xref: /openbmc/linux/tools/perf/util/evsel.c (revision c4a11bf4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
4  *
5  * Parts came from builtin-{top,stat,record}.c, see those files for further
6  * copyright notes.
7  */
8 
9 #include <byteswap.h>
10 #include <errno.h>
11 #include <inttypes.h>
12 #include <linux/bitops.h>
13 #include <api/fs/fs.h>
14 #include <api/fs/tracing_path.h>
15 #include <traceevent/event-parse.h>
16 #include <linux/hw_breakpoint.h>
17 #include <linux/perf_event.h>
18 #include <linux/compiler.h>
19 #include <linux/err.h>
20 #include <linux/zalloc.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include <stdlib.h>
26 #include <perf/evsel.h>
27 #include "asm/bug.h"
28 #include "bpf_counter.h"
29 #include "callchain.h"
30 #include "cgroup.h"
31 #include "counts.h"
32 #include "event.h"
33 #include "evsel.h"
34 #include "util/env.h"
35 #include "util/evsel_config.h"
36 #include "util/evsel_fprintf.h"
37 #include "evlist.h"
38 #include <perf/cpumap.h>
39 #include "thread_map.h"
40 #include "target.h"
41 #include "perf_regs.h"
42 #include "record.h"
43 #include "debug.h"
44 #include "trace-event.h"
45 #include "stat.h"
46 #include "string2.h"
47 #include "memswap.h"
48 #include "util.h"
49 #include "hashmap.h"
50 #include "pmu-hybrid.h"
51 #include "../perf-sys.h"
52 #include "util/parse-branch-options.h"
53 #include <internal/xyarray.h>
54 #include <internal/lib.h>
55 
56 #include <linux/ctype.h>
57 
58 struct perf_missing_features perf_missing_features;
59 
60 static clockid_t clockid;
61 
62 static int evsel__no_extra_init(struct evsel *evsel __maybe_unused)
63 {
64 	return 0;
65 }
66 
67 void __weak test_attr__ready(void) { }
68 
69 static void evsel__no_extra_fini(struct evsel *evsel __maybe_unused)
70 {
71 }
72 
73 static struct {
74 	size_t	size;
75 	int	(*init)(struct evsel *evsel);
76 	void	(*fini)(struct evsel *evsel);
77 } perf_evsel__object = {
78 	.size = sizeof(struct evsel),
79 	.init = evsel__no_extra_init,
80 	.fini = evsel__no_extra_fini,
81 };
82 
83 int evsel__object_config(size_t object_size, int (*init)(struct evsel *evsel),
84 			 void (*fini)(struct evsel *evsel))
85 {
86 
87 	if (object_size == 0)
88 		goto set_methods;
89 
90 	if (perf_evsel__object.size > object_size)
91 		return -EINVAL;
92 
93 	perf_evsel__object.size = object_size;
94 
95 set_methods:
96 	if (init != NULL)
97 		perf_evsel__object.init = init;
98 
99 	if (fini != NULL)
100 		perf_evsel__object.fini = fini;
101 
102 	return 0;
103 }
104 
105 #define FD(e, x, y) (*(int *)xyarray__entry(e->core.fd, x, y))
106 
107 int __evsel__sample_size(u64 sample_type)
108 {
109 	u64 mask = sample_type & PERF_SAMPLE_MASK;
110 	int size = 0;
111 	int i;
112 
113 	for (i = 0; i < 64; i++) {
114 		if (mask & (1ULL << i))
115 			size++;
116 	}
117 
118 	size *= sizeof(u64);
119 
120 	return size;
121 }
122 
123 /**
124  * __perf_evsel__calc_id_pos - calculate id_pos.
125  * @sample_type: sample type
126  *
127  * This function returns the position of the event id (PERF_SAMPLE_ID or
128  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
129  * perf_record_sample.
130  */
131 static int __perf_evsel__calc_id_pos(u64 sample_type)
132 {
133 	int idx = 0;
134 
135 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
136 		return 0;
137 
138 	if (!(sample_type & PERF_SAMPLE_ID))
139 		return -1;
140 
141 	if (sample_type & PERF_SAMPLE_IP)
142 		idx += 1;
143 
144 	if (sample_type & PERF_SAMPLE_TID)
145 		idx += 1;
146 
147 	if (sample_type & PERF_SAMPLE_TIME)
148 		idx += 1;
149 
150 	if (sample_type & PERF_SAMPLE_ADDR)
151 		idx += 1;
152 
153 	return idx;
154 }
155 
156 /**
157  * __perf_evsel__calc_is_pos - calculate is_pos.
158  * @sample_type: sample type
159  *
160  * This function returns the position (counting backwards) of the event id
161  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
162  * sample_id_all is used there is an id sample appended to non-sample events.
163  */
164 static int __perf_evsel__calc_is_pos(u64 sample_type)
165 {
166 	int idx = 1;
167 
168 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
169 		return 1;
170 
171 	if (!(sample_type & PERF_SAMPLE_ID))
172 		return -1;
173 
174 	if (sample_type & PERF_SAMPLE_CPU)
175 		idx += 1;
176 
177 	if (sample_type & PERF_SAMPLE_STREAM_ID)
178 		idx += 1;
179 
180 	return idx;
181 }
182 
183 void evsel__calc_id_pos(struct evsel *evsel)
184 {
185 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->core.attr.sample_type);
186 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->core.attr.sample_type);
187 }
188 
189 void __evsel__set_sample_bit(struct evsel *evsel,
190 				  enum perf_event_sample_format bit)
191 {
192 	if (!(evsel->core.attr.sample_type & bit)) {
193 		evsel->core.attr.sample_type |= bit;
194 		evsel->sample_size += sizeof(u64);
195 		evsel__calc_id_pos(evsel);
196 	}
197 }
198 
199 void __evsel__reset_sample_bit(struct evsel *evsel,
200 				    enum perf_event_sample_format bit)
201 {
202 	if (evsel->core.attr.sample_type & bit) {
203 		evsel->core.attr.sample_type &= ~bit;
204 		evsel->sample_size -= sizeof(u64);
205 		evsel__calc_id_pos(evsel);
206 	}
207 }
208 
209 void evsel__set_sample_id(struct evsel *evsel,
210 			       bool can_sample_identifier)
211 {
212 	if (can_sample_identifier) {
213 		evsel__reset_sample_bit(evsel, ID);
214 		evsel__set_sample_bit(evsel, IDENTIFIER);
215 	} else {
216 		evsel__set_sample_bit(evsel, ID);
217 	}
218 	evsel->core.attr.read_format |= PERF_FORMAT_ID;
219 }
220 
221 /**
222  * evsel__is_function_event - Return whether given evsel is a function
223  * trace event
224  *
225  * @evsel - evsel selector to be tested
226  *
227  * Return %true if event is function trace event
228  */
229 bool evsel__is_function_event(struct evsel *evsel)
230 {
231 #define FUNCTION_EVENT "ftrace:function"
232 
233 	return evsel->name &&
234 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
235 
236 #undef FUNCTION_EVENT
237 }
238 
239 void evsel__init(struct evsel *evsel,
240 		 struct perf_event_attr *attr, int idx)
241 {
242 	perf_evsel__init(&evsel->core, attr, idx);
243 	evsel->tracking	   = !idx;
244 	evsel->unit	   = "";
245 	evsel->scale	   = 1.0;
246 	evsel->max_events  = ULONG_MAX;
247 	evsel->evlist	   = NULL;
248 	evsel->bpf_obj	   = NULL;
249 	evsel->bpf_fd	   = -1;
250 	INIT_LIST_HEAD(&evsel->config_terms);
251 	INIT_LIST_HEAD(&evsel->bpf_counter_list);
252 	perf_evsel__object.init(evsel);
253 	evsel->sample_size = __evsel__sample_size(attr->sample_type);
254 	evsel__calc_id_pos(evsel);
255 	evsel->cmdline_group_boundary = false;
256 	evsel->metric_expr   = NULL;
257 	evsel->metric_name   = NULL;
258 	evsel->metric_events = NULL;
259 	evsel->per_pkg_mask  = NULL;
260 	evsel->collect_stat  = false;
261 	evsel->pmu_name      = NULL;
262 }
263 
264 struct evsel *evsel__new_idx(struct perf_event_attr *attr, int idx)
265 {
266 	struct evsel *evsel = zalloc(perf_evsel__object.size);
267 
268 	if (!evsel)
269 		return NULL;
270 	evsel__init(evsel, attr, idx);
271 
272 	if (evsel__is_bpf_output(evsel)) {
273 		evsel->core.attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
274 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
275 		evsel->core.attr.sample_period = 1;
276 	}
277 
278 	if (evsel__is_clock(evsel)) {
279 		/*
280 		 * The evsel->unit points to static alias->unit
281 		 * so it's ok to use static string in here.
282 		 */
283 		static const char *unit = "msec";
284 
285 		evsel->unit = unit;
286 		evsel->scale = 1e-6;
287 	}
288 
289 	return evsel;
290 }
291 
292 static bool perf_event_can_profile_kernel(void)
293 {
294 	return perf_event_paranoid_check(1);
295 }
296 
297 struct evsel *evsel__new_cycles(bool precise __maybe_unused, __u32 type, __u64 config)
298 {
299 	struct perf_event_attr attr = {
300 		.type	= type,
301 		.config	= config,
302 		.exclude_kernel	= !perf_event_can_profile_kernel(),
303 	};
304 	struct evsel *evsel;
305 
306 	event_attr_init(&attr);
307 
308 	/*
309 	 * Now let the usual logic to set up the perf_event_attr defaults
310 	 * to kick in when we return and before perf_evsel__open() is called.
311 	 */
312 	evsel = evsel__new(&attr);
313 	if (evsel == NULL)
314 		goto out;
315 
316 	arch_evsel__fixup_new_cycles(&evsel->core.attr);
317 
318 	evsel->precise_max = true;
319 
320 	/* use asprintf() because free(evsel) assumes name is allocated */
321 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
322 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
323 		     attr.exclude_kernel ? "u" : "",
324 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
325 		goto error_free;
326 out:
327 	return evsel;
328 error_free:
329 	evsel__delete(evsel);
330 	evsel = NULL;
331 	goto out;
332 }
333 
334 int copy_config_terms(struct list_head *dst, struct list_head *src)
335 {
336 	struct evsel_config_term *pos, *tmp;
337 
338 	list_for_each_entry(pos, src, list) {
339 		tmp = malloc(sizeof(*tmp));
340 		if (tmp == NULL)
341 			return -ENOMEM;
342 
343 		*tmp = *pos;
344 		if (tmp->free_str) {
345 			tmp->val.str = strdup(pos->val.str);
346 			if (tmp->val.str == NULL) {
347 				free(tmp);
348 				return -ENOMEM;
349 			}
350 		}
351 		list_add_tail(&tmp->list, dst);
352 	}
353 	return 0;
354 }
355 
356 static int evsel__copy_config_terms(struct evsel *dst, struct evsel *src)
357 {
358 	return copy_config_terms(&dst->config_terms, &src->config_terms);
359 }
360 
361 /**
362  * evsel__clone - create a new evsel copied from @orig
363  * @orig: original evsel
364  *
365  * The assumption is that @orig is not configured nor opened yet.
366  * So we only care about the attributes that can be set while it's parsed.
367  */
368 struct evsel *evsel__clone(struct evsel *orig)
369 {
370 	struct evsel *evsel;
371 
372 	BUG_ON(orig->core.fd);
373 	BUG_ON(orig->counts);
374 	BUG_ON(orig->priv);
375 	BUG_ON(orig->per_pkg_mask);
376 
377 	/* cannot handle BPF objects for now */
378 	if (orig->bpf_obj)
379 		return NULL;
380 
381 	evsel = evsel__new(&orig->core.attr);
382 	if (evsel == NULL)
383 		return NULL;
384 
385 	evsel->core.cpus = perf_cpu_map__get(orig->core.cpus);
386 	evsel->core.own_cpus = perf_cpu_map__get(orig->core.own_cpus);
387 	evsel->core.threads = perf_thread_map__get(orig->core.threads);
388 	evsel->core.nr_members = orig->core.nr_members;
389 	evsel->core.system_wide = orig->core.system_wide;
390 
391 	if (orig->name) {
392 		evsel->name = strdup(orig->name);
393 		if (evsel->name == NULL)
394 			goto out_err;
395 	}
396 	if (orig->group_name) {
397 		evsel->group_name = strdup(orig->group_name);
398 		if (evsel->group_name == NULL)
399 			goto out_err;
400 	}
401 	if (orig->pmu_name) {
402 		evsel->pmu_name = strdup(orig->pmu_name);
403 		if (evsel->pmu_name == NULL)
404 			goto out_err;
405 	}
406 	if (orig->filter) {
407 		evsel->filter = strdup(orig->filter);
408 		if (evsel->filter == NULL)
409 			goto out_err;
410 	}
411 	if (orig->metric_id) {
412 		evsel->metric_id = strdup(orig->metric_id);
413 		if (evsel->metric_id == NULL)
414 			goto out_err;
415 	}
416 	evsel->cgrp = cgroup__get(orig->cgrp);
417 	evsel->tp_format = orig->tp_format;
418 	evsel->handler = orig->handler;
419 	evsel->core.leader = orig->core.leader;
420 
421 	evsel->max_events = orig->max_events;
422 	evsel->tool_event = orig->tool_event;
423 	evsel->unit = orig->unit;
424 	evsel->scale = orig->scale;
425 	evsel->snapshot = orig->snapshot;
426 	evsel->per_pkg = orig->per_pkg;
427 	evsel->percore = orig->percore;
428 	evsel->precise_max = orig->precise_max;
429 	evsel->use_uncore_alias = orig->use_uncore_alias;
430 	evsel->is_libpfm_event = orig->is_libpfm_event;
431 
432 	evsel->exclude_GH = orig->exclude_GH;
433 	evsel->sample_read = orig->sample_read;
434 	evsel->auto_merge_stats = orig->auto_merge_stats;
435 	evsel->collect_stat = orig->collect_stat;
436 	evsel->weak_group = orig->weak_group;
437 	evsel->use_config_name = orig->use_config_name;
438 
439 	if (evsel__copy_config_terms(evsel, orig) < 0)
440 		goto out_err;
441 
442 	return evsel;
443 
444 out_err:
445 	evsel__delete(evsel);
446 	return NULL;
447 }
448 
449 /*
450  * Returns pointer with encoded error via <linux/err.h> interface.
