1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <errno.h> 12 #include <inttypes.h> 13 #include <linux/bitops.h> 14 #include <api/fs/fs.h> 15 #include <api/fs/tracing_path.h> 16 #include <traceevent/event-parse.h> 17 #include <linux/hw_breakpoint.h> 18 #include <linux/perf_event.h> 19 #include <linux/compiler.h> 20 #include <linux/err.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include "asm/bug.h" 26 #include "callchain.h" 27 #include "cgroup.h" 28 #include "event.h" 29 #include "evsel.h" 30 #include "evlist.h" 31 #include "util.h" 32 #include "cpumap.h" 33 #include "thread_map.h" 34 #include "target.h" 35 #include "perf_regs.h" 36 #include "debug.h" 37 #include "trace-event.h" 38 #include "stat.h" 39 #include "memswap.h" 40 #include "util/parse-branch-options.h" 41 42 #include "sane_ctype.h" 43 44 struct perf_missing_features perf_missing_features; 45 46 static clockid_t clockid; 47 48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 49 { 50 return 0; 51 } 52 53 void __weak test_attr__ready(void) { } 54 55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 56 { 57 } 58 59 static struct { 60 size_t size; 61 int (*init)(struct perf_evsel *evsel); 62 void (*fini)(struct perf_evsel *evsel); 63 } perf_evsel__object = { 64 .size = sizeof(struct perf_evsel), 65 .init = perf_evsel__no_extra_init, 66 .fini = perf_evsel__no_extra_fini, 67 }; 68 69 int perf_evsel__object_config(size_t object_size, 70 int (*init)(struct perf_evsel *evsel), 71 void (*fini)(struct perf_evsel *evsel)) 72 { 73 74 if (object_size == 0) 75 goto set_methods; 76 77 if (perf_evsel__object.size > object_size) 78 return -EINVAL; 79 80 perf_evsel__object.size = object_size; 81 82 set_methods: 83 if (init != NULL) 84 perf_evsel__object.init = init; 85 86 if (fini != NULL) 87 perf_evsel__object.fini = fini; 88 89 return 0; 90 } 91 92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 93 94 int __perf_evsel__sample_size(u64 sample_type) 95 { 96 u64 mask = sample_type & PERF_SAMPLE_MASK; 97 int size = 0; 98 int i; 99 100 for (i = 0; i < 64; i++) { 101 if (mask & (1ULL << i)) 102 size++; 103 } 104 105 size *= sizeof(u64); 106 107 return size; 108 } 109 110 /** 111 * __perf_evsel__calc_id_pos - calculate id_pos. 112 * @sample_type: sample type 113 * 114 * This function returns the position of the event id (PERF_SAMPLE_ID or 115 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 116 * sample_event. 117 */ 118 static int __perf_evsel__calc_id_pos(u64 sample_type) 119 { 120 int idx = 0; 121 122 if (sample_type & PERF_SAMPLE_IDENTIFIER) 123 return 0; 124 125 if (!(sample_type & PERF_SAMPLE_ID)) 126 return -1; 127 128 if (sample_type & PERF_SAMPLE_IP) 129 idx += 1; 130 131 if (sample_type & PERF_SAMPLE_TID) 132 idx += 1; 133 134 if (sample_type & PERF_SAMPLE_TIME) 135 idx += 1; 136 137 if (sample_type & PERF_SAMPLE_ADDR) 138 idx += 1; 139 140 return idx; 141 } 142 143 /** 144 * __perf_evsel__calc_is_pos - calculate is_pos. 145 * @sample_type: sample type 146 * 147 * This function returns the position (counting backwards) of the event id 148 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 149 * sample_id_all is used there is an id sample appended to non-sample events. 150 */ 151 static int __perf_evsel__calc_is_pos(u64 sample_type) 152 { 153 int idx = 1; 154 155 if (sample_type & PERF_SAMPLE_IDENTIFIER) 156 return 1; 157 158 if (!(sample_type & PERF_SAMPLE_ID)) 159 return -1; 160 161 if (sample_type & PERF_SAMPLE_CPU) 162 idx += 1; 163 164 if (sample_type & PERF_SAMPLE_STREAM_ID) 165 idx += 1; 166 167 return idx; 168 } 169 170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 171 { 172 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 173 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 174 } 175 176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 177 enum perf_event_sample_format bit) 178 { 179 if (!(evsel->attr.sample_type & bit)) { 180 evsel->attr.sample_type |= bit; 181 evsel->sample_size += sizeof(u64); 182 perf_evsel__calc_id_pos(evsel); 183 } 184 } 185 186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 187 enum perf_event_sample_format bit) 188 { 189 if (evsel->attr.sample_type & bit) { 190 evsel->attr.sample_type &= ~bit; 191 evsel->sample_size -= sizeof(u64); 192 perf_evsel__calc_id_pos(evsel); 193 } 194 } 195 196 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 197 bool can_sample_identifier) 198 { 199 if (can_sample_identifier) { 200 perf_evsel__reset_sample_bit(evsel, ID); 201 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 202 } else { 203 perf_evsel__set_sample_bit(evsel, ID); 204 } 205 evsel->attr.read_format |= PERF_FORMAT_ID; 206 } 207 208 /** 209 * perf_evsel__is_function_event - Return whether given evsel is a function 210 * trace event 211 * 212 * @evsel - evsel selector to be tested 213 * 214 * Return %true if event is function trace event 215 */ 216 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 217 { 218 #define FUNCTION_EVENT "ftrace:function" 219 220 return evsel->name && 221 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 222 223 #undef FUNCTION_EVENT 224 } 225 226 void perf_evsel__init(struct perf_evsel *evsel, 227 struct perf_event_attr *attr, int idx) 228 { 229 evsel->idx = idx; 230 evsel->tracking = !idx; 231 evsel->attr = *attr; 232 evsel->leader = evsel; 233 evsel->unit = ""; 234 evsel->scale = 1.0; 235 evsel->evlist = NULL; 236 evsel->bpf_fd = -1; 237 INIT_LIST_HEAD(&evsel->node); 238 INIT_LIST_HEAD(&evsel->config_terms); 239 perf_evsel__object.init(evsel); 240 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 241 perf_evsel__calc_id_pos(evsel); 242 evsel->cmdline_group_boundary = false; 243 evsel->metric_expr = NULL; 244 evsel->metric_name = NULL; 245 evsel->metric_events = NULL; 246 evsel->collect_stat = false; 247 evsel->pmu_name = NULL; 248 } 249 250 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 251 { 252 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 253 254 if (evsel != NULL) 255 perf_evsel__init(evsel, attr, idx); 256 257 if (perf_evsel__is_bpf_output(evsel)) { 258 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 259 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 260 evsel->attr.sample_period = 1; 261 } 262 263 if (perf_evsel__is_clock(evsel)) { 264 /* 265 * The evsel->unit points to static alias->unit 266 * so it's ok to use static string in here. 267 */ 268 static const char *unit = "msec"; 269 270 evsel->unit = unit; 271 evsel->scale = 1e-6; 272 } 273 274 return evsel; 275 } 276 277 static bool perf_event_can_profile_kernel(void) 278 { 279 return geteuid() == 0 || perf_event_paranoid() == -1; 280 } 281 282 struct perf_evsel *perf_evsel__new_cycles(bool precise) 283 { 284 struct perf_event_attr attr = { 285 .type = PERF_TYPE_HARDWARE, 286 .config = PERF_COUNT_HW_CPU_CYCLES, 287 .exclude_kernel = !perf_event_can_profile_kernel(), 288 }; 289 struct perf_evsel *evsel; 290 291 event_attr_init(&attr); 292 293 if (!precise) 294 goto new_event; 295 /* 296 * Unnamed union member, not supported as struct member named 297 * initializer in older compilers such as gcc 4.4.7 298 * 299 * Just for probing the precise_ip: 300 */ 301 attr.sample_period = 1; 302 303 perf_event_attr__set_max_precise_ip(&attr); 304 /* 305 * Now let the usual logic to set up the perf_event_attr defaults 306 * to kick in when we return and before perf_evsel__open() is called. 307 */ 308 attr.sample_period = 0; 309 new_event: 310 evsel = perf_evsel__new(&attr); 311 if (evsel == NULL) 312 goto out; 313 314 /* use asprintf() because free(evsel) assumes name is allocated */ 315 if (asprintf(&evsel->name, "cycles%s%s%.*s", 316 (attr.precise_ip || attr.exclude_kernel) ? ":" : "", 317 attr.exclude_kernel ? "u" : "", 318 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) 319 goto error_free; 320 out: 321 return evsel; 322 error_free: 323 perf_evsel__delete(evsel); 324 evsel = NULL; 325 goto out; 326 } 327 328 /* 329 * Returns pointer with encoded error via <linux/err.h> interface. 330 */ 331 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 332 { 333 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 334 int err = -ENOMEM; 335 336 if (evsel == NULL) { 337 goto out_err; 338 } else { 339 struct perf_event_attr attr = { 340 .type = PERF_TYPE_TRACEPOINT, 341 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 342 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 343 }; 344 345 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 346 goto out_free; 347 348 evsel->tp_format = trace_event__tp_format(sys, name); 349 if (IS_ERR(evsel->tp_format)) { 350 err = PTR_ERR(evsel->tp_format); 351 goto out_free; 352 } 353 354 event_attr_init(&attr); 355 attr.config = evsel->tp_format->id; 356 attr.sample_period = 1; 357 perf_evsel__init(evsel, &attr, idx); 358 } 359 360 return evsel; 361 362 out_free: 363 zfree(&evsel->name); 364 free(evsel); 365 out_err: 366 return ERR_PTR(err); 367 } 368 369 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 370 "cycles", 371 "instructions", 372 "cache-references", 373 "cache-misses", 374 "branches", 375 "branch-misses", 376 "bus-cycles", 377 "stalled-cycles-frontend", 378 "stalled-cycles-backend", 379 "ref-cycles", 380 }; 381 382 static const char *__perf_evsel__hw_name(u64 config) 383 { 384 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 385 return perf_evsel__hw_names[config]; 386 387 return "unknown-hardware"; 388 } 389 390 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 391 { 392 int colon = 0, r = 0; 393 struct perf_event_attr *attr = &evsel->attr; 394 bool exclude_guest_default = false; 395 396 #define MOD_PRINT(context, mod) do { \ 397 if (!attr->exclude_##context) { \ 398 if (!colon) colon = ++r; \ 399 r += scnprintf(bf + r, size - r, "%c", mod); \ 400 } } while(0) 401 402 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 403 MOD_PRINT(kernel, 'k'); 404 MOD_PRINT(user, 'u'); 405 MOD_PRINT(hv, 'h'); 406 exclude_guest_default = true; 407 } 408 409 if (attr->precise_ip) { 410 if (!colon) 411 colon = ++r; 412 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 413 exclude_guest_default = true; 414 } 415 416 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 