340 
2341 	if (!(type & PERF_SAMPLE_TIME))
2342 		return -1;
2343 
2344 	if (event->header.type != PERF_RECORD_SAMPLE) {
2345 		struct perf_sample data = {
2346 			.time = -1ULL,
2347 		};
2348 
2349 		if (!evsel->attr.sample_id_all)
2350 			return -1;
2351 		if (perf_evsel__parse_id_sample(evsel, event, &data))
2352 			return -1;
2353 
2354 		*timestamp = data.time;
2355 		return 0;
2356 	}
2357 
2358 	array = event->sample.array;
2359 
2360 	if (perf_event__check_size(event, evsel->sample_size))
2361 		return -EFAULT;
2362 
2363 	if (type & PERF_SAMPLE_IDENTIFIER)
2364 		array++;
2365 
2366 	if (type & PERF_SAMPLE_IP)
2367 		array++;
2368 
2369 	if (type & PERF_SAMPLE_TID)
2370 		array++;
2371 
2372 	if (type & PERF_SAMPLE_TIME)
2373 		*timestamp = *array;
2374 
2375 	return 0;
2376 }
2377 
2378 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2379 				     u64 read_format)
2380 {
2381 	size_t sz, result = sizeof(struct sample_event);
2382 
2383 	if (type & PERF_SAMPLE_IDENTIFIER)
2384 		result += sizeof(u64);
2385 
2386 	if (type & PERF_SAMPLE_IP)
2387 		result += sizeof(u64);
2388 
2389 	if (type & PERF_SAMPLE_TID)
2390 		result += sizeof(u64);
2391 
2392 	if (type & PERF_SAMPLE_TIME)
2393 		result += sizeof(u64);
2394 
2395 	if (type & PERF_SAMPLE_ADDR)
2396 		result += sizeof(u64);
2397 
2398 	if (type & PERF_SAMPLE_ID)
2399 		result += sizeof(u64);
2400 
2401 	if (type & PERF_SAMPLE_STREAM_ID)
2402 		result += sizeof(u64);
2403 
2404 	if (type & PERF_SAMPLE_CPU)
2405 		result += sizeof(u64);
2406 
2407 	if (type & PERF_SAMPLE_PERIOD)
2408 		result += sizeof(u64);
2409 
2410 	if (type & PERF_SAMPLE_READ) {
2411 		result += sizeof(u64);
2412 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2413 			result += sizeof(u64);
2414 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2415 			result += sizeof(u64);
2416 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2417 		if (read_format & PERF_FORMAT_GROUP) {
2418 			sz = sample->read.group.nr *
2419 			     sizeof(struct sample_read_value);
2420 			result += sz;
2421 		} else {
2422 			result += sizeof(u64);
2423 		}
2424 	}
2425 
2426 	if (type & PERF_SAMPLE_CALLCHAIN) {
2427 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2428 		result += sz;
2429 	}
2430 
2431 	if (type & PERF_SAMPLE_RAW) {
2432 		result += sizeof(u32);
2433 		result += sample->raw_size;
2434 	}
2435 
2436 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2437 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2438 		sz += sizeof(u64);
2439 		result += sz;
2440 	}
2441 
2442 	if (type & PERF_SAMPLE_REGS_USER) {
2443 		if (sample->user_regs.abi) {
2444 			result += sizeof(u64);
2445 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2446 			result += sz;
2447 		} else {
2448 			result += sizeof(u64);
2449 		}
2450 	}
2451 
2452 	if (type & PERF_SAMPLE_STACK_USER) {
2453 		sz = sample->user_stack.size;
2454 		result += sizeof(u64);
2455 		if (sz) {
2456 			result += sz;
2457 			result += sizeof(u64);
2458 		}
2459 	}
2460 
2461 	if (type & PERF_SAMPLE_WEIGHT)
2462 		result += sizeof(u64);
2463 
2464 	if (type & PERF_SAMPLE_DATA_SRC)
2465 		result += sizeof(u64);
2466 
2467 	if (type & PERF_SAMPLE_TRANSACTION)
2468 		result += sizeof(u64);
2469 
2470 	if (type & PERF_SAMPLE_REGS_INTR) {
2471 		if (sample->intr_regs.abi) {
2472 			result += sizeof(u64);
2473 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2474 			result += sz;
2475 		} else {
2476 			result += sizeof(u64);
2477 		}
2478 	}
2479 
2480 	if (type & PERF_SAMPLE_PHYS_ADDR)
2481 		result += sizeof(u64);
2482 
2483 	return result;
2484 }
2485 
2486 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2487 				  u64 read_format,
2488 				  const struct perf_sample *sample)
2489 {
2490 	u64 *array;
2491 	size_t sz;
2492 	/*
2493 	 * used for cross-endian analysis. See git commit 65014ab3
2494 	 * for why this goofiness is needed.
