xref: /openbmc/linux/tools/perf/util/evsel.c (revision afb46f79)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/debugfs.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <sys/resource.h>
17 #include "asm/bug.h"
18 #include "evsel.h"
19 #include "evlist.h"
20 #include "util.h"
21 #include "cpumap.h"
22 #include "thread_map.h"
23 #include "target.h"
24 #include "perf_regs.h"
25 #include "debug.h"
26 #include "trace-event.h"
27 
28 static struct {
29 	bool sample_id_all;
30 	bool exclude_guest;
31 	bool mmap2;
32 } perf_missing_features;
33 
34 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
35 
36 int __perf_evsel__sample_size(u64 sample_type)
37 {
38 	u64 mask = sample_type & PERF_SAMPLE_MASK;
39 	int size = 0;
40 	int i;
41 
42 	for (i = 0; i < 64; i++) {
43 		if (mask & (1ULL << i))
44 			size++;
45 	}
46 
47 	size *= sizeof(u64);
48 
49 	return size;
50 }
51 
52 /**
53  * __perf_evsel__calc_id_pos - calculate id_pos.
54  * @sample_type: sample type
55  *
56  * This function returns the position of the event id (PERF_SAMPLE_ID or
57  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
58  * sample_event.
59  */
60 static int __perf_evsel__calc_id_pos(u64 sample_type)
61 {
62 	int idx = 0;
63 
64 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
65 		return 0;
66 
67 	if (!(sample_type & PERF_SAMPLE_ID))
68 		return -1;
69 
70 	if (sample_type & PERF_SAMPLE_IP)
71 		idx += 1;
72 
73 	if (sample_type & PERF_SAMPLE_TID)
74 		idx += 1;
75 
76 	if (sample_type & PERF_SAMPLE_TIME)
77 		idx += 1;
78 
79 	if (sample_type & PERF_SAMPLE_ADDR)
80 		idx += 1;
81 
82 	return idx;
83 }
84 
85 /**
86  * __perf_evsel__calc_is_pos - calculate is_pos.
87  * @sample_type: sample type
88  *
89  * This function returns the position (counting backwards) of the event id
90  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
91  * sample_id_all is used there is an id sample appended to non-sample events.
92  */
93 static int __perf_evsel__calc_is_pos(u64 sample_type)
94 {
95 	int idx = 1;
96 
97 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
98 		return 1;
99 
100 	if (!(sample_type & PERF_SAMPLE_ID))
101 		return -1;
102 
103 	if (sample_type & PERF_SAMPLE_CPU)
104 		idx += 1;
105 
106 	if (sample_type & PERF_SAMPLE_STREAM_ID)
107 		idx += 1;
108 
109 	return idx;
110 }
111 
112 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
113 {
114 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
115 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
116 }
117 
118 void hists__init(struct hists *hists)
119 {
120 	memset(hists, 0, sizeof(*hists));
121 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
122 	hists->entries_in = &hists->entries_in_array[0];
123 	hists->entries_collapsed = RB_ROOT;
124 	hists->entries = RB_ROOT;
125 	pthread_mutex_init(&hists->lock, NULL);
126 }
127 
128 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
129 				  enum perf_event_sample_format bit)
130 {
131 	if (!(evsel->attr.sample_type & bit)) {
132 		evsel->attr.sample_type |= bit;
133 		evsel->sample_size += sizeof(u64);
134 		perf_evsel__calc_id_pos(evsel);
135 	}
136 }
137 
138 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
139 				    enum perf_event_sample_format bit)
140 {
141 	if (evsel->attr.sample_type & bit) {
142 		evsel->attr.sample_type &= ~bit;
143 		evsel->sample_size -= sizeof(u64);
144 		perf_evsel__calc_id_pos(evsel);
145 	}
146 }
147 
148 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
149 			       bool can_sample_identifier)
150 {
151 	if (can_sample_identifier) {
152 		perf_evsel__reset_sample_bit(evsel, ID);
153 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
154 	} else {
155 		perf_evsel__set_sample_bit(evsel, ID);
156 	}
157 	evsel->attr.read_format |= PERF_FORMAT_ID;
158 }
159 
160 void perf_evsel__init(struct perf_evsel *evsel,
161 		      struct perf_event_attr *attr, int idx)
162 {
163 	evsel->idx	   = idx;
164 	evsel->attr	   = *attr;
165 	evsel->leader	   = evsel;
166 	evsel->unit	   = "";
167 	evsel->scale	   = 1.0;
168 	INIT_LIST_HEAD(&evsel->node);
169 	hists__init(&evsel->hists);
170 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
171 	perf_evsel__calc_id_pos(evsel);
172 }
173 
174 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
175 {
176 	struct perf_evsel *evsel = zalloc(sizeof(*evsel));
177 
178 	if (evsel != NULL)
179 		perf_evsel__init(evsel, attr, idx);
180 
181 	return evsel;
182 }
183 
184 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
185 {
186 	struct perf_evsel *evsel = zalloc(sizeof(*evsel));
187 
188 	if (evsel != NULL) {
189 		struct perf_event_attr attr = {
190 			.type	       = PERF_TYPE_TRACEPOINT,
191 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
192 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
193 		};
194 
195 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
196 			goto out_free;
197 
198 		evsel->tp_format = trace_event__tp_format(sys, name);
199 		if (evsel->tp_format == NULL)
200 			goto out_free;
201 
202 		event_attr_init(&attr);
203 		attr.config = evsel->tp_format->id;
204 		attr.sample_period = 1;
205 		perf_evsel__init(evsel, &attr, idx);
206 	}
207 
208 	return evsel;
209 
210 out_free:
211 	zfree(&evsel->name);
212 	free(evsel);
213 	return NULL;
214 }
215 
216 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
217 	"cycles",
218 	"instructions",
219 	"cache-references",
220 	"cache-misses",
221 	"branches",
222 	"branch-misses",
223 	"bus-cycles",
224 	"stalled-cycles-frontend",
225 	"stalled-cycles-backend",
226 	"ref-cycles",
227 };
228 
229 static const char *__perf_evsel__hw_name(u64 config)
230 {
231 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
232 		return perf_evsel__hw_names[config];
233 
234 	return "unknown-hardware";
235 }
236 
237 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
238 {
239 	int colon = 0, r = 0;
240 	struct perf_event_attr *attr = &evsel->attr;
241 	bool exclude_guest_default = false;
242 
243 #define MOD_PRINT(context, mod)	do {					\
244 		if (!attr->exclude_##context) {				\
245 			if (!colon) colon = ++r;			\
246 			r += scnprintf(bf + r, size - r, "%c", mod);	\
247 		} } while(0)
248 
249 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
250 		MOD_PRINT(kernel, 'k');
251 		MOD_PRINT(user, 'u');
252 		MOD_PRINT(hv, 'h');
253 		exclude_guest_default = true;
254 	}
255 
256 	if (attr->precise_ip) {
257 		if (!colon)
258 			colon = ++r;
259 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
260 		exclude_guest_default = true;
261 	}
262 
263 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
264 		MOD_PRINT(host, 'H');
265 		MOD_PRINT(guest, 'G');
266 	}
267 #undef MOD_PRINT
268 	if (colon)
269 		bf[colon - 1] = ':';
270 	return r;
271 }
272 
273 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
274 {
275 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
276 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
277 }
278 
279 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
280 	"cpu-clock",
281 	"task-clock",
282 	"page-faults",
283 	"context-switches",
284 	"cpu-migrations",
285 	"minor-faults",
286 	"major-faults",
287 	"alignment-faults",
288 	"emulation-faults",
289 	"dummy",
290 };
291 
292 static const char *__perf_evsel__sw_name(u64 config)
293 {
294 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
295 		return perf_evsel__sw_names[config];
296 	return "unknown-software";
297 }
298 
299 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
300 {
301 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
302 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
303 }
304 
305 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
306 {
307 	int r;
308 
309 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
310 
311 	if (type & HW_BREAKPOINT_R)
312 		r += scnprintf(bf + r, size - r, "r");
313 
314 	if (type & HW_BREAKPOINT_W)
315 		r += scnprintf(bf + r, size - r, "w");
316 
317 	if (type & HW_BREAKPOINT_X)
318 		r += scnprintf(bf + r, size - r, "x");
319 
320 	return r;
321 }
322 
323 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
324 {
325 	struct perf_event_attr *attr = &evsel->attr;