451  */
452 struct evsel *evsel__newtp_idx(const char *sys, const char *name, int idx)
453 {
454 	struct evsel *evsel = zalloc(perf_evsel__object.size);
455 	int err = -ENOMEM;
456 
457 	if (evsel == NULL) {
458 		goto out_err;
459 	} else {
460 		struct perf_event_attr attr = {
461 			.type	       = PERF_TYPE_TRACEPOINT,
462 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
463 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
464 		};
465 
466 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
467 			goto out_free;
468 
469 		evsel->tp_format = trace_event__tp_format(sys, name);
470 		if (IS_ERR(evsel->tp_format)) {
471 			err = PTR_ERR(evsel->tp_format);
472 			goto out_free;
473 		}
474 
475 		event_attr_init(&attr);
476 		attr.config = evsel->tp_format->id;
477 		attr.sample_period = 1;
478 		evsel__init(evsel, &attr, idx);
479 	}
480 
481 	return evsel;
482 
483 out_free:
484 	zfree(&evsel->name);
485 	free(evsel);
486 out_err:
487 	return ERR_PTR(err);
488 }
489 
490 const char *evsel__hw_names[PERF_COUNT_HW_MAX] = {
491 	"cycles",
492 	"instructions",
493 	"cache-references",
494 	"cache-misses",
495 	"branches",
496 	"branch-misses",
497 	"bus-cycles",
498 	"stalled-cycles-frontend",
499 	"stalled-cycles-backend",
500 	"ref-cycles",
501 };
502 
503 char *evsel__bpf_counter_events;
504 
505 bool evsel__match_bpf_counter_events(const char *name)
506 {
507 	int name_len;
508 	bool match;
509 	char *ptr;
510 
511 	if (!evsel__bpf_counter_events)
512 		return false;
513 
514 	ptr = strstr(evsel__bpf_counter_events, name);
515 	name_len = strlen(name);
516 
517 	/* check name matches a full token in evsel__bpf_counter_events */
518 	match = (ptr != NULL) &&
519 		((ptr == evsel__bpf_counter_events) || (*(ptr - 1) == ',')) &&
520 		((*(ptr + name_len) == ',') || (*(ptr + name_len) == '\0'));
521 
522 	return match;
523 }
524 
525 static const char *__evsel__hw_name(u64 config)
526 {
527 	if (config < PERF_COUNT_HW_MAX && evsel__hw_names[config])
528 		return evsel__hw_names[config];
529 
530 	return "unknown-hardware";
531 }
532 
533 static int evsel__add_modifiers(struct evsel *evsel, char *bf, size_t size)
534 {
535 	int colon = 0, r = 0;
536 	struct perf_event_attr *attr = &evsel->core.attr;
537 	bool exclude_guest_default = false;
538 
539 #define MOD_PRINT(context, mod)	do {					\
540 		if (!attr->exclude_##context) {				\
541 			if (!colon) colon = ++r;			\
542 			r += scnprintf(bf + r, size - r, "%c", mod);	\
543 		} } while(0)
544 
545 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
546 		MOD_PRINT(kernel, 'k');
547 		MOD_PRINT(user, 'u');
548 		MOD_PRINT(hv, 'h');
549 		exclude_guest_default = true;
550 	}
551 
552 	if (attr->precise_ip) {
553 		if (!colon)
554 			colon = ++r;
555 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
556 		exclude_guest_default = true;
557 	}
558 
559 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
560 		MOD_PRINT(host, 'H');
561 		MOD_PRINT(guest, 'G');
562 	}
563 #undef MOD_PRINT
564 	if (colon)
565 		bf[colon - 1] = ':';
566 	return r;
567 }
568 
569 static int evsel__hw_name(struct evsel *evsel, char *bf, size_t size)
570 {
571 	int r = scnprintf(bf, size, "%s", __evsel__hw_name(evsel->core.attr.config));
572 	return r + evsel__add_modifiers(evsel, bf + r, size - r);
573 }
574 
575 const char *evsel__sw_names[PERF_COUNT_SW_MAX] = {
576 	"cpu-clock",
577 	"task-clock",
578 	"page-faults",
579 	"context-switches",
580 	"cpu-migrations",
581 	"minor-faults",
582 	"major-faults",
583 	"alignment-faults",
584 	"emulation-faults",
585 	"dummy",
586 };
587 
588 static const char *__evsel__sw_name(u64 config)
589 {
590 	if (config < PERF_COUNT_SW_MAX && evsel__sw_names[config])
591 		return evsel__sw_names[config];
592 	return "unknown-software";
593 }
594 
595 static int evsel__sw_name(struct evsel *evsel, char *bf, size_t size)
596 {
597 	int r = scnprintf(bf, size, "%s", __evsel__sw_name(evsel->core.attr.config));
598 	return r + evsel__add_modifiers(evsel, bf + r, size - r);
599 }
600 
601 static int __evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
602 {
603 	int r;
604 
605 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
606 
607 	if (type & HW_BREAKPOINT_R)
608 		r += scnprintf(bf + r, size - r, "r");
609 
610 	if (type & HW_BREAKPOINT_W)
611 		r += scnprintf(bf + r, size - r, "w");
612 
613 	if (type & HW_BREAKPOINT_X)
614 		r += scnprintf(bf + r, size - r, "x");
615 
616 	return r;
617 }
618 
619 static int evsel__bp_name(struct evsel *evsel, char *bf, size_t size)
620 {
621 	struct perf_event_attr *attr = &evsel->core.attr;
622 	int r = __evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
623 	return r + evsel__add_modifiers(evsel, bf + r, size - r);
624 }
625 
626 const char *evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX][EVSEL__MAX_ALIASES] = {
627  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
628  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
629  { "LLC",	"L2",							},
630  { "dTLB",	"d-tlb",	"Data-TLB",				},
631  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
632  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
633  { "node",								},
634 };
635 
636 const char *evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX][EVSEL__MAX_ALIASES] = {
637  { "load",	"loads",	"read",					},
638  { "store",	"stores",	"write",				},
639  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
640 };
641 
642 const char *evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX][EVSEL__MAX_ALIASES] = {
643  { "refs",	"Reference",	"ops",		"access",		},
644  { "misses",	"miss",							},
645 };
646 
647 #define C(x)		PERF_COUNT_HW_CACHE_##x
648 #define CACHE_READ	(1 << C(OP_READ))
649 #define CACHE_WRITE	(1 << C(OP_WRITE))
650 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
651 #define COP(x)		(1 << x)
652 
653 /*
654  * cache operation stat
655  * L1I : Read and prefetch only
656  * ITLB and BPU : Read-only
657  */
658 static unsigned long evsel__hw_cache_stat[C(MAX)] = {
659  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
660  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
661  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
662  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
663  [C(ITLB)]	= (CACHE_READ),
664  [C(BPU)]	= (CACHE_READ),
665  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
666 };
667 
668 bool evsel__is_cache_op_valid(u8 type, u8 op)
669 {
670 	if (evsel__hw_cache_stat[type] & COP(op))
671 		return true;	/* valid */
672 	else
673 		return false;	/* invalid */
674 }
675 
676 int __evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, char *bf, size_t size)
677 {
678 	if (result) {
679 		return scnprintf(bf, size, "%s-%s-%s", evsel__hw_cache[type][0],
680 				 evsel__hw_cache_op[op][0],
681 				 evsel__hw_cache_result[result][0]);
682 	}
683 
684 	return scnprintf(bf, size, "%s-%s", evsel__hw_cache[type][0],
685 			 evsel__hw_cache_op[op][1]);
686 }
687 
688 static int __evsel__hw_cache_name(u64 config, char *bf, size_t size)
689 {
690 	u8 op, result, type = (config >>  0) & 0xff;
691 	const char *err = "unknown-ext-hardware-cache-type";
692 
693 	if (type >= PERF_COUNT_HW_CACHE_MAX)
694 		goto out_err;
695 
696 	op = (config >>  8) & 0xff;
697 	err = "unknown-ext-hardware-cache-op";
698 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
699 		goto out_err;
700 
701 	result = (config >> 16) & 0xff;
702 	err = "unknown-ext-hardware-cache-result";
703 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
704 		goto out_err;
705 
706 	err = "invalid-cache";
707 	if (!evsel__is_cache_op_valid(type, op))
708 		goto out_err;
709 
710 	return __evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
711 out_err:
712 	return scnprintf(bf, size, "%s", err);
713 }
714 
715 static int evsel__hw_cache_name(struct evsel *evsel, char *bf, size_t size)
716 {
717 	int ret = __evsel__hw_cache_name(evsel->core.attr.config, bf, size);
718 	return ret + evsel__add_modifiers(evsel, bf + ret, size - ret);
719 }
720 
721 static int evsel__raw_name(struct evsel *evsel, char *bf, size_t size)
722 {
723 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->core.attr.config);
724 	return ret + evsel__add_modifiers(evsel, bf + ret, size - ret);
725 }
726 
727 static int evsel__tool_name(char *bf, size_t size)
728 {
729 	int ret = scnprintf(bf, size, "duration_time");
730 	return ret;
731 }
732 
733 const char *evsel__name(struct evsel *evsel)
734 {
735 	char bf[128];
736 
737 	if (!evsel)
738 		goto out_unknown;
739 
740 	if (evsel->name)
741 		return evsel->name;
742 
743 	switch (evsel->core.attr.type) {
744 	case PERF_TYPE_RAW:
745 		evsel__raw_name(evsel, bf, sizeof(bf));
746 		break;
747 
748 	case PERF_TYPE_HARDWARE:
749 		evsel__hw_name(evsel, bf, sizeof(bf));
750 		break;
751 
752 	case PERF_TYPE_HW_CACHE:
753 		evsel__hw_cache_name(evsel, bf, sizeof(bf));
754 		break;
755 
756 	case PERF_TYPE_SOFTWARE:
757 		if (evsel->tool_event)
758 			evsel__tool_name(bf, sizeof(bf));
759 		else
760 			evsel__sw_name(evsel, bf, sizeof(bf));
761 		break;
762 
763 	case PERF_TYPE_TRACEPOINT:
764 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
765 		break;
766 
767 	case PERF_TYPE_BREAKPOINT:
768 		evsel__bp_name(evsel, bf, sizeof(bf));
769 		break;
770 
771 	default:
772 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
773 			  evsel->core.attr.type);
774 		break;
775 	}
776 
777 	evsel->name = strdup(bf);
778 
779 	if (evsel->name)
780 		return evsel->name;
781 out_unknown:
782 	return "unknown";
783 }
784 
785 const char *evsel__metric_id(const struct evsel *evsel)
786 {
787 	if (evsel->metric_id)
788 		return evsel->metric_id;
789 
790 	if (evsel->core.attr.type == PERF_TYPE_SOFTWARE && evsel->tool_event)
791 		return "duration_time";
792 
793 	return "unknown";
794 }
795 
796 const char *evsel__group_name(struct evsel *evsel)
797 {
798 	return evsel->group_name ?: "anon group";
799 }
800 
801 /*
802  * Returns the group details for the specified leader,
803  * with following rules.
