1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 4 * 5 * Parts came from builtin-{top,stat,record}.c, see those files for further 6 * copyright notes. 7 */ 8 9 #include <byteswap.h> 10 #include <errno.h> 11 #include <inttypes.h> 12 #include <linux/bitops.h> 13 #include <api/fs/fs.h> 14 #include <api/fs/tracing_path.h> 15 #include <traceevent/event-parse.h> 16 #include <linux/hw_breakpoint.h> 17 #include <linux/perf_event.h> 18 #include <linux/compiler.h> 19 #include <linux/err.h> 20 #include <linux/zalloc.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include <stdlib.h> 26 #include <perf/evsel.h> 27 #include "asm/bug.h" 28 #include "callchain.h" 29 #include "cgroup.h" 30 #include "counts.h" 31 #include "event.h" 32 #include "evsel.h" 33 #include "evlist.h" 34 #include "cpumap.h" 35 #include "thread_map.h" 36 #include "target.h" 37 #include "perf_regs.h" 38 #include "record.h" 39 #include "debug.h" 40 #include "trace-event.h" 41 #include "stat.h" 42 #include "string2.h" 43 #include "memswap.h" 44 #include "util.h" 45 #include "../perf-sys.h" 46 #include "util/parse-branch-options.h" 47 #include <internal/xyarray.h> 48 49 #include <linux/ctype.h> 50 51 struct perf_missing_features perf_missing_features; 52 53 static clockid_t clockid; 54 55 static int perf_evsel__no_extra_init(struct evsel *evsel __maybe_unused) 56 { 57 return 0; 58 } 59 60 void __weak test_attr__ready(void) { } 61 62 static void perf_evsel__no_extra_fini(struct evsel *evsel __maybe_unused) 63 { 64 } 65 66 static struct { 67 size_t size; 68 int (*init)(struct evsel *evsel); 69 void (*fini)(struct evsel *evsel); 70 } perf_evsel__object = { 71 .size = sizeof(struct evsel), 72 .init = perf_evsel__no_extra_init, 73 .fini = perf_evsel__no_extra_fini, 74 }; 75 76 int perf_evsel__object_config(size_t object_size, 77 int (*init)(struct evsel *evsel), 78 void (*fini)(struct evsel *evsel)) 79 { 80 81 if (object_size == 0) 82 goto set_methods; 83 84 if (perf_evsel__object.size > object_size) 85 return -EINVAL; 86 87 perf_evsel__object.size = object_size; 88 89 set_methods: 90 if (init != NULL) 91 perf_evsel__object.init = init; 92 93 if (fini != NULL) 94 perf_evsel__object.fini = fini; 95 96 return 0; 97 } 98 99 #define FD(e, x, y) (*(int *)xyarray__entry(e->core.fd, x, y)) 100 101 int __perf_evsel__sample_size(u64 sample_type) 102 { 103 u64 mask = sample_type & PERF_SAMPLE_MASK; 104 int size = 0; 105 int i; 106 107 for (i = 0; i < 64; i++) { 108 if (mask & (1ULL << i)) 109 size++; 110 } 111 112 size *= sizeof(u64); 113 114 return size; 115 } 116 117 /** 118 * __perf_evsel__calc_id_pos - calculate id_pos. 119 * @sample_type: sample type 120 * 121 * This function returns the position of the event id (PERF_SAMPLE_ID or 122 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 123 * perf_record_sample. 124 */ 125 static int __perf_evsel__calc_id_pos(u64 sample_type) 126 { 127 int idx = 0; 128 129 if (sample_type & PERF_SAMPLE_IDENTIFIER) 130 return 0; 131 132 if (!(sample_type & PERF_SAMPLE_ID)) 133 return -1; 134 135 if (sample_type & PERF_SAMPLE_IP) 136 idx += 1; 137 138 if (sample_type & PERF_SAMPLE_TID) 139 idx += 1; 140 141 if (sample_type & PERF_SAMPLE_TIME) 142 idx += 1; 143 144 if (sample_type & PERF_SAMPLE_ADDR) 145 idx += 1; 146 147 return idx; 148 } 149 150 /** 151 * __perf_evsel__calc_is_pos - calculate is_pos. 152 * @sample_type: sample type 153 * 154 * This function returns the position (counting backwards) of the event id 155 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 156 * sample_id_all is used there is an id sample appended to non-sample events. 157 */ 158 static int __perf_evsel__calc_is_pos(u64 sample_type) 159 { 160 int idx = 1; 161 162 if (sample_type & PERF_SAMPLE_IDENTIFIER) 163 return 1; 164 165 if (!(sample_type & PERF_SAMPLE_ID)) 166 return -1; 167 168 if (sample_type & PERF_SAMPLE_CPU) 169 idx += 1; 170 171 if (sample_type & PERF_SAMPLE_STREAM_ID) 172 idx += 1; 173 174 return idx; 175 } 176 177 void perf_evsel__calc_id_pos(struct evsel *evsel) 178 { 179 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->core.attr.sample_type); 180 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->core.attr.sample_type); 181 } 182 183 void __perf_evsel__set_sample_bit(struct evsel *evsel, 184 enum perf_event_sample_format bit) 185 { 186 if (!(evsel->core.attr.sample_type & bit)) { 187 evsel->core.attr.sample_type |= bit; 188 evsel->sample_size += sizeof(u64); 189 perf_evsel__calc_id_pos(evsel); 190 } 191 } 192 193 void __perf_evsel__reset_sample_bit(struct evsel *evsel, 194 enum perf_event_sample_format bit) 195 { 196 if (evsel->core.attr.sample_type & bit) { 197 evsel->core.attr.sample_type &= ~bit; 198 evsel->sample_size -= sizeof(u64); 199 perf_evsel__calc_id_pos(evsel); 200 } 201 } 202 203 void perf_evsel__set_sample_id(struct evsel *evsel, 204 bool can_sample_identifier) 205 { 206 if (can_sample_identifier) { 207 perf_evsel__reset_sample_bit(evsel, ID); 208 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 209 } else { 210 perf_evsel__set_sample_bit(evsel, ID); 211 } 212 evsel->core.attr.read_format |= PERF_FORMAT_ID; 213 } 214 215 /** 216 * perf_evsel__is_function_event - Return whether given evsel is a function 217 * trace event 218 * 219 * @evsel - evsel selector to be tested 220 * 221 * Return %true if event is function trace event 222 */ 223 bool perf_evsel__is_function_event(struct evsel *evsel) 224 { 225 #define FUNCTION_EVENT "ftrace:function" 226 227 return evsel->name && 228 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 229 230 #undef FUNCTION_EVENT 231 } 232 233 void evsel__init(struct evsel *evsel, 234 struct perf_event_attr *attr, int idx) 235 { 236 perf_evsel__init(&evsel->core, attr); 237 evsel->idx = idx; 238 evsel->tracking = !idx; 239 evsel->leader = evsel; 240 evsel->unit = ""; 241 evsel->scale = 1.0; 242 evsel->max_events = ULONG_MAX; 243 evsel->evlist = NULL; 244 evsel->bpf_obj = NULL; 245 evsel->bpf_fd = -1; 246 INIT_LIST_HEAD(&evsel->config_terms); 247 perf_evsel__object.init(evsel); 248 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 249 perf_evsel__calc_id_pos(evsel); 250 evsel->cmdline_group_boundary = false; 251 evsel->metric_expr = NULL; 252 evsel->metric_name = NULL; 253 evsel->metric_events = NULL; 254 evsel->collect_stat = false; 255 evsel->pmu_name = NULL; 256 } 257 258 struct evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 259 { 260 struct evsel *evsel = zalloc(perf_evsel__object.size); 261 262 if (!evsel) 263 return NULL; 264 evsel__init(evsel, attr, idx); 265 266 if (perf_evsel__is_bpf_output(evsel)) { 267 evsel->core.attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 268 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 269 evsel->core.attr.sample_period = 1; 270 } 271 272 if (perf_evsel__is_clock(evsel)) { 273 /* 274 * The evsel->unit points to static alias->unit 275 * so it's ok to use static string in here. 276 */ 277 static const char *unit = "msec"; 278 279 evsel->unit = unit; 280 evsel->scale = 1e-6; 281 } 282 283 return evsel; 284 } 285 286 static bool perf_event_can_profile_kernel(void) 287 { 288 return perf_event_paranoid_check(1); 289 } 290 291 struct evsel *perf_evsel__new_cycles(bool precise) 292 { 293 struct perf_event_attr attr = { 294 .type = PERF_TYPE_HARDWARE, 295 .config = PERF_COUNT_HW_CPU_CYCLES, 296 .exclude_kernel = !perf_event_can_profile_kernel(), 297 }; 298 struct evsel *evsel; 299 300 event_attr_init(&attr); 301 302 if (!precise) 303 goto new_event; 304 305 /* 306 * Now let the usual logic to set up the perf_event_attr defaults 307 * to kick in when we return and before perf_evsel__open() is called. 308 */ 309 new_event: 310 evsel = evsel__new(&attr); 311 if (evsel == NULL) 312 goto out; 313 314 evsel->precise_max = true; 315 316 /* use asprintf() because free(evsel) assumes name is allocated */ 317 if (asprintf(&evsel->name, "cycles%s%s%.*s", 318 (attr.precise_ip || attr.exclude_kernel) ? ":" : "", 319 attr.exclude_kernel ? "u" : "", 320 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) 321 goto error_free; 322 out: 323 return evsel; 324 error_free: 325 evsel__delete(evsel); 326 evsel = NULL; 327 goto out; 328 } 329 330 /* 331 * Returns pointer with encoded error via <linux/err.h> interface. 332 */ 333 struct evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 334 { 335 struct evsel *evsel = zalloc(perf_evsel__object.size); 336 int err = -ENOMEM; 337 338 if (evsel == NULL) { 339 goto out_err; 340 } else { 341 struct perf_event_attr attr = { 342 .type = PERF_TYPE_TRACEPOINT, 343 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 344 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 345 }; 346 347 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 348 goto out_free; 349 350 evsel->tp_format = trace_event__tp_format(sys, name); 351 if (IS_ERR(evsel->tp_format)) { 352 err = PTR_ERR(evsel->tp_format); 353 goto out_free; 354 } 355 356 event_attr_init(&attr); 357 attr.config = evsel->tp_format->id; 358 attr.sample_period = 1; 359 evsel__init(evsel, &attr, idx); 360 } 361 362 return evsel; 363 364 out_free: 365 zfree(&evsel->name); 366 free(evsel); 367 out_err: 368 return ERR_PTR(err); 369 } 370 371 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 372 "cycles", 373 "instructions", 374 "cache-references", 375 "cache-misses", 376 "branches", 377 "branch-misses", 378 "bus-cycles", 379 "stalled-cycles-frontend", 380 "stalled-cycles-backend", 381 "ref-cycles", 382 }; 383 384 static const char *__perf_evsel__hw_name(u64 config) 385 { 386 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 387 return perf_evsel__hw_names[config]; 388 389 return "unknown-hardware"; 390 } 391 392 static int perf_evsel__add_modifiers(struct evsel *evsel, char *bf, size_t size) 393 { 394 int colon = 0, r = 0; 395 struct perf_event_attr *attr = &evsel->core.attr; 396 bool exclude_guest_default = false; 397 398 #define MOD_PRINT(context, mod) do { \ 399 if (!attr->exclude_##context) { \ 400 if (!colon) colon = ++r; \ 401 r += scnprintf(bf + r, size - r, "%c", mod); \ 402 } } while(0) 403 404 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 405 MOD_PRINT(kernel, 'k'); 406 MOD_PRINT(user, 'u'); 407 MOD_PRINT(hv, 'h'); 408 exclude_guest_default = true; 409 } 410 411 if (attr->precise_ip) { 412 if (!colon) 413 colon = ++r; 414 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 415 exclude_guest_default = true; 416 } 417 418 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 419 MOD_PRINT(host, 'H'); 420 MOD_PRINT(guest, 'G'); 421 } 422 #undef MOD_PRINT 423 if (colon) 424 bf[colon - 1] = ':'; 425 return r; 426 } 427 428 static int perf_evsel__hw_name(struct evsel *evsel, char *bf, size_t size) 429 { 430 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->core.attr.config)); 431 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 432 } 433 434 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 435 "cpu-clock", 436 "task-clock", 437 "page-faults", 438 "context-switches", 439 "cpu-migrations", 440 "minor-faults", 441 "major-faults", 442 "alignment-faults", 443 "emulation-faults", 444 "dummy", 445 }; 446 447 static const char *__perf_evsel__sw_name(u64 config) 448 { 449 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 450 return perf_evsel__sw_names[config]; 451 return "unknown-software"; 452 } 453 454 static int perf_evsel__sw_name(struct evsel *evsel, char *bf, size_t size) 455 { 456 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->core.attr.config)); 457 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 458 } 459 460 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 461 { 462 int r; 463 464 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 465 466 if (type & HW_BREAKPOINT_R) 467 r += scnprintf(bf + r, size - r, "r"); 468 469 if (type & HW_BREAKPOINT_W) 470 r += scnprintf(bf + r, size - r, "w"); 471 472 if (type & HW_BREAKPOINT_X) 473 r += scnprintf(bf + r, size - r, "x"); 474 475 return r; 476 } 477 478 static int perf_evsel__bp_name(struct evsel *evsel, char *bf, size_t size) 479 { 480 struct perf_event_attr *attr = &evsel->core.attr; 481 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 482 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 483 } 484 485 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 486 [PERF_EVSEL__MAX_ALIASES] = { 487 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 488 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 489 { "LLC", "L2", }, 490 { "dTLB", "d-tlb", "Data-TLB", }, 491 { "iTLB", "i-tlb", "Instruction-TLB", }, 492 { "branch", "branches", "bpu", "btb", "bpc", }, 493 { "node", }, 494 }; 495 496 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 497 [PERF_EVSEL__MAX_ALIASES] = { 498 { "load", "loads", "read", }, 499 { "store", "stores", "write", }, 500 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 501 }; 502 503 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 504 [PERF_EVSEL__MAX_ALIASES] = { 505 { "refs", "Reference", "ops", "access", }, 506 { "misses", "miss", }, 507 }; 508 509 #define C(x) PERF_COUNT_HW_CACHE_##x 510 #define CACHE_READ (1 << C(OP_READ)) 511 #define CACHE_WRITE (1 << C(OP_WRITE)) 512 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 513 #define COP(x) (1 << x) 514 515 /* 516 * cache operartion stat 517 * L1I : Read and prefetch only 518 * ITLB and BPU : Read-only 519 */ 520 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 521 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 522 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 523 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 524 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 525 [C(ITLB)] = (CACHE_READ), 526 [C(BPU)] = (CACHE_READ), 527 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 528 }; 529 530 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 531 { 532 if (perf_evsel__hw_cache_stat[type] & COP(op)) 533 return true; /* valid */ 534 else 535 return false; /* invalid */ 536 } 537 538 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 539 char *bf, size_t size) 540 { 541 if (result) { 542 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 543 perf_evsel__hw_cache_op[op][0], 544 perf_evsel__hw_cache_result[result][0]); 545 } 546 547 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 548 perf_evsel__hw_cache_op[op][1]); 549 } 550 551 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 552 { 553 u8 op, result, type = (config >> 0) & 0xff; 554 const char *err = "unknown-ext-hardware-cache-type"; 555 556 if (type >= PERF_COUNT_HW_CACHE_MAX) 557 goto out_err; 558 559 op = (config >> 8) & 0xff; 560 err = "unknown-ext-hardware-cache-op"; 561 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 562 goto out_err; 563 564 result = (config >> 16) & 0xff; 565 err = "unknown-ext-hardware-cache-result"; 566 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 567 goto out_err; 568 569 err = "invalid-cache"; 570 if (!perf_evsel__is_cache_op_valid(type, op)) 571 goto out_err; 572 573 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 574 out_err: 575 return scnprintf(bf, size, "%s", err); 576 } 577 578 static int perf_evsel__hw_cache_name(struct evsel *evsel, char *bf, size_t size) 579 { 580 int ret = __perf_evsel__hw_cache_name(evsel->core.attr.config, bf, size); 581 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 582 } 583 584 static int perf_evsel__raw_name(struct evsel *evsel, char *bf, size_t size) 585 { 586 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->core.attr.config); 587 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 588 } 589 590 static int perf_evsel__tool_name(char *bf, size_t size) 591 { 592 int ret = scnprintf(bf, size, "duration_time"); 593 return ret; 594 } 595 596 const char *perf_evsel__name(struct evsel *evsel) 597 { 598 char bf[128]; 599 600 if (!evsel) 601 goto out_unknown; 602 603 if (evsel->name) 604 return evsel->name; 605 606 switch (evsel->core.attr.type) { 607 case PERF_TYPE_RAW: 608 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 609 break; 610 611 case PERF_TYPE_HARDWARE: 612 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 613 break; 614 615 case PERF_TYPE_HW_CACHE: 616 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 617 break; 618 619 case PERF_TYPE_SOFTWARE: 620 if (evsel->tool_event) 621 perf_evsel__tool_name(bf, sizeof(bf)); 622 else 623 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 624 break; 625 626 case PERF_TYPE_TRACEPOINT: 627 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 628 break; 629 630 case PERF_TYPE_BREAKPOINT: 631 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 632 break; 633 634 default: 635 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 636 evsel->core.attr.type); 637 break; 638 } 639 640 evsel->name = strdup(bf); 641 642 if (evsel->name) 643 return evsel->name; 644 out_unknown: 645 return "unknown"; 646 } 647 648 const char *perf_evsel__group_name(struct evsel *evsel) 649 { 650 return evsel->group_name ?: "anon group"; 651 } 652 653 /* 654 * Returns the group details for the specified leader, 655 * with following rules. 656 * 657 * For record -e '{cycles,instructions}' 658 * 'anon group { cycles:u, instructions:u }' 659 * 660 * For record -e 'cycles,instructions' and report --group 661 * 'cycles:u, instructions:u' 662 */ 663 int perf_evsel__group_desc(struct evsel *evsel, char *buf, size_t size) 664 { 665 int ret = 0; 666 struct evsel *pos; 667 const char *group_name = perf_evsel__group_name(evsel); 668 669 if (!evsel->forced_leader) 670 ret = scnprintf(buf, size, "%s { ", group_name); 671 672 ret += scnprintf(buf + ret, size - ret, "%s", 673 perf_evsel__name(evsel)); 674 675 for_each_group_member(pos, evsel) 676 ret += scnprintf(buf + ret, size - ret, ", %s", 677 perf_evsel__name(pos)); 678 679 if (!evsel->forced_leader) 680 ret += scnprintf(buf + ret, size - ret, " }"); 681 682 return ret; 683 } 684 685 static void __perf_evsel__config_callchain(struct evsel *evsel, 686 struct record_opts *opts, 687 struct callchain_param *param) 688 { 689 bool function = perf_evsel__is_function_event(evsel); 690 struct perf_event_attr *attr = &evsel->core.attr; 691 692 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 693 694 attr->sample_max_stack = param->max_stack; 695 696 if (opts->kernel_callchains) 697 attr->exclude_callchain_user = 1; 698 if (opts->user_callchains) 699 attr->exclude_callchain_kernel = 1; 700 if (param->record_mode == CALLCHAIN_LBR) { 701 if (!opts->branch_stack) { 702 if (attr->exclude_user) { 703 pr_warning("LBR callstack option is only available " 704 "to get user callchain information. " 705 "Falling back to framepointers.\n"); 706 } else { 707 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 708 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 709 PERF_SAMPLE_BRANCH_CALL_STACK | 710 PERF_SAMPLE_BRANCH_NO_CYCLES | 711 PERF_SAMPLE_BRANCH_NO_FLAGS; 712 } 713 } else 714 pr_warning("Cannot use LBR callstack with branch stack. " 715 "Falling back to framepointers.\n"); 716 } 717 718 if (param->record_mode == CALLCHAIN_DWARF) { 719 if (!function) { 720 perf_evsel__set_sample_bit(evsel, REGS_USER); 721 perf_evsel__set_sample_bit(evsel, STACK_USER); 722 if (opts->sample_user_regs && DWARF_MINIMAL_REGS != PERF_REGS_MASK) { 723 attr->sample_regs_user |= DWARF_MINIMAL_REGS; 724 pr_warning("WARNING: The use of --call-graph=dwarf may require all the user registers, " 725 "specifying a subset with --user-regs may render DWARF unwinding unreliable, " 726 "so the minimal registers set (IP, SP) is explicitly forced.\n"); 727 } else { 728 attr->sample_regs_user |= PERF_REGS_MASK; 729 } 730 attr->sample_stack_user = param->dump_size; 731 attr->exclude_callchain_user = 1; 732 } else { 733 pr_info("Cannot use DWARF unwind for function trace event," 734 " falling back to framepointers.\n"); 735 } 736 } 737 738 if (function) { 739 pr_info("Disabling user space callchains for function trace event.\n"); 740 attr->exclude_callchain_user = 1; 741 } 742 } 743 744 void perf_evsel__config_callchain(struct evsel *evsel, 745 struct record_opts *opts, 746 struct callchain_param *param) 747 { 748 if (param->enabled) 749 return __perf_evsel__config_callchain(evsel, opts, param); 750 } 751 752 static void 753 perf_evsel__reset_callgraph(struct evsel *evsel, 754 struct callchain_param *param) 755 { 756 struct perf_event_attr *attr = &evsel->core.attr; 757 758 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 759 if (param->record_mode == CALLCHAIN_LBR) { 760 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 761 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 762 PERF_SAMPLE_BRANCH_CALL_STACK); 763 } 764 if (param->record_mode == CALLCHAIN_DWARF) { 765 perf_evsel__reset_sample_bit(evsel, REGS_USER); 766 perf_evsel__reset_sample_bit(evsel, STACK_USER); 767 } 768 } 769 770 static void apply_config_terms(struct evsel *evsel, 771 struct record_opts *opts, bool track) 772 { 773 struct perf_evsel_config_term *term; 774 struct list_head *config_terms = &evsel->config_terms; 775 struct perf_event_attr *attr = &evsel->core.attr; 776 /* callgraph default */ 777 struct callchain_param param = { 778 .record_mode = callchain_param.record_mode, 779 }; 780 u32 dump_size = 0; 781 int max_stack = 0; 782 const char *callgraph_buf = NULL; 783 784 list_for_each_entry(term, config_terms, list) { 785 switch (term->type) { 786 case PERF_EVSEL__CONFIG_TERM_PERIOD: 787 if (!