326 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
327 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
328 }
329 
330 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
331 				[PERF_EVSEL__MAX_ALIASES] = {
332  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
333  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
334  { "LLC",	"L2",							},
335  { "dTLB",	"d-tlb",	"Data-TLB",				},
336  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
337  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
338  { "node",								},
339 };
340 
341 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
342 				   [PERF_EVSEL__MAX_ALIASES] = {
343  { "load",	"loads",	"read",					},
344  { "store",	"stores",	"write",				},
345  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
346 };
347 
348 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
349 				       [PERF_EVSEL__MAX_ALIASES] = {
350  { "refs",	"Reference",	"ops",		"access",		},
351  { "misses",	"miss",							},
352 };
353 
354 #define C(x)		PERF_COUNT_HW_CACHE_##x
355 #define CACHE_READ	(1 << C(OP_READ))
356 #define CACHE_WRITE	(1 << C(OP_WRITE))
357 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
358 #define COP(x)		(1 << x)
359 
360 /*
361  * cache operartion stat
362  * L1I : Read and prefetch only
363  * ITLB and BPU : Read-only
364  */
365 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
366  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
367  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
368  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
369  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
370  [C(ITLB)]	= (CACHE_READ),
371  [C(BPU)]	= (CACHE_READ),
372  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
373 };
374 
375 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
376 {
377 	if (perf_evsel__hw_cache_stat[type] & COP(op))
378 		return true;	/* valid */
379 	else
380 		return false;	/* invalid */
381 }
382 
383 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
384 					    char *bf, size_t size)
385 {
386 	if (result) {
387 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
388 				 perf_evsel__hw_cache_op[op][0],
389 				 perf_evsel__hw_cache_result[result][0]);
390 	}
391 
392 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
393 			 perf_evsel__hw_cache_op[op][1]);
394 }
395 
396 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
397 {
398 	u8 op, result, type = (config >>  0) & 0xff;
399 	const char *err = "unknown-ext-hardware-cache-type";
400 
401 	if (type > PERF_COUNT_HW_CACHE_MAX)
402 		goto out_err;
403 
404 	op = (config >>  8) & 0xff;
405 	err = "unknown-ext-hardware-cache-op";
406 	if (op > PERF_COUNT_HW_CACHE_OP_MAX)
407 		goto out_err;
408 
409 	result = (config >> 16) & 0xff;
410 	err = "unknown-ext-hardware-cache-result";
411 	if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
412 		goto out_err;
413 
414 	err = "invalid-cache";
415 	if (!perf_evsel__is_cache_op_valid(type, op))
416 		goto out_err;
417 
418 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
419 out_err:
420 	return scnprintf(bf, size, "%s", err);
421 }
422 
423 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
424 {
425 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
426 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
427 }
428 
429 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
430 {
431 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
432 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
433 }
434 
435 const char *perf_evsel__name(struct perf_evsel *evsel)
436 {
437 	char bf[128];
438 
439 	if (evsel->name)
440 		return evsel->name;
441 
442 	switch (evsel->attr.type) {
443 	case PERF_TYPE_RAW:
444 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
445 		break;
446 
447 	case PERF_TYPE_HARDWARE:
448 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
449 		break;
450 
451 	case PERF_TYPE_HW_CACHE:
452 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
453 		break;
454 
455 	case PERF_TYPE_SOFTWARE:
456 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
457 		break;
458 
459 	case PERF_TYPE_TRACEPOINT:
460 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
461 		break;
462 
463 	case PERF_TYPE_BREAKPOINT:
464 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
465 		break;
466 
467 	default:
468 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
469 			  evsel->attr.type);
470 		break;
471 	}
472 
473 	evsel->name = strdup(bf);
474 
475 	return evsel->name ?: "unknown";
476 }
477 
478 const char *perf_evsel__group_name(struct perf_evsel *evsel)
479 {
480 	return evsel->group_name ?: "anon group";
481 }
482 
483 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
484 {
485 	int ret;
486 	struct perf_evsel *pos;
487 	const char *group_name = perf_evsel__group_name(evsel);
488 
489 	ret = scnprintf(buf, size, "%s", group_name);
490 
491 	ret += scnprintf(buf + ret, size - ret, " { %s",
492 			 perf_evsel__name(evsel));
493 
494 	for_each_group_member(pos, evsel)
495 		ret += scnprintf(buf + ret, size - ret, ", %s",
496 				 perf_evsel__name(pos));
497 
498 	ret += scnprintf(buf + ret, size - ret, " }");
499 
500 	return ret;
501 }
502 
503 static void
504 perf_evsel__config_callgraph(struct perf_evsel *evsel,
505 			     struct record_opts *opts)
506 {
507 	bool function = perf_evsel__is_function_event(evsel);
508 	struct perf_event_attr *attr = &evsel->attr;
509 
510 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
511 
512 	if (opts->call_graph == CALLCHAIN_DWARF) {
513 		if (!function) {
514 			perf_evsel__set_sample_bit(evsel, REGS_USER);
515 			perf_evsel__set_sample_bit(evsel, STACK_USER);
516 			attr->sample_regs_user = PERF_REGS_MASK;
517 			attr->sample_stack_user = opts->stack_dump_size;
518 			attr->exclude_callchain_user = 1;
519 		} else {
520 			pr_info("Cannot use DWARF unwind for function trace event,"
521 				" falling back to framepointers.\n");
522 		}
523 	}
524 
525 	if (function) {
526 		pr_info("Disabling user space callchains for function trace event.\n");
527 		attr->exclude_callchain_user = 1;
528 	}
529 }
530 
531 /*
532  * The enable_on_exec/disabled value strategy:
533  *
534  *  1) For any type of traced program:
535  *    - all independent events and group leaders are disabled
536  *    - all group members are enabled
537  *
538  *     Group members are ruled by group leaders. They need to
539  *     be enabled, because the group scheduling relies on that.
540  *
541  *  2) For traced programs executed by perf:
542  *     - all independent events and group leaders have
543  *       enable_on_exec set
544  *     - we don't specifically enable or disable any event during
545  *       the record command
546  *
547  *     Independent events and group leaders are initially disabled
548  *     and get enabled by exec. Group members are ruled by group
549  *     leaders as stated in 1).
550  *
551  *  3) For traced programs attached by perf (pid/tid):
552  *     - we specifically enable or disable all events during
553  *       the record command
554  *
555  *     When attaching events to already running traced we
556  *     enable/disable events specifically, as there's no
557  *     initial traced exec call.
558  */
559 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
560 {
561 	struct perf_evsel *leader = evsel->leader;
562 	struct perf_event_attr *attr = &evsel->attr;
563 	int track = !evsel->idx; /* only the first counter needs these */
564 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
565 
566 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
567 	attr->inherit	    = !opts->no_inherit;
568 
569 	perf_evsel__set_sample_bit(evsel, IP);
570 	perf_evsel__set_sample_bit(evsel, TID);
571 
572 	if (evsel->sample_read) {
573 		perf_evsel__set_sample_bit(evsel, READ);
574 
575 		/*
576 		 * We need ID even in case of single event, because
577 		 * PERF_SAMPLE_READ process ID specific data.
578 		 */
579 		perf_evsel__set_sample_id(evsel, false);
580 
581 		/*
582 		 * Apply group format only if we belong to group
583 		 * with more than one members.