804  *
805  *  For record -e '{cycles,instructions}'
806  *    'anon group { cycles:u, instructions:u }'
807  *
808  *  For record -e 'cycles,instructions' and report --group
809  *    'cycles:u, instructions:u'
810  */
811 int evsel__group_desc(struct evsel *evsel, char *buf, size_t size)
812 {
813 	int ret = 0;
814 	struct evsel *pos;
815 	const char *group_name = evsel__group_name(evsel);
816 
817 	if (!evsel->forced_leader)
818 		ret = scnprintf(buf, size, "%s { ", group_name);
819 
820 	ret += scnprintf(buf + ret, size - ret, "%s", evsel__name(evsel));
821 
822 	for_each_group_member(pos, evsel)
823 		ret += scnprintf(buf + ret, size - ret, ", %s", evsel__name(pos));
824 
825 	if (!evsel->forced_leader)
826 		ret += scnprintf(buf + ret, size - ret, " }");
827 
828 	return ret;
829 }
830 
831 static void __evsel__config_callchain(struct evsel *evsel, struct record_opts *opts,
832 				      struct callchain_param *param)
833 {
834 	bool function = evsel__is_function_event(evsel);
835 	struct perf_event_attr *attr = &evsel->core.attr;
836 
837 	evsel__set_sample_bit(evsel, CALLCHAIN);
838 
839 	attr->sample_max_stack = param->max_stack;
840 
841 	if (opts->kernel_callchains)
842 		attr->exclude_callchain_user = 1;
843 	if (opts->user_callchains)
844 		attr->exclude_callchain_kernel = 1;
845 	if (param->record_mode == CALLCHAIN_LBR) {
846 		if (!opts->branch_stack) {
847 			if (attr->exclude_user) {
848 				pr_warning("LBR callstack option is only available "
849 					   "to get user callchain information. "
850 					   "Falling back to framepointers.\n");
851 			} else {
852 				evsel__set_sample_bit(evsel, BRANCH_STACK);
853 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
854 							PERF_SAMPLE_BRANCH_CALL_STACK |
855 							PERF_SAMPLE_BRANCH_NO_CYCLES |
856 							PERF_SAMPLE_BRANCH_NO_FLAGS |
857 							PERF_SAMPLE_BRANCH_HW_INDEX;
858 			}
859 		} else
860 			 pr_warning("Cannot use LBR callstack with branch stack. "
861 				    "Falling back to framepointers.\n");
862 	}
863 
864 	if (param->record_mode == CALLCHAIN_DWARF) {
865 		if (!function) {
866 			evsel__set_sample_bit(evsel, REGS_USER);
867 			evsel__set_sample_bit(evsel, STACK_USER);
868 			if (opts->sample_user_regs && DWARF_MINIMAL_REGS != PERF_REGS_MASK) {
869 				attr->sample_regs_user |= DWARF_MINIMAL_REGS;
870 				pr_warning("WARNING: The use of --call-graph=dwarf may require all the user registers, "
871 					   "specifying a subset with --user-regs may render DWARF unwinding unreliable, "
872 					   "so the minimal registers set (IP, SP) is explicitly forced.\n");
873 			} else {
874 				attr->sample_regs_user |= PERF_REGS_MASK;
875 			}
876 			attr->sample_stack_user = param->dump_size;
877 			attr->exclude_callchain_user = 1;
878 		} else {
879 			pr_info("Cannot use DWARF unwind for function trace event,"
880 				" falling back to framepointers.\n");
881 		}
882 	}
883 
884 	if (function) {
885 		pr_info("Disabling user space callchains for function trace event.\n");
886 		attr->exclude_callchain_user = 1;
887 	}
888 }
889 
890 void evsel__config_callchain(struct evsel *evsel, struct record_opts *opts,
891 			     struct callchain_param *param)
892 {
893 	if (param->enabled)
894 		return __evsel__config_callchain(evsel, opts, param);
895 }
896 
897 static void evsel__reset_callgraph(struct evsel *evsel, struct callchain_param *param)
898 {
899 	struct perf_event_attr *attr = &evsel->core.attr;
900 
901 	evsel__reset_sample_bit(evsel, CALLCHAIN);
902 	if (param->record_mode == CALLCHAIN_LBR) {
903 		evsel__reset_sample_bit(evsel, BRANCH_STACK);
904 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
905 					      PERF_SAMPLE_BRANCH_CALL_STACK |
906 					      PERF_SAMPLE_BRANCH_HW_INDEX);
907 	}
908 	if (param->record_mode == CALLCHAIN_DWARF) {
909 		evsel__reset_sample_bit(evsel, REGS_USER);
910 		evsel__reset_sample_bit(evsel, STACK_USER);
911 	}
912 }
913 
914 static void evsel__apply_config_terms(struct evsel *evsel,
915 				      struct record_opts *opts, bool track)
916 {
917 	struct evsel_config_term *term;
918 	struct list_head *config_terms = &evsel->config_terms;
919 	struct perf_event_attr *attr = &evsel->core.attr;
920 	/* callgraph default */
921 	struct callchain_param param = {
922 		.record_mode = callchain_param.record_mode,
923 	};
924 	u32 dump_size = 0;
925 	int max_stack = 0;
926 	const char *callgraph_buf = NULL;
927 
928 	list_for_each_entry(term, config_terms, list) {
929 		switch (term->type) {
930 		case EVSEL__CONFIG_TERM_PERIOD:
931 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
932 				attr->sample_period = term->val.period;
933 				attr->freq = 0;
934 				evsel__reset_sample_bit(evsel, PERIOD);
935 			}
936 			break;
937 		case EVSEL__CONFIG_TERM_FREQ:
938 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
939 				attr->sample_freq = term->val.freq;
940 				attr->freq = 1;
941 				evsel__set_sample_bit(evsel, PERIOD);
942 			}
943 			break;
944 		case EVSEL__CONFIG_TERM_TIME:
945 			if (term->val.time)
946 				evsel__set_sample_bit(evsel, TIME);
947 			else
948 				evsel__reset_sample_bit(evsel, TIME);
949 			break;
950 		case EVSEL__CONFIG_TERM_CALLGRAPH:
951 			callgraph_buf = term->val.str;
952 			break;
953 		case EVSEL__CONFIG_TERM_BRANCH:
954 			if (term->val.str && strcmp(term->val.str, "no")) {
955 				evsel__set_sample_bit(evsel, BRANCH_STACK);
956 				parse_branch_str(term->val.str,
957 						 &attr->branch_sample_type);
958 			} else
959 				evsel__reset_sample_bit(evsel, BRANCH_STACK);
960 			break;
961 		case EVSEL__CONFIG_TERM_STACK_USER:
962 			dump_size = term->val.stack_user;
963 			break;
964 		case EVSEL__CONFIG_TERM_MAX_STACK:
965 			max_stack = term->val.max_stack;
966 			break;
967 		case EVSEL__CONFIG_TERM_MAX_EVENTS:
968 			evsel->max_events = term->val.max_events;
969 			break;
970 		case EVSEL__CONFIG_TERM_INHERIT:
971 			/*
972 			 * attr->inherit should has already been set by
973 			 * evsel__config. If user explicitly set
974 			 * inherit using config terms, override global
975 			 * opt->no_inherit setting.
976 			 */
977 			attr->inherit = term->val.inherit ? 1 : 0;
978 			break;
979 		case EVSEL__CONFIG_TERM_OVERWRITE:
980 			attr->write_backward = term->val.overwrite ? 1 : 0;
981 			break;
982 		case EVSEL__CONFIG_TERM_DRV_CFG:
983 			break;
984 		case EVSEL__CONFIG_TERM_PERCORE:
985 			break;
986 		case EVSEL__CONFIG_TERM_AUX_OUTPUT:
987 			attr->aux_output = term->val.aux_output ? 1 : 0;
988 			break;
989 		case EVSEL__CONFIG_TERM_AUX_SAMPLE_SIZE:
990 			/* Already applied by auxtrace */
991 			break;
992 		case EVSEL__CONFIG_TERM_CFG_CHG:
993 			break;
994 		default:
995 			break;
996 		}
997 	}
998 
999 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
1000 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
1001 		bool sample_address = false;
1002 
1003 		if (max_stack) {
1004 			param.max_stack = max_stack;
1005 			if (callgraph_buf == NULL)
1006 				callgraph_buf = "fp";
1007 		}
1008 
1009 		/* parse callgraph parameters */
1010 		if (callgraph_buf != NULL) {
1011 			if (!strcmp(callgraph_buf, "no")) {
1012 				param.enabled = false;
1013 				param.record_mode = CALLCHAIN_NONE;
1014 			} else {
1015 				param.enabled = true;
1016 				if (parse_callchain_record(callgraph_buf, &param)) {
1017 					pr_err("per-event callgraph setting for %s failed. "
1018 					       "Apply callgraph global setting for it\n",
1019 					       evsel->name);
1020 					return;
1021 				}
1022 				if (param.record_mode == CALLCHAIN_DWARF)
1023 					sample_address = true;
1024 			}
1025 		}
1026 		if (dump_size > 0) {
1027 			dump_size = round_up(dump_size, sizeof(u64));
1028 			param.dump_size = dump_size;
1029 		}
1030 
1031 		/* If global callgraph set, clear it */
1032 		if (callchain_param.enabled)
1033 			evsel__reset_callgraph(evsel, &callchain_param);
1034 
1035 		/* set perf-event callgraph */
1036 		if (param.enabled) {
1037 			if (sample_address) {
1038 				evsel__set_sample_bit(evsel, ADDR);
1039 				evsel__set_sample_bit(evsel, DATA_SRC);
1040 				evsel->core.attr.mmap_data = track;
1041 			}
1042 			evsel__config_callchain(evsel, opts, &param);
1043 		}
1044 	}
1045 }
1046 
1047 struct evsel_config_term *__evsel__get_config_term(struct evsel *evsel, enum evsel_term_type type)
1048 {
1049 	struct evsel_config_term *term, *found_term = NULL;
1050 
1051 	list_for_each_entry(term, &evsel->config_terms, list) {
1052 		if (term->type == type)
1053 			found_term = term;
1054 	}
1055 
1056 	return found_term;
1057 }
1058 
1059 void __weak arch_evsel__set_sample_weight(struct evsel *evsel)
1060 {
1061 	evsel__set_sample_bit(evsel, WEIGHT);
1062 }
1063 
1064 void __weak arch_evsel__fixup_new_cycles(struct perf_event_attr *attr __maybe_unused)
1065 {
1066 }
1067 
1068 /*
1069  * The enable_on_exec/disabled value strategy:
1070  *
1071  *  1) For any type of traced program:
1072  *    - all independent events and group leaders are disabled
1073  *    - all group members are enabled
1074  *
1075  *     Group members are ruled by group leaders. They need to
1076  *     be enabled, because the group scheduling relies on that.
1077  *
1078  *  2) For traced programs executed by perf:
1079  *     - all independent events and group leaders have
1080  *       enable_on_exec set
1081  *     - we don't specifically enable or disable any event during
1082  *       the record command
1083  *
1084  *     Independent events and group leaders are initially disabled
1085  *     and get enabled by exec. Group members are ruled by group
1086  *     leaders as stated in 1).
1087  *
1088  *  3) For traced programs attached by perf (pid/tid):
1089  *     - we specifically enable or disable all events during
1090  *       the record command
1091  *
1092  *     When attaching events to already running traced we
1093  *     enable/disable events specifically, as there's no
1094  *     initial traced exec call.
1095  */
1096 void evsel__config(struct evsel *evsel, struct record_opts *opts,
1097 		   struct callchain_param *callchain)
1098 {
1099 	struct evsel *leader = evsel__leader(evsel);
1100 	struct perf_event_attr *attr = &evsel->core.attr;
1101 	int track = evsel->tracking;
1102 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
1103 
1104 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
1105 	attr->inherit	    = !opts->no_inherit;
1106 	attr->write_backward = opts->overwrite ? 1 : 0;
1107 
1108 	evsel__set_sample_bit(evsel, IP);
1109 	evsel__set_sample_bit(evsel, TID);
1110 
1111 	if (evsel->sample_read) {
1112 		evsel__set_sample_bit(evsel, READ);
1113 
1114 		/*
1115 		 * We need ID even in case of single event, because
1116 		 * PERF_SAMPLE_READ process ID specific data.
1117 		 */
1118 		evsel__set_sample_id(evsel, false);
1119 
1120 		/*
1121 		 * Apply group format only if we belong to group
1122 		 * with more than one members.
1123 		 */
1124 		if (leader->core.nr_members > 1) {
1125 			attr->read_format |= PERF_FORMAT_GROUP;
1126 			attr->inherit = 0;
1127 		}
1128 	}
1129 
1130 	/*
1131 	 * We default some events to have a default interval. But keep
1132 	 * it a weak assumption overridable by the user.
1133 	 */
1134 	if (!attr->sample_period) {
1135 		if (opts->freq) {
1136 			attr->freq		= 1;
1137 			attr->sample_freq	= opts->freq;
1138 		} else {
1139 			attr->sample_period = opts->default_interval;
1140 		}
1141 	}
1142 	/*
1143 	 * If attr->freq was set (here or earlier), ask for period
1144 	 * to be sampled.
1145 	 */
1146 	if (attr->freq)
1147 		evsel__set_sample_bit(evsel, PERIOD);
1148 
1149 	if (opts->no_samples)
1150 		attr->sample_freq = 0;
1151 
1152 	if (opts->inherit_stat) {
1153 		evsel->core.attr.read_format |=
1154 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1155 			PERF_FORMAT_TOTAL_TIME_RUNNING |
1156 			PERF_FORMAT_ID;
1157 		attr->inherit_stat = 1;
1158 	}
1159 
1160 	if (opts->sample_address) {
1161 		evsel__set_sample_bit(evsel, ADDR);
1162 		attr->mmap_data = track;
1163 	}
1164 
1165 	/*
1166 	 * We don't allow user space callchains for  function trace
1167 	 * event, due to issues with page faults while tracing page
1168 	 * fault handler and its overall trickiness nature.
1169 	 */
1170 	if (evsel__is_function_event(evsel))
1171 		evsel->core.attr.exclude_callchain_user = 1;
1172 
1173 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
1174 		evsel__config_callchain(evsel, opts, callchain);
1175 
1176 	if (opts->sample_intr_regs && !evsel->no_aux_samples &&
1177 	    !evsel__is_dummy_event(evsel)) {
1178 		attr->sample_regs_intr = opts->sample_intr_regs;
1179 		evsel__set_sample_bit(evsel, REGS_INTR);
1180 	}
1181 
1182 	if (opts->sample_user_regs && !evsel->no_aux_samples &&
1183 	    !evsel__is_dummy_event(evsel)) {
1184 		attr->sample_regs_user |= opts->sample_user_regs;
1185 		evsel__set_sample_bit(evsel, REGS_USER);
1186 	}
1187 
1188 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
1189 		evsel__set_sample_bit(evsel, CPU);
1190 
1191 	/*
1192 	 * When the user explicitly disabled time don't force it here.
