1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <linux/bitops.h> 12 #include <api/fs/debugfs.h> 13 #include <traceevent/event-parse.h> 14 #include <linux/hw_breakpoint.h> 15 #include <linux/perf_event.h> 16 #include <sys/resource.h> 17 #include "asm/bug.h" 18 #include "evsel.h" 19 #include "evlist.h" 20 #include "util.h" 21 #include "cpumap.h" 22 #include "thread_map.h" 23 #include "target.h" 24 #include "perf_regs.h" 25 #include "debug.h" 26 #include "trace-event.h" 27 28 static struct { 29 bool sample_id_all; 30 bool exclude_guest; 31 bool mmap2; 32 } perf_missing_features; 33 34 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 35 36 int __perf_evsel__sample_size(u64 sample_type) 37 { 38 u64 mask = sample_type & PERF_SAMPLE_MASK; 39 int size = 0; 40 int i; 41 42 for (i = 0; i < 64; i++) { 43 if (mask & (1ULL << i)) 44 size++; 45 } 46 47 size *= sizeof(u64); 48 49 return size; 50 } 51 52 /** 53 * __perf_evsel__calc_id_pos - calculate id_pos. 54 * @sample_type: sample type 55 * 56 * This function returns the position of the event id (PERF_SAMPLE_ID or 57 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 58 * sample_event. 59 */ 60 static int __perf_evsel__calc_id_pos(u64 sample_type) 61 { 62 int idx = 0; 63 64 if (sample_type & PERF_SAMPLE_IDENTIFIER) 65 return 0; 66 67 if (!(sample_type & PERF_SAMPLE_ID)) 68 return -1; 69 70 if (sample_type & PERF_SAMPLE_IP) 71 idx += 1; 72 73 if (sample_type & PERF_SAMPLE_TID) 74 idx += 1; 75 76 if (sample_type & PERF_SAMPLE_TIME) 77 idx += 1; 78 79 if (sample_type & PERF_SAMPLE_ADDR) 80 idx += 1; 81 82 return idx; 83 } 84 85 /** 86 * __perf_evsel__calc_is_pos - calculate is_pos. 87 * @sample_type: sample type 88 * 89 * This function returns the position (counting backwards) of the event id 90 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 91 * sample_id_all is used there is an id sample appended to non-sample events. 92 */ 93 static int __perf_evsel__calc_is_pos(u64 sample_type) 94 { 95 int idx = 1; 96 97 if (sample_type & PERF_SAMPLE_IDENTIFIER) 98 return 1; 99 100 if (!(sample_type & PERF_SAMPLE_ID)) 101 return -1; 102 103 if (sample_type & PERF_SAMPLE_CPU) 104 idx += 1; 105 106 if (sample_type & PERF_SAMPLE_STREAM_ID) 107 idx += 1; 108 109 return idx; 110 } 111 112 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 113 { 114 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 115 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 116 } 117 118 void hists__init(struct hists *hists) 119 { 120 memset(hists, 0, sizeof(*hists)); 121 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT; 122 hists->entries_in = &hists->entries_in_array[0]; 123 hists->entries_collapsed = RB_ROOT; 124 hists->entries = RB_ROOT; 125 pthread_mutex_init(&hists->lock, NULL); 126 } 127 128 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 129 enum perf_event_sample_format bit) 130 { 131 if (!(evsel->attr.sample_type & bit)) { 132 evsel->attr.sample_type |= bit; 133 evsel->sample_size += sizeof(u64); 134 perf_evsel__calc_id_pos(evsel); 135 } 136 } 137 138 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 139 enum perf_event_sample_format bit) 140 { 141 if (evsel->attr.sample_type & bit) { 142 evsel->attr.sample_type &= ~bit; 143 evsel->sample_size -= sizeof(u64); 144 perf_evsel__calc_id_pos(evsel); 145 } 146 } 147 148 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 149 bool can_sample_identifier) 150 { 151 if (can_sample_identifier) { 152 perf_evsel__reset_sample_bit(evsel, ID); 153 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 154 } else { 155 perf_evsel__set_sample_bit(evsel, ID); 156 } 157 evsel->attr.read_format |= PERF_FORMAT_ID; 158 } 159 160 void perf_evsel__init(struct perf_evsel *evsel, 161 struct perf_event_attr *attr, int idx) 162 { 163 evsel->idx = idx; 164 evsel->attr = *attr; 165 evsel->leader = evsel; 166 evsel->unit = ""; 167 evsel->scale = 1.0; 168 INIT_LIST_HEAD(&evsel->node); 169 hists__init(&evsel->hists); 170 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 171 perf_evsel__calc_id_pos(evsel); 172 } 173 174 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 175 { 176 struct perf_evsel *evsel = zalloc(sizeof(*evsel)); 177 178 if (evsel != NULL) 179 perf_evsel__init(evsel, attr, idx); 180 181 return evsel; 182 } 183 184 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 185 { 186 struct perf_evsel *evsel = zalloc(sizeof(*evsel)); 187 188 if (evsel != NULL) { 189 struct perf_event_attr attr = { 190 .type = PERF_TYPE_TRACEPOINT, 191 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 192 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 193 }; 194 195 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 196 goto out_free; 197 198 evsel->tp_format = trace_event__tp_format(sys, name); 199 if (evsel->tp_format == NULL) 200 goto out_free; 201 202 event_attr_init(&attr); 203 attr.config = evsel->tp_format->id; 204 attr.sample_period = 1; 205 perf_evsel__init(evsel, &attr, idx); 206 } 207 208 return evsel; 209 210 out_free: 211 zfree(&evsel->name); 212 free(evsel); 213 return NULL; 214 } 215 216 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 217 "cycles", 218 "instructions", 219 "cache-references", 220 "cache-misses", 221 "branches", 222 "branch-misses", 223 "bus-cycles", 224 "stalled-cycles-frontend", 225 "stalled-cycles-backend", 226 "ref-cycles", 227 }; 228 229 static const char *__perf_evsel__hw_name(u64 config) 230 { 231 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 232 return perf_evsel__hw_names[config]; 233 234 return "unknown-hardware"; 235 } 236 237 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 238 { 239 int colon = 0, r = 0; 240 struct perf_event_attr *attr = &evsel->attr; 241 bool exclude_guest_default = false; 242 243 #define MOD_PRINT(context, mod) do { \ 244 if (!attr->exclude_##context) { \ 245 if (!colon) colon = ++r; \ 246 r += scnprintf(bf + r, size - r, "%c", mod); \ 247 } } while(0) 248 249 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 250 MOD_PRINT(kernel, 'k'); 251 MOD_PRINT(user, 'u'); 252 MOD_PRINT(hv, 'h'); 253 exclude_guest_default = true; 254 } 255 256 if (attr->precise_ip) { 257 if (!colon) 258 colon = ++r; 259 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 260 exclude_guest_default = true; 261 } 262 263 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 264 MOD_PRINT(host, 'H'); 265 MOD_PRINT(guest, 'G'); 266 } 267 #undef MOD_PRINT 268 if (colon) 269 bf[colon - 1] = ':'; 270 return r; 271 } 272 273 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 274 { 275 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 276 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 