584 		 */
585 		if (leader->nr_members > 1) {
586 			attr->read_format |= PERF_FORMAT_GROUP;
587 			attr->inherit = 0;
588 		}
589 	}
590 
591 	/*
592 	 * We default some events to a 1 default interval. But keep
593 	 * it a weak assumption overridable by the user.
594 	 */
595 	if (!attr->sample_period || (opts->user_freq != UINT_MAX &&
596 				     opts->user_interval != ULLONG_MAX)) {
597 		if (opts->freq) {
598 			perf_evsel__set_sample_bit(evsel, PERIOD);
599 			attr->freq		= 1;
600 			attr->sample_freq	= opts->freq;
601 		} else {
602 			attr->sample_period = opts->default_interval;
603 		}
604 	}
605 
606 	/*
607 	 * Disable sampling for all group members other
608 	 * than leader in case leader 'leads' the sampling.
609 	 */
610 	if ((leader != evsel) && leader->sample_read) {
611 		attr->sample_freq   = 0;
612 		attr->sample_period = 0;
613 	}
614 
615 	if (opts->no_samples)
616 		attr->sample_freq = 0;
617 
618 	if (opts->inherit_stat)
619 		attr->inherit_stat = 1;
620 
621 	if (opts->sample_address) {
622 		perf_evsel__set_sample_bit(evsel, ADDR);
623 		attr->mmap_data = track;
624 	}
625 
626 	if (opts->call_graph_enabled)
627 		perf_evsel__config_callgraph(evsel, opts);
628 
629 	if (target__has_cpu(&opts->target))
630 		perf_evsel__set_sample_bit(evsel, CPU);
631 
632 	if (opts->period)
633 		perf_evsel__set_sample_bit(evsel, PERIOD);
634 
635 	if (!perf_missing_features.sample_id_all &&
636 	    (opts->sample_time || !opts->no_inherit ||
637 	     target__has_cpu(&opts->target) || per_cpu))
638 		perf_evsel__set_sample_bit(evsel, TIME);
639 
640 	if (opts->raw_samples) {
641 		perf_evsel__set_sample_bit(evsel, TIME);
642 		perf_evsel__set_sample_bit(evsel, RAW);
643 		perf_evsel__set_sample_bit(evsel, CPU);
644 	}
645 
646 	if (opts->sample_address)
647 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
648 
649 	if (opts->no_buffering) {
650 		attr->watermark = 0;
651 		attr->wakeup_events = 1;
652 	}
653 	if (opts->branch_stack) {
654 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
655 		attr->branch_sample_type = opts->branch_stack;
656 	}
657 
658 	if (opts->sample_weight)
659 		perf_evsel__set_sample_bit(evsel, WEIGHT);
660 
661 	attr->mmap  = track;
662 	attr->comm  = track;
663 
664 	if (opts->sample_transaction)
665 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
666 
667 	/*
668 	 * XXX see the function comment above
669 	 *
670 	 * Disabling only independent events or group leaders,
671 	 * keeping group members enabled.
672 	 */
673 	if (perf_evsel__is_group_leader(evsel))
674 		attr->disabled = 1;
675 
676 	/*
677 	 * Setting enable_on_exec for independent events and
678 	 * group leaders for traced executed by perf.
679 	 */
680 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
681 		!opts->initial_delay)
682 		attr->enable_on_exec = 1;
683 }
684 
685 int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
686 {
687 	int cpu, thread;
688 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
689 
690 	if (evsel->fd) {
691 		for (cpu = 0; cpu < ncpus; cpu++) {
692 			for (thread = 0; thread < nthreads; thread++) {
693 				FD(evsel, cpu, thread) = -1;
694 			}
695 		}
696 	}
697 
698 	return evsel->fd != NULL ? 0 : -ENOMEM;
699 }
700 
701 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
702 			  int ioc,  void *arg)
703 {
704 	int cpu, thread;
705 
706 	for (cpu = 0; cpu < ncpus; cpu++) {
707 		for (thread = 0; thread < nthreads; thread++) {
708 			int fd = FD(evsel, cpu, thread),
709 			    err = ioctl(fd, ioc, arg);
710 
711 			if (err)
712 				return err;
713 		}
714 	}
715 
716 	return 0;
717 }
718 
719 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
720 			   const char *filter)
721 {
722 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
723 				     PERF_EVENT_IOC_SET_FILTER,
724 				     (void *)filter);
725 }
726 
727 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
728 {
729 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
730 				     PERF_EVENT_IOC_ENABLE,
731 				     0);
732 }
733 
734 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
735 {
736 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
737 	if (evsel->sample_id == NULL)
738 		return -ENOMEM;
739 
740 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
741 	if (evsel->id == NULL) {
742 		xyarray__delete(evsel->sample_id);
743 		evsel->sample_id = NULL;
744 		return -ENOMEM;
745 	}
746 
747 	return 0;
748 }
749 
750 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
751 {
752 	memset(evsel->counts, 0, (sizeof(*evsel->counts) +
753 				 (ncpus * sizeof(struct perf_counts_values))));
754 }
755 
756 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
757 {
758 	evsel->counts = zalloc((sizeof(*evsel->counts) +
759 				(ncpus * sizeof(struct perf_counts_values))));
760 	return evsel->counts != NULL ? 0 : -ENOMEM;
761 }
762 
763 void perf_evsel__free_fd(struct perf_evsel *evsel)
764 {
765 	xyarray__delete(evsel->fd);
766 	evsel->fd = NULL;
767 }
768 
769 void perf_evsel__free_id(struct perf_evsel *evsel)
770 {
771 	xyarray__delete(evsel->sample_id);
772 	evsel->sample_id = NULL;
773 	zfree(&evsel->id);
774 }
775 
776 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
777 {
778 	int cpu, thread;
779 
780 	for (cpu = 0; cpu < ncpus; cpu++)
781 		for (thread = 0; thread < nthreads; ++thread) {
782 			close(FD(evsel, cpu, thread));
783 			FD(evsel, cpu, thread) = -1;
784 		}
785 }
786 
787 void perf_evsel__free_counts(struct perf_evsel *evsel)
788 {
789 	zfree(&evsel->counts);
790 }
791 
792 void perf_evsel__exit(struct perf_evsel *evsel)
793 {
794 	assert(list_empty(&evsel->node));
795 	perf_evsel__free_fd(evsel);
796 	perf_evsel__free_id(evsel);
797 }
798 
799 void perf_evsel__delete(struct perf_evsel *evsel)
800 {
801 	perf_evsel__exit(evsel);
802 	close_cgroup(evsel->cgrp);
803 	zfree(&evsel->group_name);
804 	if (evsel->tp_format)
805 		pevent_free_format(evsel->tp_format);
806 	zfree(&evsel->name);
807 	free(evsel);
808 }
809 
810 static inline void compute_deltas(struct perf_evsel *evsel,
811 				  int cpu,
812 				  struct perf_counts_values *count)
813 {
814 	struct perf_counts_values tmp;
815 
816 	if (!evsel->prev_raw_counts)
817 		return;
818 
819 	if (cpu == -1) {
820 		tmp = evsel->prev_raw_counts->aggr;
821 		evsel->prev_raw_counts->aggr = *count;
822 	} else {
823 		tmp = evsel->prev_raw_counts->cpu[cpu];
824 		evsel->prev_raw_counts->cpu[cpu] = *count;
825 	}
826 
827 	count->val = count->val - tmp.val;
828 	count->ena = count->ena - tmp.ena;
829 	count->run = count->run - tmp.run;
830 }
831 
832 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
833 			      int cpu, int thread, bool scale)
834 {
835 	struct perf_counts_values count;
836 	size_t nv = scale ? 3 : 1;
837 
838 	if (FD(evsel, cpu, thread) < 0)
839 		return -EINVAL;
840 
841 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
842 		return -ENOMEM;
843 
844 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
845 		return -errno;
846 
847 	compute_deltas(evsel, cpu, &count);
848 
849 	if (scale) {
850 		if (count.run == 0)
851 			count.val = 0;
852 		else if (count.run < count.ena)
853 			count.val = (u64)((double)count.val * count.ena / count.run + 0.5);
854 	} else
855 		count.ena = count.run = 0;
856 
857 	evsel->counts->cpu[cpu] = count;
858 	return 0;
859 }
860 
861 int __perf_evsel__read(struct perf_evsel *evsel,
862 		       int ncpus, int nthreads, bool scale)
863 {
864 	size_t nv = scale ? 3 : 1;
865 	int cpu, thread;
866 	struct perf_counts_values *aggr = &evsel->counts->aggr, count;
867 
868 	aggr->val = aggr->ena = aggr->run = 0;
869 
870 	for (cpu = 0; cpu < ncpus; cpu++) {
871 		for (thread = 0; thread < nthreads; thread++) {
872 			if (FD(evsel, cpu, thread) < 0)
873 				continue;
874 
875 			if (readn(FD(evsel, cpu, thread),
876 				  &count, nv * sizeof(u64)) < 0)
877 				return -errno;
878 
879 			aggr->val += count.val;
880 			if (scale) {
881 				aggr->ena += count.ena;
882 				aggr->run += count.run;
883 			}
884 		}
885 	}
886 
887 	compute_deltas(evsel, -1, aggr);
888 
889 	evsel->counts->scaled = 0;
890 	if (scale) {
891 		if (aggr->run == 0) {
892 			evsel->counts->scaled = -1;
893 			aggr->val = 0;
894 			return 0;
895 		}
896 
897 		if (aggr->run < aggr->ena) {
898 			evsel->counts->scaled = 1;
899 			aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5);
900 		}
901 	} else
902 		aggr->ena = aggr->run = 0;
903 
904 	return 0;
905 }
906 
907 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
908 {
909 	struct perf_evsel *leader = evsel->leader;
910 	int fd;
911 
912 	if (perf_evsel__is_group_leader(evsel))
913 		return -1;
914 
915 	/*
916 	 * Leader must be already processed/open,
917 	 * if not it's a bug.
