xref: /openbmc/linux/tools/perf/util/evsel.c (revision b08918fb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
4  *
5  * Parts came from builtin-{top,stat,record}.c, see those files for further
6  * copyright notes.
7  */
8 
9 #include <byteswap.h>
10 #include <errno.h>
11 #include <inttypes.h>
12 #include <linux/bitops.h>
13 #include <api/fs/fs.h>
14 #include <api/fs/tracing_path.h>
15 #include <traceevent/event-parse.h>
16 #include <linux/hw_breakpoint.h>
17 #include <linux/perf_event.h>
18 #include <linux/compiler.h>
19 #include <linux/err.h>
20 #include <linux/zalloc.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include <stdlib.h>
26 #include <perf/evsel.h>
27 #include "asm/bug.h"
28 #include "callchain.h"
29 #include "cgroup.h"
30 #include "counts.h"
31 #include "event.h"
32 #include "evsel.h"
33 #include "evlist.h"
34 #include "cpumap.h"
35 #include "thread_map.h"
36 #include "target.h"
37 #include "perf_regs.h"
38 #include "record.h"
39 #include "debug.h"
40 #include "trace-event.h"
41 #include "stat.h"
42 #include "string2.h"
43 #include "memswap.h"
44 #include "util.h"
45 #include "../perf-sys.h"
46 #include "util/parse-branch-options.h"
47 #include <internal/xyarray.h>
48 
49 #include <linux/ctype.h>
50 
51 struct perf_missing_features perf_missing_features;
52 
53 static clockid_t clockid;
54 
55 static int perf_evsel__no_extra_init(struct evsel *evsel __maybe_unused)
56 {
57 	return 0;
58 }
59 
60 void __weak test_attr__ready(void) { }
61 
62 static void perf_evsel__no_extra_fini(struct evsel *evsel __maybe_unused)
63 {
64 }
65 
66 static struct {
67 	size_t	size;
68 	int	(*init)(struct evsel *evsel);
69 	void	(*fini)(struct evsel *evsel);
70 } perf_evsel__object = {
71 	.size = sizeof(struct evsel),
72 	.init = perf_evsel__no_extra_init,
73 	.fini = perf_evsel__no_extra_fini,
74 };
75 
76 int perf_evsel__object_config(size_t object_size,
77 			      int (*init)(struct evsel *evsel),
78 			      void (*fini)(struct evsel *evsel))
79 {
80 
81 	if (object_size == 0)
82 		goto set_methods;
83 
84 	if (perf_evsel__object.size > object_size)
85 		return -EINVAL;
86 
87 	perf_evsel__object.size = object_size;
88 
89 set_methods:
90 	if (init != NULL)
91 		perf_evsel__object.init = init;
92 
93 	if (fini != NULL)
94 		perf_evsel__object.fini = fini;
95 
96 	return 0;
97 }
98 
99 #define FD(e, x, y) (*(int *)xyarray__entry(e->core.fd, x, y))
100 
101 int __perf_evsel__sample_size(u64 sample_type)
102 {
103 	u64 mask = sample_type & PERF_SAMPLE_MASK;
104 	int size = 0;
105 	int i;
106 
107 	for (i = 0; i < 64; i++) {
108 		if (mask & (1ULL << i))
109 			size++;
110 	}
111 
112 	size *= sizeof(u64);
113 
114 	return size;
115 }
116 
117 /**
118  * __perf_evsel__calc_id_pos - calculate id_pos.
119  * @sample_type: sample type
120  *
121  * This function returns the position of the event id (PERF_SAMPLE_ID or
122  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
123  * perf_record_sample.
124  */
125 static int __perf_evsel__calc_id_pos(u64 sample_type)
126 {
127 	int idx = 0;
128 
129 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
130 		return 0;
131 
132 	if (!(sample_type & PERF_SAMPLE_ID))
133 		return -1;
134 
135 	if (sample_type & PERF_SAMPLE_IP)
136 		idx += 1;
137 
138 	if (sample_type & PERF_SAMPLE_TID)
139 		idx += 1;
140 
141 	if (sample_type & PERF_SAMPLE_TIME)
142 		idx += 1;
143 
144 	if (sample_type & PERF_SAMPLE_ADDR)
145 		idx += 1;
146 
147 	return idx;
148 }
149 
150 /**
151  * __perf_evsel__calc_is_pos - calculate is_pos.
152  * @sample_type: sample type
153  *
154  * This function returns the position (counting backwards) of the event id
155  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
156  * sample_id_all is used there is an id sample appended to non-sample events.
157  */
158 static int __perf_evsel__calc_is_pos(u64 sample_type)
159 {
160 	int idx = 1;
161 
162 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
163 		return 1;
164 
165 	if (!(sample_type & PERF_SAMPLE_ID))
166 		return -1;
167 
168 	if (sample_type & PERF_SAMPLE_CPU)
169 		idx += 1;
170 
171 	if (sample_type & PERF_SAMPLE_STREAM_ID)
172 		idx += 1;
173 
174 	return idx;
175 }
176 
177 void perf_evsel__calc_id_pos(struct evsel *evsel)
178 {
179 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->core.attr.sample_type);
180 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->core.attr.sample_type);
181 }
182 
183 void __perf_evsel__set_sample_bit(struct evsel *evsel,
184 				  enum perf_event_sample_format bit)
185 {
186 	if (!(evsel->core.attr.sample_type & bit)) {
187 		evsel->core.attr.sample_type |= bit;
188 		evsel->sample_size += sizeof(u64);
189 		perf_evsel__calc_id_pos(evsel);
190 	}
191 }
192 
193 void __perf_evsel__reset_sample_bit(struct evsel *evsel,
194 				    enum perf_event_sample_format bit)
195 {
196 	if (evsel->core.attr.sample_type & bit) {
197 		evsel->core.attr.sample_type &= ~bit;
198 		evsel->sample_size -= sizeof(u64);
199 		perf_evsel__calc_id_pos(evsel);
200 	}
201 }
202 
203 void perf_evsel__set_sample_id(struct evsel *evsel,
204 			       bool can_sample_identifier)
205 {
206 	if (can_sample_identifier) {
207 		perf_evsel__reset_sample_bit(evsel, ID);
208 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
209 	} else {
210 		perf_evsel__set_sample_bit(evsel, ID);
211 	}
212 	evsel->core.attr.read_format |= PERF_FORMAT_ID;
213 }
214 
215 /**
216  * perf_evsel__is_function_event - Return whether given evsel is a function
217  * trace event
218  *
219  * @evsel - evsel selector to be tested
220  *
221  * Return %true if event is function trace event
222  */
223 bool perf_evsel__is_function_event(struct evsel *evsel)
224 {
225 #define FUNCTION_EVENT "ftrace:function"
226 
227 	return evsel->name &&
228 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
229 
230 #undef FUNCTION_EVENT
231 }
232 
233 void evsel__init(struct evsel *evsel,
234 		 struct perf_event_attr *attr, int idx)
235 {
236 	perf_evsel__init(&evsel->core, attr);
237 	evsel->idx	   = idx;
238 	evsel->tracking	   = !idx;
239 	evsel->leader	   = evsel;
240 	evsel->unit	   = "";
241 	evsel->scale	   = 1.0;
242 	evsel->max_events  = ULONG_MAX;
243 	evsel->evlist	   = NULL;
244 	evsel->bpf_obj	   = NULL;
245 	evsel->bpf_fd	   = -1;
246 	INIT_LIST_HEAD(&evsel->config_terms);
247 	perf_evsel__object.init(evsel);
248 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
249 	perf_evsel__calc_id_pos(evsel);
250 	evsel->cmdline_group_boundary = false;
251 	evsel->metric_expr   = NULL;
252 	evsel->metric_name   = NULL;
253 	evsel->metric_events = NULL;
254 	evsel->collect_stat  = false;
255 	evsel->pmu_name      = NULL;
256 }
257 
258 struct evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
259 {
260 	struct evsel *evsel = zalloc(perf_evsel__object.size);
261 
262 	if (!evsel)
263 		return NULL;
264 	evsel__init(evsel, attr, idx);
265 
266 	if (perf_evsel__is_bpf_output(evsel)) {
267 		evsel->core.attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
268 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
269 		evsel->core.attr.sample_period = 1;
270 	}
271 
272 	if (perf_evsel__is_clock(evsel)) {
273 		/*
274 		 * The evsel->unit points to static alias->unit
275 		 * so it's ok to use static string in here.
276 		 */
277 		static const char *unit = "msec";
278 
279 		evsel->unit = unit;
280 		evsel->scale = 1e-6;
281 	}
282 
283 	return evsel;
284 }
285 
286 static bool perf_event_can_profile_kernel(void)
287 {
288 	return perf_event_paranoid_check(1);
289 }
290 
291 struct evsel *perf_evsel__new_cycles(bool precise)
292 {
293 	struct perf_event_attr attr = {
294 		.type	= PERF_TYPE_HARDWARE,
295 		.config	= PERF_COUNT_HW_CPU_CYCLES,
296 		.exclude_kernel	= !perf_event_can_profile_kernel(),
297 	};
298 	struct evsel *evsel;
299 
300 	event_attr_init(&attr);
301 
302 	if (!precise)
303 		goto new_event;
304 
305 	/*
306 	 * Now let the usual logic to set up the perf_event_attr defaults
307 	 * to kick in when we return and before perf_evsel__open() is called.
308 	 */
309 new_event:
310 	evsel = evsel__new(&attr);
311 	if (evsel == NULL)
312 		goto out;
313 
314 	evsel->precise_max = true;
315 
316 	/* use asprintf() because free(evsel) assumes name is allocated */
317 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
318 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
319 		     attr.exclude_kernel ? "u" : "",
320 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
321 		goto error_free;
322 out:
323 	return evsel;
324 error_free:
325 	evsel__delete(evsel);
326 	evsel = NULL;
327 	goto out;
328 }
329 
330 /*
331  * Returns pointer with encoded error via <linux/err.h> interface.