277 } 278 279 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 280 "cpu-clock", 281 "task-clock", 282 "page-faults", 283 "context-switches", 284 "cpu-migrations", 285 "minor-faults", 286 "major-faults", 287 "alignment-faults", 288 "emulation-faults", 289 "dummy", 290 }; 291 292 static const char *__perf_evsel__sw_name(u64 config) 293 { 294 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 295 return perf_evsel__sw_names[config]; 296 return "unknown-software"; 297 } 298 299 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 300 { 301 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 302 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 303 } 304 305 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 306 { 307 int r; 308 309 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 310 311 if (type & HW_BREAKPOINT_R) 312 r += scnprintf(bf + r, size - r, "r"); 313 314 if (type & HW_BREAKPOINT_W) 315 r += scnprintf(bf + r, size - r, "w"); 316 317 if (type & HW_BREAKPOINT_X) 318 r += scnprintf(bf + r, size - r, "x"); 319 320 return r; 321 } 322 323 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 324 { 325 struct perf_event_attr *attr = &evsel->attr; 326 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 327 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 328 } 329 330 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 331 [PERF_EVSEL__MAX_ALIASES] = { 332 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 333 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 334 { "LLC", "L2", }, 335 { "dTLB", "d-tlb", "Data-TLB", }, 336 { "iTLB", "i-tlb", "Instruction-TLB", }, 337 { "branch", "branches", "bpu", "btb", "bpc", }, 338 { "node", }, 339 }; 340 341 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 342 [PERF_EVSEL__MAX_ALIASES] = { 343 { "load", "loads", "read", }, 344 { "store", "stores", "write", }, 345 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 346 }; 347 348 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 349 [PERF_EVSEL__MAX_ALIASES] = { 350 { "refs", "Reference", "ops", "access", }, 351 { "misses", "miss", }, 352 }; 353 354 #define C(x) PERF_COUNT_HW_CACHE_##x 355 #define CACHE_READ (1 << C(OP_READ)) 356 #define CACHE_WRITE (1 << C(OP_WRITE)) 357 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 358 #define COP(x) (1 << x) 359 360 /* 361 * cache operartion stat 362 * L1I : Read and prefetch only 363 * ITLB and BPU : Read-only 364 */ 365 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 366 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 367 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 368 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 369 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 370 [C(ITLB)] = (CACHE_READ), 371 [C(BPU)] = (CACHE_READ), 372 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 373 }; 374 375 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 376 { 377 if (perf_evsel__hw_cache_stat[type] & COP(op)) 378 return true; /* valid */ 379 else 380 return false; /* invalid */ 381 } 382 383 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 384 char *bf, size_t size) 385 { 386 if (result) { 387 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 388 perf_evsel__hw_cache_op[op][0], 389 perf_evsel__hw_cache_result[result][0]); 390 } 391 392 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 393 perf_evsel__hw_cache_op[op][1]); 394 } 395 396 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 397 { 398 u8 op, result, type = (config >> 0) & 0xff; 399 const char *err = "unknown-ext-hardware-cache-type"; 400 401 if (type > PERF_COUNT_HW_CACHE_MAX) 402 goto out_err; 403 404 op = (config >> 8) & 0xff; 405 err = "unknown-ext-hardware-cache-op"; 406 if (op > PERF_COUNT_HW_CACHE_OP_MAX) 407 goto out_err; 408 409 result = (config >> 16) & 0xff; 410 err = "unknown-ext-hardware-cache-result"; 411 if (result > PERF_COUNT_HW_CACHE_RESULT_MAX) 412 goto out_err; 413 414 err = "invalid-cache"; 415 if (!perf_evsel__is_cache_op_valid(type, op)) 416 goto out_err; 417 418 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 419 out_err: 420 return scnprintf(bf, size, "%s", err); 421 } 422 423 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 424 { 425 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 426 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 427 } 428 429 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 430 { 431 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 432 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 433 } 434 435 const char *perf_evsel__name(struct perf_evsel *evsel) 436 { 437 char bf[128]; 438 439 if (evsel->name) 440 return evsel->name; 441 442 switch (evsel->attr.type) { 443 case PERF_TYPE_RAW: 444 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 445 break; 446 447 case PERF_TYPE_HARDWARE: 448 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 449 break; 450 451 case PERF_TYPE_HW_CACHE: 452 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 453 break; 454 455 case PERF_TYPE_SOFTWARE: 456 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 457 break; 458 459 case PERF_TYPE_TRACEPOINT: 460 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 461 break; 462 463 case PERF_TYPE_BREAKPOINT: 464 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 465 break; 466 467 default: 468 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 469 evsel->attr.type); 470 break; 471 } 472 473 evsel->name = strdup(bf); 474 475 return evsel->name ?: "unknown"; 476 } 477 478 const char *perf_evsel__group_name(struct perf_evsel *evsel) 479 { 480 return evsel->group_name ?: "anon group"; 481 } 482 483 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 484 { 485 int ret; 486 struct perf_evsel *pos; 487 const char *group_name = perf_evsel__group_name(evsel); 488 489 ret = scnprintf(buf, size, "%s", group_name); 490 491 ret += scnprintf(buf + ret, size - ret, " { %s", 492 perf_evsel__name(evsel)); 493 494 for_each_group_member(pos, evsel) 495 ret += scnprintf(buf + ret, size - ret, ", %s", 496 perf_evsel__name(pos)); 497 498 ret += scnprintf(buf + ret, size - ret, " }"); 499 500 return ret; 501 } 502 503 static void 504 perf_evsel__config_callgraph(struct perf_evsel *evsel, 505 struct record_opts *opts) 506 { 507 bool function = perf_evsel__is_function_event(evsel); 508 struct perf_event_attr *attr = &evsel->attr; 509 510 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 511 512 if (opts->call_graph == CALLCHAIN_DWARF) { 513 if (!function) { 514 perf_evsel__set_sample_bit(evsel, REGS_USER); 515 perf_evsel__set_sample_bit(evsel, STACK_USER); 516 attr->sample_regs_user = PERF_REGS_MASK; 517 attr->sample_stack_user = opts->stack_dump_size; 518 attr->exclude_callchain_user = 1; 519 } else { 520 pr_info("Cannot use DWARF unwind for function trace event," 521 " falling back to framepointers.