417 MOD_PRINT(host, 'H'); 418 MOD_PRINT(guest, 'G'); 419 } 420 #undef MOD_PRINT 421 if (colon) 422 bf[colon - 1] = ':'; 423 return r; 424 } 425 426 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 427 { 428 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 429 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 430 } 431 432 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 433 "cpu-clock", 434 "task-clock", 435 "page-faults", 436 "context-switches", 437 "cpu-migrations", 438 "minor-faults", 439 "major-faults", 440 "alignment-faults", 441 "emulation-faults", 442 "dummy", 443 }; 444 445 static const char *__perf_evsel__sw_name(u64 config) 446 { 447 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 448 return perf_evsel__sw_names[config]; 449 return "unknown-software"; 450 } 451 452 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 453 { 454 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 455 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 456 } 457 458 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 459 { 460 int r; 461 462 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 463 464 if (type & HW_BREAKPOINT_R) 465 r += scnprintf(bf + r, size - r, "r"); 466 467 if (type & HW_BREAKPOINT_W) 468 r += scnprintf(bf + r, size - r, "w"); 469 470 if (type & HW_BREAKPOINT_X) 471 r += scnprintf(bf + r, size - r, "x"); 472 473 return r; 474 } 475 476 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 477 { 478 struct perf_event_attr *attr = &evsel->attr; 479 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 480 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 481 } 482 483 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 484 [PERF_EVSEL__MAX_ALIASES] = { 485 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 486 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 487 { "LLC", "L2", }, 488 { "dTLB", "d-tlb", "Data-TLB", }, 489 { "iTLB", "i-tlb", "Instruction-TLB", }, 490 { "branch", "branches", "bpu", "btb", "bpc", }, 491 { "node", }, 492 }; 493 494 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 495 [PERF_EVSEL__MAX_ALIASES] = { 496 { "load", "loads", "read", }, 497 { "store", "stores", "write", }, 498 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 499 }; 500 501 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 502 [PERF_EVSEL__MAX_ALIASES] = { 503 { "refs", "Reference", "ops", "access", }, 504 { "misses", "miss", }, 505 }; 506 507 #define C(x) PERF_COUNT_HW_CACHE_##x 508 #define CACHE_READ (1 << C(OP_READ)) 509 #define CACHE_WRITE (1 << C(OP_WRITE)) 510 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 511 #define COP(x) (1 << x) 512 513 /* 514 * cache operartion stat 515 * L1I : Read and prefetch only 516 * ITLB and BPU : Read-only 517 */ 518 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 519 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 520 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 521 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 522 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 523 [C(ITLB)] = (CACHE_READ), 524 [C(BPU)] = (CACHE_READ), 525 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 526 }; 527 528 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 529 { 530 if (perf_evsel__hw_cache_stat[type] & COP(op)) 531 return true; /* valid */ 532 else 533 return false; /* invalid */ 534 } 535 536 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 537 char *bf, size_t size) 538 { 539 if (result) { 540 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 541 perf_evsel__hw_cache_op[op][0], 542 perf_evsel__hw_cache_result[result][0]); 543 } 544 545 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 546 perf_evsel__hw_cache_op[op][1]); 547 } 548 549 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 550 { 551 u8 op, result, type = (config >> 0) & 0xff; 552 const char *err = "unknown-ext-hardware-cache-type"; 553 554 if (type >= PERF_COUNT_HW_CACHE_MAX) 555 goto out_err; 556 557 op = (config >> 8) & 0xff; 558 err = "unknown-ext-hardware-cache-op"; 559 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 560 goto out_err; 561 562 result = (config >> 16) & 0xff; 563 err = "unknown-ext-hardware-cache-result"; 564 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 565 goto out_err; 566 567 err = "invalid-cache"; 568 if (!perf_evsel__is_cache_op_valid(type, op)) 569 goto out_err; 570 571 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 572 out_err: 573 return scnprintf(bf, size, "%s", err); 574 } 575 576 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 577 { 578 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 579 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 580 } 581 582 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 583 { 584 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 585 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 586 } 587 588 const char *perf_evsel__name(struct perf_evsel *evsel) 589 { 590 char bf[128]; 591 592 if (evsel->name) 593 return evsel->name; 594 595 switch (evsel->attr.type) { 596 case