(term->weak && opts->user_interval != ULLONG_MAX)) { 788 attr->sample_period = term->val.period; 789 attr->freq = 0; 790 perf_evsel__reset_sample_bit(evsel, PERIOD); 791 } 792 break; 793 case PERF_EVSEL__CONFIG_TERM_FREQ: 794 if (!(term->weak && opts->user_freq != UINT_MAX)) { 795 attr->sample_freq = term->val.freq; 796 attr->freq = 1; 797 perf_evsel__set_sample_bit(evsel, PERIOD); 798 } 799 break; 800 case PERF_EVSEL__CONFIG_TERM_TIME: 801 if (term->val.time) 802 perf_evsel__set_sample_bit(evsel, TIME); 803 else 804 perf_evsel__reset_sample_bit(evsel, TIME); 805 break; 806 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 807 callgraph_buf = term->val.callgraph; 808 break; 809 case PERF_EVSEL__CONFIG_TERM_BRANCH: 810 if (term->val.branch && strcmp(term->val.branch, "no")) { 811 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 812 parse_branch_str(term->val.branch, 813 &attr->branch_sample_type); 814 } else 815 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 816 break; 817 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 818 dump_size = term->val.stack_user; 819 break; 820 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 821 max_stack = term->val.max_stack; 822 break; 823 case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS: 824 evsel->max_events = term->val.max_events; 825 break; 826 case PERF_EVSEL__CONFIG_TERM_INHERIT: 827 /* 828 * attr->inherit should has already been set by 829 * perf_evsel__config. If user explicitly set 830 * inherit using config terms, override global 831 * opt->no_inherit setting. 832 */ 833 attr->inherit = term->val.inherit ? 1 : 0; 834 break; 835 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 836 attr->write_backward = term->val.overwrite ? 1 : 0; 837 break; 838 case PERF_EVSEL__CONFIG_TERM_DRV_CFG: 839 break; 840 case PERF_EVSEL__CONFIG_TERM_PERCORE: 841 break; 842 case PERF_EVSEL__CONFIG_TERM_AUX_OUTPUT: 843 attr->aux_output = term->val.aux_output ? 1 : 0; 844 break; 845 default: 846 break; 847 } 848 } 849 850 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 851 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 852 bool sample_address = false; 853 854 if (max_stack) { 855 param.max_stack = max_stack; 856 if (callgraph_buf == NULL) 857 callgraph_buf = "fp"; 858 } 859 860 /* parse callgraph parameters */ 861 if (callgraph_buf != NULL) { 862 if (!strcmp(callgraph_buf, "no")) { 863 param.enabled = false; 864 param.record_mode = CALLCHAIN_NONE; 865 } else { 866 param.enabled = true; 867 if (parse_callchain_record(callgraph_buf, ¶m)) { 868 pr_err("per-event callgraph setting for %s failed. " 869 "Apply callgraph global setting for it\n", 870 evsel->name); 871 return; 872 } 873 if (param.record_mode == CALLCHAIN_DWARF) 874 sample_address = true; 875 } 876 } 877 if (dump_size > 0) { 878 dump_size = round_up(dump_size, sizeof(u64)); 879 param.dump_size = dump_size; 880 } 881 882 /* If global callgraph set, clear it */ 883 if (callchain_param.enabled) 884 perf_evsel__reset_callgraph(evsel, &callchain_param); 885 886 /* set perf-event callgraph */ 887 if (param.enabled) { 888 if (sample_address) { 889 perf_evsel__set_sample_bit(evsel, ADDR); 890 perf_evsel__set_sample_bit(evsel, DATA_SRC); 891 evsel->core.attr.mmap_data = track; 892 } 893 perf_evsel__config_callchain(evsel, opts, ¶m); 894 } 895 } 896 } 897 898 static bool is_dummy_event(struct evsel *evsel) 899 { 900 return (evsel->core.attr.type == PERF_TYPE_SOFTWARE) && 901 (evsel->core.attr.config == PERF_COUNT_SW_DUMMY); 902 } 903 904 /* 905 * The enable_on_exec/disabled value strategy: 906 * 907 * 1) For any type of traced program: 908 * - all independent events and group leaders are disabled 909 * - all group members are enabled 910 * 911 * Group members are ruled by group leaders. They need to 912 * be enabled, because the group scheduling relies on that. 913 * 914 * 2) For traced programs executed by perf: 915 * - all independent events and group leaders have 916 * enable_on_exec set 917 * - we don't specifically enable or disable any event during 918 * the record command 919 * 920 * Independent events and group leaders are initially disabled 921 * and get enabled by exec. Group members are ruled by group 922 * leaders as stated in 1). 923 * 924 * 3) For traced programs attached by perf (pid/tid): 925 * - we specifically enable or disable all events during 926 * the record command 927 * 928 * When attaching events to already running traced we 929 * enable/disable events specifically, as there's no 930 * initial traced exec call. 931 */ 932 void perf_evsel__config(struct evsel *evsel, struct record_opts *opts, 933 struct callchain_param *callchain) 934 { 935 struct evsel *leader = evsel->leader; 936 struct perf_event_attr *attr = &evsel->core.attr; 937 int track = evsel->tracking; 938 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 939 940 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 941 attr->inherit = !opts->no_inherit; 942 attr->write_backward = opts->overwrite ? 1 : 0; 943 944 perf_evsel__set_sample_bit(evsel, IP); 945 perf_evsel__set_sample_bit(evsel, TID); 946 947 if (evsel->sample_read) { 948 perf_evsel__set_sample_bit(evsel, READ); 949 950 /* 951 * We need ID even in case of single event, because 952 * PERF_SAMPLE_READ process ID specific data. 953 */ 954 perf_evsel__set_sample_id(evsel, false); 955 956 /* 957 * Apply group format only if we belong to group 958 * with more than one members. 959 */ 960 if (leader->core.nr_members > 1) { 961 attr->read_format |= PERF_FORMAT_GROUP; 962 attr->inherit = 0; 963 } 964 } 965 966 /* 967 * We default some events to have a default interval. But keep 968 * it a weak assumption overridable by the user. 969 */ 970 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 971 opts->user_interval != ULLONG_MAX)) { 972 if (opts->freq) { 973 perf_evsel__set_sample_bit(evsel, PERIOD); 974 attr->freq = 1; 975 attr->sample_freq = opts->freq; 976 } else { 977 attr->sample_period = opts->default_interval; 978 } 979 } 980 981 /* 982 * Disable sampling for all group members other 983 * than leader in case leader 'leads' the sampling. 984 */ 985 if ((leader != evsel) && leader->sample_read) { 986 attr->freq = 0; 987 attr->sample_freq = 0; 988 attr->sample_period = 0; 989 attr->write_backward = 0; 990 991 /* 992 * We don't get sample for slave events, we make them 993 * when delivering group leader sample. Set the slave 994 * event to follow the master sample_type to ease up 995 * report. 996 */ 997 attr->sample_type = leader->core.attr.sample_type; 998 } 999 1000 if (opts->no_samples) 1001 attr->sample_freq = 0; 1002 1003 if (opts->inherit_stat) { 1004 evsel->core.attr.read_format |= 1005 PERF_FORMAT_TOTAL_TIME_ENABLED | 1006 PERF_FORMAT_TOTAL_TIME_RUNNING | 1007 PERF_FORMAT_ID; 1008 attr->inherit_stat = 1; 1009 } 1010 1011 if (opts->sample_address) { 1012 perf_evsel__set_sample_bit(evsel, ADDR); 1013 attr->mmap_data = track; 1014 } 1015 1016 /* 1017 * We don't allow user space callchains for function trace 1018 * event, due to issues with page faults while tracing page 1019 * fault handler and its overall trickiness nature. 1020 */ 1021 if (perf_evsel__is_function_event(evsel)) 1022 evsel->core.attr.exclude_callchain_user = 1; 1023 1024 if (callchain && callchain->enabled && !evsel->no_aux_samples) 1025 perf_evsel__config_callchain(evsel, opts, callchain); 1026 1027 if (opts->sample_intr_regs) { 1028 attr->sample_regs_intr = opts->sample_intr_regs; 1029 perf_evsel__set_sample_bit(evsel, REGS_INTR); 1030 } 1031 1032 if (opts->sample_user_regs) { 1033 attr->sample_regs_user |= opts->sample_user_regs; 1034 perf_evsel__set_sample_bit(evsel, REGS_USER); 1035 } 1036 1037 if (target__has_cpu(&opts->target) || opts->sample_cpu) 1038 perf_evsel__set_sample_bit(evsel, CPU); 1039 1040 /* 1041 * When the user explicitly disabled time don't force it here. 1042 */ 1043 if (opts->sample_time && 1044 (!perf_missing_features.sample_id_all && 1045 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 1046 opts->sample_time_set))) 1047 perf_evsel__set_sample_bit(evsel, TIME); 1048 1049 if (opts->raw_samples && !evsel->no_aux_samples) { 1050 perf_evsel__set_sample_bit(evsel, TIME); 1051 perf_evsel__set_sample_bit(evsel, RAW); 1052 perf_evsel__set_sample_bit(evsel, CPU); 1053 } 1054 1055 if (opts->sample_address) 1056 perf_evsel__set_sample_bit(evsel, DATA_SRC); 1057 1058 if (opts->sample_phys_addr) 1059 perf_evsel__set_sample_bit(evsel, PHYS_ADDR); 1060 1061 if (opts->no_buffering) { 1062 attr->watermark = 0; 1063 attr->wakeup_events = 1; 1064 } 1065 if (opts->branch_stack && !evsel->no_aux_samples) { 1066 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 1067 attr->branch_sample_type = opts->branch_stack; 1068 } 1069 1070 if (opts->sample_weight) 1071 perf_evsel__set_sample_bit(evsel, WEIGHT); 1072 1073 attr->task = track; 1074 attr->mmap = track; 1075 attr->mmap2 = track && !perf_missing_features.mmap2; 1076 attr->comm = track; 1077 attr->ksymbol = track && !perf_missing_features.ksymbol; 1078 attr->bpf_event = track && !opts->no_bpf_event && !perf_missing_features.bpf; 1079 1080 if (opts->record_namespaces) 1081 attr->namespaces = track; 1082 1083 if (opts->record_switch_events) 1084 attr->context_switch = track; 1085 1086 if (opts->sample_transaction) 1087 perf_evsel__set_sample_bit(evsel, TRANSACTION); 1088 1089 if (opts->running_time) { 1090 evsel->core.attr.read_format |= 1091 PERF_FORMAT_TOTAL_TIME_ENABLED | 1092 PERF_FORMAT_TOTAL_TIME_RUNNING; 1093 } 1094 1095 /* 1096 * XXX see the function comment above 1097 * 1098 * Disabling only independent events or group leaders, 1099 * keeping group members enabled. 