\n"); 522 } 523 } 524 525 if (function) { 526 pr_info("Disabling user space callchains for function trace event.\n"); 527 attr->exclude_callchain_user = 1; 528 } 529 } 530 531 /* 532 * The enable_on_exec/disabled value strategy: 533 * 534 * 1) For any type of traced program: 535 * - all independent events and group leaders are disabled 536 * - all group members are enabled 537 * 538 * Group members are ruled by group leaders. They need to 539 * be enabled, because the group scheduling relies on that. 540 * 541 * 2) For traced programs executed by perf: 542 * - all independent events and group leaders have 543 * enable_on_exec set 544 * - we don't specifically enable or disable any event during 545 * the record command 546 * 547 * Independent events and group leaders are initially disabled 548 * and get enabled by exec. Group members are ruled by group 549 * leaders as stated in 1). 550 * 551 * 3) For traced programs attached by perf (pid/tid): 552 * - we specifically enable or disable all events during 553 * the record command 554 * 555 * When attaching events to already running traced we 556 * enable/disable events specifically, as there's no 557 * initial traced exec call. 558 */ 559 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts) 560 { 561 struct perf_evsel *leader = evsel->leader; 562 struct perf_event_attr *attr = &evsel->attr; 563 int track = !evsel->idx; /* only the first counter needs these */ 564 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 565 566 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 567 attr->inherit = !opts->no_inherit; 568 569 perf_evsel__set_sample_bit(evsel, IP); 570 perf_evsel__set_sample_bit(evsel, TID); 571 572 if (evsel->sample_read) { 573 perf_evsel__set_sample_bit(evsel, READ); 574 575 /* 576 * We need ID even in case of single event, because 577 * PERF_SAMPLE_READ process ID specific data. 578 */ 579 perf_evsel__set_sample_id(evsel, false); 580 581 /* 582 * Apply group format only if we belong to group 583 * with more than one members. 584 */ 585 if (leader->nr_members > 1) { 586 attr->read_format |= PERF_FORMAT_GROUP; 587 attr->inherit = 0; 588 } 589 } 590 591 /* 592 * We default some events to a 1 default interval. But keep 593 * it a weak assumption overridable by the user. 594 */ 595 if (!attr->sample_period || (opts->user_freq != UINT_MAX && 596 opts->user_interval != ULLONG_MAX)) { 597 if (opts->freq) { 598 perf_evsel__set_sample_bit(evsel, PERIOD); 599 attr->freq = 1; 600 attr->sample_freq = opts->freq; 601 } else { 602 attr->sample_period = opts->default_interval; 603 } 604 } 605 606 /* 607 * Disable sampling for all group members other 608 * than leader in case leader 'leads' the sampling. 609 */ 610 if ((leader != evsel) && leader->sample_read) { 611 attr->sample_freq = 0; 612 attr->sample_period = 0; 613 } 614 615 if (opts->no_samples) 616 attr->sample_freq = 0; 617 618 if (opts->inherit_stat) 619 attr->inherit_stat = 1; 620 621 if (opts->sample_address) { 622 perf_evsel__set_sample_bit(evsel, ADDR); 623 attr->mmap_data = track; 624 } 625 626 if (opts->call_graph_enabled) 627 perf_evsel__config_callgraph(evsel, opts); 628 629 if (target__has_cpu(&opts->target)) 630 perf_evsel__set_sample_bit(evsel, CPU); 631 632 if (opts->period) 633 perf_evsel__set_sample_bit(evsel, PERIOD); 634 635 if (!perf_missing_features.sample_id_all && 636 (opts->sample_time || !opts->no_inherit || 637 target__has_cpu(&opts->target) || per_cpu)) 638 perf_evsel__set_sample_bit(evsel, TIME); 639 640 if (opts->raw_samples) { 641 perf_evsel__set_sample_bit(evsel, TIME); 642 perf_evsel__set_sample_bit(evsel, RAW); 643 perf_evsel__set_sample_bit(evsel, CPU); 644 } 645 646 if (opts->sample_address) 647 perf_evsel__set_sample_bit(evsel, DATA_SRC); 648 649 if (opts->no_buffering) { 650 attr->watermark = 0; 651 attr->wakeup_events = 1; 652 } 653 if (opts->branch_stack) { 654 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 655 attr->branch_sample_type = opts->branch_stack; 656 } 657 658 if (opts->sample_weight) 659 perf_evsel__set_sample_bit(evsel, WEIGHT); 660 661 attr->mmap = track; 662 attr->comm = track; 663 664 if (opts->sample_transaction) 665 perf_evsel__set_sample_bit(evsel, TRANSACTION); 666 667 /* 668 * XXX see the function comment above 669 * 670 * Disabling only independent events or group leaders, 671 * keeping group members enabled. 672 */ 673 if (perf_evsel__is_group_leader(evsel)) 674 attr->disabled = 1; 675 676 /* 677 * Setting enable_on_exec for independent events and 678 * group leaders for traced executed by perf. 679 */ 680 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 681 !opts->initial_delay) 682 attr->enable_on_exec = 1; 683 } 684 685 int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 686 { 687 int cpu, thread; 688 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 689 690 if (evsel->fd) { 691 for (cpu = 0; cpu < ncpus; cpu++) { 692 for (thread = 0; thread < nthreads; thread++) { 693 FD(evsel, cpu, thread) = -1; 694 } 695 } 696 } 697 698 return evsel->fd != NULL ? 0 : -ENOMEM; 699 } 700 701 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads, 702 int ioc, void *arg) 703 { 704 int cpu, thread; 705 706 for (cpu = 0; cpu < ncpus; cpu++) { 707 for (thread = 0; thread < nthreads; thread++) { 708 int fd = FD(evsel, cpu, thread), 709 err = ioctl(fd, ioc, arg); 710 711 if (err) 712 return err; 713 } 714 } 715 716 return 0; 717 } 718 719 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads, 720 const char *filter) 721 { 722 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 723 PERF_EVENT_IOC_SET_FILTER, 724 (void *)filter); 725 } 726 727 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads) 728 { 729 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 730 PERF_EVENT_IOC_ENABLE, 731 0); 732 } 733 734 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 735 { 736 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 737 if (evsel->sample_id == NULL) 738 return -ENOMEM; 739 740 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 741 if (evsel->id == NULL) { 742 xyarray__delete(evsel->sample_id); 743 evsel->sample_id = NULL; 744 return -ENOMEM; 745 } 746 747 return 0; 748 } 749 750 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus) 751 { 752 memset(evsel->counts, 0, (sizeof(*evsel->counts) + 753 (ncpus * sizeof(struct perf_counts_values)))); 754 } 755 756 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus) 757 { 758 evsel->counts = zalloc((sizeof(*evsel->counts) + 759 (ncpus * sizeof(struct perf_counts_values)))); 760 return evsel->counts != NULL ? 