1193 	 */
1194 	if (opts->sample_time &&
1195 	    (!perf_missing_features.sample_id_all &&
1196 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1197 	     opts->sample_time_set)))
1198 		evsel__set_sample_bit(evsel, TIME);
1199 
1200 	if (opts->raw_samples && !evsel->no_aux_samples) {
1201 		evsel__set_sample_bit(evsel, TIME);
1202 		evsel__set_sample_bit(evsel, RAW);
1203 		evsel__set_sample_bit(evsel, CPU);
1204 	}
1205 
1206 	if (opts->sample_address)
1207 		evsel__set_sample_bit(evsel, DATA_SRC);
1208 
1209 	if (opts->sample_phys_addr)
1210 		evsel__set_sample_bit(evsel, PHYS_ADDR);
1211 
1212 	if (opts->no_buffering) {
1213 		attr->watermark = 0;
1214 		attr->wakeup_events = 1;
1215 	}
1216 	if (opts->branch_stack && !evsel->no_aux_samples) {
1217 		evsel__set_sample_bit(evsel, BRANCH_STACK);
1218 		attr->branch_sample_type = opts->branch_stack;
1219 	}
1220 
1221 	if (opts->sample_weight)
1222 		arch_evsel__set_sample_weight(evsel);
1223 
1224 	attr->task     = track;
1225 	attr->mmap     = track;
1226 	attr->mmap2    = track && !perf_missing_features.mmap2;
1227 	attr->comm     = track;
1228 	attr->build_id = track && opts->build_id;
1229 
1230 	/*
1231 	 * ksymbol is tracked separately with text poke because it needs to be
1232 	 * system wide and enabled immediately.
1233 	 */
1234 	if (!opts->text_poke)
1235 		attr->ksymbol = track && !perf_missing_features.ksymbol;
1236 	attr->bpf_event = track && !opts->no_bpf_event && !perf_missing_features.bpf;
1237 
1238 	if (opts->record_namespaces)
1239 		attr->namespaces  = track;
1240 
1241 	if (opts->record_cgroup) {
1242 		attr->cgroup = track && !perf_missing_features.cgroup;
1243 		evsel__set_sample_bit(evsel, CGROUP);
1244 	}
1245 
1246 	if (opts->sample_data_page_size)
1247 		evsel__set_sample_bit(evsel, DATA_PAGE_SIZE);
1248 
1249 	if (opts->sample_code_page_size)
1250 		evsel__set_sample_bit(evsel, CODE_PAGE_SIZE);
1251 
1252 	if (opts->record_switch_events)
1253 		attr->context_switch = track;
1254 
1255 	if (opts->sample_transaction)
1256 		evsel__set_sample_bit(evsel, TRANSACTION);
1257 
1258 	if (opts->running_time) {
1259 		evsel->core.attr.read_format |=
1260 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1261 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1262 	}
1263 
1264 	/*
1265 	 * XXX see the function comment above
1266 	 *
1267 	 * Disabling only independent events or group leaders,
1268 	 * keeping group members enabled.
1269 	 */
1270 	if (evsel__is_group_leader(evsel))
1271 		attr->disabled = 1;
1272 
1273 	/*
1274 	 * Setting enable_on_exec for independent events and
1275 	 * group leaders for traced executed by perf.
1276 	 */
1277 	if (target__none(&opts->target) && evsel__is_group_leader(evsel) &&
1278 	    !opts->initial_delay)
1279 		attr->enable_on_exec = 1;
1280 
1281 	if (evsel->immediate) {
1282 		attr->disabled = 0;
1283 		attr->enable_on_exec = 0;
1284 	}
1285 
1286 	clockid = opts->clockid;
1287 	if (opts->use_clockid) {
1288 		attr->use_clockid = 1;
1289 		attr->clockid = opts->clockid;
1290 	}
1291 
1292 	if (evsel->precise_max)
1293 		attr->precise_ip = 3;
1294 
1295 	if (opts->all_user) {
1296 		attr->exclude_kernel = 1;
1297 		attr->exclude_user   = 0;
1298 	}
1299 
1300 	if (opts->all_kernel) {
1301 		attr->exclude_kernel = 0;
1302 		attr->exclude_user   = 1;
1303 	}
1304 
1305 	if (evsel->core.own_cpus || evsel->unit)
1306 		evsel->core.attr.read_format |= PERF_FORMAT_ID;
1307 
1308 	/*
1309 	 * Apply event specific term settings,
1310 	 * it overloads any global configuration.
1311 	 */
1312 	evsel__apply_config_terms(evsel, opts, track);
1313 
1314 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1315 
1316 	/* The --period option takes the precedence. */
1317 	if (opts->period_set) {
1318 		if (opts->period)
1319 			evsel__set_sample_bit(evsel, PERIOD);
1320 		else
1321 			evsel__reset_sample_bit(evsel, PERIOD);
1322 	}
1323 
1324 	/*
1325 	 * A dummy event never triggers any actual counter and therefore
1326 	 * cannot be used with branch_stack.
1327 	 *
1328 	 * For initial_delay, a dummy event is added implicitly.
1329 	 * The software event will trigger -EOPNOTSUPP error out,
1330 	 * if BRANCH_STACK bit is set.
1331 	 */
1332 	if (evsel__is_dummy_event(evsel))
1333 		evsel__reset_sample_bit(evsel, BRANCH_STACK);
1334 }
1335 
1336 int evsel__set_filter(struct evsel *evsel, const char *filter)
1337 {
1338 	char *new_filter = strdup(filter);
1339 
1340 	if (new_filter != NULL) {
1341 		free(evsel->filter);
1342 		evsel->filter = new_filter;
1343 		return 0;
1344 	}
1345 
1346 	return -1;
1347 }
1348 
1349 static int evsel__append_filter(struct evsel *evsel, const char *fmt, const char *filter)
1350 {
1351 	char *new_filter;
1352 
1353 	if (evsel->filter == NULL)
1354 		return evsel__set_filter(evsel, filter);
1355 
1356 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1357 		free(evsel->filter);
1358 		evsel->filter = new_filter;
1359 		return 0;
1360 	}
1361 
1362 	return -1;
1363 }
1364 
1365 int evsel__append_tp_filter(struct evsel *evsel, const char *filter)
1366 {
1367 	return evsel__append_filter(evsel, "(%s) && (%s)", filter);
1368 }
1369 
1370 int evsel__append_addr_filter(struct evsel *evsel, const char *filter)
1371 {
1372 	return evsel__append_filter(evsel, "%s,%s", filter);
1373 }
1374 
1375 /* Caller has to clear disabled after going through all CPUs. */
1376 int evsel__enable_cpu(struct evsel *evsel, int cpu)
1377 {
1378 	return perf_evsel__enable_cpu(&evsel->core, cpu);
1379 }
1380 
1381 int evsel__enable(struct evsel *evsel)
1382 {
1383 	int err = perf_evsel__enable(&evsel->core);
1384 
1385 	if (!err)
1386 		evsel->disabled = false;
1387 	return err;
1388 }
1389 
1390 /* Caller has to set disabled after going through all CPUs. */
1391 int evsel__disable_cpu(struct evsel *evsel, int cpu)
1392 {
1393 	return perf_evsel__disable_cpu(&evsel->core, cpu);
1394 }
1395 
1396 int evsel__disable(struct evsel *evsel)
1397 {
1398 	int err = perf_evsel__disable(&evsel->core);
1399 	/*
1400 	 * We mark it disabled here so that tools that disable a event can
1401 	 * ignore events after they disable it. I.e. the ring buffer may have
1402 	 * already a few more events queued up before the kernel got the stop
1403 	 * request.
1404 	 */
1405 	if (!err)
1406 		evsel->disabled = true;
1407 
1408 	return err;
1409 }
1410 
1411 void free_config_terms(struct list_head *config_terms)
1412 {
1413 	struct evsel_config_term *term, *h;
1414 
1415 	list_for_each_entry_safe(term, h, config_terms, list) {
1416 		list_del_init(&term->list);
1417 		if (term->free_str)
1418 			zfree(&term->val.str);
1419 		free(term);
1420 	}
1421 }
1422 
1423 static void evsel__free_config_terms(struct evsel *evsel)
1424 {
1425 	free_config_terms(&evsel->config_terms);
1426 }
1427 
1428 void evsel__exit(struct evsel *evsel)
1429 {
1430 	assert(list_empty(&evsel->core.node));
1431 	assert(evsel->evlist == NULL);
1432 	bpf_counter__destroy(evsel);
1433 	evsel__free_counts(evsel);
1434 	perf_evsel__free_fd(&evsel->core);
1435 	perf_evsel__free_id(&evsel->core);
1436 	evsel__free_config_terms(evsel);
1437 	cgroup__put(evsel->cgrp);
1438 	perf_cpu_map__put(evsel->core.cpus);
1439 	perf_cpu_map__put(evsel->core.own_cpus);
1440 	perf_thread_map__put(evsel->core.threads);
1441 	zfree(&evsel->group_name);
1442 	zfree(&evsel->name);
1443 	zfree(&evsel->pmu_name);
1444 	zfree(&evsel->metric_id);
1445 	evsel__zero_per_pkg(evsel);
1446 	hashmap__free(evsel->per_pkg_mask);
1447 	evsel->per_pkg_mask = NULL;
1448 	zfree(&evsel->metric_events);
1449 	perf_evsel__object.fini(evsel);
1450 }
1451 
1452 void evsel__delete(struct evsel *evsel)
1453 {
1454 	evsel__exit(evsel);
1455 	free(evsel);
1456 }
1457 
1458 void evsel__compute_deltas(struct evsel *evsel, int cpu, int thread,
1459 			   struct perf_counts_values *count)
1460 {
1461 	struct perf_counts_values tmp;
1462 
1463 	if (!evsel->prev_raw_counts)
1464 		return;
1465 
1466 	if (cpu == -1) {
1467 		tmp = evsel->prev_raw_counts->aggr;
1468 		evsel->prev_raw_counts->aggr = *count;
1469 	} else {
1470 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1471 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1472 	}
1473 
1474 	count->val = count->val - tmp.val;
1475 	count->ena = count->ena - tmp.ena;
1476 	count->run = count->run - tmp.run;
1477 }
1478 
1479 void perf_counts_values__scale(struct perf_counts_values *count,
1480 			       bool scale, s8 *pscaled)
1481 {
1482 	s8 scaled = 0;
1483 
1484 	if (scale) {
1485 		if (count->run == 0) {
1486 			scaled = -1;
1487 			count->val = 0;
1488 		} else if (count->run < count->ena) {
1489 			scaled = 1;
1490 			count->val = (u64)((double) count->val * count->ena / count->run);
1491 		}
1492 	}
1493 
1494 	if (pscaled)
1495 		*pscaled = scaled;
1496 }
1497 
1498 static int evsel__read_one(struct evsel *evsel, int cpu, int thread)
1499 {
1500 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1501 
1502 	return perf_evsel__read(&evsel->core, cpu, thread, count);
1503 }
1504 
1505 static void evsel__set_count(struct evsel *counter, int cpu, int thread, u64 val, u64 ena, u64 run)
1506 {
1507 	struct perf_counts_values *count;
1508 
1509 	count = perf_counts(counter->counts, cpu, thread);
1510 
1511 	count->val    = val;
1512 	count->ena    = ena;
1513 	count->run    = run;
1514 
1515 	perf_counts__set_loaded(counter->counts, cpu, thread, true);
1516 }
1517 
1518 static int evsel__process_group_data(struct evsel *leader, int cpu, int thread, u64 *data)
1519 {
1520 	u64 read_format = leader->core.attr.read_format;
1521 	struct sample_read_value *v;
1522 	u64 nr, ena = 0, run = 0, i;
1523 
1524 	nr = *data++;
1525 
1526 	if (nr != (u64) leader->core.nr_members)
1527 		return -EINVAL;
1528 
1529 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1530 		ena = *data++;
1531 
1532 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1533 		run = *data++;
1534 
1535 	v = (struct sample_read_value *) data;
1536 
1537 	evsel__set_count(leader, cpu, thread, v[0].value, ena, run);
1538 
1539 	for (i = 1; i < nr; i++) {
1540 		struct evsel *counter;
1541 
1542 		counter = evlist__id2evsel(leader->evlist, v[i].id);
1543 		if (!counter)
1544 			return -EINVAL;
1545 
1546 		evsel__set_count(counter, cpu, thread, v[i].value, ena, run);
1547 	}
1548 
1549 	return 0;
1550 }
1551 
1552 static int evsel__read_group(struct evsel *leader, int cpu, int thread)
1553 {
1554 	struct perf_stat_evsel *ps = leader->stats;
1555 	u64 read_format = leader->core.attr.read_format;
1556 	int size = perf_evsel__read_size(&leader->core);
1557 	u64 *data = ps->group_data;
1558 
1559 	if (!(read_format & PERF_FORMAT_ID))
1560 		return -EINVAL;
1561 
1562 	if (!evsel__is_group_leader(leader))
1563 		return -EINVAL;
1564 
1565 	if (!data) {
1566 		data = zalloc(size);
1567 		if (!data)
1568 			return -ENOMEM;
1569 
1570 		ps->group_data = data;
1571 	}
1572 
1573 	if (FD(leader, cpu, thread) < 0)
1574 		return -EINVAL;
1575 
1576 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1577 		return -errno;
1578 
1579 	return evsel__process_group_data(leader, cpu, thread, data);
1580 }
1581 
1582 int evsel__read_counter(struct evsel *evsel, int cpu, int thread)
1583 {
1584 	u64 read_format = evsel->core.attr.read_format;
1585 
1586 	if (read_format & PERF_FORMAT_GROUP)
1587 		return evsel__read_group(evsel, cpu, thread);
1588 
1589 	return evsel__read_one(evsel, cpu, thread);
1590 }
1591 
1592 int __evsel__read_on_cpu(struct evsel *evsel, int cpu, int thread, bool scale)
1593 {
1594 	struct perf_counts_values count;
1595 	size_t nv = scale ? 3 : 1;
1596 
1597 	if (FD(evsel, cpu, thread) < 0)
1598 		return -EINVAL;
1599 
1600 	if (evsel->counts == NULL && evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1601 		return -ENOMEM;
1602 
1603 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1604 		return -errno;
1605 
1606 	evsel__compute_deltas(evsel, cpu, thread, &count);
1607 	perf_counts_values__scale(&count, scale, NULL);
1608 	*perf_counts(evsel->counts, cpu, thread) = count;
1609 	return 0;
1610 }
1611 
1612 static int evsel__match_other_cpu(struct evsel *evsel, struct evsel *other,
1613 				  int cpu)
1614 {
1615 	int cpuid;
1616 
1617 	cpuid = perf_cpu_map__cpu(evsel->core.cpus, cpu);
1618 	return perf_cpu_map__idx(other->core.cpus, cpuid);
1619 }
1620 
1621 static int evsel__hybrid_group_cpu(struct evsel *evsel, int cpu)
1622 {
1623 	struct evsel *leader = evsel__leader(evsel);
1624 
1625 	if ((evsel__is_hybrid(evsel) && !evsel__is_hybrid(leader)) ||
1626 	    (!evsel__is_hybrid(evsel) && evsel__is_hybrid(leader))) {
1627 		return evsel__match_other_cpu(evsel, leader, cpu);
1628 	}
1629 
1630 	return cpu;
1631 }
1632 
1633 static int get_group_fd(struct evsel *evsel, int cpu, int thread)
1634 {
1635 	struct evsel *leader = evsel__leader(evsel);
1636 	int fd;
1637 
1638 	if (evsel__is_group_leader(evsel))
1639 		return -1;
1640 
1641 	/*
1642 	 * Leader must be already processed/open,
1643 	 * if not it's a bug.
