1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <errno.h> 12 #include <inttypes.h> 13 #include <linux/bitops.h> 14 #include <api/fs/fs.h> 15 #include <api/fs/tracing_path.h> 16 #include <traceevent/event-parse.h> 17 #include <linux/hw_breakpoint.h> 18 #include <linux/perf_event.h> 19 #include <linux/compiler.h> 20 #include <linux/err.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include "asm/bug.h" 26 #include "callchain.h" 27 #include "cgroup.h" 28 #include "event.h" 29 #include "evsel.h" 30 #include "evlist.h" 31 #include "util.h" 32 #include "cpumap.h" 33 #include "thread_map.h" 34 #include "target.h" 35 #include "perf_regs.h" 36 #include "debug.h" 37 #include "trace-event.h" 38 #include "stat.h" 39 #include "memswap.h" 40 #include "util/parse-branch-options.h" 41 42 #include "sane_ctype.h" 43 44 struct perf_missing_features perf_missing_features; 45 46 static clockid_t clockid; 47 48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 49 { 50 return 0; 51 } 52 53 void __weak test_attr__ready(void) { } 54 55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 56 { 57 } 58 59 static struct { 60 size_t size; 61 int (*init)(struct perf_evsel *evsel); 62 void (*fini)(struct perf_evsel *evsel); 63 } perf_evsel__object = { 64 .size = sizeof(struct perf_evsel), 65 .init = perf_evsel__no_extra_init, 66 .fini = perf_evsel__no_extra_fini, 67 }; 68 69 int perf_evsel__object_config(size_t object_size, 70 int (*init)(struct perf_evsel *evsel), 71 void (*fini)(struct perf_evsel *evsel)) 72 { 73 74 if (object_size == 0) 75 goto set_methods; 76 77 if (perf_evsel__object.size > object_size) 78 return -EINVAL; 79 80 perf_evsel__object.size = object_size; 81 82 set_methods: 83 if (init != NULL) 84 perf_evsel__object.init = init; 85 86 if (fini != NULL) 87 perf_evsel__object.fini = fini; 88 89 return 0; 90 } 91 92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 93 94 int __perf_evsel__sample_size(u64 sample_type) 95 { 96 u64 mask = sample_type & PERF_SAMPLE_MASK; 97 int size = 0; 98 int i; 99 100 for (i = 0; i < 64; i++) { 101 if (mask & (1ULL << i)) 102 size++; 103 } 104 105 size *= sizeof(u64); 106 107 return size; 108 } 109 110 /** 111 * __perf_evsel__calc_id_pos - calculate id_pos. 112 * @sample_type: sample type 113 * 114 * This function returns the position of the event id (PERF_SAMPLE_ID or 115 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 116 * sample_event. 117 */ 118 static int __perf_evsel__calc_id_pos(u64 sample_type) 119 { 120 int idx = 0; 121 122 if (sample_type & PERF_SAMPLE_IDENTIFIER) 123 return 0; 124 125 if (!(sample_type & PERF_SAMPLE_ID)) 126 return -1; 127 128 if (sample_type & PERF_SAMPLE_IP) 129 idx += 1; 130 131 if (sample_type & PERF_SAMPLE_TID) 132 idx += 1; 133 134 if (sample_type & PERF_SAMPLE_TIME) 135 idx += 1; 136 137 if (sample_type & PERF_SAMPLE_ADDR) 138 idx += 1; 139 140 return idx; 141 } 142 143 /** 144 * __perf_evsel__calc_is_pos - calculate is_pos. 145 * @sample_type: sample type 146 * 147 * This function returns the position (counting backwards) of the event id 148 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 149 * sample_id_all is used there is an id sample appended to non-sample events. 150 */ 151 static int __perf_evsel__calc_is_pos(u64 sample_type) 152 { 153 int idx = 1; 154 155 if (sample_type & PERF_SAMPLE_IDENTIFIER) 156 return 1; 157 158 if (!(sample_type & PERF_SAMPLE_ID)) 159 return -1; 160 161 if (sample_type & PERF_SAMPLE_CPU) 162 idx += 1; 163 164 if (sample_type & PERF_SAMPLE_STREAM_ID) 165 idx += 1; 166 167 return idx; 168 } 169 170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 171 { 172 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 173 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 174 } 175 176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 177 enum perf_event_sample_format bit) 178 { 179 if (!(evsel->attr.sample_type & bit)) { 180 evsel->attr.sample_type |= bit; 181 evsel->sample_size += sizeof(u64); 182 perf_evsel__calc_id_pos(evsel); 183 } 184 } 185 186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 187 enum perf_event_sample_format bit) 188 { 189 if (evsel->attr.sample_type & bit) { 190 evsel->attr.sample_type &= ~bit; 191 evsel->sample_size -= sizeof(u64); 192 perf_evsel__calc_id_pos(evsel); 193 } 194 } 195 196 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 197 bool can_sample_identifier) 198 { 199 if (can_sample_identifier) { 200 perf_evsel__reset_sample_bit(evsel, ID); 201 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 202 } else { 203 perf_evsel__set_sample_bit(evsel, ID); 204 } 205 evsel->attr.read_format |= PERF_FORMAT_ID; 206 } 207 208 /** 209 * perf_evsel__is_function_event - Return whether given evsel is a function 210 * trace event 211 * 212 * @evsel - evsel selector to be tested 213 * 214 * Return %true if event is function trace event 215 */ 216 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 217 { 218 #define FUNCTION_EVENT "ftrace:function" 219 220 return evsel->name && 221 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 222 223 #undef FUNCTION_EVENT 224 } 225 226 void perf_evsel__init(struct perf_evsel *evsel, 227 struct perf_event_attr *attr, int idx) 228 { 229 evsel->idx = idx; 230 evsel->tracking = !idx; 231 evsel->attr = *attr; 232 evsel->leader = evsel; 233 evsel->unit = ""; 234 evsel->scale = 1.0; 235 evsel->max_events = ULONG_MAX; 236 evsel->evlist = NULL; 237 evsel->bpf_fd = -1; 238 INIT_LIST_HEAD(&evsel->node); 239 INIT_LIST_HEAD(&evsel->config_terms); 240 perf_evsel__object.init(evsel); 241 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 242 perf_evsel__calc_id_pos(evsel); 243 evsel->cmdline_group_boundary = false; 244 evsel->metric_expr = NULL; 245 evsel->metric_name = NULL; 246 evsel->metric_events = NULL; 247 evsel->collect_stat = false; 248 evsel->pmu_name = NULL; 249 } 250 251 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 252 { 253 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 254 255 if (!evsel) 256 return NULL; 257 perf_evsel__init(evsel, attr, idx); 258 259 if (perf_evsel__is_bpf_output(evsel)) { 260 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 261 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 262 evsel->attr.sample_period = 1; 263 } 264 265 if (perf_evsel__is_clock(evsel)) { 266 /* 267 * The evsel->unit points to static alias->unit 268 * so it's ok to use static string in here. 269 */ 270 static const char *unit = "msec"; 271 272 evsel->unit = unit; 273 evsel->scale = 1e-6; 274 } 275 276 return evsel; 277 } 278 279 static bool perf_event_can_profile_kernel(void) 280 { 281 return geteuid() == 0 || perf_event_paranoid() == -1; 282 } 283 284 struct perf_evsel *perf_evsel__new_cycles(bool precise) 285 { 286 struct perf_event_attr attr = { 287 .type = PERF_TYPE_HARDWARE, 288 .config = PERF_COUNT_HW_CPU_CYCLES, 289 .exclude_kernel = !perf_event_can_profile_kernel(), 290 }; 291 struct perf_evsel *evsel; 292 293 event_attr_init(&attr); 294 295 if (!precise) 296 goto new_event; 297 298 /* 299 * Now let the usual logic to set up the perf_event_attr defaults 300 * to kick in when we return and before perf_evsel__open() is called. 301 */ 302 new_event: 303 evsel = perf_evsel__new(&attr); 304 if (evsel == NULL) 305 goto out; 306 307 evsel->precise_max = true; 308 309 /* use asprintf() because free(evsel) assumes name is allocated */ 310 if (asprintf(&evsel->name, "cycles%s%s%.*s", 311 (attr.precise_ip || attr.exclude_kernel) ? ":" : "", 312 attr.exclude_kernel ? "u" : "", 313 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) 314 goto error_free; 315 out: 316 return evsel; 317 error_free: 318 perf_evsel__delete(evsel); 319 evsel = NULL; 320 goto out; 321 } 322 323 /* 324 * Returns pointer with encoded error via <linux/err.h> interface. 325 */ 326 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 327 { 328 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 329 int err = -ENOMEM; 330 331 if (evsel == NULL) { 332 goto out_err; 333 } else { 334 struct perf_event_attr attr = { 335 .type = PERF_TYPE_TRACEPOINT, 336 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 337 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 338 }; 339 340 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 341 goto out_free; 342 343 evsel->tp_format = trace_event__tp_format(sys, name); 344 if (IS_ERR(evsel->tp_format)) { 345 err = PTR_ERR(evsel->tp_format); 346 goto out_free; 347 } 348 349 event_attr_init(&attr); 350 attr.config = evsel->tp_format->id; 351 attr.sample_period = 1; 352 perf_evsel__init(evsel, &attr, idx); 353 } 354 355 return evsel; 356 357 out_free: 358 zfree(&evsel->name); 359 free(evsel); 360 out_err: 361 return ERR_PTR(err); 362 } 363 364 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 365 "cycles", 366 "instructions", 367 "cache-references", 368 "cache-misses", 369 "branches", 370 "branch-misses", 371 "bus-cycles", 372 "stalled-cycles-frontend", 373 "stalled-cycles-backend", 374 "ref-cycles", 375 }; 376 377 static const char *__perf_evsel__hw_name(u64 config) 378 { 379 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 380 return perf_evsel__hw_names[config]; 381 382 return "unknown-hardware"; 383 } 384 385 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 386 { 387 int colon = 0, r = 0; 388 struct perf_event_attr *attr = &evsel->attr; 389 bool exclude_guest_default = false; 390 391 #define MOD_PRINT(context, mod) do { \ 392 if (!attr->exclude_##context) { \ 393 if (!colon) colon = ++r; \ 394 r += scnprintf(bf + r, size - r, "%c", mod); \ 395 } } while(0) 396 397 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 398 MOD_PRINT(kernel, 'k'); 399 MOD_PRINT(user, 'u'); 400 MOD_PRINT(hv, 'h'); 401 exclude_guest_default = true; 402 } 403 404 if (attr->precise_ip) { 405 if (!colon) 406 colon = ++r; 407 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 408 exclude_guest_default = true; 409 } 410 411 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 412 MOD_PRINT(host, 'H'); 413 MOD_PRINT(guest, 'G'); 414 } 415 #undef MOD_PRINT 416 if (colon) 417 bf[colon - 1] = ':'; 418 return r; 419 } 420 421 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 422 { 423 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 424 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 425 } 426 427 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 428 "cpu-clock", 429 "task-clock", 430 "page-faults", 431 "context-switches", 432 "cpu-migrations", 433 "minor-faults", 434 "major-faults", 435 "alignment-faults", 436 "emulation-faults", 437 "dummy", 438 }; 439 440 static const char *__perf_evsel__sw_name(u64 config) 441 { 442 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 443 return perf_evsel__sw_names[config]; 444 return "unknown-software"; 445 } 446 447 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 448 { 449 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 450 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 451 } 452 453 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 454 { 455 int r; 456 457 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 458 459 if (type & HW_BREAKPOINT_R) 460 r += scnprintf(bf + r, size - r, "r"); 461 462 if (type & HW_BREAKPOINT_W) 463 r += scnprintf(bf + r, size - r, "w"); 464 465 if (type & HW_BREAKPOINT_X) 466 r += scnprintf(bf + r, size - r, "x"); 467 468 return r; 469 } 470 471 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 472 { 473 struct perf_event_attr *attr = &evsel->attr; 474 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 475 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 476 } 477 478 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 479 [PERF_EVSEL__MAX_ALIASES] = { 480 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 481 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 482 { "LLC", "L2", }, 483 { "dTLB", "d-tlb", "Data-TLB", }, 484 { "iTLB", "i-tlb", "Instruction-TLB", }, 485 { "branch", "branches", "bpu", "btb", "bpc", }, 486 { "node", }, 487 }; 488 489 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 490 [PERF_EVSEL__MAX_ALIASES] = { 491 { "load", "loads", "read", }, 492 { "store", "stores", "write", }, 493 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 494 }; 495 496 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 497 [PERF_EVSEL__MAX_ALIASES] = { 498 { "refs", "Reference", "ops", "access", }, 499 { "misses", "miss", }, 500 }; 501 502 #define C(x) PERF_COUNT_HW_CACHE_##x 503 #define CACHE_READ (1 << C(OP_READ)) 504 #define CACHE_WRITE (1 << C(OP_WRITE)) 505 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 506 #define COP(x) (1 << x) 507 508 /* 509 * cache operartion stat 510 * L1I : Read and prefetch only 511 * ITLB and BPU : Read-only 512 */ 513 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 514 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 515 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 516 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 517 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 518 [C(ITLB)] = (CACHE_READ), 519 [C(BPU)] = (CACHE_READ), 520 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 521 }; 522 523 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 524 { 525 if (perf_evsel__hw_cache_stat[type] & COP(op)) 526 return true; /* valid */ 527 else 528 return false; /* invalid */ 529 } 530 531 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 532 char *bf, size_t size) 533 { 534 if (result) { 535 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 536 perf_evsel__hw_cache_op[op][0], 537 perf_evsel__hw_cache_result[result][0]); 538 } 539 540 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 541 perf_evsel__hw_cache_op[op][1]); 542 } 543 544 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 545 { 546 u8 op, result, type = (config >> 0) & 0xff; 547 const char *err = "unknown-ext-hardware-cache-type"; 548 549 if (type >= PERF_COUNT_HW_CACHE_MAX) 550 goto out_err; 551 552 op = (config >> 8) & 0xff; 553 err = "unknown-ext-hardware-cache-op"; 554 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 555 goto out_err; 556 557 result = (config >> 16) & 0xff; 558 err = "unknown-ext-hardware-cache-result"; 559 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 560 goto out_err; 561 562 err = "invalid-cache"; 563 if (!perf_evsel__is_cache_op_valid(type, op)) 564 goto out_err; 565 566 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 567 out_err: 568 return scnprintf(bf, size, "%s", err); 569 } 570 571 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 572 { 573 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 574 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 575 } 576 577 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 578 { 579 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 580 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 581 } 582 583 static int perf_evsel__tool_name(char *bf, size_t size) 584 { 585 int ret = scnprintf(bf, size, "duration_time"); 586 return ret; 587 } 588 589 const char *perf_evsel__name(struct perf_evsel *evsel) 590 { 591 char bf[128]; 592 593 if (evsel->name) 594 return evsel->name; 595 596 switch (evsel->attr.type) { 597 case PERF_TYPE_RAW: 598 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 599 break; 600 601 case PERF_TYPE_HARDWARE: 602 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 603 break; 604 605 case PERF_TYPE_HW_CACHE: 606 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 607 break; 608 609 case PERF_TYPE_SOFTWARE: 610 if (evsel->tool_event) 611 perf_evsel__tool_name(bf, sizeof(bf)); 612 else 613 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 614 break; 615 616 case PERF_TYPE_TRACEPOINT: 617 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 618 break; 619 620 case PERF_TYPE_BREAKPOINT: 621 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 622 break; 623 624 default: 625 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 626 evsel->attr.type); 627 break; 628 } 629 630 evsel->name = strdup(bf); 631 632 return evsel->name ?: "unknown"; 633 } 634 635 const char *perf_evsel__group_name(struct perf_evsel *evsel) 636 { 637 return evsel->group_name ?: "anon group"; 638 } 639 640 /* 641 * Returns the group details for the specified leader, 642 * with following rules. 643 * 644 * For record -e '{cycles,instructions}' 645 * 'anon group { cycles:u, instructions:u }' 646 * 647 * For record -e 'cycles,instructions' and report --group 648 * 'cycles:u, instructions:u' 649 */ 650 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 651 { 652 int ret = 0; 653 struct perf_evsel *pos; 654 const char *group_name = perf_evsel__group_name(evsel); 655 656 if (!evsel->forced_leader) 657 ret = scnprintf(buf, size, "%s { ", group_name); 658 659 ret += scnprintf(buf + ret, size - ret, "%s", 660 perf_evsel__name(evsel)); 661 662 for_each_group_member(pos, evsel) 663 ret += scnprintf(buf + ret, size - ret, ", %s", 664 perf_evsel__name(pos)); 665 666 if (!evsel->forced_leader) 667 ret += scnprintf(buf + ret, size - ret, " }"); 668 669 return ret; 670 } 671 672 static void __perf_evsel__config_callchain(struct perf_evsel *evsel, 673 struct record_opts *opts, 674 struct callchain_param *param) 675 { 676 bool function = perf_evsel__is_function_event(evsel); 677 struct perf_event_attr *attr = &evsel->attr; 678 679 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 680 681 attr->sample_max_stack = param->max_stack; 682 683 if (param->record_mode == CALLCHAIN_LBR) { 684 if (!opts->branch_stack) { 685 if (attr->exclude_user) { 686 pr_warning("LBR callstack option is only available " 687 "to get user callchain information. " 688 "Falling back to framepointers.\n"); 689 } else { 690 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 691 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 692 PERF_SAMPLE_BRANCH_CALL_STACK | 693 PERF_SAMPLE_BRANCH_NO_CYCLES | 694 PERF_SAMPLE_BRANCH_NO_FLAGS; 695 } 696 } else 697 pr_warning("Cannot use LBR callstack with branch stack. " 698 "Falling back to framepointers.\n"); 699 } 700 701 if (param->record_mode == CALLCHAIN_DWARF) { 702 if (!function) { 703 perf_evsel__set_sample_bit(evsel, REGS_USER); 704 perf_evsel__set_sample_bit(evsel, STACK_USER); 705 attr->sample_regs_user |= PERF_REGS_MASK; 706 attr->sample_stack_user = param->dump_size; 707 attr->exclude_callchain_user = 1; 708 } else { 709 pr_info("Cannot use DWARF unwind for function trace event," 710 " falling back to framepointers.\n"); 711 } 712 } 713 714 if (function) { 715 pr_info("Disabling user space callchains for function trace event.\n"); 716 attr->exclude_callchain_user = 1; 717 } 718 } 719 720 void perf_evsel__config_callchain(struct perf_evsel *evsel, 721 struct record_opts *opts, 722 struct callchain_param *param) 723 { 724 if (param->enabled) 725 return __perf_evsel__config_callchain(evsel, opts, param); 726 } 727 728 static void 729 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 730 struct callchain_param *param) 731 { 732 struct perf_event_attr *attr = &evsel->attr; 733 734 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 735 if (param->record_mode == CALLCHAIN_LBR) { 736 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 737 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 738 PERF_SAMPLE_BRANCH_CALL_STACK); 739 } 740 if (param->record_mode == CALLCHAIN_DWARF) { 741 perf_evsel__reset_sample_bit(evsel, REGS_USER); 742 perf_evsel__reset_sample_bit(evsel, STACK_USER); 743 } 744 } 745 746 static void apply_config_terms(struct perf_evsel *evsel, 747 struct record_opts *opts, bool track) 748 { 749 struct perf_evsel_config_term *term; 750 struct list_head *config_terms = &evsel->config_terms; 751 struct perf_event_attr *attr = &evsel->attr; 752 /* callgraph default */ 753 struct callchain_param param = { 754 .record_mode = callchain_param.record_mode, 755 }; 756 u32 dump_size = 0; 757 int max_stack = 0; 758 const char *callgraph_buf = NULL; 759 760 list_for_each_entry(term, config_terms, list) { 761 switch (term->type) { 762 case PERF_EVSEL__CONFIG_TERM_PERIOD: 763 if (!(term->weak && opts->user_interval != ULLONG_MAX)) { 764 attr->sample_period = term->val.period; 765 attr->freq = 0; 766 perf_evsel__reset_sample_bit(evsel, PERIOD); 767 } 768 break; 769 case PERF_EVSEL__CONFIG_TERM_FREQ: 770 if (!