0 : -ENOMEM; 761 } 762 763 void perf_evsel__free_fd(struct perf_evsel *evsel) 764 { 765 xyarray__delete(evsel->fd); 766 evsel->fd = NULL; 767 } 768 769 void perf_evsel__free_id(struct perf_evsel *evsel) 770 { 771 xyarray__delete(evsel->sample_id); 772 evsel->sample_id = NULL; 773 zfree(&evsel->id); 774 } 775 776 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 777 { 778 int cpu, thread; 779 780 for (cpu = 0; cpu < ncpus; cpu++) 781 for (thread = 0; thread < nthreads; ++thread) { 782 close(FD(evsel, cpu, thread)); 783 FD(evsel, cpu, thread) = -1; 784 } 785 } 786 787 void perf_evsel__free_counts(struct perf_evsel *evsel) 788 { 789 zfree(&evsel->counts); 790 } 791 792 void perf_evsel__exit(struct perf_evsel *evsel) 793 { 794 assert(list_empty(&evsel->node)); 795 perf_evsel__free_fd(evsel); 796 perf_evsel__free_id(evsel); 797 } 798 799 void perf_evsel__delete(struct perf_evsel *evsel) 800 { 801 perf_evsel__exit(evsel); 802 close_cgroup(evsel->cgrp); 803 zfree(&evsel->group_name); 804 if (evsel->tp_format) 805 pevent_free_format(evsel->tp_format); 806 zfree(&evsel->name); 807 free(evsel); 808 } 809 810 static inline void compute_deltas(struct perf_evsel *evsel, 811 int cpu, 812 struct perf_counts_values *count) 813 { 814 struct perf_counts_values tmp; 815 816 if (!evsel->prev_raw_counts) 817 return; 818 819 if (cpu == -1) { 820 tmp = evsel->prev_raw_counts->aggr; 821 evsel->prev_raw_counts->aggr = *count; 822 } else { 823 tmp = evsel->prev_raw_counts->cpu[cpu]; 824 evsel->prev_raw_counts->cpu[cpu] = *count; 825 } 826 827 count->val = count->val - tmp.val; 828 count->ena = count->ena - tmp.ena; 829 count->run = count->run - tmp.run; 830 } 831 832 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 833 int cpu, int thread, bool scale) 834 { 835 struct perf_counts_values count; 836 size_t nv = scale ? 3 : 1; 837 838 if (FD(evsel, cpu, thread) < 0) 839 return -EINVAL; 840 841 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0) 842 return -ENOMEM; 843 844 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0) 845 return -errno; 846 847 compute_deltas(evsel, cpu, &count); 848 849 if (scale) { 850 if (count.run == 0) 851 count.val = 0; 852 else if (count.run < count.ena) 853 count.val = (u64)((double)count.val * count.ena / count.run + 0.5); 854 } else 855 count.ena = count.run = 0; 856 857 evsel->counts->cpu[cpu] = count; 858 return 0; 859 } 860 861 int __perf_evsel__read(struct perf_evsel *evsel, 862 int ncpus, int nthreads, bool scale) 863 { 864 size_t nv = scale ? 3 : 1; 865 int cpu, thread; 866 struct perf_counts_values *aggr = &evsel->counts->aggr, count; 867 868 aggr->val = aggr->ena = aggr->run = 0; 869 870 for (cpu = 0; cpu < ncpus; cpu++) { 871 for (thread = 0; thread < nthreads; thread++) { 872 if (FD(evsel, cpu, thread) < 0) 873 continue; 874 875 if (readn(FD(evsel, cpu, thread), 876 &count, nv * sizeof(u64)) < 0) 877 return -errno; 878 879 aggr->val += count.val; 880 if (scale) { 881 aggr->ena += count.ena; 882 aggr->run += count.run; 883 } 884 } 885 } 886 887 compute_deltas(evsel, -1, aggr); 888 889 evsel->counts->scaled = 0; 890 if (scale) { 891 if (aggr->run == 0) { 892 evsel->counts->scaled = -1; 893 aggr->val = 0; 894 return 0; 895 } 896 897 if (aggr->run < aggr->ena) { 898 evsel->counts->scaled = 1; 899 aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5); 900 } 901 } else 902 aggr->ena = aggr->run = 0; 903 904 return 0; 905 } 906 907 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 908 { 909 struct perf_evsel *leader = evsel->leader; 910 int fd; 911 912 if (perf_evsel__is_group_leader(evsel)) 913 return -1; 914 915 /* 916 * Leader must be already processed/open, 917 * if not it's a bug. 918 */ 919 BUG_ON(!leader->fd); 920 921 fd = FD(leader, cpu, thread); 922 BUG_ON(fd == -1); 923 924 return fd; 925 } 926 927 #define __PRINT_ATTR(fmt, cast, field) \ 928 fprintf(fp, " %-19s "fmt"\n", #field, cast attr->field) 929 930 #define PRINT_ATTR_U32(field) __PRINT_ATTR("%u" , , field) 931 #define PRINT_ATTR_X32(field) __PRINT_ATTR("%#x", , field) 932 #define PRINT_ATTR_U64(field) __PRINT_ATTR("%" PRIu64, (uint64_t), field) 933 #define PRINT_ATTR_X64(field) __PRINT_ATTR("%#"PRIx64, (uint64_t), field) 934 935 #define PRINT_ATTR2N(name1, field1, name2, field2) \ 936 fprintf(fp, " %-19s %u %-19s %u\n", \ 937 name1, attr->field1, name2, attr->field2) 938 939 #define PRINT_ATTR2(field1, field2) \ 940 PRINT_ATTR2N(#field1, field1, #field2, field2) 941 942 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp) 943 { 944 size_t ret = 0; 945 946 ret += fprintf(fp, "%.60s\n", graph_dotted_line); 947 ret += fprintf(fp, "perf_event_attr:\n"); 948 949 ret += PRINT_ATTR_U32(type); 950 ret += PRINT_ATTR_U32(size); 951 ret += PRINT_ATTR_X64(config); 952 ret += PRINT_ATTR_U64(sample_period); 953 ret += PRINT_ATTR_U64(sample_freq); 954 ret += PRINT_ATTR_X64(sample_type); 955 ret += PRINT_ATTR_X64(read_format); 956 957 ret += PRINT_ATTR2(disabled, inherit); 958 ret += PRINT_ATTR2(pinned, exclusive); 959 ret += PRINT_ATTR2(exclude_user, exclude_kernel); 960 ret += PRINT_ATTR2(exclude_hv, exclude_idle); 961 ret += PRINT_ATTR2(mmap, comm); 962 ret += PRINT_ATTR2(freq, inherit_stat); 963 ret += PRINT_ATTR2(enable_on_exec, task); 964 ret += PRINT_ATTR2(watermark, precise_ip); 965 ret += PRINT_ATTR2(mmap_data, sample_id_all); 966 ret += PRINT_ATTR2(exclude_host, exclude_guest); 967 ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel, 968 "excl.callchain_user", exclude_callchain_user); 969 ret += PRINT_ATTR_U32(mmap2); 970 971 ret += PRINT_ATTR_U32(wakeup_events); 972 ret += PRINT_ATTR_U32(wakeup_watermark); 973 ret += PRINT_ATTR_X32(bp_type); 974 ret += PRINT_ATTR_X64(bp_addr); 975 ret += PRINT_ATTR_X64(config1); 976 ret += PRINT_ATTR_U64(bp_len); 977 ret += PRINT_ATTR_X64(config2); 978 ret += PRINT_ATTR_X64(branch_sample_type); 979 ret += PRINT_ATTR_X64(sample_regs_user); 980 ret += PRINT_ATTR_U32(sample_stack_user); 981 982 ret += fprintf(fp, "%.60s\n", graph_dotted_line); 983 984 return ret; 985 } 986 987 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 988 struct thread_map *threads) 989 { 990 int cpu, thread; 991 unsigned long flags = 0; 992 int pid = -1, err; 993 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 994 995 if (evsel->fd == NULL && 996 perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0) 997 return -ENOMEM; 998 999 if (evsel->cgrp) { 1000 flags = PERF_FLAG_PID_CGROUP; 1001 pid = evsel->cgrp->fd; 1002 } 1003 1004 fallback_missing_features: 