918 	 */
919 	BUG_ON(!leader->fd);
920 
921 	fd = FD(leader, cpu, thread);
922 	BUG_ON(fd == -1);
923 
924 	return fd;
925 }
926 
927 #define __PRINT_ATTR(fmt, cast, field)  \
928 	fprintf(fp, "  %-19s "fmt"\n", #field, cast attr->field)
929 
930 #define PRINT_ATTR_U32(field)  __PRINT_ATTR("%u" , , field)
931 #define PRINT_ATTR_X32(field)  __PRINT_ATTR("%#x", , field)
932 #define PRINT_ATTR_U64(field)  __PRINT_ATTR("%" PRIu64, (uint64_t), field)
933 #define PRINT_ATTR_X64(field)  __PRINT_ATTR("%#"PRIx64, (uint64_t), field)
934 
935 #define PRINT_ATTR2N(name1, field1, name2, field2)	\
936 	fprintf(fp, "  %-19s %u    %-19s %u\n",		\
937 	name1, attr->field1, name2, attr->field2)
938 
939 #define PRINT_ATTR2(field1, field2) \
940 	PRINT_ATTR2N(#field1, field1, #field2, field2)
941 
942 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp)
943 {
944 	size_t ret = 0;
945 
946 	ret += fprintf(fp, "%.60s\n", graph_dotted_line);
947 	ret += fprintf(fp, "perf_event_attr:\n");
948 
949 	ret += PRINT_ATTR_U32(type);
950 	ret += PRINT_ATTR_U32(size);
951 	ret += PRINT_ATTR_X64(config);
952 	ret += PRINT_ATTR_U64(sample_period);
953 	ret += PRINT_ATTR_U64(sample_freq);
954 	ret += PRINT_ATTR_X64(sample_type);
955 	ret += PRINT_ATTR_X64(read_format);
956 
957 	ret += PRINT_ATTR2(disabled, inherit);
958 	ret += PRINT_ATTR2(pinned, exclusive);
959 	ret += PRINT_ATTR2(exclude_user, exclude_kernel);
960 	ret += PRINT_ATTR2(exclude_hv, exclude_idle);
961 	ret += PRINT_ATTR2(mmap, comm);
962 	ret += PRINT_ATTR2(freq, inherit_stat);
963 	ret += PRINT_ATTR2(enable_on_exec, task);
964 	ret += PRINT_ATTR2(watermark, precise_ip);
965 	ret += PRINT_ATTR2(mmap_data, sample_id_all);
966 	ret += PRINT_ATTR2(exclude_host, exclude_guest);
967 	ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel,
968 			    "excl.callchain_user", exclude_callchain_user);
969 	ret += PRINT_ATTR_U32(mmap2);
970 
971 	ret += PRINT_ATTR_U32(wakeup_events);
972 	ret += PRINT_ATTR_U32(wakeup_watermark);
973 	ret += PRINT_ATTR_X32(bp_type);
974 	ret += PRINT_ATTR_X64(bp_addr);
975 	ret += PRINT_ATTR_X64(config1);
976 	ret += PRINT_ATTR_U64(bp_len);
977 	ret += PRINT_ATTR_X64(config2);
978 	ret += PRINT_ATTR_X64(branch_sample_type);
979 	ret += PRINT_ATTR_X64(sample_regs_user);
980 	ret += PRINT_ATTR_U32(sample_stack_user);
981 
982 	ret += fprintf(fp, "%.60s\n", graph_dotted_line);
983 
984 	return ret;
985 }
986 
987 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
988 			      struct thread_map *threads)
989 {
990 	int cpu, thread;
991 	unsigned long flags = 0;
992 	int pid = -1, err;
993 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
994 
995 	if (evsel->fd == NULL &&
996 	    perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0)
997 		return -ENOMEM;
998 
999 	if (evsel->cgrp) {
1000 		flags = PERF_FLAG_PID_CGROUP;
1001 		pid = evsel->cgrp->fd;
1002 	}
1003 
1004 fallback_missing_features:
1005 	if (perf_missing_features.mmap2)
1006 		evsel->attr.mmap2 = 0;
1007 	if (perf_missing_features.exclude_guest)
1008 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1009 retry_sample_id:
1010 	if (perf_missing_features.sample_id_all)
1011 		evsel->attr.sample_id_all = 0;
1012 
1013 	if (verbose >= 2)
1014 		perf_event_attr__fprintf(&evsel->attr, stderr);
1015 
1016 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1017 
1018 		for (thread = 0; thread < threads->nr; thread++) {
1019 			int group_fd;
1020 
1021 			if (!evsel->cgrp)
1022 				pid = threads->map[thread];
1023 
1024 			group_fd = get_group_fd(evsel, cpu, thread);
1025 retry_open:
1026 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1027 				  pid, cpus->map[cpu], group_fd, flags);
1028 
1029 			FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1030 								     pid,
1031 								     cpus->map[cpu],
1032 								     group_fd, flags);
1033 			if (FD(evsel, cpu, thread) < 0) {
1034 				err = -errno;
1035 				pr_debug2("sys_perf_event_open failed, error %d\n",
1036 					  err);
1037 				goto try_fallback;
1038 			}
1039 			set_rlimit = NO_CHANGE;
1040 		}
1041 	}
1042 
1043 	return 0;
1044 
1045 try_fallback:
1046 	/*
1047 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1048 	 * of them try to increase the limits.
