1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <errno.h> 12 #include <inttypes.h> 13 #include <linux/bitops.h> 14 #include <api/fs/fs.h> 15 #include <api/fs/tracing_path.h> 16 #include <traceevent/event-parse.h> 17 #include <linux/hw_breakpoint.h> 18 #include <linux/perf_event.h> 19 #include <linux/compiler.h> 20 #include <linux/err.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include "asm/bug.h" 26 #include "callchain.h" 27 #include "cgroup.h" 28 #include "event.h" 29 #include "evsel.h" 30 #include "evlist.h" 31 #include "util.h" 32 #include "cpumap.h" 33 #include "thread_map.h" 34 #include "target.h" 35 #include "perf_regs.h" 36 #include "debug.h" 37 #include "trace-event.h" 38 #include "stat.h" 39 #include "memswap.h" 40 #include "util/parse-branch-options.h" 41 42 #include "sane_ctype.h" 43 44 struct perf_missing_features perf_missing_features; 45 46 static clockid_t clockid; 47 48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 49 { 50 return 0; 51 } 52 53 void __weak test_attr__ready(void) { } 54 55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 56 { 57 } 58 59 static struct { 60 size_t size; 61 int (*init)(struct perf_evsel *evsel); 62 void (*fini)(struct perf_evsel *evsel); 63 } perf_evsel__object = { 64 .size = sizeof(struct perf_evsel), 65 .init = perf_evsel__no_extra_init, 66 .fini = perf_evsel__no_extra_fini, 67 }; 68 69 int perf_evsel__object_config(size_t object_size, 70 int (*init)(struct perf_evsel *evsel), 71 void (*fini)(struct perf_evsel *evsel)) 72 { 73 74 if (object_size == 0) 75 goto set_methods; 76 77 if (perf_evsel__object.size > object_size) 78 return -EINVAL; 79 80 perf_evsel__object.size = object_size; 81 82 set_methods: 83 if (init != NULL) 84 perf_evsel__object.init = init; 85 86 if (fini != NULL) 87 perf_evsel__object.fini = fini; 88 89 return 0; 90 } 91 92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 93 94 int __perf_evsel__sample_size(u64 sample_type) 95 { 96 u64 mask = sample_type & PERF_SAMPLE_MASK; 97 int size = 0; 98 int i; 99 100 for (i = 0; i < 64; i++) { 101 if (mask & (1ULL << i)) 102 size++; 103 } 104 105 size *= sizeof(u64); 106 107 return size; 108 } 109 110 /** 111 * __perf_evsel__calc_id_pos - calculate id_pos. 112 * @sample_type: sample type 113 * 114 * This function returns the position of the event id (PERF_SAMPLE_ID or 115 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 116 * sample_event. 117 */ 118 static int __perf_evsel__calc_id_pos(u64 sample_type) 119 { 120 int idx = 0; 121 122 if (sample_type & PERF_SAMPLE_IDENTIFIER) 123 return 0; 124 125 if (!(sample_type & PERF_SAMPLE_ID)) 126 return -1; 127 128 if (sample_type & PERF_SAMPLE_IP) 129 idx += 1; 130 131 if (sample_type & PERF_SAMPLE_TID) 132 idx += 1; 133 134 if (sample_type & PERF_SAMPLE_TIME) 135 idx += 1; 136 137 if (sample_type & PERF_SAMPLE_ADDR) 138 idx += 1; 139 140 return idx; 141 } 142 143 /** 144 * __perf_evsel__calc_is_pos - calculate is_pos. 145 * @sample_type: sample type 146 * 147 * This function returns the position (counting backwards) of the event id 148 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 149 * sample_id_all is used there is an id sample appended to non-sample events. 150 */ 151 static int __perf_evsel__calc_is_pos(u64 sample_type) 152 { 153 int idx = 1; 154 155 if (sample_type & PERF_SAMPLE_IDENTIFIER) 156 return 1; 157 158 if (!(sample_type & PERF_SAMPLE_ID)) 159 return -1; 160 161 if (sample_type & PERF_SAMPLE_CPU) 162 idx += 1; 163 164 if (sample_type & PERF_SAMPLE_STREAM_ID) 165 idx += 1; 166 167 return idx; 168 } 169 170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 171 { 172 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 173 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 174 } 175 176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 177 enum perf_event_sample_format bit) 178 { 179 if (!(evsel->attr.sample_type & bit)) { 180 evsel->attr.sample_type |= bit; 181 evsel->sample_size += sizeof(u64); 182 perf_evsel__calc_id_pos(evsel); 183 } 184 } 185 186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 187 enum perf_event_sample_format bit) 188 { 189 if (evsel->attr.sample_type & bit) { 190 evsel->attr.sample_type &= ~bit; 191 evsel->sample_size -= sizeof(u64); 192 perf_evsel__calc_id_pos(evsel); 193 } 194 } 195 196 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 197 bool can_sample_identifier) 198 { 199 if (can_sample_identifier) { 200 perf_evsel__reset_sample_bit(evsel, ID); 201 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 202 } else { 203 perf_evsel__set_sample_bit(evsel, ID); 204 } 205 evsel->attr.read_format |= PERF_FORMAT_ID; 206 } 207 208 /** 209 * perf_evsel__is_function_event - Return whether given evsel is a function 210 * trace event 211 * 212 * @evsel - evsel selector to be tested 213 * 214 * Return %true if event is function trace event 215 */ 216 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 217 { 218 #define FUNCTION_EVENT "ftrace:function" 219 220 return evsel->name && 221 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 222 223 #undef FUNCTION_EVENT 224 } 225 226 void perf_evsel__init(struct perf_evsel *evsel, 227 struct perf_event_attr *attr, int idx) 228 { 229 evsel->idx = idx; 230 evsel->tracking = !idx; 231 evsel->attr = *attr; 232 evsel->leader = evsel; 233 evsel->unit = ""; 234 evsel->scale = 1.0; 235 evsel->max_events = ULONG_MAX; 236 evsel->evlist = NULL; 237 evsel->bpf_fd = -1; 238 INIT_LIST_HEAD(&evsel->node); 239 INIT_LIST_HEAD(&evsel->config_terms); 240 perf_evsel__object.init(evsel); 241 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 242 perf_evsel__calc_id_pos(evsel); 243 evsel->cmdline_group_boundary = false; 244 evsel->metric_expr = NULL; 245 evsel->metric_name = NULL; 246 evsel->metric_events = NULL; 247 evsel->collect_stat = false; 248 evsel->pmu_name = NULL; 249 } 250 251 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 252 { 253 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 254 255 if (!evsel) 256 return NULL; 257 perf_evsel__init(evsel, attr, idx); 258 259 if (perf_evsel__is_bpf_output(evsel)) { 260 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 261 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 262 evsel->attr.sample_period = 1; 263 } 264 265 if (perf_evsel__is_clock(evsel)) { 266 /* 267 * The evsel->unit points to static alias->unit 268 * so it's ok to use static string in here. 269 */ 270 static const char *unit = "msec"; 271 272 evsel->unit = unit; 273 evsel->scale = 1e-6; 274 } 275 276 return evsel; 277 } 278 279 static bool perf_event_can_profile_kernel(void) 280 { 281 return geteuid() == 0 || perf_event_paranoid() == -1; 282 } 283 284 struct perf_evsel *perf_evsel__new_cycles(bool precise) 285 { 286 struct perf_event_attr attr = { 287 .type = PERF_TYPE_HARDWARE, 288 .config = PERF_COUNT_HW_CPU_CYCLES, 289 .exclude_kernel = !perf_event_can_profile_kernel(), 290 }; 291 struct perf_evsel *evsel; 292 293 event_attr_init(&attr); 294 295 if (!precise) 296 goto new_event; 297 298 /* 299 * Now let the usual logic to set up the perf_event_attr defaults 300 * to kick in when we return and before perf_evsel__open() is called. 301 */ 302 new_event: 303 evsel = perf_evsel__new(&attr); 304 if (evsel == NULL) 305 goto out; 306 307 evsel->precise_max = true; 308 309 /* use asprintf() because free(evsel) assumes name is allocated */ 310 if (asprintf(&evsel->name, "cycles%s%s%.*s", 311 (attr.precise_ip || attr.exclude_kernel) ? ":" : "", 312 attr.exclude_kernel ? "u" : "", 313 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) 314 goto error_free; 315 out: 316 return evsel; 317 error_free: 318 perf_evsel__delete(evsel); 319 evsel = NULL; 320 goto out; 321 } 322 323 /* 324 * Returns pointer with encoded error via <linux/err.h> interface. 325 */ 326 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 327 { 328 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 329 int err = -ENOMEM; 330 331 if (evsel == NULL) { 332 goto out_err; 333 } else { 334 struct perf_event_attr attr = { 335 .type = PERF_TYPE_TRACEPOINT, 336 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 337 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 338 }; 339 340 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 341 goto out_free; 342 343 evsel->tp_format = trace_event__tp_format(sys, name); 344 if (IS_ERR(evsel->tp_format)) { 345 err = PTR_ERR(evsel->tp_format); 346 goto out_free; 347 } 348 349 event_attr_init(&attr); 350 attr.config = evsel->tp_format->id; 351 attr.sample_period = 1; 352 perf_evsel__init(evsel, &attr, idx); 353 } 354 355 return evsel; 356 357 out_free: 358 zfree(&evsel->name); 359 free(evsel); 360 out_err: 361 return ERR_PTR(err); 362 } 363 364 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 365 "cycles", 366 "instructions", 367 "cache-references", 368 "cache-misses", 369 "branches", 370 "branch-misses", 371 "bus-cycles", 372 "stalled-cycles-frontend", 373 "stalled-cycles-backend", 374 "ref-cycles", 375 }; 376 377 static const char *__perf_evsel__hw_name(u64 config) 378 { 379 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 380 return perf_evsel__hw_names[config]; 381 382 return "unknown-hardware"; 383 } 384 385 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 386 { 387 int colon = 0, r = 0; 388 struct perf_event_attr *attr = &evsel->attr; 389 bool exclude_guest_default = false; 390 391 #define MOD_PRINT(context, mod) do { \ 392 if (!attr->exclude_##context) { \ 393 if (!colon) colon = ++r; \ 394 r += scnprintf(bf + r, size - r, "%c", mod); \ 395 } } while(0) 396 397 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 398 MOD_PRINT(kernel, 'k'); 399 MOD_PRINT(user, 'u'); 400 MOD_PRINT(hv, 'h'); 401 exclude_guest_default = true; 402 } 403 404 if (attr->precise_ip) { 405 if (!colon) 406 colon = ++r; 407 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 408 exclude_guest_default = true; 409 } 410 411 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 412 MOD_PRINT(host, 'H'); 413 MOD_PRINT(guest, 'G'); 414 } 415 #undef MOD_PRINT 416 if (colon) 417 bf[colon - 1] = ':'; 418 return r; 419 } 420 421 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 422 { 423 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 424 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 425 } 426 427 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 