1100 */ 1101 if (perf_evsel__is_group_leader(evsel)) 1102 attr->disabled = 1; 1103 1104 /* 1105 * Setting enable_on_exec for independent events and 1106 * group leaders for traced executed by perf. 1107 */ 1108 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 1109 !opts->initial_delay) 1110 attr->enable_on_exec = 1; 1111 1112 if (evsel->immediate) { 1113 attr->disabled = 0; 1114 attr->enable_on_exec = 0; 1115 } 1116 1117 clockid = opts->clockid; 1118 if (opts->use_clockid) { 1119 attr->use_clockid = 1; 1120 attr->clockid = opts->clockid; 1121 } 1122 1123 if (evsel->precise_max) 1124 attr->precise_ip = 3; 1125 1126 if (opts->all_user) { 1127 attr->exclude_kernel = 1; 1128 attr->exclude_user = 0; 1129 } 1130 1131 if (opts->all_kernel) { 1132 attr->exclude_kernel = 0; 1133 attr->exclude_user = 1; 1134 } 1135 1136 if (evsel->core.own_cpus || evsel->unit) 1137 evsel->core.attr.read_format |= PERF_FORMAT_ID; 1138 1139 /* 1140 * Apply event specific term settings, 1141 * it overloads any global configuration. 1142 */ 1143 apply_config_terms(evsel, opts, track); 1144 1145 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1146 1147 /* The --period option takes the precedence. */ 1148 if (opts->period_set) { 1149 if (opts->period) 1150 perf_evsel__set_sample_bit(evsel, PERIOD); 1151 else 1152 perf_evsel__reset_sample_bit(evsel, PERIOD); 1153 } 1154 1155 /* 1156 * For initial_delay, a dummy event is added implicitly. 1157 * The software event will trigger -EOPNOTSUPP error out, 1158 * if BRANCH_STACK bit is set. 1159 */ 1160 if (opts->initial_delay && is_dummy_event(evsel)) 1161 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 1162 } 1163 1164 int perf_evsel__set_filter(struct evsel *evsel, const char *filter) 1165 { 1166 char *new_filter = strdup(filter); 1167 1168 if (new_filter != NULL) { 1169 free(evsel->filter); 1170 evsel->filter = new_filter; 1171 return 0; 1172 } 1173 1174 return -1; 1175 } 1176 1177 static int perf_evsel__append_filter(struct evsel *evsel, 1178 const char *fmt, const char *filter) 1179 { 1180 char *new_filter; 1181 1182 if (evsel->filter == NULL) 1183 return perf_evsel__set_filter(evsel, filter); 1184 1185 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1186 free(evsel->filter); 1187 evsel->filter = new_filter; 1188 return 0; 1189 } 1190 1191 return -1; 1192 } 1193 1194 int perf_evsel__append_tp_filter(struct evsel *evsel, const char *filter) 1195 { 1196 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1197 } 1198 1199 int perf_evsel__append_addr_filter(struct evsel *evsel, const char *filter) 1200 { 1201 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1202 } 1203 1204 int evsel__enable(struct evsel *evsel) 1205 { 1206 int err = perf_evsel__enable(&evsel->core); 1207 1208 if (!err) 1209 evsel->disabled = false; 1210 1211 return err; 1212 } 1213 1214 int evsel__disable(struct evsel *evsel) 1215 { 1216 int err = perf_evsel__disable(&evsel->core); 1217 /* 1218 * We mark it disabled here so that tools that disable a event can 1219 * ignore events after they disable it. I.e. the ring buffer may have 1220 * already a few more events queued up before the kernel got the stop 1221 * request. 1222 */ 1223 if (!err) 1224 evsel->disabled = true; 1225 1226 return err; 1227 } 1228 1229 int perf_evsel__alloc_id(struct evsel *evsel, int ncpus, int nthreads) 1230 { 1231 if (ncpus == 0 || nthreads == 0) 1232 return 0; 1233 1234 if (evsel->system_wide) 1235 nthreads = 1; 1236 1237 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1238 if (evsel->sample_id == NULL) 1239 return -ENOMEM; 1240 1241 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1242 if (evsel->id == NULL) { 1243 xyarray__delete(evsel->sample_id); 1244 evsel->sample_id = NULL; 1245 return -ENOMEM; 1246 } 1247 1248 return 0; 1249 } 1250 1251 static void perf_evsel__free_id(struct evsel *evsel) 1252 { 1253 xyarray__delete(evsel->sample_id); 1254 evsel->sample_id = NULL; 1255 zfree(&evsel->id); 1256 evsel->ids = 0; 1257 } 1258 1259 static void perf_evsel__free_config_terms(struct evsel *evsel) 1260 { 1261 struct perf_evsel_config_term *term, *h; 1262 1263 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1264 list_del_init(&term->list); 1265 free(term); 1266 } 1267 } 1268 1269 void perf_evsel__exit(struct evsel *evsel) 1270 { 1271 assert(list_empty(&evsel->core.node)); 1272 assert(evsel->evlist == NULL); 1273 perf_evsel__free_counts(evsel); 1274 perf_evsel__free_fd(&evsel->core); 1275 perf_evsel__free_id(evsel); 1276 perf_evsel__free_config_terms(evsel); 1277 cgroup__put(evsel->cgrp); 1278 perf_cpu_map__put(evsel->core.cpus); 1279 perf_cpu_map__put(evsel->core.own_cpus); 1280 perf_thread_map__put(evsel->core.threads); 1281 zfree(&evsel->group_name); 1282 zfree(&evsel->name); 1283 perf_evsel__object.fini(evsel); 1284 } 1285 1286 void evsel__delete(struct evsel *evsel) 1287 { 1288 perf_evsel__exit(evsel); 1289 free(evsel); 1290 } 1291 1292 void perf_evsel__compute_deltas(struct evsel *evsel, int cpu, int thread, 1293 struct perf_counts_values *count) 1294 { 1295 struct perf_counts_values tmp; 1296 1297 if (!evsel->prev_raw_counts) 1298 return; 1299 1300 if (cpu == -1) { 1301 tmp = evsel->prev_raw_counts->aggr; 1302 evsel->prev_raw_counts->aggr = *count; 1303 } else { 1304 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1305 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1306 } 1307 1308 count->val = count->val - tmp.val; 1309 count->ena = count->ena - tmp.ena; 1310 count->run = count->run - tmp.run; 1311 } 1312 1313 void perf_counts_values__scale(struct perf_counts_values *count, 1314 bool scale, s8 *pscaled) 1315 { 1316 s8 scaled = 0; 1317 1318 if (scale) { 1319 if (count->run == 0) { 1320 scaled = -1; 1321 count->val = 0; 1322 } else if (count->run < count->ena) { 1323 scaled = 1; 1324 count->val = (u64)((double) count->val * count->ena / count->run); 1325 } 1326 } 1327 1328 if (pscaled) 1329 *pscaled = scaled; 1330 } 1331 1332 static int 1333 perf_evsel__read_one(struct evsel *evsel, int cpu, int thread) 1334 { 1335 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread); 1336 1337 return perf_evsel__read(&evsel->core, cpu, thread, count); 1338 } 1339 1340 static void 1341 perf_evsel__set_count(struct evsel *counter, int cpu, int thread, 1342 u64 val, u64 ena, u64 run) 1343 { 1344 struct perf_counts_values *count; 1345 1346 count = perf_counts(counter->counts, cpu, thread); 1347 1348 count->val = val; 1349 count->ena = ena; 1350 count->run = run; 1351 1352 perf_counts__set_loaded(counter->counts, cpu, thread, true); 1353 } 1354 1355 static int 1356 perf_evsel__process_group_data(struct evsel *leader, 1357 int cpu, int thread, u64 *data) 1358 { 1359 u64 read_format = leader->core.attr.read_format; 1360 struct sample_read_value *v; 1361 u64 nr, ena = 0, run = 0, i; 1362 1363 nr = *data++; 1364 1365 if (nr != (u64) leader->core.nr_members) 1366 return -EINVAL; 1367 1368 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1369 ena = *data++; 1370 1371 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1372 run = *data++; 1373 1374 v = (struct sample_read_value *) data; 1375 1376 perf_evsel__set_count(leader, cpu, thread, 1377 v[0].value, ena, run); 1378 1379 for (i = 1; i < nr; i++) { 1380 struct evsel *counter; 1381 1382 counter = perf_evlist__id2evsel(leader->evlist, v[i].id); 1383 if (!counter) 1384 return -EINVAL; 1385 1386 perf_evsel__set_count(counter, cpu, thread, 1387 v[i].value, ena, run); 1388 } 1389 1390 return 0; 1391 } 1392 1393 static int 1394 perf_evsel__read_group(struct evsel *leader, int cpu, int thread) 1395 { 1396 struct perf_stat_evsel *ps = leader->stats; 1397 u64 read_format = leader->core.attr.read_format; 1398 int size = perf_evsel__read_size(&leader->core); 1399 u64 *data = ps->group_data; 1400 1401 if (!(read_format & PERF_FORMAT_ID)) 1402 return -EINVAL; 1403 1404 if (!perf_evsel__is_group_leader(leader)) 1405 return -EINVAL; 1406 1407 if (!data) { 1408 data = zalloc(size); 1409 if (!data) 1410 return -ENOMEM; 1411 1412 ps->group_data = data; 1413 } 1414 1415 if (FD(leader, cpu, thread) < 0) 1416 return -EINVAL; 1417 1418 if (readn(FD(leader, cpu, thread), data, size) <= 0) 1419 return -errno; 1420 1421 return perf_evsel__process_group_data(leader, cpu, thread, data); 1422 } 1423 1424 int perf_evsel__read_counter(struct evsel *evsel, int cpu, int thread) 1425 { 1426 u64 read_format = evsel->core.attr.read_format; 1427 1428 if (read_format & PERF_FORMAT_GROUP) 1429 return perf_evsel__read_group(evsel, cpu, thread); 1430 else 1431 return perf_evsel__read_one(evsel, cpu, thread); 1432 } 1433 1434 int __perf_evsel__read_on_cpu(struct evsel *evsel, 1435 int cpu, int thread, bool scale) 1436 { 1437 struct perf_counts_values count; 1438 size_t nv = scale ? 3 : 1; 1439 1440 if (FD(evsel, cpu, thread) < 0) 1441 return -EINVAL; 1442 1443 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1444 return -ENOMEM; 1445 1446 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1447 return -errno; 1448 1449 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1450 perf_counts_values__scale(&count, scale, NULL); 1451 *perf_counts(evsel->counts, cpu, thread) = count; 1452 return 0; 1453 } 1454 1455 static int get_group_fd(struct evsel *evsel, int cpu, int thread) 1456 { 1457 struct evsel *leader = evsel->leader; 1458 int fd; 1459 1460 if (perf_evsel__is_group_leader(evsel)) 1461 return -1; 1462 1463 /* 1464 * Leader must be already processed/open, 1465 * if not it's a bug. 1466 */ 1467 BUG_ON(!leader->core.fd); 1468 1469 fd = FD(leader, cpu, thread); 1470 BUG_ON(fd == -1); 1471 1472 return fd; 1473 } 1474 1475 struct bit_names { 1476 int bit; 1477 const char *name; 1478 }; 1479 1480 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1481 { 1482 bool first_bit = true; 1483 int i = 0; 1484 1485 do { 1486 if (value & bits[i].bit) { 1487 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1488 first_bit = false; 1489 } 1490 } while (bits[++i].name != NULL); 1491 } 1492 1493 static void __p_sample_type(char *buf, size_t size, u64 value) 1494 { 1495 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1496 struct bit_names bits[] = { 1497 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1498 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1499 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1500 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1501 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1502 bit_name(WEIGHT), bit_name(PHYS_ADDR), 1503 { .name = NULL, } 