1644 	 */
1645 	BUG_ON(!leader->core.fd);
1646 
1647 	cpu = evsel__hybrid_group_cpu(evsel, cpu);
1648 	if (cpu == -1)
1649 		return -1;
1650 
1651 	fd = FD(leader, cpu, thread);
1652 	BUG_ON(fd == -1);
1653 
1654 	return fd;
1655 }
1656 
1657 static void evsel__remove_fd(struct evsel *pos, int nr_cpus, int nr_threads, int thread_idx)
1658 {
1659 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1660 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1661 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1662 }
1663 
1664 static int update_fds(struct evsel *evsel,
1665 		      int nr_cpus, int cpu_idx,
1666 		      int nr_threads, int thread_idx)
1667 {
1668 	struct evsel *pos;
1669 
1670 	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1671 		return -EINVAL;
1672 
1673 	evlist__for_each_entry(evsel->evlist, pos) {
1674 		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1675 
1676 		evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1677 
1678 		/*
1679 		 * Since fds for next evsel has not been created,
1680 		 * there is no need to iterate whole event list.
1681 		 */
1682 		if (pos == evsel)
1683 			break;
1684 	}
1685 	return 0;
1686 }
1687 
1688 bool evsel__ignore_missing_thread(struct evsel *evsel,
1689 				  int nr_cpus, int cpu,
1690 				  struct perf_thread_map *threads,
1691 				  int thread, int err)
1692 {
1693 	pid_t ignore_pid = perf_thread_map__pid(threads, thread);
1694 
1695 	if (!evsel->ignore_missing_thread)
1696 		return false;
1697 
1698 	/* The system wide setup does not work with threads. */
1699 	if (evsel->core.system_wide)
1700 		return false;
1701 
1702 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1703 	if (err != -ESRCH)
1704 		return false;
1705 
1706 	/* If there's only one thread, let it fail. */
1707 	if (threads->nr == 1)
1708 		return false;
1709 
1710 	/*
1711 	 * We should remove fd for missing_thread first
1712 	 * because thread_map__remove() will decrease threads->nr.
1713 	 */
1714 	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1715 		return false;
1716 
1717 	if (thread_map__remove(threads, thread))
1718 		return false;
1719 
1720 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1721 		   ignore_pid);
1722 	return true;
1723 }
1724 
1725 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1726 				void *priv __maybe_unused)
1727 {
1728 	return fprintf(fp, "  %-32s %s\n", name, val);
1729 }
1730 
1731 static void display_attr(struct perf_event_attr *attr)
1732 {
1733 	if (verbose >= 2 || debug_peo_args) {
1734 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1735 		fprintf(stderr, "perf_event_attr:\n");
1736 		perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL);
1737 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1738 	}
1739 }
1740 
1741 bool evsel__precise_ip_fallback(struct evsel *evsel)
1742 {
1743 	/* Do not try less precise if not requested. */
1744 	if (!evsel->precise_max)
1745 		return false;
1746 
1747 	/*
1748 	 * We tried all the precise_ip values, and it's
1749 	 * still failing, so leave it to standard fallback.
1750 	 */
1751 	if (!evsel->core.attr.precise_ip) {
1752 		evsel->core.attr.precise_ip = evsel->precise_ip_original;
1753 		return false;
1754 	}
1755 
1756 	if (!evsel->precise_ip_original)
1757 		evsel->precise_ip_original = evsel->core.attr.precise_ip;
1758 
1759 	evsel->core.attr.precise_ip--;
1760 	pr_debug2_peo("decreasing precise_ip by one (%d)\n", evsel->core.attr.precise_ip);
1761 	display_attr(&evsel->core.attr);
1762 	return true;
1763 }
1764 
1765 static struct perf_cpu_map *empty_cpu_map;
1766 static struct perf_thread_map *empty_thread_map;
1767 
1768 static int __evsel__prepare_open(struct evsel *evsel, struct perf_cpu_map *cpus,
1769 		struct perf_thread_map *threads)
1770 {
1771 	int nthreads;
1772 
1773 	if ((perf_missing_features.write_backward && evsel->core.attr.write_backward) ||
1774 	    (perf_missing_features.aux_output     && evsel->core.attr.aux_output))
1775 		return -EINVAL;
1776 
1777 	if (cpus == NULL) {
1778 		if (empty_cpu_map == NULL) {
1779 			empty_cpu_map = perf_cpu_map__dummy_new();
1780 			if (empty_cpu_map == NULL)
1781 				return -ENOMEM;
1782 		}
1783 
1784 		cpus = empty_cpu_map;
1785 	}
1786 
1787 	if (threads == NULL) {
1788 		if (empty_thread_map == NULL) {
1789 			empty_thread_map = thread_map__new_by_tid(-1);
1790 			if (empty_thread_map == NULL)
1791 				return -ENOMEM;
1792 		}
1793 
1794 		threads = empty_thread_map;
1795 	}
1796 
1797 	if (evsel->core.system_wide)
1798 		nthreads = 1;
1799 	else
1800 		nthreads = threads->nr;
1801 
1802 	if (evsel->core.fd == NULL &&
1803 	    perf_evsel__alloc_fd(&evsel->core, cpus->nr, nthreads) < 0)
1804 		return -ENOMEM;
1805 
1806 	evsel->open_flags = PERF_FLAG_FD_CLOEXEC;
1807 	if (evsel->cgrp)
1808 		evsel->open_flags |= PERF_FLAG_PID_CGROUP;
1809 
1810 	return 0;
1811 }
1812 
1813 static void evsel__disable_missing_features(struct evsel *evsel)
1814 {
1815 	if (perf_missing_features.weight_struct) {
1816 		evsel__set_sample_bit(evsel, WEIGHT);
1817 		evsel__reset_sample_bit(evsel, WEIGHT_STRUCT);
1818 	}
1819 	if (perf_missing_features.clockid_wrong)
1820 		evsel->core.attr.clockid = CLOCK_MONOTONIC; /* should always work */
1821 	if (perf_missing_features.clockid) {
1822 		evsel->core.attr.use_clockid = 0;
1823 		evsel->core.attr.clockid = 0;
1824 	}
1825 	if (perf_missing_features.cloexec)
1826 		evsel->open_flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1827 	if (perf_missing_features.mmap2)
1828 		evsel->core.attr.mmap2 = 0;
1829 	if (evsel->pmu && evsel->pmu->missing_features.exclude_guest)
1830 		evsel->core.attr.exclude_guest = evsel->core.attr.exclude_host = 0;
1831 	if (perf_missing_features.lbr_flags)
1832 		evsel->core.attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1833 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1834 	if (perf_missing_features.group_read && evsel->core.attr.inherit)
1835 		evsel->core.attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1836 	if (perf_missing_features.ksymbol)
1837 		evsel->core.attr.ksymbol = 0;
1838 	if (perf_missing_features.bpf)
1839 		evsel->core.attr.bpf_event = 0;
1840 	if (perf_missing_features.branch_hw_idx)
1841 		evsel->core.attr.branch_sample_type &= ~PERF_SAMPLE_BRANCH_HW_INDEX;
1842 	if (perf_missing_features.sample_id_all)
1843 		evsel->core.attr.sample_id_all = 0;
1844 }
1845 
1846 int evsel__prepare_open(struct evsel *evsel, struct perf_cpu_map *cpus,
1847 			struct perf_thread_map *threads)
1848 {
1849 	int err;
1850 
1851 	err = __evsel__prepare_open(evsel, cpus, threads);
1852 	if (err)
1853 		return err;
1854 
1855 	evsel__disable_missing_features(evsel);
1856 
1857 	return err;
1858 }
1859 
1860 bool evsel__detect_missing_features(struct evsel *evsel)
1861 {
1862 	/*
1863 	 * Must probe features in the order they were added to the
1864 	 * perf_event_attr interface.