1049 	 */
1050 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1051 		struct rlimit l;
1052 		int old_errno = errno;
1053 
1054 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1055 			if (set_rlimit == NO_CHANGE)
1056 				l.rlim_cur = l.rlim_max;
1057 			else {
1058 				l.rlim_cur = l.rlim_max + 1000;
1059 				l.rlim_max = l.rlim_cur;
1060 			}
1061 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1062 				set_rlimit++;
1063 				errno = old_errno;
1064 				goto retry_open;
1065 			}
1066 		}
1067 		errno = old_errno;
1068 	}
1069 
1070 	if (err != -EINVAL || cpu > 0 || thread > 0)
1071 		goto out_close;
1072 
1073 	if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1074 		perf_missing_features.mmap2 = true;
1075 		goto fallback_missing_features;
1076 	} else if (!perf_missing_features.exclude_guest &&
1077 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1078 		perf_missing_features.exclude_guest = true;
1079 		goto fallback_missing_features;
1080 	} else if (!perf_missing_features.sample_id_all) {
1081 		perf_missing_features.sample_id_all = true;
1082 		goto retry_sample_id;
1083 	}
1084 
1085 out_close:
1086 	do {
1087 		while (--thread >= 0) {
1088 			close(FD(evsel, cpu, thread));
1089 			FD(evsel, cpu, thread) = -1;
1090 		}
1091 		thread = threads->nr;
1092 	} while (--cpu >= 0);
1093 	return err;
1094 }
1095 
1096 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1097 {
1098 	if (evsel->fd == NULL)
1099 		return;
1100 
1101 	perf_evsel__close_fd(evsel, ncpus, nthreads);
1102 	perf_evsel__free_fd(evsel);
1103 }
1104 
1105 static struct {
1106 	struct cpu_map map;
1107 	int cpus[1];
1108 } empty_cpu_map = {
1109 	.map.nr	= 1,
1110 	.cpus	= { -1, },
1111 };
1112 
1113 static struct {
1114 	struct thread_map map;
1115 	int threads[1];
1116 } empty_thread_map = {
1117 	.map.nr	 = 1,
1118 	.threads = { -1, },
1119 };
1120 
1121 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1122 		     struct thread_map *threads)
1123 {
1124 	if (cpus == NULL) {
1125 		/* Work around old compiler warnings about strict aliasing */
1126 		cpus = &empty_cpu_map.map;
1127 	}
1128 
1129 	if (threads == NULL)
1130 		threads = &empty_thread_map.map;
1131 
1132 	return __perf_evsel__open(evsel, cpus, threads);
1133 }
1134 
1135 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1136 			     struct cpu_map *cpus)
1137 {
1138 	return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1139 }
1140 
1141 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1142 				struct thread_map *threads)
1143 {
1144 	return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1145 }
1146 
1147 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1148 				       const union perf_event *event,
1149 				       struct perf_sample *sample)
1150 {
1151 	u64 type = evsel->attr.sample_type;
1152 	const u64 *array = event->sample.array;
1153 	bool swapped = evsel->needs_swap;
1154 	union u64_swap u;
1155 
1156 	array += ((event->header.size -
1157 		   sizeof(event->header)) / sizeof(u64)) - 1;
1158 
1159 	if (type & PERF_SAMPLE_IDENTIFIER) {
1160 		sample->id = *array;
1161 		array--;
1162 	}
1163 
1164 	if (type & PERF_SAMPLE_CPU) {
1165 		u.val64 = *array;
1166 		if (swapped) {
1167 			/* undo swap of u64, then swap on individual u32s */
1168 			u.val64 = bswap_64(u.val64);
1169 			u.val32[0] = bswap_32(u.val32[0]);
1170 		}
1171 
1172 		sample->cpu = u.val32[0];
1173 		array--;
1174 	}
1175 
1176 	if (type & PERF_SAMPLE_STREAM_ID) {
1177 		sample->stream_id = *array;
1178 		array--;
1179 	}
1180 
1181 	if (type & PERF_SAMPLE_ID) {
1182 		sample->id = *array;
1183 		array--;
1184 	}
1185 
1186 	if (type & PERF_SAMPLE_TIME) {
1187 		sample->time = *array;
1188 		array--;
1189 	}
1190 
1191 	if (type & PERF_SAMPLE_TID) {
1192 		u.val64 = *array;
1193 		if (swapped) {
1194 			/* undo swap of u64, then swap on individual u32s */
1195 			u.val64 = bswap_64(u.val64);
1196 			u.val32[0] = bswap_32(u.val32[0]);
1197 			u.val32[1] = bswap_32(u.val32[1]);
1198 		}
1199 
1200 		sample->pid = u.val32[0];
1201 		sample->tid = u.val32[1];
1202 		array--;
1203 	}
1204 
1205 	return 0;
1206 }
1207 
1208 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1209 			    u64 size)
1210 {
1211 	return size > max_size || offset + size > endp;
1212 }
1213 
1214 #define OVERFLOW_CHECK(offset, size, max_size)				\
1215 	do {								\
1216 		if (overflow(endp, (max_size), (offset), (size)))	\
1217 			return -EFAULT;					\
1218 	} while (0)
1219 
1220 #define OVERFLOW_CHECK_u64(offset) \
1221 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1222 
1223 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1224 			     struct perf_sample *data)
1225 {
1226 	u64 type = evsel->attr.sample_type;
1227 	bool swapped = evsel->needs_swap;
1228 	const u64 *array;
1229 	u16 max_size = event->header.size;
1230 	const void *endp = (void *)event + max_size;
1231 	u64 sz;
1232 
1233 	/*
1234 	 * used for cross-endian analysis. See git commit 65014ab3
1235 	 * for why this goofiness is needed.
1236 	 */
1237 	union u64_swap u;
1238 
1239 	memset(data, 0, sizeof(*data));
1240 	data->cpu = data->pid = data->tid = -1;
1241 	data->stream_id = data->id = data->time = -1ULL;
1242 	data->period = evsel->attr.sample_period;
1243 	data->weight = 0;
1244 
1245 	if (event->header.type != PERF_RECORD_SAMPLE) {
1246 		if (!evsel->attr.sample_id_all)
1247 			return 0;
1248 		return perf_evsel__parse_id_sample(evsel, event, data);
1249 	}
1250 
1251 	array = event->sample.array;
1252 
1253 	/*
1254 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1255 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1256 	 * check the format does not go past the end of the event.