1504 }; 1505 #undef bit_name 1506 __p_bits(buf, size, value, bits); 1507 } 1508 1509 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1510 { 1511 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1512 struct bit_names bits[] = { 1513 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1514 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1515 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1516 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1517 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1518 { .name = NULL, } 1519 }; 1520 #undef bit_name 1521 __p_bits(buf, size, value, bits); 1522 } 1523 1524 static void __p_read_format(char *buf, size_t size, u64 value) 1525 { 1526 #define bit_name(n) { PERF_FORMAT_##n, #n } 1527 struct bit_names bits[] = { 1528 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1529 bit_name(ID), bit_name(GROUP), 1530 { .name = NULL, } 1531 }; 1532 #undef bit_name 1533 __p_bits(buf, size, value, bits); 1534 } 1535 1536 #define BUF_SIZE 1024 1537 1538 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1539 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1540 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1541 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1542 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1543 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1544 1545 #define PRINT_ATTRn(_n, _f, _p) \ 1546 do { \ 1547 if (attr->_f) { \ 1548 _p(attr->_f); \ 1549 ret += attr__fprintf(fp, _n, buf, priv);\ 1550 } \ 1551 } while (0) 1552 1553 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1554 1555 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1556 attr__fprintf_f attr__fprintf, void *priv) 1557 { 1558 char buf[BUF_SIZE]; 1559 int ret = 0; 1560 1561 PRINT_ATTRf(type, p_unsigned); 1562 PRINT_ATTRf(size, p_unsigned); 1563 PRINT_ATTRf(config, p_hex); 1564 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1565 PRINT_ATTRf(sample_type, p_sample_type); 1566 PRINT_ATTRf(read_format, p_read_format); 1567 1568 PRINT_ATTRf(disabled, p_unsigned); 1569 PRINT_ATTRf(inherit, p_unsigned); 1570 PRINT_ATTRf(pinned, p_unsigned); 1571 PRINT_ATTRf(exclusive, p_unsigned); 1572 PRINT_ATTRf(exclude_user, p_unsigned); 1573 PRINT_ATTRf(exclude_kernel, p_unsigned); 1574 PRINT_ATTRf(exclude_hv, p_unsigned); 1575 PRINT_ATTRf(exclude_idle, p_unsigned); 1576 PRINT_ATTRf(mmap, p_unsigned); 1577 PRINT_ATTRf(comm, p_unsigned); 1578 PRINT_ATTRf(freq, p_unsigned); 1579 PRINT_ATTRf(inherit_stat, p_unsigned); 1580 PRINT_ATTRf(enable_on_exec, p_unsigned); 1581 PRINT_ATTRf(task, p_unsigned); 1582 PRINT_ATTRf(watermark, p_unsigned); 1583 PRINT_ATTRf(precise_ip, p_unsigned); 1584 PRINT_ATTRf(mmap_data, p_unsigned); 1585 PRINT_ATTRf(sample_id_all, p_unsigned); 1586 PRINT_ATTRf(exclude_host, p_unsigned); 1587 PRINT_ATTRf(exclude_guest, p_unsigned); 1588 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1589 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1590 PRINT_ATTRf(mmap2, p_unsigned); 1591 PRINT_ATTRf(comm_exec, p_unsigned); 1592 PRINT_ATTRf(use_clockid, p_unsigned); 1593 PRINT_ATTRf(context_switch, p_unsigned); 1594 PRINT_ATTRf(write_backward, p_unsigned); 1595 PRINT_ATTRf(namespaces, p_unsigned); 1596 PRINT_ATTRf(ksymbol, p_unsigned); 1597 PRINT_ATTRf(bpf_event, p_unsigned); 1598 PRINT_ATTRf(aux_output, p_unsigned); 1599 1600 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1601 PRINT_ATTRf(bp_type, p_unsigned); 1602 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1603 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1604 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1605 PRINT_ATTRf(sample_regs_user, p_hex); 1606 PRINT_ATTRf(sample_stack_user, p_unsigned); 1607 PRINT_ATTRf(clockid, p_signed); 1608 PRINT_ATTRf(sample_regs_intr, p_hex); 1609 PRINT_ATTRf(aux_watermark, p_unsigned); 1610 PRINT_ATTRf(sample_max_stack, p_unsigned); 1611 1612 return ret; 1613 } 1614 1615 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1616 void *priv __maybe_unused) 1617 { 1618 return fprintf(fp, " %-32s %s\n", name, val); 1619 } 1620 1621 static void perf_evsel__remove_fd(struct evsel *pos, 1622 int nr_cpus, int nr_threads, 1623 int thread_idx) 1624 { 1625 for (int cpu = 0; cpu < nr_cpus; cpu++) 1626 for (int thread = thread_idx; thread < nr_threads - 1; thread++) 1627 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1); 1628 } 1629 1630 static int update_fds(struct evsel *evsel, 1631 int nr_cpus, int cpu_idx, 1632 int nr_threads, int thread_idx) 1633 { 1634 struct evsel *pos; 1635 1636 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads) 1637 return -EINVAL; 1638 1639 evlist__for_each_entry(evsel->evlist, pos) { 1640 nr_cpus = pos != evsel ? nr_cpus : cpu_idx; 1641 1642 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx); 1643 1644 /* 1645 * Since fds for next evsel has not been created, 1646 * there is no need to iterate whole event list. 1647 */ 1648 if (pos == evsel) 1649 break; 1650 } 1651 return 0; 1652 } 1653 1654 static bool ignore_missing_thread(struct evsel *evsel, 1655 int nr_cpus, int cpu, 1656 struct perf_thread_map *threads, 1657 int thread, int err) 1658 { 1659 pid_t ignore_pid = perf_thread_map__pid(threads, thread); 1660 1661 if (!evsel->ignore_missing_thread) 1662 return false; 1663 1664 /* The system wide setup does not work with threads. */ 1665 if (evsel->system_wide) 1666 return false; 1667 1668 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1669 if (err != -ESRCH) 1670 return false; 1671 1672 /* If there's only one thread, let it fail. */ 1673 if (threads->nr == 1) 1674 return false; 1675 1676 /* 1677 * We should remove fd for missing_thread first 1678 * because thread_map__remove() will decrease threads->nr. 1679 */ 1680 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread)) 1681 return false; 1682 1683 if (thread_map__remove(threads, thread)) 1684 return false; 1685 1686 pr_warning("WARNING: Ignored open failure for pid %d\n", 1687 ignore_pid); 1688 return true; 1689 } 1690 1691 static void display_attr(struct perf_event_attr *attr) 1692 { 1693 if (verbose >= 2) { 1694 fprintf(stderr, "%.60s\n", graph_dotted_line); 1695 fprintf(stderr, "perf_event_attr:\n"); 1696 perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL); 1697 fprintf(stderr, "%.60s\n", graph_dotted_line); 1698 } 1699 } 1700 1701 static int perf_event_open(struct evsel *evsel, 1702 pid_t pid, int cpu, int group_fd, 1703 unsigned long flags) 1704 { 1705 int precise_ip = evsel->core.attr.precise_ip; 1706 int fd; 1707 1708 while (1) { 1709 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1710 pid, cpu, group_fd, flags); 1711 1712 fd = sys_perf_event_open(&evsel->core.attr, pid, cpu, group_fd, flags); 1713 if (fd >= 0) 1714 break; 1715 1716 /* Do not try less precise if not requested. */ 1717 if (!evsel->precise_max) 1718 break; 1719 1720 /* 1721 * We tried all the precise_ip values, and it's 1722 * still failing, so leave it to standard fallback. 1723 */ 1724 if (!evsel->core.attr.precise_ip) { 1725 evsel->core.attr.precise_ip = precise_ip; 1726 break; 1727 } 1728 1729 pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP); 1730 evsel->core.attr.precise_ip--; 1731 pr_debug2("decreasing precise_ip by one (%d)\n", evsel->core.attr.precise_ip); 1732 display_attr(&evsel->core.attr); 1733 } 1734 1735 return fd; 1736 } 1737 1738 int evsel__open(struct evsel *evsel, struct perf_cpu_map *cpus, 1739 struct perf_thread_map *threads) 1740 { 1741 int cpu, thread, nthreads; 1742 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1743 int pid = -1, err; 1744 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1745 1746 if ((perf_missing_features.write_backward && evsel->core.attr.write_backward) || 1747 (perf_missing_features.aux_output && evsel->core.attr.aux_output)) 1748 return -EINVAL; 1749 1750 if (cpus == NULL) { 1751 static struct perf_cpu_map *empty_cpu_map; 1752 1753 if (empty_cpu_map == NULL) { 1754 empty_cpu_map = perf_cpu_map__dummy_new(); 1755 if (empty_cpu_map == NULL) 1756 return -ENOMEM; 1757 } 1758 1759 cpus = empty_cpu_map; 1760 } 1761 1762 if (threads == NULL) { 1763 static struct perf_thread_map *empty_thread_map; 1764 1765 if (empty_thread_map == NULL) { 1766 empty_thread_map = thread_map__new_by_tid(-1); 1767 if (empty_thread_map == NULL) 1768 return -ENOMEM; 1769 } 1770 1771 threads = empty_thread_map; 1772 } 1773 1774 if (evsel->system_wide) 1775 nthreads = 1; 1776 else 1777 nthreads = threads->nr; 1778 1779 if (evsel->core.fd == NULL && 1780 perf_evsel__alloc_fd(&evsel->core, cpus->nr, nthreads) < 0) 1781 return -ENOMEM; 1782 1783 if (evsel->cgrp) { 1784 flags |= PERF_FLAG_PID_CGROUP; 1785 pid = evsel->cgrp->fd; 1786 } 1787 1788 fallback_missing_features: 1789 if (perf_missing_features.clockid_wrong) 1790 evsel->core.attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1791 if (perf_missing_features.clockid) { 1792 evsel->core.attr.use_clockid = 0; 1793 evsel->core.attr.clockid = 0; 1794 } 1795 if (perf_missing_features.cloexec) 1796 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1797 if (perf_missing_features.mmap2) 1798 evsel->core.attr.mmap2 = 0; 1799 if (perf_missing_features.exclude_guest) 1800 evsel->core.attr.exclude_guest = evsel->core.attr.exclude_host = 0; 1801 if (perf_missing_features.lbr_flags) 1802 evsel->core.attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1803 PERF_SAMPLE_BRANCH_NO_CYCLES); 1804 if (perf_missing_features.group_read && evsel->core.attr.inherit) 1805 evsel->core.attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); 1806 if (perf_missing_features.ksymbol) 1807 evsel->core.attr.ksymbol = 0; 1808 if (perf_missing_features.bpf) 1809 evsel->core.attr.bpf_event = 0; 1810 retry_sample_id: 1811 if (perf_missing_features.sample_id_all) 1812 evsel->core.attr.sample_id_all = 0; 1813 1814 display_attr(&evsel->core.attr); 1815 1816 for (cpu = 0; cpu < cpus->nr; cpu++) { 1817 1818 for (thread = 0; thread < nthreads; thread++) { 1819 int fd, group_fd; 1820 1821 if (!evsel->cgrp && !evsel->system_wide) 1822 pid = perf_thread_map__pid(threads, thread); 1823 1824 group_fd = get_group_fd(evsel, cpu, thread); 1825 retry_open: 1826 test_attr__ready(); 1827 1828 fd = perf_event_open(evsel, pid, cpus->map[cpu], 1829 group_fd, flags); 1830 1831 FD(evsel, cpu, thread) = fd; 1832 1833 if (fd < 0) { 1834 err = -errno; 1835 1836 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) { 1837 /* 1838 * We just removed 1 thread, so take a step 1839 * back on thread index and lower the upper 1840 * nthreads limit. 