1865 	 */
1866 	if (!perf_missing_features.weight_struct &&
1867 	    (evsel->core.attr.sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) {
1868 		perf_missing_features.weight_struct = true;
1869 		pr_debug2("switching off weight struct support\n");
1870 		return true;
1871 	} else if (!perf_missing_features.code_page_size &&
1872 	    (evsel->core.attr.sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)) {
1873 		perf_missing_features.code_page_size = true;
1874 		pr_debug2_peo("Kernel has no PERF_SAMPLE_CODE_PAGE_SIZE support, bailing out\n");
1875 		return false;
1876 	} else if (!perf_missing_features.data_page_size &&
1877 	    (evsel->core.attr.sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)) {
1878 		perf_missing_features.data_page_size = true;
1879 		pr_debug2_peo("Kernel has no PERF_SAMPLE_DATA_PAGE_SIZE support, bailing out\n");
1880 		return false;
1881 	} else if (!perf_missing_features.cgroup && evsel->core.attr.cgroup) {
1882 		perf_missing_features.cgroup = true;
1883 		pr_debug2_peo("Kernel has no cgroup sampling support, bailing out\n");
1884 		return false;
1885 	} else if (!perf_missing_features.branch_hw_idx &&
1886 	    (evsel->core.attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX)) {
1887 		perf_missing_features.branch_hw_idx = true;
1888 		pr_debug2("switching off branch HW index support\n");
1889 		return true;
1890 	} else if (!perf_missing_features.aux_output && evsel->core.attr.aux_output) {
1891 		perf_missing_features.aux_output = true;
1892 		pr_debug2_peo("Kernel has no attr.aux_output support, bailing out\n");
1893 		return false;
1894 	} else if (!perf_missing_features.bpf && evsel->core.attr.bpf_event) {
1895 		perf_missing_features.bpf = true;
1896 		pr_debug2_peo("switching off bpf_event\n");
1897 		return true;
1898 	} else if (!perf_missing_features.ksymbol && evsel->core.attr.ksymbol) {
1899 		perf_missing_features.ksymbol = true;
1900 		pr_debug2_peo("switching off ksymbol\n");
1901 		return true;
1902 	} else if (!perf_missing_features.write_backward && evsel->core.attr.write_backward) {
1903 		perf_missing_features.write_backward = true;
1904 		pr_debug2_peo("switching off write_backward\n");
1905 		return false;
1906 	} else if (!perf_missing_features.clockid_wrong && evsel->core.attr.use_clockid) {
1907 		perf_missing_features.clockid_wrong = true;
1908 		pr_debug2_peo("switching off clockid\n");
1909 		return true;
1910 	} else if (!perf_missing_features.clockid && evsel->core.attr.use_clockid) {
1911 		perf_missing_features.clockid = true;
1912 		pr_debug2_peo("switching off use_clockid\n");
1913 		return true;
1914 	} else if (!perf_missing_features.cloexec && (evsel->open_flags & PERF_FLAG_FD_CLOEXEC)) {
1915 		perf_missing_features.cloexec = true;
1916 		pr_debug2_peo("switching off cloexec flag\n");
1917 		return true;
1918 	} else if (!perf_missing_features.mmap2 && evsel->core.attr.mmap2) {
1919 		perf_missing_features.mmap2 = true;
1920 		pr_debug2_peo("switching off mmap2\n");
1921 		return true;
1922 	} else if ((evsel->core.attr.exclude_guest || evsel->core.attr.exclude_host) &&
1923 		   (evsel->pmu == NULL || evsel->pmu->missing_features.exclude_guest)) {
1924 		if (evsel->pmu == NULL) {
1925 			evsel->pmu = evsel__find_pmu(evsel);
1926 			if (evsel->pmu)
1927 				evsel->pmu->missing_features.exclude_guest = true;
1928 			else {
1929 				/* we cannot find PMU, disable attrs now */
1930 				evsel->core.attr.exclude_host = false;
1931 				evsel->core.attr.exclude_guest = false;
1932 			}
1933 		}
1934 
1935 		if (evsel->exclude_GH) {
1936 			pr_debug2_peo("PMU has no exclude_host/guest support, bailing out\n");
1937 			return false;
1938 		}
1939 		if (!perf_missing_features.exclude_guest) {
1940 			perf_missing_features.exclude_guest = true;
1941 			pr_debug2_peo("switching off exclude_guest, exclude_host\n");
1942 		}
1943 		return true;
1944 	} else if (!perf_missing_features.sample_id_all) {
1945 		perf_missing_features.sample_id_all = true;
1946 		pr_debug2_peo("switching off sample_id_all\n");
1947 		return true;
1948 	} else if (!perf_missing_features.lbr_flags &&
1949 			(evsel->core.attr.branch_sample_type &
1950 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1951 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1952 		perf_missing_features.lbr_flags = true;
1953 		pr_debug2_peo("switching off branch sample type no (cycles/flags)\n");
1954 		return true;
1955 	} else if (!perf_missing_features.group_read &&
1956 		    evsel->core.attr.inherit &&
1957 		   (evsel->core.attr.read_format & PERF_FORMAT_GROUP) &&
1958 		   evsel__is_group_leader(evsel)) {
1959 		perf_missing_features.group_read = true;
1960 		pr_debug2_peo("switching off group read\n");
1961 		return true;
1962 	} else {
1963 		return false;
1964 	}
1965 }
1966 
1967 bool evsel__increase_rlimit(enum rlimit_action *set_rlimit)
1968 {
1969 	int old_errno;
1970 	struct rlimit l;
1971 
1972 	if (*set_rlimit < INCREASED_MAX) {
1973 		old_errno = errno;
1974 
1975 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1976 			if (*set_rlimit == NO_CHANGE) {
1977 				l.rlim_cur = l.rlim_max;
1978 			} else {
1979 				l.rlim_cur = l.rlim_max + 1000;
1980 				l.rlim_max = l.rlim_cur;
1981 			}
1982 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1983 				(*set_rlimit) += 1;
1984 				errno = old_errno;
1985 				return true;
1986 			}
1987 		}
1988 		errno = old_errno;
1989 	}
1990 
1991 	return false;
1992 }
1993 
1994 static int evsel__open_cpu(struct evsel *evsel, struct perf_cpu_map *cpus,
1995 		struct perf_thread_map *threads,
1996 		int start_cpu, int end_cpu)
1997 {
1998 	int cpu, thread, nthreads;
1999 	int pid = -1, err, old_errno;
2000 	enum rlimit_action set_rlimit = NO_CHANGE;
2001 
2002 	err = __evsel__prepare_open(evsel, cpus, threads);
2003 	if (err)
2004 		return err;
2005 
2006 	if (cpus == NULL)
2007 		cpus = empty_cpu_map;
2008 
2009 	if (threads == NULL)
2010 		threads = empty_thread_map;
2011 
2012 	if (evsel->core.system_wide)
2013 		nthreads = 1;
2014 	else
2015 		nthreads = threads->nr;
2016 
2017 	if (evsel->cgrp)
2018 		pid = evsel->cgrp->fd;
2019 
2020 fallback_missing_features:
2021 	evsel__disable_missing_features(evsel);
2022 
2023 	display_attr(&evsel->core.attr);
2024 
2025 	for (cpu = start_cpu; cpu < end_cpu; cpu++) {
2026 
2027 		for (thread = 0; thread < nthreads; thread++) {
2028 			int fd, group_fd;
2029 retry_open:
2030 			if (thread >= nthreads)
2031 				break;
2032 
2033 			if (!evsel->cgrp && !evsel->core.system_wide)
2034 				pid = perf_thread_map__pid(threads, thread);
2035 
2036 			group_fd = get_group_fd(evsel, cpu, thread);
2037 
2038 			test_attr__ready();
2039 
2040 			pr_debug2_peo("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
2041 				pid, cpus->map[cpu], group_fd, evsel->open_flags);
2042 
2043 			fd = sys_perf_event_open(&evsel->core.attr, pid, cpus->map[cpu],
2044 						group_fd, evsel->open_flags);
2045 
2046 			FD(evsel, cpu, thread) = fd;
2047 
2048 			if (fd < 0) {
2049 				err = -errno;
2050 
2051 				pr_debug2_peo("\nsys_perf_event_open failed, error %d\n",
2052 					  err);
2053 				goto try_fallback;
2054 			}
2055 
2056 			bpf_counter__install_pe(evsel, cpu, fd);
2057 
2058 			if (unlikely(test_attr__enabled)) {
2059 				test_attr__open(&evsel->core.attr, pid, cpus->map[cpu],
2060 						fd, group_fd, evsel->open_flags);
2061 			}
2062 
2063 			pr_debug2_peo(" = %d\n", fd);
2064 
2065 			if (evsel->bpf_fd >= 0) {
2066 				int evt_fd = fd;
2067 				int bpf_fd = evsel->bpf_fd;
2068 
2069 				err = ioctl(evt_fd,
2070 					    PERF_EVENT_IOC_SET_BPF,
2071 					    bpf_fd);
2072 				if (err && errno != EEXIST) {
2073 					pr_err("failed to attach bpf fd %d: %s\n",
2074 					       bpf_fd, strerror(errno));
2075 					err = -EINVAL;
2076 					goto out_close;
2077 				}
2078 			}
2079 
2080 			set_rlimit = NO_CHANGE;
2081 
2082 			/*
2083 			 * If we succeeded but had to kill clockid, fail and
2084 			 * have evsel__open_strerror() print us a nice error.
2085 			 */
2086 			if (perf_missing_features.clockid ||
2087 			    perf_missing_features.clockid_wrong) {
2088 				err = -EINVAL;
2089 				goto out_close;
2090 			}
2091 		}
2092 	}
2093 
2094 	return 0;
2095 
2096 try_fallback:
2097 	if (evsel__precise_ip_fallback(evsel))
2098 		goto retry_open;
2099 
2100 	if (evsel__ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
2101 		/* We just removed 1 thread, so lower the upper nthreads limit. */
2102 		nthreads--;
2103 
2104 		/* ... and pretend like nothing have happened. */
2105 		err = 0;
2106 		goto retry_open;
2107 	}
2108 	/*
2109 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
2110 	 * of them try to increase the limits.
2111 	 */
2112 	if (err == -EMFILE && evsel__increase_rlimit(&set_rlimit))
2113 		goto retry_open;
2114 
2115 	if (err != -EINVAL || cpu > 0 || thread > 0)
2116 		goto out_close;
2117 
2118 	if (evsel__detect_missing_features(evsel))
2119 		goto fallback_missing_features;
2120 out_close:
2121 	if (err)
2122 		threads->err_thread = thread;
2123 
2124 	old_errno = errno;
2125 	do {
2126 		while (--thread >= 0) {
2127 			if (FD(evsel, cpu, thread) >= 0)
2128 				close(FD(evsel, cpu, thread));
2129 			FD(evsel, cpu, thread) = -1;
2130 		}
2131 		thread = nthreads;
2132 	} while (--cpu >= 0);
2133 	errno = old_errno;
2134 	return err;
2135 }
2136 
2137 int evsel__open(struct evsel *evsel, struct perf_cpu_map *cpus,
2138 		struct perf_thread_map *threads)
2139 {
2140 	return evsel__open_cpu(evsel, cpus, threads, 0, cpus ? cpus->nr : 1);
2141 }
2142 
2143 void evsel__close(struct evsel *evsel)
2144 {
2145 	perf_evsel__close(&evsel->core);
2146 	perf_evsel__free_id(&evsel->core);
2147 }
2148 
2149 int evsel__open_per_cpu(struct evsel *evsel, struct perf_cpu_map *cpus, int cpu)
2150 {
2151 	if (cpu == -1)
2152 		return evsel__open_cpu(evsel, cpus, NULL, 0,
2153 					cpus ? cpus->nr : 1);
2154 
2155 	return evsel__open_cpu(evsel, cpus, NULL, cpu, cpu + 1);
2156 }
2157 
2158 int evsel__open_per_thread(struct evsel *evsel, struct perf_thread_map *threads)
2159 {
2160 	return evsel__open(evsel, NULL, threads);
2161 }
2162 
2163 static int perf_evsel__parse_id_sample(const struct evsel *evsel,
2164 				       const union perf_event *event,
2165 				       struct perf_sample *sample)
2166 {
2167 	u64 type = evsel->core.attr.sample_type;
2168 	const __u64 *array = event->sample.array;
2169 	bool swapped = evsel->needs_swap;
2170 	union u64_swap u;
2171 
2172 	array += ((event->header.size -
2173 		   sizeof(event->header)) / sizeof(u64)) - 1;
2174 
2175 	if (type & PERF_SAMPLE_IDENTIFIER) {
2176 		sample->id = *array;
2177 		array--;
2178 	}
2179 
2180 	if (type & PERF_SAMPLE_CPU) {
2181 		u.val64 = *array;
2182 		if (swapped) {
2183 			/* undo swap of u64, then swap on individual u32s */
2184 			u.val64 = bswap_64(u.val64);
2185 			u.val32[0] = bswap_32(u.val32[0]);
2186 		}
2187 
2188 		sample->cpu = u.val32[0];
2189 		array--;
2190 	}
2191 
2192 	if (type & PERF_SAMPLE_STREAM_ID) {
2193 		sample->stream_id = *array;
2194 		array--;
2195 	}
2196 
2197 	if (type & PERF_SAMPLE_ID) {
2198 		sample->id = *array;
2199 		array--;
2200 	}
2201 
2202 	if (type & PERF_SAMPLE_TIME) {
2203 		sample->time = *array;
2204 		array--;
2205 	}
2206 
2207 	if (type & PERF_SAMPLE_TID) {
2208 		u.val64 = *array;
2209 		if (swapped) {
2210 			/* undo swap of u64, then swap on individual u32s */
2211 			u.val64 = bswap_64(u.val64);
2212 			u.val32[0] = bswap_32(u.val32[0]);
2213 			u.val32[1] = bswap_32(u.val32[1]);
2214 		}
2215 
2216 		sample->pid = u.val32[0];
2217 		sample->tid = u.val32[1];
2218 		array--;
2219 	}
2220 
2221 	return 0;
2222 }
2223 
2224 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2225 			    u64 size)
2226 {
2227 	return size > max_size || offset + size > endp;
2228 }
2229 
2230 #define OVERFLOW_CHECK(offset, size, max_size)				\
2231 	do {								\
2232 		if (overflow(endp, (max_size), (offset), (size)))	\
2233 			return -EFAULT;					\
2234 	} while (0)
2235 
2236 #define OVERFLOW_CHECK_u64(offset) \
2237 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2238 
2239 static int
2240 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2241 {
2242 	/*
2243 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2244 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2245 	 * check the format does not go past the end of the event.
2246 	 */
2247 	if (sample_size + sizeof(event->header) > event->header.size)
2248 		return -EFAULT;
2249 
2250 	return 0;
2251 }
2252 
2253 void __weak arch_perf_parse_sample_weight(struct perf_sample *data,
2254 					  const __u64 *array,
2255 					  u64 type __maybe_unused)
2256 {
2257 	data->weight = *array;
2258 }
2259 
2260 u64 evsel__bitfield_swap_branch_flags(u64 value)
2261 {
2262 	u64 new_val = 0;
2263 
2264 	/*
2265 	 * branch_flags
2266 	 * union {
2267 	 * 	u64 values;
2268 	 * 	struct {
2269 	 * 		mispred:1	//target mispredicted
2270 	 * 		predicted:1	//target predicted
2271 	 * 		in_tx:1		//in transaction
2272 	 * 		abort:1		//transaction abort
2273 	 * 		cycles:16	//cycle count to last branch
2274 	 * 		type:4		//branch type
2275 	 * 		reserved:40
2276 	 * 	}
2277 	 * }
2278 	 *
2279 	 * Avoid bswap64() the entire branch_flag.value,
2280 	 * as it has variable bit-field sizes. Instead the
2281 	 * macro takes the bit-field position/size,
2282 	 * swaps it based on the host endianness.
2283 	 *
2284 	 * tep_is_bigendian() is used here instead of
2285 	 * bigendian() to avoid python test fails.
2286 	 */
2287 	if (tep_is_bigendian()) {
2288 		new_val = bitfield_swap(value, 0, 1);
2289 		new_val |= bitfield_swap(value, 1, 1);
2290 		new_val |= bitfield_swap(value, 2, 1);
2291 		new_val |= bitfield_swap(value, 3, 1);
2292 		new_val |= bitfield_swap(value, 4, 16);
2293 		new_val |= bitfield_swap(value, 20, 4);
2294 		new_val |= bitfield_swap(value, 24, 40);
2295 	} else {
2296 		new_val = bitfield_swap(value, 63, 1);
2297 		new_val |= bitfield_swap(value, 62, 1);
2298 		new_val |= bitfield_swap(value, 61, 1);
2299 		new_val |= bitfield_swap(value, 60, 1);
2300 		new_val |= bitfield_swap(value, 44, 16);
2301 		new_val |= bitfield_swap(value, 40, 4);
2302 		new_val |= bitfield_swap(value, 0, 40);
2303 	}
2304 
2305 	return new_val;
2306 }
2307 
2308 int evsel__parse_sample(struct evsel *evsel, union perf_event *event,
2309 			struct perf_sample *data)
2310 {
2311 	u64 type = evsel->core.attr.sample_type;
2312 	bool swapped = evsel->needs_swap;
2313 	const __u64 *array;
2314 	u16 max_size = event->header.size;
2315 	const void *endp = (void *)event + max_size;
2316 	u64 sz;
2317 
2318 	/*
2319 	 * used for cross-endian analysis. See git commit 65014ab3
2320 	 * for why this goofiness is needed.
