1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <errno.h> 12 #include <inttypes.h> 13 #include <linux/bitops.h> 14 #include <api/fs/fs.h> 15 #include <api/fs/tracing_path.h> 16 #include <traceevent/event-parse.h> 17 #include <linux/hw_breakpoint.h> 18 #include <linux/perf_event.h> 19 #include <linux/compiler.h> 20 #include <linux/err.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include "asm/bug.h" 26 #include "callchain.h" 27 #include "cgroup.h" 28 #include "event.h" 29 #include "evsel.h" 30 #include "evlist.h" 31 #include "util.h" 32 #include "cpumap.h" 33 #include "thread_map.h" 34 #include "target.h" 35 #include "perf_regs.h" 36 #include "debug.h" 37 #include "trace-event.h" 38 #include "stat.h" 39 #include "util/parse-branch-options.h" 40 41 #include "sane_ctype.h" 42 43 static struct { 44 bool sample_id_all; 45 bool exclude_guest; 46 bool mmap2; 47 bool cloexec; 48 bool clockid; 49 bool clockid_wrong; 50 bool lbr_flags; 51 bool write_backward; 52 bool group_read; 53 } perf_missing_features; 54 55 static clockid_t clockid; 56 57 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 58 { 59 return 0; 60 } 61 62 void __weak test_attr__ready(void) { } 63 64 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 65 { 66 } 67 68 static struct { 69 size_t size; 70 int (*init)(struct perf_evsel *evsel); 71 void (*fini)(struct perf_evsel *evsel); 72 } perf_evsel__object = { 73 .size = sizeof(struct perf_evsel), 74 .init = perf_evsel__no_extra_init, 75 .fini = perf_evsel__no_extra_fini, 76 }; 77 78 int perf_evsel__object_config(size_t object_size, 79 int (*init)(struct perf_evsel *evsel), 80 void (*fini)(struct perf_evsel *evsel)) 81 { 82 83 if (object_size == 0) 84 goto set_methods; 85 86 if (perf_evsel__object.size > object_size) 87 return -EINVAL; 88 89 perf_evsel__object.size = object_size; 90 91 set_methods: 92 if (init != NULL) 93 perf_evsel__object.init = init; 94 95 if (fini != NULL) 96 perf_evsel__object.fini = fini; 97 98 return 0; 99 } 100 101 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 102 103 int __perf_evsel__sample_size(u64 sample_type) 104 { 105 u64 mask = sample_type & PERF_SAMPLE_MASK; 106 int size = 0; 107 int i; 108 109 for (i = 0; i < 64; i++) { 110 if (mask & (1ULL << i)) 111 size++; 112 } 113 114 size *= sizeof(u64); 115 116 return size; 117 } 118 119 /** 120 * __perf_evsel__calc_id_pos - calculate id_pos. 121 * @sample_type: sample type 122 * 123 * This function returns the position of the event id (PERF_SAMPLE_ID or 124 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 125 * sample_event. 126 */ 127 static int __perf_evsel__calc_id_pos(u64 sample_type) 128 { 129 int idx = 0; 130 131 if (sample_type & PERF_SAMPLE_IDENTIFIER) 132 return 0; 133 134 if (!(sample_type & PERF_SAMPLE_ID)) 135 return -1; 136 137 if (sample_type & PERF_SAMPLE_IP) 138 idx += 1; 139 140 if (sample_type & PERF_SAMPLE_TID) 141 idx += 1; 142 143 if (sample_type & PERF_SAMPLE_TIME) 144 idx += 1; 145 146 if (sample_type & PERF_SAMPLE_ADDR) 147 idx += 1; 148 149 return idx; 150 } 151 152 /** 153 * __perf_evsel__calc_is_pos - calculate is_pos. 154 * @sample_type: sample type 155 * 156 * This function returns the position (counting backwards) of the event id 157 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 158 * sample_id_all is used there is an id sample appended to non-sample events. 159 */ 160 static int __perf_evsel__calc_is_pos(u64 sample_type) 161 { 162 int idx = 1; 163 164 if (sample_type & PERF_SAMPLE_IDENTIFIER) 165 return 1; 166 167 if (!(sample_type & PERF_SAMPLE_ID)) 168 return -1; 169 170 if (sample_type & PERF_SAMPLE_CPU) 171 idx += 1; 172 173 if (sample_type & PERF_SAMPLE_STREAM_ID) 174 idx += 1; 175 176 return idx; 177 } 178 179 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 180 { 181 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 182 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 183 } 184 185 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 186 enum perf_event_sample_format bit) 187 { 188 if (!(evsel->attr.sample_type & bit)) { 189 evsel->attr.sample_type |= bit; 190 evsel->sample_size += sizeof(u64); 191 perf_evsel__calc_id_pos(evsel); 192 } 193 } 194 195 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 196 enum perf_event_sample_format bit) 197 { 198 if (evsel->attr.sample_type & bit) { 199 evsel->attr.sample_type &= ~bit; 200 evsel->sample_size -= sizeof(u64); 201 perf_evsel__calc_id_pos(evsel); 202 } 203 } 204 205 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 206 bool can_sample_identifier) 207 { 208 if (can_sample_identifier) { 209 perf_evsel__reset_sample_bit(evsel, ID); 210 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 211 } else { 212 perf_evsel__set_sample_bit(evsel, ID); 213 } 214 evsel->attr.read_format |= PERF_FORMAT_ID; 215 } 216 217 /** 218 * perf_evsel__is_function_event - Return whether given evsel is a function 219 * trace event 220 * 221 * @evsel - evsel selector to be tested 222 * 223 * Return %true if event is function trace event 224 */ 225 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 226 { 227 #define FUNCTION_EVENT "ftrace:function" 228 229 return evsel->name && 230 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 231 232 #undef FUNCTION_EVENT 233 } 234 235 void perf_evsel__init(struct perf_evsel *evsel, 236 struct perf_event_attr *attr, int idx) 237 { 238 evsel->idx = idx; 239 evsel->tracking = !idx; 240 evsel->attr = *attr; 241 evsel->leader = evsel; 242 evsel->unit = ""; 243 evsel->scale = 1.0; 244 evsel->evlist = NULL; 245 evsel->bpf_fd = -1; 246 INIT_LIST_HEAD(&evsel->node); 247 INIT_LIST_HEAD(&evsel->config_terms); 248 perf_evsel__object.init(evsel); 249 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 250 perf_evsel__calc_id_pos(evsel); 251 evsel->cmdline_group_boundary = false; 252 evsel->metric_expr = NULL; 253 evsel->metric_name = NULL; 254 evsel->metric_events = NULL; 255 evsel->collect_stat = false; 256 } 257 258 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 259 { 260 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 261 262 if (evsel != NULL) 263 perf_evsel__init(evsel, attr, idx); 264 265 if (perf_evsel__is_bpf_output(evsel)) { 266 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 267 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 268 evsel->attr.sample_period = 1; 269 } 270 271 return evsel; 272 } 273 274 static bool perf_event_can_profile_kernel(void) 275 { 276 return geteuid() == 0 || perf_event_paranoid() == -1; 277 } 278 279 struct perf_evsel *perf_evsel__new_cycles(bool precise) 280 { 281 struct perf_event_attr attr = { 282 .type = PERF_TYPE_HARDWARE, 283 .config = PERF_COUNT_HW_CPU_CYCLES, 284 .exclude_kernel = !perf_event_can_profile_kernel(), 285 }; 286 struct perf_evsel *evsel; 287 288 event_attr_init(&attr); 289 290 if (!precise) 291 goto new_event; 292 /* 293 * Unnamed union member, not supported as struct member named 294 * initializer in older compilers such as gcc 4.4.7 295 * 296 * Just for probing the precise_ip: 297 */ 298 attr.sample_period = 1; 299 300 perf_event_attr__set_max_precise_ip(&attr); 301 /* 302 * Now let the usual logic to set up the perf_event_attr defaults 303 * to kick in when we return and before perf_evsel__open() is called. 304 */ 305 attr.sample_period = 0; 306 new_event: 307 evsel = perf_evsel__new(&attr); 308 if (evsel == NULL) 309 goto out; 310 311 /* use asprintf() because free(evsel) assumes name is allocated */ 312 if (asprintf(&evsel->name, "cycles%s%s%.*s", 313 (attr.precise_ip || attr.exclude_kernel) ? ":" : "", 314 attr.exclude_kernel ? "u" : "", 315 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) 316 goto error_free; 317 out: 318 return evsel; 319 error_free: 320 perf_evsel__delete(evsel); 321 evsel = NULL; 322 goto out; 323 } 324 325 /* 326 * Returns pointer with encoded error via <linux/err.h> interface. 327 */ 328 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 329 { 330 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 331 int err = -ENOMEM; 332 333 if (evsel == NULL) { 334 goto out_err; 335 } else { 336 struct perf_event_attr attr = { 337 .type = PERF_TYPE_TRACEPOINT, 338 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 339 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 340 }; 341 342 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 343 goto out_free; 344 345 evsel->tp_format = trace_event__tp_format(sys, name); 346 if (IS_ERR(evsel->tp_format)) { 347 err = PTR_ERR(evsel->tp_format); 348 goto out_free; 349 } 350 351 event_attr_init(&attr); 352 attr.config = evsel->tp_format->id; 353 attr.sample_period = 1; 354 perf_evsel__init(evsel, &attr, idx); 355 } 356 357 return evsel; 358 359 out_free: 360 zfree(&evsel->name); 361 free(evsel); 362 out_err: 363 return ERR_PTR(err); 364 } 365 366 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 367 "cycles", 368 "instructions", 369 "cache-references", 370 "cache-misses", 371 "branches", 372 "branch-misses", 373 "bus-cycles", 374 "stalled-cycles-frontend", 375 "stalled-cycles-backend", 376 "ref-cycles", 377 }; 378 379 static const char *__perf_evsel__hw_name(u64 config) 380 { 381 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 382 return perf_evsel__hw_names[config]; 383 384 return "unknown-hardware"; 385 } 386 387 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 388 { 389 int colon = 0, r = 0; 390 struct perf_event_attr *attr = &evsel->attr; 391 bool exclude_guest_default = false; 392 393 #define MOD_PRINT(context, mod) do { \ 394 if (!attr->exclude_##context) { \ 395 if (!colon) colon = ++r; \ 396 r += scnprintf(bf + r, size - r, "%c", mod); \ 397 } } while(0) 398 399 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 400 MOD_PRINT(kernel, 'k'); 401 MOD_PRINT(user, 'u'); 402 MOD_PRINT(hv, 'h'); 403 exclude_guest_default = true; 404 } 405 406 if (attr->precise_ip) { 407 if (!colon) 408 colon = ++r; 409 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 410 exclude_guest_default = true; 411 } 412 413 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 414 MOD_PRINT(host, 'H'); 415 MOD_PRINT(guest, 'G'); 416 } 417 #undef MOD_PRINT 418 if (colon) 419 bf[colon - 1] = ':'; 420 return r; 421 } 422 423 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 424 { 425 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 426 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 427 } 428 429 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 430 "cpu-clock", 431 "task-clock", 432 "page-faults", 433 "context-switches", 434 "cpu-migrations", 435 "minor-faults", 436 "major-faults", 437 "alignment-faults", 438 "emulation-faults", 439 "dummy", 440 }; 441 442 static const char *__perf_evsel__sw_name(u64 config) 443 { 444 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 445 return perf_evsel__sw_names[config]; 446 return "unknown-software"; 447 } 448 449 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 450 { 451 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 452 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 453 } 454 455 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 456 { 457 int r; 458 459 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 460 461 if (type & HW_BREAKPOINT_R) 462 r += scnprintf(bf + r, size - r, "r"); 463 464 if (type & HW_BREAKPOINT_W) 465 r += scnprintf(bf + r, size - r, "w"); 466 467 if (type & HW_BREAKPOINT_X) 468 r += scnprintf(bf + r, size - r, "x"); 469 470 return r; 471 } 472 473 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 474 { 475 struct perf_event_attr *attr = &evsel->attr; 476 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 477 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 478 } 479 480 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 481 [PERF_EVSEL__MAX_ALIASES] = { 482 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 483 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 484 { "LLC", "L2", }, 485 { "dTLB", "d-tlb", "Data-TLB", }, 486 { "iTLB", "i-tlb", "Instruction-TLB", }, 487 { "branch", "branches", "bpu", "btb", "bpc", }, 488 { "node", }, 489 }; 490 491 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 492 [PERF_EVSEL__MAX_ALIASES] = { 493 { "load", "loads", "read", }, 494 { "store", "stores", "write", }, 495 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 496 }; 497 498 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 499 [PERF_EVSEL__MAX_ALIASES] = { 500 { "refs", "Reference", "ops", "access", }, 501 { "misses", "miss", }, 502 }; 503 504 #define C(x) PERF_COUNT_HW_CACHE_##x 505 #define CACHE_READ (1 << C(OP_READ)) 506 #define CACHE_WRITE (1 << C(OP_WRITE)) 507 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 508 #define COP(x) (1 << x) 509 510 /* 511 * cache operartion stat 512 * L1I : Read and prefetch only 513 * ITLB and BPU : Read-only 514 */ 515 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 516 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 517 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 518 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 519 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 520 [C(ITLB)] = (CACHE_READ), 521 [C(BPU)] = (CACHE_READ), 522 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 523 }; 524 525 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 526 { 527 if (perf_evsel__hw_cache_stat[type] & COP(op)) 528 return true; /* valid */ 529 else 530 return false; /* invalid */ 531 } 532 533 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 534 char *bf, size_t size) 535 { 536 if (result) { 537 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 538 perf_evsel__hw_cache_op[op][0], 539 perf_evsel__hw_cache_result[result][0]); 540 } 541 542 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 543 perf_evsel__hw_cache_op[op][1]); 544 } 545 546 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 547 { 548 u8 op, result, type = (config >> 0) & 0xff; 549 const char *err = "unknown-ext-hardware-cache-type"; 550 551 if (type >= PERF_COUNT_HW_CACHE_MAX) 552 goto out_err; 553 554 op = (config >> 8) & 0xff; 555 err = "unknown-ext-hardware-cache-op"; 556 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 557 goto out_err; 558 559 result = (config >> 16) & 0xff; 560 err = "unknown-ext-hardware-cache-result"; 561 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 562 goto out_err; 563 564 err = "invalid-cache"; 565 if (!perf_evsel__is_cache_op_valid(type, op)) 566 goto out_err; 567 568 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 569 out_err: 570 return scnprintf(bf, size, "%s", err); 571 } 572 573 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 574 { 575 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 576 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 577 } 578 579 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 580 { 581 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 582 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 583 } 584 585 const char *perf_evsel__name(struct perf_evsel *evsel) 586 { 587 char bf[128]; 588 589 if (evsel->name) 590 return evsel->name; 591 592 switch (evsel->attr.type) { 593 case PERF_TYPE_RAW: 594 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 595 break; 596 597 case PERF_TYPE_HARDWARE: 598 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 599 break; 600 601 case PERF_TYPE_HW_CACHE: 602 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 603 break; 604 605 case PERF_TYPE_SOFTWARE: 606 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 607 break; 608 609 case PERF_TYPE_TRACEPOINT: 610 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 611 break; 612 613 case PERF_TYPE_BREAKPOINT: 614 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 615 break; 616 617 default: 618 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 619 evsel->attr.type); 620 break; 621 } 622 623 evsel->name = strdup(bf); 624 625 return evsel->name ?: "unknown"; 626 } 627 628 const char *perf_evsel__group_name(struct perf_evsel *evsel) 629 { 630 return evsel->group_name ?: "anon group"; 631 } 632 633 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 634 { 635 int ret; 636 struct perf_evsel *pos; 637 const char *group_name = perf_evsel__group_name(evsel); 638 639 ret = scnprintf(buf, size, "%s", group_name); 640 641 ret += scnprintf(buf + ret, size - ret, " { %s", 642 perf_evsel__name(evsel)); 643 644 for_each_group_member(pos, evsel) 645 ret += scnprintf(buf + ret, size - ret, ", %s", 646 perf_evsel__name(pos)); 647 648 ret += scnprintf(buf + ret, size - ret, " }"); 649 650 return ret; 651 } 652 653 void perf_evsel__config_callchain(struct perf_evsel *evsel, 654 struct record_opts *opts, 655 struct callchain_param *param) 656 { 657 bool function = perf_evsel__is_function_event(evsel); 658 struct perf_event_attr *attr = &evsel->attr; 659 660 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 661 662 attr->sample_max_stack = param->max_stack; 663 664 if (param->record_mode == CALLCHAIN_LBR) { 665 if (!opts->branch_stack) { 666 if (attr->exclude_user) { 667 pr_warning("LBR callstack option is only available " 668 "to get user callchain information. " 669 "Falling back to framepointers.\n"); 670 } else { 671 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 672 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 673 PERF_SAMPLE_BRANCH_CALL_STACK | 674 PERF_SAMPLE_BRANCH_NO_CYCLES | 675 PERF_SAMPLE_BRANCH_NO_FLAGS; 676 } 677 } else 678 pr_warning("Cannot use LBR callstack with branch stack. " 679 "Falling back to framepointers.\n"); 680 } 681 682 if (param->record_mode == CALLCHAIN_DWARF) { 683 if (!function) { 684 perf_evsel__set_sample_bit(evsel, REGS_USER); 685 perf_evsel__set_sample_bit(evsel, STACK_USER); 686 attr->sample_regs_user |= PERF_REGS_MASK; 687 attr->sample_stack_user = param->dump_size; 688 attr->exclude_callchain_user = 1; 689 } else { 690 pr_info("Cannot use DWARF unwind for function trace event," 691 " falling back to framepointers.\n"); 692 } 693 } 694 695 if (function) { 696 pr_info("Disabling user space callchains for function trace event.\n"); 697 attr->exclude_callchain_user = 1; 698 } 699 } 700 701 static void 702 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 703 struct callchain_param *param) 704 { 705 struct perf_event_attr *attr = &evsel->attr; 706 707 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 708 if (param->record_mode == CALLCHAIN_LBR) { 709 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 710 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 711 PERF_SAMPLE_BRANCH_CALL_STACK); 712 } 713 if (param->record_mode == CALLCHAIN_DWARF) { 714 perf_evsel__reset_sample_bit(evsel, REGS_USER); 715 perf_evsel__reset_sample_bit(evsel, STACK_USER); 716 } 717 } 718 719 static void apply_config_terms(struct perf_evsel *evsel, 720 struct record_opts *opts) 721 { 722 struct perf_evsel_config_term *term; 723 struct list_head *config_terms = &evsel->config_terms; 724 struct perf_event_attr *attr = &evsel->attr; 725 struct callchain_param param; 726 u32 dump_size = 0; 727 int max_stack = 0; 728 const char *callgraph_buf = NULL; 729 730 /* callgraph default */ 731 param.record_mode = callchain_param.record_mode; 732 733 list_for_each_entry(term, config_terms, list) { 734 switch (term->type) { 735 case PERF_EVSEL__CONFIG_TERM_PERIOD: 736 if (!