2495 	 */
2496 	union u64_swap u;
2497 
2498 	array = event->sample.array;
2499 
2500 	if (type & PERF_SAMPLE_IDENTIFIER) {
2501 		*array = sample->id;
2502 		array++;
2503 	}
2504 
2505 	if (type & PERF_SAMPLE_IP) {
2506 		*array = sample->ip;
2507 		array++;
2508 	}
2509 
2510 	if (type & PERF_SAMPLE_TID) {
2511 		u.val32[0] = sample->pid;
2512 		u.val32[1] = sample->tid;
2513 		*array = u.val64;
2514 		array++;
2515 	}
2516 
2517 	if (type & PERF_SAMPLE_TIME) {
2518 		*array = sample->time;
2519 		array++;
2520 	}
2521 
2522 	if (type & PERF_SAMPLE_ADDR) {
2523 		*array = sample->addr;
2524 		array++;
2525 	}
2526 
2527 	if (type & PERF_SAMPLE_ID) {
2528 		*array = sample->id;
2529 		array++;
2530 	}
2531 
2532 	if (type & PERF_SAMPLE_STREAM_ID) {
2533 		*array = sample->stream_id;
2534 		array++;
2535 	}
2536 
2537 	if (type & PERF_SAMPLE_CPU) {
2538 		u.val32[0] = sample->cpu;
2539 		u.val32[1] = 0;
2540 		*array = u.val64;
2541 		array++;
2542 	}
2543 
2544 	if (type & PERF_SAMPLE_PERIOD) {
2545 		*array = sample->period;
2546 		array++;
2547 	}
2548 
2549 	if (type & PERF_SAMPLE_READ) {
2550 		if (read_format & PERF_FORMAT_GROUP)
2551 			*array = sample->read.group.nr;
2552 		else
2553 			*array = sample->read.one.value;
2554 		array++;
2555 
2556 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2557 			*array = sample->read.time_enabled;
2558 			array++;
2559 		}
2560 
2561 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2562 			*array = sample->read.time_running;
2563 			array++;
2564 		}
2565 
2566 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2567 		if (read_format & PERF_FORMAT_GROUP) {
2568 			sz = sample->read.group.nr *
2569 			     sizeof(struct sample_read_value);
2570 			memcpy(array, sample->read.group.values, sz);
2571 			array = (void *)array + sz;
2572 		} else {
2573 			*array = sample->read.one.id;
2574 			array++;
2575 		}
2576 	}
2577 
2578 	if (type & PERF_SAMPLE_CALLCHAIN) {
2579 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2580 		memcpy(array, sample->callchain, sz);
2581 		array = (void *)array + sz;
2582 	}
2583 
2584 	if (type & PERF_SAMPLE_RAW) {
2585 		u.val32[0] = sample->raw_size;
2586 		*array = u.val64;
2587 		array = (void *)array + sizeof(u32);
2588 
2589 		memcpy(array, sample->raw_data, sample->raw_size);
2590 		array = (void *)array + sample->raw_size;
2591 	}
2592 
2593 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2594 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2595 		sz += sizeof(u64);
2596 		memcpy(array, sample->branch_stack, sz);
2597 		array = (void *)array + sz;
2598 	}
2599 
2600 	if (type & PERF_SAMPLE_REGS_USER) {
2601 		if (sample->user_regs.abi) {
2602 			*array++ = sample->user_regs.abi;
2603 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2604 			memcpy(array, sample->user_regs.regs, sz);
2605 			array = (void *)array + sz;
2606 		} else {
2607 			*array++ = 0;
2608 		}
2609 	}
2610 
2611 	if (type & PERF_SAMPLE_STACK_USER) {
2612 		sz = sample->user_stack.size;
2613 		*array++ = sz;
2614 		if (sz) {