332  */
333 struct evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
334 {
335 	struct evsel *evsel = zalloc(perf_evsel__object.size);
336 	int err = -ENOMEM;
337 
338 	if (evsel == NULL) {
339 		goto out_err;
340 	} else {
341 		struct perf_event_attr attr = {
342 			.type	       = PERF_TYPE_TRACEPOINT,
343 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
344 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
345 		};
346 
347 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
348 			goto out_free;
349 
350 		evsel->tp_format = trace_event__tp_format(sys, name);
351 		if (IS_ERR(evsel->tp_format)) {
352 			err = PTR_ERR(evsel->tp_format);
353 			goto out_free;
354 		}
355 
356 		event_attr_init(&attr);
357 		attr.config = evsel->tp_format->id;
358 		attr.sample_period = 1;
359 		evsel__init(evsel, &attr, idx);
360 	}
361 
362 	return evsel;
363 
364 out_free:
365 	zfree(&evsel->name);
366 	free(evsel);
367 out_err:
368 	return ERR_PTR(err);
369 }
370 
371 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
372 	"cycles",
373 	"instructions",
374 	"cache-references",
375 	"cache-misses",
376 	"branches",
377 	"branch-misses",
378 	"bus-cycles",
379 	"stalled-cycles-frontend",
380 	"stalled-cycles-backend",
381 	"ref-cycles",
382 };
383 
384 static const char *__perf_evsel__hw_name(u64 config)
385 {
386 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
387 		return perf_evsel__hw_names[config];
388 
389 	return "unknown-hardware";
390 }
391 
392 static int perf_evsel__add_modifiers(struct evsel *evsel, char *bf, size_t size)
393 {
394 	int colon = 0, r = 0;
395 	struct perf_event_attr *attr = &evsel->core.attr;
396 	bool exclude_guest_default = false;
397 
398 #define MOD_PRINT(context, mod)	do {					\
399 		if (!attr->exclude_##context) {				\
400 			if (!colon) colon = ++r;			\
401 			r += scnprintf(bf + r, size - r, "%c", mod);	\
402 		} } while(0)
403 
404 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
405 		MOD_PRINT(kernel, 'k');
406 		MOD_PRINT(user, 'u');
407 		MOD_PRINT(hv, 'h');
408 		exclude_guest_default = true;
409 	}
410 
411 	if (attr->precise_ip) {
412 		if (!colon)
413 			colon = ++r;
414 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
415 		exclude_guest_default = true;
416 	}
417 
418 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
419 		MOD_PRINT(host, 'H');
420 		MOD_PRINT(guest, 'G');
421 	}
422 #undef MOD_PRINT
423 	if (colon)
424 		bf[colon - 1] = ':';
425 	return r;
426 }
427 
428 static int perf_evsel__hw_name(struct evsel *evsel, char *bf, size_t size)
429 {
430 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->core.attr.config));
431 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
432 }
433 
434 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
435 	"cpu-clock",
436 	"task-clock",
437 	"page-faults",
438 	"context-switches",
439 	"cpu-migrations",
440 	"minor-faults",
441 	"major-faults",
442 	"alignment-faults",
443 	"emulation-faults",
444 	"dummy",
445 };
446 
447 static const char *__perf_evsel__sw_name(u64 config)
448 {
449 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
450 		return perf_evsel__sw_names[config];
451 	return "unknown-software";
452 }
453 
454 static int perf_evsel__sw_name(struct evsel *evsel, char *bf, size_t size)
455 {
456 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->core.attr.config));
457 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
458 }
459 
460 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
461 {
462 	int r;
463 
464 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
465 
466 	if (type & HW_BREAKPOINT_R)
467 		r += scnprintf(bf + r, size - r, "r");
468 
469 	if (type & HW_BREAKPOINT_W)
470 		r += scnprintf(bf + r, size - r, "w");
471 
472 	if (type & HW_BREAKPOINT_X)
473 		r += scnprintf(bf + r, size - r, "x");
474 
475 	return r;
476 }
477 
478 static int perf_evsel__bp_name(struct evsel *evsel, char *bf, size_t size)
479 {
480 	struct perf_event_attr *attr = &evsel->core.attr;
481 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
482 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
483 }
484 
485 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
486 				[PERF_EVSEL__MAX_ALIASES] = {
487  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
488  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
489  { "LLC",	"L2",							},
490  { "dTLB",	"d-tlb",	"Data-TLB",				},
491  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
492  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
493  { "node",								},
494 };
495 
496 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
497 				   [PERF_EVSEL__MAX_ALIASES] = {
498  { "load",	"loads",	"read",					},
499  { "store",	"stores",	"write",				},
500  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
501 };
502 
503 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
504 				       [PERF_EVSEL__MAX_ALIASES] = {
505  { "refs",	"Reference",	"ops",		"access",		},
506  { "misses",	"miss",							},
507 };
508 
509 #define C(x)		PERF_COUNT_HW_CACHE_##x
510 #define CACHE_READ	(1 << C(OP_READ))
511 #define CACHE_WRITE	(1 << C(OP_WRITE))
512 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
513 #define COP(x)		(1 << x)
514 
515 /*
516  * cache operartion stat
517  * L1I : Read and prefetch only
518  * ITLB and BPU : Read-only
519  */
520 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
521  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
522  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
523  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
524  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
525  [C(ITLB)]	= (CACHE_READ),
526  [C(BPU)]	= (CACHE_READ),
527  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
528 };
529 
530 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
531 {
532 	if (perf_evsel__hw_cache_stat[type] & COP(op))
533 		return true;	/* valid */
534 	else
535 		return false;	/* invalid */
536 }
537 
538 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
539 					    char *bf, size_t size)
540 {
541 	if (result) {
542 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
543 				 perf_evsel__hw_cache_op[op][0],
544 				 perf_evsel__hw_cache_result[result][0]);
545 	}
546 
547 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
548 			 perf_evsel__hw_cache_op[op][1]);
549 }
550 
551 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
552 {
553 	u8 op, result, type = (config >>  0) & 0xff;
554 	const char *err = "unknown-ext-hardware-cache-type";
555 
556 	if (type >= PERF_COUNT_HW_CACHE_MAX)
557 		goto out_err;
558 
559 	op = (config >>  8) & 0xff;
560 	err = "unknown-ext-hardware-cache-op";
561 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
562 		goto out_err;
563 
564 	result = (config >> 16) & 0xff;
565 	err = "unknown-ext-hardware-cache-result";
566 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
567 		goto out_err;
568 
569 	err = "invalid-cache";
570 	if (!perf_evsel__is_cache_op_valid(type, op))
571 		goto out_err;
572 
573 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
574 out_err:
575 	return scnprintf(bf, size, "%s", err);
576 }
577 
578 static int perf_evsel__hw_cache_name(struct evsel *evsel, char *bf, size_t size)
579 {
580 	int ret = __perf_evsel__hw_cache_name(evsel->core.attr.config, bf, size);
581 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
582 }
583 
584 static int perf_evsel__raw_name(struct evsel *evsel, char *bf, size_t size)
585 {
586 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->core.attr.config);
587 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
588 }
589 
590 static int perf_evsel__tool_name(char *bf, size_t size)
591 {
592 	int ret = scnprintf(bf, size, "duration_time");
593 	return ret;
594 }
595 
596 const char *perf_evsel__name(struct evsel *evsel)
597 {
598 	char bf[128];
599 
600 	if (!evsel)
601 		goto out_unknown;
602 
603 	if (evsel->name)
604 		return evsel->name;
605 
606 	switch (evsel->core.attr.type) {
607 	case PERF_TYPE_RAW:
608 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
609 		break;
610 
611 	case PERF_TYPE_HARDWARE:
612 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
613 		break;
614 
615 	case PERF_TYPE_HW_CACHE:
616 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
617 		break;
618 
619 	case PERF_TYPE_SOFTWARE:
620 		if (evsel->tool_event)
621 			perf_evsel__tool_name(bf, sizeof(bf));
622 		else
623 			perf_evsel__sw_name(evsel, bf, sizeof(bf));
624 		break;
625 
626 	case PERF_TYPE_TRACEPOINT:
627 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
628 		break;
629 
630 	case PERF_TYPE_BREAKPOINT:
631 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
632 		break;
633 
634 	default:
635 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
636 			  evsel->core.attr.type);
637 		break;
638 	}
639 
640 	evsel->name = strdup(bf);
641 
642 	if (evsel->name)
643 		return evsel->name;
644 out_unknown:
645 	return "unknown";
646 }
647 
648 const char *perf_evsel__group_name(struct evsel *evsel)
649 {
650 	return evsel->group_name ?: "anon group";
651 }
652 
653 /*
654  * Returns the group details for the specified leader,
655  * with following rules.
656  *
657  *  For record -e '{cycles,instructions}'
658  *    'anon group { cycles:u, instructions:u }'
659  *
660  *  For record -e 'cycles,instructions' and report --group
661  *    'cycles:u, instructions:u'
662  */
663 int perf_evsel__group_desc(struct evsel *evsel, char *buf, size_t size)
664 {
665 	int ret = 0;
666 	struct evsel *pos;
667 	const char *group_name = perf_evsel__group_name(evsel);
668 
669 	if (!evsel->forced_leader)
670 		ret = scnprintf(buf, size, "%s { ", group_name);
671 
672 	ret += scnprintf(buf + ret, size - ret, "%s",
673 			 perf_evsel__name(evsel));
674 
675 	for_each_group_member(pos, evsel)
676 		ret += scnprintf(buf + ret, size - ret, ", %s",
677 				 perf_evsel__name(pos));
678 
679 	if (!evsel->forced_leader)
680 		ret += scnprintf(buf + ret, size - ret, " }");
681 
682 	return ret;
683 }
684 
685 static void __perf_evsel__config_callchain(struct evsel *evsel,
686 					   struct record_opts *opts,
687 					   struct callchain_param *param)
688 {
689 	bool function = perf_evsel__is_function_event(evsel);
690 	struct perf_event_attr *attr = &evsel->core.attr;
691 
692 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
693 
694 	attr->sample_max_stack = param->max_stack;
695 
696 	if (opts->kernel_callchains)
697 		attr->exclude_callchain_user = 1;
698 	if (opts->user_callchains)
699 		attr->exclude_callchain_kernel = 1;
700 	if (param->record_mode == CALLCHAIN_LBR) {
701 		if (!opts->branch_stack) {
702 			if (attr->exclude_user) {
703 				pr_warning("LBR callstack option is only available "
704 					   "to get user callchain information. "
705 					   "Falling back to framepointers.\n");
706 			} else {
707 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
708 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
709 							PERF_SAMPLE_BRANCH_CALL_STACK |
710 							PERF_SAMPLE_BRANCH_NO_CYCLES |
711 							PERF_SAMPLE_BRANCH_NO_FLAGS;
712 			}
713 		} else
714 			 pr_warning("Cannot use LBR callstack with branch stack. "
715 				    "Falling back to framepointers.\n");
716 	}
717 
718 	if (param->record_mode == CALLCHAIN_DWARF) {
719 		if (!function) {
720 			perf_evsel__set_sample_bit(evsel, REGS_USER);
721 			perf_evsel__set_sample_bit(evsel, STACK_USER);
722 			if (opts->sample_user_regs && DWARF_MINIMAL_REGS != PERF_REGS_MASK) {
723 				attr->sample_regs_user |= DWARF_MINIMAL_REGS;
724 				pr_warning("WARNING: The use of --call-graph=dwarf may require all the user registers, "
725 					   "specifying a subset with --user-regs may render DWARF unwinding unreliable, "
726 					   "so the minimal registers set (IP, SP) is explicitly forced.\n");
727 			} else {
728 				attr->sample_regs_user |= PERF_REGS_MASK;
729 			}
730 			attr->sample_stack_user = param->dump_size;
731 			attr->exclude_callchain_user = 1;
732 		} else {
733 			pr_info("Cannot use DWARF unwind for function trace event,"
734 				" falling back to framepointers.\n");
735 		}
736 	}
737 
738 	if (function) {
739 		pr_info("Disabling user space callchains for function trace event.\n");
740 		attr->exclude_callchain_user = 1;
741 	}
742 }
743 
744 void perf_evsel__config_callchain(struct evsel *evsel,
745 				  struct record_opts *opts,
746 				  struct callchain_param *param)
747 {
748 	if (param->enabled)
749 		return __perf_evsel__config_callchain(evsel, opts, param);
750 }
751 
752 static void
753 perf_evsel__reset_callgraph(struct evsel *evsel,
754 			    struct callchain_param *param)
755 {
756 	struct perf_event_attr *attr = &evsel->core.attr;
757 
758 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
759 	if (param->record_mode == CALLCHAIN_LBR) {
760 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
761 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
762 					      PERF_SAMPLE_BRANCH_CALL_STACK);
763 	}
764 	if (param->record_mode == CALLCHAIN_DWARF) {
765 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
766 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
767 	}
768 }
769 
770 static void apply_config_terms(struct evsel *evsel,
771 			       struct record_opts *opts, bool track)
772 {
773 	struct perf_evsel_config_term *term;
774 	struct list_head *config_terms = &evsel->config_terms;
775 	struct perf_event_attr *attr = &evsel->core.attr;
776 	/* callgraph default */
777 	struct callchain_param param = {
778 		.record_mode = callchain_param.record_mode,
779 	};
780 	u32 dump_size = 0;
781 	int max_stack = 0;
782 	const char *callgraph_buf = NULL;
783 
784 	list_for_each_entry(term, config_terms, list) {
785 		switch (term->type) {
786 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
787 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
788 				attr->sample_period = term->val.period;
789 				attr->freq = 0;
790 				perf_evsel__reset_sample_bit(evsel, PERIOD);
791 			}
792 			break;
793 		case PERF_EVSEL__CONFIG_TERM_FREQ:
794 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
795 				attr->sample_freq = term->val.freq;
796 				attr->freq = 1;
797 				perf_evsel__set_sample_bit(evsel, PERIOD);
798 			}
799 			break;
800 		case PERF_EVSEL__CONFIG_TERM_TIME:
801 			if (term->val.time)
802 				perf_evsel__set_sample_bit(evsel, TIME);
803 			else
804 				perf_evsel__reset_sample_bit(evsel, TIME);
805 			break;
806 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
807 			callgraph_buf = term->val.callgraph;
808 			break;
809 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
810 			if (term->val.branch && strcmp(term->val.branch, "no")) {
811 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
812 				parse_branch_str(term->val.branch,
813 						 &attr->branch_sample_type);
814 			} else
815 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
816 			break;
817 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
818 			dump_size = term->val.stack_user;
819 			break;
820 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
821 			max_stack = term->val.max_stack;
822 			break;
823 		case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS:
824 			evsel->max_events = term->val.max_events;
825 			break;
826 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
827 			/*
828 			 * attr->inherit should has already been set by
829 			 * perf_evsel__config. If user explicitly set
830 			 * inherit using config terms, override global
831 			 * opt->no_inherit setting.