(term->weak && opts->user_freq != UINT_MAX)) { 771 attr->sample_freq = term->val.freq; 772 attr->freq = 1; 773 perf_evsel__set_sample_bit(evsel, PERIOD); 774 } 775 break; 776 case PERF_EVSEL__CONFIG_TERM_TIME: 777 if (term->val.time) 778 perf_evsel__set_sample_bit(evsel, TIME); 779 else 780 perf_evsel__reset_sample_bit(evsel, TIME); 781 break; 782 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 783 callgraph_buf = term->val.callgraph; 784 break; 785 case PERF_EVSEL__CONFIG_TERM_BRANCH: 786 if (term->val.branch && strcmp(term->val.branch, "no")) { 787 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 788 parse_branch_str(term->val.branch, 789 &attr->branch_sample_type); 790 } else 791 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 792 break; 793 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 794 dump_size = term->val.stack_user; 795 break; 796 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 797 max_stack = term->val.max_stack; 798 break; 799 case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS: 800 evsel->max_events = term->val.max_events; 801 break; 802 case PERF_EVSEL__CONFIG_TERM_INHERIT: 803 /* 804 * attr->inherit should has already been set by 805 * perf_evsel__config. If user explicitly set 806 * inherit using config terms, override global 807 * opt->no_inherit setting. 808 */ 809 attr->inherit = term->val.inherit ? 1 : 0; 810 break; 811 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 812 attr->write_backward = term->val.overwrite ? 1 : 0; 813 break; 814 case PERF_EVSEL__CONFIG_TERM_DRV_CFG: 815 break; 816 case PERF_EVSEL__CONFIG_TERM_PERCORE: 817 break; 818 default: 819 break; 820 } 821 } 822 823 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 824 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 825 bool sample_address = false; 826 827 if (max_stack) { 828 param.max_stack = max_stack; 829 if (callgraph_buf == NULL) 830 callgraph_buf = "fp"; 831 } 832 833 /* parse callgraph parameters */ 834 if (callgraph_buf != NULL) { 835 if (!strcmp(callgraph_buf, "no")) { 836 param.enabled = false; 837 param.record_mode = CALLCHAIN_NONE; 838 } else { 839 param.enabled = true; 840 if (parse_callchain_record(callgraph_buf, ¶m)) { 841 pr_err("per-event callgraph setting for %s failed. " 842 "Apply callgraph global setting for it\n", 843 evsel->name); 844 return; 845 } 846 if (param.record_mode == CALLCHAIN_DWARF) 847 sample_address = true; 848 } 849 } 850 if (dump_size > 0) { 851 dump_size = round_up(dump_size, sizeof(u64)); 852 param.dump_size = dump_size; 853 } 854 855 /* If global callgraph set, clear it */ 856 if (callchain_param.enabled) 857 perf_evsel__reset_callgraph(evsel, &callchain_param); 858 859 /* set perf-event callgraph */ 860 if (param.enabled) { 861 if (sample_address) { 862 perf_evsel__set_sample_bit(evsel, ADDR); 863 perf_evsel__set_sample_bit(evsel, DATA_SRC); 864 evsel->attr.mmap_data = track; 865 } 866 perf_evsel__config_callchain(evsel, opts, ¶m); 867 } 868 } 869 } 870 871 static bool is_dummy_event(struct perf_evsel *evsel) 872 { 873 return (evsel->attr.type == PERF_TYPE_SOFTWARE) && 874 (evsel->attr.config == PERF_COUNT_SW_DUMMY); 875 } 876 877 /* 878 * The enable_on_exec/disabled value strategy: 879 * 880 * 1) For any type of traced program: 881 * - all independent events and group leaders are disabled 882 * - all group members are enabled 883 * 884 * Group members are ruled by group leaders. They need to 885 * be enabled, because the group scheduling relies on that. 886 * 887 * 2) For traced programs executed by perf: 888 * - all independent events and group leaders have 889 * enable_on_exec set 890 * - we don't specifically enable or disable any event during 891 * the record command 892 * 893 * Independent events and group leaders are initially disabled 894 * and get enabled by exec. Group members are ruled by group 895 * leaders as stated in 1). 896 * 897 * 3) For traced programs attached by perf (pid/tid): 898 * - we specifically enable or disable all events during 899 * the record command 900 * 901 * When attaching events to already running traced we 902 * enable/disable events specifically, as there's no 903 * initial traced exec call. 904 */ 905 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 906 struct callchain_param *callchain) 907 { 908 struct perf_evsel *leader = evsel->leader; 909 struct perf_event_attr *attr = &evsel->attr; 910 int track = evsel->tracking; 911 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 912 913 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 914 attr->inherit = !opts->no_inherit; 915 attr->write_backward = opts->overwrite ? 1 : 0; 916 917 perf_evsel__set_sample_bit(evsel, IP); 918 perf_evsel__set_sample_bit(evsel, TID); 919 920 if (evsel->sample_read) { 921 perf_evsel__set_sample_bit(evsel, READ); 922 923 /* 924 * We need ID even in case of single event, because 925 * PERF_SAMPLE_READ process ID specific data. 926 */ 927 perf_evsel__set_sample_id(evsel, false); 928 929 /* 930 * Apply group format only if we belong to group 931 * with more than one members. 932 */ 933 if (leader->nr_members > 1) { 934 attr->read_format |= PERF_FORMAT_GROUP; 935 attr->inherit = 0; 936 } 937 } 938 939 /* 940 * We default some events to have a default interval. But keep 941 * it a weak assumption overridable by the user. 942 */ 943 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 944 opts->user_interval != ULLONG_MAX)) { 945 if (opts->freq) { 946 perf_evsel__set_sample_bit(evsel, PERIOD); 947 attr->freq = 1; 948 attr->sample_freq = opts->freq; 949 } else { 950 attr->sample_period = opts->default_interval; 951 } 952 } 953 954 /* 955 * Disable sampling for all group members other 956 * than leader in case leader 'leads' the sampling. 957 */ 958 if ((leader != evsel) && leader->sample_read) { 959 attr->freq = 0; 960 attr->sample_freq = 0; 961 attr->sample_period = 0; 962 attr->write_backward = 0; 963 964 /* 965 * We don't get sample for slave events, we make them 966 * when delivering group leader sample. Set the slave 967 * event to follow the master sample_type to ease up 968 * report. 969 */ 970 attr->sample_type = leader->attr.sample_type; 971 } 972 973 if (opts->no_samples) 974 attr->sample_freq = 0; 975 976 if (opts->inherit_stat) { 977 evsel->attr.read_format |= 978 PERF_FORMAT_TOTAL_TIME_ENABLED | 979 PERF_FORMAT_TOTAL_TIME_RUNNING | 980 PERF_FORMAT_ID; 981 attr->inherit_stat = 1; 982 } 983 984 if (opts->sample_address) { 985 perf_evsel__set_sample_bit(evsel, ADDR); 986 attr->mmap_data = track; 987 } 988 989 /* 990 * We don't allow user space callchains for function trace 991 * event, due to issues with page faults while tracing page 992 * fault handler and its overall trickiness nature. 993 */ 994 if (perf_evsel__is_function_event(evsel)) 995 evsel->attr.exclude_callchain_user = 1; 996 997 if (callchain && callchain->enabled && !evsel->no_aux_samples) 998 perf_evsel__config_callchain(evsel, opts, callchain); 999 1000 if (opts->sample_intr_regs) { 1001 attr->sample_regs_intr = opts->sample_intr_regs; 1002 perf_evsel__set_sample_bit(evsel, REGS_INTR); 1003 } 1004 1005 if (opts->sample_user_regs) { 1006 attr->sample_regs_user |= opts->sample_user_regs; 1007 perf_evsel__set_sample_bit(evsel, REGS_USER); 1008 } 1009 1010 if (target__has_cpu(&opts->target) || opts->sample_cpu) 1011 perf_evsel__set_sample_bit(evsel, CPU); 1012 1013 /* 1014 * When the user explicitly disabled time don't force it here. 1015 */ 1016 if (opts->sample_time && 1017 (!perf_missing_features.sample_id_all && 1018 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 1019 opts->sample_time_set))) 1020 perf_evsel__set_sample_bit(evsel, TIME); 1021 1022 if (opts->raw_samples && !evsel->no_aux_samples) { 1023 perf_evsel__set_sample_bit(evsel, TIME); 1024 perf_evsel__set_sample_bit(evsel, RAW); 1025 perf_evsel__set_sample_bit(evsel, CPU); 1026 } 1027 1028 if (opts->sample_address) 1029 perf_evsel__set_sample_bit(evsel, DATA_SRC); 1030 1031 if (opts->sample_phys_addr) 1032 perf_evsel__set_sample_bit(evsel, PHYS_ADDR); 1033 1034 if (opts->no_buffering) { 1035 attr->watermark = 0; 1036 attr->wakeup_events = 1; 1037 } 1038 if (opts->branch_stack && !evsel->no_aux_samples) { 1039 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 1040 attr->branch_sample_type = opts->branch_stack; 1041 } 1042 1043 if (opts->sample_weight) 1044 perf_evsel__set_sample_bit(evsel, WEIGHT); 1045 1046 attr->task = track; 1047 attr->mmap = track; 1048 attr->mmap2 = track && !perf_missing_features.mmap2; 1049 attr->comm = track; 1050 attr->ksymbol = track && !perf_missing_features.ksymbol; 1051 attr->bpf_event = track && !opts->no_bpf_event && 1052 !perf_missing_features.bpf_event; 1053 1054 if (opts->record_namespaces) 1055 attr->namespaces = track; 1056 1057 if (opts->record_switch_events) 1058 attr->context_switch = track; 1059 1060 if (opts->sample_transaction) 1061 perf_evsel__set_sample_bit(evsel, TRANSACTION); 1062 1063 if (opts->running_time) { 1064 evsel->attr.read_format |= 1065 PERF_FORMAT_TOTAL_TIME_ENABLED | 1066 PERF_FORMAT_TOTAL_TIME_RUNNING; 1067 } 1068 1069 /* 1070 * XXX see the function comment above 1071 * 1072 * Disabling only independent events or group leaders, 1073 * keeping group members enabled. 1074 */ 1075 if (perf_evsel__is_group_leader(evsel)) 1076 attr->disabled = 1; 1077 1078 /* 1079 * Setting enable_on_exec for independent events and 1080 * group leaders for traced executed by perf. 1081 */ 1082 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 1083 !opts->initial_delay) 1084 attr->enable_on_exec = 1; 1085 1086 if (evsel->immediate) { 1087 attr->disabled = 0; 1088 attr->enable_on_exec = 0; 1089 } 1090 1091 clockid = opts->clockid; 1092 if (opts->use_clockid) { 1093 attr->use_clockid = 1; 1094 attr->clockid = opts->clockid; 1095 } 1096 1097 if (evsel->precise_max) 1098 attr->precise_ip = 3; 1099 1100 if (opts->all_user) { 1101 attr->exclude_kernel = 1; 1102 attr->exclude_user = 0; 1103 } 1104 1105 if (opts->all_kernel) { 1106 attr->exclude_kernel = 0; 1107 attr->exclude_user = 1; 1108 } 1109 1110 if (evsel->own_cpus || evsel->unit) 1111 evsel->attr.read_format |= PERF_FORMAT_ID; 1112 1113 /* 1114 * Apply event specific term settings, 1115 * it overloads any global configuration. 1116 */ 1117 apply_config_terms(evsel, opts, track); 1118 1119 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1120 1121 /* The --period option takes the precedence. */ 1122 if (opts->period_set) { 1123 if (opts->period) 1124 perf_evsel__set_sample_bit(evsel, PERIOD); 1125 else 1126 perf_evsel__reset_sample_bit(evsel, PERIOD); 1127 } 1128 1129 /* 1130 * For initial_delay, a dummy event is added implicitly. 