2615 			memcpy(array, sample->user_stack.data, sz);
2616 			array = (void *)array + sz;
2617 			*array++ = sz;
2618 		}
2619 	}
2620 
2621 	if (type & PERF_SAMPLE_WEIGHT) {
2622 		*array = sample->weight;
2623 		array++;
2624 	}
2625 
2626 	if (type & PERF_SAMPLE_DATA_SRC) {
2627 		*array = sample->data_src;
2628 		array++;
2629 	}
2630 
2631 	if (type & PERF_SAMPLE_TRANSACTION) {
2632 		*array = sample->transaction;
2633 		array++;
2634 	}
2635 
2636 	if (type & PERF_SAMPLE_REGS_INTR) {
2637 		if (sample->intr_regs.abi) {
2638 			*array++ = sample->intr_regs.abi;
2639 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2640 			memcpy(array, sample->intr_regs.regs, sz);
2641 			array = (void *)array + sz;
2642 		} else {
2643 			*array++ = 0;
2644 		}
2645 	}
2646 
2647 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2648 		*array = sample->phys_addr;
2649 		array++;
2650 	}
2651 
2652 	return 0;
2653 }
2654 
2655 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2656 {
2657 	return pevent_find_field(evsel->tp_format, name);
2658 }
2659 
2660 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2661 			 const char *name)
2662 {
2663 	struct format_field *field = perf_evsel__field(evsel, name);
2664 	int offset;
2665 
2666 	if (!field)
2667 		return NULL;
2668 
2669 	offset = field->offset;
2670 
2671 	if (field->flags & FIELD_IS_DYNAMIC) {
2672 		offset = *(int *)(sample->raw_data + field->offset);
2673 		offset &= 0xffff;
2674 	}
2675 
2676 	return sample->raw_data + offset;
2677 }
2678 
2679 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2680 			 bool needs_swap)
2681 {
2682 	u64 value;
2683 	void *ptr = sample->raw_data + field->offset;
2684 
2685 	switch (field->size) {
2686 	case 1:
2687 		return *(u8 *)ptr;
2688 	case 2:
2689 		value = *(u16 *)ptr;
2690 		break;
2691 	case 4:
2692 		value = *(u32 *)ptr;
2693 		break;
2694 	case 8:
2695 		memcpy(&value, ptr, sizeof(u64));
2696 		break;
2697 	default:
2698 		return 0;
2699 	}
2700 
2701 	if (!needs_swap)
2702 		return value;
2703 
2704 	switch (field->size) {
2705 	case 2:
2706 		return bswap_16(value);
2707 	case 4:
2708 		return bswap_32(value);
2709 	case 8:
2710 		return bswap_64(value);
2711 	default:
2712 		return 0;
2713 	}
2714 
2715 	return 0;
2716 }
2717 
2718 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2719 		       const char *name)
2720 {
2721 	struct format_field *field = perf_evsel__field(evsel, name);
2722 
2723 	if (!field)
2724 		return 0;
2725 
2726 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2727 }
2728 
2729 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2730 			  char *msg, size_t msgsize)
2731 {
2732 	int paranoid;
2733 
2734 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2735 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2736 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2737 		/*
2738 		 * If it's cycles then fall back to hrtimer based
2739 		 * cpu-clock-tick sw counter, which is always available even if
2740 		 * no PMU support.
2741 		 *
2742 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2743 		 * b0a873e).