(term->weak && opts->user_interval != ULLONG_MAX)) { 737 attr->sample_period = term->val.period; 738 attr->freq = 0; 739 } 740 break; 741 case PERF_EVSEL__CONFIG_TERM_FREQ: 742 if (!(term->weak && opts->user_freq != UINT_MAX)) { 743 attr->sample_freq = term->val.freq; 744 attr->freq = 1; 745 } 746 break; 747 case PERF_EVSEL__CONFIG_TERM_TIME: 748 if (term->val.time) 749 perf_evsel__set_sample_bit(evsel, TIME); 750 else 751 perf_evsel__reset_sample_bit(evsel, TIME); 752 break; 753 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 754 callgraph_buf = term->val.callgraph; 755 break; 756 case PERF_EVSEL__CONFIG_TERM_BRANCH: 757 if (term->val.branch && strcmp(term->val.branch, "no")) { 758 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 759 parse_branch_str(term->val.branch, 760 &attr->branch_sample_type); 761 } else 762 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 763 break; 764 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 765 dump_size = term->val.stack_user; 766 break; 767 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 768 max_stack = term->val.max_stack; 769 break; 770 case PERF_EVSEL__CONFIG_TERM_INHERIT: 771 /* 772 * attr->inherit should has already been set by 773 * perf_evsel__config. If user explicitly set 774 * inherit using config terms, override global 775 * opt->no_inherit setting. 776 */ 777 attr->inherit = term->val.inherit ? 1 : 0; 778 break; 779 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 780 attr->write_backward = term->val.overwrite ? 1 : 0; 781 break; 782 default: 783 break; 784 } 785 } 786 787 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 788 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 789 if (max_stack) { 790 param.max_stack = max_stack; 791 if (callgraph_buf == NULL) 792 callgraph_buf = "fp"; 793 } 794 795 /* parse callgraph parameters */ 796 if (callgraph_buf != NULL) { 797 if (!strcmp(callgraph_buf, "no")) { 798 param.enabled = false; 799 param.record_mode = CALLCHAIN_NONE; 800 } else { 801 param.enabled = true; 802 if (parse_callchain_record(callgraph_buf, ¶m)) { 803 pr_err("per-event callgraph setting for %s failed. " 804 "Apply callgraph global setting for it\n", 805 evsel->name); 806 return; 807 } 808 } 809 } 810 if (dump_size > 0) { 811 dump_size = round_up(dump_size, sizeof(u64)); 812 param.dump_size = dump_size; 813 } 814 815 /* If global callgraph set, clear it */ 816 if (callchain_param.enabled) 817 perf_evsel__reset_callgraph(evsel, &callchain_param); 818 819 /* set perf-event callgraph */ 820 if (param.enabled) 821 perf_evsel__config_callchain(evsel, opts, ¶m); 822 } 823 } 824 825 /* 826 * The enable_on_exec/disabled value strategy: 827 * 828 * 1) For any type of traced program: 829 * - all independent events and group leaders are disabled 830 * - all group members are enabled 831 * 832 * Group members are ruled by group leaders. They need to 833 * be enabled, because the group scheduling relies on that. 834 * 835 * 2) For traced programs executed by perf: 836 * - all independent events and group leaders have 837 * enable_on_exec set 838 * - we don't specifically enable or disable any event during 839 * the record command 840 * 841 * Independent events and group leaders are initially disabled 842 * and get enabled by exec. Group members are ruled by group 843 * leaders as stated in 1). 844 * 845 * 3) For traced programs attached by perf (pid/tid): 846 * - we specifically enable or disable all events during 847 * the record command 848 * 849 * When attaching events to already running traced we 850 * enable/disable events specifically, as there's no 851 * initial traced exec call. 852 */ 853 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 854 struct callchain_param *callchain) 855 { 856 struct perf_evsel *leader = evsel->leader; 857 struct perf_event_attr *attr = &evsel->attr; 858 int track = evsel->tracking; 859 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 860 861 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 862 attr->inherit = !opts->no_inherit; 863 attr->write_backward = opts->overwrite ? 1 : 0; 864 865 perf_evsel__set_sample_bit(evsel, IP); 866 perf_evsel__set_sample_bit(evsel, TID); 867 868 if (evsel->sample_read) { 869 perf_evsel__set_sample_bit(evsel, READ); 870 871 /* 872 * We need ID even in case of single event, because 873 * PERF_SAMPLE_READ process ID specific data. 874 */ 875 perf_evsel__set_sample_id(evsel, false); 876 877 /* 878 * Apply group format only if we belong to group 879 * with more than one members. 880 */ 881 if (leader->nr_members > 1) { 882 attr->read_format |= PERF_FORMAT_GROUP; 883 attr->inherit = 0; 884 } 885 } 886 887 /* 888 * We default some events to have a default interval. But keep 889 * it a weak assumption overridable by the user. 890 */ 891 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 892 opts->user_interval != ULLONG_MAX)) { 893 if (opts->freq) { 894 perf_evsel__set_sample_bit(evsel, PERIOD); 895 attr->freq = 1; 896 attr->sample_freq = opts->freq; 897 } else { 898 attr->sample_period = opts->default_interval; 899 } 900 } 901 902 /* 903 * Disable sampling for all group members other 904 * than leader in case leader 'leads' the sampling. 905 */ 906 if ((leader != evsel) && leader->sample_read) { 907 attr->sample_freq = 0; 908 attr->sample_period = 0; 909 } 910 911 if (opts->no_samples) 912 attr->sample_freq = 0; 913 914 if (opts->inherit_stat) { 915 evsel->attr.read_format |= 916 PERF_FORMAT_TOTAL_TIME_ENABLED | 917 PERF_FORMAT_TOTAL_TIME_RUNNING | 918 PERF_FORMAT_ID; 919 attr->inherit_stat = 1; 920 } 921 922 if (opts->sample_address) { 923 perf_evsel__set_sample_bit(evsel, ADDR); 924 attr->mmap_data = track; 925 } 926 927 /* 928 * We don't allow user space callchains for function trace 929 * event, due to issues with page faults while tracing page 930 * fault handler and its overall trickiness nature. 931 */ 932 if (perf_evsel__is_function_event(evsel)) 933 evsel->attr.exclude_callchain_user = 1; 934 935 if (callchain && callchain->enabled && !evsel->no_aux_samples) 936 perf_evsel__config_callchain(evsel, opts, callchain); 937 938 if (opts->sample_intr_regs) { 939 attr->sample_regs_intr = opts->sample_intr_regs; 940 perf_evsel__set_sample_bit(evsel, REGS_INTR); 941 } 942 943 if (opts->sample_user_regs) { 944 attr->sample_regs_user |= opts->sample_user_regs; 945 perf_evsel__set_sample_bit(evsel, REGS_USER); 946 } 947 948 if (target__has_cpu(&opts->target) || opts->sample_cpu) 949 perf_evsel__set_sample_bit(evsel, CPU); 950 951 if (opts->period) 952 perf_evsel__set_sample_bit(evsel, PERIOD); 953 954 /* 955 * When the user explicitly disabled time don't force it here. 956 */ 957 if (opts->sample_time && 958 (!perf_missing_features.sample_id_all && 959 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 960 opts->sample_time_set))) 961 perf_evsel__set_sample_bit(evsel, TIME); 962 963 if (opts->raw_samples && !evsel->no_aux_samples) { 964 perf_evsel__set_sample_bit(evsel, TIME); 965 perf_evsel__set_sample_bit(evsel, RAW); 966 perf_evsel__set_sample_bit(evsel, CPU); 967 } 968 969 if (opts->sample_address) 970 perf_evsel__set_sample_bit(evsel, DATA_SRC); 971 972 if (opts->sample_phys_addr) 973 perf_evsel__set_sample_bit(evsel, PHYS_ADDR); 974 975 if (opts->no_buffering) { 976 attr->watermark = 0; 977 attr->wakeup_events = 1; 978 } 979 if (opts->branch_stack && !evsel->no_aux_samples) { 980 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 981 attr->branch_sample_type = opts->branch_stack; 982 } 983 984 if (opts->sample_weight) 985 perf_evsel__set_sample_bit(evsel, WEIGHT); 986 987 attr->task = track; 988 attr->mmap = track; 989 attr->mmap2 = track && !perf_missing_features.mmap2; 990 attr->comm = track; 991 992 if (opts->record_namespaces) 993 attr->namespaces = track; 994 995 if (opts->record_switch_events) 996 attr->context_switch = track; 997 998 if (opts->sample_transaction) 999 perf_evsel__set_sample_bit(evsel, TRANSACTION); 1000 1001 if (opts->running_time) { 1002 evsel->attr.read_format |= 1003 PERF_FORMAT_TOTAL_TIME_ENABLED | 1004 PERF_FORMAT_TOTAL_TIME_RUNNING; 1005 } 1006 1007 /* 1008 * XXX see the function comment above 1009 * 1010 * Disabling only independent events or group leaders, 1011 * keeping group members enabled. 1012 */ 1013 if (perf_evsel__is_group_leader(evsel)) 1014 attr->disabled = 1; 1015 1016 /* 1017 * Setting enable_on_exec for independent events and 1018 * group leaders for traced executed by perf. 1019 */ 1020 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 1021 !opts->initial_delay) 1022 attr->enable_on_exec = 1; 1023 1024 if (evsel->immediate) { 1025 attr->disabled = 0; 1026 attr->enable_on_exec = 0; 1027 } 1028 1029 clockid = opts->clockid; 1030 if (opts->use_clockid) { 1031 attr->use_clockid = 1; 1032 attr->clockid = opts->clockid; 1033 } 1034 1035 if (evsel->precise_max) 1036 perf_event_attr__set_max_precise_ip(attr); 1037 1038 if (opts->all_user) { 1039 attr->exclude_kernel = 1; 1040 attr->exclude_user = 0; 1041 } 1042 1043 if (opts->all_kernel) { 1044 attr->exclude_kernel = 0; 1045 attr->exclude_user = 1; 1046 } 1047 1048 /* 1049 * Apply event specific term settings, 1050 * it overloads any global configuration. 