832 			 */
833 			attr->inherit = term->val.inherit ? 1 : 0;
834 			break;
835 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
836 			attr->write_backward = term->val.overwrite ? 1 : 0;
837 			break;
838 		case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
839 			break;
840 		case PERF_EVSEL__CONFIG_TERM_PERCORE:
841 			break;
842 		case PERF_EVSEL__CONFIG_TERM_AUX_OUTPUT:
843 			attr->aux_output = term->val.aux_output ? 1 : 0;
844 			break;
845 		default:
846 			break;
847 		}
848 	}
849 
850 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
851 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
852 		bool sample_address = false;
853 
854 		if (max_stack) {
855 			param.max_stack = max_stack;
856 			if (callgraph_buf == NULL)
857 				callgraph_buf = "fp";
858 		}
859 
860 		/* parse callgraph parameters */
861 		if (callgraph_buf != NULL) {
862 			if (!strcmp(callgraph_buf, "no")) {
863 				param.enabled = false;
864 				param.record_mode = CALLCHAIN_NONE;
865 			} else {
866 				param.enabled = true;
867 				if (parse_callchain_record(callgraph_buf, &param)) {
868 					pr_err("per-event callgraph setting for %s failed. "
869 					       "Apply callgraph global setting for it\n",
870 					       evsel->name);
871 					return;
872 				}
873 				if (param.record_mode == CALLCHAIN_DWARF)
874 					sample_address = true;
875 			}
876 		}
877 		if (dump_size > 0) {
878 			dump_size = round_up(dump_size, sizeof(u64));
879 			param.dump_size = dump_size;
880 		}
881 
882 		/* If global callgraph set, clear it */
883 		if (callchain_param.enabled)
884 			perf_evsel__reset_callgraph(evsel, &callchain_param);
885 
886 		/* set perf-event callgraph */
887 		if (param.enabled) {
888 			if (sample_address) {
889 				perf_evsel__set_sample_bit(evsel, ADDR);
890 				perf_evsel__set_sample_bit(evsel, DATA_SRC);
891 				evsel->core.attr.mmap_data = track;
892 			}
893 			perf_evsel__config_callchain(evsel, opts, &param);
894 		}
895 	}
896 }
897 
898 static bool is_dummy_event(struct evsel *evsel)
899 {
900 	return (evsel->core.attr.type == PERF_TYPE_SOFTWARE) &&
901 	       (evsel->core.attr.config == PERF_COUNT_SW_DUMMY);
902 }
903 
904 /*
905  * The enable_on_exec/disabled value strategy:
906  *
907  *  1) For any type of traced program:
908  *    - all independent events and group leaders are disabled
909  *    - all group members are enabled
910  *
911  *     Group members are ruled by group leaders. They need to
912  *     be enabled, because the group scheduling relies on that.
913  *
914  *  2) For traced programs executed by perf:
915  *     - all independent events and group leaders have
916  *       enable_on_exec set
917  *     - we don't specifically enable or disable any event during
918  *       the record command
919  *
920  *     Independent events and group leaders are initially disabled
921  *     and get enabled by exec. Group members are ruled by group
922  *     leaders as stated in 1).
923  *
924  *  3) For traced programs attached by perf (pid/tid):
925  *     - we specifically enable or disable all events during
926  *       the record command
927  *
928  *     When attaching events to already running traced we
929  *     enable/disable events specifically, as there's no
930  *     initial traced exec call.
931  */
932 void perf_evsel__config(struct evsel *evsel, struct record_opts *opts,
933 			struct callchain_param *callchain)
934 {
935 	struct evsel *leader = evsel->leader;
936 	struct perf_event_attr *attr = &evsel->core.attr;
937 	int track = evsel->tracking;
938 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
939 
940 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
941 	attr->inherit	    = !opts->no_inherit;
942 	attr->write_backward = opts->overwrite ? 1 : 0;
943 
944 	perf_evsel__set_sample_bit(evsel, IP);
945 	perf_evsel__set_sample_bit(evsel, TID);
946 
947 	if (evsel->sample_read) {
948 		perf_evsel__set_sample_bit(evsel, READ);
949 
950 		/*
951 		 * We need ID even in case of single event, because
952 		 * PERF_SAMPLE_READ process ID specific data.
953 		 */
954 		perf_evsel__set_sample_id(evsel, false);
955 
956 		/*
957 		 * Apply group format only if we belong to group
958 		 * with more than one members.
959 		 */
960 		if (leader->core.nr_members > 1) {
961 			attr->read_format |= PERF_FORMAT_GROUP;
962 			attr->inherit = 0;
963 		}
964 	}
965 
966 	/*
967 	 * We default some events to have a default interval. But keep
968 	 * it a weak assumption overridable by the user.
969 	 */
970 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
971 				     opts->user_interval != ULLONG_MAX)) {
972 		if (opts->freq) {
973 			perf_evsel__set_sample_bit(evsel, PERIOD);
974 			attr->freq		= 1;
975 			attr->sample_freq	= opts->freq;
976 		} else {
977 			attr->sample_period = opts->default_interval;
978 		}
979 	}
980 
981 	/*
982 	 * Disable sampling for all group members other
983 	 * than leader in case leader 'leads' the sampling.
984 	 */
985 	if ((leader != evsel) && leader->sample_read) {
986 		attr->freq           = 0;
987 		attr->sample_freq    = 0;
988 		attr->sample_period  = 0;
989 		attr->write_backward = 0;
990 
991 		/*
992 		 * We don't get sample for slave events, we make them
993 		 * when delivering group leader sample. Set the slave
994 		 * event to follow the master sample_type to ease up
995 		 * report.
996 		 */
997 		attr->sample_type = leader->core.attr.sample_type;
998 	}
999 
1000 	if (opts->no_samples)
1001 		attr->sample_freq = 0;
1002 
1003 	if (opts->inherit_stat) {
1004 		evsel->core.attr.read_format |=
1005 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1006 			PERF_FORMAT_TOTAL_TIME_RUNNING |
1007 			PERF_FORMAT_ID;
1008 		attr->inherit_stat = 1;
1009 	}
1010 
1011 	if (opts->sample_address) {
1012 		perf_evsel__set_sample_bit(evsel, ADDR);
1013 		attr->mmap_data = track;
1014 	}
1015 
1016 	/*
1017 	 * We don't allow user space callchains for  function trace
1018 	 * event, due to issues with page faults while tracing page
1019 	 * fault handler and its overall trickiness nature.
1020 	 */
1021 	if (perf_evsel__is_function_event(evsel))
1022 		evsel->core.attr.exclude_callchain_user = 1;
1023 
1024 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
1025 		perf_evsel__config_callchain(evsel, opts, callchain);
1026 
1027 	if (opts->sample_intr_regs) {
1028 		attr->sample_regs_intr = opts->sample_intr_regs;
1029 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
1030 	}
1031 
1032 	if (opts->sample_user_regs) {
1033 		attr->sample_regs_user |= opts->sample_user_regs;
1034 		perf_evsel__set_sample_bit(evsel, REGS_USER);
1035 	}
1036 
1037 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
1038 		perf_evsel__set_sample_bit(evsel, CPU);
1039 
1040 	/*
1041 	 * When the user explicitly disabled time don't force it here.
1042 	 */
1043 	if (opts->sample_time &&
1044 	    (!perf_missing_features.sample_id_all &&
1045 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1046 	     opts->sample_time_set)))
1047 		perf_evsel__set_sample_bit(evsel, TIME);
1048 
1049 	if (opts->raw_samples && !evsel->no_aux_samples) {
1050 		perf_evsel__set_sample_bit(evsel, TIME);
1051 		perf_evsel__set_sample_bit(evsel, RAW);
1052 		perf_evsel__set_sample_bit(evsel, CPU);
1053 	}
1054 
1055 	if (opts->sample_address)
1056 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
1057 
1058 	if (opts->sample_phys_addr)
1059 		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1060 
1061 	if (opts->no_buffering) {
1062 		attr->watermark = 0;
1063 		attr->wakeup_events = 1;
1064 	}
1065 	if (opts->branch_stack && !evsel->no_aux_samples) {
1066 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1067 		attr->branch_sample_type = opts->branch_stack;
1068 	}
1069 
1070 	if (opts->sample_weight)
1071 		perf_evsel__set_sample_bit(evsel, WEIGHT);
1072 
1073 	attr->task  = track;
1074 	attr->mmap  = track;
1075 	attr->mmap2 = track && !perf_missing_features.mmap2;
1076 	attr->comm  = track;
1077 	attr->ksymbol = track && !perf_missing_features.ksymbol;
1078 	attr->bpf_event = track && !opts->no_bpf_event && !perf_missing_features.bpf;
1079 
1080 	if (opts->record_namespaces)
1081 		attr->namespaces  = track;
1082 
1083 	if (opts->record_switch_events)
1084 		attr->context_switch = track;
1085 
1086 	if (opts->sample_transaction)
1087 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
1088 
1089 	if (opts->running_time) {
1090 		evsel->core.attr.read_format |=
1091 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1092 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1093 	}
1094 
1095 	/*
1096 	 * XXX see the function comment above
1097 	 *
1098 	 * Disabling only independent events or group leaders,
1099 	 * keeping group members enabled.
1100 	 */
1101 	if (perf_evsel__is_group_leader(evsel))
1102 		attr->disabled = 1;
1103 
1104 	/*
1105 	 * Setting enable_on_exec for independent events and
1106 	 * group leaders for traced executed by perf.
1107 	 */
1108 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1109 		!opts->initial_delay)
1110 		attr->enable_on_exec = 1;
1111 
1112 	if (evsel->immediate) {
1113 		attr->disabled = 0;
1114 		attr->enable_on_exec = 0;
1115 	}
1116 
1117 	clockid = opts->clockid;
1118 	if (opts->use_clockid) {
1119 		attr->use_clockid = 1;
1120 		attr->clockid = opts->clockid;
1121 	}
1122 
1123 	if (evsel->precise_max)
1124 		attr->precise_ip = 3;
1125 
1126 	if (opts->all_user) {
1127 		attr->exclude_kernel = 1;
1128 		attr->exclude_user   = 0;
1129 	}
1130 
1131 	if (opts->all_kernel) {
1132 		attr->exclude_kernel = 0;
1133 		attr->exclude_user   = 1;
1134 	}
1135 
1136 	if (evsel->core.own_cpus || evsel->unit)
1137 		evsel->core.attr.read_format |= PERF_FORMAT_ID;
1138 
1139 	/*
1140 	 * Apply event specific term settings,
1141 	 * it overloads any global configuration.
1142 	 */
1143 	apply_config_terms(evsel, opts, track);
1144 
1145 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1146 
1147 	/* The --period option takes the precedence. */
1148 	if (opts->period_set) {
1149 		if (opts->period)
1150 			perf_evsel__set_sample_bit(evsel, PERIOD);
1151 		else
1152 			perf_evsel__reset_sample_bit(evsel, PERIOD);
1153 	}
1154 
1155 	/*
1156 	 * For initial_delay, a dummy event is added implicitly.
1157 	 * The software event will trigger -EOPNOTSUPP error out,
1158 	 * if BRANCH_STACK bit is set.