1005 if (perf_missing_features.mmap2) 1006 evsel->attr.mmap2 = 0; 1007 if (perf_missing_features.exclude_guest) 1008 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1009 retry_sample_id: 1010 if (perf_missing_features.sample_id_all) 1011 evsel->attr.sample_id_all = 0; 1012 1013 if (verbose >= 2) 1014 perf_event_attr__fprintf(&evsel->attr, stderr); 1015 1016 for (cpu = 0; cpu < cpus->nr; cpu++) { 1017 1018 for (thread = 0; thread < threads->nr; thread++) { 1019 int group_fd; 1020 1021 if (!evsel->cgrp) 1022 pid = threads->map[thread]; 1023 1024 group_fd = get_group_fd(evsel, cpu, thread); 1025 retry_open: 1026 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx\n", 1027 pid, cpus->map[cpu], group_fd, flags); 1028 1029 FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr, 1030 pid, 1031 cpus->map[cpu], 1032 group_fd, flags); 1033 if (FD(evsel, cpu, thread) < 0) { 1034 err = -errno; 1035 pr_debug2("sys_perf_event_open failed, error %d\n", 1036 err); 1037 goto try_fallback; 1038 } 1039 set_rlimit = NO_CHANGE; 1040 } 1041 } 1042 1043 return 0; 1044 1045 try_fallback: 1046 /* 1047 * perf stat needs between 5 and 22 fds per CPU. When we run out 1048 * of them try to increase the limits. 1049 */ 1050 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1051 struct rlimit l; 1052 int old_errno = errno; 1053 1054 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1055 if (set_rlimit == NO_CHANGE) 1056 l.rlim_cur = l.rlim_max; 1057 else { 1058 l.rlim_cur = l.rlim_max + 1000; 1059 l.rlim_max = l.rlim_cur; 1060 } 1061 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1062 set_rlimit++; 1063 errno = old_errno; 1064 goto retry_open; 1065 } 1066 } 1067 errno = old_errno; 1068 } 1069 1070 if (err != -EINVAL || cpu > 0 || thread > 0) 1071 goto out_close; 1072 1073 if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1074 perf_missing_features.mmap2 = true; 1075 goto fallback_missing_features; 1076 } else if (!perf_missing_features.exclude_guest && 1077 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1078 perf_missing_features.exclude_guest = true; 1079 goto fallback_missing_features; 1080 } else if (!perf_missing_features.sample_id_all) { 1081 perf_missing_features.sample_id_all = true; 1082 goto retry_sample_id; 1083 } 1084 1085 out_close: 1086 do { 1087 while (--thread >= 0) { 1088 close(FD(evsel, cpu, thread)); 1089 FD(evsel, cpu, thread) = -1; 1090 } 1091 thread = threads->nr; 1092 } while (--cpu >= 0); 1093 return err; 1094 } 1095 1096 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads) 1097 { 1098 if (evsel->fd == NULL) 1099 return; 1100 1101 perf_evsel__close_fd(evsel, ncpus, nthreads); 1102 perf_evsel__free_fd(evsel); 1103 } 1104 1105 static struct { 1106 struct cpu_map map; 1107 int cpus[1]; 1108 } empty_cpu_map = { 1109 .map.nr = 1, 1110 .cpus = { -1, }, 1111 }; 1112 1113 static struct { 1114 struct thread_map map; 1115 int threads[1]; 1116 } empty_thread_map = { 1117 .map.nr = 1, 1118 .threads = { -1, }, 1119 }; 1120 1121 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1122 struct thread_map *threads) 1123 { 1124 if (cpus == NULL) { 1125 /* Work around old compiler warnings about strict aliasing */ 1126 cpus = &empty_cpu_map.map; 1127 } 1128 1129 if (threads == NULL) 1130 threads = &empty_thread_map.map; 1131 1132 return __perf_evsel__open(evsel, cpus, threads); 1133 } 1134 1135 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1136 struct cpu_map *cpus) 1137 { 1138 return __perf_evsel__open(evsel, cpus, &empty_thread_map.map); 1139 } 1140 1141 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1142 struct thread_map *threads) 1143 { 1144 return __perf_evsel__open(evsel, &empty_cpu_map.map, threads); 1145 } 1146 1147 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1148 const union perf_event *event, 1149 struct perf_sample *sample) 1150 { 1151 u64 type = evsel->attr.sample_type; 1152 const u64 *array = event->sample.array; 1153 bool swapped = evsel->needs_swap; 1154 union u64_swap u; 1155 1156 array += ((event->header.size - 1157 sizeof(event->header)) / sizeof(u64)) - 1; 1158 1159 if (type & PERF_SAMPLE_IDENTIFIER) { 1160 sample->id = *array; 1161 array--; 1162 } 1163 1164 if (type & PERF_SAMPLE_CPU) { 1165 u.val64 = *array; 1166 if (swapped) { 1167 /* undo swap of u64, then swap on individual u32s */ 1168 u.val64 = bswap_64(u.val64); 1169 u.val32[0] = bswap_32(u.val32[0]); 1170 } 1171 1172 sample->cpu = u.val32[0]; 1173 array--; 1174 } 1175 1176 if (type & PERF_SAMPLE_STREAM_ID) { 1177 sample->stream_id = *array; 1178 array--; 1179 } 1180 1181 if (type & PERF_SAMPLE_ID) { 1182 sample->id = *array; 1183 array--; 1184 } 1185 1186 if (type & PERF_SAMPLE_TIME) { 1187 sample->time = *array; 1188 array--; 1189 } 1190 1191 if (type & PERF_SAMPLE_TID) { 1192 u.val64 = *array; 1193 if (swapped) { 1194 /* undo swap of u64, then swap on individual u32s */ 1195 u.val64 = bswap_64(u.val64); 1196 u.val32[0] = bswap_32(u.val32[0]); 1197 u.val32[1] = bswap_32(u.val32[1]); 1198 } 1199 1200 sample->pid = u.val32[0]; 1201 sample->tid = u.val32[1]; 1202 array--; 1203 } 1204 1205 return 0; 1206 } 1207 1208 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 1209 u64 size) 1210 { 1211 return size > max_size || offset + size > endp; 1212 } 1213 1214 #define OVERFLOW_CHECK(offset, size, max_size) \ 1215 do { \ 1216 if (overflow(endp, (max_size), (offset), (size))) \ 1217 return -EFAULT; \ 1218 } while (0) 1219 1220 #define OVERFLOW_CHECK_u64(offset) \ 1221 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 1222 1223 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 1224 struct perf_sample *data) 1225 { 1226 u64 type = evsel->attr.sample_type; 1227 bool swapped = evsel->needs_swap; 1228 const u64 *array; 1229 u16 max_size = event->header.size; 1230 const void *endp = (void *)event + max_size; 1231 u64 sz; 1232 1233 /* 1234 * used for cross-endian analysis. See git commit 65014ab3 1235 * for why this goofiness is needed. 1236 */ 1237 union u64_swap u; 1238 1239 memset(data, 0, sizeof(*data)); 1240 data->cpu = data->pid = data->tid = -1; 1241 data->stream_id = data->id = data->time = -1ULL; 1242 data->period = evsel->attr.sample_period; 1243 data->weight = 0; 1244 1245 if (event->header.type != PERF_RECORD_SAMPLE) { 1246 if (!evsel->attr.sample_id_all) 1247 return 0; 1248 return perf_evsel__parse_id_sample(evsel, event, data); 1249 } 1250 1251 array = event->sample.array; 1252 1253 /* 1254 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 1255 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 1256 * check the format does not go past the end of the event. 