1051 */ 1052 apply_config_terms(evsel, opts); 1053 1054 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1055 } 1056 1057 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1058 { 1059 if (evsel->system_wide) 1060 nthreads = 1; 1061 1062 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1063 1064 if (evsel->fd) { 1065 int cpu, thread; 1066 for (cpu = 0; cpu < ncpus; cpu++) { 1067 for (thread = 0; thread < nthreads; thread++) { 1068 FD(evsel, cpu, thread) = -1; 1069 } 1070 } 1071 } 1072 1073 return evsel->fd != NULL ? 0 : -ENOMEM; 1074 } 1075 1076 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, 1077 int ioc, void *arg) 1078 { 1079 int cpu, thread; 1080 1081 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 1082 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) { 1083 int fd = FD(evsel, cpu, thread), 1084 err = ioctl(fd, ioc, arg); 1085 1086 if (err) 1087 return err; 1088 } 1089 } 1090 1091 return 0; 1092 } 1093 1094 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter) 1095 { 1096 return perf_evsel__run_ioctl(evsel, 1097 PERF_EVENT_IOC_SET_FILTER, 1098 (void *)filter); 1099 } 1100 1101 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1102 { 1103 char *new_filter = strdup(filter); 1104 1105 if (new_filter != NULL) { 1106 free(evsel->filter); 1107 evsel->filter = new_filter; 1108 return 0; 1109 } 1110 1111 return -1; 1112 } 1113 1114 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1115 const char *fmt, const char *filter) 1116 { 1117 char *new_filter; 1118 1119 if (evsel->filter == NULL) 1120 return perf_evsel__set_filter(evsel, filter); 1121 1122 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1123 free(evsel->filter); 1124 evsel->filter = new_filter; 1125 return 0; 1126 } 1127 1128 return -1; 1129 } 1130 1131 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1132 { 1133 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1134 } 1135 1136 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1137 { 1138 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1139 } 1140 1141 int perf_evsel__enable(struct perf_evsel *evsel) 1142 { 1143 return perf_evsel__run_ioctl(evsel, 1144 PERF_EVENT_IOC_ENABLE, 1145 0); 1146 } 1147 1148 int perf_evsel__disable(struct perf_evsel *evsel) 1149 { 1150 return perf_evsel__run_ioctl(evsel, 1151 PERF_EVENT_IOC_DISABLE, 1152 0); 1153 } 1154 1155 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1156 { 1157 if (ncpus == 0 || nthreads == 0) 1158 return 0; 1159 1160 if (evsel->system_wide) 1161 nthreads = 1; 1162 1163 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1164 if (evsel->sample_id == NULL) 1165 return -ENOMEM; 1166 1167 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1168 if (evsel->id == NULL) { 1169 xyarray__delete(evsel->sample_id); 1170 evsel->sample_id = NULL; 1171 return -ENOMEM; 1172 } 1173 1174 return 0; 1175 } 1176 1177 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1178 { 1179 xyarray__delete(evsel->fd); 1180 evsel->fd = NULL; 1181 } 1182 1183 static void perf_evsel__free_id(struct perf_evsel *evsel) 1184 { 1185 xyarray__delete(evsel->sample_id); 1186 evsel->sample_id = NULL; 1187 zfree(&evsel->id); 1188 } 1189 1190 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1191 { 1192 struct perf_evsel_config_term *term, *h; 1193 1194 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1195 list_del(&term->list); 1196 free(term); 1197 } 1198 } 1199 1200 void perf_evsel__close_fd(struct perf_evsel *evsel) 1201 { 1202 int cpu, thread; 1203 1204 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) 1205 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) { 1206 close(FD(evsel, cpu, thread)); 1207 FD(evsel, cpu, thread) = -1; 1208 } 1209 } 1210 1211 void perf_evsel__exit(struct perf_evsel *evsel) 1212 { 1213 assert(list_empty(&evsel->node)); 1214 assert(evsel->evlist == NULL); 1215 perf_evsel__free_fd(evsel); 1216 perf_evsel__free_id(evsel); 1217 perf_evsel__free_config_terms(evsel); 1218 close_cgroup(evsel->cgrp); 1219 cpu_map__put(evsel->cpus); 1220 cpu_map__put(evsel->own_cpus); 1221 thread_map__put(evsel->threads); 1222 zfree(&evsel->group_name); 1223 zfree(&evsel->name); 1224 perf_evsel__object.fini(evsel); 1225 } 1226 1227 void perf_evsel__delete(struct perf_evsel *evsel) 1228 { 1229 perf_evsel__exit(evsel); 1230 free(evsel); 1231 } 1232 1233 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1234 struct perf_counts_values *count) 1235 { 1236 struct perf_counts_values tmp; 1237 1238 if (!evsel->prev_raw_counts) 1239 return; 1240 1241 if (cpu == -1) { 1242 tmp = evsel->prev_raw_counts->aggr; 1243 evsel->prev_raw_counts->aggr = *count; 1244 } else { 1245 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1246 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1247 } 1248 1249 count->val = count->val - tmp.val; 1250 count->ena = count->ena - tmp.ena; 1251 count->run = count->run - tmp.run; 1252 } 1253 1254 void perf_counts_values__scale(struct perf_counts_values *count, 1255 bool scale, s8 *pscaled) 1256 { 1257 s8 scaled = 0; 1258 1259 if (scale) { 1260 if (count->run == 0) { 1261 scaled = -1; 1262 count->val = 0; 1263 } else if (count->run < count->ena) { 1264 scaled = 1; 1265 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1266 } 1267 } else 1268 count->ena = count->run = 0; 1269 1270 if (pscaled) 1271 *pscaled = scaled; 1272 } 1273 1274 static int perf_evsel__read_size(struct perf_evsel *evsel) 1275 { 1276 u64 read_format = evsel->attr.read_format; 1277 int entry = sizeof(u64); /* value */ 1278 int size = 0; 1279 int nr = 1; 1280 1281 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1282 size += sizeof(u64); 1283 1284 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1285 size += sizeof(u64); 1286 1287 if (read_format & PERF_FORMAT_ID) 1288 entry += sizeof(u64); 1289 1290 if (read_format & PERF_FORMAT_GROUP) { 1291 nr = evsel->nr_members; 1292 size += sizeof(u64); 1293 } 1294 1295 size += entry * nr; 1296 return size; 1297 } 1298 1299 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1300 struct perf_counts_values *count) 1301 { 1302 size_t size = perf_evsel__read_size(evsel); 1303 1304 memset(count, 0, sizeof(*count)); 1305 1306 if (FD(evsel, cpu, thread) < 0) 1307 return -EINVAL; 1308 1309 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0) 1310 return -errno; 1311 1312 return 0; 1313 } 1314 1315 static int 1316 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread) 1317 { 1318 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread); 1319 1320 return perf_evsel__read(evsel, cpu, thread, count); 1321 } 1322 1323 static void 1324 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread, 1325 u64 val, u64 ena, u64 run) 1326 { 1327 struct perf_counts_values *count; 1328 1329 count = perf_counts(counter->counts, cpu, thread); 1330 1331 count->val = val; 1332 count->ena = ena; 1333 count->run = run; 1334 count->loaded = true; 1335 } 1336 1337 static int 1338 perf_evsel__process_group_data(struct perf_evsel *leader, 1339 int cpu, int thread, u64 *data) 1340 { 1341 u64 read_format = leader->attr.read_format; 1342 struct sample_read_value *v; 1343 u64 nr, ena = 0, run = 0, i; 1344 1345 nr = *data++; 1346 1347 if (nr != (u64) leader->nr_members) 1348 return -EINVAL; 1349 1350 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1351 ena = *data++; 1352 1353 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1354 run = *data++; 1355 1356 v = (struct sample_read_value *) data; 1357 1358 perf_evsel__set_count(leader, cpu, thread, 1359 v[0].value, ena, run); 1360 1361 for (i = 1; i < nr; i++) { 1362 struct perf_evsel *counter; 1363 1364 counter = perf_evlist__id2evsel(leader->evlist, v[i].id); 1365 if (!counter) 1366 return -EINVAL; 1367 1368 perf_evsel__set_count(counter, cpu, thread, 1369 v[i].value, ena, run); 1370 } 1371 1372 return 0; 1373 } 1374 1375 static int 1376 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread) 1377 { 1378 struct perf_stat_evsel *ps = leader->stats; 1379 u64 read_format = leader->attr.read_format; 1380 int size = perf_evsel__read_size(leader); 1381 u64 *data = ps->group_data; 1382 1383 if (!(read_format & PERF_FORMAT_ID)) 1384 return -EINVAL; 1385 1386 if (!perf_evsel__is_group_leader(leader)) 1387 return -EINVAL; 1388 1389 if (!data) { 1390 data = zalloc(size); 1391 if (!data) 1392 return -ENOMEM; 1393 1394 ps->group_data = data; 1395 } 1396 1397 if (FD(leader, cpu, thread) < 0) 1398 return -EINVAL; 1399 1400 if (readn(FD(leader, cpu, thread), data, size) <= 0) 1401 return -errno; 1402 1403 return perf_evsel__process_group_data(leader, cpu, thread, data); 1404 } 1405 1406 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread) 1407 { 1408 u64 read_format = evsel->attr.read_format; 1409 1410 if (read_format & PERF_FORMAT_GROUP) 1411 return perf_evsel__read_group(evsel, cpu, thread); 1412 else 1413 return perf_evsel__read_one(evsel, cpu, thread); 1414 } 1415 1416 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1417 int cpu, int thread, bool scale) 1418 { 1419 struct perf_counts_values count; 1420 size_t nv = scale ? 