PERF_TYPE_RAW: 597 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 598 break; 599 600 case PERF_TYPE_HARDWARE: 601 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 602 break; 603 604 case PERF_TYPE_HW_CACHE: 605 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 606 break; 607 608 case PERF_TYPE_SOFTWARE: 609 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 610 break; 611 612 case PERF_TYPE_TRACEPOINT: 613 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 614 break; 615 616 case PERF_TYPE_BREAKPOINT: 617 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 618 break; 619 620 default: 621 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 622 evsel->attr.type); 623 break; 624 } 625 626 evsel->name = strdup(bf); 627 628 return evsel->name ?: "unknown"; 629 } 630 631 const char *perf_evsel__group_name(struct perf_evsel *evsel) 632 { 633 return evsel->group_name ?: "anon group"; 634 } 635 636 /* 637 * Returns the group details for the specified leader, 638 * with following rules. 639 * 640 * For record -e '{cycles,instructions}' 641 * 'anon group { cycles:u, instructions:u }' 642 * 643 * For record -e 'cycles,instructions' and report --group 644 * 'cycles:u, instructions:u' 645 */ 646 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 647 { 648 int ret = 0; 649 struct perf_evsel *pos; 650 const char *group_name = perf_evsel__group_name(evsel); 651 652 if (!evsel->forced_leader) 653 ret = scnprintf(buf, size, "%s { ", group_name); 654 655 ret += scnprintf(buf + ret, size - ret, "%s", 656 perf_evsel__name(evsel)); 657 658 for_each_group_member(pos, evsel) 659 ret += scnprintf(buf + ret, size - ret, ", %s", 660 perf_evsel__name(pos)); 661 662 if (!evsel->forced_leader) 663 ret += scnprintf(buf + ret, size - ret, " }"); 664 665 return ret; 666 } 667 668 static void __perf_evsel__config_callchain(struct perf_evsel *evsel, 669 struct record_opts *opts, 670 struct callchain_param *param) 671 { 672 bool function = perf_evsel__is_function_event(evsel); 673 struct perf_event_attr *attr = &evsel->attr; 674 675 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 676 677 attr->sample_max_stack = param->max_stack; 678 679 if (param->record_mode == CALLCHAIN_LBR) { 680 if (!opts->branch_stack) { 681 if (attr->exclude_user) { 682 pr_warning("LBR callstack option is only available " 683 "to get user callchain information. " 684 "Falling back to framepointers.\n"); 685 } else { 686 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 687 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 688 PERF_SAMPLE_BRANCH_CALL_STACK | 689 PERF_SAMPLE_BRANCH_NO_CYCLES | 690 PERF_SAMPLE_BRANCH_NO_FLAGS; 691 } 692 } else 693 pr_warning("Cannot use LBR callstack with branch stack. " 694 "Falling back to framepointers.\n"); 695 } 696 697 if (param->record_mode == CALLCHAIN_DWARF) { 698 if (!function) { 699 perf_evsel__set_sample_bit(evsel, REGS_USER); 700 perf_evsel__set_sample_bit(evsel, STACK_USER); 701 attr->sample_regs_user |= PERF_REGS_MASK; 702 attr->sample_stack_user = param->dump_size; 703 attr->exclude_callchain_user = 1; 704 } else { 705 pr_info("Cannot use DWARF unwind for function trace event," 706 " falling back to framepointers.\n"); 707 } 708 } 709 710 if (function) { 711 pr_info("Disabling user space callchains for function trace event.\n"); 712 attr->exclude_callchain_user = 1; 713 } 714 } 715 716 void perf_evsel__config_callchain(struct perf_evsel *evsel, 717 struct record_opts *opts, 718 struct callchain_param *param) 719 { 720 if (param->enabled) 721 return __perf_evsel__config_callchain(evsel, opts, param); 722 } 723 724 static void 725 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 726 struct callchain_param *param) 727 { 728 struct perf_event_attr *attr = &evsel->attr; 729 730 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 731 if (param->record_mode == CALLCHAIN_LBR) { 732 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 733 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 734 PERF_SAMPLE_BRANCH_CALL_STACK); 735 } 736 if (param->record_mode == CALLCHAIN_DWARF) { 737 perf_evsel__reset_sample_bit(evsel, REGS_USER); 738 perf_evsel__reset_sample_bit(evsel, STACK_USER); 739 } 740 } 741 742 static void apply_config_terms(struct perf_evsel *evsel, 743 struct record_opts *opts, bool track) 744 { 745 struct perf_evsel_config_term *term; 746 struct list_head *config_terms = &evsel->config_terms; 747 struct perf_event_attr *attr = &evsel->attr; 748 /* callgraph default */ 749 struct callchain_param param = { 750 .record_mode = callchain_param.record_mode, 751 }; 752 u32 dump_size = 0; 753 int max_stack = 0; 754 const char *callgraph_buf = NULL; 755 756 list_for_each_entry(term, config_terms, list) { 757 switch (term->type) { 758 case PERF_EVSEL__CONFIG_TERM_PERIOD: 759 if (!(term->weak && opts->user_interval != ULLONG_MAX)) { 760 attr->sample_period = term->val.period; 761 attr->freq = 0; 762 perf_evsel__reset_sample_bit(evsel, PERIOD); 763 } 764 break; 765 case PERF_EVSEL__CONFIG_TERM_FREQ: 766 if (!