1257 */ 1258 if (evsel->sample_size + sizeof(event->header) > event->header.size) 1259 return -EFAULT; 1260 1261 data->id = -1ULL; 1262 if (type & PERF_SAMPLE_IDENTIFIER) { 1263 data->id = *array; 1264 array++; 1265 } 1266 1267 if (type & PERF_SAMPLE_IP) { 1268 data->ip = *array; 1269 array++; 1270 } 1271 1272 if (type & PERF_SAMPLE_TID) { 1273 u.val64 = *array; 1274 if (swapped) { 1275 /* undo swap of u64, then swap on individual u32s */ 1276 u.val64 = bswap_64(u.val64); 1277 u.val32[0] = bswap_32(u.val32[0]); 1278 u.val32[1] = bswap_32(u.val32[1]); 1279 } 1280 1281 data->pid = u.val32[0]; 1282 data->tid = u.val32[1]; 1283 array++; 1284 } 1285 1286 if (type & PERF_SAMPLE_TIME) { 1287 data->time = *array; 1288 array++; 1289 } 1290 1291 data->addr = 0; 1292 if (type & PERF_SAMPLE_ADDR) { 1293 data->addr = *array; 1294 array++; 1295 } 1296 1297 if (type & PERF_SAMPLE_ID) { 1298 data->id = *array; 1299 array++; 1300 } 1301 1302 if (type & PERF_SAMPLE_STREAM_ID) { 1303 data->stream_id = *array; 1304 array++; 1305 } 1306 1307 if (type & PERF_SAMPLE_CPU) { 1308 1309 u.val64 = *array; 1310 if (swapped) { 1311 /* undo swap of u64, then swap on individual u32s */ 1312 u.val64 = bswap_64(u.val64); 1313 u.val32[0] = bswap_32(u.val32[0]); 1314 } 1315 1316 data->cpu = u.val32[0]; 1317 array++; 1318 } 1319 1320 if (type & PERF_SAMPLE_PERIOD) { 1321 data->period = *array; 1322 array++; 1323 } 1324 1325 if (type & PERF_SAMPLE_READ) { 1326 u64 read_format = evsel->attr.read_format; 1327 1328 OVERFLOW_CHECK_u64(array); 1329 if (read_format & PERF_FORMAT_GROUP) 1330 data->read.group.nr = *array; 1331 else 1332 data->read.one.value = *array; 1333 1334 array++; 1335 1336 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 1337 OVERFLOW_CHECK_u64(array); 1338 data->read.time_enabled = *array; 1339 array++; 1340 } 1341 1342 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 1343 OVERFLOW_CHECK_u64(array); 1344 data->read.time_running = *array; 1345 array++; 1346 } 1347 1348 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1349 if (read_format & PERF_FORMAT_GROUP) { 1350 const u64 max_group_nr = UINT64_MAX / 1351 sizeof(struct sample_read_value); 1352 1353 if (data->read.group.nr > max_group_nr) 1354 return -EFAULT; 1355 sz = data->read.group.nr * 1356 sizeof(struct sample_read_value); 1357 OVERFLOW_CHECK(array, sz, max_size); 1358 data->read.group.values = 1359 (struct sample_read_value *)array; 1360 array = (void *)array + sz; 1361 } else { 1362 OVERFLOW_CHECK_u64(array); 1363 data->read.one.id = *array; 1364 array++; 1365 } 1366 } 1367 1368 if (type & PERF_SAMPLE_CALLCHAIN) { 1369 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 1370 1371 OVERFLOW_CHECK_u64(array); 1372 data->callchain = (struct ip_callchain *)array++; 1373 if (data->callchain->nr > max_callchain_nr) 1374 return -EFAULT; 1375 sz = data->callchain->nr * sizeof(u64); 1376 OVERFLOW_CHECK(array, sz, max_size); 1377 array = (void *)array + sz; 1378 } 1379 1380 if (type & PERF_SAMPLE_RAW) { 1381 OVERFLOW_CHECK_u64(array); 1382 u.val64 = *array; 1383 if (WARN_ONCE(swapped, 1384 "Endianness of raw data not corrected!\n")) { 1385 /* undo swap of u64, then swap on individual u32s */ 1386 u.val64 = bswap_64(u.val64); 1387 u.val32[0] = bswap_32(u.val32[0]); 1388 u.val32[1] = bswap_32(u.val32[1]); 1389 } 1390 data->raw_size = u.val32[0]; 1391 array = (void *)array + sizeof(u32); 1392 1393 OVERFLOW_CHECK(array, data->raw_size, max_size); 1394 data->raw_data = (void *)array; 1395 array = (void *)array + data->raw_size; 1396 } 1397 1398 if (type & PERF_SAMPLE_BRANCH_STACK) { 1399 const u64 max_branch_nr = UINT64_MAX / 1400 sizeof(struct branch_entry); 1401 1402 OVERFLOW_CHECK_u64(array); 1403 data->branch_stack = (struct branch_stack *)array++; 1404 1405 if (data->branch_stack->nr > max_branch_nr) 1406 return -EFAULT; 1407 sz = data->branch_stack->nr * sizeof(struct branch_entry); 1408 OVERFLOW_CHECK(array, sz, max_size); 1409 array = (void *)array + sz; 1410 } 1411 1412 if (type & PERF_SAMPLE_REGS_USER) { 1413 OVERFLOW_CHECK_u64(array); 1414 data->user_regs.abi = *array; 1415 array++; 1416 1417 if (data->user_regs.abi) { 1418 u64 mask = evsel->attr.sample_regs_user; 1419 1420 sz = hweight_long(mask) * sizeof(u64); 1421 OVERFLOW_CHECK(array, sz, max_size); 1422 data->user_regs.mask = mask; 1423 data->user_regs.regs = (u64 *)array; 1424 array = (void *)array + sz; 1425 } 1426 } 1427 1428 if (type & PERF_SAMPLE_STACK_USER) { 1429 OVERFLOW_CHECK_u64(array); 1430 sz = *array++; 1431 1432 data->user_stack.offset = ((char *)(array - 1) 1433 - (char *) event); 1434 1435 if (!sz) { 1436 data->user_stack.size = 0; 1437 } else { 1438 OVERFLOW_CHECK(array, sz, max_size); 1439 data->user_stack.data = (char *)array; 1440 array = (void *)array + sz; 1441 OVERFLOW_CHECK_u64(array); 1442 data->user_stack.size = *array++; 1443 if (WARN_ONCE(data->user_stack.size > sz, 1444 "user stack dump failure\n")) 1445 return -EFAULT; 1446 } 1447 } 1448 1449 data->weight = 0; 1450 if (type & PERF_SAMPLE_WEIGHT) { 1451 OVERFLOW_CHECK_u64(array); 1452 data->weight = *array; 1453 array++; 1454 } 1455 1456 data->data_src = PERF_MEM_DATA_SRC_NONE; 1457 if (type & PERF_SAMPLE_DATA_SRC) { 1458 OVERFLOW_CHECK_u64(array); 1459 data->data_src = *array; 1460 array++; 1461 } 1462 1463 data->transaction = 0; 1464 if (type & PERF_SAMPLE_TRANSACTION) { 1465 OVERFLOW_CHECK_u64(array); 1466 data->transaction = *array; 1467 array++; 1468 } 1469 1470 return 0; 1471 } 1472 1473 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 1474 u64 read_format) 1475 { 1476 size_t sz, result = sizeof(struct sample_event); 1477 1478 if (type & PERF_SAMPLE_IDENTIFIER) 1479 result += sizeof(u64); 1480 1481 if (type & PERF_SAMPLE_IP) 1482 result += sizeof(u64); 1483 1484 if (type & PERF_SAMPLE_TID) 1485 result += sizeof(u64); 1486 1487 if (type & PERF_SAMPLE_TIME) 1488 result += sizeof(u64); 1489 1490 if (type & PERF_SAMPLE_ADDR) 1491 result += sizeof(u64); 1492 1493 if (type & PERF_SAMPLE_ID) 1494 result += sizeof(u64); 1495 1496 if (type & PERF_SAMPLE_STREAM_ID) 1497 result += sizeof(u64); 1498 1499 if (type & PERF_SAMPLE_CPU) 1500 result += sizeof(u64); 1501 1502 if (type & PERF_SAMPLE_PERIOD) 1503 result += sizeof(u64); 1504 1505 if (type & PERF_SAMPLE_READ) { 1506 result += sizeof(u64); 1507 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1508 result += sizeof(u64); 1509 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1510 result += sizeof(u64); 1511 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1512 if (read_format & PERF_FORMAT_GROUP) { 1513 sz = sample->read.group.nr * 1514 sizeof(struct sample_read_value); 1515 result += sz; 1516 } else { 1517 result += sizeof(u64); 1518 } 1519 } 1520 1521 if (type & PERF_SAMPLE_CALLCHAIN) { 1522 sz = (sample->callchain->nr + 1) * sizeof(u64); 1523 result += sz; 1524 } 1525 1526 if (type & PERF_SAMPLE_RAW) { 1527 result += sizeof(u32); 1528 result += sample->raw_size; 1529 } 1530 1531 if (type & PERF_SAMPLE_BRANCH_STACK) { 1532 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 1533 sz += sizeof(u64); 1534 result += sz; 1535 } 1536 1537 if (type & PERF_SAMPLE_REGS_USER) { 1538 if (sample->user_regs.abi) { 1539 result += sizeof(u64); 1540 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 1541 result += sz; 1542 } else { 1543 result += sizeof(u64); 1544 } 1545 } 1546 1547 if (type & PERF_SAMPLE_STACK_USER) { 1548 sz = sample->user_stack.size; 1549 result += sizeof(u64); 1550 if (sz) { 1551 result += sz; 1552 result += sizeof(u64); 1553 } 1554 } 1555 1556 if (type & PERF_SAMPLE_WEIGHT) 1557 result += sizeof(u64); 1558 1559 if (type & PERF_SAMPLE_DATA_SRC) 1560 result += sizeof(u64); 1561 1562 if (type & PERF_SAMPLE_TRANSACTION) 1563 result += sizeof(u64); 1564 1565 return result; 1566 } 1567 1568 int perf_event__synthesize_sample(union perf_event *event, u64 type, 1569 u64 read_format, 1570 const struct perf_sample *sample, 1571 bool swapped) 1572 { 1573 u64 *array; 1574 size_t sz; 1575 /* 1576 * used for cross-endian analysis. See git commit 65014ab3 1577 * for why this goofiness is needed. 1578 */ 1579 union u64_swap u; 1580 1581 array = event->sample.array; 1582 1583 if (type & PERF_SAMPLE_IDENTIFIER) { 1584 *array = sample->id; 1585 array++; 1586 } 1587 1588 if (type & PERF_SAMPLE_IP) { 1589 *array = sample->ip; 1590 array++; 1591 } 1592 1593 if (type & PERF_SAMPLE_TID) { 1594 u.val32[0] = sample->pid; 1595 u.val32[1] = sample->tid; 1596 if (swapped) { 1597 /* 1598 * Inverse of what is done in perf_evsel__parse_sample 1599 */ 1600 u.val32[0] = bswap_32(u.val32[0]); 1601 u.val32[1] = bswap_32(u.val32[1]); 1602 u.val64 = bswap_64(u.val64); 1603 } 1604 1605 *array = u.val64; 1606 array++; 1607 } 1608 1609 if (type & PERF_SAMPLE_TIME) { 1610 *array = sample->time; 1611 array++; 1612 } 1613 1614 if (type & PERF_SAMPLE_ADDR) { 1615 *array = sample->addr; 1616 array++; 1617 } 1618 1619 if (type & PERF_SAMPLE_ID) { 1620 *array = sample->id; 1621 array++; 1622 } 1623 1624 if (type & PERF_SAMPLE_STREAM_ID) { 1625 *array = sample->stream_id; 1626 array++; 1627 } 1628 1629 if (type & PERF_SAMPLE_CPU) { 1630 u.val32[0] = sample->cpu; 1631 if (swapped) { 1632 /* 1633 * Inverse of what is done in perf_evsel__parse_sample 1634 */ 1635 u.val32[0] = bswap_32(u.val32[0]); 1636 u.val64 = bswap_64(u.val64); 1637 } 1638 *array = u.val64; 1639 array++; 1640 } 1641 1642 if (type & PERF_SAMPLE_PERIOD) { 1643 *array = sample->period; 1644 array++; 1645 } 1646 1647 if (type & PERF_SAMPLE_READ) { 1648 if (read_format & PERF_FORMAT_GROUP) 1649 *array = sample->read.group.nr; 1650 else 1651 *array = sample->read.one.value; 1652 array++; 1653 1654 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 1655 *array = sample->read.time_enabled; 1656 array++; 1657 } 1658 1659 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 1660 *array = sample->read.time_running; 1661 array++; 1662 } 1663 1664 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1665 if (read_format & PERF_FORMAT_GROUP) { 1666 sz = sample->read.group.nr * 1667 sizeof(struct sample_read_value); 1668 memcpy(array, sample->read.group.values, sz); 1669 array = (void *)array + sz; 1670 } else { 1671 *array = sample->read.one.id; 1672 array++; 1673 } 1674 } 1675 1676 if (type & PERF_SAMPLE_CALLCHAIN) { 1677 sz = (sample->callchain->nr + 1) * sizeof(u64); 1678 memcpy(array, sample->callchain, sz); 1679 array = (void *)array + sz; 1680 } 1681 1682 if (type & PERF_SAMPLE_RAW) { 1683 u.val32[0] = sample->raw_size; 1684 if (WARN_ONCE(swapped, 1685 "Endianness of raw data not corrected!\n")) { 1686 /* 1687 * Inverse of what is done in perf_evsel__parse_sample 1688 */ 1689 u.val32[0] = bswap_32(u.val32[0]); 1690 u.val32[1] = bswap_32(u.val32[1]); 1691 u.val64 = bswap_64(u.val64); 1692 } 1693 *array = u.val64; 1694 array = (void *)array + sizeof(u32); 1695 1696 memcpy(array, sample->raw_data, sample->raw_size); 1697 array = (void *)array + sample->raw_size; 1698 } 1699 1700 if (type & PERF_SAMPLE_BRANCH_STACK) { 1701 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 1702 sz += sizeof(u64); 1703 memcpy(array, sample->branch_stack, sz); 1704 array = (void *)array + sz; 1705 } 1706 1707 if (type & PERF_SAMPLE_REGS_USER) { 1708 if (sample->user_regs.abi) { 1709 *array++ = sample->user_regs.abi; 1710 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 1711 memcpy(array, sample->user_regs.regs, sz); 1712 array = (void *)array + sz; 1713 } else { 1714 *array++ = 0; 1715 } 1716 } 1717 1718 if (type & PERF_SAMPLE_STACK_USER) { 1719 sz = sample->user_stack.size; 1720 *array++ = sz; 1721 if (sz) { 1722 memcpy(array, sample->user_stack.data, sz); 1723 array = (void *)array + sz; 1724 *array++ = sz; 1725 } 1726 } 1727 1728 if (type & PERF_SAMPLE_WEIGHT) { 1729 *array = sample->weight; 1730 array++; 1731 } 1732 1733 if (type & PERF_SAMPLE_DATA_SRC) { 1734 *array = sample->data_src; 1735 array++; 1736 } 1737 1738 if (type & PERF_SAMPLE_TRANSACTION) { 1739 *array = sample->transaction; 1740 array++; 1741 } 1742 1743 return 0; 1744 } 1745 1746 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 1747 { 1748 return pevent_find_field(evsel->tp_format, name); 1749 } 1750 1751 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 1752 const char *name) 1753 { 1754 struct format_field *field = perf_evsel__field(evsel, name); 1755 int offset; 1756 1757 if (!field) 1758 return NULL; 1759 1760 offset = field->offset; 1761 1762 if (field->flags & FIELD_IS_DYNAMIC) { 1763 offset = *(int *)(sample->raw_data + field->offset); 1764 offset &= 0xffff; 1765 } 1766 1767 return sample->raw_data + offset; 1768 } 1769 1770 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 1771 const char *name) 1772 { 1773 struct format_field *field = perf_evsel__field(evsel, name); 1774 void *ptr; 1775 u64 value; 1776 1777 if (!field) 1778 return 0; 1779 1780 ptr = sample->raw_data + field->offset; 1781 1782 switch (field->size) { 1783 case 1: 1784 return *(u8 *)ptr; 1785 case 2: 1786 value = *(u16 *)ptr; 1787 break; 1788 case 4: 1789 value = *(u32 *)ptr; 1790 break; 1791 case 8: 1792 value = *(u64 *)ptr; 1793 break; 1794 default: 1795 return 0; 1796 } 1797 1798 if (!evsel->needs_swap) 1799 return value; 1800 1801 switch (field->size) { 1802 case 2: 1803 return bswap_16(value); 1804 case 4: 1805 return bswap_32(value); 1806 case 8: 1807 return bswap_64(value); 1808 default: 1809 return 0; 1810 } 1811 1812 return 0; 1813 } 1814 1815 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...) 