3 : 1; 1421 1422 if (FD(evsel, cpu, thread) < 0) 1423 return -EINVAL; 1424 1425 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1426 return -ENOMEM; 1427 1428 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1429 return -errno; 1430 1431 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1432 perf_counts_values__scale(&count, scale, NULL); 1433 *perf_counts(evsel->counts, cpu, thread) = count; 1434 return 0; 1435 } 1436 1437 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1438 { 1439 struct perf_evsel *leader = evsel->leader; 1440 int fd; 1441 1442 if (perf_evsel__is_group_leader(evsel)) 1443 return -1; 1444 1445 /* 1446 * Leader must be already processed/open, 1447 * if not it's a bug. 1448 */ 1449 BUG_ON(!leader->fd); 1450 1451 fd = FD(leader, cpu, thread); 1452 BUG_ON(fd == -1); 1453 1454 return fd; 1455 } 1456 1457 struct bit_names { 1458 int bit; 1459 const char *name; 1460 }; 1461 1462 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1463 { 1464 bool first_bit = true; 1465 int i = 0; 1466 1467 do { 1468 if (value & bits[i].bit) { 1469 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1470 first_bit = false; 1471 } 1472 } while (bits[++i].name != NULL); 1473 } 1474 1475 static void __p_sample_type(char *buf, size_t size, u64 value) 1476 { 1477 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1478 struct bit_names bits[] = { 1479 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1480 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1481 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1482 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1483 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1484 bit_name(WEIGHT), bit_name(PHYS_ADDR), 1485 { .name = NULL, } 1486 }; 1487 #undef bit_name 1488 __p_bits(buf, size, value, bits); 1489 } 1490 1491 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1492 { 1493 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1494 struct bit_names bits[] = { 1495 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1496 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1497 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1498 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1499 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1500 { .name = NULL, } 1501 }; 1502 #undef bit_name 1503 __p_bits(buf, size, value, bits); 1504 } 1505 1506 static void __p_read_format(char *buf, size_t size, u64 value) 1507 { 1508 #define bit_name(n) { PERF_FORMAT_##n, #n } 1509 struct bit_names bits[] = { 1510 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1511 bit_name(ID), bit_name(GROUP), 1512 { .name = NULL, } 1513 }; 1514 #undef bit_name 1515 __p_bits(buf, size, value, bits); 1516 } 1517 1518 #define BUF_SIZE 1024 1519 1520 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1521 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1522 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1523 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1524 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1525 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1526 1527 #define PRINT_ATTRn(_n, _f, _p) \ 1528 do { \ 1529 if (attr->_f) { \ 1530 _p(attr->_f); \ 1531 ret += attr__fprintf(fp, _n, buf, priv);\ 1532 } \ 1533 } while (0) 1534 1535 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1536 1537 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1538 attr__fprintf_f attr__fprintf, void *priv) 1539 { 1540 char buf[BUF_SIZE]; 1541 int ret = 0; 1542 1543 PRINT_ATTRf(type, p_unsigned); 1544 PRINT_ATTRf(size, p_unsigned); 1545 PRINT_ATTRf(config, p_hex); 1546 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1547 PRINT_ATTRf(sample_type, p_sample_type); 1548 PRINT_ATTRf(read_format, p_read_format); 1549 1550 PRINT_ATTRf(disabled, p_unsigned); 1551 PRINT_ATTRf(inherit, p_unsigned); 1552 PRINT_ATTRf(pinned, p_unsigned); 1553 PRINT_ATTRf(exclusive, p_unsigned); 1554 PRINT_ATTRf(exclude_user, p_unsigned); 1555 PRINT_ATTRf(exclude_kernel, p_unsigned); 1556 PRINT_ATTRf(exclude_hv, p_unsigned); 1557 PRINT_ATTRf(exclude_idle, p_unsigned); 1558 PRINT_ATTRf(mmap, p_unsigned); 1559 PRINT_ATTRf(comm, p_unsigned); 1560 PRINT_ATTRf(freq, p_unsigned); 1561 PRINT_ATTRf(inherit_stat, p_unsigned); 1562 PRINT_ATTRf(enable_on_exec, p_unsigned); 1563 PRINT_ATTRf(task, p_unsigned); 1564 PRINT_ATTRf(watermark, p_unsigned); 1565 PRINT_ATTRf(precise_ip, p_unsigned); 1566 PRINT_ATTRf(mmap_data, p_unsigned); 1567 PRINT_ATTRf(sample_id_all, p_unsigned); 1568 PRINT_ATTRf(exclude_host, p_unsigned); 1569 PRINT_ATTRf(exclude_guest, p_unsigned); 1570 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1571 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1572 PRINT_ATTRf(mmap2, p_unsigned); 1573 PRINT_ATTRf(comm_exec, p_unsigned); 1574 PRINT_ATTRf(use_clockid, p_unsigned); 1575 PRINT_ATTRf(context_switch, p_unsigned); 1576 PRINT_ATTRf(write_backward, p_unsigned); 1577 1578 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1579 PRINT_ATTRf(bp_type, p_unsigned); 1580 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1581 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1582 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1583 PRINT_ATTRf(sample_regs_user, p_hex); 1584 PRINT_ATTRf(sample_stack_user, p_unsigned); 1585 PRINT_ATTRf(clockid, p_signed); 1586 PRINT_ATTRf(sample_regs_intr, p_hex); 1587 PRINT_ATTRf(aux_watermark, p_unsigned); 1588 PRINT_ATTRf(sample_max_stack, p_unsigned); 1589 1590 return ret; 1591 } 1592 1593 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1594 void *priv __maybe_unused) 1595 { 1596 return fprintf(fp, " %-32s %s\n", name, val); 1597 } 1598 1599 static bool ignore_missing_thread(struct perf_evsel *evsel, 1600 struct thread_map *threads, 1601 int thread, int err) 1602 { 1603 if (!evsel->ignore_missing_thread) 1604 return false; 1605 1606 /* The system wide setup does not work with threads. */ 1607 if (evsel->system_wide) 1608 return false; 1609 1610 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1611 if (err != -ESRCH) 1612 return false; 1613 1614 /* If there's only one thread, let it fail. */ 1615 if (threads->nr == 1) 1616 return false; 1617 1618 if (thread_map__remove(threads, thread)) 1619 return false; 1620 1621 pr_warning("WARNING: Ignored open failure for pid %d\n", 1622 thread_map__pid(threads, thread)); 1623 return true; 1624 } 1625 1626 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1627 struct thread_map *threads) 1628 { 1629 int cpu, thread, nthreads; 1630 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1631 int pid = -1, err; 1632 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1633 1634 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1635 return -EINVAL; 1636 1637 if (cpus == NULL) { 1638 static struct cpu_map *empty_cpu_map; 1639 1640 if (empty_cpu_map == NULL) { 1641 empty_cpu_map = cpu_map__dummy_new(); 1642 if (empty_cpu_map == NULL) 1643 return -ENOMEM; 1644 } 1645 1646 cpus = empty_cpu_map; 1647 } 1648 1649 if (threads == NULL) { 1650 static struct thread_map *empty_thread_map; 1651 1652 if (empty_thread_map == NULL) { 1653 empty_thread_map = thread_map__new_by_tid(-1); 1654 if (empty_thread_map == NULL) 1655 return -ENOMEM; 1656 } 1657 1658 threads = empty_thread_map; 1659 } 1660 1661 if (evsel->system_wide) 1662 nthreads = 1; 1663 else 1664 nthreads = threads->nr; 1665 1666 if (evsel->fd == NULL && 1667 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1668 return -ENOMEM; 1669 1670 if (evsel->cgrp) { 1671 flags |= PERF_FLAG_PID_CGROUP; 1672 pid = evsel->cgrp->fd; 1673 } 1674 1675 fallback_missing_features: 1676 if (perf_missing_features.clockid_wrong) 1677 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1678 if (perf_missing_features.clockid) { 1679 evsel->attr.use_clockid = 0; 1680 evsel->attr.clockid = 0; 1681 } 1682 if (perf_missing_features.cloexec) 1683 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1684 if (perf_missing_features.mmap2) 1685 evsel->attr.mmap2 = 0; 1686 if (perf_missing_features.exclude_guest) 1687 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1688 if (perf_missing_features.lbr_flags) 1689 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1690 PERF_SAMPLE_BRANCH_NO_CYCLES); 1691 if (perf_missing_features.group_read && evsel->attr.inherit) 1692 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); 1693 retry_sample_id: 1694 if (perf_missing_features.sample_id_all) 1695 evsel->attr.sample_id_all = 0; 1696 1697 if (verbose >= 2) { 1698 fprintf(stderr, "%.60s\n", graph_dotted_line); 1699 fprintf(stderr, "perf_event_attr:\n"); 1700 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1701 fprintf(stderr, "%.60s\n", graph_dotted_line); 1702 } 1703 1704 for (cpu = 0; cpu < cpus->nr; cpu++) { 1705 1706 for (thread = 0; thread < nthreads; thread++) { 1707 int fd, group_fd; 1708 1709 if (!evsel->cgrp && !evsel->system_wide) 1710 pid = thread_map__pid(threads, thread); 1711 1712 group_fd = get_group_fd(evsel, cpu, thread); 1713 retry_open: 1714 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1715 pid, cpus->map[cpu], group_fd, flags); 1716 1717 test_attr__ready(); 1718 1719 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu], 1720 group_fd, flags); 1721 1722 FD(evsel, cpu, thread) = fd; 1723 1724 if (fd < 0) { 1725 err = -errno; 1726 1727 if (ignore_missing_thread(evsel, threads, thread, err)) { 1728 /* 1729 * We just removed 1 thread, so take a step 1730 * back on thread index and lower the upper 1731 * nthreads limit. 