1841 */ 1842 nthreads--; 1843 thread--; 1844 1845 /* ... and pretend like nothing have happened. */ 1846 err = 0; 1847 continue; 1848 } 1849 1850 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1851 err); 1852 goto try_fallback; 1853 } 1854 1855 pr_debug2(" = %d\n", fd); 1856 1857 if (evsel->bpf_fd >= 0) { 1858 int evt_fd = fd; 1859 int bpf_fd = evsel->bpf_fd; 1860 1861 err = ioctl(evt_fd, 1862 PERF_EVENT_IOC_SET_BPF, 1863 bpf_fd); 1864 if (err && errno != EEXIST) { 1865 pr_err("failed to attach bpf fd %d: %s\n", 1866 bpf_fd, strerror(errno)); 1867 err = -EINVAL; 1868 goto out_close; 1869 } 1870 } 1871 1872 set_rlimit = NO_CHANGE; 1873 1874 /* 1875 * If we succeeded but had to kill clockid, fail and 1876 * have perf_evsel__open_strerror() print us a nice 1877 * error. 1878 */ 1879 if (perf_missing_features.clockid || 1880 perf_missing_features.clockid_wrong) { 1881 err = -EINVAL; 1882 goto out_close; 1883 } 1884 } 1885 } 1886 1887 return 0; 1888 1889 try_fallback: 1890 /* 1891 * perf stat needs between 5 and 22 fds per CPU. When we run out 1892 * of them try to increase the limits. 1893 */ 1894 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1895 struct rlimit l; 1896 int old_errno = errno; 1897 1898 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1899 if (set_rlimit == NO_CHANGE) 1900 l.rlim_cur = l.rlim_max; 1901 else { 1902 l.rlim_cur = l.rlim_max + 1000; 1903 l.rlim_max = l.rlim_cur; 1904 } 1905 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1906 set_rlimit++; 1907 errno = old_errno; 1908 goto retry_open; 1909 } 1910 } 1911 errno = old_errno; 1912 } 1913 1914 if (err != -EINVAL || cpu > 0 || thread > 0) 1915 goto out_close; 1916 1917 /* 1918 * Must probe features in the order they were added to the 1919 * perf_event_attr interface. 1920 */ 1921 if (!perf_missing_features.aux_output && evsel->core.attr.aux_output) { 1922 perf_missing_features.aux_output = true; 1923 pr_debug2("Kernel has no attr.aux_output support, bailing out\n"); 1924 goto out_close; 1925 } else if (!perf_missing_features.bpf && evsel->core.attr.bpf_event) { 1926 perf_missing_features.bpf = true; 1927 pr_debug2("switching off bpf_event\n"); 1928 goto fallback_missing_features; 1929 } else if (!perf_missing_features.ksymbol && evsel->core.attr.ksymbol) { 1930 perf_missing_features.ksymbol = true; 1931 pr_debug2("switching off ksymbol\n"); 1932 goto fallback_missing_features; 1933 } else if (!perf_missing_features.write_backward && evsel->core.attr.write_backward) { 1934 perf_missing_features.write_backward = true; 1935 pr_debug2("switching off write_backward\n"); 1936 goto out_close; 1937 } else if (!perf_missing_features.clockid_wrong && evsel->core.attr.use_clockid) { 1938 perf_missing_features.clockid_wrong = true; 1939 pr_debug2("switching off clockid\n"); 1940 goto fallback_missing_features; 1941 } else if (!perf_missing_features.clockid && evsel->core.attr.use_clockid) { 1942 perf_missing_features.clockid = true; 1943 pr_debug2("switching off use_clockid\n"); 1944 goto fallback_missing_features; 1945 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1946 perf_missing_features.cloexec = true; 1947 pr_debug2("switching off cloexec flag\n"); 1948 goto fallback_missing_features; 1949 } else if (!perf_missing_features.mmap2 && evsel->core.attr.mmap2) { 1950 perf_missing_features.mmap2 = true; 1951 pr_debug2("switching off mmap2\n"); 1952 goto fallback_missing_features; 1953 } else if (!perf_missing_features.exclude_guest && 1954 (evsel->core.attr.exclude_guest || evsel->core.attr.exclude_host)) { 1955 perf_missing_features.exclude_guest = true; 1956 pr_debug2("switching off exclude_guest, exclude_host\n"); 1957 goto fallback_missing_features; 1958 } else if (!perf_missing_features.sample_id_all) { 1959 perf_missing_features.sample_id_all = true; 1960 pr_debug2("switching off sample_id_all\n"); 1961 goto retry_sample_id; 1962 } else if (!perf_missing_features.lbr_flags && 1963 (evsel->core.attr.branch_sample_type & 1964 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1965 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1966 perf_missing_features.lbr_flags = true; 1967 pr_debug2("switching off branch sample type no (cycles/flags)\n"); 1968 goto fallback_missing_features; 1969 } else if (!perf_missing_features.group_read && 1970 evsel->core.attr.inherit && 1971 (evsel->core.attr.read_format & PERF_FORMAT_GROUP) && 1972 perf_evsel__is_group_leader(evsel)) { 1973 perf_missing_features.group_read = true; 1974 pr_debug2("switching off group read\n"); 1975 goto fallback_missing_features; 1976 } 1977 out_close: 1978 if (err) 1979 threads->err_thread = thread; 1980 1981 do { 1982 while (--thread >= 0) { 1983 close(FD(evsel, cpu, thread)); 1984 FD(evsel, cpu, thread) = -1; 1985 } 1986 thread = nthreads; 1987 } while (--cpu >= 0); 1988 return err; 1989 } 1990 1991 void evsel__close(struct evsel *evsel) 1992 { 1993 perf_evsel__close(&evsel->core); 1994 perf_evsel__free_id(evsel); 1995 } 1996 1997 int perf_evsel__open_per_cpu(struct evsel *evsel, 1998 struct perf_cpu_map *cpus) 1999 { 2000 return evsel__open(evsel, cpus, NULL); 2001 } 2002 2003 int perf_evsel__open_per_thread(struct evsel *evsel, 2004 struct perf_thread_map *threads) 2005 { 2006 return evsel__open(evsel, NULL, threads); 2007 } 2008 2009 static int perf_evsel__parse_id_sample(const struct evsel *evsel, 2010 const union perf_event *event, 2011 struct perf_sample *sample) 2012 { 2013 u64 type = evsel->core.attr.sample_type; 2014 const __u64 *array = event->sample.array; 2015 bool swapped = evsel->needs_swap; 2016 union u64_swap u; 2017 2018 array += ((event->header.size - 2019 sizeof(event->header)) / sizeof(u64)) - 1; 2020 2021 if (type & PERF_SAMPLE_IDENTIFIER) { 2022 sample->id = *array; 2023 array--; 2024 } 2025 2026 if (type & PERF_SAMPLE_CPU) { 2027 u.val64 = *array; 2028 if (swapped) { 2029 /* undo swap of u64, then swap on individual u32s */ 2030 u.val64 = bswap_64(u.val64); 2031 u.val32[0] = bswap_32(u.val32[0]); 2032 } 2033 2034 sample->cpu = u.val32[0]; 2035 array--; 2036 } 2037 2038 if (type & PERF_SAMPLE_STREAM_ID) { 2039 sample->stream_id = *array; 2040 array--; 2041 } 2042 2043 if (type & PERF_SAMPLE_ID) { 2044 sample->id = *array; 2045 array--; 2046 } 2047 2048 if (type & PERF_SAMPLE_TIME) { 2049 sample->time = *array; 2050 array--; 2051 } 2052 2053 if (type & PERF_SAMPLE_TID) { 2054 u.val64 = *array; 2055 if (swapped) { 2056 /* undo swap of u64, then swap on individual u32s */ 2057 u.val64 = bswap_64(u.val64); 2058 u.val32[0] = bswap_32(u.val32[0]); 2059 u.val32[1] = bswap_32(u.val32[1]); 2060 } 2061 2062 sample->pid = u.val32[0]; 2063 sample->tid = u.val32[1]; 2064 array--; 2065 } 2066 2067 return 0; 2068 } 2069 2070 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 2071 u64 size) 2072 { 2073 return size > max_size || offset + size > endp; 2074 } 2075 2076 #define OVERFLOW_CHECK(offset, size, max_size) \ 2077 do { \ 2078 if (overflow(endp, (max_size), (offset), (size))) \ 2079 return -EFAULT; \ 2080 } while (0) 2081 2082 #define OVERFLOW_CHECK_u64(offset) \ 2083 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 2084 2085 static int 2086 perf_event__check_size(union perf_event *event, unsigned int sample_size) 2087 { 2088 /* 2089 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 2090 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 2091 * check the format does not go past the end of the event. 2092 */ 2093 if (sample_size + sizeof(event->header) > event->header.size) 2094 return -EFAULT; 2095 2096 return 0; 2097 } 2098 2099 int perf_evsel__parse_sample(struct evsel *evsel, union perf_event *event, 2100 struct perf_sample *data) 2101 { 2102 u64 type = evsel->core.attr.sample_type; 2103 bool swapped = evsel->needs_swap; 2104 const __u64 *array; 2105 u16 max_size = event->header.size; 2106 const void *endp = (void *)event + max_size; 2107 u64 sz; 2108 2109 /* 2110 * used for cross-endian analysis. See git commit 65014ab3 2111 * for why this goofiness is needed. 2112 */ 2113 union u64_swap u; 2114 2115 memset(data, 0, sizeof(*data)); 2116 data->cpu = data->pid = data->tid = -1; 2117 data->stream_id = data->id = data->time = -1ULL; 2118 data->period = evsel->core.attr.sample_period; 2119 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2120 data->misc = event->header.misc; 2121 data->id = -1ULL; 2122 data->data_src = PERF_MEM_DATA_SRC_NONE; 2123 2124 if (event->header.type != PERF_RECORD_SAMPLE) { 2125 if (!evsel->core.attr.sample_id_all) 2126 return 0; 2127 return perf_evsel__parse_id_sample(evsel, event, data); 2128 } 2129 2130 array = event->sample.array; 2131 2132 if (perf_event__check_size(event, evsel->sample_size)) 2133 return -EFAULT; 2134 2135 if (type & PERF_SAMPLE_IDENTIFIER) { 2136 data->id = *array; 2137 array++; 2138 } 2139 2140 if (type & PERF_SAMPLE_IP) { 2141 data->ip = *array; 2142 array++; 2143 } 2144 2145 if (type & PERF_SAMPLE_TID) { 2146 u.val64 = *array; 2147 if (swapped) { 2148 /* undo swap of u64, then swap on individual u32s */ 2149 u.val64 = bswap_64(u.val64); 2150 u.val32[0] = bswap_32(u.val32[0]); 2151 u.val32[1] = bswap_32(u.val32[1]); 2152 } 2153 2154 data->pid = u.val32[0]; 2155 data->tid = u.val32[1]; 2156 array++; 2157 } 2158 2159 if (type & PERF_SAMPLE_TIME) { 2160 data->time = *array; 2161 array++; 2162 } 2163 2164 if (type & PERF_SAMPLE_ADDR) { 2165 data->addr = *array; 2166 array++; 2167 } 2168 2169 if (type & PERF_SAMPLE_ID) { 2170 data->id = *array; 2171 array++; 2172 } 2173 2174 if (type & PERF_SAMPLE_STREAM_ID) { 2175 data->stream_id = *array; 2176 array++; 2177 } 2178 2179 if (type & PERF_SAMPLE_CPU) { 2180 2181 u.val64 = *array; 2182 if (swapped) { 2183 /* undo swap of u64, then swap on individual u32s */ 2184 u.val64 = bswap_64(u.val64); 2185 u.val32[0] = bswap_32(u.val32[0]); 2186 } 2187 2188 data->cpu = u.val32[0]; 2189 array++; 2190 } 2191 2192 if (type & PERF_SAMPLE_PERIOD) { 2193 data->period = *array; 2194 array++; 2195 } 2196 2197 if (type & PERF_SAMPLE_READ) { 2198 u64 read_format = evsel->core.attr.read_format; 2199 2200 OVERFLOW_CHECK_u64(array); 2201 if (read_format & PERF_FORMAT_GROUP) 2202 data->read.group.nr = *array; 2203 else 2204 data->read.one.value = *array; 2205 2206 array++; 2207 