1816 { 1817 va_list args; 1818 int ret = 0; 1819 1820 if (!*first) { 1821 ret += fprintf(fp, ","); 1822 } else { 1823 ret += fprintf(fp, ":"); 1824 *first = false; 1825 } 1826 1827 va_start(args, fmt); 1828 ret += vfprintf(fp, fmt, args); 1829 va_end(args); 1830 return ret; 1831 } 1832 1833 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value) 1834 { 1835 if (value == 0) 1836 return 0; 1837 1838 return comma_fprintf(fp, first, " %s: %" PRIu64, field, value); 1839 } 1840 1841 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field) 1842 1843 struct bit_names { 1844 int bit; 1845 const char *name; 1846 }; 1847 1848 static int bits__fprintf(FILE *fp, const char *field, u64 value, 1849 struct bit_names *bits, bool *first) 1850 { 1851 int i = 0, printed = comma_fprintf(fp, first, " %s: ", field); 1852 bool first_bit = true; 1853 1854 do { 1855 if (value & bits[i].bit) { 1856 printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name); 1857 first_bit = false; 1858 } 1859 } while (bits[++i].name != NULL); 1860 1861 return printed; 1862 } 1863 1864 static int sample_type__fprintf(FILE *fp, bool *first, u64 value) 1865 { 1866 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1867 struct bit_names bits[] = { 1868 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1869 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1870 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1871 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1872 bit_name(IDENTIFIER), 1873 { .name = NULL, } 1874 }; 1875 #undef bit_name 1876 return bits__fprintf(fp, "sample_type", value, bits, first); 1877 } 1878 1879 static int read_format__fprintf(FILE *fp, bool *first, u64 value) 1880 { 1881 #define bit_name(n) { PERF_FORMAT_##n, #n } 1882 struct bit_names bits[] = { 1883 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1884 bit_name(ID), bit_name(GROUP), 1885 { .name = NULL, } 1886 }; 1887 #undef bit_name 1888 return bits__fprintf(fp, "read_format", value, bits, first); 1889 } 1890 1891 int perf_evsel__fprintf(struct perf_evsel *evsel, 1892 struct perf_attr_details *details, FILE *fp) 1893 { 1894 bool first = true; 1895 int printed = 0; 1896 1897 if (details->event_group) { 1898 struct perf_evsel *pos; 1899 1900 if (!perf_evsel__is_group_leader(evsel)) 1901 return 0; 1902 1903 if (evsel->nr_members > 1) 1904 printed += fprintf(fp, "%s{", evsel->group_name ?: ""); 1905 1906 printed += fprintf(fp, "%s", perf_evsel__name(evsel)); 1907 for_each_group_member(pos, evsel) 1908 printed += fprintf(fp, ",%s", perf_evsel__name(pos)); 1909 1910 if (evsel->nr_members > 1) 1911 printed += fprintf(fp, "}"); 1912 goto out; 1913 } 1914 1915 printed += fprintf(fp, "%s", perf_evsel__name(evsel)); 1916 1917 if (details->verbose || details->freq) { 1918 printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64, 1919 (u64)evsel->attr.sample_freq); 1920 } 1921 1922 if (details->verbose) { 1923 if_print(type); 1924 if_print(config); 1925 if_print(config1); 1926 if_print(config2); 1927 if_print(size); 1928 printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type); 1929 if (evsel->attr.read_format) 1930 printed += read_format__fprintf(fp, &first, evsel->attr.read_format); 1931 if_print(disabled); 1932 if_print(inherit); 1933 if_print(pinned); 1934 if_print(exclusive); 1935 if_print(exclude_user); 1936 if_print(exclude_kernel); 1937 if_print(exclude_hv); 1938 if_print(exclude_idle); 1939 if_print(mmap); 1940 if_print(mmap2); 1941 if_print(comm); 1942 if_print(freq); 1943 if_print(inherit_stat); 1944 if_print(enable_on_exec); 1945 if_print(task); 1946 if_print(watermark); 1947 if_print(precise_ip); 1948 if_print(mmap_data); 1949 if_print(sample_id_all); 1950 if_print(exclude_host); 1951 if_print(exclude_guest); 1952 if_print(__reserved_1); 1953 if_print(wakeup_events); 1954 if_print(bp_type); 1955 if_print(branch_sample_type); 1956 } 1957 out: 1958 fputc('\n', fp); 1959 return ++printed; 1960 } 1961 1962 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 1963 char *msg, size_t msgsize) 1964 { 1965 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 1966 evsel->attr.type == PERF_TYPE_HARDWARE && 1967 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 1968 /* 1969 * If it's cycles then fall back to hrtimer based 1970 * cpu-clock-tick sw counter, which is always available even if 1971 * no PMU support. 1972 * 1973 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 1974 * b0a873e). 1975 */ 1976 scnprintf(msg, msgsize, "%s", 1977 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 1978 1979 evsel->attr.type = PERF_TYPE_SOFTWARE; 1980 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 1981 1982 zfree(&evsel->name); 1983 return true; 1984 } 1985 1986 return false; 1987 } 1988 1989 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 1990 int err, char *msg, size_t size) 1991 { 1992 switch (err) { 1993 case EPERM: 1994 case EACCES: 1995 return scnprintf(msg, size, 1996 "You may not have permission to collect %sstats.\n" 1997 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n" 1998 " -1 - Not paranoid at all\n" 1999 " 0 - Disallow raw tracepoint access for unpriv\n" 2000 " 1 - Disallow cpu events for unpriv\n" 2001 " 2 - Disallow kernel profiling for unpriv", 2002 target->system_wide ? "system-wide " : ""); 2003 case ENOENT: 2004 return scnprintf(msg, size, "The %s event is not supported.", 2005 perf_evsel__name(evsel)); 2006 case EMFILE: 2007 return scnprintf(msg, size, "%s", 2008 "Too many events are opened.\n" 2009 "Try again after reducing the number of events."); 2010 case ENODEV: 2011 if (target->cpu_list) 2012 return scnprintf(msg, size, "%s", 2013 "No such device - did you specify an out-of-range profile CPU?\n"); 2014 break; 2015 case EOPNOTSUPP: 2016 if (evsel->attr.precise_ip) 2017 return scnprintf(msg, size, "%s", 2018 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2019 #if defined(__i386__) || defined(__x86_64__) 2020 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2021 return scnprintf(msg, size, "%s", 2022 "No hardware sampling interrupt available.\n" 2023 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); 2024 #endif 2025 break; 2026 default: 2027 break; 2028 } 2029 2030 return scnprintf(msg, size, 2031 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s). \n" 2032 "/bin/dmesg may provide additional information.\n" 2033 "No CONFIG_PERF_EVENTS=y kernel support configured?\n", 2034 err, strerror(err), perf_evsel__name(evsel)); 2035 } 2036