1732 */ 1733 nthreads--; 1734 thread--; 1735 1736 /* ... and pretend like nothing have happened. */ 1737 err = 0; 1738 continue; 1739 } 1740 1741 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1742 err); 1743 goto try_fallback; 1744 } 1745 1746 pr_debug2(" = %d\n", fd); 1747 1748 if (evsel->bpf_fd >= 0) { 1749 int evt_fd = fd; 1750 int bpf_fd = evsel->bpf_fd; 1751 1752 err = ioctl(evt_fd, 1753 PERF_EVENT_IOC_SET_BPF, 1754 bpf_fd); 1755 if (err && errno != EEXIST) { 1756 pr_err("failed to attach bpf fd %d: %s\n", 1757 bpf_fd, strerror(errno)); 1758 err = -EINVAL; 1759 goto out_close; 1760 } 1761 } 1762 1763 set_rlimit = NO_CHANGE; 1764 1765 /* 1766 * If we succeeded but had to kill clockid, fail and 1767 * have perf_evsel__open_strerror() print us a nice 1768 * error. 1769 */ 1770 if (perf_missing_features.clockid || 1771 perf_missing_features.clockid_wrong) { 1772 err = -EINVAL; 1773 goto out_close; 1774 } 1775 } 1776 } 1777 1778 return 0; 1779 1780 try_fallback: 1781 /* 1782 * perf stat needs between 5 and 22 fds per CPU. When we run out 1783 * of them try to increase the limits. 1784 */ 1785 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1786 struct rlimit l; 1787 int old_errno = errno; 1788 1789 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1790 if (set_rlimit == NO_CHANGE) 1791 l.rlim_cur = l.rlim_max; 1792 else { 1793 l.rlim_cur = l.rlim_max + 1000; 1794 l.rlim_max = l.rlim_cur; 1795 } 1796 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1797 set_rlimit++; 1798 errno = old_errno; 1799 goto retry_open; 1800 } 1801 } 1802 errno = old_errno; 1803 } 1804 1805 if (err != -EINVAL || cpu > 0 || thread > 0) 1806 goto out_close; 1807 1808 /* 1809 * Must probe features in the order they were added to the 1810 * perf_event_attr interface. 1811 */ 1812 if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 1813 perf_missing_features.write_backward = true; 1814 pr_debug2("switching off write_backward\n"); 1815 goto out_close; 1816 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1817 perf_missing_features.clockid_wrong = true; 1818 pr_debug2("switching off clockid\n"); 1819 goto fallback_missing_features; 1820 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1821 perf_missing_features.clockid = true; 1822 pr_debug2("switching off use_clockid\n"); 1823 goto fallback_missing_features; 1824 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1825 perf_missing_features.cloexec = true; 1826 pr_debug2("switching off cloexec flag\n"); 1827 goto fallback_missing_features; 1828 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1829 perf_missing_features.mmap2 = true; 1830 pr_debug2("switching off mmap2\n"); 1831 goto fallback_missing_features; 1832 } else if (!perf_missing_features.exclude_guest && 1833 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1834 perf_missing_features.exclude_guest = true; 1835 pr_debug2("switching off exclude_guest, exclude_host\n"); 1836 goto fallback_missing_features; 1837 } else if (!perf_missing_features.sample_id_all) { 1838 perf_missing_features.sample_id_all = true; 1839 pr_debug2("switching off sample_id_all\n"); 1840 goto retry_sample_id; 1841 } else if (!perf_missing_features.lbr_flags && 1842 (evsel->attr.branch_sample_type & 1843 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1844 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1845 perf_missing_features.lbr_flags = true; 1846 pr_debug2("switching off branch sample type no (cycles/flags)\n"); 1847 goto fallback_missing_features; 1848 } else if (!perf_missing_features.group_read && 1849 evsel->attr.inherit && 1850 (evsel->attr.read_format & PERF_FORMAT_GROUP)) { 1851 perf_missing_features.group_read = true; 1852 pr_debug2("switching off group read\n"); 1853 goto fallback_missing_features; 1854 } 1855 out_close: 1856 do { 1857 while (--thread >= 0) { 1858 close(FD(evsel, cpu, thread)); 1859 FD(evsel, cpu, thread) = -1; 1860 } 1861 thread = nthreads; 1862 } while (--cpu >= 0); 1863 return err; 1864 } 1865 1866 void perf_evsel__close(struct perf_evsel *evsel) 1867 { 1868 if (evsel->fd == NULL) 1869 return; 1870 1871 perf_evsel__close_fd(evsel); 1872 perf_evsel__free_fd(evsel); 1873 } 1874 1875 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1876 struct cpu_map *cpus) 1877 { 1878 return perf_evsel__open(evsel, cpus, NULL); 1879 } 1880 1881 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1882 struct thread_map *threads) 1883 { 1884 return perf_evsel__open(evsel, NULL, threads); 1885 } 1886 1887 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1888 const union perf_event *event, 1889 struct perf_sample *sample) 1890 { 1891 u64 type = evsel->attr.sample_type; 1892 const u64 *array = event->sample.array; 1893 bool swapped = evsel->needs_swap; 1894 union u64_swap u; 1895 1896 array += ((event->header.size - 1897 sizeof(event->header)) / sizeof(u64)) - 1; 1898 1899 if (type & PERF_SAMPLE_IDENTIFIER) { 1900 sample->id = *array; 1901 array--; 1902 } 1903 1904 if (type & PERF_SAMPLE_CPU) { 1905 u.val64 = *array; 1906 if (swapped) { 1907 /* undo swap of u64, then swap on individual u32s */ 1908 u.val64 = bswap_64(u.val64); 1909 u.val32[0] = bswap_32(u.val32[0]); 1910 } 1911 1912 sample->cpu = u.val32[0]; 1913 array--; 1914 } 1915 1916 if (type & PERF_SAMPLE_STREAM_ID) { 1917 sample->stream_id = *array; 1918 array--; 1919 } 1920 1921 if (type & PERF_SAMPLE_ID) { 1922 sample->id = *array; 1923 array--; 1924 } 1925 1926 if (type & PERF_SAMPLE_TIME) { 1927 sample->time = *array; 1928 array--; 1929 } 1930 1931 if (type & PERF_SAMPLE_TID) { 1932 u.val64 = *array; 1933 if (swapped) { 1934 /* undo swap of u64, then swap on individual u32s */ 1935 u.val64 = bswap_64(u.val64); 1936 u.val32[0] = bswap_32(u.val32[0]); 1937 u.val32[1] = bswap_32(u.val32[1]); 1938 } 1939 1940 sample->pid = u.val32[0]; 1941 sample->tid = u.val32[1]; 1942 array--; 1943 } 1944 1945 return 0; 1946 } 1947 1948 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 1949 u64 size) 1950 { 1951 return size > max_size || offset + size > endp; 1952 } 1953 1954 #define OVERFLOW_CHECK(offset, size, max_size) \ 1955 do { \ 1956 if (overflow(endp, (max_size), (offset), (size))) \ 1957 return -EFAULT; \ 1958 } while (0) 1959 1960 #define OVERFLOW_CHECK_u64(offset) \ 1961 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 1962 1963 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 1964 struct perf_sample *data) 1965 { 1966 u64 type = evsel->attr.sample_type; 1967 bool swapped = evsel->needs_swap; 1968 const u64 *array; 1969 u16 max_size = event->header.size; 1970 const void *endp = (void *)event + max_size; 1971 u64 sz; 1972 1973 /* 1974 * used for cross-endian analysis. See git commit 65014ab3 1975 * for why this goofiness is needed. 1976 */ 1977 union u64_swap u; 1978 1979 memset(data, 0, sizeof(*data)); 1980 data->cpu = data->pid = data->tid = -1; 1981 data->stream_id = data->id = data->time = -1ULL; 1982 data->period = evsel->attr.sample_period; 1983 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1984 1985 if (event->header.type != PERF_RECORD_SAMPLE) { 1986 if (!evsel->attr.sample_id_all) 1987 return 0; 1988 return perf_evsel__parse_id_sample(evsel, event, data); 1989 } 1990 1991 array = event->sample.array; 1992 1993 /* 1994 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 1995 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 1996 * check the format does not go past the end of the event. 1997 */ 1998 if (evsel->sample_size + sizeof(event->header) > event->header.size) 1999 return -EFAULT; 2000 2001 data->id = -1ULL; 2002 if (type & PERF_SAMPLE_IDENTIFIER) { 2003 data->id = *array; 2004 array++; 2005 } 2006 2007 if (type & PERF_SAMPLE_IP) { 2008 data->ip = *array; 2009 array++; 2010 } 2011 2012 if (type & PERF_SAMPLE_TID) { 2013 u.val64 = *array; 2014 if (swapped) { 2015 /* undo swap of u64, then swap on individual u32s */ 2016 u.val64 = bswap_64(u.val64); 2017 u.val32[0] = bswap_32(u.val32[0]); 2018 u.val32[1] = bswap_32(u.val32[1]); 2019 } 2020 2021 data->pid = u.val32[0]; 2022 data->tid = u.val32[1]; 2023 array++; 2024 } 2025 2026 if (type & PERF_SAMPLE_TIME) { 2027 data->time = *array; 2028 array++; 2029 } 2030 2031 data->addr = 0; 2032 if (type & PERF_SAMPLE_ADDR) { 2033 data->addr = *array; 2034 array++; 2035 } 2036 2037 if (type & PERF_SAMPLE_ID) { 2038 data->id = *array; 2039 array++; 2040 } 2041 2042 if (type & PERF_SAMPLE_STREAM_ID) { 2043 data->stream_id = *array; 2044 array++; 2045 } 2046 2047 if (type & PERF_SAMPLE_CPU) { 2048 2049 u.val64 = *array; 2050 if (swapped) { 2051 /* undo swap of u64, then swap on individual u32s */ 2052 u.val64 = bswap_64(u.val64); 2053 u.val32[0] = bswap_32(u.val32[0]); 2054 } 2055 2056 data->cpu = u.val32[0]; 2057 array++; 2058 } 2059 2060 if (type & PERF_SAMPLE_PERIOD) { 2061 data->period = *array; 2062 array++; 2063 } 2064 2065 if (type & PERF_SAMPLE_READ) { 2066 u64 read_format = evsel->attr.read_format; 2067 2068 OVERFLOW_CHECK_u64(array); 2069 if (read_format & PERF_FORMAT_GROUP) 2070 data->read.group.nr = *array; 2071 else 2072 data->read.one.value = *array; 2073 2074 array++; 2075 2076 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2077 OVERFLOW_CHECK_u64(array); 2078 data->read.time_enabled = *array; 2079 array++; 2080 } 2081 2082 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2083 OVERFLOW_CHECK_u64(array); 2084 data->read.time_running = *array; 2085 array++; 2086 } 2087 2088 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2089 if (read_format & PERF_FORMAT_GROUP) { 2090 const u64 max_group_nr = UINT64_MAX / 2091 sizeof(struct sample_read_value); 2092 2093 if (data->read.group.nr > max_group_nr) 2094 return -EFAULT; 2095 sz = data->read.group.nr * 2096 sizeof(struct sample_read_value); 2097 OVERFLOW_CHECK(array, sz, max_size); 2098 data->read.group.values = 2099 (struct sample_read_value *)array; 2100 array = (void *)array + sz; 2101 } else { 2102 OVERFLOW_CHECK_u64(array); 2103 data->read.one.id = *array; 2104 array++; 2105 } 2106 } 2107 2108 if (type & PERF_SAMPLE_CALLCHAIN) { 2109 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 2110 2111 OVERFLOW_CHECK_u64(array); 2112 data->callchain = (struct ip_callchain *)array++; 2113 if (data->callchain->nr > max_callchain_nr) 2114 return -EFAULT; 2115 sz = data->callchain->nr * sizeof(u64); 2116 OVERFLOW_CHECK(array, sz, max_size); 2117 array = (void *)array + sz; 2118 } 2119 2120 if (type & PERF_SAMPLE_RAW) { 2121 OVERFLOW_CHECK_u64(array); 2122 u.val64 = *array; 2123 if (WARN_ONCE(swapped, 2124 "Endianness of raw data not corrected!