1131 * The software event will trigger -EOPNOTSUPP error out, 1132 * if BRANCH_STACK bit is set. 1133 */ 1134 if (opts->initial_delay && is_dummy_event(evsel)) 1135 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 1136 } 1137 1138 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1139 { 1140 if (evsel->system_wide) 1141 nthreads = 1; 1142 1143 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1144 1145 if (evsel->fd) { 1146 int cpu, thread; 1147 for (cpu = 0; cpu < ncpus; cpu++) { 1148 for (thread = 0; thread < nthreads; thread++) { 1149 FD(evsel, cpu, thread) = -1; 1150 } 1151 } 1152 } 1153 1154 return evsel->fd != NULL ? 0 : -ENOMEM; 1155 } 1156 1157 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, 1158 int ioc, void *arg) 1159 { 1160 int cpu, thread; 1161 1162 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 1163 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) { 1164 int fd = FD(evsel, cpu, thread), 1165 err = ioctl(fd, ioc, arg); 1166 1167 if (err) 1168 return err; 1169 } 1170 } 1171 1172 return 0; 1173 } 1174 1175 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter) 1176 { 1177 return perf_evsel__run_ioctl(evsel, 1178 PERF_EVENT_IOC_SET_FILTER, 1179 (void *)filter); 1180 } 1181 1182 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1183 { 1184 char *new_filter = strdup(filter); 1185 1186 if (new_filter != NULL) { 1187 free(evsel->filter); 1188 evsel->filter = new_filter; 1189 return 0; 1190 } 1191 1192 return -1; 1193 } 1194 1195 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1196 const char *fmt, const char *filter) 1197 { 1198 char *new_filter; 1199 1200 if (evsel->filter == NULL) 1201 return perf_evsel__set_filter(evsel, filter); 1202 1203 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1204 free(evsel->filter); 1205 evsel->filter = new_filter; 1206 return 0; 1207 } 1208 1209 return -1; 1210 } 1211 1212 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1213 { 1214 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1215 } 1216 1217 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1218 { 1219 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1220 } 1221 1222 int perf_evsel__enable(struct perf_evsel *evsel) 1223 { 1224 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0); 1225 1226 if (!err) 1227 evsel->disabled = false; 1228 1229 return err; 1230 } 1231 1232 int perf_evsel__disable(struct perf_evsel *evsel) 1233 { 1234 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0); 1235 /* 1236 * We mark it disabled here so that tools that disable a event can 1237 * ignore events after they disable it. I.e. the ring buffer may have 1238 * already a few more events queued up before the kernel got the stop 1239 * request. 1240 */ 1241 if (!err) 1242 evsel->disabled = true; 1243 1244 return err; 1245 } 1246 1247 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1248 { 1249 if (ncpus == 0 || nthreads == 0) 1250 return 0; 1251 1252 if (evsel->system_wide) 1253 nthreads = 1; 1254 1255 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1256 if (evsel->sample_id == NULL) 1257 return -ENOMEM; 1258 1259 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1260 if (evsel->id == NULL) { 1261 xyarray__delete(evsel->sample_id); 1262 evsel->sample_id = NULL; 1263 return -ENOMEM; 1264 } 1265 1266 return 0; 1267 } 1268 1269 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1270 { 1271 xyarray__delete(evsel->fd); 1272 evsel->fd = NULL; 1273 } 1274 1275 static void perf_evsel__free_id(struct perf_evsel *evsel) 1276 { 1277 xyarray__delete(evsel->sample_id); 1278 evsel->sample_id = NULL; 1279 zfree(&evsel->id); 1280 } 1281 1282 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1283 { 1284 struct perf_evsel_config_term *term, *h; 1285 1286 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1287 list_del(&term->list); 1288 free(term); 1289 } 1290 } 1291 1292 void perf_evsel__close_fd(struct perf_evsel *evsel) 1293 { 1294 int cpu, thread; 1295 1296 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) 1297 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) { 1298 close(FD(evsel, cpu, thread)); 1299 FD(evsel, cpu, thread) = -1; 1300 } 1301 } 1302 1303 void perf_evsel__exit(struct perf_evsel *evsel) 1304 { 1305 assert(list_empty(&evsel->node)); 1306 assert(evsel->evlist == NULL); 1307 perf_evsel__free_counts(evsel); 1308 perf_evsel__free_fd(evsel); 1309 perf_evsel__free_id(evsel); 1310 perf_evsel__free_config_terms(evsel); 1311 cgroup__put(evsel->cgrp); 1312 cpu_map__put(evsel->cpus); 1313 cpu_map__put(evsel->own_cpus); 1314 thread_map__put(evsel->threads); 1315 zfree(&evsel->group_name); 1316 zfree(&evsel->name); 1317 perf_evsel__object.fini(evsel); 1318 } 1319 1320 void perf_evsel__delete(struct perf_evsel *evsel) 1321 { 1322 perf_evsel__exit(evsel); 1323 free(evsel); 1324 } 1325 1326 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1327 struct perf_counts_values *count) 1328 { 1329 struct perf_counts_values tmp; 1330 1331 if (!evsel->prev_raw_counts) 1332 return; 1333 1334 if (cpu == -1) { 1335 tmp = evsel->prev_raw_counts->aggr; 1336 evsel->prev_raw_counts->aggr = *count; 1337 } else { 1338 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1339 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1340 } 1341 1342 count->val = count->val - tmp.val; 1343 count->ena = count->ena - tmp.ena; 1344 count->run = count->run - tmp.run; 1345 } 1346 1347 void perf_counts_values__scale(struct perf_counts_values *count, 1348 bool scale, s8 *pscaled) 1349 { 1350 s8 scaled = 0; 1351 1352 if (scale) { 1353 if (count->run == 0) { 1354 scaled = -1; 1355 count->val = 0; 1356 } else if (count->run < count->ena) { 1357 scaled = 1; 1358 count->val = (u64)((double) count->val * count->ena / count->run); 1359 } 1360 } 1361 1362 if (pscaled) 1363 *pscaled = scaled; 1364 } 1365 1366 static int perf_evsel__read_size(struct perf_evsel *evsel) 1367 { 1368 u64 read_format = evsel->attr.read_format; 1369 int entry = sizeof(u64); /* value */ 1370 int size = 0; 1371 int nr = 1; 1372 1373 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1374 size += sizeof(u64); 1375 1376 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1377 size += sizeof(u64); 1378 1379 if (read_format & PERF_FORMAT_ID) 1380 entry += sizeof(u64); 1381 1382 if (read_format & PERF_FORMAT_GROUP) { 1383 nr = evsel->nr_members; 1384 size += sizeof(u64); 1385 } 1386 1387 size += entry * nr; 1388 return size; 1389 } 1390 1391 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1392 struct perf_counts_values *count) 1393 { 1394 size_t size = perf_evsel__read_size(evsel); 1395 1396 memset(count, 0, sizeof(*count)); 1397 1398 if (FD(evsel, cpu, thread) < 0) 1399 return -EINVAL; 1400 1401 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0) 1402 return -errno; 1403 1404 return 0; 1405 } 1406 1407 static int 1408 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread) 1409 { 1410 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread); 1411 1412 return perf_evsel__read(evsel, cpu, thread, count); 1413 } 1414 1415 static void 1416 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread, 1417 u64 val, u64 ena, u64 run) 1418 { 1419 struct perf_counts_values *count; 1420 1421 count = perf_counts(counter->counts, cpu, thread); 1422 1423 count->val = val; 1424 count->ena = ena; 1425 count->run = run; 1426 count->loaded = true; 1427 } 1428 1429 static int 1430 perf_evsel__process_group_data(struct perf_evsel *leader, 1431 int cpu, int thread, u64 *data) 1432 { 1433 u64 read_format = leader->attr.read_format; 1434 struct sample_read_value *v; 1435 u64 nr, ena = 0, run = 0, i; 1436 1437 nr = *data++; 1438 1439 if (nr != (u64) leader->nr_members) 1440 return -EINVAL; 1441 1442 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1443 ena = *data++; 1444 1445 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1446 run = *data++; 1447 1448 v = (struct sample_read_value *) data; 1449 1450 perf_evsel__set_count(leader, cpu, thread, 1451 v[0].value, ena, run); 1452 1453 for (i = 1; i < nr; i++) { 1454 struct perf_evsel *counter; 1455 1456 counter = perf_evlist__id2evsel(leader->evlist, v[i].id); 1457 if (!counter) 1458 return -EINVAL; 1459 1460 perf_evsel__set_count(counter, cpu, thread, 1461 v[i].value, ena, run); 1462 } 1463 1464 return 0; 1465 } 1466 1467 static int 1468 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread) 1469 { 1470 struct perf_stat_evsel *ps = leader->stats; 1471 u64 read_format = leader->attr.read_format; 1472 int size = perf_evsel__read_size(leader); 1473 u64 *data = ps->group_data; 1474 1475 if (!(read_format & PERF_FORMAT_ID)) 1476 return -EINVAL; 1477 1478 if (!perf_evsel__is_group_leader(leader)) 1479 return -EINVAL; 1480 1481 if (!data) { 1482 data = zalloc(size); 1483 if (!data) 1484 return -ENOMEM; 1485 1486 ps->group_data = data; 1487 } 1488 1489 if (FD(leader, cpu, thread) < 0) 1490 return -EINVAL; 1491 1492 if (readn(FD(leader, cpu, thread), data, size) <= 0) 1493 return -errno; 1494 1495 return perf_evsel__process_group_data(leader, cpu, thread, data); 1496 } 1497 1498 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread) 1499 { 1500 u64 read_format = evsel->attr.read_format; 1501 1502 if (read_format & PERF_FORMAT_GROUP) 1503 return perf_evsel__read_group(evsel, cpu, thread); 1504 else 1505 return perf_evsel__read_one(evsel, cpu, thread); 1506 } 1507 1508 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1509 int cpu, int thread, bool scale) 1510 { 1511 struct perf_counts_values count; 1512 size_t nv = scale ? 