2208 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2209 OVERFLOW_CHECK_u64(array); 2210 data->read.time_enabled = *array; 2211 array++; 2212 } 2213 2214 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2215 OVERFLOW_CHECK_u64(array); 2216 data->read.time_running = *array; 2217 array++; 2218 } 2219 2220 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2221 if (read_format & PERF_FORMAT_GROUP) { 2222 const u64 max_group_nr = UINT64_MAX / 2223 sizeof(struct sample_read_value); 2224 2225 if (data->read.group.nr > max_group_nr) 2226 return -EFAULT; 2227 sz = data->read.group.nr * 2228 sizeof(struct sample_read_value); 2229 OVERFLOW_CHECK(array, sz, max_size); 2230 data->read.group.values = 2231 (struct sample_read_value *)array; 2232 array = (void *)array + sz; 2233 } else { 2234 OVERFLOW_CHECK_u64(array); 2235 data->read.one.id = *array; 2236 array++; 2237 } 2238 } 2239 2240 if (evsel__has_callchain(evsel)) { 2241 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 2242 2243 OVERFLOW_CHECK_u64(array); 2244 data->callchain = (struct ip_callchain *)array++; 2245 if (data->callchain->nr > max_callchain_nr) 2246 return -EFAULT; 2247 sz = data->callchain->nr * sizeof(u64); 2248 OVERFLOW_CHECK(array, sz, max_size); 2249 array = (void *)array + sz; 2250 } 2251 2252 if (type & PERF_SAMPLE_RAW) { 2253 OVERFLOW_CHECK_u64(array); 2254 u.val64 = *array; 2255 2256 /* 2257 * Undo swap of u64, then swap on individual u32s, 2258 * get the size of the raw area and undo all of the 2259 * swap. The pevent interface handles endianity by 2260 * itself. 2261 */ 2262 if (swapped) { 2263 u.val64 = bswap_64(u.val64); 2264 u.val32[0] = bswap_32(u.val32[0]); 2265 u.val32[1] = bswap_32(u.val32[1]); 2266 } 2267 data->raw_size = u.val32[0]; 2268 2269 /* 2270 * The raw data is aligned on 64bits including the 2271 * u32 size, so it's safe to use mem_bswap_64. 2272 */ 2273 if (swapped) 2274 mem_bswap_64((void *) array, data->raw_size); 2275 2276 array = (void *)array + sizeof(u32); 2277 2278 OVERFLOW_CHECK(array, data->raw_size, max_size); 2279 data->raw_data = (void *)array; 2280 array = (void *)array + data->raw_size; 2281 } 2282 2283 if (type & PERF_SAMPLE_BRANCH_STACK) { 2284 const u64 max_branch_nr = UINT64_MAX / 2285 sizeof(struct branch_entry); 2286 2287 OVERFLOW_CHECK_u64(array); 2288 data->branch_stack = (struct branch_stack *)array++; 2289 2290 if (data->branch_stack->nr > max_branch_nr) 2291 return -EFAULT; 2292 sz = data->branch_stack->nr * sizeof(struct branch_entry); 2293 OVERFLOW_CHECK(array, sz, max_size); 2294 array = (void *)array + sz; 2295 } 2296 2297 if (type & PERF_SAMPLE_REGS_USER) { 2298 OVERFLOW_CHECK_u64(array); 2299 data->user_regs.abi = *array; 2300 array++; 2301 2302 if (data->user_regs.abi) { 2303 u64 mask = evsel->core.attr.sample_regs_user; 2304 2305 sz = hweight64(mask) * sizeof(u64); 2306 OVERFLOW_CHECK(array, sz, max_size); 2307 data->user_regs.mask = mask; 2308 data->user_regs.regs = (u64 *)array; 2309 array = (void *)array + sz; 2310 } 2311 } 2312 2313 if (type & PERF_SAMPLE_STACK_USER) { 2314 OVERFLOW_CHECK_u64(array); 2315 sz = *array++; 2316 2317 data->user_stack.offset = ((char *)(array - 1) 2318 - (char *) event); 2319 2320 if (!sz) { 2321 data->user_stack.size = 0; 2322 } else { 2323 OVERFLOW_CHECK(array, sz, max_size); 2324 data->user_stack.data = (char *)array; 2325 array = (void *)array + sz; 2326 OVERFLOW_CHECK_u64(array); 2327 data->user_stack.size = *array++; 2328 if (WARN_ONCE(data->user_stack.size > sz, 2329 "user stack dump failure\n")) 2330 return -EFAULT; 2331 } 2332 } 2333 2334 if (type & PERF_SAMPLE_WEIGHT) { 2335 OVERFLOW_CHECK_u64(array); 2336 data->weight = *array; 2337 array++; 2338 } 2339 2340 if (type & PERF_SAMPLE_DATA_SRC) { 2341 OVERFLOW_CHECK_u64(array); 2342 data->data_src = *array; 2343 array++; 2344 } 2345 2346 if (type & PERF_SAMPLE_TRANSACTION) { 2347 OVERFLOW_CHECK_u64(array); 2348 data->transaction = *array; 2349 array++; 2350 } 2351 2352 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2353 if (type & PERF_SAMPLE_REGS_INTR) { 2354 OVERFLOW_CHECK_u64(array); 2355 data->intr_regs.abi = *array; 2356 array++; 2357 2358 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2359 u64 mask = evsel->core.attr.sample_regs_intr; 2360 2361 sz = hweight64(mask) * sizeof(u64); 2362 OVERFLOW_CHECK(array, sz, max_size); 2363 data->intr_regs.mask = mask; 2364 data->intr_regs.regs = (u64 *)array; 2365 array = (void *)array + sz; 2366 } 2367 } 2368 2369 data->phys_addr = 0; 2370 if (type & PERF_SAMPLE_PHYS_ADDR) { 2371 data->phys_addr = *array; 2372 array++; 2373 } 2374 2375 return 0; 2376 } 2377 2378 int perf_evsel__parse_sample_timestamp(struct evsel *evsel, 2379 union perf_event *event, 2380 u64 *timestamp) 2381 { 2382 u64 type = evsel->core.attr.sample_type; 2383 const __u64 *array; 2384 2385 if (!(type & PERF_SAMPLE_TIME)) 2386 return -1; 2387 2388 if (event->header.type != PERF_RECORD_SAMPLE) { 2389 struct perf_sample data = { 2390 .time = -1ULL, 2391 }; 2392 2393 if (!evsel->core.attr.sample_id_all) 2394 return -1; 2395 if (perf_evsel__parse_id_sample(evsel, event, &data)) 2396 return -1; 2397 2398 *timestamp = data.time; 2399 return 0; 2400 } 2401 2402 array = event->sample.array; 2403 2404 if (perf_event__check_size(event, evsel->sample_size)) 2405 return -EFAULT; 2406 2407 if (type & PERF_SAMPLE_IDENTIFIER) 2408 array++; 2409 2410 if (type & PERF_SAMPLE_IP) 2411 array++; 2412 2413 if (type & PERF_SAMPLE_TID) 2414 array++; 2415 2416 if (type & PERF_SAMPLE_TIME) 2417 *timestamp = *array; 2418 2419 return 0; 2420 } 2421 2422 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2423 u64 read_format) 2424 { 2425 size_t sz, result = sizeof(struct perf_record_sample); 2426 2427 if (type & PERF_SAMPLE_IDENTIFIER) 2428 result += sizeof(u64); 2429 2430 if (type & PERF_SAMPLE_IP) 2431 result += sizeof(u64); 2432 2433 if (type & PERF_SAMPLE_TID) 2434 result += sizeof(u64); 2435 2436 if (type & PERF_SAMPLE_TIME) 2437 result += sizeof(u64); 2438 2439 if (type & PERF_SAMPLE_ADDR) 2440 result += sizeof(u64); 2441 2442 if (type & PERF_SAMPLE_ID) 2443 result += sizeof(u64); 2444 2445 if (type & PERF_SAMPLE_STREAM_ID) 2446 result += sizeof(u64); 2447 2448 if (type & PERF_SAMPLE_CPU) 2449 result += sizeof(u64); 2450 2451 if (type & PERF_SAMPLE_PERIOD) 2452 result += sizeof(u64); 2453 2454 if (type & PERF_SAMPLE_READ) { 2455 result += sizeof(u64); 2456 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2457 result += sizeof(u64); 2458 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2459 result += sizeof(u64); 2460 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2461 if (read_format & PERF_FORMAT_GROUP) { 2462 sz = sample->read.group.nr * 2463 sizeof(struct sample_read_value); 2464 result += sz; 2465 } else { 2466 result += sizeof(u64); 2467 } 2468 } 2469 2470 if (type & PERF_SAMPLE_CALLCHAIN) { 2471 sz = (sample->callchain->nr + 1) * sizeof(u64); 2472 result += sz; 2473 } 2474 2475 if (type & PERF_SAMPLE_RAW) { 2476 result += sizeof(u32); 2477 result += sample->raw_size; 2478 } 2479 2480 if (type & PERF_SAMPLE_BRANCH_STACK) { 2481 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2482 sz += sizeof(u64); 2483 result += sz; 2484 } 2485 2486 if (type & PERF_SAMPLE_REGS_USER) { 2487 if (sample->user_regs.abi) { 2488 result += sizeof(u64); 2489 sz = hweight64(sample->user_regs.mask) * sizeof(u64); 2490 result += sz; 2491 } else { 2492 result += sizeof(u64); 2493 } 2494 } 2495 2496 if (type & PERF_SAMPLE_STACK_USER) { 2497 sz = sample->user_stack.size; 2498 result += sizeof(u64); 2499 if (sz) { 2500 result += sz; 2501 result += sizeof(u64); 2502 } 2503 } 2504 2505 if (type & PERF_SAMPLE_WEIGHT) 2506 result += sizeof(u64); 2507 2508 if (type & PERF_SAMPLE_DATA_SRC) 2509 result += sizeof(u64); 2510 2511 if (type & PERF_SAMPLE_TRANSACTION) 2512 result += sizeof(u64); 2513 2514 if (type & PERF_SAMPLE_REGS_INTR) { 2515 if (sample->intr_regs.abi) { 2516 result += sizeof(u64); 2517 sz = hweight64(sample->intr_regs.mask) * sizeof(u64); 2518 result += sz; 2519 } else { 2520 result += sizeof(u64); 2521 } 2522 } 2523 2524 if (type & PERF_SAMPLE_PHYS_ADDR) 2525 result += sizeof(u64); 2526 2527 return result; 2528 } 2529 2530 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2531 u64 read_format, 2532 const struct perf_sample *sample) 2533 { 2534 __u64 *array; 2535 size_t sz; 2536 /* 2537 * used for cross-endian analysis. See git commit 65014ab3 2538 * for why this goofiness is needed. 2539 */ 2540 union u64_swap u; 2541 2542 array = event->sample.array; 2543 2544 if (type & PERF_SAMPLE_IDENTIFIER) { 2545 *array = sample->id; 2546 array++; 2547 } 2548 2549 if (type & PERF_SAMPLE_IP) { 2550 *array = sample->ip; 2551 array++; 2552 } 2553 2554 if (type & PERF_SAMPLE_TID) { 2555 u.val32[0] = sample->pid; 2556 u.val32[1] = sample->tid; 2557 *array = u.val64; 2558 array++; 2559 } 2560 2561 if (type & PERF_SAMPLE_TIME) { 2562 *array = sample->time; 2563 array++; 2564 } 2565 2566 if (type & PERF_SAMPLE_ADDR) { 2567 *array = sample->addr; 2568 array++; 2569 } 2570 2571 if (type & PERF_SAMPLE_ID) { 2572 *array = sample->id; 2573 array++; 2574 } 2575 2576 if (type & PERF_SAMPLE_STREAM_ID) { 2577 *array = sample->stream_id; 2578 array++; 2579 } 2580 2581 if (type & PERF_SAMPLE_CPU) { 2582 u.val32[0] = sample->cpu; 2583 u.val32[1] = 0; 2584 *array = u.val64; 2585 array++; 2586 } 2587 2588 if (type & PERF_SAMPLE_PERIOD) { 2589 *array = sample->period; 2590 array++; 2591 } 2592 2593 if (type & PERF_SAMPLE_READ) { 2594 if (read_format & PERF_FORMAT_GROUP) 2595 *array = sample->read.group.nr; 2596 else 2597 *array = sample->read.one.value; 2598 array++; 2599 2600 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2601 *array = sample->read.time_enabled; 2602 array++; 2603 } 2604 2605 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2606 *array = sample->read.time_running; 2607 array++; 2608 } 2609 2610 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2611 if (read_format & PERF_FORMAT_GROUP) { 2612 sz = sample->read.group.nr * 2613 sizeof(struct sample_read_value); 2614 memcpy(array, sample->read.group.values, sz); 2615 array = (void *)array + sz; 2616 } else { 2617 *array = sample->read.one.id; 2618 array++; 2619 } 2620 } 2621 2622 if (type & PERF_SAMPLE_CALLCHAIN) { 2623 sz = (sample->callchain->nr + 1) * sizeof(u64); 2624 memcpy(array, sample->callchain, sz); 2625 