\n")) { 2125 /* undo swap of u64, then swap on individual u32s */ 2126 u.val64 = bswap_64(u.val64); 2127 u.val32[0] = bswap_32(u.val32[0]); 2128 u.val32[1] = bswap_32(u.val32[1]); 2129 } 2130 data->raw_size = u.val32[0]; 2131 array = (void *)array + sizeof(u32); 2132 2133 OVERFLOW_CHECK(array, data->raw_size, max_size); 2134 data->raw_data = (void *)array; 2135 array = (void *)array + data->raw_size; 2136 } 2137 2138 if (type & PERF_SAMPLE_BRANCH_STACK) { 2139 const u64 max_branch_nr = UINT64_MAX / 2140 sizeof(struct branch_entry); 2141 2142 OVERFLOW_CHECK_u64(array); 2143 data->branch_stack = (struct branch_stack *)array++; 2144 2145 if (data->branch_stack->nr > max_branch_nr) 2146 return -EFAULT; 2147 sz = data->branch_stack->nr * sizeof(struct branch_entry); 2148 OVERFLOW_CHECK(array, sz, max_size); 2149 array = (void *)array + sz; 2150 } 2151 2152 if (type & PERF_SAMPLE_REGS_USER) { 2153 OVERFLOW_CHECK_u64(array); 2154 data->user_regs.abi = *array; 2155 array++; 2156 2157 if (data->user_regs.abi) { 2158 u64 mask = evsel->attr.sample_regs_user; 2159 2160 sz = hweight_long(mask) * sizeof(u64); 2161 OVERFLOW_CHECK(array, sz, max_size); 2162 data->user_regs.mask = mask; 2163 data->user_regs.regs = (u64 *)array; 2164 array = (void *)array + sz; 2165 } 2166 } 2167 2168 if (type & PERF_SAMPLE_STACK_USER) { 2169 OVERFLOW_CHECK_u64(array); 2170 sz = *array++; 2171 2172 data->user_stack.offset = ((char *)(array - 1) 2173 - (char *) event); 2174 2175 if (!sz) { 2176 data->user_stack.size = 0; 2177 } else { 2178 OVERFLOW_CHECK(array, sz, max_size); 2179 data->user_stack.data = (char *)array; 2180 array = (void *)array + sz; 2181 OVERFLOW_CHECK_u64(array); 2182 data->user_stack.size = *array++; 2183 if (WARN_ONCE(data->user_stack.size > sz, 2184 "user stack dump failure\n")) 2185 return -EFAULT; 2186 } 2187 } 2188 2189 if (type & PERF_SAMPLE_WEIGHT) { 2190 OVERFLOW_CHECK_u64(array); 2191 data->weight = *array; 2192 array++; 2193 } 2194 2195 data->data_src = PERF_MEM_DATA_SRC_NONE; 2196 if (type & PERF_SAMPLE_DATA_SRC) { 2197 OVERFLOW_CHECK_u64(array); 2198 data->data_src = *array; 2199 array++; 2200 } 2201 2202 data->transaction = 0; 2203 if (type & PERF_SAMPLE_TRANSACTION) { 2204 OVERFLOW_CHECK_u64(array); 2205 data->transaction = *array; 2206 array++; 2207 } 2208 2209 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2210 if (type & PERF_SAMPLE_REGS_INTR) { 2211 OVERFLOW_CHECK_u64(array); 2212 data->intr_regs.abi = *array; 2213 array++; 2214 2215 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2216 u64 mask = evsel->attr.sample_regs_intr; 2217 2218 sz = hweight_long(mask) * sizeof(u64); 2219 OVERFLOW_CHECK(array, sz, max_size); 2220 data->intr_regs.mask = mask; 2221 data->intr_regs.regs = (u64 *)array; 2222 array = (void *)array + sz; 2223 } 2224 } 2225 2226 data->phys_addr = 0; 2227 if (type & PERF_SAMPLE_PHYS_ADDR) { 2228 data->phys_addr = *array; 2229 array++; 2230 } 2231 2232 return 0; 2233 } 2234 2235 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2236 u64 read_format) 2237 { 2238 size_t sz, result = sizeof(struct sample_event); 2239 2240 if (type & PERF_SAMPLE_IDENTIFIER) 2241 result += sizeof(u64); 2242 2243 if (type & PERF_SAMPLE_IP) 2244 result += sizeof(u64); 2245 2246 if (type & PERF_SAMPLE_TID) 2247 result += sizeof(u64); 2248 2249 if (type & PERF_SAMPLE_TIME) 2250 result += sizeof(u64); 2251 2252 if (type & PERF_SAMPLE_ADDR) 2253 result += sizeof(u64); 2254 2255 if (type & PERF_SAMPLE_ID) 2256 result += sizeof(u64); 2257 2258 if (type & PERF_SAMPLE_STREAM_ID) 2259 result += sizeof(u64); 2260 2261 if (type & PERF_SAMPLE_CPU) 2262 result += sizeof(u64); 2263 2264 if (type & PERF_SAMPLE_PERIOD) 2265 result += sizeof(u64); 2266 2267 if (type & PERF_SAMPLE_READ) { 2268 result += sizeof(u64); 2269 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2270 result += sizeof(u64); 2271 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2272 result += sizeof(u64); 2273 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2274 if (read_format & PERF_FORMAT_GROUP) { 2275 sz = sample->read.group.nr * 2276 sizeof(struct sample_read_value); 2277 result += sz; 2278 } else { 2279 result += sizeof(u64); 2280 } 2281 } 2282 2283 if (type & PERF_SAMPLE_CALLCHAIN) { 2284 sz = (sample->callchain->nr + 1) * sizeof(u64); 2285 result += sz; 2286 } 2287 2288 if (type & PERF_SAMPLE_RAW) { 2289 result += sizeof(u32); 2290 result += sample->raw_size; 2291 } 2292 2293 if (type & PERF_SAMPLE_BRANCH_STACK) { 2294 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2295 sz += sizeof(u64); 2296 result += sz; 2297 } 2298 2299 if (type & PERF_SAMPLE_REGS_USER) { 2300 if (sample->user_regs.abi) { 2301 result += sizeof(u64); 2302 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2303 result += sz; 2304 } else { 2305 result += sizeof(u64); 2306 } 2307 } 2308 2309 if (type & PERF_SAMPLE_STACK_USER) { 2310 sz = sample->user_stack.size; 2311 result += sizeof(u64); 2312 if (sz) { 2313 result += sz; 2314 result += sizeof(u64); 2315 } 2316 } 2317 2318 if (type & PERF_SAMPLE_WEIGHT) 2319 result += sizeof(u64); 2320 2321 if (type & PERF_SAMPLE_DATA_SRC) 2322 result += sizeof(u64); 2323 2324 if (type & PERF_SAMPLE_TRANSACTION) 2325 result += sizeof(u64); 2326 2327 if (type & PERF_SAMPLE_REGS_INTR) { 2328 if (sample->intr_regs.abi) { 2329 result += sizeof(u64); 2330 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2331 result += sz; 2332 } else { 2333 result += sizeof(u64); 2334 } 2335 } 2336 2337 if (type & PERF_SAMPLE_PHYS_ADDR) 2338 result += sizeof(u64); 2339 2340 return result; 2341 } 2342 2343 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2344 u64 read_format, 2345 const struct perf_sample *sample, 2346 bool swapped) 2347 { 2348 u64 *array; 2349 size_t sz; 2350 /* 2351 * used for cross-endian analysis. See git commit 65014ab3 2352 * for why this goofiness is needed. 2353 */ 2354 union u64_swap u; 2355 2356 array = event->sample.array; 2357 2358 if (type & PERF_SAMPLE_IDENTIFIER) { 2359 *array = sample->id; 2360 array++; 2361 } 2362 2363 if (type & PERF_SAMPLE_IP) { 2364 *array = sample->ip; 2365 array++; 2366 } 2367 2368 if (type & PERF_SAMPLE_TID) { 2369 u.val32[0] = sample->pid; 2370 u.val32[1] = sample->tid; 2371 if (swapped) { 2372 /* 2373 * Inverse of what is done in perf_evsel__parse_sample 2374 */ 2375 u.val32[0] = bswap_32(u.val32[0]); 2376 u.val32[1] = bswap_32(u.val32[1]); 2377 u.val64 = bswap_64(u.val64); 2378 } 2379 2380 *array = u.val64; 2381 array++; 2382 } 2383 2384 if (type & PERF_SAMPLE_TIME) { 2385 *array = sample->time; 2386 array++; 2387 } 2388 2389 if (type & PERF_SAMPLE_ADDR) { 2390 *array = sample->addr; 2391 array++; 2392 } 2393 2394 if (type & PERF_SAMPLE_ID) { 2395 *array = sample->id; 2396 array++; 2397 } 2398 2399 if (type & PERF_SAMPLE_STREAM_ID) { 2400 *array = sample->stream_id; 2401 array++; 2402 } 2403 2404 if (type & PERF_SAMPLE_CPU) { 2405 u.val32[0] = sample->cpu; 2406 if (swapped) { 2407 /* 2408 * Inverse of what is done in perf_evsel__parse_sample 2409 */ 2410 u.val32[0] = bswap_32(u.val32[0]); 2411 u.val64 = bswap_64(u.val64); 2412 } 2413 *array = u.val64; 2414 array++; 2415 } 2416 2417 if (type & PERF_SAMPLE_PERIOD) { 2418 *array = sample->period; 2419 array++; 2420 } 2421 2422 if (type & PERF_SAMPLE_READ) { 2423 if (read_format & PERF_FORMAT_GROUP) 2424 *array = sample->read.group.nr; 2425 else 2426 *array = sample->read.one.value; 2427 array++; 2428 2429 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2430 *array = sample->read.time_enabled; 2431 array++; 2432 } 2433 2434 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2435 *array = sample->read.time_running; 2436 array++; 2437 } 2438 2439 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2440 if (read_format & PERF_FORMAT_GROUP) { 2441 sz = sample->read.group.nr * 2442 sizeof(struct sample_read_value); 2443 memcpy(array, sample->read.group.values, sz); 2444 array = (void *)array + sz; 2445 } else { 2446 *array = sample->read.one.id; 2447 array++; 2448 } 2449 } 2450 2451 if (type & PERF_SAMPLE_CALLCHAIN) { 2452 sz = (sample->callchain->nr + 1) * sizeof(u64); 2453 memcpy(array, sample->callchain, sz); 2454 array = (void *)array + sz; 2455 } 2456 2457 if (type & PERF_SAMPLE_RAW) { 2458 u.val32[0] = sample->raw_size; 2459 if (WARN_ONCE(swapped, 2460 "Endianness of raw data not corrected!