1257 	 */
1258 	if (evsel->sample_size + sizeof(event->header) > event->header.size)
1259 		return -EFAULT;
1260 
1261 	data->id = -1ULL;
1262 	if (type & PERF_SAMPLE_IDENTIFIER) {
1263 		data->id = *array;
1264 		array++;
1265 	}
1266 
1267 	if (type & PERF_SAMPLE_IP) {
1268 		data->ip = *array;
1269 		array++;
1270 	}
1271 
1272 	if (type & PERF_SAMPLE_TID) {
1273 		u.val64 = *array;
1274 		if (swapped) {
1275 			/* undo swap of u64, then swap on individual u32s */
1276 			u.val64 = bswap_64(u.val64);
1277 			u.val32[0] = bswap_32(u.val32[0]);
1278 			u.val32[1] = bswap_32(u.val32[1]);
1279 		}
1280 
1281 		data->pid = u.val32[0];
1282 		data->tid = u.val32[1];
1283 		array++;
1284 	}
1285 
1286 	if (type & PERF_SAMPLE_TIME) {
1287 		data->time = *array;
1288 		array++;
1289 	}
1290 
1291 	data->addr = 0;
1292 	if (type & PERF_SAMPLE_ADDR) {
1293 		data->addr = *array;
1294 		array++;
1295 	}
1296 
1297 	if (type & PERF_SAMPLE_ID) {
1298 		data->id = *array;
1299 		array++;
1300 	}
1301 
1302 	if (type & PERF_SAMPLE_STREAM_ID) {
1303 		data->stream_id = *array;
1304 		array++;
1305 	}
1306 
1307 	if (type & PERF_SAMPLE_CPU) {
1308 
1309 		u.val64 = *array;
1310 		if (swapped) {
1311 			/* undo swap of u64, then swap on individual u32s */
1312 			u.val64 = bswap_64(u.val64);
1313 			u.val32[0] = bswap_32(u.val32[0]);
1314 		}
1315 
1316 		data->cpu = u.val32[0];
1317 		array++;
1318 	}
1319 
1320 	if (type & PERF_SAMPLE_PERIOD) {
1321 		data->period = *array;
1322 		array++;
1323 	}
1324 
1325 	if (type & PERF_SAMPLE_READ) {
1326 		u64 read_format = evsel->attr.read_format;
1327 
1328 		OVERFLOW_CHECK_u64(array);
1329 		if (read_format & PERF_FORMAT_GROUP)
1330 			data->read.group.nr = *array;
1331 		else
1332 			data->read.one.value = *array;
1333 
1334 		array++;
1335 
1336 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1337 			OVERFLOW_CHECK_u64(array);
1338 			data->read.time_enabled = *array;
1339 			array++;
1340 		}
1341 
1342 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1343 			OVERFLOW_CHECK_u64(array);
1344 			data->read.time_running = *array;
1345 			array++;
1346 		}
1347 
1348 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1349 		if (read_format & PERF_FORMAT_GROUP) {
1350 			const u64 max_group_nr = UINT64_MAX /
1351 					sizeof(struct sample_read_value);
1352 
1353 			if (data->read.group.nr > max_group_nr)
1354 				return -EFAULT;
1355 			sz = data->read.group.nr *
1356 			     sizeof(struct sample_read_value);
1357 			OVERFLOW_CHECK(array, sz, max_size);
1358 			data->read.group.values =
1359 					(struct sample_read_value *)array;
1360 			array = (void *)array + sz;
1361 		} else {
1362 			OVERFLOW_CHECK_u64(array);
1363 			data->read.one.id = *array;
1364 			array++;
1365 		}
1366 	}
1367 
1368 	if (type & PERF_SAMPLE_CALLCHAIN) {
1369 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1370 
1371 		OVERFLOW_CHECK_u64(array);
1372 		data->callchain = (struct ip_callchain *)array++;
1373 		if (data->callchain->nr > max_callchain_nr)
1374 			return -EFAULT;
1375 		sz = data->callchain->nr * sizeof(u64);
1376 		OVERFLOW_CHECK(array, sz, max_size);
1377 		array = (void *)array + sz;
1378 	}
1379 
1380 	if (type & PERF_SAMPLE_RAW) {
1381 		OVERFLOW_CHECK_u64(array);
1382 		u.val64 = *array;
1383 		if (WARN_ONCE(swapped,
1384 			      "Endianness of raw data not corrected!\n")) {
1385 			/* undo swap of u64, then swap on individual u32s */
1386 			u.val64 = bswap_64(u.val64);
1387 			u.val32[0] = bswap_32(u.val32[0]);
1388 			u.val32[1] = bswap_32(u.val32[1]);
1389 		}
1390 		data->raw_size = u.val32[0];
1391 		array = (void *)array + sizeof(u32);
1392 
1393 		OVERFLOW_CHECK(array, data->raw_size, max_size);
1394 		data->raw_data = (void *)array;
1395 		array = (void *)array + data->raw_size;
1396 	}
1397 
1398 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1399 		const u64 max_branch_nr = UINT64_MAX /
1400 					  sizeof(struct branch_entry);
1401 
1402 		OVERFLOW_CHECK_u64(array);
1403 		data->branch_stack = (struct branch_stack *)array++;
1404 
1405 		if (data->branch_stack->nr > max_branch_nr)
1406 			return -EFAULT;
1407 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
1408 		OVERFLOW_CHECK(array, sz, max_size);
1409 		array = (void *)array + sz;
1410 	}
1411 
1412 	if (type & PERF_SAMPLE_REGS_USER) {
1413 		OVERFLOW_CHECK_u64(array);
1414 		data->user_regs.abi = *array;
1415 		array++;
1416 
1417 		if (data->user_regs.abi) {
1418 			u64 mask = evsel->attr.sample_regs_user;
1419 
1420 			sz = hweight_long(mask) * sizeof(u64);
1421 			OVERFLOW_CHECK(array, sz, max_size);
1422 			data->user_regs.mask = mask;
1423 			data->user_regs.regs = (u64 *)array;
1424 			array = (void *)array + sz;
1425 		}
1426 	}
1427 
1428 	if (type & PERF_SAMPLE_STACK_USER) {
1429 		OVERFLOW_CHECK_u64(array);
1430 		sz = *array++;
1431 
1432 		data->user_stack.offset = ((char *)(array - 1)
1433 					  - (char *) event);
1434 
1435 		if (!sz) {
1436 			data->user_stack.size = 0;
1437 		} else {
1438 			OVERFLOW_CHECK(array, sz, max_size);
1439 			data->user_stack.data = (char *)array;
1440 			array = (void *)array + sz;
1441 			OVERFLOW_CHECK_u64(array);
1442 			data->user_stack.size = *array++;
1443 			if (WARN_ONCE(data->user_stack.size > sz,
1444 				      "user stack dump failure\n"))
1445 				return -EFAULT;
1446 		}
1447 	}
1448 
1449 	data->weight = 0;
1450 	if (type & PERF_SAMPLE_WEIGHT) {
1451 		OVERFLOW_CHECK_u64(array);
1452 		data->weight = *array;
1453 		array++;
1454 	}
1455 
1456 	data->data_src = PERF_MEM_DATA_SRC_NONE;
1457 	if (type & PERF_SAMPLE_DATA_SRC) {
1458 		OVERFLOW_CHECK_u64(array);
1459 		data->data_src = *array;
1460 		array++;
1461 	}
1462 
1463 	data->transaction = 0;
1464 	if (type & PERF_SAMPLE_TRANSACTION) {
1465 		OVERFLOW_CHECK_u64(array);
1466 		data->transaction = *array;
1467 		array++;
1468 	}
1469 
1470 	return 0;
1471 }
1472 
1473 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1474 				     u64 read_format)
1475 {
1476 	size_t sz, result = sizeof(struct sample_event);
1477 
1478 	if (type & PERF_SAMPLE_IDENTIFIER)
1479 		result += sizeof(u64);
1480 
1481 	if (type & PERF_SAMPLE_IP)
1482 		result += sizeof(u64);
1483 
1484 	if (type & PERF_SAMPLE_TID)
1485 		result += sizeof(u64);
1486 
1487 	if (type & PERF_SAMPLE_TIME)
1488 		result += sizeof(u64);
1489 
1490 	if (type & PERF_SAMPLE_ADDR)
1491 		result += sizeof(u64);
1492 
1493 	if (type & PERF_SAMPLE_ID)
1494 		result += sizeof(u64);
1495 
1496 	if (type & PERF_SAMPLE_STREAM_ID)
1497 		result += sizeof(u64);
1498 
1499 	if (type & PERF_SAMPLE_CPU)
1500 		result += sizeof(u64);
1501 
1502 	if (type & PERF_SAMPLE_PERIOD)
1503 		result += sizeof(u64);
1504 
1505 	if (type & PERF_SAMPLE_READ) {
1506 		result += sizeof(u64);
1507 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1508 			result += sizeof(u64);
1509 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1510 			result += sizeof(u64);
1511 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1512 		if (read_format & PERF_FORMAT_GROUP) {
1513 			sz = sample->read.group.nr *
1514 			     sizeof(struct sample_read_value);
1515 			result += sz;
1516 		} else {
1517 			result += sizeof(u64);
1518 		}
1519 	}
1520 
1521 	if (type & PERF_SAMPLE_CALLCHAIN) {
1522 		sz = (sample->callchain->nr + 1) * sizeof(u64);
1523 		result += sz;
1524 	}
1525 
1526 	if (type & PERF_SAMPLE_RAW) {
1527 		result += sizeof(u32);
1528 		result += sample->raw_size;
1529 	}
1530 
1531 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1532 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1533 		sz += sizeof(u64);
1534 		result += sz;
1535 	}
1536 
1537 	if (type & PERF_SAMPLE_REGS_USER) {
1538 		if (sample->user_regs.abi) {
1539 			result += sizeof(u64);
1540 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1541 			result += sz;
1542 		} else {
1543 			result += sizeof(u64);
1544 		}
1545 	}
1546 
1547 	if (type & PERF_SAMPLE_STACK_USER) {
1548 		sz = sample->user_stack.size;
1549 		result += sizeof(u64);
1550 		if (sz) {
1551 			result += sz;
1552 			result += sizeof(u64);
1553 		}
1554 	}
1555 
1556 	if (type & PERF_SAMPLE_WEIGHT)
1557 		result += sizeof(u64);
1558 
1559 	if (type & PERF_SAMPLE_DATA_SRC)
1560 		result += sizeof(u64);
1561 
1562 	if (type & PERF_SAMPLE_TRANSACTION)
1563 		result += sizeof(u64);
1564 
1565 	return result;
1566 }
1567 
1568 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1569 				  u64 read_format,
1570 				  const struct perf_sample *sample,
1571 				  bool swapped)
1572 {
1573 	u64 *array;
1574 	size_t sz;
1575 	/*
1576 	 * used for cross-endian analysis. See git commit 65014ab3
1577 	 * for why this goofiness is needed.