(term->weak && opts->user_freq != UINT_MAX)) { 767 attr->sample_freq = term->val.freq; 768 attr->freq = 1; 769 perf_evsel__set_sample_bit(evsel, PERIOD); 770 } 771 break; 772 case PERF_EVSEL__CONFIG_TERM_TIME: 773 if (term->val.time) 774 perf_evsel__set_sample_bit(evsel, TIME); 775 else 776 perf_evsel__reset_sample_bit(evsel, TIME); 777 break; 778 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 779 callgraph_buf = term->val.callgraph; 780 break; 781 case PERF_EVSEL__CONFIG_TERM_BRANCH: 782 if (term->val.branch && strcmp(term->val.branch, "no")) { 783 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 784 parse_branch_str(term->val.branch, 785 &attr->branch_sample_type); 786 } else 787 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 788 break; 789 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 790 dump_size = term->val.stack_user; 791 break; 792 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 793 max_stack = term->val.max_stack; 794 break; 795 case PERF_EVSEL__CONFIG_TERM_INHERIT: 796 /* 797 * attr->inherit should has already been set by 798 * perf_evsel__config. If user explicitly set 799 * inherit using config terms, override global 800 * opt->no_inherit setting. 801 */ 802 attr->inherit = term->val.inherit ? 1 : 0; 803 break; 804 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 805 attr->write_backward = term->val.overwrite ? 1 : 0; 806 break; 807 case PERF_EVSEL__CONFIG_TERM_DRV_CFG: 808 break; 809 default: 810 break; 811 } 812 } 813 814 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 815 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 816 bool sample_address = false; 817 818 if (max_stack) { 819 param.max_stack = max_stack; 820 if (callgraph_buf == NULL) 821 callgraph_buf = "fp"; 822 } 823 824 /* parse callgraph parameters */ 825 if (callgraph_buf != NULL) { 826 if (!strcmp(callgraph_buf, "no")) { 827 param.enabled = false; 828 param.record_mode = CALLCHAIN_NONE; 829 } else { 830 param.enabled = true; 831 if (parse_callchain_record(callgraph_buf, ¶m)) { 832 pr_err("per-event callgraph setting for %s failed. " 833 "Apply callgraph global setting for it\n", 834 evsel->name); 835 return; 836 } 837 if (param.record_mode == CALLCHAIN_DWARF) 838 sample_address = true; 839 } 840 } 841 if (dump_size > 0) { 842 dump_size = round_up(dump_size, sizeof(u64)); 843 param.dump_size = dump_size; 844 } 845 846 /* If global callgraph set, clear it */ 847 if (callchain_param.enabled) 848 perf_evsel__reset_callgraph(evsel, &callchain_param); 849 850 /* set perf-event callgraph */ 851 if (param.enabled) { 852 if (sample_address) { 853 perf_evsel__set_sample_bit(evsel, ADDR); 854 perf_evsel__set_sample_bit(evsel, DATA_SRC); 855 evsel->attr.mmap_data = track; 856 } 857 perf_evsel__config_callchain(evsel, opts, ¶m); 858 } 859 } 860 } 861 862 static bool is_dummy_event(struct perf_evsel *evsel) 863 { 864 return (evsel->attr.type == PERF_TYPE_SOFTWARE) && 865 (evsel->attr.config == PERF_COUNT_SW_DUMMY); 866 } 867 868 /* 869 * The enable_on_exec/disabled value strategy: 870 * 871 * 1) For any type of traced program: 872 * - all independent events and group leaders are disabled 873 * - all group members are enabled 874 * 875 * Group members are ruled by group leaders. They need to 876 * be enabled, because the group scheduling relies on that. 877 * 878 * 2) For traced programs executed by perf: 879 * - all independent events and group leaders have 880 * enable_on_exec set 881 * - we don't specifically enable or disable any event during 882 * the record command 883 * 884 * Independent events and group leaders are initially disabled 885 * and get enabled by exec. Group members are ruled by group 886 * leaders as stated in 1). 887 * 888 * 3) For traced programs attached by perf (pid/tid): 889 * - we specifically enable or disable all events during 890 * the record command 891 * 892 * When attaching events to already running traced we 893 * enable/disable events specifically, as there's no 894 * initial traced exec call. 895 */ 896 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 897 struct callchain_param *callchain) 898 { 899 struct perf_evsel *leader = evsel->leader; 900 struct perf_event_attr *attr = &evsel->attr; 901 int track = evsel->tracking; 902 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 903 904 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 905 attr->inherit = !opts->no_inherit; 906 attr->write_backward = opts->overwrite ? 1 : 0; 907 908 perf_evsel__set_sample_bit(evsel, IP); 909 perf_evsel__set_sample_bit(evsel, TID); 910 911 if (evsel->sample_read) { 912 perf_evsel__set_sample_bit(evsel, READ); 913 914 /* 915 * We need ID even in case of single event, because 916 * PERF_SAMPLE_READ process ID specific data. 917 */ 918 perf_evsel__set_sample_id(evsel, false); 919 920 /* 921 * Apply group format only if we belong to group 922 * with more than one members. 