3 : 1; 1513 1514 if (FD(evsel, cpu, thread) < 0) 1515 return -EINVAL; 1516 1517 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1518 return -ENOMEM; 1519 1520 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1521 return -errno; 1522 1523 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1524 perf_counts_values__scale(&count, scale, NULL); 1525 *perf_counts(evsel->counts, cpu, thread) = count; 1526 return 0; 1527 } 1528 1529 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1530 { 1531 struct perf_evsel *leader = evsel->leader; 1532 int fd; 1533 1534 if (perf_evsel__is_group_leader(evsel)) 1535 return -1; 1536 1537 /* 1538 * Leader must be already processed/open, 1539 * if not it's a bug. 1540 */ 1541 BUG_ON(!leader->fd); 1542 1543 fd = FD(leader, cpu, thread); 1544 BUG_ON(fd == -1); 1545 1546 return fd; 1547 } 1548 1549 struct bit_names { 1550 int bit; 1551 const char *name; 1552 }; 1553 1554 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1555 { 1556 bool first_bit = true; 1557 int i = 0; 1558 1559 do { 1560 if (value & bits[i].bit) { 1561 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1562 first_bit = false; 1563 } 1564 } while (bits[++i].name != NULL); 1565 } 1566 1567 static void __p_sample_type(char *buf, size_t size, u64 value) 1568 { 1569 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1570 struct bit_names bits[] = { 1571 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1572 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1573 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1574 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1575 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1576 bit_name(WEIGHT), bit_name(PHYS_ADDR), 1577 { .name = NULL, } 1578 }; 1579 #undef bit_name 1580 __p_bits(buf, size, value, bits); 1581 } 1582 1583 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1584 { 1585 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1586 struct bit_names bits[] = { 1587 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1588 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1589 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1590 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1591 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1592 { .name = NULL, } 1593 }; 1594 #undef bit_name 1595 __p_bits(buf, size, value, bits); 1596 } 1597 1598 static void __p_read_format(char *buf, size_t size, u64 value) 1599 { 1600 #define bit_name(n) { PERF_FORMAT_##n, #n } 1601 struct bit_names bits[] = { 1602 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1603 bit_name(ID), bit_name(GROUP), 1604 { .name = NULL, } 1605 }; 1606 #undef bit_name 1607 __p_bits(buf, size, value, bits); 1608 } 1609 1610 #define BUF_SIZE 1024 1611 1612 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1613 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1614 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1615 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1616 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1617 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1618 1619 #define PRINT_ATTRn(_n, _f, _p) \ 1620 do { \ 1621 if (attr->_f) { \ 1622 _p(attr->_f); \ 1623 ret += attr__fprintf(fp, _n, buf, priv);\ 1624 } \ 1625 } while (0) 1626 1627 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1628 1629 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1630 attr__fprintf_f attr__fprintf, void *priv) 1631 { 1632 char buf[BUF_SIZE]; 1633 int ret = 0; 1634 1635 PRINT_ATTRf(type, p_unsigned); 1636 PRINT_ATTRf(size, p_unsigned); 1637 PRINT_ATTRf(config, p_hex); 1638 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1639 PRINT_ATTRf(sample_type, p_sample_type); 1640 PRINT_ATTRf(read_format, p_read_format); 1641 1642 PRINT_ATTRf(disabled, p_unsigned); 1643 PRINT_ATTRf(inherit, p_unsigned); 1644 PRINT_ATTRf(pinned, p_unsigned); 1645 PRINT_ATTRf(exclusive, p_unsigned); 1646 PRINT_ATTRf(exclude_user, p_unsigned); 1647 PRINT_ATTRf(exclude_kernel, p_unsigned); 1648 PRINT_ATTRf(exclude_hv, p_unsigned); 1649 PRINT_ATTRf(exclude_idle, p_unsigned); 1650 PRINT_ATTRf(mmap, p_unsigned); 1651 PRINT_ATTRf(comm, p_unsigned); 1652 PRINT_ATTRf(freq, p_unsigned); 1653 PRINT_ATTRf(inherit_stat, p_unsigned); 1654 PRINT_ATTRf(enable_on_exec, p_unsigned); 1655 PRINT_ATTRf(task, p_unsigned); 1656 PRINT_ATTRf(watermark, p_unsigned); 1657 PRINT_ATTRf(precise_ip, p_unsigned); 1658 PRINT_ATTRf(mmap_data, p_unsigned); 1659 PRINT_ATTRf(sample_id_all, p_unsigned); 1660 PRINT_ATTRf(exclude_host, p_unsigned); 1661 PRINT_ATTRf(exclude_guest, p_unsigned); 1662 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1663 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1664 PRINT_ATTRf(mmap2, p_unsigned); 1665 PRINT_ATTRf(comm_exec, p_unsigned); 1666 PRINT_ATTRf(use_clockid, p_unsigned); 1667 PRINT_ATTRf(context_switch, p_unsigned); 1668 PRINT_ATTRf(write_backward, p_unsigned); 1669 PRINT_ATTRf(namespaces, p_unsigned); 1670 PRINT_ATTRf(ksymbol, p_unsigned); 1671 PRINT_ATTRf(bpf_event, p_unsigned); 1672 1673 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1674 PRINT_ATTRf(bp_type, p_unsigned); 1675 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1676 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1677 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1678 PRINT_ATTRf(sample_regs_user, p_hex); 1679 PRINT_ATTRf(sample_stack_user, p_unsigned); 1680 PRINT_ATTRf(clockid, p_signed); 1681 PRINT_ATTRf(sample_regs_intr, p_hex); 1682 PRINT_ATTRf(aux_watermark, p_unsigned); 1683 PRINT_ATTRf(sample_max_stack, p_unsigned); 1684 1685 return ret; 1686 } 1687 1688 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1689 void *priv __maybe_unused) 1690 { 1691 return fprintf(fp, " %-32s %s\n", name, val); 1692 } 1693 1694 static void perf_evsel__remove_fd(struct perf_evsel *pos, 1695 int nr_cpus, int nr_threads, 1696 int thread_idx) 1697 { 1698 for (int cpu = 0; cpu < nr_cpus; cpu++) 1699 for (int thread = thread_idx; thread < nr_threads - 1; thread++) 1700 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1); 1701 } 1702 1703 static int update_fds(struct perf_evsel *evsel, 1704 int nr_cpus, int cpu_idx, 1705 int nr_threads, int thread_idx) 1706 { 1707 struct perf_evsel *pos; 1708 1709 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads) 1710 return -EINVAL; 1711 1712 evlist__for_each_entry(evsel->evlist, pos) { 1713 nr_cpus = pos != evsel ? nr_cpus : cpu_idx; 1714 1715 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx); 1716 1717 /* 1718 * Since fds for next evsel has not been created, 1719 * there is no need to iterate whole event list. 1720 */ 1721 if (pos == evsel) 1722 break; 1723 } 1724 return 0; 1725 } 1726 1727 static bool ignore_missing_thread(struct perf_evsel *evsel, 1728 int nr_cpus, int cpu, 1729 struct thread_map *threads, 1730 int thread, int err) 1731 { 1732 pid_t ignore_pid = thread_map__pid(threads, thread); 1733 1734 if (!evsel->ignore_missing_thread) 1735 return false; 1736 1737 /* The system wide setup does not work with threads. */ 1738 if (evsel->system_wide) 1739 return false; 1740 1741 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1742 if (err != -ESRCH) 1743 return false; 1744 1745 /* If there's only one thread, let it fail. */ 1746 if (threads->nr == 1) 1747 return false; 1748 1749 /* 1750 * We should remove fd for missing_thread first 1751 * because thread_map__remove() will decrease threads->nr. 1752 */ 1753 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread)) 1754 return false; 1755 1756 if (thread_map__remove(threads, thread)) 1757 return false; 1758 1759 pr_warning("WARNING: Ignored open failure for pid %d\n", 1760 ignore_pid); 1761 return true; 1762 } 1763 1764 static void display_attr(struct perf_event_attr *attr) 1765 { 1766 if (verbose >= 2) { 1767 fprintf(stderr, "%.60s\n", graph_dotted_line); 1768 fprintf(stderr, "perf_event_attr:\n"); 1769 perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL); 1770 fprintf(stderr, "%.60s\n", graph_dotted_line); 1771 } 1772 } 1773 1774 static int perf_event_open(struct perf_evsel *evsel, 1775 pid_t pid, int cpu, int group_fd, 1776 unsigned long flags) 1777 { 1778 int precise_ip = evsel->attr.precise_ip; 1779 int fd; 1780 1781 while (1) { 1782 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1783 pid, cpu, group_fd, flags); 1784 1785 fd = sys_perf_event_open(&evsel->attr, pid, cpu, group_fd, flags); 1786 if (fd >= 0) 1787 break; 1788 1789 /* 1790 * Do quick precise_ip fallback if: 1791 * - there is precise_ip set in perf_event_attr 1792 * - maximum precise is requested 1793 * - sys_perf_event_open failed with ENOTSUP error, 1794 * which is associated with wrong precise_ip 1795 */ 1796 if (!precise_ip || !evsel->precise_max || (errno != ENOTSUP)) 1797 break; 1798 1799 /* 1800 * We tried all the precise_ip values, and it's 1801 * still failing, so leave it to standard fallback. 1802 */ 1803 if (!evsel->attr.precise_ip) { 1804 evsel->attr.precise_ip = precise_ip; 1805 break; 1806 } 1807 1808 pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP); 1809 evsel->attr.precise_ip--; 1810 pr_debug2("decreasing precise_ip by one (%d)\n", evsel->attr.precise_ip); 1811 display_attr(&evsel->attr); 1812 } 1813 1814 return fd; 1815 } 1816 1817 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1818 struct thread_map *threads) 1819 { 1820 int cpu, thread, nthreads; 1821 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1822 int pid = -1, err; 1823 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1824 1825 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1826 return -EINVAL; 1827 1828 if (cpus == NULL) { 1829 static struct cpu_map *empty_cpu_map; 1830 1831 if (empty_cpu_map == NULL) { 1832 empty_cpu_map = cpu_map__dummy_new(); 1833 if (empty_cpu_map == NULL) 1834 return -ENOMEM; 1835 } 1836 1837 cpus = empty_cpu_map; 1838 } 1839 1840 if (threads == NULL) { 1841 static struct thread_map *empty_thread_map; 1842 1843 if (empty_thread_map == NULL) { 1844 empty_thread_map = thread_map__new_by_tid(-1); 1845 if (empty_thread_map == NULL) 1846 return -ENOMEM; 1847 } 1848 1849 threads = empty_thread_map; 1850 } 1851 1852 if (evsel->system_wide) 1853 nthreads = 1; 1854 else 1855 nthreads = threads->nr; 1856 1857 if (evsel->fd == NULL && 1858 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1859 return -ENOMEM; 1860 1861 if (evsel->cgrp) { 1862 flags |= PERF_FLAG_PID_CGROUP; 1863 pid = evsel->cgrp->fd; 1864 } 1865 1866 fallback_missing_features: 1867 if (perf_missing_features.clockid_wrong) 1868 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1869 if (perf_missing_features.clockid) { 1870 evsel->attr.use_clockid = 0; 1871 evsel->attr.clockid = 0; 1872 } 1873 if (perf_missing_features.cloexec) 1874 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1875 if (perf_missing_features.mmap2) 1876 evsel->attr.mmap2 = 0; 1877 if (perf_missing_features.exclude_guest) 1878 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1879 if (perf_missing_features.lbr_flags) 1880 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1881 PERF_SAMPLE_BRANCH_NO_CYCLES); 1882 if (perf_missing_features.group_read && evsel->attr.inherit) 1883 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); 1884 if (perf_missing_features.ksymbol) 1885 evsel->attr.ksymbol = 0; 1886 if (perf_missing_features.bpf_event) 1887 evsel->attr.bpf_event = 0; 1888 retry_sample_id: 1889 if (perf_missing_features.sample_id_all) 1890 evsel->attr.sample_id_all = 0; 1891 1892 display_attr(&evsel->attr); 1893 1894 for (cpu = 0; cpu < cpus->nr; cpu++) { 1895 1896 for (thread = 0; thread < nthreads; thread++) { 1897 int fd, group_fd; 1898 1899 if (!evsel->cgrp && !evsel->system_wide) 1900 pid = thread_map__pid(threads, thread); 1901 1902 group_fd = get_group_fd(evsel, cpu, thread); 1903 retry_open: 1904 test_attr__ready(); 1905 1906 fd = perf_event_open(evsel, pid, cpus->map[cpu], 1907 group_fd, flags); 1908 1909 FD(evsel, cpu, thread) = fd; 1910 1911 if (fd < 0) { 1912 err = -errno; 1913 1914 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) { 1915 /* 1916 * We just removed 1 thread, so take a step 1917 * back on thread index and lower the upper 1918 * nthreads limit. 