428 "cpu-clock", 429 "task-clock", 430 "page-faults", 431 "context-switches", 432 "cpu-migrations", 433 "minor-faults", 434 "major-faults", 435 "alignment-faults", 436 "emulation-faults", 437 "dummy", 438 }; 439 440 static const char *__perf_evsel__sw_name(u64 config) 441 { 442 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 443 return perf_evsel__sw_names[config]; 444 return "unknown-software"; 445 } 446 447 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 448 { 449 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 450 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 451 } 452 453 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 454 { 455 int r; 456 457 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 458 459 if (type & HW_BREAKPOINT_R) 460 r += scnprintf(bf + r, size - r, "r"); 461 462 if (type & HW_BREAKPOINT_W) 463 r += scnprintf(bf + r, size - r, "w"); 464 465 if (type & HW_BREAKPOINT_X) 466 r += scnprintf(bf + r, size - r, "x"); 467 468 return r; 469 } 470 471 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 472 { 473 struct perf_event_attr *attr = &evsel->attr; 474 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 475 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 476 } 477 478 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 479 [PERF_EVSEL__MAX_ALIASES] = { 480 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 481 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 482 { "LLC", "L2", }, 483 { "dTLB", "d-tlb", "Data-TLB", }, 484 { "iTLB", "i-tlb", "Instruction-TLB", }, 485 { "branch", "branches", "bpu", "btb", "bpc", }, 486 { "node", }, 487 }; 488 489 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 490 [PERF_EVSEL__MAX_ALIASES] = { 491 { "load", "loads", "read", }, 492 { "store", "stores", "write", }, 493 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 494 }; 495 496 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 497 [PERF_EVSEL__MAX_ALIASES] = { 498 { "refs", "Reference", "ops", "access", }, 499 { "misses", "miss", }, 500 }; 501 502 #define C(x) PERF_COUNT_HW_CACHE_##x 503 #define CACHE_READ (1 << C(OP_READ)) 504 #define CACHE_WRITE (1 << C(OP_WRITE)) 505 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 506 #define COP(x) (1 << x) 507 508 /* 509 * cache operartion stat 510 * L1I : Read and prefetch only 511 * ITLB and BPU : Read-only 512 */ 513 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 514 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 515 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 516 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 517 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 518 [C(ITLB)] = (CACHE_READ), 519 [C(BPU)] = (CACHE_READ), 520 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 521 }; 522 523 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 524 { 525 if (perf_evsel__hw_cache_stat[type] & COP(op)) 526 return true; /* valid */ 527 else 528 return false; /* invalid */ 529 } 530 531 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 532 char *bf, size_t size) 533 { 534 if (result) { 535 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 536 perf_evsel__hw_cache_op[op][0], 537 perf_evsel__hw_cache_result[result][0]); 538 } 539 540 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 541 perf_evsel__hw_cache_op[op][1]); 542 } 543 544 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 545 { 546 u8 op, result, type = (config >> 0) & 0xff; 547 const char *err = "unknown-ext-hardware-cache-type"; 548 549 if (type >= PERF_COUNT_HW_CACHE_MAX) 550 goto out_err; 551 552 op = (config >> 8) & 0xff; 553 err = "unknown-ext-hardware-cache-op"; 554 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 555 goto out_err; 556 557 result = (config >> 16) & 0xff; 558 err = "unknown-ext-hardware-cache-result"; 559 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 560 goto out_err; 561 562 err = "invalid-cache"; 563 if (!perf_evsel__is_cache_op_valid(type, op)) 564 goto out_err; 565 566 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 567 out_err: 568 return scnprintf(bf, size, "%s", err); 569 } 570 571 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 572 { 573 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 574 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 575 } 576 577 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 578 { 579 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 580 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 581 } 582 583 const char *perf_evsel__name(struct perf_evsel *evsel) 584 { 585 char bf[128]; 586 587 if (evsel->name) 588 return evsel->name; 589 590 switch (evsel->attr.type) { 591 case PERF_TYPE_RAW: 592 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 593 break; 594 595 case PERF_TYPE_HARDWARE: 596 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 597 break; 598 599 case PERF_TYPE_HW_CACHE: 600 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 601 break; 602 603 case PERF_TYPE_SOFTWARE: 604 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 605 break; 606 607 case PERF_TYPE_TRACEPOINT: 608 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 609 break; 610 611 case PERF_TYPE_BREAKPOINT: 612 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 613 break; 614 615 default: 616 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 617 evsel->attr.type); 618 break; 619 } 620 621 evsel->name = strdup(bf); 622 623 return evsel->name ?: "unknown"; 624 } 625 626 const char *perf_evsel__group_name(struct perf_evsel *evsel) 627 { 628 return evsel->group_name ?: "anon group"; 629 } 630 631 /* 632 * Returns the group details for the specified leader, 633 * with following rules. 634 * 635 * For record -e '{cycles,instructions}' 636 * 'anon group { cycles:u, instructions:u }' 637 * 638 * For record -e 'cycles,instructions' and report --group 639 * 'cycles:u, instructions:u' 640 */ 641 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 642 { 643 int ret = 0; 644 struct perf_evsel *pos; 645 const char *group_name = perf_evsel__group_name(evsel); 646 647 if (!evsel->forced_leader) 648 ret = scnprintf(buf, size, "%s { ", group_name); 649 650 ret += scnprintf(buf + ret, size - ret, "%s", 651 perf_evsel__name(evsel)); 652 653 for_each_group_member(pos, evsel) 654 ret += scnprintf(buf + ret, size - ret, ", %s", 655 perf_evsel__name(pos)); 656 657 if (!evsel->forced_leader) 658 ret += scnprintf(buf + ret, size - ret, " }"); 659 660 return ret; 661 } 662 663 static void __perf_evsel__config_callchain(struct perf_evsel *evsel, 664 struct record_opts *opts, 665 struct callchain_param *param) 666 { 667 bool function = perf_evsel__is_function_event(evsel); 668 struct perf_event_attr *attr = &evsel->attr; 669 670 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 671 672 attr->sample_max_stack = param->max_stack; 673 674 if (param->record_mode == CALLCHAIN_LBR) { 675 if (!opts->branch_stack) { 676 if (attr->exclude_user) { 677 pr_warning("LBR callstack option is only available " 678 "to get user callchain information. " 679 "Falling back to framepointers.\n"); 680 } else { 681 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 682 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 683 PERF_SAMPLE_BRANCH_CALL_STACK | 684 PERF_SAMPLE_BRANCH_NO_CYCLES | 685 PERF_SAMPLE_BRANCH_NO_FLAGS; 686 } 687 } else 688 pr_warning("Cannot use LBR callstack with branch stack. " 689 "Falling back to framepointers.\n"); 690 } 691 692 if (param->record_mode == CALLCHAIN_DWARF) { 693 if (!function) { 694 perf_evsel__set_sample_bit(evsel, REGS_USER); 695 perf_evsel__set_sample_bit(evsel, STACK_USER); 696 attr->sample_regs_user |= PERF_REGS_MASK; 697 attr->sample_stack_user = param->dump_size; 698 attr->exclude_callchain_user = 1; 699 } else { 700 pr_info("Cannot use DWARF unwind for function trace event," 701 " falling back to framepointers.\n"); 702 } 703 } 704 705 if (function) { 706 pr_info("Disabling user space callchains for function trace event.\n"); 707 attr->exclude_callchain_user = 1; 708 } 709 } 710 711 void perf_evsel__config_callchain(struct perf_evsel *evsel, 712 struct record_opts *opts, 713 struct callchain_param *param) 714 { 715 if (param->enabled) 716 return __perf_evsel__config_callchain(evsel, opts, param); 717 } 718 719 static void 720 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 721 struct callchain_param *param) 722 { 723 struct perf_event_attr *attr = &evsel->attr; 724 725 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 726 if (param->record_mode == CALLCHAIN_LBR) { 727 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 728 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 729 PERF_SAMPLE_BRANCH_CALL_STACK); 730 } 731 if (param->record_mode == CALLCHAIN_DWARF) { 732 perf_evsel__reset_sample_bit(evsel, REGS_USER); 733 perf_evsel__reset_sample_bit(evsel, STACK_USER); 734 } 735 } 736 737 static void apply_config_terms(struct perf_evsel *evsel, 738 struct record_opts *opts, bool track) 739 { 740 struct perf_evsel_config_term *term; 741 struct list_head *config_terms = &evsel->config_terms; 742 struct perf_event_attr *attr = &evsel->attr; 743 /* callgraph default */ 744 struct callchain_param param = { 745 .record_mode = callchain_param.record_mode, 746 }; 747 u32 dump_size = 0; 748 int max_stack = 0; 749 const char *callgraph_buf = NULL; 750 751 list_for_each_entry(term, config_terms, list) { 752 switch (term->type) { 753 case PERF_EVSEL__CONFIG_TERM_PERIOD: 754 if (!(term->weak && opts->user_interval != ULLONG_MAX)) { 755 attr->sample_period = term->val.period; 756 attr->freq = 0; 757 perf_evsel__reset_sample_bit(evsel, PERIOD); 758 } 759 break; 760 case PERF_EVSEL__CONFIG_TERM_FREQ: 761 if (!