array = (void *)array + sz; 2626 } 2627 2628 if (type & PERF_SAMPLE_RAW) { 2629 u.val32[0] = sample->raw_size; 2630 *array = u.val64; 2631 array = (void *)array + sizeof(u32); 2632 2633 memcpy(array, sample->raw_data, sample->raw_size); 2634 array = (void *)array + sample->raw_size; 2635 } 2636 2637 if (type & PERF_SAMPLE_BRANCH_STACK) { 2638 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2639 sz += sizeof(u64); 2640 memcpy(array, sample->branch_stack, sz); 2641 array = (void *)array + sz; 2642 } 2643 2644 if (type & PERF_SAMPLE_REGS_USER) { 2645 if (sample->user_regs.abi) { 2646 *array++ = sample->user_regs.abi; 2647 sz = hweight64(sample->user_regs.mask) * sizeof(u64); 2648 memcpy(array, sample->user_regs.regs, sz); 2649 array = (void *)array + sz; 2650 } else { 2651 *array++ = 0; 2652 } 2653 } 2654 2655 if (type & PERF_SAMPLE_STACK_USER) { 2656 sz = sample->user_stack.size; 2657 *array++ = sz; 2658 if (sz) { 2659 memcpy(array, sample->user_stack.data, sz); 2660 array = (void *)array + sz; 2661 *array++ = sz; 2662 } 2663 } 2664 2665 if (type & PERF_SAMPLE_WEIGHT) { 2666 *array = sample->weight; 2667 array++; 2668 } 2669 2670 if (type & PERF_SAMPLE_DATA_SRC) { 2671 *array = sample->data_src; 2672 array++; 2673 } 2674 2675 if (type & PERF_SAMPLE_TRANSACTION) { 2676 *array = sample->transaction; 2677 array++; 2678 } 2679 2680 if (type & PERF_SAMPLE_REGS_INTR) { 2681 if (sample->intr_regs.abi) { 2682 *array++ = sample->intr_regs.abi; 2683 sz = hweight64(sample->intr_regs.mask) * sizeof(u64); 2684 memcpy(array, sample->intr_regs.regs, sz); 2685 array = (void *)array + sz; 2686 } else { 2687 *array++ = 0; 2688 } 2689 } 2690 2691 if (type & PERF_SAMPLE_PHYS_ADDR) { 2692 *array = sample->phys_addr; 2693 array++; 2694 } 2695 2696 return 0; 2697 } 2698 2699 struct tep_format_field *perf_evsel__field(struct evsel *evsel, const char *name) 2700 { 2701 return tep_find_field(evsel->tp_format, name); 2702 } 2703 2704 void *perf_evsel__rawptr(struct evsel *evsel, struct perf_sample *sample, 2705 const char *name) 2706 { 2707 struct tep_format_field *field = perf_evsel__field(evsel, name); 2708 int offset; 2709 2710 if (!field) 2711 return NULL; 2712 2713 offset = field->offset; 2714 2715 if (field->flags & TEP_FIELD_IS_DYNAMIC) { 2716 offset = *(int *)(sample->raw_data + field->offset); 2717 offset &= 0xffff; 2718 } 2719 2720 return sample->raw_data + offset; 2721 } 2722 2723 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample, 2724 bool needs_swap) 2725 { 2726 u64 value; 2727 void *ptr = sample->raw_data + field->offset; 2728 2729 switch (field->size) { 2730 case 1: 2731 return *(u8 *)ptr; 2732 case 2: 2733 value = *(u16 *)ptr; 2734 break; 2735 case 4: 2736 value = *(u32 *)ptr; 2737 break; 2738 case 8: 2739 memcpy(&value, ptr, sizeof(u64)); 2740 break; 2741 default: 2742 return 0; 2743 } 2744 2745 if (!needs_swap) 2746 return value; 2747 2748 switch (field->size) { 2749 case 2: 2750 return bswap_16(value); 2751 case 4: 2752 return bswap_32(value); 2753 case 8: 2754 return bswap_64(value); 2755 default: 2756 return 0; 2757 } 2758 2759 return 0; 2760 } 2761 2762 u64 perf_evsel__intval(struct evsel *evsel, struct perf_sample *sample, 2763 const char *name) 2764 { 2765 struct tep_format_field *field = perf_evsel__field(evsel, name); 2766 2767 if (!field) 2768 return 0; 2769 2770 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2771 } 2772 2773 bool perf_evsel__fallback(struct evsel *evsel, int err, 2774 char *msg, size_t msgsize) 2775 { 2776 int paranoid; 2777 2778 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2779 evsel->core.attr.type == PERF_TYPE_HARDWARE && 2780 evsel->core.attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2781 /* 2782 * If it's cycles then fall back to hrtimer based 2783 * cpu-clock-tick sw counter, which is always available even if 2784 * no PMU support. 2785 * 2786 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2787 * b0a873e). 2788 */ 2789 scnprintf(msg, msgsize, "%s", 2790 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2791 2792 evsel->core.attr.type = PERF_TYPE_SOFTWARE; 2793 evsel->core.attr.config = PERF_COUNT_SW_CPU_CLOCK; 2794 2795 zfree(&evsel->name); 2796 return true; 2797 } else if (err == EACCES && !evsel->core.attr.exclude_kernel && 2798 (paranoid = perf_event_paranoid()) > 1) { 2799 const char *name = perf_evsel__name(evsel); 2800 char *new_name; 2801 const char *sep = ":"; 2802 2803 /* Is there already the separator in the name. */ 2804 if (strchr(name, '/') || 2805 strchr(name, ':')) 2806 sep = ""; 2807 2808 if (asprintf(&new_name, "%s%su", name, sep) < 0) 2809 return false; 2810 2811 if (evsel->name) 2812 free(evsel->name); 2813 evsel->name = new_name; 2814 scnprintf(msg, msgsize, 2815 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2816 evsel->core.attr.exclude_kernel = 1; 2817 2818 return true; 2819 } 2820 2821 return false; 2822 } 2823 2824 static bool find_process(const char *name) 2825 { 2826 size_t len = strlen(name); 2827 DIR *dir; 2828 struct dirent *d; 2829 int ret = -1; 2830 2831 dir = opendir(procfs__mountpoint()); 2832 if (!dir) 2833 return false; 2834 2835 /* Walk through the directory. */ 2836 while (ret && (d = readdir(dir)) != NULL) { 2837 char path[PATH_MAX]; 2838 char *data; 2839 size_t size; 2840 2841 if ((d->d_type != DT_DIR) || 2842 !strcmp(".", d->d_name) || 2843 !strcmp("..", d->d_name)) 2844 continue; 2845 2846 scnprintf(path, sizeof(path), "%s/%s/comm", 2847 procfs__mountpoint(), d->d_name); 2848 2849 if (filename__read_str(path, &data, &size)) 2850 continue; 2851 2852 ret = strncmp(name, data, len); 2853 free(data); 2854 } 2855 2856 closedir(dir); 2857 return ret ? false : true; 2858 } 2859 2860 int perf_evsel__open_strerror(struct evsel *evsel, struct target *target, 2861 int err, char *msg, size_t size) 2862 { 2863 char sbuf[STRERR_BUFSIZE]; 2864 int printed = 0; 2865 2866 switch (err) { 2867 case EPERM: 2868 case EACCES: 2869 if (err == EPERM) 2870 printed = scnprintf(msg, size, 2871 "No permission to enable %s event.\n\n", 2872 perf_evsel__name(evsel)); 2873 2874 return scnprintf(msg + printed, size - printed, 2875 "You may not have permission to collect %sstats.\n\n" 2876 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2877 "which controls use of the performance events system by\n" 2878 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2879 "The current value is %d:\n\n" 2880 " -1: Allow use of (almost) all events by all users\n" 2881 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" 2882 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n" 2883 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n" 2884 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2885 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2886 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2887 " kernel.perf_event_paranoid = -1\n" , 2888 target->system_wide ? "system-wide " : "", 2889 perf_event_paranoid()); 2890 case ENOENT: 2891 return scnprintf(msg, size, "The %s event is not supported.", 2892 perf_evsel__name(evsel)); 2893 case EMFILE: 2894 return scnprintf(msg, size, "%s", 2895 "Too many events are opened.\n" 2896 "Probably the maximum number of open file descriptors has been reached.\n" 2897 "Hint: Try again after reducing the number of events.\n" 2898 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2899 case ENOMEM: 2900 if (evsel__has_callchain(evsel) && 2901 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2902 return scnprintf(msg, size, 2903 "Not enough memory to setup event with callchain.\n" 2904 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2905 "Hint: Current value: %d", sysctl__max_stack()); 2906 break; 2907 case ENODEV: 2908 if (target->cpu_list) 2909 return scnprintf(msg, size, "%s", 2910 "No such device - did you specify an out-of-range profile CPU?"); 2911 break; 2912 case EOPNOTSUPP: 2913 if (evsel->core.attr.sample_period != 0) 2914 return scnprintf(msg, size, 2915 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'", 2916 perf_evsel__name(evsel)); 2917 if (evsel->core.attr.precise_ip) 2918 return scnprintf(msg, size, "%s", 2919 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2920 #if defined(__i386__) || defined(__x86_64__) 2921 if (evsel->core.attr.type == PERF_TYPE_HARDWARE) 2922 return scnprintf(msg, size, "%s", 2923 "No hardware sampling interrupt available.\n"); 2924 #endif 2925 break; 2926 case EBUSY: 2927 if (find_process("oprofiled")) 2928 return scnprintf(msg, size, 2929 "The PMU counters are busy/taken by another profiler.\n" 2930 "We found oprofile daemon running, please stop it and try again."); 2931 break; 2932 case EINVAL: 2933 if (evsel->core.attr.write_backward && perf_missing_features.write_backward) 2934 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2935 if (perf_missing_features.clockid) 2936 return scnprintf(msg, size, "clockid feature not supported."); 2937 if (perf_missing_features.clockid_wrong) 2938 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2939 if (perf_missing_features.aux_output) 2940 return scnprintf(msg, size, "The 'aux_output' feature is not supported, update the kernel."); 2941 break; 2942 default: 2943 break; 2944 } 2945 2946 return scnprintf(msg, size, 2947 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2948 "/bin/dmesg | grep -i perf may provide additional information.\n", 2949 err, str_error_r(err, sbuf, sizeof(sbuf)), 2950 perf_evsel__name(evsel)); 2951 } 2952 2953 struct perf_env *perf_evsel__env(struct evsel *evsel) 2954 { 2955 if (evsel && evsel->evlist) 2956 return evsel->evlist->env; 2957 return NULL; 2958 } 2959 2960 static int store_evsel_ids(struct evsel *evsel, struct evlist *evlist) 2961 { 2962 int cpu, thread; 2963 2964 for (cpu = 0; cpu < xyarray__max_x(evsel->core.fd); cpu++) { 2965 for (thread = 0; thread < xyarray__max_y(evsel->core.fd); 2966 thread++) { 2967 int fd = FD(evsel, cpu, thread); 2968 2969 if (perf_evlist__id_add_fd(evlist, evsel, 2970 cpu, thread, fd) < 0) 2971 return -1; 2972 } 2973 } 2974 2975 return 0; 2976 } 2977 2978 int perf_evsel__store_ids(struct evsel *evsel, struct evlist *evlist) 2979 { 2980 struct perf_cpu_map *cpus = evsel->core.cpus; 2981 struct perf_thread_map *threads = evsel->core.threads; 2982 2983 if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr)) 2984 return -ENOMEM; 2985 2986 return store_evsel_ids(evsel, evlist); 2987 } 2988