1919 */ 1920 nthreads--; 1921 thread--; 1922 1923 /* ... and pretend like nothing have happened. */ 1924 err = 0; 1925 continue; 1926 } 1927 1928 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1929 err); 1930 goto try_fallback; 1931 } 1932 1933 pr_debug2(" = %d\n", fd); 1934 1935 if (evsel->bpf_fd >= 0) { 1936 int evt_fd = fd; 1937 int bpf_fd = evsel->bpf_fd; 1938 1939 err = ioctl(evt_fd, 1940 PERF_EVENT_IOC_SET_BPF, 1941 bpf_fd); 1942 if (err && errno != EEXIST) { 1943 pr_err("failed to attach bpf fd %d: %s\n", 1944 bpf_fd, strerror(errno)); 1945 err = -EINVAL; 1946 goto out_close; 1947 } 1948 } 1949 1950 set_rlimit = NO_CHANGE; 1951 1952 /* 1953 * If we succeeded but had to kill clockid, fail and 1954 * have perf_evsel__open_strerror() print us a nice 1955 * error. 1956 */ 1957 if (perf_missing_features.clockid || 1958 perf_missing_features.clockid_wrong) { 1959 err = -EINVAL; 1960 goto out_close; 1961 } 1962 } 1963 } 1964 1965 return 0; 1966 1967 try_fallback: 1968 /* 1969 * perf stat needs between 5 and 22 fds per CPU. When we run out 1970 * of them try to increase the limits. 1971 */ 1972 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1973 struct rlimit l; 1974 int old_errno = errno; 1975 1976 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1977 if (set_rlimit == NO_CHANGE) 1978 l.rlim_cur = l.rlim_max; 1979 else { 1980 l.rlim_cur = l.rlim_max + 1000; 1981 l.rlim_max = l.rlim_cur; 1982 } 1983 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1984 set_rlimit++; 1985 errno = old_errno; 1986 goto retry_open; 1987 } 1988 } 1989 errno = old_errno; 1990 } 1991 1992 if (err != -EINVAL || cpu > 0 || thread > 0) 1993 goto out_close; 1994 1995 /* 1996 * Must probe features in the order they were added to the 1997 * perf_event_attr interface. 1998 */ 1999 if (!perf_missing_features.bpf_event && evsel->attr.bpf_event) { 2000 perf_missing_features.bpf_event = true; 2001 pr_debug2("switching off bpf_event\n"); 2002 goto fallback_missing_features; 2003 } else if (!perf_missing_features.ksymbol && evsel->attr.ksymbol) { 2004 perf_missing_features.ksymbol = true; 2005 pr_debug2("switching off ksymbol\n"); 2006 goto fallback_missing_features; 2007 } else if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 2008 perf_missing_features.write_backward = true; 2009 pr_debug2("switching off write_backward\n"); 2010 goto out_close; 2011 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 2012 perf_missing_features.clockid_wrong = true; 2013 pr_debug2("switching off clockid\n"); 2014 goto fallback_missing_features; 2015 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 2016 perf_missing_features.clockid = true; 2017 pr_debug2("switching off use_clockid\n"); 2018 goto fallback_missing_features; 2019 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 2020 perf_missing_features.cloexec = true; 2021 pr_debug2("switching off cloexec flag\n"); 2022 goto fallback_missing_features; 2023 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 2024 perf_missing_features.mmap2 = true; 2025 pr_debug2("switching off mmap2\n"); 2026 goto fallback_missing_features; 2027 } else if (!perf_missing_features.exclude_guest && 2028 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 2029 perf_missing_features.exclude_guest = true; 2030 pr_debug2("switching off exclude_guest, exclude_host\n"); 2031 goto fallback_missing_features; 2032 } else if (!perf_missing_features.sample_id_all) { 2033 perf_missing_features.sample_id_all = true; 2034 pr_debug2("switching off sample_id_all\n"); 2035 goto retry_sample_id; 2036 } else if (!perf_missing_features.lbr_flags && 2037 (evsel->attr.branch_sample_type & 2038 (PERF_SAMPLE_BRANCH_NO_CYCLES | 2039 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 2040 perf_missing_features.lbr_flags = true; 2041 pr_debug2("switching off branch sample type no (cycles/flags)\n"); 2042 goto fallback_missing_features; 2043 } else if (!perf_missing_features.group_read && 2044 evsel->attr.inherit && 2045 (evsel->attr.read_format & PERF_FORMAT_GROUP) && 2046 perf_evsel__is_group_leader(evsel)) { 2047 perf_missing_features.group_read = true; 2048 pr_debug2("switching off group read\n"); 2049 goto fallback_missing_features; 2050 } 2051 out_close: 2052 if (err) 2053 threads->err_thread = thread; 2054 2055 do { 2056 while (--thread >= 0) { 2057 close(FD(evsel, cpu, thread)); 2058 FD(evsel, cpu, thread) = -1; 2059 } 2060 thread = nthreads; 2061 } while (--cpu >= 0); 2062 return err; 2063 } 2064 2065 void perf_evsel__close(struct perf_evsel *evsel) 2066 { 2067 if (evsel->fd == NULL) 2068 return; 2069 2070 perf_evsel__close_fd(evsel); 2071 perf_evsel__free_fd(evsel); 2072 } 2073 2074 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 2075 struct cpu_map *cpus) 2076 { 2077 return perf_evsel__open(evsel, cpus, NULL); 2078 } 2079 2080 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 2081 struct thread_map *threads) 2082 { 2083 return perf_evsel__open(evsel, NULL, threads); 2084 } 2085 2086 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 2087 const union perf_event *event, 2088 struct perf_sample *sample) 2089 { 2090 u64 type = evsel->attr.sample_type; 2091 const u64 *array = event->sample.array; 2092 bool swapped = evsel->needs_swap; 2093 union u64_swap u; 2094 2095 array += ((event->header.size - 2096 sizeof(event->header)) / sizeof(u64)) - 1; 2097 2098 if (type & PERF_SAMPLE_IDENTIFIER) { 2099 sample->id = *array; 2100 array--; 2101 } 2102 2103 if (type & PERF_SAMPLE_CPU) { 2104 u.val64 = *array; 2105 if (swapped) { 2106 /* undo swap of u64, then swap on individual u32s */ 2107 u.val64 = bswap_64(u.val64); 2108 u.val32[0] = bswap_32(u.val32[0]); 2109 } 2110 2111 sample->cpu = u.val32[0]; 2112 array--; 2113 } 2114 2115 if (type & PERF_SAMPLE_STREAM_ID) { 2116 sample->stream_id = *array; 2117 array--; 2118 } 2119 2120 if (type & PERF_SAMPLE_ID) { 2121 sample->id = *array; 2122 array--; 2123 } 2124 2125 if (type & PERF_SAMPLE_TIME) { 2126 sample->time = *array; 2127 array--; 2128 } 2129 2130 if (type & PERF_SAMPLE_TID) { 2131 u.val64 = *array; 2132 if (swapped) { 2133 /* undo swap of u64, then swap on individual u32s */ 2134 u.val64 = bswap_64(u.val64); 2135 u.val32[0] = bswap_32(u.val32[0]); 2136 u.val32[1] = bswap_32(u.val32[1]); 2137 } 2138 2139 sample->pid = u.val32[0]; 2140 sample->tid = u.val32[1]; 2141 array--; 2142 } 2143 2144 return 0; 2145 } 2146 2147 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 2148 u64 size) 2149 { 2150 return size > max_size || offset + size > endp; 2151 } 2152 2153 #define OVERFLOW_CHECK(offset, size, max_size) \ 2154 do { \ 2155 if (overflow(endp, (max_size), (offset), (size))) \ 2156 return -EFAULT; \ 2157 } while (0) 2158 2159 #define OVERFLOW_CHECK_u64(offset) \ 2160 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 2161 2162 static int 2163 perf_event__check_size(union perf_event *event, unsigned int sample_size) 2164 { 2165 /* 2166 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 2167 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 2168 * check the format does not go past the end of the event. 2169 */ 2170 if (sample_size + sizeof(event->header) > event->header.size) 2171 return -EFAULT; 2172 2173 return 0; 2174 } 2175 2176 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 2177 struct perf_sample *data) 2178 { 2179 u64 type = evsel->attr.sample_type; 2180 bool swapped = evsel->needs_swap; 2181 const u64 *array; 2182 u16 max_size = event->header.size; 2183 const void *endp = (void *)event + max_size; 2184 u64 sz; 2185 2186 /* 2187 * used for cross-endian analysis. See git commit 65014ab3 2188 * for why this goofiness is needed. 2189 */ 2190 union u64_swap u; 2191 2192 memset(data, 0, sizeof(*data)); 2193 data->cpu = data->pid = data->tid = -1; 2194 data->stream_id = data->id = data->time = -1ULL; 2195 data->period = evsel->attr.sample_period; 2196 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2197 data->misc = event->header.misc; 2198 data->id = -1ULL; 2199 data->data_src = PERF_MEM_DATA_SRC_NONE; 2200 2201 if (event->header.type != PERF_RECORD_SAMPLE) { 2202 if (!evsel->attr.sample_id_all) 2203 return 0; 2204 return perf_evsel__parse_id_sample(evsel, event, data); 2205 } 2206 2207 array = event->sample.array; 2208 2209 if (perf_event__check_size(event, evsel->sample_size)) 2210 return -EFAULT; 2211 2212 if (type & PERF_SAMPLE_IDENTIFIER) { 2213 data->id = *array; 2214 array++; 2215 } 2216 2217 if (type & PERF_SAMPLE_IP) { 2218 data->ip = *array; 2219 array++; 2220 } 2221 2222 if (type & PERF_SAMPLE_TID) { 2223 u.val64 = *array; 2224 if (swapped) { 2225 /* undo swap of u64, then swap on individual u32s */ 2226 u.val64 = bswap_64(u.val64); 2227 u.val32[0] = bswap_32(u.val32[0]); 2228 u.val32[1] = bswap_32(u.val32[1]); 2229 } 2230 2231 data->pid = u.val32[0]; 2232 data->tid = u.val32[1]; 2233 array++; 2234 } 2235 2236 if (type & PERF_SAMPLE_TIME) { 2237 data->time = *array; 2238 array++; 2239 } 2240 2241 if (type & PERF_SAMPLE_ADDR) { 2242 data->addr = *array; 2243 array++; 2244 } 2245 2246 if (type & PERF_SAMPLE_ID) { 2247 data->id = *array; 2248 array++; 2249 } 2250 2251 if (type & PERF_SAMPLE_STREAM_ID) { 2252 data->stream_id = *array; 2253 array++; 2254 } 2255 2256 if (type & PERF_SAMPLE_CPU) { 2257 2258 u.val64 = *array; 2259 if (swapped) { 2260 /* undo swap of u64, then swap on individual u32s */ 2261 u.val64 = bswap_64(u.val64); 2262 u.val32[0] = bswap_32(u.val32[0]); 2263 } 2264 2265 data->cpu = u.val32[0]; 2266 array++; 2267 } 2268 2269 if (type & PERF_SAMPLE_PERIOD) { 2270 data->period = *array; 