1578 	 */
1579 	union u64_swap u;
1580 
1581 	array = event->sample.array;
1582 
1583 	if (type & PERF_SAMPLE_IDENTIFIER) {
1584 		*array = sample->id;
1585 		array++;
1586 	}
1587 
1588 	if (type & PERF_SAMPLE_IP) {
1589 		*array = sample->ip;
1590 		array++;
1591 	}
1592 
1593 	if (type & PERF_SAMPLE_TID) {
1594 		u.val32[0] = sample->pid;
1595 		u.val32[1] = sample->tid;
1596 		if (swapped) {
1597 			/*
1598 			 * Inverse of what is done in perf_evsel__parse_sample
1599 			 */
1600 			u.val32[0] = bswap_32(u.val32[0]);
1601 			u.val32[1] = bswap_32(u.val32[1]);
1602 			u.val64 = bswap_64(u.val64);
1603 		}
1604 
1605 		*array = u.val64;
1606 		array++;
1607 	}
1608 
1609 	if (type & PERF_SAMPLE_TIME) {
1610 		*array = sample->time;
1611 		array++;
1612 	}
1613 
1614 	if (type & PERF_SAMPLE_ADDR) {
1615 		*array = sample->addr;
1616 		array++;
1617 	}
1618 
1619 	if (type & PERF_SAMPLE_ID) {
1620 		*array = sample->id;
1621 		array++;
1622 	}
1623 
1624 	if (type & PERF_SAMPLE_STREAM_ID) {
1625 		*array = sample->stream_id;
1626 		array++;
1627 	}
1628 
1629 	if (type & PERF_SAMPLE_CPU) {
1630 		u.val32[0] = sample->cpu;
1631 		if (swapped) {
1632 			/*
1633 			 * Inverse of what is done in perf_evsel__parse_sample
1634 			 */
1635 			u.val32[0] = bswap_32(u.val32[0]);
1636 			u.val64 = bswap_64(u.val64);
1637 		}
1638 		*array = u.val64;
1639 		array++;
1640 	}
1641 
1642 	if (type & PERF_SAMPLE_PERIOD) {
1643 		*array = sample->period;
1644 		array++;
1645 	}
1646 
1647 	if (type & PERF_SAMPLE_READ) {
1648 		if (read_format & PERF_FORMAT_GROUP)
1649 			*array = sample->read.group.nr;
1650 		else
1651 			*array = sample->read.one.value;
1652 		array++;
1653 
1654 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1655 			*array = sample->read.time_enabled;
1656 			array++;
1657 		}
1658 
1659 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1660 			*array = sample->read.time_running;
1661 			array++;
1662 		}
1663 
1664 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1665 		if (read_format & PERF_FORMAT_GROUP) {
1666 			sz = sample->read.group.nr *
1667 			     sizeof(struct sample_read_value);
1668 			memcpy(array, sample->read.group.values, sz);
1669 			array = (void *)array + sz;
1670 		} else {
1671 			*array = sample->read.one.id;
1672 			array++;
1673 		}
1674 	}
1675 
1676 	if (type & PERF_SAMPLE_CALLCHAIN) {
1677 		sz = (sample->callchain->nr + 1) * sizeof(u64);
1678 		memcpy(array, sample->callchain, sz);
1679 		array = (void *)array + sz;
1680 	}
1681 
1682 	if (type & PERF_SAMPLE_RAW) {
1683 		u.val32[0] = sample->raw_size;
1684 		if (WARN_ONCE(swapped,
1685 			      "Endianness of raw data not corrected!\n")) {
1686 			/*
1687 			 * Inverse of what is done in perf_evsel__parse_sample
1688 			 */
1689 			u.val32[0] = bswap_32(u.val32[0]);
1690 			u.val32[1] = bswap_32(u.val32[1]);
1691 			u.val64 = bswap_64(u.val64);
1692 		}
1693 		*array = u.val64;
1694 		array = (void *)array + sizeof(u32);
1695 
1696 		memcpy(array, sample->raw_data, sample->raw_size);
1697 		array = (void *)array + sample->raw_size;
1698 	}
1699 
1700 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1701 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1702 		sz += sizeof(u64);
1703 		memcpy(array, sample->branch_stack, sz);
1704 		array = (void *)array + sz;
1705 	}
1706 
1707 	if (type & PERF_SAMPLE_REGS_USER) {
1708 		if (sample->user_regs.abi) {
1709 			*array++ = sample->user_regs.abi;
1710 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1711 			memcpy(array, sample->user_regs.regs, sz);
1712 			array = (void *)array + sz;
1713 		} else {
1714 			*array++ = 0;
1715 		}
1716 	}
1717 
1718 	if (type & PERF_SAMPLE_STACK_USER) {
1719 		sz = sample->user_stack.size;
1720 		*array++ = sz;
1721 		if (sz) {
1722 			memcpy(array, sample->user_stack.data, sz);
1723 			array = (void *)array + sz;
1724 			*array++ = sz;
1725 		}
1726 	}
1727 
1728 	if (type & PERF_SAMPLE_WEIGHT) {
1729 		*array = sample->weight;
1730 		array++;
1731 	}
1732 
1733 	if (type & PERF_SAMPLE_DATA_SRC) {
1734 		*array = sample->data_src;
1735 		array++;
1736 	}
1737 
1738 	if (type & PERF_SAMPLE_TRANSACTION) {
1739 		*array = sample->transaction;
1740 		array++;
1741 	}
1742 
1743 	return 0;
1744 }
1745 
1746 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1747 {
1748 	return pevent_find_field(evsel->tp_format, name);
1749 }
1750 
1751 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1752 			 const char *name)
1753 {
1754 	struct format_field *field = perf_evsel__field(evsel, name);
1755 	int offset;
1756 
1757 	if (!field)
1758 		return NULL;
1759 
1760 	offset = field->offset;
1761 
1762 	if (field->flags & FIELD_IS_DYNAMIC) {
1763 		offset = *(int *)(sample->raw_data + field->offset);
1764 		offset &= 0xffff;
1765 	}
1766 
1767 	return sample->raw_data + offset;
1768 }
1769 
1770 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1771 		       const char *name)
1772 {
1773 	struct format_field *field = perf_evsel__field(evsel, name);
1774 	void *ptr;
1775 	u64 value;
1776 
1777 	if (!field)
1778 		return 0;
1779 
1780 	ptr = sample->raw_data + field->offset;
1781 
1782 	switch (field->size) {
1783 	case 1:
1784 		return *(u8 *)ptr;
1785 	case 2:
1786 		value = *(u16 *)ptr;
1787 		break;
1788 	case 4:
1789 		value = *(u32 *)ptr;
1790 		break;
1791 	case 8:
1792 		value = *(u64 *)ptr;
1793 		break;
1794 	default:
1795 		return 0;
1796 	}
1797 
1798 	if (!evsel->needs_swap)
1799 		return value;
1800 
1801 	switch (field->size) {
1802 	case 2:
1803 		return bswap_16(value);
1804 	case 4:
1805 		return bswap_32(value);
1806 	case 8:
1807 		return bswap_64(value);
1808 	default:
1809 		return 0;
1810 	}
1811 
1812 	return 0;
1813 }
1814 
1815 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
1816 {
1817 	va_list args;
1818 	int ret = 0;
1819 
1820 	if (!*first) {
1821 		ret += fprintf(fp, ",");
1822 	} else {
1823 		ret += fprintf(fp, ":");
1824 		*first = false;
1825 	}
1826 
1827 	va_start(args, fmt);
1828 	ret += vfprintf(fp, fmt, args);
1829 	va_end(args);
1830 	return ret;
1831 }
1832 
1833 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value)
1834 {
1835 	if (value == 0)
1836 		return 0;
1837 
1838 	return comma_fprintf(fp, first, " %s: %" PRIu64, field, value);
1839 }
1840 