923 */ 924 if (leader->nr_members > 1) { 925 attr->read_format |= PERF_FORMAT_GROUP; 926 attr->inherit = 0; 927 } 928 } 929 930 /* 931 * We default some events to have a default interval. But keep 932 * it a weak assumption overridable by the user. 933 */ 934 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 935 opts->user_interval != ULLONG_MAX)) { 936 if (opts->freq) { 937 perf_evsel__set_sample_bit(evsel, PERIOD); 938 attr->freq = 1; 939 attr->sample_freq = opts->freq; 940 } else { 941 attr->sample_period = opts->default_interval; 942 } 943 } 944 945 /* 946 * Disable sampling for all group members other 947 * than leader in case leader 'leads' the sampling. 948 */ 949 if ((leader != evsel) && leader->sample_read) { 950 attr->freq = 0; 951 attr->sample_freq = 0; 952 attr->sample_period = 0; 953 attr->write_backward = 0; 954 attr->sample_id_all = 0; 955 } 956 957 if (opts->no_samples) 958 attr->sample_freq = 0; 959 960 if (opts->inherit_stat) { 961 evsel->attr.read_format |= 962 PERF_FORMAT_TOTAL_TIME_ENABLED | 963 PERF_FORMAT_TOTAL_TIME_RUNNING | 964 PERF_FORMAT_ID; 965 attr->inherit_stat = 1; 966 } 967 968 if (opts->sample_address) { 969 perf_evsel__set_sample_bit(evsel, ADDR); 970 attr->mmap_data = track; 971 } 972 973 /* 974 * We don't allow user space callchains for function trace 975 * event, due to issues with page faults while tracing page 976 * fault handler and its overall trickiness nature. 977 */ 978 if (perf_evsel__is_function_event(evsel)) 979 evsel->attr.exclude_callchain_user = 1; 980 981 if (callchain && callchain->enabled && !evsel->no_aux_samples) 982 perf_evsel__config_callchain(evsel, opts, callchain); 983 984 if (opts->sample_intr_regs) { 985 attr->sample_regs_intr = opts->sample_intr_regs; 986 perf_evsel__set_sample_bit(evsel, REGS_INTR); 987 } 988 989 if (opts->sample_user_regs) { 990 attr->sample_regs_user |= opts->sample_user_regs; 991 perf_evsel__set_sample_bit(evsel, REGS_USER); 992 } 993 994 if (target__has_cpu(&opts->target) || opts->sample_cpu) 995 perf_evsel__set_sample_bit(evsel, CPU); 996 997 /* 998 * When the user explicitly disabled time don't force it here. 999 */ 1000 if (opts->sample_time && 1001 (!perf_missing_features.sample_id_all && 1002 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 1003 opts->sample_time_set))) 1004 perf_evsel__set_sample_bit(evsel, TIME); 1005 1006 if (opts->raw_samples && !evsel->no_aux_samples) { 1007 perf_evsel__set_sample_bit(evsel, TIME); 1008 perf_evsel__set_sample_bit(evsel, RAW); 1009 perf_evsel__set_sample_bit(evsel, CPU); 1010 } 1011 1012 if (opts->sample_address) 1013 perf_evsel__set_sample_bit(evsel, DATA_SRC); 1014 1015 if (opts->sample_phys_addr) 1016 perf_evsel__set_sample_bit(evsel, PHYS_ADDR); 1017 1018 if (opts->no_buffering) { 1019 attr->watermark = 0; 1020 attr->wakeup_events = 1; 1021 } 1022 if (opts->branch_stack && !evsel->no_aux_samples) { 1023 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 1024 attr->branch_sample_type = opts->branch_stack; 1025 } 1026 1027 if (opts->sample_weight) 1028 perf_evsel__set_sample_bit(evsel, WEIGHT); 1029 1030 attr->task = track; 1031 attr->mmap = track; 1032 attr->mmap2 = track && !perf_missing_features.mmap2; 1033 attr->comm = track; 1034 1035 if (opts->record_namespaces) 1036 attr->namespaces = track; 1037 1038 if (opts->record_switch_events) 1039 attr->context_switch = track; 1040 1041 if (opts->sample_transaction) 1042 perf_evsel__set_sample_bit(evsel, TRANSACTION); 1043 1044 if (opts->running_time) { 1045 evsel->attr.read_format |= 1046 PERF_FORMAT_TOTAL_TIME_ENABLED | 1047 PERF_FORMAT_TOTAL_TIME_RUNNING; 1048 } 1049 1050 /* 1051 * XXX see the function comment above 1052 * 1053 * Disabling only independent events or group leaders, 1054 * keeping group members enabled. 1055 */ 1056 if (perf_evsel__is_group_leader(evsel)) 1057 attr->disabled = 1; 1058 1059 /* 1060 * Setting enable_on_exec for independent events and 1061 * group leaders for traced executed by perf. 1062 */ 1063 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 1064 !opts->initial_delay) 1065 attr->enable_on_exec = 1; 1066 1067 if (evsel->immediate) { 1068 attr->disabled = 0; 1069 attr->enable_on_exec = 0; 1070 } 1071 1072 clockid = opts->clockid; 1073 if (opts->use_clockid) { 1074 attr->use_clockid = 1; 1075 attr->clockid = opts->clockid; 1076 } 1077 1078 if (evsel->precise_max) 1079 perf_event_attr__set_max_precise_ip(attr); 1080 1081 if (opts->all_user) { 1082 attr->exclude_kernel = 1; 1083 attr->exclude_user = 0; 1084 } 1085 1086 if (opts->all_kernel) { 1087 attr->exclude_kernel = 0; 1088 attr->exclude_user = 1; 1089 } 1090 1091 /* 1092 * Apply event specific term settings, 1093 * it overloads any global configuration. 1094 */ 1095 apply_config_terms(evsel, opts, track); 1096 1097 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1098 1099 /* The --period option takes the precedence. */ 1100 if (opts->period_set) { 1101 if (opts->period) 1102 perf_evsel__set_sample_bit(evsel, PERIOD); 1103 else 1104 perf_evsel__reset_sample_bit(evsel, PERIOD); 1105 } 1106 1107 /* 1108 * For initial_delay, a dummy event is added implicitly. 