\n")) { 2461 /* 2462 * Inverse of what is done in perf_evsel__parse_sample 2463 */ 2464 u.val32[0] = bswap_32(u.val32[0]); 2465 u.val32[1] = bswap_32(u.val32[1]); 2466 u.val64 = bswap_64(u.val64); 2467 } 2468 *array = u.val64; 2469 array = (void *)array + sizeof(u32); 2470 2471 memcpy(array, sample->raw_data, sample->raw_size); 2472 array = (void *)array + sample->raw_size; 2473 } 2474 2475 if (type & PERF_SAMPLE_BRANCH_STACK) { 2476 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2477 sz += sizeof(u64); 2478 memcpy(array, sample->branch_stack, sz); 2479 array = (void *)array + sz; 2480 } 2481 2482 if (type & PERF_SAMPLE_REGS_USER) { 2483 if (sample->user_regs.abi) { 2484 *array++ = sample->user_regs.abi; 2485 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2486 memcpy(array, sample->user_regs.regs, sz); 2487 array = (void *)array + sz; 2488 } else { 2489 *array++ = 0; 2490 } 2491 } 2492 2493 if (type & PERF_SAMPLE_STACK_USER) { 2494 sz = sample->user_stack.size; 2495 *array++ = sz; 2496 if (sz) { 2497 memcpy(array, sample->user_stack.data, sz); 2498 array = (void *)array + sz; 2499 *array++ = sz; 2500 } 2501 } 2502 2503 if (type & PERF_SAMPLE_WEIGHT) { 2504 *array = sample->weight; 2505 array++; 2506 } 2507 2508 if (type & PERF_SAMPLE_DATA_SRC) { 2509 *array = sample->data_src; 2510 array++; 2511 } 2512 2513 if (type & PERF_SAMPLE_TRANSACTION) { 2514 *array = sample->transaction; 2515 array++; 2516 } 2517 2518 if (type & PERF_SAMPLE_REGS_INTR) { 2519 if (sample->intr_regs.abi) { 2520 *array++ = sample->intr_regs.abi; 2521 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2522 memcpy(array, sample->intr_regs.regs, sz); 2523 array = (void *)array + sz; 2524 } else { 2525 *array++ = 0; 2526 } 2527 } 2528 2529 if (type & PERF_SAMPLE_PHYS_ADDR) { 2530 *array = sample->phys_addr; 2531 array++; 2532 } 2533 2534 return 0; 2535 } 2536 2537 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2538 { 2539 return pevent_find_field(evsel->tp_format, name); 2540 } 2541 2542 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2543 const char *name) 2544 { 2545 struct format_field *field = perf_evsel__field(evsel, name); 2546 int offset; 2547 2548 if (!field) 2549 return NULL; 2550 2551 offset = field->offset; 2552 2553 if (field->flags & FIELD_IS_DYNAMIC) { 2554 offset = *(int *)(sample->raw_data + field->offset); 2555 offset &= 0xffff; 2556 } 2557 2558 return sample->raw_data + offset; 2559 } 2560 2561 u64 format_field__intval(struct format_field *field, struct perf_sample *sample, 2562 bool needs_swap) 2563 { 2564 u64 value; 2565 void *ptr = sample->raw_data + field->offset; 2566 2567 switch (field->size) { 2568 case 1: 2569 return *(u8 *)ptr; 2570 case 2: 2571 value = *(u16 *)ptr; 2572 break; 2573 case 4: 2574 value = *(u32 *)ptr; 2575 break; 2576 case 8: 2577 memcpy(&value, ptr, sizeof(u64)); 2578 break; 2579 default: 2580 return 0; 2581 } 2582 2583 if (!needs_swap) 2584 return value; 2585 2586 switch (field->size) { 2587 case 2: 2588 return bswap_16(value); 2589 case 4: 2590 return bswap_32(value); 2591 case 8: 2592 return bswap_64(value); 2593 default: 2594 return 0; 2595 } 2596 2597 return 0; 2598 } 2599 2600 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2601 const char *name) 2602 { 2603 struct format_field *field = perf_evsel__field(evsel, name); 2604 2605 if (!field) 2606 return 0; 2607 2608 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2609 } 2610 2611 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2612 char *msg, size_t msgsize) 2613 { 2614 int paranoid; 2615 2616 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2617 evsel->attr.type == PERF_TYPE_HARDWARE && 2618 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2619 /* 2620 * If it's cycles then fall back to hrtimer based 2621 * cpu-clock-tick sw counter, which is always available even if 2622 * no PMU support. 2623 * 2624 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2625 * b0a873e). 2626 */ 2627 scnprintf(msg, msgsize, "%s", 2628 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2629 2630 evsel->attr.type = PERF_TYPE_SOFTWARE; 2631 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2632 2633 zfree(&evsel->name); 2634 return true; 2635 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2636 (paranoid = perf_event_paranoid()) > 1) { 2637 const char *name = perf_evsel__name(evsel); 2638 char *new_name; 2639 2640 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0) 2641 return false; 2642 2643 if (evsel->name) 2644 free(evsel->name); 2645 evsel->name = new_name; 2646 scnprintf(msg, msgsize, 2647 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2648 evsel->attr.exclude_kernel = 1; 2649 2650 return true; 2651 } 2652 2653 return false; 2654 } 2655 2656 static bool find_process(const char *name) 2657 { 2658 size_t len = strlen(name); 2659 DIR *dir; 2660 struct dirent *d; 2661 int ret = -1; 2662 2663 dir = opendir(procfs__mountpoint()); 2664 if (!dir) 2665 return false; 2666 2667 /* Walk through the directory. */ 2668 while (ret && (d = readdir(dir)) != NULL) { 2669 char path[PATH_MAX]; 2670 char *data; 2671 size_t size; 2672 2673 if ((d->d_type != DT_DIR) || 2674 !strcmp(".", d->d_name) || 2675 !strcmp("..", d->d_name)) 2676 continue; 2677 2678 scnprintf(path, sizeof(path), "%s/%s/comm", 2679 procfs__mountpoint(), d->d_name); 2680 2681 if (filename__read_str(path, &data, &size)) 2682 continue; 2683 2684 ret = strncmp(name, data, len); 2685 free(data); 2686 } 2687 2688 closedir(dir); 2689 return ret ? false : true; 2690 } 2691 2692 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2693 int err, char *msg, size_t size) 2694 { 2695 char sbuf[STRERR_BUFSIZE]; 2696 int printed = 0; 2697 2698 switch (err) { 2699 case EPERM: 2700 case EACCES: 2701 if (err == EPERM) 2702 printed = scnprintf(msg, size, 2703 "No permission to enable %s event.\n\n", 2704 perf_evsel__name(evsel)); 2705 2706 return scnprintf(msg + printed, size - printed, 2707 "You may not have permission to collect %sstats.\n\n" 2708 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2709 "which controls use of the performance events system by\n" 2710 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2711 "The current value is %d:\n\n" 2712 " -1: Allow use of (almost) all events by all users\n" 2713 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" 2714 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n" 2715 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n" 2716 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2717 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2718 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2719 " kernel.perf_event_paranoid = -1\n" , 2720 target->system_wide ? "system-wide " : "", 2721 perf_event_paranoid()); 2722 case ENOENT: 2723 return scnprintf(msg, size, "The %s event is not supported.", 2724 perf_evsel__name(evsel)); 2725 case EMFILE: 2726 return scnprintf(msg, size, "%s", 2727 "Too many events are opened.\n" 2728 "Probably the maximum number of open file descriptors has been reached.\n" 2729 "Hint: Try again after reducing the number of events.\n" 2730 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2731 case ENOMEM: 2732 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 && 2733 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2734 return scnprintf(msg, size, 2735 "Not enough memory to setup event with callchain.\n" 2736 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2737 "Hint: Current value: %d", sysctl_perf_event_max_stack); 2738 break; 2739 case ENODEV: 2740 if (target->cpu_list) 2741 return scnprintf(msg, size, "%s", 2742 "No such device - did you specify an out-of-range profile CPU?"); 2743 break; 2744 case EOPNOTSUPP: 2745 if (evsel->attr.sample_period != 0) 2746 return scnprintf(msg, size, "%s", 2747 "PMU Hardware doesn't support sampling/overflow-interrupts."); 2748 if (evsel->attr.precise_ip) 2749 return scnprintf(msg, size, "%s", 2750 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2751 #if defined(__i386__) || defined(__x86_64__) 2752 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2753 return scnprintf(msg, size, "%s", 2754 "No hardware sampling interrupt available.\n" 2755 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); 2756 #endif 2757 break; 2758 case EBUSY: 2759 if (find_process("oprofiled")) 2760 return scnprintf(msg, size, 2761 "The PMU counters are busy/taken by another profiler.\n" 2762 "We found oprofile daemon running, please stop it and try again."); 2763 break; 2764 case EINVAL: 2765 if (evsel->attr.write_backward && perf_missing_features.write_backward) 2766 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2767 if (perf_missing_features.clockid) 2768 return scnprintf(msg, size, "clockid feature not supported."); 2769 if (perf_missing_features.clockid_wrong) 2770 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2771 break; 2772 default: 2773 break; 2774 } 2775 2776 return scnprintf(msg, size, 2777 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2778 "/bin/dmesg may provide additional information.\n" 2779 "No CONFIG_PERF_EVENTS=y kernel support configured?", 2780 err, str_error_r(err, sbuf, sizeof(sbuf)), 2781 perf_evsel__name(evsel)); 2782 } 2783 2784 char *perf_evsel__env_arch(struct perf_evsel *evsel) 2785 { 2786 if (evsel && evsel->evlist && evsel->evlist->env) 2787 return evsel->evlist->env->arch; 2788 return NULL; 2789 } 2790 2791 char *perf_evsel__env_cpuid(struct perf_evsel *evsel) 2792 { 2793 if (evsel && evsel->evlist && evsel->evlist->env) 2794 return evsel->evlist->env->cpuid; 2795 return NULL; 2796 } 2797