1159 	 */
1160 	if (opts->initial_delay && is_dummy_event(evsel))
1161 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1162 }
1163 
1164 int perf_evsel__set_filter(struct evsel *evsel, const char *filter)
1165 {
1166 	char *new_filter = strdup(filter);
1167 
1168 	if (new_filter != NULL) {
1169 		free(evsel->filter);
1170 		evsel->filter = new_filter;
1171 		return 0;
1172 	}
1173 
1174 	return -1;
1175 }
1176 
1177 static int perf_evsel__append_filter(struct evsel *evsel,
1178 				     const char *fmt, const char *filter)
1179 {
1180 	char *new_filter;
1181 
1182 	if (evsel->filter == NULL)
1183 		return perf_evsel__set_filter(evsel, filter);
1184 
1185 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1186 		free(evsel->filter);
1187 		evsel->filter = new_filter;
1188 		return 0;
1189 	}
1190 
1191 	return -1;
1192 }
1193 
1194 int perf_evsel__append_tp_filter(struct evsel *evsel, const char *filter)
1195 {
1196 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1197 }
1198 
1199 int perf_evsel__append_addr_filter(struct evsel *evsel, const char *filter)
1200 {
1201 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1202 }
1203 
1204 int evsel__enable(struct evsel *evsel)
1205 {
1206 	int err = perf_evsel__enable(&evsel->core);
1207 
1208 	if (!err)
1209 		evsel->disabled = false;
1210 
1211 	return err;
1212 }
1213 
1214 int evsel__disable(struct evsel *evsel)
1215 {
1216 	int err = perf_evsel__disable(&evsel->core);
1217 	/*
1218 	 * We mark it disabled here so that tools that disable a event can
1219 	 * ignore events after they disable it. I.e. the ring buffer may have
1220 	 * already a few more events queued up before the kernel got the stop
1221 	 * request.
1222 	 */
1223 	if (!err)
1224 		evsel->disabled = true;
1225 
1226 	return err;
1227 }
1228 
1229 int perf_evsel__alloc_id(struct evsel *evsel, int ncpus, int nthreads)
1230 {
1231 	if (ncpus == 0 || nthreads == 0)
1232 		return 0;
1233 
1234 	if (evsel->system_wide)
1235 		nthreads = 1;
1236 
1237 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1238 	if (evsel->sample_id == NULL)
1239 		return -ENOMEM;
1240 
1241 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1242 	if (evsel->id == NULL) {
1243 		xyarray__delete(evsel->sample_id);
1244 		evsel->sample_id = NULL;
1245 		return -ENOMEM;
1246 	}
1247 
1248 	return 0;
1249 }
1250 
1251 static void perf_evsel__free_id(struct evsel *evsel)
1252 {
1253 	xyarray__delete(evsel->sample_id);
1254 	evsel->sample_id = NULL;
1255 	zfree(&evsel->id);
1256 	evsel->ids = 0;
1257 }
1258 
1259 static void perf_evsel__free_config_terms(struct evsel *evsel)
1260 {
1261 	struct perf_evsel_config_term *term, *h;
1262 
1263 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1264 		list_del_init(&term->list);
1265 		free(term);
1266 	}
1267 }
1268 
1269 void perf_evsel__exit(struct evsel *evsel)
1270 {
1271 	assert(list_empty(&evsel->core.node));
1272 	assert(evsel->evlist == NULL);
1273 	perf_evsel__free_counts(evsel);
1274 	perf_evsel__free_fd(&evsel->core);
1275 	perf_evsel__free_id(evsel);
1276 	perf_evsel__free_config_terms(evsel);
1277 	cgroup__put(evsel->cgrp);
1278 	perf_cpu_map__put(evsel->core.cpus);
1279 	perf_cpu_map__put(evsel->core.own_cpus);
1280 	perf_thread_map__put(evsel->core.threads);
1281 	zfree(&evsel->group_name);
1282 	zfree(&evsel->name);
1283 	perf_evsel__object.fini(evsel);
1284 }
1285 
1286 void evsel__delete(struct evsel *evsel)
1287 {
1288 	perf_evsel__exit(evsel);
1289 	free(evsel);
1290 }
1291 
1292 void perf_evsel__compute_deltas(struct evsel *evsel, int cpu, int thread,
1293 				struct perf_counts_values *count)
1294 {
1295 	struct perf_counts_values tmp;
1296 
1297 	if (!evsel->prev_raw_counts)
1298 		return;
1299 
1300 	if (cpu == -1) {
1301 		tmp = evsel->prev_raw_counts->aggr;
1302 		evsel->prev_raw_counts->aggr = *count;
1303 	} else {
1304 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1305 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1306 	}
1307 
1308 	count->val = count->val - tmp.val;
1309 	count->ena = count->ena - tmp.ena;
1310 	count->run = count->run - tmp.run;
1311 }
1312 
1313 void perf_counts_values__scale(struct perf_counts_values *count,
1314 			       bool scale, s8 *pscaled)
1315 {
1316 	s8 scaled = 0;
1317 
1318 	if (scale) {
1319 		if (count->run == 0) {
1320 			scaled = -1;
1321 			count->val = 0;
1322 		} else if (count->run < count->ena) {
1323 			scaled = 1;
1324 			count->val = (u64)((double) count->val * count->ena / count->run);
1325 		}
1326 	}
1327 
1328 	if (pscaled)
1329 		*pscaled = scaled;
1330 }
1331 
1332 static int
1333 perf_evsel__read_one(struct evsel *evsel, int cpu, int thread)
1334 {
1335 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1336 
1337 	return perf_evsel__read(&evsel->core, cpu, thread, count);
1338 }
1339 
1340 static void
1341 perf_evsel__set_count(struct evsel *counter, int cpu, int thread,
1342 		      u64 val, u64 ena, u64 run)
1343 {
1344 	struct perf_counts_values *count;
1345 
1346 	count = perf_counts(counter->counts, cpu, thread);
1347 
1348 	count->val    = val;
1349 	count->ena    = ena;
1350 	count->run    = run;
1351 
1352 	perf_counts__set_loaded(counter->counts, cpu, thread, true);
1353 }
1354 
1355 static int
1356 perf_evsel__process_group_data(struct evsel *leader,
1357 			       int cpu, int thread, u64 *data)
1358 {
1359 	u64 read_format = leader->core.attr.read_format;
1360 	struct sample_read_value *v;
1361 	u64 nr, ena = 0, run = 0, i;
1362 
1363 	nr = *data++;
1364 
1365 	if (nr != (u64) leader->core.nr_members)
1366 		return -EINVAL;
1367 
1368 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1369 		ena = *data++;
1370 
1371 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1372 		run = *data++;
1373 
1374 	v = (struct sample_read_value *) data;
1375 
1376 	perf_evsel__set_count(leader, cpu, thread,
1377 			      v[0].value, ena, run);
1378 
1379 	for (i = 1; i < nr; i++) {
1380 		struct evsel *counter;
1381 
1382 		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1383 		if (!counter)
1384 			return -EINVAL;
1385 
1386 		perf_evsel__set_count(counter, cpu, thread,
1387 				      v[i].value, ena, run);
1388 	}
1389 
1390 	return 0;
1391 }
1392 
1393 static int
1394 perf_evsel__read_group(struct evsel *leader, int cpu, int thread)
1395 {
1396 	struct perf_stat_evsel *ps = leader->stats;
1397 	u64 read_format = leader->core.attr.read_format;
1398 	int size = perf_evsel__read_size(&leader->core);
1399 	u64 *data = ps->group_data;
1400 
1401 	if (!(read_format & PERF_FORMAT_ID))
1402 		return -EINVAL;
1403 
1404 	if (!perf_evsel__is_group_leader(leader))
1405 		return -EINVAL;
1406 
1407 	if (!data) {
1408 		data = zalloc(size);
1409 		if (!data)
1410 			return -ENOMEM;
1411 
1412 		ps->group_data = data;
1413 	}
1414 
1415 	if (FD(leader, cpu, thread) < 0)
1416 		return -EINVAL;
1417 
1418 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1419 		return -errno;
1420 
1421 	return perf_evsel__process_group_data(leader, cpu, thread, data);
1422 }
1423 
1424 int perf_evsel__read_counter(struct evsel *evsel, int cpu, int thread)
1425 {
1426 	u64 read_format = evsel->core.attr.read_format;
1427 
1428 	if (read_format & PERF_FORMAT_GROUP)
1429 		return perf_evsel__read_group(evsel, cpu, thread);
1430 	else
1431 		return perf_evsel__read_one(evsel, cpu, thread);
1432 }
1433 
1434 int __perf_evsel__read_on_cpu(struct evsel *evsel,
1435 			      int cpu, int thread, bool scale)
1436 {
1437 	struct perf_counts_values count;
1438 	size_t nv = scale ? 3 : 1;
1439 
1440 	if (FD(evsel, cpu, thread) < 0)
1441 		return -EINVAL;
1442 
1443 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1444 		return -ENOMEM;
1445 
1446 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1447 		return -errno;
1448 
1449 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1450 	perf_counts_values__scale(&count, scale, NULL);
1451 	*perf_counts(evsel->counts, cpu, thread) = count;
1452 	return 0;
1453 }
1454 
1455 static int get_group_fd(struct evsel *evsel, int cpu, int thread)
1456 {
1457 	struct evsel *leader = evsel->leader;
1458 	int fd;
1459 
1460 	if (perf_evsel__is_group_leader(evsel))
1461 		return -1;
1462 
1463 	/*
1464 	 * Leader must be already processed/open,
1465 	 * if not it's a bug.