2271 array++; 2272 } 2273 2274 if (type & PERF_SAMPLE_READ) { 2275 u64 read_format = evsel->attr.read_format; 2276 2277 OVERFLOW_CHECK_u64(array); 2278 if (read_format & PERF_FORMAT_GROUP) 2279 data->read.group.nr = *array; 2280 else 2281 data->read.one.value = *array; 2282 2283 array++; 2284 2285 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2286 OVERFLOW_CHECK_u64(array); 2287 data->read.time_enabled = *array; 2288 array++; 2289 } 2290 2291 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2292 OVERFLOW_CHECK_u64(array); 2293 data->read.time_running = *array; 2294 array++; 2295 } 2296 2297 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2298 if (read_format & PERF_FORMAT_GROUP) { 2299 const u64 max_group_nr = UINT64_MAX / 2300 sizeof(struct sample_read_value); 2301 2302 if (data->read.group.nr > max_group_nr) 2303 return -EFAULT; 2304 sz = data->read.group.nr * 2305 sizeof(struct sample_read_value); 2306 OVERFLOW_CHECK(array, sz, max_size); 2307 data->read.group.values = 2308 (struct sample_read_value *)array; 2309 array = (void *)array + sz; 2310 } else { 2311 OVERFLOW_CHECK_u64(array); 2312 data->read.one.id = *array; 2313 array++; 2314 } 2315 } 2316 2317 if (evsel__has_callchain(evsel)) { 2318 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 2319 2320 OVERFLOW_CHECK_u64(array); 2321 data->callchain = (struct ip_callchain *)array++; 2322 if (data->callchain->nr > max_callchain_nr) 2323 return -EFAULT; 2324 sz = data->callchain->nr * sizeof(u64); 2325 OVERFLOW_CHECK(array, sz, max_size); 2326 array = (void *)array + sz; 2327 } 2328 2329 if (type & PERF_SAMPLE_RAW) { 2330 OVERFLOW_CHECK_u64(array); 2331 u.val64 = *array; 2332 2333 /* 2334 * Undo swap of u64, then swap on individual u32s, 2335 * get the size of the raw area and undo all of the 2336 * swap. The pevent interface handles endianity by 2337 * itself. 2338 */ 2339 if (swapped) { 2340 u.val64 = bswap_64(u.val64); 2341 u.val32[0] = bswap_32(u.val32[0]); 2342 u.val32[1] = bswap_32(u.val32[1]); 2343 } 2344 data->raw_size = u.val32[0]; 2345 2346 /* 2347 * The raw data is aligned on 64bits including the 2348 * u32 size, so it's safe to use mem_bswap_64. 2349 */ 2350 if (swapped) 2351 mem_bswap_64((void *) array, data->raw_size); 2352 2353 array = (void *)array + sizeof(u32); 2354 2355 OVERFLOW_CHECK(array, data->raw_size, max_size); 2356 data->raw_data = (void *)array; 2357 array = (void *)array + data->raw_size; 2358 } 2359 2360 if (type & PERF_SAMPLE_BRANCH_STACK) { 2361 const u64 max_branch_nr = UINT64_MAX / 2362 sizeof(struct branch_entry); 2363 2364 OVERFLOW_CHECK_u64(array); 2365 data->branch_stack = (struct branch_stack *)array++; 2366 2367 if (data->branch_stack->nr > max_branch_nr) 2368 return -EFAULT; 2369 sz = data->branch_stack->nr * sizeof(struct branch_entry); 2370 OVERFLOW_CHECK(array, sz, max_size); 2371 array = (void *)array + sz; 2372 } 2373 2374 if (type & PERF_SAMPLE_REGS_USER) { 2375 OVERFLOW_CHECK_u64(array); 2376 data->user_regs.abi = *array; 2377 array++; 2378 2379 if (data->user_regs.abi) { 2380 u64 mask = evsel->attr.sample_regs_user; 2381 2382 sz = hweight64(mask) * sizeof(u64); 2383 OVERFLOW_CHECK(array, sz, max_size); 2384 data->user_regs.mask = mask; 2385 data->user_regs.regs = (u64 *)array; 2386 array = (void *)array + sz; 2387 } 2388 } 2389 2390 if (type & PERF_SAMPLE_STACK_USER) { 2391 OVERFLOW_CHECK_u64(array); 2392 sz = *array++; 2393 2394 data->user_stack.offset = ((char *)(array - 1) 2395 - (char *) event); 2396 2397 if (!sz) { 2398 data->user_stack.size = 0; 2399 } else { 2400 OVERFLOW_CHECK(array, sz, max_size); 2401 data->user_stack.data = (char *)array; 2402 array = (void *)array + sz; 2403 OVERFLOW_CHECK_u64(array); 2404 data->user_stack.size = *array++; 2405 if (WARN_ONCE(data->user_stack.size > sz, 2406 "user stack dump failure\n")) 2407 return -EFAULT; 2408 } 2409 } 2410 2411 if (type & PERF_SAMPLE_WEIGHT) { 2412 OVERFLOW_CHECK_u64(array); 2413 data->weight = *array; 2414 array++; 2415 } 2416 2417 if (type & PERF_SAMPLE_DATA_SRC) { 2418 OVERFLOW_CHECK_u64(array); 2419 data->data_src = *array; 2420 array++; 2421 } 2422 2423 if (type & PERF_SAMPLE_TRANSACTION) { 2424 OVERFLOW_CHECK_u64(array); 2425 data->transaction = *array; 2426 array++; 2427 } 2428 2429 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2430 if (type & PERF_SAMPLE_REGS_INTR) { 2431 OVERFLOW_CHECK_u64(array); 2432 data->intr_regs.abi = *array; 2433 array++; 2434 2435 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2436 u64 mask = evsel->attr.sample_regs_intr; 2437 2438 sz = hweight64(mask) * sizeof(u64); 2439 OVERFLOW_CHECK(array, sz, max_size); 2440 data->intr_regs.mask = mask; 2441 data->intr_regs.regs = (u64 *)array; 2442 array = (void *)array + sz; 2443 } 2444 } 2445 2446 data->phys_addr = 0; 2447 if (type & PERF_SAMPLE_PHYS_ADDR) { 2448 data->phys_addr = *array; 2449 array++; 2450 } 2451 2452 return 0; 2453 } 2454 2455 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel, 2456 union perf_event *event, 2457 u64 *timestamp) 2458 { 2459 u64 type = evsel->attr.sample_type; 2460 const u64 *array; 2461 2462 if (!(type & PERF_SAMPLE_TIME)) 2463 return -1; 2464 2465 if (event->header.type != PERF_RECORD_SAMPLE) { 2466 struct perf_sample data = { 2467 .time = -1ULL, 2468 }; 2469 2470 if (!evsel->attr.sample_id_all) 2471 return -1; 2472 if (perf_evsel__parse_id_sample(evsel, event, &data)) 2473 return -1; 2474 2475 *timestamp = data.time; 2476 return 0; 2477 } 2478 2479 array = event->sample.array; 2480 2481 if (perf_event__check_size(event, evsel->sample_size)) 2482 return -EFAULT; 2483 2484 if (type & PERF_SAMPLE_IDENTIFIER) 2485 array++; 2486 2487 if (type & PERF_SAMPLE_IP) 2488 array++; 2489 2490 if (type & PERF_SAMPLE_TID) 2491 array++; 2492 2493 if (type & PERF_SAMPLE_TIME) 2494 *timestamp = *array; 2495 2496 return 0; 2497 } 2498 2499 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2500 u64 read_format) 2501 { 2502 size_t sz, result = sizeof(struct sample_event); 2503 2504 if (type & PERF_SAMPLE_IDENTIFIER) 2505 result += sizeof(u64); 2506 2507 if (type & PERF_SAMPLE_IP) 2508 result += sizeof(u64); 2509 2510 if (type & PERF_SAMPLE_TID) 2511 result += sizeof(u64); 2512 2513 if (type & PERF_SAMPLE_TIME) 2514 result += sizeof(u64); 2515 2516 if (type & PERF_SAMPLE_ADDR) 2517 result += sizeof(u64); 2518 2519 if (type & PERF_SAMPLE_ID) 2520 result += sizeof(u64); 2521 2522 if (type & PERF_SAMPLE_STREAM_ID) 2523 result += sizeof(u64); 2524 2525 if (type & PERF_SAMPLE_CPU) 2526 result += sizeof(u64); 2527 2528 if (type & PERF_SAMPLE_PERIOD) 2529 result += sizeof(u64); 2530 2531 if (type & PERF_SAMPLE_READ) { 2532 result += sizeof(u64); 2533 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2534 result += sizeof(u64); 2535 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2536 result += sizeof(u64); 2537 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2538 if (read_format & PERF_FORMAT_GROUP) { 2539 sz = sample->read.group.nr * 2540 sizeof(struct sample_read_value); 2541 result += sz; 2542 } else { 2543 result += sizeof(u64); 2544 } 2545 } 2546 2547 if (type & PERF_SAMPLE_CALLCHAIN) { 2548 sz = (sample->callchain->nr + 1) * sizeof(u64); 2549 result += sz; 2550 } 2551 2552 if (type & PERF_SAMPLE_RAW) { 2553 result += sizeof(u32); 2554 result += sample->raw_size; 2555 } 2556 2557 if (type & PERF_SAMPLE_BRANCH_STACK) { 2558 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2559 sz += sizeof(u64); 2560 result += sz; 2561 } 2562 2563 if (type & PERF_SAMPLE_REGS_USER) { 2564 if (sample->user_regs.abi) { 2565 result += sizeof(u64); 2566 sz = hweight64(sample->user_regs.mask) * sizeof(u64); 2567 result += sz; 2568 } else { 2569 result += sizeof(u64); 2570 } 2571 } 2572 2573 if (type & PERF_SAMPLE_STACK_USER) { 2574 sz = sample->user_stack.size; 2575 result += sizeof(u64); 2576 if (sz) { 2577 result += sz; 2578 result += sizeof(u64); 2579 } 2580 } 2581 2582 if (type & PERF_SAMPLE_WEIGHT) 2583 result += sizeof(u64); 2584 2585 if (type & PERF_SAMPLE_DATA_SRC) 2586 result += sizeof(u64); 2587 2588 if (type & PERF_SAMPLE_TRANSACTION) 2589 result += sizeof(u64); 2590 2591 if (type & PERF_SAMPLE_REGS_INTR) { 2592 if (sample->intr_regs.abi) { 2593 result += sizeof(u64); 2594 sz = hweight64(sample->intr_regs.mask) * sizeof(u64); 2595 result += sz; 2596 } else { 2597 result += sizeof(u64); 2598 } 2599 } 2600 2601 if (type & PERF_SAMPLE_PHYS_ADDR) 2602 result += sizeof(u64); 2603 2604 return result; 2605 } 2606 2607 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2608 u64 read_format, 2609 const struct perf_sample *sample) 2610 { 2611 u64 *array; 2612 size_t sz; 2613 /* 2614 * used for cross-endian analysis. See git commit 65014ab3 2615 * for why this goofiness is needed. 2616 */ 2617 union u64_swap u; 2618 2619 array = event->sample.array; 2620 2621 if (type & PERF_SAMPLE_IDENTIFIER) { 2622 *array = sample->id; 2623 array++; 2624 } 2625 2626 if (type & PERF_SAMPLE_IP) { 2627 *array = sample->ip; 2628 array++; 2629 } 2630 2631 if (type & PERF_SAMPLE_TID) { 2632 u.val32[0] = sample->pid; 2633 u.val32[1] = sample->tid; 2634 *array = u.val64; 2635 array++; 2636 } 2637 2638 if (type & PERF_SAMPLE_TIME) { 2639 *array = sample->time; 2640 array++; 2641 } 2642 2643 if (type & PERF_SAMPLE_ADDR) { 2644 *array = sample->addr; 2645 array++; 2646 } 2647 2648 if (type & PERF_SAMPLE_ID) { 2649 *array = sample->id; 2650 array++; 2651 } 2652 2653 if (type & PERF_SAMPLE_STREAM_ID) { 2654 *array = sample->stream_id; 2655 array++; 2656 } 2657 2658 if (type & PERF_SAMPLE_CPU) { 2659 u.val32[0] = sample->cpu; 2660 u.val32[1] = 0; 2661 *array = u.val64; 2662 array++; 2663 } 2664 2665 if (type & PERF_SAMPLE_PERIOD) { 2666 *array = sample->period; 2667 array++; 2668 } 2669 2670 if (type & PERF_SAMPLE_READ) { 2671 if (read_format & PERF_FORMAT_GROUP) 2672 *array = sample->read.group.nr; 2673 else 2674 *array = sample->read.one.value; 2675 array++; 2676 2677 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2678 *array = sample->read.time_enabled; 2679 array++; 2680 } 2681 2682 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2683 *array = sample->read.time_running; 2684 array++; 2685 } 2686 2687 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2688 if (read_format & PERF_FORMAT_GROUP) { 2689 sz = sample->read.group.nr * 2690 sizeof(struct sample_read_value); 2691 memcpy(array, sample->read.group.values, sz); 