2321 	 */
2322 	union u64_swap u;
2323 
2324 	memset(data, 0, sizeof(*data));
2325 	data->cpu = data->pid = data->tid = -1;
2326 	data->stream_id = data->id = data->time = -1ULL;
2327 	data->period = evsel->core.attr.sample_period;
2328 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2329 	data->misc    = event->header.misc;
2330 	data->id = -1ULL;
2331 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2332 
2333 	if (event->header.type != PERF_RECORD_SAMPLE) {
2334 		if (!evsel->core.attr.sample_id_all)
2335 			return 0;
2336 		return perf_evsel__parse_id_sample(evsel, event, data);
2337 	}
2338 
2339 	array = event->sample.array;
2340 
2341 	if (perf_event__check_size(event, evsel->sample_size))
2342 		return -EFAULT;
2343 
2344 	if (type & PERF_SAMPLE_IDENTIFIER) {
2345 		data->id = *array;
2346 		array++;
2347 	}
2348 
2349 	if (type & PERF_SAMPLE_IP) {
2350 		data->ip = *array;
2351 		array++;
2352 	}
2353 
2354 	if (type & PERF_SAMPLE_TID) {
2355 		u.val64 = *array;
2356 		if (swapped) {
2357 			/* undo swap of u64, then swap on individual u32s */
2358 			u.val64 = bswap_64(u.val64);
2359 			u.val32[0] = bswap_32(u.val32[0]);
2360 			u.val32[1] = bswap_32(u.val32[1]);
2361 		}
2362 
2363 		data->pid = u.val32[0];
2364 		data->tid = u.val32[1];
2365 		array++;
2366 	}
2367 
2368 	if (type & PERF_SAMPLE_TIME) {
2369 		data->time = *array;
2370 		array++;
2371 	}
2372 
2373 	if (type & PERF_SAMPLE_ADDR) {
2374 		data->addr = *array;
2375 		array++;
2376 	}
2377 
2378 	if (type & PERF_SAMPLE_ID) {
2379 		data->id = *array;
2380 		array++;
2381 	}
2382 
2383 	if (type & PERF_SAMPLE_STREAM_ID) {
2384 		data->stream_id = *array;
2385 		array++;
2386 	}
2387 
2388 	if (type & PERF_SAMPLE_CPU) {
2389 
2390 		u.val64 = *array;
2391 		if (swapped) {
2392 			/* undo swap of u64, then swap on individual u32s */
2393 			u.val64 = bswap_64(u.val64);
2394 			u.val32[0] = bswap_32(u.val32[0]);
2395 		}
2396 
2397 		data->cpu = u.val32[0];
2398 		array++;
2399 	}
2400 
2401 	if (type & PERF_SAMPLE_PERIOD) {
2402 		data->period = *array;
2403 		array++;
2404 	}
2405 
2406 	if (type & PERF_SAMPLE_READ) {
2407 		u64 read_format = evsel->core.attr.read_format;
2408 
2409 		OVERFLOW_CHECK_u64(array);
2410 		if (read_format & PERF_FORMAT_GROUP)
2411 			data->read.group.nr = *array;
2412 		else
2413 			data->read.one.value = *array;
2414 
2415 		array++;
2416 
2417 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2418 			OVERFLOW_CHECK_u64(array);
2419 			data->read.time_enabled = *array;
2420 			array++;
2421 		}
2422 
2423 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2424 			OVERFLOW_CHECK_u64(array);
2425 			data->read.time_running = *array;
2426 			array++;
2427 		}
2428 
2429 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2430 		if (read_format & PERF_FORMAT_GROUP) {
2431 			const u64 max_group_nr = UINT64_MAX /
2432 					sizeof(struct sample_read_value);
2433 
2434 			if (data->read.group.nr > max_group_nr)
2435 				return -EFAULT;
2436 			sz = data->read.group.nr *
2437 			     sizeof(struct sample_read_value);
2438 			OVERFLOW_CHECK(array, sz, max_size);
2439 			data->read.group.values =
2440 					(struct sample_read_value *)array;
2441 			array = (void *)array + sz;
2442 		} else {
2443 			OVERFLOW_CHECK_u64(array);
2444 			data->read.one.id = *array;
2445 			array++;
2446 		}
2447 	}
2448 
2449 	if (type & PERF_SAMPLE_CALLCHAIN) {
2450 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2451 
2452 		OVERFLOW_CHECK_u64(array);
2453 		data->callchain = (struct ip_callchain *)array++;
2454 		if (data->callchain->nr > max_callchain_nr)
2455 			return -EFAULT;
2456 		sz = data->callchain->nr * sizeof(u64);
2457 		OVERFLOW_CHECK(array, sz, max_size);
2458 		array = (void *)array + sz;
2459 	}
2460 
2461 	if (type & PERF_SAMPLE_RAW) {
2462 		OVERFLOW_CHECK_u64(array);
2463 		u.val64 = *array;
2464 
2465 		/*
2466 		 * Undo swap of u64, then swap on individual u32s,
2467 		 * get the size of the raw area and undo all of the
2468 		 * swap. The pevent interface handles endianness by
2469 		 * itself.
2470 		 */
2471 		if (swapped) {
2472 			u.val64 = bswap_64(u.val64);
2473 			u.val32[0] = bswap_32(u.val32[0]);
2474 			u.val32[1] = bswap_32(u.val32[1]);
2475 		}
2476 		data->raw_size = u.val32[0];
2477 
2478 		/*
2479 		 * The raw data is aligned on 64bits including the
2480 		 * u32 size, so it's safe to use mem_bswap_64.
2481 		 */
2482 		if (swapped)
2483 			mem_bswap_64((void *) array, data->raw_size);
2484 
2485 		array = (void *)array + sizeof(u32);
2486 
2487 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2488 		data->raw_data = (void *)array;
2489 		array = (void *)array + data->raw_size;
2490 	}
2491 
2492 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2493 		const u64 max_branch_nr = UINT64_MAX /
2494 					  sizeof(struct branch_entry);
2495 		struct branch_entry *e;
2496 		unsigned int i;
2497 
2498 		OVERFLOW_CHECK_u64(array);
2499 		data->branch_stack = (struct branch_stack *)array++;
2500 
2501 		if (data->branch_stack->nr > max_branch_nr)
2502 			return -EFAULT;
2503 
2504 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2505 		if (evsel__has_branch_hw_idx(evsel)) {
2506 			sz += sizeof(u64);
2507 			e = &data->branch_stack->entries[0];
2508 		} else {
2509 			data->no_hw_idx = true;
2510 			/*
2511 			 * if the PERF_SAMPLE_BRANCH_HW_INDEX is not applied,
2512 			 * only nr and entries[] will be output by kernel.
2513 			 */
2514 			e = (struct branch_entry *)&data->branch_stack->hw_idx;
2515 		}
2516 
2517 		if (swapped) {
2518 			/*
2519 			 * struct branch_flag does not have endian
2520 			 * specific bit field definition. And bswap
2521 			 * will not resolve the issue, since these
2522 			 * are bit fields.
2523 			 *
2524 			 * evsel__bitfield_swap_branch_flags() uses a
2525 			 * bitfield_swap macro to swap the bit position
2526 			 * based on the host endians.
2527 			 */
2528 			for (i = 0; i < data->branch_stack->nr; i++, e++)
2529 				e->flags.value = evsel__bitfield_swap_branch_flags(e->flags.value);
2530 		}
2531 
2532 		OVERFLOW_CHECK(array, sz, max_size);
2533 		array = (void *)array + sz;
2534 	}
2535 
2536 	if (type & PERF_SAMPLE_REGS_USER) {
2537 		OVERFLOW_CHECK_u64(array);
2538 		data->user_regs.abi = *array;
2539 		array++;
2540 
2541 		if (data->user_regs.abi) {
2542 			u64 mask = evsel->core.attr.sample_regs_user;
2543 
2544 			sz = hweight64(mask) * sizeof(u64);
2545 			OVERFLOW_CHECK(array, sz, max_size);
2546 			data->user_regs.mask = mask;
2547 			data->user_regs.regs = (u64 *)array;
2548 			array = (void *)array + sz;
2549 		}
2550 	}
2551 
2552 	if (type & PERF_SAMPLE_STACK_USER) {
2553 		OVERFLOW_CHECK_u64(array);
2554 		sz = *array++;
2555 
2556 		data->user_stack.offset = ((char *)(array - 1)
2557 					  - (char *) event);
2558 
2559 		if (!sz) {
2560 			data->user_stack.size = 0;
2561 		} else {
2562 			OVERFLOW_CHECK(array, sz, max_size);
2563 			data->user_stack.data = (char *)array;
2564 			array = (void *)array + sz;
2565 			OVERFLOW_CHECK_u64(array);
2566 			data->user_stack.size = *array++;
2567 			if (WARN_ONCE(data->user_stack.size > sz,
2568 				      "user stack dump failure\n"))
2569 				return -EFAULT;
2570 		}
2571 	}
2572 
2573 	if (type & PERF_SAMPLE_WEIGHT_TYPE) {
2574 		OVERFLOW_CHECK_u64(array);
2575 		arch_perf_parse_sample_weight(data, array, type);
2576 		array++;
2577 	}
2578 
2579 	if (type & PERF_SAMPLE_DATA_SRC) {
2580 		OVERFLOW_CHECK_u64(array);
2581 		data->data_src = *array;
2582 		array++;
2583 	}
2584 
2585 	if (type & PERF_SAMPLE_TRANSACTION) {
2586 		OVERFLOW_CHECK_u64(array);
2587 		data->transaction = *array;
2588 		array++;
2589 	}
2590 
2591 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2592 	if (type & PERF_SAMPLE_REGS_INTR) {
2593 		OVERFLOW_CHECK_u64(array);
2594 		data->intr_regs.abi = *array;
2595 		array++;
2596 
2597 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2598 			u64 mask = evsel->core.attr.sample_regs_intr;
2599 
2600 			sz = hweight64(mask) * sizeof(u64);
2601 			OVERFLOW_CHECK(array, sz, max_size);
2602 			data->intr_regs.mask = mask;
2603 			data->intr_regs.regs = (u64 *)array;
2604 			array = (void *)array + sz;
2605 		}
2606 	}
2607 
2608 	data->phys_addr = 0;
2609 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2610 		data->phys_addr = *array;
2611 		array++;
2612 	}
2613 
2614 	data->cgroup = 0;
2615 	if (type & PERF_SAMPLE_CGROUP) {
2616 		data->cgroup = *array;
2617 		array++;
2618 	}
2619 
2620 	data->data_page_size = 0;
2621 	if (type & PERF_SAMPLE_DATA_PAGE_SIZE) {
2622 		data->data_page_size = *array;
2623 		array++;
2624 	}
2625 
2626 	data->code_page_size = 0;
2627 	if (type & PERF_SAMPLE_CODE_PAGE_SIZE) {
2628 		data->code_page_size = *array;
2629 		array++;
2630 	}
2631 
2632 	if (type & PERF_SAMPLE_AUX) {
2633 		OVERFLOW_CHECK_u64(array);
2634 		sz = *array++;
2635 
2636 		OVERFLOW_CHECK(array, sz, max_size);
2637 		/* Undo swap of data */
2638 		if (swapped)
2639 			mem_bswap_64((char *)array, sz);
2640 		data->aux_sample.size = sz;
2641 		data->aux_sample.data = (char *)array;
2642 		array = (void *)array + sz;
2643 	}
2644 
2645 	return 0;
2646 }
2647 
2648 int evsel__parse_sample_timestamp(struct evsel *evsel, union perf_event *event,
2649 				  u64 *timestamp)
2650 {
2651 	u64 type = evsel->core.attr.sample_type;
2652 	const __u64 *array;
2653 
2654 	if (!(type & PERF_SAMPLE_TIME))
2655 		return -1;
2656 
2657 	if (event->header.type != PERF_RECORD_SAMPLE) {
2658 		struct perf_sample data = {
2659 			.time = -1ULL,
2660 		};
2661 
2662 		if (!evsel->core.attr.sample_id_all)
2663 			return -1;
2664 		if (perf_evsel__parse_id_sample(evsel, event, &data))
2665 			return -1;
2666 
2667 		*timestamp = data.time;
2668 		return 0;
2669 	}
2670 
2671 	array = event->sample.array;
2672 
2673 	if (perf_event__check_size(event, evsel->sample_size))
2674 		return -EFAULT;
2675 
2676 	if (type & PERF_SAMPLE_IDENTIFIER)
2677 		array++;
2678 
2679 	if (type & PERF_SAMPLE_IP)
2680 		array++;
2681 
2682 	if (type & PERF_SAMPLE_TID)
2683 		array++;
2684 
2685 	if (type & PERF_SAMPLE_TIME)
2686 		*timestamp = *array;
2687 
2688 	return 0;
2689 }
2690 
2691 struct tep_format_field *evsel__field(struct evsel *evsel, const char *name)
2692 {
2693 	return tep_find_field(evsel->tp_format, name);
2694 }
2695 
2696 void *evsel__rawptr(struct evsel *evsel, struct perf_sample *sample, const char *name)
2697 {
2698 	struct tep_format_field *field = evsel__field(evsel, name);
2699 	int offset;
2700 
2701 	if (!field)
2702 		return NULL;
2703 
2704 	offset = field->offset;
2705 
2706 	if (field->flags & TEP_FIELD_IS_DYNAMIC) {
2707 		offset = *(int *)(sample->raw_data + field->offset);
2708 		offset &= 0xffff;
2709 	}
2710 
2711 	return sample->raw_data + offset;
2712 }
2713 
2714 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample,
2715 			 bool needs_swap)
2716 {
2717 	u64 value;
2718 	void *ptr = sample->raw_data + field->offset;
2719 
2720 	switch (field->size) {
2721 	case 1:
2722 		return *(u8 *)ptr;
2723 	case 2:
2724 		value = *(u16 *)ptr;
2725 		break;
2726 	case 4:
2727 		value = *(u32 *)ptr;
2728 		break;
2729 	case 8:
2730 		memcpy(&value, ptr, sizeof(u64));
2731 		break;
2732 	default:
2733 		return 0;
2734 	}
2735 
2736 	if (!needs_swap)
2737 		return value;
2738 
2739 	switch (field->size) {
2740 	case 2:
2741 		return bswap_16(value);
2742 	case 4:
2743 		return bswap_32(value);
2744 	case 8:
2745 		return bswap_64(value);
2746 	default:
2747 		return 0;
2748 	}
2749 
2750 	return 0;
2751 }
2752 
2753 u64 evsel__intval(struct evsel *evsel, struct perf_sample *sample, const char *name)
2754 {
2755 	struct tep_format_field *field = evsel__field(evsel, name);
2756 
2757 	if (!field)
2758 		return 0;
2759 
2760 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2761 }
2762 
2763 bool evsel__fallback(struct evsel *evsel, int err, char *msg, size_t msgsize)
2764 {
2765 	int paranoid;
2766 
2767 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2768 	    evsel->core.attr.type   == PERF_TYPE_HARDWARE &&
2769 	    evsel->core.attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2770 		/*
2771 		 * If it's cycles then fall back to hrtimer based
2772 		 * cpu-clock-tick sw counter, which is always available even if
2773 		 * no PMU support.