(term->weak && opts->user_freq != UINT_MAX)) { 762 attr->sample_freq = term->val.freq; 763 attr->freq = 1; 764 perf_evsel__set_sample_bit(evsel, PERIOD); 765 } 766 break; 767 case PERF_EVSEL__CONFIG_TERM_TIME: 768 if (term->val.time) 769 perf_evsel__set_sample_bit(evsel, TIME); 770 else 771 perf_evsel__reset_sample_bit(evsel, TIME); 772 break; 773 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 774 callgraph_buf = term->val.callgraph; 775 break; 776 case PERF_EVSEL__CONFIG_TERM_BRANCH: 777 if (term->val.branch && strcmp(term->val.branch, "no")) { 778 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 779 parse_branch_str(term->val.branch, 780 &attr->branch_sample_type); 781 } else 782 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 783 break; 784 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 785 dump_size = term->val.stack_user; 786 break; 787 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 788 max_stack = term->val.max_stack; 789 break; 790 case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS: 791 evsel->max_events = term->val.max_events; 792 break; 793 case PERF_EVSEL__CONFIG_TERM_INHERIT: 794 /* 795 * attr->inherit should has already been set by 796 * perf_evsel__config. If user explicitly set 797 * inherit using config terms, override global 798 * opt->no_inherit setting. 799 */ 800 attr->inherit = term->val.inherit ? 1 : 0; 801 break; 802 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 803 attr->write_backward = term->val.overwrite ? 1 : 0; 804 break; 805 case PERF_EVSEL__CONFIG_TERM_DRV_CFG: 806 break; 807 default: 808 break; 809 } 810 } 811 812 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 813 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 814 bool sample_address = false; 815 816 if (max_stack) { 817 param.max_stack = max_stack; 818 if (callgraph_buf == NULL) 819 callgraph_buf = "fp"; 820 } 821 822 /* parse callgraph parameters */ 823 if (callgraph_buf != NULL) { 824 if (!strcmp(callgraph_buf, "no")) { 825 param.enabled = false; 826 param.record_mode = CALLCHAIN_NONE; 827 } else { 828 param.enabled = true; 829 if (parse_callchain_record(callgraph_buf, ¶m)) { 830 pr_err("per-event callgraph setting for %s failed. " 831 "Apply callgraph global setting for it\n", 832 evsel->name); 833 return; 834 } 835 if (param.record_mode == CALLCHAIN_DWARF) 836 sample_address = true; 837 } 838 } 839 if (dump_size > 0) { 840 dump_size = round_up(dump_size, sizeof(u64)); 841 param.dump_size = dump_size; 842 } 843 844 /* If global callgraph set, clear it */ 845 if (callchain_param.enabled) 846 perf_evsel__reset_callgraph(evsel, &callchain_param); 847 848 /* set perf-event callgraph */ 849 if (param.enabled) { 850 if (sample_address) { 851 perf_evsel__set_sample_bit(evsel, ADDR); 852 perf_evsel__set_sample_bit(evsel, DATA_SRC); 853 evsel->attr.mmap_data = track; 854 } 855 perf_evsel__config_callchain(evsel, opts, ¶m); 856 } 857 } 858 } 859 860 static bool is_dummy_event(struct perf_evsel *evsel) 861 { 862 return (evsel->attr.type == PERF_TYPE_SOFTWARE) && 863 (evsel->attr.config == PERF_COUNT_SW_DUMMY); 864 } 865 866 /* 867 * The enable_on_exec/disabled value strategy: 868 * 869 * 1) For any type of traced program: 870 * - all independent events and group leaders are disabled 871 * - all group members are enabled 872 * 873 * Group members are ruled by group leaders. They need to 874 * be enabled, because the group scheduling relies on that. 875 * 876 * 2) For traced programs executed by perf: 877 * - all independent events and group leaders have 878 * enable_on_exec set 879 * - we don't specifically enable or disable any event during 880 * the record command 881 * 882 * Independent events and group leaders are initially disabled 883 * and get enabled by exec. Group members are ruled by group 884 * leaders as stated in 1). 885 * 886 * 3) For traced programs attached by perf (pid/tid): 887 * - we specifically enable or disable all events during 888 * the record command 889 * 890 * When attaching events to already running traced we 891 * enable/disable events specifically, as there's no 892 * initial traced exec call. 893 */ 894 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 895 struct callchain_param *callchain) 896 { 897 struct perf_evsel *leader = evsel->leader; 898 struct perf_event_attr *attr = &evsel->attr; 899 int track = evsel->tracking; 900 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 901 902 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 903 attr->inherit = !opts->no_inherit; 904 attr->write_backward = opts->overwrite ? 1 : 0; 905 906 perf_evsel__set_sample_bit(evsel, IP); 907 perf_evsel__set_sample_bit(evsel, TID); 908 909 if (evsel->sample_read) { 910 perf_evsel__set_sample_bit(evsel, READ); 911 912 /* 913 * We need ID even in case of single event, because 914 * PERF_SAMPLE_READ process ID specific data. 915 */ 916 perf_evsel__set_sample_id(evsel, false); 917 918 /* 919 * Apply group format only if we belong to group 920 * with more than one members. 921 */ 922 if (leader->nr_members > 1) { 923 attr->read_format |= PERF_FORMAT_GROUP; 924 attr->inherit = 0; 925 } 926 } 927 928 /* 929 * We default some events to have a default interval. But keep 930 * it a weak assumption overridable by the user. 931 */ 932 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 933 opts->user_interval != ULLONG_MAX)) { 934 if (opts->freq) { 935 perf_evsel__set_sample_bit(evsel, PERIOD); 936 attr->freq = 1; 937 attr->sample_freq = opts->freq; 938 } else { 939 attr->sample_period = opts->default_interval; 940 } 941 } 942 943 /* 944 * Disable sampling for all group members other 945 * than leader in case leader 'leads' the sampling. 946 */ 947 if ((leader != evsel) && leader->sample_read) { 948 attr->freq = 0; 949 attr->sample_freq = 0; 950 attr->sample_period = 0; 951 attr->write_backward = 0; 952 953 /* 954 * We don't get sample for slave events, we make them 955 * when delivering group leader sample. Set the slave 956 * event to follow the master sample_type to ease up 957 * report. 958 */ 959 attr->sample_type = leader->attr.sample_type; 960 } 961 962 if (opts->no_samples) 963 attr->sample_freq = 0; 964 965 if (opts->inherit_stat) { 966 evsel->attr.read_format |= 967 PERF_FORMAT_TOTAL_TIME_ENABLED | 968 PERF_FORMAT_TOTAL_TIME_RUNNING | 969 PERF_FORMAT_ID; 970 attr->inherit_stat = 1; 971 } 972 973 if (opts->sample_address) { 974 perf_evsel__set_sample_bit(evsel, ADDR); 975 attr->mmap_data = track; 976 } 977 978 /* 979 * We don't allow user space callchains for function trace 980 * event, due to issues with page faults while tracing page 981 * fault handler and its overall trickiness nature. 982 */ 983 if (perf_evsel__is_function_event(evsel)) 984 evsel->attr.exclude_callchain_user = 1; 985 986 if (callchain && callchain->enabled && !evsel->no_aux_samples) 987 perf_evsel__config_callchain(evsel, opts, callchain); 988 989 if (opts->sample_intr_regs) { 990 attr->sample_regs_intr = opts->sample_intr_regs; 991 perf_evsel__set_sample_bit(evsel, REGS_INTR); 992 } 993 994 if (opts->sample_user_regs) { 995 attr->sample_regs_user |= opts->sample_user_regs; 996 perf_evsel__set_sample_bit(evsel, REGS_USER); 997 } 998 999 if (target__has_cpu(&opts->target) || opts->sample_cpu) 1000 perf_evsel__set_sample_bit(evsel, CPU); 1001 1002 /* 1003 * When the user explicitly disabled time don't force it here. 1004 */ 1005 if (opts->sample_time && 1006 (!perf_missing_features.sample_id_all && 1007 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 1008 opts->sample_time_set))) 1009 perf_evsel__set_sample_bit(evsel, TIME); 1010 1011 if (opts->raw_samples && !evsel->no_aux_samples) { 1012 perf_evsel__set_sample_bit(evsel, TIME); 1013 perf_evsel__set_sample_bit(evsel, RAW); 1014 perf_evsel__set_sample_bit(evsel, CPU); 1015 } 1016 1017 if (opts->sample_address) 1018 perf_evsel__set_sample_bit(evsel, DATA_SRC); 1019 1020 if (opts->sample_phys_addr) 1021 perf_evsel__set_sample_bit(evsel, PHYS_ADDR); 1022 1023 if (opts->no_buffering) { 1024 attr->watermark = 0; 1025 attr->wakeup_events = 1; 1026 } 1027 if (opts->branch_stack && !evsel->no_aux_samples) { 1028 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 1029 attr->branch_sample_type = opts->branch_stack; 1030 } 1031 1032 if (opts->sample_weight) 1033 perf_evsel__set_sample_bit(evsel, WEIGHT); 1034 1035 attr->task = track; 1036 attr->mmap = track; 1037 attr->mmap2 = track && !perf_missing_features.mmap2; 1038 attr->comm = track; 1039 attr->ksymbol = track && !perf_missing_features.ksymbol; 1040 attr->bpf_event = track && !opts->no_bpf_event && 1041 !perf_missing_features.bpf_event; 1042 1043 if (opts->record_namespaces) 1044 attr->namespaces = track; 1045 1046 if (opts->record_switch_events) 1047 attr->context_switch = track; 1048 1049 if (opts->sample_transaction) 1050 perf_evsel__set_sample_bit(evsel, TRANSACTION); 1051 1052 if (opts->running_time) { 1053 evsel->attr.read_format |= 1054 PERF_FORMAT_TOTAL_TIME_ENABLED | 1055 PERF_FORMAT_TOTAL_TIME_RUNNING; 1056 } 1057 1058 /* 1059 * XXX see the function comment above 1060 * 1061 * Disabling only independent events or group leaders, 1062 * keeping group members enabled. 1063 */ 1064 if (perf_evsel__is_group_leader(evsel)) 1065 attr->disabled = 1; 1066 1067 /* 1068 * Setting enable_on_exec for independent events and 1069 * group leaders for traced executed by perf. 1070 */ 1071 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 1072 !opts->initial_delay) 1073 attr->enable_on_exec = 1; 1074 1075 if (evsel->immediate) { 1076 attr->disabled = 0; 1077 attr->enable_on_exec = 0; 1078 } 1079 1080 clockid = opts->clockid; 1081 if (opts->use_clockid) { 1082 attr->use_clockid = 1; 1083 attr->clockid = opts->clockid; 1084 } 1085 1086 if (evsel->precise_max) 1087 attr->precise_ip = 3; 1088 1089 if (opts->all_user) { 1090 attr->exclude_kernel = 1; 1091 attr->exclude_user = 0; 1092 } 1093 1094 if (opts->all_kernel) { 1095 attr->exclude_kernel = 0; 1096 attr->exclude_user = 1; 1097 } 1098 1099 if (evsel->own_cpus || evsel->unit) 1100 evsel->attr.read_format |= PERF_FORMAT_ID; 1101 1102 /* 1103 * Apply event specific term settings, 1104 * it overloads any global configuration. 1105 */ 1106 apply_config_terms(evsel, opts, track); 1107 1108 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1109 1110 /* The --period option takes the precedence. */ 1111 if (opts->period_set) { 1112 if (opts->period) 1113 perf_evsel__set_sample_bit(evsel, PERIOD); 1114 else 1115 perf_evsel__reset_sample_bit(evsel, PERIOD); 1116 } 1117 1118 /* 1119 * For initial_delay, a dummy event is added implicitly. 1120 * The software event will trigger -EOPNOTSUPP error out, 1121 * if BRANCH_STACK bit is set. 1122 */ 1123 if (opts->initial_delay && is_dummy_event(evsel)) 1124 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 1125 } 1126 1127 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1128 { 1129 if (evsel->system_wide) 1130 nthreads = 1; 1131 1132 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1133 1134 if (evsel->fd) { 1135 int cpu, thread; 1136 for (cpu = 0; cpu < ncpus; cpu++) { 1137 for (thread = 0; thread < nthreads; thread++) { 1138 FD(evsel, cpu, thread) = -1; 1139 } 1140 } 1141 } 1142 1143 return evsel->fd != NULL ? 