2744 		 */
2745 		scnprintf(msg, msgsize, "%s",
2746 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2747 
2748 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2749 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2750 
2751 		zfree(&evsel->name);
2752 		return true;
2753 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2754 		   (paranoid = perf_event_paranoid()) > 1) {
2755 		const char *name = perf_evsel__name(evsel);
2756 		char *new_name;
2757 
2758 		if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2759 			return false;
2760 
2761 		if (evsel->name)
2762 			free(evsel->name);
2763 		evsel->name = new_name;
2764 		scnprintf(msg, msgsize,
2765 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2766 		evsel->attr.exclude_kernel = 1;
2767 
2768 		return true;
2769 	}
2770 
2771 	return false;
2772 }
2773 
2774 static bool find_process(const char *name)
2775 {
2776 	size_t len = strlen(name);
2777 	DIR *dir;
2778 	struct dirent *d;
2779 	int ret = -1;
2780 
2781 	dir = opendir(procfs__mountpoint());
2782 	if (!dir)
2783 		return false;
2784 
2785 	/* Walk through the directory. */
2786 	while (ret && (d = readdir(dir)) != NULL) {
2787 		char path[PATH_MAX];
2788 		char *data;
2789 		size_t size;
2790 
2791 		if ((d->d_type != DT_DIR) ||
2792 		     !strcmp(".", d->d_name) ||
2793 		     !strcmp("..", d->d_name))
2794 			continue;
2795 
2796 		scnprintf(path, sizeof(path), "%s/%s/comm",
2797 			  procfs__mountpoint(), d->d_name);
2798 
2799 		if (filename__read_str(path, &data, &size))
2800 			continue;
2801 
2802 		ret = strncmp(name, data, len);
2803 		free(data);
2804 	}
2805 
2806 	closedir(dir);
2807 	return ret ? false : true;
2808 }
2809 
2810 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2811 			      int err, char *msg, size_t size)
2812 {
2813 	char sbuf[STRERR_BUFSIZE];
2814 	int printed = 0;
2815 
2816 	switch (err) {
2817 	case EPERM:
2818 	case EACCES:
2819 		if (err == EPERM)
2820 			printed = scnprintf(msg, size,
2821 				"No permission to enable %s event.\n\n",
2822 				perf_evsel__name(evsel));
2823 
2824 		return scnprintf(msg + printed, size - printed,
2825 		 "You may not have permission to collect %sstats.\n\n"
2826 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2827 		 "which controls use of the performance events system by\n"
2828 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2829 		 "The current value is %d:\n\n"
2830 		 "  -1: Allow use of (almost) all events by all users\n"
2831 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2832 		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2833 		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2834 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2835 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2836 		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2837 		 "	kernel.perf_event_paranoid = -1\n" ,
2838 				 target->system_wide ? "system-wide " : "",
2839 				 perf_event_paranoid());
2840 	case ENOENT:
2841 		return scnprintf(msg, size, "The %s event is not supported.",
2842 				 perf_evsel__name(evsel));
2843 	case EMFILE:
2844 		return scnprintf(msg, size, "%s",
2845 			 "Too many events are opened.\n"
2846 			 "Probably the maximum number of open file descriptors has been reached.\n"
2847 			 "Hint: Try again after reducing the number of events.\n"
2848 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2849 	case ENOMEM:
2850 		if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2851 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2852 			return scnprintf(msg, size,
2853 					 "Not enough memory to setup event with callchain.\n"
2854 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2855 					 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2856 		break;
2857 	case ENODEV:
2858 		if (target->cpu_list)
2859 			return scnprintf(msg, size, "%s",
2860 	 "No such device - did you specify an out-of-range profile CPU?");
2861 		break;
2862 	case EOPNOTSUPP:
2863 		if (evsel->attr.sample_period != 0)
2864 			return scnprintf(msg, size,
2865 	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2866 					 perf_evsel__name(evsel));
2867 		if (evsel->attr.precise_ip)
2868 			return scnprintf(msg, size, "%s",
2869 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2870 #if defined(__i386__) || defined(__x86_64__)
2871 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2872 			return scnprintf(msg, size, "%s",
2873 	"No hardware sampling interrupt available.\n"
2874 	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2875 #endif
2876 		break;
2877 	case EBUSY:
2878 		if (find_process("oprofiled"))
2879 			return scnprintf(msg, size,
2880 	"The PMU counters are busy/taken by another profiler.\n"
2881 	"We found oprofile daemon running, please stop it and try again.");
2882 		break;
2883 	case EINVAL:
2884 		if (evsel->attr.write_backward && perf_missing_features.write_backward)
2885 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2886 		if (perf_missing_features.clockid)
2887 			return scnprintf(msg, size, "clockid feature not supported.");
2888 		if (perf_missing_features.clockid_wrong)
2889 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2890 		break;
2891 	default:
2892 		break;
2893 	}
2894 
2895 	return scnprintf(msg, size,
2896 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2897 	"/bin/dmesg may provide additional information.\n"
2898 	"No CONFIG_PERF_EVENTS=y kernel support configured?",
2899 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2900 			 perf_evsel__name(evsel));
2901 }
2902 
2903 struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
2904 {
2905 	if (evsel && evsel->evlist)
2906 		return evsel->evlist->env;
2907 	return NULL;
2908 }
2909