1466 	 */
1467 	BUG_ON(!leader->core.fd);
1468 
1469 	fd = FD(leader, cpu, thread);
1470 	BUG_ON(fd == -1);
1471 
1472 	return fd;
1473 }
1474 
1475 struct bit_names {
1476 	int bit;
1477 	const char *name;
1478 };
1479 
1480 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1481 {
1482 	bool first_bit = true;
1483 	int i = 0;
1484 
1485 	do {
1486 		if (value & bits[i].bit) {
1487 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1488 			first_bit = false;
1489 		}
1490 	} while (bits[++i].name != NULL);
1491 }
1492 
1493 static void __p_sample_type(char *buf, size_t size, u64 value)
1494 {
1495 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1496 	struct bit_names bits[] = {
1497 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1498 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1499 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1500 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1501 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1502 		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1503 		{ .name = NULL, }
1504 	};
1505 #undef bit_name
1506 	__p_bits(buf, size, value, bits);
1507 }
1508 
1509 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1510 {
1511 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1512 	struct bit_names bits[] = {
1513 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1514 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1515 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1516 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1517 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1518 		{ .name = NULL, }
1519 	};
1520 #undef bit_name
1521 	__p_bits(buf, size, value, bits);
1522 }
1523 
1524 static void __p_read_format(char *buf, size_t size, u64 value)
1525 {
1526 #define bit_name(n) { PERF_FORMAT_##n, #n }
1527 	struct bit_names bits[] = {
1528 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1529 		bit_name(ID), bit_name(GROUP),
1530 		{ .name = NULL, }
1531 	};
1532 #undef bit_name
1533 	__p_bits(buf, size, value, bits);
1534 }
1535 
1536 #define BUF_SIZE		1024
1537 
1538 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1539 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1540 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1541 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1542 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1543 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1544 
1545 #define PRINT_ATTRn(_n, _f, _p)				\
1546 do {							\
1547 	if (attr->_f) {					\
1548 		_p(attr->_f);				\
1549 		ret += attr__fprintf(fp, _n, buf, priv);\
1550 	}						\
1551 } while (0)
1552 
1553 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1554 
1555 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1556 			     attr__fprintf_f attr__fprintf, void *priv)
1557 {
1558 	char buf[BUF_SIZE];
1559 	int ret = 0;
1560 
1561 	PRINT_ATTRf(type, p_unsigned);
1562 	PRINT_ATTRf(size, p_unsigned);
1563 	PRINT_ATTRf(config, p_hex);
1564 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1565 	PRINT_ATTRf(sample_type, p_sample_type);
1566 	PRINT_ATTRf(read_format, p_read_format);
1567 
1568 	PRINT_ATTRf(disabled, p_unsigned);
1569 	PRINT_ATTRf(inherit, p_unsigned);
1570 	PRINT_ATTRf(pinned, p_unsigned);
1571 	PRINT_ATTRf(exclusive, p_unsigned);
1572 	PRINT_ATTRf(exclude_user, p_unsigned);
1573 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1574 	PRINT_ATTRf(exclude_hv, p_unsigned);
1575 	PRINT_ATTRf(exclude_idle, p_unsigned);
1576 	PRINT_ATTRf(mmap, p_unsigned);
1577 	PRINT_ATTRf(comm, p_unsigned);
1578 	PRINT_ATTRf(freq, p_unsigned);
1579 	PRINT_ATTRf(inherit_stat, p_unsigned);
1580 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1581 	PRINT_ATTRf(task, p_unsigned);
1582 	PRINT_ATTRf(watermark, p_unsigned);
1583 	PRINT_ATTRf(precise_ip, p_unsigned);
1584 	PRINT_ATTRf(mmap_data, p_unsigned);
1585 	PRINT_ATTRf(sample_id_all, p_unsigned);
1586 	PRINT_ATTRf(exclude_host, p_unsigned);
1587 	PRINT_ATTRf(exclude_guest, p_unsigned);
1588 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1589 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1590 	PRINT_ATTRf(mmap2, p_unsigned);
1591 	PRINT_ATTRf(comm_exec, p_unsigned);
1592 	PRINT_ATTRf(use_clockid, p_unsigned);
1593 	PRINT_ATTRf(context_switch, p_unsigned);
1594 	PRINT_ATTRf(write_backward, p_unsigned);
1595 	PRINT_ATTRf(namespaces, p_unsigned);
1596 	PRINT_ATTRf(ksymbol, p_unsigned);
1597 	PRINT_ATTRf(bpf_event, p_unsigned);
1598 	PRINT_ATTRf(aux_output, p_unsigned);
1599 
1600 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1601 	PRINT_ATTRf(bp_type, p_unsigned);
1602 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1603 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1604 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1605 	PRINT_ATTRf(sample_regs_user, p_hex);
1606 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1607 	PRINT_ATTRf(clockid, p_signed);
1608 	PRINT_ATTRf(sample_regs_intr, p_hex);
1609 	PRINT_ATTRf(aux_watermark, p_unsigned);
1610 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1611 
1612 	return ret;
1613 }
1614 
1615 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1616 				void *priv __maybe_unused)
1617 {
1618 	return fprintf(fp, "  %-32s %s\n", name, val);
1619 }
1620 
1621 static void perf_evsel__remove_fd(struct evsel *pos,
1622 				  int nr_cpus, int nr_threads,
1623 				  int thread_idx)
1624 {
1625 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1626 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1627 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1628 }
1629 
1630 static int update_fds(struct evsel *evsel,
1631 		      int nr_cpus, int cpu_idx,
1632 		      int nr_threads, int thread_idx)
1633 {
1634 	struct evsel *pos;
1635 
1636 	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1637 		return -EINVAL;
1638 
1639 	evlist__for_each_entry(evsel->evlist, pos) {
1640 		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1641 
1642 		perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1643 
1644 		/*
1645 		 * Since fds for next evsel has not been created,
1646 		 * there is no need to iterate whole event list.
1647 		 */
1648 		if (pos == evsel)
1649 			break;
1650 	}
1651 	return 0;
1652 }
1653 
1654 static bool ignore_missing_thread(struct evsel *evsel,
1655 				  int nr_cpus, int cpu,
1656 				  struct perf_thread_map *threads,
1657 				  int thread, int err)
1658 {
1659 	pid_t ignore_pid = perf_thread_map__pid(threads, thread);
1660 
1661 	if (!evsel->ignore_missing_thread)
1662 		return false;
1663 
1664 	/* The system wide setup does not work with threads. */
1665 	if (evsel->system_wide)
1666 		return false;
1667 
1668 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1669 	if (err != -ESRCH)
1670 		return false;
1671 
1672 	/* If there's only one thread, let it fail. */
1673 	if (threads->nr == 1)
1674 		return false;
1675 
1676 	/*
1677 	 * We should remove fd for missing_thread first
1678 	 * because thread_map__remove() will decrease threads->nr.
1679 	 */
1680 	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1681 		return false;
1682 
1683 	if (thread_map__remove(threads, thread))
1684 		return false;
1685 
1686 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1687 		   ignore_pid);
1688 	return true;
1689 }
1690 
1691 static void display_attr(struct perf_event_attr *attr)
1692 {
1693 	if (verbose >= 2) {
1694 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1695 		fprintf(stderr, "perf_event_attr:\n");
1696 		perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL);
1697 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1698 	}
1699 }
1700 
1701 static int perf_event_open(struct evsel *evsel,
1702 			   pid_t pid, int cpu, int group_fd,
1703 			   unsigned long flags)
1704 {
1705 	int precise_ip = evsel->core.attr.precise_ip;
1706 	int fd;
1707 
1708 	while (1) {
1709 		pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1710 			  pid, cpu, group_fd, flags);
1711 
1712 		fd = sys_perf_event_open(&evsel->core.attr, pid, cpu, group_fd, flags);
1713 		if (fd >= 0)
1714 			break;
1715 
1716 		/* Do not try less precise if not requested. */
1717 		if (!evsel->precise_max)
1718 			break;
1719 
1720 		/*
1721 		 * We tried all the precise_ip values, and it's
1722 		 * still failing, so leave it to standard fallback.
1723 		 */
1724 		if (!evsel->core.attr.precise_ip) {
1725 			evsel->core.attr.precise_ip = precise_ip;
1726 			break;
1727 		}
1728 
1729 		pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP);
1730 		evsel->core.attr.precise_ip--;
1731 		pr_debug2("decreasing precise_ip by one (%d)\n", evsel->core.attr.precise_ip);
1732 		display_attr(&evsel->core.attr);
1733 	}
1734 
1735 	return fd;
1736 }
1737 
1738 int evsel__open(struct evsel *evsel, struct perf_cpu_map *cpus,
1739 		struct perf_thread_map *threads)
1740 {
1741 	int cpu, thread, nthreads;
1742 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1743 	int pid = -1, err;
1744 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1745 
1746 	if ((perf_missing_features.write_backward && evsel->core.attr.write_backward) ||
1747 	    (perf_missing_features.aux_output     && evsel->core.attr.aux_output))
1748 		return -EINVAL;
1749 
1750 	if (cpus == NULL) {
1751 		static struct perf_cpu_map *empty_cpu_map;
1752 
1753 		if (empty_cpu_map == NULL) {
1754 			empty_cpu_map = perf_cpu_map__dummy_new();
1755 			if (empty_cpu_map == NULL)
1756 				return -ENOMEM;
1757 		}
1758 
1759 		cpus = empty_cpu_map;
1760 	}
1761 
1762 	if (threads == NULL) {
1763 		static struct perf_thread_map *empty_thread_map;
1764 
1765 		if (empty_thread_map == NULL) {
1766 			empty_thread_map = thread_map__new_by_tid(-1);
1767 			if (empty_thread_map == NULL)
1768 				return -ENOMEM;
1769 		}
1770 
1771 		threads = empty_thread_map;
1772 	}
1773 
1774 	if (evsel->system_wide)
1775 		nthreads = 1;
1776 	else
1777 		nthreads = threads->nr;
1778 
1779 	if (evsel->core.fd == NULL &&
1780 	    perf_evsel__alloc_fd(&evsel->core, cpus->nr, nthreads) < 0)
1781 		return -ENOMEM;
1782 
1783 	if (evsel->cgrp) {
1784 		flags |= PERF_FLAG_PID_CGROUP;
1785 		pid = evsel->cgrp->fd;
1786 	}
1787 
1788 fallback_missing_features:
1789 	if (perf_missing_features.clockid_wrong)
1790 		evsel->core.attr.clockid = CLOCK_MONOTONIC; /* should always work */
1791 	if (perf_missing_features.clockid) {
1792 		evsel->core.attr.use_clockid = 0;
1793 		evsel->core.attr.clockid = 0;
1794 	}
1795 	if (perf_missing_features.cloexec)
1796 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1797 	if (perf_missing_features.mmap2)
1798 		evsel->core.attr.mmap2 = 0;
1799 	if (perf_missing_features.exclude_guest)
1800 		evsel->core.attr.exclude_guest = evsel->core.attr.exclude_host = 0;
1801 	if (perf_missing_features.lbr_flags)
1802 		evsel->core.attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1803 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1804 	if (perf_missing_features.group_read && evsel->core.attr.inherit)
1805 		evsel->core.attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1806 	if (perf_missing_features.ksymbol)
1807 		evsel->core.attr.ksymbol = 0;
1808 	if (perf_missing_features.bpf)
1809 		evsel->core.attr.bpf_event = 0;
1810 retry_sample_id:
1811 	if (perf_missing_features.sample_id_all)
1812 		evsel->core.attr.sample_id_all = 0;
1813 
1814 	display_attr(&evsel->core.attr);
1815 
1816 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1817 
1818 		for (thread = 0; thread < nthreads; thread++) {
1819 			int fd, group_fd;
1820 
1821 			if (!evsel->cgrp && !evsel->system_wide)
1822 				pid = perf_thread_map__pid(threads, thread);
1823 
1824 			group_fd = get_group_fd(evsel, cpu, thread);
1825 retry_open:
1826 			test_attr__ready();
1827 
1828 			fd = perf_event_open(evsel, pid, cpus->map[cpu],
1829 					     group_fd, flags);
1830 
1831 			FD(evsel, cpu, thread) = fd;
1832 
1833 			if (fd < 0) {
1834 				err = -errno;
1835 
1836 				if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1837 					/*
1838 					 * We just removed 1 thread, so take a step
1839 					 * back on thread index and lower the upper
1840 					 * nthreads limit.
1841 					 */
1842 					nthreads--;
1843 					thread--;
1844 
1845 					/* ... and pretend like nothing have happened. */
1846 					err = 0;
1847 					continue;
1848 				}
1849 
1850 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1851 					  err);
1852 				goto try_fallback;
1853 			}
1854 
1855 			pr_debug2(" = %d\n", fd);
1856 
1857 			if (evsel->bpf_fd >= 0) {
1858 				int evt_fd = fd;
1859 				int bpf_fd = evsel->bpf_fd;
1860 
1861 				err = ioctl(evt_fd,
1862 					    PERF_EVENT_IOC_SET_BPF,
1863 					    bpf_fd);
1864 				if (err && errno != EEXIST) {
1865 					pr_err("failed to attach bpf fd %d: %s\n",
1866 					       bpf_fd, strerror(errno));
1867 					err = -EINVAL;
1868 					goto out_close;
1869 				}
1870 			}
1871 
1872 			set_rlimit = NO_CHANGE;
1873 
1874 			/*
1875 			 * If we succeeded but had to kill clockid, fail and
1876 			 * have perf_evsel__open_strerror() print us a nice
1877 			 * error.
1878 			 */
1879 			if (perf_missing_features.clockid ||
1880 			    perf_missing_features.clockid_wrong) {
1881 				err = -EINVAL;
1882 				goto out_close;
1883 			}
1884 		}
1885 	}
1886 
1887 	return 0;
1888 
1889 try_fallback:
1890 	/*
1891 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1892 	 * of them try to increase the limits.
1893 	 */
1894 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1895 		struct rlimit l;
1896 		int old_errno = errno;
1897 
1898 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1899 			if (set_rlimit == NO_CHANGE)
1900 				l.rlim_cur = l.rlim_max;
1901 			else {
1902 				l.rlim_cur = l.rlim_max + 1000;
1903 				l.rlim_max = l.rlim_cur;
1904 			}
1905 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1906 				set_rlimit++;
1907 				errno = old_errno;
1908 				goto retry_open;
1909 			}
1910 		}
1911 		errno = old_errno;
1912 	}
1913 
1914 	if (err != -EINVAL || cpu > 0 || thread > 0)
1915 		goto out_close;
1916 
1917 	/*
1918 	 * Must probe features in the order they were added to the
1919 	 * perf_event_attr interface.