1841 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field)
1842 
1843 struct bit_names {
1844 	int bit;
1845 	const char *name;
1846 };
1847 
1848 static int bits__fprintf(FILE *fp, const char *field, u64 value,
1849 			 struct bit_names *bits, bool *first)
1850 {
1851 	int i = 0, printed = comma_fprintf(fp, first, " %s: ", field);
1852 	bool first_bit = true;
1853 
1854 	do {
1855 		if (value & bits[i].bit) {
1856 			printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name);
1857 			first_bit = false;
1858 		}
1859 	} while (bits[++i].name != NULL);
1860 
1861 	return printed;
1862 }
1863 
1864 static int sample_type__fprintf(FILE *fp, bool *first, u64 value)
1865 {
1866 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1867 	struct bit_names bits[] = {
1868 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1869 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1870 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1871 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1872 		bit_name(IDENTIFIER),
1873 		{ .name = NULL, }
1874 	};
1875 #undef bit_name
1876 	return bits__fprintf(fp, "sample_type", value, bits, first);
1877 }
1878 
1879 static int read_format__fprintf(FILE *fp, bool *first, u64 value)
1880 {
1881 #define bit_name(n) { PERF_FORMAT_##n, #n }
1882 	struct bit_names bits[] = {
1883 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1884 		bit_name(ID), bit_name(GROUP),
1885 		{ .name = NULL, }
1886 	};
1887 #undef bit_name
1888 	return bits__fprintf(fp, "read_format", value, bits, first);
1889 }
1890 
1891 int perf_evsel__fprintf(struct perf_evsel *evsel,
1892 			struct perf_attr_details *details, FILE *fp)
1893 {
1894 	bool first = true;
1895 	int printed = 0;
1896 
1897 	if (details->event_group) {
1898 		struct perf_evsel *pos;
1899 
1900 		if (!perf_evsel__is_group_leader(evsel))
1901 			return 0;
1902 
1903 		if (evsel->nr_members > 1)
1904 			printed += fprintf(fp, "%s{", evsel->group_name ?: "");
1905 
1906 		printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1907 		for_each_group_member(pos, evsel)
1908 			printed += fprintf(fp, ",%s", perf_evsel__name(pos));
1909 
1910 		if (evsel->nr_members > 1)
1911 			printed += fprintf(fp, "}");
1912 		goto out;
1913 	}
1914 
1915 	printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1916 
1917 	if (details->verbose || details->freq) {
1918 		printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
1919 					 (u64)evsel->attr.sample_freq);
1920 	}
1921 
1922 	if (details->verbose) {
1923 		if_print(type);
1924 		if_print(config);
1925 		if_print(config1);
1926 		if_print(config2);
1927 		if_print(size);
1928 		printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type);
1929 		if (evsel->attr.read_format)
1930 			printed += read_format__fprintf(fp, &first, evsel->attr.read_format);
1931 		if_print(disabled);
1932 		if_print(inherit);
1933 		if_print(pinned);
1934 		if_print(exclusive);
1935 		if_print(exclude_user);
1936 		if_print(exclude_kernel);
1937 		if_print(exclude_hv);
1938 		if_print(exclude_idle);
1939 		if_print(mmap);
1940 		if_print(mmap2);
1941 		if_print(comm);
1942 		if_print(freq);
1943 		if_print(inherit_stat);
1944 		if_print(enable_on_exec);
1945 		if_print(task);
1946 		if_print(watermark);
1947 		if_print(precise_ip);
1948 		if_print(mmap_data);
1949 		if_print(sample_id_all);
1950 		if_print(exclude_host);
1951 		if_print(exclude_guest);
1952 		if_print(__reserved_1);
1953 		if_print(wakeup_events);
1954 		if_print(bp_type);
1955 		if_print(branch_sample_type);
1956 	}
1957 out:
1958 	fputc('\n', fp);
1959 	return ++printed;
1960 }
1961 
1962 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
1963 			  char *msg, size_t msgsize)
1964 {
1965 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
1966 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
1967 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
1968 		/*
1969 		 * If it's cycles then fall back to hrtimer based
1970 		 * cpu-clock-tick sw counter, which is always available even if
1971 		 * no PMU support.
1972 		 *
1973 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
1974 		 * b0a873e).
1975 		 */
1976 		scnprintf(msg, msgsize, "%s",
1977 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
1978 
1979 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
1980 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
1981 
1982 		zfree(&evsel->name);
1983 		return true;
1984 	}
1985 
1986 	return false;
1987 }
1988 
1989 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
1990 			      int err, char *msg, size_t size)
1991 {
1992 	switch (err) {
1993 	case EPERM:
1994 	case EACCES:
1995 		return scnprintf(msg, size,
1996 		 "You may not have permission to collect %sstats.\n"
1997 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
1998 		 " -1 - Not paranoid at all\n"
1999 		 "  0 - Disallow raw tracepoint access for unpriv\n"
2000 		 "  1 - Disallow cpu events for unpriv\n"
2001 		 "  2 - Disallow kernel profiling for unpriv",
2002 				 target->system_wide ? "system-wide " : "");
2003 	case ENOENT:
2004 		return scnprintf(msg, size, "The %s event is not supported.",
2005 				 perf_evsel__name(evsel));
2006 	case EMFILE:
2007 		return scnprintf(msg, size, "%s",
2008 			 "Too many events are opened.\n"
2009 			 "Try again after reducing the number of events.");
2010 	case ENODEV:
2011 		if (target->cpu_list)
2012 			return scnprintf(msg, size, "%s",
2013 	 "No such device - did you specify an out-of-range profile CPU?\n");
2014 		break;
2015 	case EOPNOTSUPP:
2016 		if (evsel->attr.precise_ip)
2017 			return scnprintf(msg, size, "%s",
2018 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2019 #if defined(__i386__) || defined(__x86_64__)
2020 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2021 			return scnprintf(msg, size, "%s",
2022 	"No hardware sampling interrupt available.\n"
2023 	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2024 #endif
2025 		break;
2026 	default:
2027 		break;
2028 	}
2029 
2030 	return scnprintf(msg, size,
2031 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).  \n"
2032 	"/bin/dmesg may provide additional information.\n"
2033 	"No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2034 			 err, strerror(err), perf_evsel__name(evsel));
2035 }
2036