0 : -ENOMEM; 1144 } 1145 1146 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, 1147 int ioc, void *arg) 1148 { 1149 int cpu, thread; 1150 1151 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 1152 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) { 1153 int fd = FD(evsel, cpu, thread), 1154 err = ioctl(fd, ioc, arg); 1155 1156 if (err) 1157 return err; 1158 } 1159 } 1160 1161 return 0; 1162 } 1163 1164 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter) 1165 { 1166 return perf_evsel__run_ioctl(evsel, 1167 PERF_EVENT_IOC_SET_FILTER, 1168 (void *)filter); 1169 } 1170 1171 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1172 { 1173 char *new_filter = strdup(filter); 1174 1175 if (new_filter != NULL) { 1176 free(evsel->filter); 1177 evsel->filter = new_filter; 1178 return 0; 1179 } 1180 1181 return -1; 1182 } 1183 1184 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1185 const char *fmt, const char *filter) 1186 { 1187 char *new_filter; 1188 1189 if (evsel->filter == NULL) 1190 return perf_evsel__set_filter(evsel, filter); 1191 1192 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1193 free(evsel->filter); 1194 evsel->filter = new_filter; 1195 return 0; 1196 } 1197 1198 return -1; 1199 } 1200 1201 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1202 { 1203 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1204 } 1205 1206 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1207 { 1208 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1209 } 1210 1211 int perf_evsel__enable(struct perf_evsel *evsel) 1212 { 1213 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0); 1214 1215 if (!err) 1216 evsel->disabled = false; 1217 1218 return err; 1219 } 1220 1221 int perf_evsel__disable(struct perf_evsel *evsel) 1222 { 1223 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0); 1224 /* 1225 * We mark it disabled here so that tools that disable a event can 1226 * ignore events after they disable it. I.e. the ring buffer may have 1227 * already a few more events queued up before the kernel got the stop 1228 * request. 1229 */ 1230 if (!err) 1231 evsel->disabled = true; 1232 1233 return err; 1234 } 1235 1236 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1237 { 1238 if (ncpus == 0 || nthreads == 0) 1239 return 0; 1240 1241 if (evsel->system_wide) 1242 nthreads = 1; 1243 1244 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1245 if (evsel->sample_id == NULL) 1246 return -ENOMEM; 1247 1248 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1249 if (evsel->id == NULL) { 1250 xyarray__delete(evsel->sample_id); 1251 evsel->sample_id = NULL; 1252 return -ENOMEM; 1253 } 1254 1255 return 0; 1256 } 1257 1258 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1259 { 1260 xyarray__delete(evsel->fd); 1261 evsel->fd = NULL; 1262 } 1263 1264 static void perf_evsel__free_id(struct perf_evsel *evsel) 1265 { 1266 xyarray__delete(evsel->sample_id); 1267 evsel->sample_id = NULL; 1268 zfree(&evsel->id); 1269 } 1270 1271 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1272 { 1273 struct perf_evsel_config_term *term, *h; 1274 1275 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1276 list_del(&term->list); 1277 free(term); 1278 } 1279 } 1280 1281 void perf_evsel__close_fd(struct perf_evsel *evsel) 1282 { 1283 int cpu, thread; 1284 1285 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) 1286 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) { 1287 close(FD(evsel, cpu, thread)); 1288 FD(evsel, cpu, thread) = -1; 1289 } 1290 } 1291 1292 void perf_evsel__exit(struct perf_evsel *evsel) 1293 { 1294 assert(list_empty(&evsel->node)); 1295 assert(evsel->evlist == NULL); 1296 perf_evsel__free_counts(evsel); 1297 perf_evsel__free_fd(evsel); 1298 perf_evsel__free_id(evsel); 1299 perf_evsel__free_config_terms(evsel); 1300 cgroup__put(evsel->cgrp); 1301 cpu_map__put(evsel->cpus); 1302 cpu_map__put(evsel->own_cpus); 1303 thread_map__put(evsel->threads); 1304 zfree(&evsel->group_name); 1305 zfree(&evsel->name); 1306 perf_evsel__object.fini(evsel); 1307 } 1308 1309 void perf_evsel__delete(struct perf_evsel *evsel) 1310 { 1311 perf_evsel__exit(evsel); 1312 free(evsel); 1313 } 1314 1315 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1316 struct perf_counts_values *count) 1317 { 1318 struct perf_counts_values tmp; 1319 1320 if (!evsel->prev_raw_counts) 1321 return; 1322 1323 if (cpu == -1) { 1324 tmp = evsel->prev_raw_counts->aggr; 1325 evsel->prev_raw_counts->aggr = *count; 1326 } else { 1327 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1328 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1329 } 1330 1331 count->val = count->val - tmp.val; 1332 count->ena = count->ena - tmp.ena; 1333 count->run = count->run - tmp.run; 1334 } 1335 1336 void perf_counts_values__scale(struct perf_counts_values *count, 1337 bool scale, s8 *pscaled) 1338 { 1339 s8 scaled = 0; 1340 1341 if (scale) { 1342 if (count->run == 0) { 1343 scaled = -1; 1344 count->val = 0; 1345 } else if (count->run < count->ena) { 1346 scaled = 1; 1347 count->val = (u64)((double) count->val * count->ena / count->run); 1348 } 1349 } 1350 1351 if (pscaled) 1352 *pscaled = scaled; 1353 } 1354 1355 static int perf_evsel__read_size(struct perf_evsel *evsel) 1356 { 1357 u64 read_format = evsel->attr.read_format; 1358 int entry = sizeof(u64); /* value */ 1359 int size = 0; 1360 int nr = 1; 1361 1362 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1363 size += sizeof(u64); 1364 1365 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1366 size += sizeof(u64); 1367 1368 if (read_format & PERF_FORMAT_ID) 1369 entry += sizeof(u64); 1370 1371 if (read_format & PERF_FORMAT_GROUP) { 1372 nr = evsel->nr_members; 1373 size += sizeof(u64); 1374 } 1375 1376 size += entry * nr; 1377 return size; 1378 } 1379 1380 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1381 struct perf_counts_values *count) 1382 { 1383 size_t size = perf_evsel__read_size(evsel); 1384 1385 memset(count, 0, sizeof(*count)); 1386 1387 if (FD(evsel, cpu, thread) < 0) 1388 return -EINVAL; 1389 1390 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0) 1391 return -errno; 1392 1393 return 0; 1394 } 1395 1396 static int 1397 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread) 1398 { 1399 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread); 1400 1401 return perf_evsel__read(evsel, cpu, thread, count); 1402 } 1403 1404 static void 1405 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread, 1406 u64 val, u64 ena, u64 run) 1407 { 1408 struct perf_counts_values *count; 1409 1410 count = perf_counts(counter->counts, cpu, thread); 1411 1412 count->val = val; 1413 count->ena = ena; 1414 count->run = run; 1415 count->loaded = true; 1416 } 1417 1418 static int 1419 perf_evsel__process_group_data(struct perf_evsel *leader, 1420 int cpu, int thread, u64 *data) 1421 { 1422 u64 read_format = leader->attr.read_format; 1423 struct sample_read_value *v; 1424 u64 nr, ena = 0, run = 0, i; 1425 1426 nr = *data++; 1427 1428 if (nr != (u64) leader->nr_members) 1429 return -EINVAL; 1430 1431 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1432 ena = *data++; 1433 1434 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1435 run = *data++; 1436 1437 v = (struct sample_read_value *) data; 1438 1439 perf_evsel__set_count(leader, cpu, thread, 1440 v[0].value, ena, run); 1441 1442 for (i = 1; i < nr; i++) { 1443 struct perf_evsel *counter; 1444 1445 counter = perf_evlist__id2evsel(leader->evlist, v[i].id); 1446 if (!counter) 1447 return -EINVAL; 1448 1449 perf_evsel__set_count(counter, cpu, thread, 1450 v[i].value, ena, run); 1451 } 1452 1453 return 0; 1454 } 1455 1456 static int 1457 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread) 1458 { 1459 struct perf_stat_evsel *ps = leader->stats; 1460 u64 read_format = leader->attr.read_format; 1461 int size = perf_evsel__read_size(leader); 1462 u64 *data = ps->group_data; 1463 1464 if (!(read_format & PERF_FORMAT_ID)) 1465 return -EINVAL; 1466 1467 if (!perf_evsel__is_group_leader(leader)) 1468 return -EINVAL; 1469 1470 if (!data) { 1471 data = zalloc(size); 1472 if (!data) 1473 return -ENOMEM; 1474 1475 ps->group_data = data; 1476 } 1477 1478 if (FD(leader, cpu, thread) < 0) 1479 return -EINVAL; 1480 1481 if (readn(FD(leader, cpu, thread), data, size) <= 0) 1482 return -errno; 1483 1484 return perf_evsel__process_group_data(leader, cpu, thread, data); 1485 } 1486 1487 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread) 1488 { 1489 u64 read_format = evsel->attr.read_format; 1490 1491 if (read_format & PERF_FORMAT_GROUP) 1492 return perf_evsel__read_group(evsel, cpu, thread); 1493 else 1494 return perf_evsel__read_one(evsel, cpu, thread); 1495 } 1496 1497 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1498 int cpu, int thread, bool scale) 1499 { 1500 struct perf_counts_values count; 1501 size_t nv = scale ? 