1920 	 */
1921 	if (!perf_missing_features.aux_output && evsel->core.attr.aux_output) {
1922 		perf_missing_features.aux_output = true;
1923 		pr_debug2("Kernel has no attr.aux_output support, bailing out\n");
1924 		goto out_close;
1925 	} else if (!perf_missing_features.bpf && evsel->core.attr.bpf_event) {
1926 		perf_missing_features.bpf = true;
1927 		pr_debug2("switching off bpf_event\n");
1928 		goto fallback_missing_features;
1929 	} else if (!perf_missing_features.ksymbol && evsel->core.attr.ksymbol) {
1930 		perf_missing_features.ksymbol = true;
1931 		pr_debug2("switching off ksymbol\n");
1932 		goto fallback_missing_features;
1933 	} else if (!perf_missing_features.write_backward && evsel->core.attr.write_backward) {
1934 		perf_missing_features.write_backward = true;
1935 		pr_debug2("switching off write_backward\n");
1936 		goto out_close;
1937 	} else if (!perf_missing_features.clockid_wrong && evsel->core.attr.use_clockid) {
1938 		perf_missing_features.clockid_wrong = true;
1939 		pr_debug2("switching off clockid\n");
1940 		goto fallback_missing_features;
1941 	} else if (!perf_missing_features.clockid && evsel->core.attr.use_clockid) {
1942 		perf_missing_features.clockid = true;
1943 		pr_debug2("switching off use_clockid\n");
1944 		goto fallback_missing_features;
1945 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1946 		perf_missing_features.cloexec = true;
1947 		pr_debug2("switching off cloexec flag\n");
1948 		goto fallback_missing_features;
1949 	} else if (!perf_missing_features.mmap2 && evsel->core.attr.mmap2) {
1950 		perf_missing_features.mmap2 = true;
1951 		pr_debug2("switching off mmap2\n");
1952 		goto fallback_missing_features;
1953 	} else if (!perf_missing_features.exclude_guest &&
1954 		   (evsel->core.attr.exclude_guest || evsel->core.attr.exclude_host)) {
1955 		perf_missing_features.exclude_guest = true;
1956 		pr_debug2("switching off exclude_guest, exclude_host\n");
1957 		goto fallback_missing_features;
1958 	} else if (!perf_missing_features.sample_id_all) {
1959 		perf_missing_features.sample_id_all = true;
1960 		pr_debug2("switching off sample_id_all\n");
1961 		goto retry_sample_id;
1962 	} else if (!perf_missing_features.lbr_flags &&
1963 			(evsel->core.attr.branch_sample_type &
1964 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1965 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1966 		perf_missing_features.lbr_flags = true;
1967 		pr_debug2("switching off branch sample type no (cycles/flags)\n");
1968 		goto fallback_missing_features;
1969 	} else if (!perf_missing_features.group_read &&
1970 		    evsel->core.attr.inherit &&
1971 		   (evsel->core.attr.read_format & PERF_FORMAT_GROUP) &&
1972 		   perf_evsel__is_group_leader(evsel)) {
1973 		perf_missing_features.group_read = true;
1974 		pr_debug2("switching off group read\n");
1975 		goto fallback_missing_features;
1976 	}
1977 out_close:
1978 	if (err)
1979 		threads->err_thread = thread;
1980 
1981 	do {
1982 		while (--thread >= 0) {
1983 			close(FD(evsel, cpu, thread));
1984 			FD(evsel, cpu, thread) = -1;
1985 		}
1986 		thread = nthreads;
1987 	} while (--cpu >= 0);
1988 	return err;
1989 }
1990 
1991 void evsel__close(struct evsel *evsel)
1992 {
1993 	perf_evsel__close(&evsel->core);
1994 	perf_evsel__free_id(evsel);
1995 }
1996 
1997 int perf_evsel__open_per_cpu(struct evsel *evsel,
1998 			     struct perf_cpu_map *cpus)
1999 {
2000 	return evsel__open(evsel, cpus, NULL);
2001 }
2002 
2003 int perf_evsel__open_per_thread(struct evsel *evsel,
2004 				struct perf_thread_map *threads)
2005 {
2006 	return evsel__open(evsel, NULL, threads);
2007 }
2008 
2009 static int perf_evsel__parse_id_sample(const struct evsel *evsel,
2010 				       const union perf_event *event,
2011 				       struct perf_sample *sample)
2012 {
2013 	u64 type = evsel->core.attr.sample_type;
2014 	const __u64 *array = event->sample.array;
2015 	bool swapped = evsel->needs_swap;
2016 	union u64_swap u;
2017 
2018 	array += ((event->header.size -
2019 		   sizeof(event->header)) / sizeof(u64)) - 1;
2020 
2021 	if (type & PERF_SAMPLE_IDENTIFIER) {
2022 		sample->id = *array;
2023 		array--;
2024 	}
2025 
2026 	if (type & PERF_SAMPLE_CPU) {
2027 		u.val64 = *array;
2028 		if (swapped) {
2029 			/* undo swap of u64, then swap on individual u32s */
2030 			u.val64 = bswap_64(u.val64);
2031 			u.val32[0] = bswap_32(u.val32[0]);
2032 		}
2033 
2034 		sample->cpu = u.val32[0];
2035 		array--;
2036 	}
2037 
2038 	if (type & PERF_SAMPLE_STREAM_ID) {
2039 		sample->stream_id = *array;
2040 		array--;
2041 	}
2042 
2043 	if (type & PERF_SAMPLE_ID) {
2044 		sample->id = *array;
2045 		array--;
2046 	}
2047 
2048 	if (type & PERF_SAMPLE_TIME) {
2049 		sample->time = *array;
2050 		array--;
2051 	}
2052 
2053 	if (type & PERF_SAMPLE_TID) {
2054 		u.val64 = *array;
2055 		if (swapped) {
2056 			/* undo swap of u64, then swap on individual u32s */
2057 			u.val64 = bswap_64(u.val64);
2058 			u.val32[0] = bswap_32(u.val32[0]);
2059 			u.val32[1] = bswap_32(u.val32[1]);
2060 		}
2061 
2062 		sample->pid = u.val32[0];
2063 		sample->tid = u.val32[1];
2064 		array--;
2065 	}
2066 
2067 	return 0;
2068 }
2069 
2070 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2071 			    u64 size)
2072 {
2073 	return size > max_size || offset + size > endp;
2074 }
2075 
2076 #define OVERFLOW_CHECK(offset, size, max_size)				\
2077 	do {								\
2078 		if (overflow(endp, (max_size), (offset), (size)))	\
2079 			return -EFAULT;					\
2080 	} while (0)
2081 
2082 #define OVERFLOW_CHECK_u64(offset) \
2083 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2084 
2085 static int
2086 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2087 {
2088 	/*
2089 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2090 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2091 	 * check the format does not go past the end of the event.
2092 	 */
2093 	if (sample_size + sizeof(event->header) > event->header.size)
2094 		return -EFAULT;
2095 
2096 	return 0;
2097 }
2098 
2099 int perf_evsel__parse_sample(struct evsel *evsel, union perf_event *event,
2100 			     struct perf_sample *data)
2101 {
2102 	u64 type = evsel->core.attr.sample_type;
2103 	bool swapped = evsel->needs_swap;
2104 	const __u64 *array;
2105 	u16 max_size = event->header.size;
2106 	const void *endp = (void *)event + max_size;
2107 	u64 sz;
2108 
2109 	/*
2110 	 * used for cross-endian analysis. See git commit 65014ab3
2111 	 * for why this goofiness is needed.
2112 	 */
2113 	union u64_swap u;
2114 
2115 	memset(data, 0, sizeof(*data));
2116 	data->cpu = data->pid = data->tid = -1;
2117 	data->stream_id = data->id = data->time = -1ULL;
2118 	data->period = evsel->core.attr.sample_period;
2119 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2120 	data->misc    = event->header.misc;
2121 	data->id = -1ULL;
2122 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2123 
2124 	if (event->header.type != PERF_RECORD_SAMPLE) {
2125 		if (!evsel->core.attr.sample_id_all)
2126 			return 0;
2127 		return perf_evsel__parse_id_sample(evsel, event, data);
2128 	}
2129 
2130 	array = event->sample.array;
2131 
2132 	if (perf_event__check_size(event, evsel->sample_size))
2133 		return -EFAULT;
2134 
2135 	if (type & PERF_SAMPLE_IDENTIFIER) {
2136 		data->id = *array;
2137 		array++;
2138 	}
2139 
2140 	if (type & PERF_SAMPLE_IP) {
2141 		data->ip = *array;
2142 		array++;
2143 	}
2144 
2145 	if (type & PERF_SAMPLE_TID) {
2146 		u.val64 = *array;
2147 		if (swapped) {
2148 			/* undo swap of u64, then swap on individual u32s */
2149 			u.val64 = bswap_64(u.val64);
2150 			u.val32[0] = bswap_32(u.val32[0]);
2151 			u.val32[1] = bswap_32(u.val32[1]);
2152 		}
2153 
2154 		data->pid = u.val32[0];
2155 		data->tid = u.val32[1];
2156 		array++;
2157 	}
2158 
2159 	if (type & PERF_SAMPLE_TIME) {
2160 		data->time = *array;
2161 		array++;
2162 	}
2163 
2164 	if (type & PERF_SAMPLE_ADDR) {
2165 		data->addr = *array;
2166 		array++;
2167 	}
2168 
2169 	if (type & PERF_SAMPLE_ID) {
2170 		data->id = *array;
2171 		array++;
2172 	}
2173 
2174 	if (type & PERF_SAMPLE_STREAM_ID) {
2175 		data->stream_id = *array;
2176 		array++;
2177 	}
2178 
2179 	if (type & PERF_SAMPLE_CPU) {
2180 
2181 		u.val64 = *array;
2182 		if (swapped) {
2183 			/* undo swap of u64, then swap on individual u32s */
2184 			u.val64 = bswap_64(u.val64);
2185 			u.val32[0] = bswap_32(u.val32[0]);
2186 		}
2187 
2188 		data->cpu = u.val32[0];
2189 		array++;
2190 	}
2191 
2192 	if (type & PERF_SAMPLE_PERIOD) {
2193 		data->period = *array;
2194 		array++;
2195 	}
2196 
2197 	if (type & PERF_SAMPLE_READ) {
2198 		u64 read_format = evsel->core.attr.read_format;
2199 
2200 		OVERFLOW_CHECK_u64(array);
2201 		if (read_format & PERF_FORMAT_GROUP)
2202 			data->read.group.nr = *array;
2203 		else
2204 			data->read.one.value = *array;
2205 
2206 		array++;
2207 
2208 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2209 			OVERFLOW_CHECK_u64(array);
2210 			data->read.time_enabled = *array;
2211 			array++;
2212 		}
2213 
2214 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2215 			OVERFLOW_CHECK_u64(array);
2216 			data->read.time_running = *array;
2217 			array++;
2218 		}
2219 
2220 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2221 		if (read_format & PERF_FORMAT_GROUP) {
2222 			const u64 max_group_nr = UINT64_MAX /
2223 					sizeof(struct sample_read_value);
2224 
2225 			if (data->read.group.nr > max_group_nr)
2226 				return -EFAULT;
2227 			sz = data->read.group.nr *
2228 			     sizeof(struct sample_read_value);
2229 			OVERFLOW_CHECK(array, sz, max_size);
2230 			data->read.group.values =
2231 					(struct sample_read_value *)array;
2232 			array = (void *)array + sz;
2233 		} else {
2234 			OVERFLOW_CHECK_u64(array);
2235 			data->read.one.id = *array;
2236 			array++;
2237 		}
2238 	}
2239 
2240 	if (evsel__has_callchain(evsel)) {
2241 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2242 
2243 		OVERFLOW_CHECK_u64(array);
2244 		data->callchain = (struct ip_callchain *)array++;
2245 		if (data->callchain->nr > max_callchain_nr)
2246 			return -EFAULT;
2247 		sz = data->callchain->nr * sizeof(u64);
2248 		OVERFLOW_CHECK(array, sz, max_size);
2249 		array = (void *)array + sz;
2250 	}
2251 
2252 	if (type & PERF_SAMPLE_RAW) {
2253 		OVERFLOW_CHECK_u64(array);
2254 		u.val64 = *array;
2255 
2256 		/*
2257 		 * Undo swap of u64, then swap on individual u32s,
2258 		 * get the size of the raw area and undo all of the
2259 		 * swap. The pevent interface handles endianity by
2260 		 * itself.