2692 array = (void *)array + sz; 2693 } else { 2694 *array = sample->read.one.id; 2695 array++; 2696 } 2697 } 2698 2699 if (type & PERF_SAMPLE_CALLCHAIN) { 2700 sz = (sample->callchain->nr + 1) * sizeof(u64); 2701 memcpy(array, sample->callchain, sz); 2702 array = (void *)array + sz; 2703 } 2704 2705 if (type & PERF_SAMPLE_RAW) { 2706 u.val32[0] = sample->raw_size; 2707 *array = u.val64; 2708 array = (void *)array + sizeof(u32); 2709 2710 memcpy(array, sample->raw_data, sample->raw_size); 2711 array = (void *)array + sample->raw_size; 2712 } 2713 2714 if (type & PERF_SAMPLE_BRANCH_STACK) { 2715 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2716 sz += sizeof(u64); 2717 memcpy(array, sample->branch_stack, sz); 2718 array = (void *)array + sz; 2719 } 2720 2721 if (type & PERF_SAMPLE_REGS_USER) { 2722 if (sample->user_regs.abi) { 2723 *array++ = sample->user_regs.abi; 2724 sz = hweight64(sample->user_regs.mask) * sizeof(u64); 2725 memcpy(array, sample->user_regs.regs, sz); 2726 array = (void *)array + sz; 2727 } else { 2728 *array++ = 0; 2729 } 2730 } 2731 2732 if (type & PERF_SAMPLE_STACK_USER) { 2733 sz = sample->user_stack.size; 2734 *array++ = sz; 2735 if (sz) { 2736 memcpy(array, sample->user_stack.data, sz); 2737 array = (void *)array + sz; 2738 *array++ = sz; 2739 } 2740 } 2741 2742 if (type & PERF_SAMPLE_WEIGHT) { 2743 *array = sample->weight; 2744 array++; 2745 } 2746 2747 if (type & PERF_SAMPLE_DATA_SRC) { 2748 *array = sample->data_src; 2749 array++; 2750 } 2751 2752 if (type & PERF_SAMPLE_TRANSACTION) { 2753 *array = sample->transaction; 2754 array++; 2755 } 2756 2757 if (type & PERF_SAMPLE_REGS_INTR) { 2758 if (sample->intr_regs.abi) { 2759 *array++ = sample->intr_regs.abi; 2760 sz = hweight64(sample->intr_regs.mask) * sizeof(u64); 2761 memcpy(array, sample->intr_regs.regs, sz); 2762 array = (void *)array + sz; 2763 } else { 2764 *array++ = 0; 2765 } 2766 } 2767 2768 if (type & PERF_SAMPLE_PHYS_ADDR) { 2769 *array = sample->phys_addr; 2770 array++; 2771 } 2772 2773 return 0; 2774 } 2775 2776 struct tep_format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2777 { 2778 return tep_find_field(evsel->tp_format, name); 2779 } 2780 2781 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2782 const char *name) 2783 { 2784 struct tep_format_field *field = perf_evsel__field(evsel, name); 2785 int offset; 2786 2787 if (!field) 2788 return NULL; 2789 2790 offset = field->offset; 2791 2792 if (field->flags & TEP_FIELD_IS_DYNAMIC) { 2793 offset = *(int *)(sample->raw_data + field->offset); 2794 offset &= 0xffff; 2795 } 2796 2797 return sample->raw_data + offset; 2798 } 2799 2800 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample, 2801 bool needs_swap) 2802 { 2803 u64 value; 2804 void *ptr = sample->raw_data + field->offset; 2805 2806 switch (field->size) { 2807 case 1: 2808 return *(u8 *)ptr; 2809 case 2: 2810 value = *(u16 *)ptr; 2811 break; 2812 case 4: 2813 value = *(u32 *)ptr; 2814 break; 2815 case 8: 2816 memcpy(&value, ptr, sizeof(u64)); 2817 break; 2818 default: 2819 return 0; 2820 } 2821 2822 if (!needs_swap) 2823 return value; 2824 2825 switch (field->size) { 2826 case 2: 2827 return bswap_16(value); 2828 case 4: 2829 return bswap_32(value); 2830 case 8: 2831 return bswap_64(value); 2832 default: 2833 return 0; 2834 } 2835 2836 return 0; 2837 } 2838 2839 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2840 const char *name) 2841 { 2842 struct tep_format_field *field = perf_evsel__field(evsel, name); 2843 2844 if (!field) 2845 return 0; 2846 2847 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2848 } 2849 2850 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2851 char *msg, size_t msgsize) 2852 { 2853 int paranoid; 2854 2855 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2856 evsel->attr.type == PERF_TYPE_HARDWARE && 2857 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2858 /* 2859 * If it's cycles then fall back to hrtimer based 2860 * cpu-clock-tick sw counter, which is always available even if 2861 * no PMU support. 2862 * 2863 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2864 * b0a873e). 2865 */ 2866 scnprintf(msg, msgsize, "%s", 2867 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2868 2869 evsel->attr.type = PERF_TYPE_SOFTWARE; 2870 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2871 2872 zfree(&evsel->name); 2873 return true; 2874 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2875 (paranoid = perf_event_paranoid()) > 1) { 2876 const char *name = perf_evsel__name(evsel); 2877 char *new_name; 2878 const char *sep = ":"; 2879 2880 /* Is there already the separator in the name. */ 2881 if (strchr(name, '/') || 2882 strchr(name, ':')) 2883 sep = ""; 2884 2885 if (asprintf(&new_name, "%s%su", name, sep) < 0) 2886 return false; 2887 2888 if (evsel->name) 2889 free(evsel->name); 2890 evsel->name = new_name; 2891 scnprintf(msg, msgsize, 2892 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2893 evsel->attr.exclude_kernel = 1; 2894 2895 return true; 2896 } 2897 2898 return false; 2899 } 2900 2901 static bool find_process(const char *name) 2902 { 2903 size_t len = strlen(name); 2904 DIR *dir; 2905 struct dirent *d; 2906 int ret = -1; 2907 2908 dir = opendir(procfs__mountpoint()); 2909 if (!dir) 2910 return false; 2911 2912 /* Walk through the directory. */ 2913 while (ret && (d = readdir(dir)) != NULL) { 2914 char path[PATH_MAX]; 2915 char *data; 2916 size_t size; 2917 2918 if ((d->d_type != DT_DIR) || 2919 !strcmp(".", d->d_name) || 2920 !strcmp("..", d->d_name)) 2921 continue; 2922 2923 scnprintf(path, sizeof(path), "%s/%s/comm", 2924 procfs__mountpoint(), d->d_name); 2925 2926 if (filename__read_str(path, &data, &size)) 2927 continue; 2928 2929 ret = strncmp(name, data, len); 2930 free(data); 2931 } 2932 2933 closedir(dir); 2934 return ret ? false : true; 2935 } 2936 2937 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2938 int err, char *msg, size_t size) 2939 { 2940 char sbuf[STRERR_BUFSIZE]; 2941 int printed = 0; 2942 2943 switch (err) { 2944 case EPERM: 2945 case EACCES: 2946 if (err == EPERM) 2947 printed = scnprintf(msg, size, 2948 "No permission to enable %s event.\n\n", 2949 perf_evsel__name(evsel)); 2950 2951 return scnprintf(msg + printed, size - printed, 2952 "You may not have permission to collect %sstats.\n\n" 2953 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2954 "which controls use of the performance events system by\n" 2955 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2956 "The current value is %d:\n\n" 2957 " -1: Allow use of (almost) all events by all users\n" 2958 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" 2959 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n" 2960 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n" 2961 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2962 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2963 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2964 " kernel.perf_event_paranoid = -1\n" , 2965 target->system_wide ? "system-wide " : "", 2966 perf_event_paranoid()); 2967 case ENOENT: 2968 return scnprintf(msg, size, "The %s event is not supported.", 2969 perf_evsel__name(evsel)); 2970 case EMFILE: 2971 return scnprintf(msg, size, "%s", 2972 "Too many events are opened.\n" 2973 "Probably the maximum number of open file descriptors has been reached.\n" 2974 "Hint: Try again after reducing the number of events.\n" 2975 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2976 case ENOMEM: 2977 if (evsel__has_callchain(evsel) && 2978 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2979 return scnprintf(msg, size, 2980 "Not enough memory to setup event with callchain.\n" 2981 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2982 "Hint: Current value: %d", sysctl__max_stack()); 2983 break; 2984 case ENODEV: 2985 if (target->cpu_list) 2986 return scnprintf(msg, size, "%s", 2987 "No such device - did you specify an out-of-range profile CPU?"); 2988 break; 2989 case EOPNOTSUPP: 2990 if (evsel->attr.sample_period != 0) 2991 return scnprintf(msg, size, 2992 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'", 2993 perf_evsel__name(evsel)); 2994 if (evsel->attr.precise_ip) 2995 return scnprintf(msg, size, "%s", 2996 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2997 #if defined(__i386__) || defined(__x86_64__) 2998 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2999 return scnprintf(msg, size, "%s", 3000 "No hardware sampling interrupt available.\n"); 3001 #endif 3002 break; 3003 case EBUSY: 3004 if (find_process("oprofiled")) 3005 return scnprintf(msg, size, 3006 "The PMU counters are busy/taken by another profiler.\n" 3007 "We found oprofile daemon running, please stop it and try again."); 3008 break; 3009 case EINVAL: 3010 if (evsel->attr.write_backward && perf_missing_features.write_backward) 3011 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 3012 if (perf_missing_features.clockid) 3013 return scnprintf(msg, size, "clockid feature not supported."); 3014 if (perf_missing_features.clockid_wrong) 3015 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 3016 break; 3017 default: 3018 break; 3019 } 3020 3021 return scnprintf(msg, size, 3022 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 3023 "/bin/dmesg | grep -i perf may provide additional information.\n", 3024 err, str_error_r(err, sbuf, sizeof(sbuf)), 3025 perf_evsel__name(evsel)); 3026 } 3027 3028 struct perf_env *perf_evsel__env(struct perf_evsel *evsel) 3029 { 3030 if (evsel && evsel->evlist) 3031 return evsel->evlist->env; 3032 return NULL; 3033 } 3034 3035 static int store_evsel_ids(struct perf_evsel *evsel, struct perf_evlist *evlist) 3036 { 3037 int cpu, thread; 3038 3039 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 3040 for (thread = 0; thread < xyarray__max_y(evsel->fd); 3041 thread++) { 3042 int fd = FD(evsel, cpu, thread); 3043 3044 if (perf_evlist__id_add_fd(evlist, evsel, 3045 cpu, thread, fd) < 0) 3046 return -1; 3047 } 3048 } 3049 3050 return 0; 3051 } 3052 3053 int perf_evsel__store_ids(struct perf_evsel *evsel, struct perf_evlist *evlist) 3054 { 3055 struct cpu_map *cpus = evsel->cpus; 3056 struct thread_map *threads = evsel->threads; 3057 3058 if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr)) 3059 return -ENOMEM; 3060 3061 return store_evsel_ids(evsel, evlist); 3062 } 3063