3 : 1; 1502 1503 if (FD(evsel, cpu, thread) < 0) 1504 return -EINVAL; 1505 1506 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1507 return -ENOMEM; 1508 1509 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1510 return -errno; 1511 1512 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1513 perf_counts_values__scale(&count, scale, NULL); 1514 *perf_counts(evsel->counts, cpu, thread) = count; 1515 return 0; 1516 } 1517 1518 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1519 { 1520 struct perf_evsel *leader = evsel->leader; 1521 int fd; 1522 1523 if (perf_evsel__is_group_leader(evsel)) 1524 return -1; 1525 1526 /* 1527 * Leader must be already processed/open, 1528 * if not it's a bug. 1529 */ 1530 BUG_ON(!leader->fd); 1531 1532 fd = FD(leader, cpu, thread); 1533 BUG_ON(fd == -1); 1534 1535 return fd; 1536 } 1537 1538 struct bit_names { 1539 int bit; 1540 const char *name; 1541 }; 1542 1543 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1544 { 1545 bool first_bit = true; 1546 int i = 0; 1547 1548 do { 1549 if (value & bits[i].bit) { 1550 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1551 first_bit = false; 1552 } 1553 } while (bits[++i].name != NULL); 1554 } 1555 1556 static void __p_sample_type(char *buf, size_t size, u64 value) 1557 { 1558 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1559 struct bit_names bits[] = { 1560 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1561 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1562 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1563 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1564 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1565 bit_name(WEIGHT), bit_name(PHYS_ADDR), 1566 { .name = NULL, } 1567 }; 1568 #undef bit_name 1569 __p_bits(buf, size, value, bits); 1570 } 1571 1572 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1573 { 1574 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1575 struct bit_names bits[] = { 1576 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1577 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1578 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1579 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1580 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1581 { .name = NULL, } 1582 }; 1583 #undef bit_name 1584 __p_bits(buf, size, value, bits); 1585 } 1586 1587 static void __p_read_format(char *buf, size_t size, u64 value) 1588 { 1589 #define bit_name(n) { PERF_FORMAT_##n, #n } 1590 struct bit_names bits[] = { 1591 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1592 bit_name(ID), bit_name(GROUP), 1593 { .name = NULL, } 1594 }; 1595 #undef bit_name 1596 __p_bits(buf, size, value, bits); 1597 } 1598 1599 #define BUF_SIZE 1024 1600 1601 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1602 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1603 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1604 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1605 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1606 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1607 1608 #define PRINT_ATTRn(_n, _f, _p) \ 1609 do { \ 1610 if (attr->_f) { \ 1611 _p(attr->_f); \ 1612 ret += attr__fprintf(fp, _n, buf, priv);\ 1613 } \ 1614 } while (0) 1615 1616 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1617 1618 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1619 attr__fprintf_f attr__fprintf, void *priv) 1620 { 1621 char buf[BUF_SIZE]; 1622 int ret = 0; 1623 1624 PRINT_ATTRf(type, p_unsigned); 1625 PRINT_ATTRf(size, p_unsigned); 1626 PRINT_ATTRf(config, p_hex); 1627 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1628 PRINT_ATTRf(sample_type, p_sample_type); 1629 PRINT_ATTRf(read_format, p_read_format); 1630 1631 PRINT_ATTRf(disabled, p_unsigned); 1632 PRINT_ATTRf(inherit, p_unsigned); 1633 PRINT_ATTRf(pinned, p_unsigned); 1634 PRINT_ATTRf(exclusive, p_unsigned); 1635 PRINT_ATTRf(exclude_user, p_unsigned); 1636 PRINT_ATTRf(exclude_kernel, p_unsigned); 1637 PRINT_ATTRf(exclude_hv, p_unsigned); 1638 PRINT_ATTRf(exclude_idle, p_unsigned); 1639 PRINT_ATTRf(mmap, p_unsigned); 1640 PRINT_ATTRf(comm, p_unsigned); 1641 PRINT_ATTRf(freq, p_unsigned); 1642 PRINT_ATTRf(inherit_stat, p_unsigned); 1643 PRINT_ATTRf(enable_on_exec, p_unsigned); 1644 PRINT_ATTRf(task, p_unsigned); 1645 PRINT_ATTRf(watermark, p_unsigned); 1646 PRINT_ATTRf(precise_ip, p_unsigned); 1647 PRINT_ATTRf(mmap_data, p_unsigned); 1648 PRINT_ATTRf(sample_id_all, p_unsigned); 1649 PRINT_ATTRf(exclude_host, p_unsigned); 1650 PRINT_ATTRf(exclude_guest, p_unsigned); 1651 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1652 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1653 PRINT_ATTRf(mmap2, p_unsigned); 1654 PRINT_ATTRf(comm_exec, p_unsigned); 1655 PRINT_ATTRf(use_clockid, p_unsigned); 1656 PRINT_ATTRf(context_switch, p_unsigned); 1657 PRINT_ATTRf(write_backward, p_unsigned); 1658 PRINT_ATTRf(namespaces, p_unsigned); 1659 PRINT_ATTRf(ksymbol, p_unsigned); 1660 PRINT_ATTRf(bpf_event, p_unsigned); 1661 1662 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1663 PRINT_ATTRf(bp_type, p_unsigned); 1664 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1665 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1666 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1667 PRINT_ATTRf(sample_regs_user, p_hex); 1668 PRINT_ATTRf(sample_stack_user, p_unsigned); 1669 PRINT_ATTRf(clockid, p_signed); 1670 PRINT_ATTRf(sample_regs_intr, p_hex); 1671 PRINT_ATTRf(aux_watermark, p_unsigned); 1672 PRINT_ATTRf(sample_max_stack, p_unsigned); 1673 1674 return ret; 1675 } 1676 1677 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1678 void *priv __maybe_unused) 1679 { 1680 return fprintf(fp, " %-32s %s\n", name, val); 1681 } 1682 1683 static void perf_evsel__remove_fd(struct perf_evsel *pos, 1684 int nr_cpus, int nr_threads, 1685 int thread_idx) 1686 { 1687 for (int cpu = 0; cpu < nr_cpus; cpu++) 1688 for (int thread = thread_idx; thread < nr_threads - 1; thread++) 1689 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1); 1690 } 1691 1692 static int update_fds(struct perf_evsel *evsel, 1693 int nr_cpus, int cpu_idx, 1694 int nr_threads, int thread_idx) 1695 { 1696 struct perf_evsel *pos; 1697 1698 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads) 1699 return -EINVAL; 1700 1701 evlist__for_each_entry(evsel->evlist, pos) { 1702 nr_cpus = pos != evsel ? nr_cpus : cpu_idx; 1703 1704 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx); 1705 1706 /* 1707 * Since fds for next evsel has not been created, 1708 * there is no need to iterate whole event list. 1709 */ 1710 if (pos == evsel) 1711 break; 1712 } 1713 return 0; 1714 } 1715 1716 static bool ignore_missing_thread(struct perf_evsel *evsel, 1717 int nr_cpus, int cpu, 1718 struct thread_map *threads, 1719 int thread, int err) 1720 { 1721 pid_t ignore_pid = thread_map__pid(threads, thread); 1722 1723 if (!evsel->ignore_missing_thread) 1724 return false; 1725 1726 /* The system wide setup does not work with threads. */ 1727 if (evsel->system_wide) 1728 return false; 1729 1730 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1731 if (err != -ESRCH) 1732 return false; 1733 1734 /* If there's only one thread, let it fail. */ 1735 if (threads->nr == 1) 1736 return false; 1737 1738 /* 1739 * We should remove fd for missing_thread first 1740 * because thread_map__remove() will decrease threads->nr. 1741 */ 1742 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread)) 1743 return false; 1744 1745 if (thread_map__remove(threads, thread)) 1746 return false; 1747 1748 pr_warning("WARNING: Ignored open failure for pid %d\n", 1749 ignore_pid); 1750 return true; 1751 } 1752 1753 static void display_attr(struct perf_event_attr *attr) 1754 { 1755 if (verbose >= 2) { 1756 fprintf(stderr, "%.60s\n", graph_dotted_line); 1757 fprintf(stderr, "perf_event_attr:\n"); 1758 perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL); 1759 fprintf(stderr, "%.60s\n", graph_dotted_line); 1760 } 1761 } 1762 1763 static int perf_event_open(struct perf_evsel *evsel, 1764 pid_t pid, int cpu, int group_fd, 1765 unsigned long flags) 1766 { 1767 int precise_ip = evsel->attr.precise_ip; 1768 int fd; 1769 1770 while (1) { 1771 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1772 pid, cpu, group_fd, flags); 1773 1774 fd = sys_perf_event_open(&evsel->attr, pid, cpu, group_fd, flags); 1775 if (fd >= 0) 1776 break; 1777 1778 /* 1779 * Do quick precise_ip fallback if: 1780 * - there is precise_ip set in perf_event_attr 1781 * - maximum precise is requested 1782 * - sys_perf_event_open failed with ENOTSUP error, 1783 * which is associated with wrong precise_ip 1784 */ 1785 if (!precise_ip || !evsel->precise_max || (errno != ENOTSUP)) 1786 break; 1787 1788 /* 1789 * We tried all the precise_ip values, and it's 1790 * still failing, so leave it to standard fallback. 1791 */ 1792 if (!evsel->attr.precise_ip) { 1793 evsel->attr.precise_ip = precise_ip; 1794 break; 1795 } 1796 1797 pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP); 1798 evsel->attr.precise_ip--; 1799 pr_debug2("decreasing precise_ip by one (%d)\n", evsel->attr.precise_ip); 1800 display_attr(&evsel->attr); 1801 } 1802 1803 return fd; 1804 } 1805 1806 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1807 struct thread_map *threads) 1808 { 1809 int cpu, thread, nthreads; 1810 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1811 int pid = -1, err; 1812 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1813 1814 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1815 return -EINVAL; 1816 1817 if (cpus == NULL) { 1818 static struct cpu_map *empty_cpu_map; 1819 1820 if (empty_cpu_map == NULL) { 1821 empty_cpu_map = cpu_map__dummy_new(); 1822 if (empty_cpu_map == NULL) 1823 return -ENOMEM; 1824 } 1825 1826 cpus = empty_cpu_map; 1827 } 1828 1829 if (threads == NULL) { 1830 static struct thread_map *empty_thread_map; 1831 1832 if (empty_thread_map == NULL) { 1833 empty_thread_map = thread_map__new_by_tid(-1); 1834 if (empty_thread_map == NULL) 1835 return -ENOMEM; 1836 } 1837 1838 threads = empty_thread_map; 1839 } 1840 1841 if (evsel->system_wide) 1842 nthreads = 1; 1843 else 1844 nthreads = threads->nr; 1845 1846 if (evsel->fd == NULL && 1847 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1848 return -ENOMEM; 1849 1850 if (evsel->cgrp) { 1851 flags |= PERF_FLAG_PID_CGROUP; 1852 pid = evsel->cgrp->fd; 1853 } 1854 1855 fallback_missing_features: 1856 if (perf_missing_features.clockid_wrong) 1857 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1858 if (perf_missing_features.clockid) { 1859 evsel->attr.use_clockid = 0; 1860 evsel->attr.clockid = 0; 1861 } 1862 if (perf_missing_features.cloexec) 1863 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1864 if (perf_missing_features.mmap2) 1865 evsel->attr.mmap2 = 0; 1866 if (perf_missing_features.exclude_guest) 1867 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1868 if (perf_missing_features.lbr_flags) 1869 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1870 PERF_SAMPLE_BRANCH_NO_CYCLES); 1871 if (perf_missing_features.group_read && evsel->attr.inherit) 1872 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); 1873 if (perf_missing_features.ksymbol) 1874 evsel->attr.ksymbol = 0; 1875 if (perf_missing_features.bpf_event) 1876 evsel->attr.bpf_event = 0; 1877 retry_sample_id: 1878 if (perf_missing_features.sample_id_all) 1879 evsel->attr.sample_id_all = 0; 1880 1881 display_attr(&evsel->attr); 1882 1883 for (cpu = 0; cpu < cpus->nr; cpu++) { 1884 1885 for (thread = 0; thread < nthreads; thread++) { 1886 int fd, group_fd; 1887 1888 if (!evsel->cgrp && !evsel->system_wide) 1889 pid = thread_map__pid(threads, thread); 1890 1891 group_fd = get_group_fd(evsel, cpu, thread); 1892 retry_open: 1893 test_attr__ready(); 1894 1895 fd = perf_event_open(evsel, pid, cpus->map[cpu], 1896 group_fd, flags); 1897 1898 FD(evsel, cpu, thread) = fd; 1899 1900 if (fd < 0) { 1901 err = -errno; 1902 1903 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) { 1904 /* 1905 * We just removed 1 thread, so take a step 1906 * back on thread index and lower the upper 1907 * nthreads limit. 