2261 		 */
2262 		if (swapped) {
2263 			u.val64 = bswap_64(u.val64);
2264 			u.val32[0] = bswap_32(u.val32[0]);
2265 			u.val32[1] = bswap_32(u.val32[1]);
2266 		}
2267 		data->raw_size = u.val32[0];
2268 
2269 		/*
2270 		 * The raw data is aligned on 64bits including the
2271 		 * u32 size, so it's safe to use mem_bswap_64.
2272 		 */
2273 		if (swapped)
2274 			mem_bswap_64((void *) array, data->raw_size);
2275 
2276 		array = (void *)array + sizeof(u32);
2277 
2278 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2279 		data->raw_data = (void *)array;
2280 		array = (void *)array + data->raw_size;
2281 	}
2282 
2283 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2284 		const u64 max_branch_nr = UINT64_MAX /
2285 					  sizeof(struct branch_entry);
2286 
2287 		OVERFLOW_CHECK_u64(array);
2288 		data->branch_stack = (struct branch_stack *)array++;
2289 
2290 		if (data->branch_stack->nr > max_branch_nr)
2291 			return -EFAULT;
2292 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2293 		OVERFLOW_CHECK(array, sz, max_size);
2294 		array = (void *)array + sz;
2295 	}
2296 
2297 	if (type & PERF_SAMPLE_REGS_USER) {
2298 		OVERFLOW_CHECK_u64(array);
2299 		data->user_regs.abi = *array;
2300 		array++;
2301 
2302 		if (data->user_regs.abi) {
2303 			u64 mask = evsel->core.attr.sample_regs_user;
2304 
2305 			sz = hweight64(mask) * sizeof(u64);
2306 			OVERFLOW_CHECK(array, sz, max_size);
2307 			data->user_regs.mask = mask;
2308 			data->user_regs.regs = (u64 *)array;
2309 			array = (void *)array + sz;
2310 		}
2311 	}
2312 
2313 	if (type & PERF_SAMPLE_STACK_USER) {
2314 		OVERFLOW_CHECK_u64(array);
2315 		sz = *array++;
2316 
2317 		data->user_stack.offset = ((char *)(array - 1)
2318 					  - (char *) event);
2319 
2320 		if (!sz) {
2321 			data->user_stack.size = 0;
2322 		} else {
2323 			OVERFLOW_CHECK(array, sz, max_size);
2324 			data->user_stack.data = (char *)array;
2325 			array = (void *)array + sz;
2326 			OVERFLOW_CHECK_u64(array);
2327 			data->user_stack.size = *array++;
2328 			if (WARN_ONCE(data->user_stack.size > sz,
2329 				      "user stack dump failure\n"))
2330 				return -EFAULT;
2331 		}
2332 	}
2333 
2334 	if (type & PERF_SAMPLE_WEIGHT) {
2335 		OVERFLOW_CHECK_u64(array);
2336 		data->weight = *array;
2337 		array++;
2338 	}
2339 
2340 	if (type & PERF_SAMPLE_DATA_SRC) {
2341 		OVERFLOW_CHECK_u64(array);
2342 		data->data_src = *array;
2343 		array++;
2344 	}
2345 
2346 	if (type & PERF_SAMPLE_TRANSACTION) {
2347 		OVERFLOW_CHECK_u64(array);
2348 		data->transaction = *array;
2349 		array++;
2350 	}
2351 
2352 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2353 	if (type & PERF_SAMPLE_REGS_INTR) {
2354 		OVERFLOW_CHECK_u64(array);
2355 		data->intr_regs.abi = *array;
2356 		array++;
2357 
2358 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2359 			u64 mask = evsel->core.attr.sample_regs_intr;
2360 
2361 			sz = hweight64(mask) * sizeof(u64);
2362 			OVERFLOW_CHECK(array, sz, max_size);
2363 			data->intr_regs.mask = mask;
2364 			data->intr_regs.regs = (u64 *)array;
2365 			array = (void *)array + sz;
2366 		}
2367 	}
2368 
2369 	data->phys_addr = 0;
2370 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2371 		data->phys_addr = *array;
2372 		array++;
2373 	}
2374 
2375 	return 0;
2376 }
2377 
2378 int perf_evsel__parse_sample_timestamp(struct evsel *evsel,
2379 				       union perf_event *event,
2380 				       u64 *timestamp)
2381 {
2382 	u64 type = evsel->core.attr.sample_type;
2383 	const __u64 *array;
2384 
2385 	if (!(type & PERF_SAMPLE_TIME))
2386 		return -1;
2387 
2388 	if (event->header.type != PERF_RECORD_SAMPLE) {
2389 		struct perf_sample data = {
2390 			.time = -1ULL,
2391 		};
2392 
2393 		if (!evsel->core.attr.sample_id_all)
2394 			return -1;
2395 		if (perf_evsel__parse_id_sample(evsel, event, &data))
2396 			return -1;
2397 
2398 		*timestamp = data.time;
2399 		return 0;
2400 	}
2401 
2402 	array = event->sample.array;
2403 
2404 	if (perf_event__check_size(event, evsel->sample_size))
2405 		return -EFAULT;
2406 
2407 	if (type & PERF_SAMPLE_IDENTIFIER)
2408 		array++;
2409 
2410 	if (type & PERF_SAMPLE_IP)
2411 		array++;
2412 
2413 	if (type & PERF_SAMPLE_TID)
2414 		array++;
2415 
2416 	if (type & PERF_SAMPLE_TIME)
2417 		*timestamp = *array;
2418 
2419 	return 0;
2420 }
2421 
2422 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2423 				     u64 read_format)
2424 {
2425 	size_t sz, result = sizeof(struct perf_record_sample);
2426 
2427 	if (type & PERF_SAMPLE_IDENTIFIER)
2428 		result += sizeof(u64);
2429 
2430 	if (type & PERF_SAMPLE_IP)
2431 		result += sizeof(u64);
2432 
2433 	if (type & PERF_SAMPLE_TID)
2434 		result += sizeof(u64);
2435 
2436 	if (type & PERF_SAMPLE_TIME)
2437 		result += sizeof(u64);
2438 
2439 	if (type & PERF_SAMPLE_ADDR)
2440 		result += sizeof(u64);
2441 
2442 	if (type & PERF_SAMPLE_ID)
2443 		result += sizeof(u64);
2444 
2445 	if (type & PERF_SAMPLE_STREAM_ID)
2446 		result += sizeof(u64);
2447 
2448 	if (type & PERF_SAMPLE_CPU)
2449 		result += sizeof(u64);
2450 
2451 	if (type & PERF_SAMPLE_PERIOD)
2452 		result += sizeof(u64);
2453 
2454 	if (type & PERF_SAMPLE_READ) {
2455 		result += sizeof(u64);
2456 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2457 			result += sizeof(u64);
2458 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2459 			result += sizeof(u64);
2460 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2461 		if (read_format & PERF_FORMAT_GROUP) {
2462 			sz = sample->read.group.nr *
2463 			     sizeof(struct sample_read_value);
2464 			result += sz;
2465 		} else {
2466 			result += sizeof(u64);
2467 		}
2468 	}
2469 
2470 	if (type & PERF_SAMPLE_CALLCHAIN) {
2471 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2472 		result += sz;
2473 	}
2474 
2475 	if (type & PERF_SAMPLE_RAW) {
2476 		result += sizeof(u32);
2477 		result += sample->raw_size;
2478 	}
2479 
2480 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2481 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2482 		sz += sizeof(u64);
2483 		result += sz;
2484 	}
2485 
2486 	if (type & PERF_SAMPLE_REGS_USER) {
2487 		if (sample->user_regs.abi) {
2488 			result += sizeof(u64);
2489 			sz = hweight64(sample->user_regs.mask) * sizeof(u64);
2490 			result += sz;
2491 		} else {
2492 			result += sizeof(u64);
2493 		}
2494 	}
2495 
2496 	if (type & PERF_SAMPLE_STACK_USER) {
2497 		sz = sample->user_stack.size;
2498 		result += sizeof(u64);
2499 		if (sz) {
2500 			result += sz;
2501 			result += sizeof(u64);
2502 		}
2503 	}
2504 
2505 	if (type & PERF_SAMPLE_WEIGHT)
2506 		result += sizeof(u64);
2507 
2508 	if (type & PERF_SAMPLE_DATA_SRC)
2509 		result += sizeof(u64);
2510 
2511 	if (type & PERF_SAMPLE_TRANSACTION)
2512 		result += sizeof(u64);
2513 
2514 	if (type & PERF_SAMPLE_REGS_INTR) {
2515 		if (sample->intr_regs.abi) {
2516 			result += sizeof(u64);
2517 			sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
2518 			result += sz;
2519 		} else {
2520 			result += sizeof(u64);
2521 		}
2522 	}
2523 
2524 	if (type & PERF_SAMPLE_PHYS_ADDR)
2525 		result += sizeof(u64);
2526 
2527 	return result;
2528 }
2529 
2530 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2531 				  u64 read_format,
2532 				  const struct perf_sample *sample)
2533 {
2534 	__u64 *array;
2535 	size_t sz;
2536 	/*
2537 	 * used for cross-endian analysis. See git commit 65014ab3
2538 	 * for why this goofiness is needed.