2774 		 *
2775 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2776 		 * b0a873e).
2777 		 */
2778 		scnprintf(msg, msgsize, "%s",
2779 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2780 
2781 		evsel->core.attr.type   = PERF_TYPE_SOFTWARE;
2782 		evsel->core.attr.config = PERF_COUNT_SW_CPU_CLOCK;
2783 
2784 		zfree(&evsel->name);
2785 		return true;
2786 	} else if (err == EACCES && !evsel->core.attr.exclude_kernel &&
2787 		   (paranoid = perf_event_paranoid()) > 1) {
2788 		const char *name = evsel__name(evsel);
2789 		char *new_name;
2790 		const char *sep = ":";
2791 
2792 		/* If event has exclude user then don't exclude kernel. */
2793 		if (evsel->core.attr.exclude_user)
2794 			return false;
2795 
2796 		/* Is there already the separator in the name. */
2797 		if (strchr(name, '/') ||
2798 		    (strchr(name, ':') && !evsel->is_libpfm_event))
2799 			sep = "";
2800 
2801 		if (asprintf(&new_name, "%s%su", name, sep) < 0)
2802 			return false;
2803 
2804 		if (evsel->name)
2805 			free(evsel->name);
2806 		evsel->name = new_name;
2807 		scnprintf(msg, msgsize, "kernel.perf_event_paranoid=%d, trying "
2808 			  "to fall back to excluding kernel and hypervisor "
2809 			  " samples", paranoid);
2810 		evsel->core.attr.exclude_kernel = 1;
2811 		evsel->core.attr.exclude_hv     = 1;
2812 
2813 		return true;
2814 	}
2815 
2816 	return false;
2817 }
2818 
2819 static bool find_process(const char *name)
2820 {
2821 	size_t len = strlen(name);
2822 	DIR *dir;
2823 	struct dirent *d;
2824 	int ret = -1;
2825 
2826 	dir = opendir(procfs__mountpoint());
2827 	if (!dir)
2828 		return false;
2829 
2830 	/* Walk through the directory. */
2831 	while (ret && (d = readdir(dir)) != NULL) {
2832 		char path[PATH_MAX];
2833 		char *data;
2834 		size_t size;
2835 
2836 		if ((d->d_type != DT_DIR) ||
2837 		     !strcmp(".", d->d_name) ||
2838 		     !strcmp("..", d->d_name))
2839 			continue;
2840 
2841 		scnprintf(path, sizeof(path), "%s/%s/comm",
2842 			  procfs__mountpoint(), d->d_name);
2843 
2844 		if (filename__read_str(path, &data, &size))
2845 			continue;
2846 
2847 		ret = strncmp(name, data, len);
2848 		free(data);
2849 	}
2850 
2851 	closedir(dir);
2852 	return ret ? false : true;
2853 }
2854 
2855 int evsel__open_strerror(struct evsel *evsel, struct target *target,
2856 			 int err, char *msg, size_t size)
2857 {
2858 	char sbuf[STRERR_BUFSIZE];
2859 	int printed = 0, enforced = 0;
2860 
2861 	switch (err) {
2862 	case EPERM:
2863 	case EACCES:
2864 		printed += scnprintf(msg + printed, size - printed,
2865 			"Access to performance monitoring and observability operations is limited.\n");
2866 
2867 		if (!sysfs__read_int("fs/selinux/enforce", &enforced)) {
2868 			if (enforced) {
2869 				printed += scnprintf(msg + printed, size - printed,
2870 					"Enforced MAC policy settings (SELinux) can limit access to performance\n"
2871 					"monitoring and observability operations. Inspect system audit records for\n"
2872 					"more perf_event access control information and adjusting the policy.\n");
2873 			}
2874 		}
2875 
2876 		if (err == EPERM)
2877 			printed += scnprintf(msg, size,
2878 				"No permission to enable %s event.\n\n", evsel__name(evsel));
2879 
2880 		return scnprintf(msg + printed, size - printed,
2881 		 "Consider adjusting /proc/sys/kernel/perf_event_paranoid setting to open\n"
2882 		 "access to performance monitoring and observability operations for processes\n"
2883 		 "without CAP_PERFMON, CAP_SYS_PTRACE or CAP_SYS_ADMIN Linux capability.\n"
2884 		 "More information can be found at 'Perf events and tool security' document:\n"
2885 		 "https://www.kernel.org/doc/html/latest/admin-guide/perf-security.html\n"
2886 		 "perf_event_paranoid setting is %d:\n"
2887 		 "  -1: Allow use of (almost) all events by all users\n"
2888 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2889 		 ">= 0: Disallow raw and ftrace function tracepoint access\n"
2890 		 ">= 1: Disallow CPU event access\n"
2891 		 ">= 2: Disallow kernel profiling\n"
2892 		 "To make the adjusted perf_event_paranoid setting permanent preserve it\n"
2893 		 "in /etc/sysctl.conf (e.g. kernel.perf_event_paranoid = <setting>)",
2894 		 perf_event_paranoid());
2895 	case ENOENT:
2896 		return scnprintf(msg, size, "The %s event is not supported.", evsel__name(evsel));
2897 	case EMFILE:
2898 		return scnprintf(msg, size, "%s",
2899 			 "Too many events are opened.\n"
2900 			 "Probably the maximum number of open file descriptors has been reached.\n"
2901 			 "Hint: Try again after reducing the number of events.\n"
2902 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2903 	case ENOMEM:
2904 		if (evsel__has_callchain(evsel) &&
2905 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2906 			return scnprintf(msg, size,
2907 					 "Not enough memory to setup event with callchain.\n"
2908 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2909 					 "Hint: Current value: %d", sysctl__max_stack());
2910 		break;
2911 	case ENODEV:
2912 		if (target->cpu_list)
2913 			return scnprintf(msg, size, "%s",
2914 	 "No such device - did you specify an out-of-range profile CPU?");
2915 		break;
2916 	case EOPNOTSUPP:
2917 		if (evsel->core.attr.aux_output)
2918 			return scnprintf(msg, size,
2919 	"%s: PMU Hardware doesn't support 'aux_output' feature",
2920 					 evsel__name(evsel));
2921 		if (evsel->core.attr.sample_period != 0)
2922 			return scnprintf(msg, size,
2923 	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2924 					 evsel__name(evsel));
2925 		if (evsel->core.attr.precise_ip)
2926 			return scnprintf(msg, size, "%s",
2927 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2928 #if defined(__i386__) || defined(__x86_64__)
2929 		if (evsel->core.attr.type == PERF_TYPE_HARDWARE)
2930 			return scnprintf(msg, size, "%s",
2931 	"No hardware sampling interrupt available.\n");
2932 #endif
2933 		break;
2934 	case EBUSY:
2935 		if (find_process("oprofiled"))
2936 			return scnprintf(msg, size,
2937 	"The PMU counters are busy/taken by another profiler.\n"
2938 	"We found oprofile daemon running, please stop it and try again.");
2939 		break;
2940 	case EINVAL:
2941 		if (evsel->core.attr.sample_type & PERF_SAMPLE_CODE_PAGE_SIZE && perf_missing_features.code_page_size)
2942 			return scnprintf(msg, size, "Asking for the code page size isn't supported by this kernel.");
2943 		if (evsel->core.attr.sample_type & PERF_SAMPLE_DATA_PAGE_SIZE && perf_missing_features.data_page_size)
2944 			return scnprintf(msg, size, "Asking for the data page size isn't supported by this kernel.");
2945 		if (evsel->core.attr.write_backward && perf_missing_features.write_backward)
2946 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2947 		if (perf_missing_features.clockid)
2948 			return scnprintf(msg, size, "clockid feature not supported.");
2949 		if (perf_missing_features.clockid_wrong)
2950 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2951 		if (perf_missing_features.aux_output)
2952 			return scnprintf(msg, size, "The 'aux_output' feature is not supported, update the kernel.");
2953 		break;
2954 	case ENODATA:
2955 		return scnprintf(msg, size, "Cannot collect data source with the load latency event alone. "
2956 				 "Please add an auxiliary event in front of the load latency event.");
2957 	default:
2958 		break;
2959 	}
2960 
2961 	return scnprintf(msg, size,
2962 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2963 	"/bin/dmesg | grep -i perf may provide additional information.\n",
2964 			 err, str_error_r(err, sbuf, sizeof(sbuf)), evsel__name(evsel));
2965 }
2966 
2967 struct perf_env *evsel__env(struct evsel *evsel)
2968 {
2969 	if (evsel && evsel->evlist)
2970 		return evsel->evlist->env;
2971 	return &perf_env;
2972 }
2973 
2974 static int store_evsel_ids(struct evsel *evsel, struct evlist *evlist)
2975 {
2976 	int cpu, thread;
2977 
2978 	for (cpu = 0; cpu < xyarray__max_x(evsel->core.fd); cpu++) {
2979 		for (thread = 0; thread < xyarray__max_y(evsel->core.fd);
2980 		     thread++) {
2981 			int fd = FD(evsel, cpu, thread);
2982 
2983 			if (perf_evlist__id_add_fd(&evlist->core, &evsel->core,
2984 						   cpu, thread, fd) < 0)
2985 				return -1;
2986 		}
2987 	}
2988 
2989 	return 0;
2990 }
2991 
2992 int evsel__store_ids(struct evsel *evsel, struct evlist *evlist)
2993 {
2994 	struct perf_cpu_map *cpus = evsel->core.cpus;
2995 	struct perf_thread_map *threads = evsel->core.threads;
2996 
2997 	if (perf_evsel__alloc_id(&evsel->core, cpus->nr, threads->nr))
2998 		return -ENOMEM;
2999 
3000 	return store_evsel_ids(evsel, evlist);
3001 }
3002 
3003 void evsel__zero_per_pkg(struct evsel *evsel)
3004 {
3005 	struct hashmap_entry *cur;
3006 	size_t bkt;
3007 
3008 	if (evsel->per_pkg_mask) {
3009 		hashmap__for_each_entry(evsel->per_pkg_mask, cur, bkt)
3010 			free((char *)cur->key);
3011 
3012 		hashmap__clear(evsel->per_pkg_mask);
3013 	}
3014 }
3015 
3016 bool evsel__is_hybrid(struct evsel *evsel)
3017 {
3018 	return evsel->pmu_name && perf_pmu__is_hybrid(evsel->pmu_name);
3019 }
3020 
3021 struct evsel *evsel__leader(struct evsel *evsel)
3022 {
3023 	return container_of(evsel->core.leader, struct evsel, core);
3024 }
3025 
3026 bool evsel__has_leader(struct evsel *evsel, struct evsel *leader)
3027 {
3028 	return evsel->core.leader == &leader->core;
3029 }
3030 
3031 bool evsel__is_leader(struct evsel *evsel)
3032 {
3033 	return evsel__has_leader(evsel, evsel);
3034 }
3035 
3036 void evsel__set_leader(struct evsel *evsel, struct evsel *leader)
3037 {
3038 	evsel->core.leader = &leader->core;
3039 }
3040