1908 */ 1909 nthreads--; 1910 thread--; 1911 1912 /* ... and pretend like nothing have happened. */ 1913 err = 0; 1914 continue; 1915 } 1916 1917 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1918 err); 1919 goto try_fallback; 1920 } 1921 1922 pr_debug2(" = %d\n", fd); 1923 1924 if (evsel->bpf_fd >= 0) { 1925 int evt_fd = fd; 1926 int bpf_fd = evsel->bpf_fd; 1927 1928 err = ioctl(evt_fd, 1929 PERF_EVENT_IOC_SET_BPF, 1930 bpf_fd); 1931 if (err && errno != EEXIST) { 1932 pr_err("failed to attach bpf fd %d: %s\n", 1933 bpf_fd, strerror(errno)); 1934 err = -EINVAL; 1935 goto out_close; 1936 } 1937 } 1938 1939 set_rlimit = NO_CHANGE; 1940 1941 /* 1942 * If we succeeded but had to kill clockid, fail and 1943 * have perf_evsel__open_strerror() print us a nice 1944 * error. 1945 */ 1946 if (perf_missing_features.clockid || 1947 perf_missing_features.clockid_wrong) { 1948 err = -EINVAL; 1949 goto out_close; 1950 } 1951 } 1952 } 1953 1954 return 0; 1955 1956 try_fallback: 1957 /* 1958 * perf stat needs between 5 and 22 fds per CPU. When we run out 1959 * of them try to increase the limits. 1960 */ 1961 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1962 struct rlimit l; 1963 int old_errno = errno; 1964 1965 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1966 if (set_rlimit == NO_CHANGE) 1967 l.rlim_cur = l.rlim_max; 1968 else { 1969 l.rlim_cur = l.rlim_max + 1000; 1970 l.rlim_max = l.rlim_cur; 1971 } 1972 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1973 set_rlimit++; 1974 errno = old_errno; 1975 goto retry_open; 1976 } 1977 } 1978 errno = old_errno; 1979 } 1980 1981 if (err != -EINVAL || cpu > 0 || thread > 0) 1982 goto out_close; 1983 1984 /* 1985 * Must probe features in the order they were added to the 1986 * perf_event_attr interface. 1987 */ 1988 if (!perf_missing_features.bpf_event && evsel->attr.bpf_event) { 1989 perf_missing_features.bpf_event = true; 1990 pr_debug2("switching off bpf_event\n"); 1991 goto fallback_missing_features; 1992 } else if (!perf_missing_features.ksymbol && evsel->attr.ksymbol) { 1993 perf_missing_features.ksymbol = true; 1994 pr_debug2("switching off ksymbol\n"); 1995 goto fallback_missing_features; 1996 } else if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 1997 perf_missing_features.write_backward = true; 1998 pr_debug2("switching off write_backward\n"); 1999 goto out_close; 2000 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 2001 perf_missing_features.clockid_wrong = true; 2002 pr_debug2("switching off clockid\n"); 2003 goto fallback_missing_features; 2004 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 2005 perf_missing_features.clockid = true; 2006 pr_debug2("switching off use_clockid\n"); 2007 goto fallback_missing_features; 2008 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 2009 perf_missing_features.cloexec = true; 2010 pr_debug2("switching off cloexec flag\n"); 2011 goto fallback_missing_features; 2012 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 2013 perf_missing_features.mmap2 = true; 2014 pr_debug2("switching off mmap2\n"); 2015 goto fallback_missing_features; 2016 } else if (!perf_missing_features.exclude_guest && 2017 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 2018 perf_missing_features.exclude_guest = true; 2019 pr_debug2("switching off exclude_guest, exclude_host\n"); 2020 goto fallback_missing_features; 2021 } else if (!perf_missing_features.sample_id_all) { 2022 perf_missing_features.sample_id_all = true; 2023 pr_debug2("switching off sample_id_all\n"); 2024 goto retry_sample_id; 2025 } else if (!perf_missing_features.lbr_flags && 2026 (evsel->attr.branch_sample_type & 2027 (PERF_SAMPLE_BRANCH_NO_CYCLES | 2028 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 2029 perf_missing_features.lbr_flags = true; 2030 pr_debug2("switching off branch sample type no (cycles/flags)\n"); 2031 goto fallback_missing_features; 2032 } else if (!perf_missing_features.group_read && 2033 evsel->attr.inherit && 2034 (evsel->attr.read_format & PERF_FORMAT_GROUP) && 2035 perf_evsel__is_group_leader(evsel)) { 2036 perf_missing_features.group_read = true; 2037 pr_debug2("switching off group read\n"); 2038 goto fallback_missing_features; 2039 } 2040 out_close: 2041 if (err) 2042 threads->err_thread = thread; 2043 2044 do { 2045 while (--thread >= 0) { 2046 close(FD(evsel, cpu, thread)); 2047 FD(evsel, cpu, thread) = -1; 2048 } 2049 thread = nthreads; 2050 } while (--cpu >= 0); 2051 return err; 2052 } 2053 2054 void perf_evsel__close(struct perf_evsel *evsel) 2055 { 2056 if (evsel->fd == NULL) 2057 return; 2058 2059 perf_evsel__close_fd(evsel); 2060 perf_evsel__free_fd(evsel); 2061 } 2062 2063 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 2064 struct cpu_map *cpus) 2065 { 2066 return perf_evsel__open(evsel, cpus, NULL); 2067 } 2068 2069 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 2070 struct thread_map *threads) 2071 { 2072 return perf_evsel__open(evsel, NULL, threads); 2073 } 2074 2075 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 2076 const union perf_event *event, 2077 struct perf_sample *sample) 2078 { 2079 u64 type = evsel->attr.sample_type; 2080 const u64 *array = event->sample.array; 2081 bool swapped = evsel->needs_swap; 2082 union u64_swap u; 2083 2084 array += ((event->header.size - 2085 sizeof(event->header)) / sizeof(u64)) - 1; 2086 2087 if (type & PERF_SAMPLE_IDENTIFIER) { 2088 sample->id = *array; 2089 array--; 2090 } 2091 2092 if (type & PERF_SAMPLE_CPU) { 2093 u.val64 = *array; 2094 if (swapped) { 2095 /* undo swap of u64, then swap on individual u32s */ 2096 u.val64 = bswap_64(u.val64); 2097 u.val32[0] = bswap_32(u.val32[0]); 2098 } 2099 2100 sample->cpu = u.val32[0]; 2101 array--; 2102 } 2103 2104 if (type & PERF_SAMPLE_STREAM_ID) { 2105 sample->stream_id = *array; 2106 array--; 2107 } 2108 2109 if (type & PERF_SAMPLE_ID) { 2110 sample->id = *array; 2111 array--; 2112 } 2113 2114 if (type & PERF_SAMPLE_TIME) { 2115 sample->time = *array; 2116 array--; 2117 } 2118 2119 if (type & PERF_SAMPLE_TID) { 2120 u.val64 = *array; 2121 if (swapped) { 2122 /* undo swap of u64, then swap on individual u32s */ 2123 u.val64 = bswap_64(u.val64); 2124 u.val32[0] = bswap_32(u.val32[0]); 2125 u.val32[1] = bswap_32(u.val32[1]); 2126 } 2127 2128 sample->pid = u.val32[0]; 2129 sample->tid = u.val32[1]; 2130 array--; 2131 } 2132 2133 return 0; 2134 } 2135 2136 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 2137 u64 size) 2138 { 2139 return size > max_size || offset + size > endp; 2140 } 2141 2142 #define OVERFLOW_CHECK(offset, size, max_size) \ 2143 do { \ 2144 if (overflow(endp, (max_size), (offset), (size))) \ 2145 return -EFAULT; \ 2146 } while (0) 2147 2148 #define OVERFLOW_CHECK_u64(offset) \ 2149 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 2150 2151 static int 2152 perf_event__check_size(union perf_event *event, unsigned int sample_size) 2153 { 2154 /* 2155 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 2156 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 2157 * check the format does not go past the end of the event. 2158 */ 2159 if (sample_size + sizeof(event->header) > event->header.size) 2160 return -EFAULT; 2161 2162 return 0; 2163 } 2164 2165 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 2166 struct perf_sample *data) 2167 { 2168 u64 type = evsel->attr.sample_type; 2169 bool swapped = evsel->needs_swap; 2170 const u64 *array; 2171 u16 max_size = event->header.size; 2172 const void *endp = (void *)event + max_size; 2173 u64 sz; 2174 2175 /* 2176 * used for cross-endian analysis. See git commit 65014ab3 2177 * for why this goofiness is needed. 2178 */ 2179 union u64_swap u; 2180 2181 memset(data, 0, sizeof(*data)); 2182 data->cpu = data->pid = data->tid = -1; 2183 data->stream_id = data->id = data->time = -1ULL; 2184 data->period = evsel->attr.sample_period; 2185 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2186 data->misc = event->header.misc; 2187 data->id = -1ULL; 2188 data->data_src = PERF_MEM_DATA_SRC_NONE; 2189 2190 if (event->header.type != PERF_RECORD_SAMPLE) { 2191 if (!evsel->attr.sample_id_all) 2192 return 0; 2193 return perf_evsel__parse_id_sample(evsel, event, data); 2194 } 2195 2196 array = event->sample.array; 2197 2198 if (perf_event__check_size(event, evsel->sample_size)) 2199 return -EFAULT; 2200 2201 if (type & PERF_SAMPLE_IDENTIFIER) { 2202 data->id = *array; 2203 array++; 2204 } 2205 2206 if (type & PERF_SAMPLE_IP) { 2207 data->ip = *array; 2208 array++; 2209 } 2210 2211 if (type & PERF_SAMPLE_TID) { 2212 u.val64 = *array; 2213 if (swapped) { 2214 /* undo swap of u64, then swap on individual u32s */ 2215 u.val64 = bswap_64(u.val64); 2216 u.val32[0] = bswap_32(u.val32[0]); 2217 u.val32[1] = bswap_32(u.val32[1]); 2218 } 2219 2220 data->pid = u.val32[0]; 2221 data->tid = u.val32[1]; 2222 array++; 2223 } 2224 2225 if (type & PERF_SAMPLE_TIME) { 2226 data->time = *array; 2227 array++; 2228 } 2229 2230 if (type & PERF_SAMPLE_ADDR) { 2231 data->addr = *array; 2232 array++; 2233 } 2234 2235 if (type & PERF_SAMPLE_ID) { 2236 data->id = *array; 2237 array++; 2238 } 2239 2240 if (type & PERF_SAMPLE_STREAM_ID) { 2241 data->stream_id = *array; 2242 array++; 2243 } 2244 2245 if (type & PERF_SAMPLE_CPU) { 2246 2247 u.val64 = *array; 2248 if (swapped) { 2249 /* undo swap of u64, then swap on individual u32s */ 2250 u.val64 = bswap_64(u.val64); 2251 u.val32[0] = bswap_32(u.val32[0]); 2252 } 2253 2254 data->cpu = u.val32[0]; 2255 array++; 2256 } 2257 2258 if (type & PERF_SAMPLE_PERIOD) { 2259 data->period = *array; 2260 array++; 2261 } 2262 2263 if (type & PERF_SAMPLE_READ) { 2264 u64 