2539 	 */
2540 	union u64_swap u;
2541 
2542 	array = event->sample.array;
2543 
2544 	if (type & PERF_SAMPLE_IDENTIFIER) {
2545 		*array = sample->id;
2546 		array++;
2547 	}
2548 
2549 	if (type & PERF_SAMPLE_IP) {
2550 		*array = sample->ip;
2551 		array++;
2552 	}
2553 
2554 	if (type & PERF_SAMPLE_TID) {
2555 		u.val32[0] = sample->pid;
2556 		u.val32[1] = sample->tid;
2557 		*array = u.val64;
2558 		array++;
2559 	}
2560 
2561 	if (type & PERF_SAMPLE_TIME) {
2562 		*array = sample->time;
2563 		array++;
2564 	}
2565 
2566 	if (type & PERF_SAMPLE_ADDR) {
2567 		*array = sample->addr;
2568 		array++;
2569 	}
2570 
2571 	if (type & PERF_SAMPLE_ID) {
2572 		*array = sample->id;
2573 		array++;
2574 	}
2575 
2576 	if (type & PERF_SAMPLE_STREAM_ID) {
2577 		*array = sample->stream_id;
2578 		array++;
2579 	}
2580 
2581 	if (type & PERF_SAMPLE_CPU) {
2582 		u.val32[0] = sample->cpu;
2583 		u.val32[1] = 0;
2584 		*array = u.val64;
2585 		array++;
2586 	}
2587 
2588 	if (type & PERF_SAMPLE_PERIOD) {
2589 		*array = sample->period;
2590 		array++;
2591 	}
2592 
2593 	if (type & PERF_SAMPLE_READ) {
2594 		if (read_format & PERF_FORMAT_GROUP)
2595 			*array = sample->read.group.nr;
2596 		else
2597 			*array = sample->read.one.value;
2598 		array++;
2599 
2600 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2601 			*array = sample->read.time_enabled;
2602 			array++;
2603 		}
2604 
2605 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2606 			*array = sample->read.time_running;
2607 			array++;
2608 		}
2609 
2610 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2611 		if (read_format & PERF_FORMAT_GROUP) {
2612 			sz = sample->read.group.nr *
2613 			     sizeof(struct sample_read_value);
2614 			memcpy(array, sample->read.group.values, sz);
2615 			array = (void *)array + sz;
2616 		} else {
2617 			*array = sample->read.one.id;
2618 			array++;
2619 		}
2620 	}
2621 
2622 	if (type & PERF_SAMPLE_CALLCHAIN) {
2623 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2624 		memcpy(array, sample->callchain, sz);
2625 		array = (void *)array + sz;
2626 	}
2627 
2628 	if (type & PERF_SAMPLE_RAW) {
2629 		u.val32[0] = sample->raw_size;
2630 		*array = u.val64;
2631 		array = (void *)array + sizeof(u32);
2632 
2633 		memcpy(array, sample->raw_data, sample->raw_size);
2634 		array = (void *)array + sample->raw_size;
2635 	}
2636 
2637 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2638 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2639 		sz += sizeof(u64);
2640 		memcpy(array, sample->branch_stack, sz);
2641 		array = (void *)array + sz;
2642 	}
2643 
2644 	if (type & PERF_SAMPLE_REGS_USER) {
2645 		if (sample->user_regs.abi) {
2646 			*array++ = sample->user_regs.abi;
2647 			sz = hweight64(sample->user_regs.mask) * sizeof(u64);
2648 			memcpy(array, sample->user_regs.regs, sz);
2649 			array = (void *)array + sz;
2650 		} else {
2651 			*array++ = 0;
2652 		}
2653 	}
2654 
2655 	if (type & PERF_SAMPLE_STACK_USER) {
2656 		sz = sample->user_stack.size;
2657 		*array++ = sz;
2658 		if (sz) {
2659 			memcpy(array, sample->user_stack.data, sz);
2660 			array = (void *)array + sz;
2661 			*array++ = sz;
2662 		}
2663 	}
2664 
2665 	if (type & PERF_SAMPLE_WEIGHT) {
2666 		*array = sample->weight;
2667 		array++;
2668 	}
2669 
2670 	if (type & PERF_SAMPLE_DATA_SRC) {
2671 		*array = sample->data_src;
2672 		array++;
2673 	}
2674 
2675 	if (type & PERF_SAMPLE_TRANSACTION) {
2676 		*array = sample->transaction;
2677 		array++;
2678 	}
2679 
2680 	if (type & PERF_SAMPLE_REGS_INTR) {
2681 		if (sample->intr_regs.abi) {
2682 			*array++ = sample->intr_regs.abi;
2683 			sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
2684 			memcpy(array, sample->intr_regs.regs, sz);
2685 			array = (void *)array + sz;
2686 		} else {
2687 			*array++ = 0;
2688 		}
2689 	}
2690 
2691 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2692 		*array = sample->phys_addr;
2693 		array++;
2694 	}
2695 
2696 	return 0;
2697 }
2698 
2699 struct tep_format_field *perf_evsel__field(struct evsel *evsel, const char *name)
2700 {
2701 	return tep_find_field(evsel->tp_format, name);
2702 }
2703 
2704 void *perf_evsel__rawptr(struct evsel *evsel, struct perf_sample *sample,
2705 			 const char *name)
2706 {
2707 	struct tep_format_field *field = perf_evsel__field(evsel, name);
2708 	int offset;
2709 
2710 	if (!field)
2711 		return NULL;
2712 
2713 	offset = field->offset;
2714 
2715 	if (field->flags & TEP_FIELD_IS_DYNAMIC) {
2716 		offset = *(int *)(sample->raw_data + field->offset);
2717 		offset &= 0xffff;
2718 	}
2719 
2720 	return sample->raw_data + offset;
2721 }
2722 
2723 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample,
2724 			 bool needs_swap)
2725 {
2726 	u64 value;
2727 	void *ptr = sample->raw_data + field->offset;
2728 
2729 	switch (field->size) {
2730 	case 1:
2731 		return *(u8 *)ptr;
2732 	case 2:
2733 		value = *(u16 *)ptr;
2734 		break;
2735 	case 4:
2736 		value = *(u32 *)ptr;
2737 		break;
2738 	case 8:
2739 		memcpy(&value, ptr, sizeof(u64));
2740 		break;
2741 	default:
2742 		return 0;
2743 	}
2744 
2745 	if (!needs_swap)
2746 		return value;
2747 
2748 	switch (field->size) {
2749 	case 2:
2750 		return bswap_16(value);
2751 	case 4:
2752 		return bswap_32(value);
2753 	case 8:
2754 		return bswap_64(value);
2755 	default:
2756 		return 0;
2757 	}
2758 
2759 	return 0;
2760 }
2761 
2762 u64 perf_evsel__intval(struct evsel *evsel, struct perf_sample *sample,
2763 		       const char *name)
2764 {
2765 	struct tep_format_field *field = perf_evsel__field(evsel, name);
2766 
2767 	if (!field)
2768 		return 0;
2769 
2770 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2771 }
2772 
2773 bool perf_evsel__fallback(struct evsel *evsel, int err,
2774 			  char *msg, size_t msgsize)
2775 {
2776 	int paranoid;
2777 
2778 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2779 	    evsel->core.attr.type   == PERF_TYPE_HARDWARE &&
2780 	    evsel->core.attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2781 		/*
2782 		 * If it's cycles then fall back to hrtimer based
2783 		 * cpu-clock-tick sw counter, which is always available even if
2784 		 * no PMU support.
2785 		 *
2786 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2787 		 * b0a873e).
2788 		 */
2789 		scnprintf(msg, msgsize, "%s",
2790 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2791 
2792 		evsel->core.attr.type   = PERF_TYPE_SOFTWARE;
2793 		evsel->core.attr.config = PERF_COUNT_SW_CPU_CLOCK;
2794 
2795 		zfree(&evsel->name);
2796 		return true;
2797 	} else if (err == EACCES && !evsel->core.attr.exclude_kernel &&
2798 		   (paranoid = perf_event_paranoid()) > 1) {
2799 		const char *name = perf_evsel__name(evsel);
2800 		char *new_name;
2801 		const char *sep = ":";
2802 
2803 		/* Is there already the separator in the name. */
2804 		if (strchr(name, '/') ||
2805 		    strchr(name, ':'))
2806 			sep = "";
2807 
2808 		if (asprintf(&new_name, "%s%su", name, sep) < 0)
2809 			return false;
2810 
2811 		if (evsel->name)
2812 			free(evsel->name);
2813 		evsel->name = new_name;
2814 		scnprintf(msg, msgsize,
2815 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2816 		evsel->core.attr.exclude_kernel = 1;
2817 
2818 		return true;
2819 	}
2820 
2821 	return false;
2822 }
2823 
2824 static bool find_process(const char *name)
2825 {
2826 	size_t len = strlen(name);
2827 	DIR *dir;
2828 	struct dirent *d;
2829 	int ret = -1;
2830 
2831 	dir = opendir(procfs__mountpoint());
2832 	if (!dir)
2833 		return false;
2834 
2835 	/* Walk through the directory. */
2836 	while (ret && (d = readdir(dir)) != NULL) {
2837 		char path[PATH_MAX];
2838 		char *data;
2839 		size_t size;
2840 
2841 		if ((d->d_type != DT_DIR) ||
2842 		     !strcmp(".", d->d_name) ||
2843 		     !strcmp("..", d->d_name))
2844 			continue;
2845 
2846 		scnprintf(path, sizeof(path), "%s/%s/comm",
2847 			  procfs__mountpoint(), d->d_name);
2848 
2849 		if (filename__read_str(path, &data, &size))
2850 			continue;
2851 
2852 		ret = strncmp(name, data, len);
2853 		free(data);
2854 	}
2855 
2856 	closedir(dir);
2857 	return ret ? false : true;
2858 }
2859 
2860 int perf_evsel__open_strerror(struct evsel *evsel, struct target *target,
2861 			      int err, char *msg, size_t size)
2862 {
2863 	char sbuf[STRERR_BUFSIZE];
2864 	int printed = 0;
2865 
2866 	switch (err) {
2867 	case EPERM:
2868 	case EACCES:
2869 		if (err == EPERM)
2870 			printed = scnprintf(msg, size,
2871 				"No permission to enable %s event.\n\n",
2872 				perf_evsel__name(evsel));
2873 
2874 		return scnprintf(msg + printed, size - printed,
2875 		 "You may not have permission to collect %sstats.\n\n"
2876 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2877 		 "which controls use of the performance events system by\n"
2878 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2879 		 "The current value is %d:\n\n"
2880 		 "  -1: Allow use of (almost) all events by all users\n"
2881 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2882 		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2883 		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2884 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2885 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2886 		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2887 		 "	kernel.perf_event_paranoid = -1\n" ,
2888 				 target->system_wide ? "system-wide " : "",
2889 				 perf_event_paranoid());
2890 	case ENOENT:
2891 		return scnprintf(msg, size, "The %s event is not supported.",
2892 				 perf_evsel__name(evsel));
2893 	case EMFILE:
2894 		return scnprintf(msg, size, "%s",
2895 			 "Too many events are opened.\n"
2896 			 "Probably the maximum number of open file descriptors has been reached.\n"
2897 			 "Hint: Try again after reducing the number of events.\n"
2898 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2899 	case ENOMEM:
2900 		if (evsel__has_callchain(evsel) &&
2901 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2902 			return scnprintf(msg, size,
2903 					 "Not enough memory to setup event with callchain.\n"
2904 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2905 					 "Hint: Current value: %d", sysctl__max_stack());
2906 		break;
2907 	case ENODEV:
2908 		if (target->cpu_list)
2909 			return scnprintf(msg, size, "%s",
2910 	 "No such device - did you specify an out-of-range profile CPU?");
2911 		break;
2912 	case EOPNOTSUPP:
2913 		if (evsel->core.attr.sample_period != 0)
2914 			return scnprintf(msg, size,
2915 	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2916 					 perf_evsel__name(evsel));
2917 		if (evsel->core.attr.precise_ip)
2918 			return scnprintf(msg, size, "%s",
2919 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2920 #if defined(__i386__) || defined(__x86_64__)
2921 		if (evsel->core.attr.type == PERF_TYPE_HARDWARE)
2922 			return scnprintf(msg, size, "%s",
2923 	"No hardware sampling interrupt available.\n");
2924 #endif
2925 		break;
2926 	case EBUSY:
2927 		if (find_process("oprofiled"))
2928 			return scnprintf(msg, size,
2929 	"The PMU counters are busy/taken by another profiler.\n"
2930 	"We found oprofile daemon running, please stop it and try again.");
2931 		break;
2932 	case EINVAL:
2933 		if (evsel->core.attr.write_backward && perf_missing_features.write_backward)
2934 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2935 		if (perf_missing_features.clockid)
2936 			return scnprintf(msg, size, "clockid feature not supported.");
2937 		if (perf_missing_features.clockid_wrong)
2938 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2939 		if (perf_missing_features.aux_output)
2940 			return scnprintf(msg, size, "The 'aux_output' feature is not supported, update the kernel.");
2941 		break;
2942 	default:
2943 		break;
2944 	}
2945 
2946 	return scnprintf(msg, size,
2947 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2948 	"/bin/dmesg | grep -i perf may provide additional information.\n",
2949 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2950 			 perf_evsel__name(evsel));
2951 }
2952 
2953 struct perf_env *perf_evsel__env(struct evsel *evsel)
2954 {
2955 	if (evsel && evsel->evlist)
2956 		return evsel->evlist->env;
2957 	return NULL;
2958 }
2959 
2960 static int store_evsel_ids(struct evsel *evsel, struct evlist *evlist)
2961 {
2962 	int cpu, thread;
2963 
2964 	for (cpu = 0; cpu < xyarray__max_x(evsel->core.fd); cpu++) {
2965 		for (thread = 0; thread < xyarray__max_y(evsel->core.fd);
2966 		     thread++) {
2967 			int fd = FD(evsel, cpu, thread);
2968 
2969 			if (perf_evlist__id_add_fd(evlist, evsel,
2970 						   cpu, thread, fd) < 0)
2971 				return -1;
2972 		}
2973 	}
2974 
2975 	return 0;
2976 }
2977 
2978 int perf_evsel__store_ids(struct evsel *evsel, struct evlist *evlist)
2979 {
2980 	struct perf_cpu_map *cpus = evsel->core.cpus;
2981 	struct perf_thread_map *threads = evsel->core.threads;
2982 
2983 	if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr))
2984 		return -ENOMEM;
2985 
2986 	return store_evsel_ids(evsel, evlist);
2987 }
2988