read_format = evsel->attr.read_format; 2265 2266 OVERFLOW_CHECK_u64(array); 2267 if (read_format & PERF_FORMAT_GROUP) 2268 data->read.group.nr = *array; 2269 else 2270 data->read.one.value = *array; 2271 2272 array++; 2273 2274 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2275 OVERFLOW_CHECK_u64(array); 2276 data->read.time_enabled = *array; 2277 array++; 2278 } 2279 2280 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2281 OVERFLOW_CHECK_u64(array); 2282 data->read.time_running = *array; 2283 array++; 2284 } 2285 2286 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2287 if (read_format & PERF_FORMAT_GROUP) { 2288 const u64 max_group_nr = UINT64_MAX / 2289 sizeof(struct sample_read_value); 2290 2291 if (data->read.group.nr > max_group_nr) 2292 return -EFAULT; 2293 sz = data->read.group.nr * 2294 sizeof(struct sample_read_value); 2295 OVERFLOW_CHECK(array, sz, max_size); 2296 data->read.group.values = 2297 (struct sample_read_value *)array; 2298 array = (void *)array + sz; 2299 } else { 2300 OVERFLOW_CHECK_u64(array); 2301 data->read.one.id = *array; 2302 array++; 2303 } 2304 } 2305 2306 if (evsel__has_callchain(evsel)) { 2307 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 2308 2309 OVERFLOW_CHECK_u64(array); 2310 data->callchain = (struct ip_callchain *)array++; 2311 if (data->callchain->nr > max_callchain_nr) 2312 return -EFAULT; 2313 sz = data->callchain->nr * sizeof(u64); 2314 OVERFLOW_CHECK(array, sz, max_size); 2315 array = (void *)array + sz; 2316 } 2317 2318 if (type & PERF_SAMPLE_RAW) { 2319 OVERFLOW_CHECK_u64(array); 2320 u.val64 = *array; 2321 2322 /* 2323 * Undo swap of u64, then swap on individual u32s, 2324 * get the size of the raw area and undo all of the 2325 * swap. The pevent interface handles endianity by 2326 * itself. 2327 */ 2328 if (swapped) { 2329 u.val64 = bswap_64(u.val64); 2330 u.val32[0] = bswap_32(u.val32[0]); 2331 u.val32[1] = bswap_32(u.val32[1]); 2332 } 2333 data->raw_size = u.val32[0]; 2334 2335 /* 2336 * The raw data is aligned on 64bits including the 2337 * u32 size, so it's safe to use mem_bswap_64. 2338 */ 2339 if (swapped) 2340 mem_bswap_64((void *) array, data->raw_size); 2341 2342 array = (void *)array + sizeof(u32); 2343 2344 OVERFLOW_CHECK(array, data->raw_size, max_size); 2345 data->raw_data = (void *)array; 2346 array = (void *)array + data->raw_size; 2347 } 2348 2349 if (type & PERF_SAMPLE_BRANCH_STACK) { 2350 const u64 max_branch_nr = UINT64_MAX / 2351 sizeof(struct branch_entry); 2352 2353 OVERFLOW_CHECK_u64(array); 2354 data->branch_stack = (struct branch_stack *)array++; 2355 2356 if (data->branch_stack->nr > max_branch_nr) 2357 return -EFAULT; 2358 sz = data->branch_stack->nr * sizeof(struct branch_entry); 2359 OVERFLOW_CHECK(array, sz, max_size); 2360 array = (void *)array + sz; 2361 } 2362 2363 if (type & PERF_SAMPLE_REGS_USER) { 2364 OVERFLOW_CHECK_u64(array); 2365 data->user_regs.abi = *array; 2366 array++; 2367 2368 if (data->user_regs.abi) { 2369 u64 mask = evsel->attr.sample_regs_user; 2370 2371 sz = hweight_long(mask) * sizeof(u64); 2372 OVERFLOW_CHECK(array, sz, max_size); 2373 data->user_regs.mask = mask; 2374 data->user_regs.regs = (u64 *)array; 2375 array = (void *)array + sz; 2376 } 2377 } 2378 2379 if (type & PERF_SAMPLE_STACK_USER) { 2380 OVERFLOW_CHECK_u64(array); 2381 sz = *array++; 2382 2383 data->user_stack.offset = ((char *)(array - 1) 2384 - (char *) event); 2385 2386 if (!sz) { 2387 data->user_stack.size = 0; 2388 } else { 2389 OVERFLOW_CHECK(array, sz, max_size); 2390 data->user_stack.data = (char *)array; 2391 array = (void *)array + sz; 2392 OVERFLOW_CHECK_u64(array); 2393 data->user_stack.size = *array++; 2394 if (WARN_ONCE(data->user_stack.size > sz, 2395 "user stack dump failure\n")) 2396 return -EFAULT; 2397 } 2398 } 2399 2400 if (type & PERF_SAMPLE_WEIGHT) { 2401 OVERFLOW_CHECK_u64(array); 2402 data->weight = *array; 2403 array++; 2404 } 2405 2406 if (type & PERF_SAMPLE_DATA_SRC) { 2407 OVERFLOW_CHECK_u64(array); 2408 data->data_src = *array; 2409 array++; 2410 } 2411 2412 if (type & PERF_SAMPLE_TRANSACTION) { 2413 OVERFLOW_CHECK_u64(array); 2414 data->transaction = *array; 2415 array++; 2416 } 2417 2418 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2419 if (type & PERF_SAMPLE_REGS_INTR) { 2420 OVERFLOW_CHECK_u64(array); 2421 data->intr_regs.abi = *array; 2422 array++; 2423 2424 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2425 u64 mask = evsel->attr.sample_regs_intr; 2426 2427 sz = hweight_long(mask) * sizeof(u64); 2428 OVERFLOW_CHECK(array, sz, max_size); 2429 data->intr_regs.mask = mask; 2430 data->intr_regs.regs = (u64 *)array; 2431 array = (void *)array + sz; 2432 } 2433 } 2434 2435 data->phys_addr = 0; 2436 if (type & PERF_SAMPLE_PHYS_ADDR) { 2437 data->phys_addr = *array; 2438 array++; 2439 } 2440 2441 return 0; 2442 } 2443 2444 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel, 2445 union perf_event *event, 2446 u64 *timestamp) 2447 { 2448 u64 type = evsel->attr.sample_type; 2449 const u64 *array; 2450 2451 if (!(type & PERF_SAMPLE_TIME)) 2452 return -1; 2453 2454 if (event->header.type != PERF_RECORD_SAMPLE) { 2455 struct perf_sample data = { 2456 .time = -1ULL, 2457 }; 2458 2459 if (!evsel->attr.sample_id_all) 2460 return -1; 2461 if (perf_evsel__parse_id_sample(evsel, event, &data)) 2462 return -1; 2463 2464 *timestamp = data.time; 2465 return 0; 2466 } 2467 2468 array = event->sample.array; 2469 2470 if (perf_event__check_size(event, evsel->sample_size)) 2471 return -EFAULT; 2472 2473 if (type & PERF_SAMPLE_IDENTIFIER) 2474 array++; 2475 2476 if (type & PERF_SAMPLE_IP) 2477 array++; 2478 2479 if (type & PERF_SAMPLE_TID) 2480 array++; 2481 2482 if (type & PERF_SAMPLE_TIME) 2483 *timestamp = *array; 2484 2485 return 0; 2486 } 2487 2488 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2489 u64 read_format) 2490 { 2491 size_t sz, result = sizeof(struct sample_event); 2492 2493 if (type & PERF_SAMPLE_IDENTIFIER) 2494 result += sizeof(u64); 2495 2496 if (type & PERF_SAMPLE_IP) 2497 result += sizeof(u64); 2498 2499 if (type & PERF_SAMPLE_TID) 2500 result += sizeof(u64); 2501 2502 if (type & PERF_SAMPLE_TIME) 2503 result += sizeof(u64); 2504 2505 if (type & PERF_SAMPLE_ADDR) 2506 result += sizeof(u64); 2507 2508 if (type & PERF_SAMPLE_ID) 2509 result += sizeof(u64); 2510 2511 if (type & PERF_SAMPLE_STREAM_ID) 2512 result += sizeof(u64); 2513 2514 if (type & PERF_SAMPLE_CPU) 2515 result += sizeof(u64); 2516 2517 if (type & PERF_SAMPLE_PERIOD) 2518 result += sizeof(u64); 2519 2520 if (type & PERF_SAMPLE_READ) { 2521 result += sizeof(u64); 2522 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2523 result += sizeof(u64); 2524 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2525 result += sizeof(u64); 2526 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2527 if (read_format & PERF_FORMAT_GROUP) { 2528 sz = sample->read.group.nr * 2529 sizeof(struct sample_read_value); 2530 result += sz; 2531 } else { 2532 result += sizeof(u64); 2533 } 2534 } 2535 2536 if (type & PERF_SAMPLE_CALLCHAIN) { 2537 sz = (sample->callchain->nr + 1) * sizeof(u64); 2538 result += sz; 2539 } 2540 2541 if (type & PERF_SAMPLE_RAW) { 2542 result += sizeof(u32); 2543 result += sample->raw_size; 2544 } 2545 2546 if (type & PERF_SAMPLE_BRANCH_STACK) { 2547 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2548 sz += sizeof(u64); 2549 result += sz; 2550 } 2551 2552 if (type & PERF_SAMPLE_REGS_USER) { 2553 if (sample->user_regs.abi) { 2554 result += sizeof(u64); 2555 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2556 result += sz; 2557 } else { 2558 result += sizeof(u64); 2559 } 2560 } 2561 2562 if (type & PERF_SAMPLE_STACK_USER) { 2563 sz = sample->user_stack.size; 2564 result += sizeof(u64); 2565 if (sz) { 2566 result += sz; 2567 result += sizeof(u64); 2568 } 2569 } 2570 2571 if (type & PERF_SAMPLE_WEIGHT) 2572 result += sizeof(u64); 2573 2574 if (type & PERF_SAMPLE_DATA_SRC) 2575 result += sizeof(u64); 2576 2577 if (type & PERF_SAMPLE_TRANSACTION) 2578 result += sizeof(u64); 2579 2580 if (type & PERF_SAMPLE_REGS_INTR) { 2581 if (sample->intr_regs.abi) { 2582 result += sizeof(u64); 2583 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2584 result += sz; 2585 } else { 2586 result += sizeof(u64); 2587 } 2588 } 2589 2590 if (type & PERF_SAMPLE_PHYS_ADDR) 2591 result += sizeof(u64); 2592 2593 return result; 2594 } 2595 2596 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2597 u64 read_format, 2598 const struct perf_sample *sample) 2599 { 2600 u64 *array; 2601 size_t sz; 2602 /* 2603 * used for cross-endian analysis. See git commit 65014ab3 2604 * for why this goofiness is needed. 2605 */ 2606 union u64_swap u; 2607 2608 array = event->sample.array; 2609 2610 if (type & PERF_SAMPLE_IDENTIFIER) { 2611 *array = sample->id; 2612 array++; 2613 } 2614 2615 if (type & PERF_SAMPLE_IP) { 2616 *array = sample->ip; 2617 array++; 2618 } 2619 2620 if (type & PERF_SAMPLE_TID) { 2621 u.val32[0] = sample->pid; 2622 u.val32[1] = sample->tid; 2623 *array = u.val64; 2624 array++; 2625 } 2626 2627 if (type & PERF_SAMPLE_TIME) { 2628 *array = sample->time; 2629 array++; 2630 } 2631 2632 if (type & PERF_SAMPLE_ADDR) { 2633 *array = sample->addr; 2634 array++; 2635 } 2636 2637 if (type & PERF_SAMPLE_ID) { 2638 *array = sample->id; 2639 array++; 2640 } 2641 2642 if (type & PERF_SAMPLE_STREAM_ID) { 2643 *array = sample->stream_id; 2644 array++; 2645 } 2646 2647 if (type & PERF_SAMPLE_CPU) { 2648 u.val32[0] = sample->cpu; 2649 u.val32[1] = 0; 2650 *array = u.val64; 2651 array++; 2652 } 2653 2654 if (type & PERF_SAMPLE_PERIOD) { 2655 *array = sample->period; 2656 array++; 2657 } 2658 2659 if (type & PERF_SAMPLE_READ) { 2660 if (read_format & PERF_FORMAT_GROUP) 2661 *array = sample->read.group.nr; 2662 else 2663 *array = sample->read.one.value; 2664 array++; 2665 2666 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2667 *array = sample->read.time_enabled; 2668 array++; 2669 } 2670 2671 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2672 *array = sample->read.time_running; 2673 array++; 2674 } 2675 2676 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2677 if (read_format & PERF_FORMAT_GROUP) { 2678 sz = sample->read.group.nr * 2679 sizeof(struct sample_read_value); 2680 memcpy(array, sample->read.group.values, sz); 2681 array = (void *)array + sz; 2682 } else { 2683 *array = sample->read.one.id; 2684 array++; 2685 } 2686 } 2687 2688 if (type & PERF_SAMPLE_CALLCHAIN) { 2689 sz = (sample->callchain->nr + 1) * sizeof(u64); 2690 memcpy(array, sample->callchain, sz); 2691 array = (void *)array + sz; 2692 } 2693 2694 if (type & PERF_SAMPLE_RAW) { 2695 u.val32[0] = sample->raw_size; 2696 *array = u.val64; 2697 array = (void *)array + sizeof(u32); 2698 2699 memcpy(array, sample->raw_data, sample->raw_size); 2700 array = (void *)array + sample->raw_size; 2701 } 2702 2703 if (type & PERF_SAMPLE_BRANCH_STACK) { 2704 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2705 sz += sizeof(u64); 2706 memcpy(array, sample->branch_stack, sz); 2707 array = (void *)array + sz; 2708 } 2709 2710 if (type & PERF_SAMPLE_REGS_USER) { 2711 if (sample->user_regs.abi) { 2712 *array++ = sample->user_regs.abi; 2713 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2714 memcpy(array, sample->user_regs.regs, sz); 2715 array = (void *)array + sz; 2716 } else { 2717 *array++ = 0; 2718 } 2719 } 2720 2721 if (type & PERF_SAMPLE_STACK_USER) { 2722 sz = sample->user_stack.size; 2723 *array++ = sz; 2724 if (sz) { 2725 memcpy(array, sample->user_stack.data, sz); 2726 array = (void *)array + sz; 2727 *array++ = sz; 2728 } 2729 } 2730 2731 if (type & PERF_SAMPLE_WEIGHT) { 2732 *array = sample->weight; 2733 array++; 2734 } 2735 2736 if (type & PERF_SAMPLE_DATA_SRC) { 2737 *array = sample->data_src; 2738 array++; 2739 } 2740 2741 if (type & PERF_SAMPLE_TRANSACTION) { 2742 *array = sample->transaction; 2743 array++; 2744 } 2745 2746 if (type & PERF_SAMPLE_REGS_INTR) { 2747 if (sample->intr_regs.abi) { 2748 *array++ = sample->intr_regs.abi; 2749 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2750 memcpy(array, sample->intr_regs.regs, sz); 2751 array = (void *)array + sz; 2752 } else { 2753 *array++ = 0; 2754 } 2755 } 2756 2757 if (type & PERF_SAMPLE_PHYS_ADDR) { 2758 *array = sample->phys_addr; 2759 array++; 2760 } 2761 2762 return 0; 2763 } 2764 2765 struct tep_format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2766 { 2767 return tep_find_field(evsel->tp_format, name); 2768 } 2769 2770 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2771 const char *name) 2772 { 2773 struct tep_format_field *field = perf_evsel__field(evsel, name); 2774 int offset; 2775 2776 if (!field) 2777 return NULL; 2778 2779 offset = field->offset; 2780 2781 if (field->flags & TEP_FIELD_IS_DYNAMIC) { 2782 offset = *(int *)(sample->raw_data + field->offset); 2783 offset &= 0xffff; 2784 } 2785 2786 return sample->raw_data + offset; 2787 } 2788 2789 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample, 2790 bool needs_swap) 2791 { 2792 u64 value; 2793 void *ptr = sample->raw_data + field->offset; 2794 2795 switch (field->size) { 2796 case 1: 2797 return *(u8 *)ptr; 2798 case 2: 2799 value = *(u16 *)ptr; 2800 break; 2801 case 4: 2802 value = *(u32 *)ptr; 2803 break; 2804 case 8: 2805 memcpy(&value, ptr, sizeof(u64)); 2806 break; 2807 default: 2808 return 0; 2809 } 2810 2811 if (!needs_swap) 2812 return value; 2813 2814 switch (field->size) { 2815 case 2: 2816 return bswap_16(value); 2817 case 4: 2818 return bswap_32(value); 2819 case 8: 2820 return bswap_64(value); 2821 default: 2822 return 0; 2823 } 2824 2825 return 0; 2826 } 2827 2828 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2829 const char *name) 2830 { 2831 struct tep_format_field *field = perf_evsel__field(evsel, name); 2832 2833 if (!field) 2834 return 0; 2835 2836 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2837 } 2838 2839 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2840 char *msg, size_t msgsize) 2841 { 2842 int paranoid; 2843 2844 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2845 evsel->attr.type == PERF_TYPE_HARDWARE && 2846 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2847 /* 2848 * If it's cycles then fall back to hrtimer based 2849 * cpu-clock-tick sw counter, which is always available even if 2850 * no PMU support. 2851 * 2852 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2853 * b0a873e). 2854 */ 2855 scnprintf(msg, msgsize, "%s", 2856 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2857 2858 evsel->attr.type = PERF_TYPE_SOFTWARE; 2859 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2860 2861 zfree(&evsel->name); 2862 return true; 2863 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2864 (paranoid = perf_event_paranoid()) > 1) { 2865 const char *name = perf_evsel__name(evsel); 2866 char *new_name; 2867 const char *sep = ":"; 2868 2869 /* Is there already the separator in the name. */ 2870 if (strchr(name, '/') || 2871 strchr(name, ':')) 2872 sep = ""; 2873 2874 if (asprintf(&new_name, "%s%su", name, sep) < 0) 2875 return false; 2876 2877 if (evsel->name) 2878 free(evsel->name); 2879 evsel->name = new_name; 2880 scnprintf(msg, msgsize, 2881 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2882 evsel->attr.exclude_kernel = 1; 2883 2884 return true; 2885 } 2886 2887 return false; 2888 } 2889 2890 static bool find_process(const char *name) 2891 { 2892 size_t len = strlen(name); 2893 DIR *dir; 2894 struct dirent *d; 2895 int ret = -1; 2896 2897 dir = opendir(procfs__mountpoint()); 2898 if (!dir) 2899 return false; 2900 2901 /* Walk through the directory. */ 2902 while (ret && (d = readdir(dir)) != NULL) { 2903 char path[PATH_MAX]; 2904 char *data; 2905 size_t size; 2906 2907 if ((d->d_type != DT_DIR) || 2908 !strcmp(".", d->d_name) || 2909 !strcmp("..", d->d_name)) 2910 continue; 2911 2912 scnprintf(path, sizeof(path), "%s/%s/comm", 2913 procfs__mountpoint(), d->d_name); 2914 2915 if (filename__read_str(path, &data, &size)) 2916 continue; 2917 2918 ret = strncmp(name, data, len); 2919 free(data); 2920 } 2921 2922 closedir(dir); 2923 return ret ? false : true; 2924 } 2925 2926 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2927 int err, char *msg, size_t size) 2928 { 2929 char sbuf[STRERR_BUFSIZE]; 2930 int printed = 0; 2931 2932 switch (err) { 2933 case EPERM: 2934 case EACCES: 2935 if (err == EPERM) 2936 printed = scnprintf(msg, size, 2937 "No permission to enable %s event.\n\n", 2938 perf_evsel__name(evsel)); 2939 2940 return scnprintf(msg + printed, size - printed, 2941 "You may not have permission to collect %sstats.\n\n" 2942 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2943 "which controls use of the performance events system by\n" 2944 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2945 "The current value is %d:\n\n" 2946 " -1: Allow use of (almost) all events by all users\n" 2947 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" 2948 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n" 2949 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n" 2950 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2951 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2952 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2953 " kernel.perf_event_paranoid = -1\n" , 2954 target->system_wide ? "system-wide " : "", 2955 perf_event_paranoid()); 2956 case ENOENT: 2957 return scnprintf(msg, size, "The %s event is not supported.", 2958 perf_evsel__name(evsel)); 2959 case EMFILE: 2960 return scnprintf(msg, size, "%s", 2961 "Too many events are opened.\n" 2962 "Probably the maximum number of open file descriptors has been reached.\n" 2963 "Hint: Try again after reducing the number of events.\n" 2964 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2965 case ENOMEM: 2966 if (evsel__has_callchain(evsel) && 2967 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2968 return scnprintf(msg, size, 2969 "Not enough memory to setup event with callchain.\n" 2970 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2971 "Hint: Current value: %d", sysctl__max_stack()); 2972 break; 2973 case ENODEV: 2974 if (target->cpu_list) 2975 return scnprintf(msg, size, "%s", 2976 "No such device - did you specify an out-of-range profile CPU?"); 2977 break; 2978 case EOPNOTSUPP: 2979 if (evsel->attr.sample_period != 0) 2980 return scnprintf(msg, size, 2981 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'", 2982 perf_evsel__name(evsel)); 2983 if (evsel->attr.precise_ip) 2984 return scnprintf(msg, size, "%s", 2985 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2986 #if defined(__i386__) || defined(__x86_64__) 2987 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2988 return scnprintf(msg, size, "%s", 2989 "No hardware sampling interrupt available.\n"); 2990 #endif 2991 break; 2992 case EBUSY: 2993 if (find_process("oprofiled")) 2994 return scnprintf(msg, size, 2995 "The PMU counters are busy/taken by another profiler.\n" 2996 "We found oprofile daemon running, please stop it and try again."); 2997 break; 2998 case EINVAL: 2999 if (evsel->attr.write_backward && perf_missing_features.write_backward) 3000 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 3001 if (perf_missing_features.clockid) 3002 return scnprintf(msg, size, "clockid feature not supported."); 3003 if (perf_missing_features.clockid_wrong) 3004 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 3005 break; 3006 default: 3007 break; 3008 } 3009 3010 return scnprintf(msg, size, 3011 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 3012 "/bin/dmesg | grep -i perf may provide additional information.\n", 3013 err, str_error_r(err, sbuf, sizeof(sbuf)), 3014 perf_evsel__name(evsel)); 3015 } 3016 3017 struct perf_env *perf_evsel__env(struct perf_evsel *evsel) 3018 { 3019 if (evsel && evsel->evlist) 3020 return evsel->evlist->env; 3021 return NULL; 3022 } 3023 3024 static int store_evsel_ids(struct perf_evsel *evsel, struct perf_evlist *evlist) 3025 { 3026 int cpu, thread; 3027 3028 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 3029 for (thread = 0; thread < xyarray__max_y(evsel->fd); 3030 thread++) { 3031 int fd = FD(evsel, cpu, thread); 3032 3033 if (perf_evlist__id_add_fd(evlist, evsel, 3034 cpu, thread, fd) < 0) 3035 return -1; 3036 } 3037 } 3038 3039 return 0; 3040 } 3041 3042 int perf_evsel__store_ids(struct perf_evsel *evsel, struct perf_evlist *evlist) 3043 { 3044 struct cpu_map *cpus = evsel->cpus; 3045 struct thread_map *threads = evsel->threads; 3046 3047 if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr)) 3048 return -ENOMEM; 3049 3050 return store_evsel_ids(evsel, evlist); 3051 } 3052