1109 * The software event will trigger -EOPNOTSUPP error out, 1110 * if BRANCH_STACK bit is set. 1111 */ 1112 if (opts->initial_delay && is_dummy_event(evsel)) 1113 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 1114 } 1115 1116 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1117 { 1118 if (evsel->system_wide) 1119 nthreads = 1; 1120 1121 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1122 1123 if (evsel->fd) { 1124 int cpu, thread; 1125 for (cpu = 0; cpu < ncpus; cpu++) { 1126 for (thread = 0; thread < nthreads; thread++) { 1127 FD(evsel, cpu, thread) = -1; 1128 } 1129 } 1130 } 1131 1132 return evsel->fd != NULL ? 0 : -ENOMEM; 1133 } 1134 1135 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, 1136 int ioc, void *arg) 1137 { 1138 int cpu, thread; 1139 1140 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 1141 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) { 1142 int fd = FD(evsel, cpu, thread), 1143 err = ioctl(fd, ioc, arg); 1144 1145 if (err) 1146 return err; 1147 } 1148 } 1149 1150 return 0; 1151 } 1152 1153 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter) 1154 { 1155 return perf_evsel__run_ioctl(evsel, 1156 PERF_EVENT_IOC_SET_FILTER, 1157 (void *)filter); 1158 } 1159 1160 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1161 { 1162 char *new_filter = strdup(filter); 1163 1164 if (new_filter != NULL) { 1165 free(evsel->filter); 1166 evsel->filter = new_filter; 1167 return 0; 1168 } 1169 1170 return -1; 1171 } 1172 1173 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1174 const char *fmt, const char *filter) 1175 { 1176 char *new_filter; 1177 1178 if (evsel->filter == NULL) 1179 return perf_evsel__set_filter(evsel, filter); 1180 1181 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1182 free(evsel->filter); 1183 evsel->filter = new_filter; 1184 return 0; 1185 } 1186 1187 return -1; 1188 } 1189 1190 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1191 { 1192 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1193 } 1194 1195 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1196 { 1197 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1198 } 1199 1200 int perf_evsel__enable(struct perf_evsel *evsel) 1201 { 1202 return perf_evsel__run_ioctl(evsel, 1203 PERF_EVENT_IOC_ENABLE, 1204 0); 1205 } 1206 1207 int perf_evsel__disable(struct perf_evsel *evsel) 1208 { 1209 return perf_evsel__run_ioctl(evsel, 1210 PERF_EVENT_IOC_DISABLE, 1211 0); 1212 } 1213 1214 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1215 { 1216 if (ncpus == 0 || nthreads == 0) 1217 return 0; 1218 1219 if (evsel->system_wide) 1220 nthreads = 1; 1221 1222 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1223 if (evsel->sample_id == NULL) 1224 return -ENOMEM; 1225 1226 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1227 if (evsel->id == NULL) { 1228 xyarray__delete(evsel->sample_id); 1229 evsel->sample_id = NULL; 1230 return -ENOMEM; 1231 } 1232 1233 return 0; 1234 } 1235 1236 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1237 { 1238 xyarray__delete(evsel->fd); 1239 evsel->fd = NULL; 1240 } 1241 1242 static void perf_evsel__free_id(struct perf_evsel *evsel) 1243 { 1244 xyarray__delete(evsel->sample_id); 1245 evsel->sample_id = NULL; 1246 zfree(&evsel->id); 1247 } 1248 1249 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1250 { 1251 struct perf_evsel_config_term *term, *h; 1252 1253 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1254 list_del(&term->list); 1255 free(term); 1256 } 1257 } 1258 1259 void perf_evsel__close_fd(struct perf_evsel *evsel) 1260 { 1261 int cpu, thread; 1262 1263 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) 1264 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) { 1265 close(FD(evsel, cpu, thread)); 1266 FD(evsel, cpu, thread) = -1; 1267 } 1268 } 1269 1270 void perf_evsel__exit(struct perf_evsel *evsel) 1271 { 1272 assert(list_empty(&evsel->node)); 1273 assert(evsel->evlist == NULL); 1274 perf_evsel__free_fd(evsel); 1275 perf_evsel__free_id(evsel); 1276 perf_evsel__free_config_terms(evsel); 1277 cgroup__put(evsel->cgrp); 1278 cpu_map__put(evsel->cpus); 1279 cpu_map__put(evsel->own_cpus); 1280 thread_map__put(evsel->threads); 1281 zfree(&evsel->group_name); 1282 zfree(&evsel->name); 1283 perf_evsel__object.fini(evsel); 1284 } 1285 1286 void perf_evsel__delete(struct perf_evsel *evsel) 1287 { 1288 perf_evsel__exit(evsel); 1289 free(evsel); 1290 } 1291 1292 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1293 struct perf_counts_values *count) 1294 { 1295 struct perf_counts_values tmp; 1296 1297 if (!evsel->prev_raw_counts) 1298 return; 1299 1300 if (cpu == -1) { 1301 tmp = evsel->prev_raw_counts->aggr; 1302 evsel->prev_raw_counts->aggr = *count; 1303 } else { 1304 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1305 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1306 } 1307 1308 count->val = count->val - tmp.val; 1309 count->ena = count->ena - tmp.ena; 1310 count->run = count->run - tmp.run; 1311 } 1312 1313 void perf_counts_values__scale(struct perf_counts_values *count, 1314 bool scale, s8 *pscaled) 1315 { 1316 s8 scaled = 0; 1317 1318 if (scale) { 1319 if (count->run == 0) { 1320 scaled = -1; 1321 count->val = 0; 1322 } else if (count->run < count->ena) { 1323 scaled = 1; 1324 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1325 } 1326 } else 1327 count->ena = count->run = 0; 1328 1329 if (pscaled) 1330 *pscaled = scaled; 1331 } 1332 1333 static int perf_evsel__read_size(struct perf_evsel *evsel) 1334 { 1335 u64 read_format = evsel->attr.read_format; 1336 int entry = sizeof(u64); /* value */ 1337 int size = 0; 1338 int nr = 1; 1339 1340 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1341 size += sizeof(u64); 1342 1343 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1344 size += sizeof(u64); 1345 1346 if (read_format & PERF_FORMAT_ID) 1347 entry += sizeof(u64); 1348 1349 if (read_format & PERF_FORMAT_GROUP) { 1350 nr = evsel->nr_members; 1351 size += sizeof(u64); 1352 } 1353 1354 size += entry * nr; 1355 return size; 1356 } 1357 1358 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1359 struct perf_counts_values *count) 1360 { 1361 size_t size = perf_evsel__read_size(evsel); 1362 1363 memset(count, 0, sizeof(*count)); 1364 1365 if (FD(evsel, cpu, thread) < 0) 1366 return -EINVAL; 1367 1368 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0) 1369 return -errno; 1370 1371 return 0; 1372 } 1373 1374 static int 1375 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread) 1376 { 1377 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread); 1378 1379 return perf_evsel__read(evsel, cpu, thread, count); 1380 } 1381 1382 static void 1383 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread, 1384 u64 val, u64 ena, u64 run) 1385 { 1386 struct perf_counts_values *count; 1387 1388 count = perf_counts(counter->counts, cpu, thread); 1389 1390 count->val = val; 1391 count->ena = ena; 1392 count->run = run; 1393 count->loaded = true; 1394 } 1395 1396 static int 1397 perf_evsel__process_group_data(struct perf_evsel *leader, 1398 int cpu, int thread, u64 *data) 1399 { 1400 u64 read_format = leader->attr.read_format; 1401 struct sample_read_value *v; 1402 u64 nr, ena = 0, run = 0, i; 1403 1404 nr = *data++; 1405 1406 if (nr != (u64) leader->nr_members) 1407 return -EINVAL; 1408 1409 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1410 ena = *data++; 1411 1412 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1413 run = *data++; 1414 1415 v = (struct sample_read_value *) data; 1416 1417 perf_evsel__set_count(leader, cpu, thread, 1418 v[0].value, ena, run); 1419 1420 for (i = 1; i < nr; i++) { 1421 struct perf_evsel *counter; 1422 1423 counter = perf_evlist__id2evsel(leader->evlist, v[i].id); 1424 if (!counter) 1425 return -EINVAL; 1426 1427 perf_evsel__set_count(counter, cpu, thread, 1428 v[i].value, ena, run); 1429 } 1430 1431 return 0; 1432 } 1433 1434 static int 1435 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread) 1436 { 1437 struct perf_stat_evsel *ps = leader->stats; 1438 u64 read_format = leader->attr.read_format; 1439 int size = perf_evsel__read_size(leader); 1440 u64 *data = ps->group_data; 1441 1442 if (!(read_format & PERF_FORMAT_ID)) 1443 return -EINVAL; 1444 1445 if (!perf_evsel__is_group_leader(leader)) 1446 return -EINVAL; 1447 1448 if (!data) { 1449 data = zalloc(size); 1450 if (!data) 1451 return -ENOMEM; 1452 1453 ps->group_data = data; 1454 } 1455 1456 if (FD(leader, cpu, thread) < 0) 1457 return -EINVAL; 1458 1459 if (readn(FD(leader, cpu, thread), data, size) <= 0) 1460 return -errno; 1461 1462 return perf_evsel__process_group_data(leader, cpu, thread, data); 1463 } 1464 1465 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread) 1466 { 1467 u64 read_format = evsel->attr.read_format; 1468 1469 if (read_format & PERF_FORMAT_GROUP) 1470 return perf_evsel__read_group(evsel, cpu, thread); 1471 else 1472 return perf_evsel__read_one(evsel, cpu, thread); 1473 } 1474 1475 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1476 int cpu, int thread, bool scale) 1477 { 1478 struct perf_counts_values count; 1479 size_t nv = scale ? 3 : 1; 1480 1481 if (FD(evsel, cpu, thread) < 0) 1482 return -EINVAL; 1483 1484 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1485 return -ENOMEM; 1486 1487 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1488 return -errno; 1489 1490 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1491 perf_counts_values__scale(&count, scale, NULL); 1492 *perf_counts(evsel->counts, cpu, thread) = count; 1493 return 0; 1494 } 1495 1496 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1497 { 1498 struct perf_evsel *leader = evsel->leader; 1499 int fd; 1500 1501 if (perf_evsel__is_group_leader(evsel)) 1502 return -1; 1503 1504 /* 1505 * Leader must be already processed/open, 1506 * if not it's a bug. 1507 */ 1508 BUG_ON(!leader->fd); 1509 1510 fd = FD(leader, cpu, thread); 1511 BUG_ON(fd == -1); 1512 1513 return fd; 1514 } 1515 1516 struct bit_names { 1517 int bit; 1518 const char *name; 1519 }; 1520 1521 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1522 { 1523 bool first_bit = true; 1524 int i = 0; 1525 1526 do { 1527 if (value & bits[i].bit) { 1528 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1529 first_bit = false; 1530 } 1531 } while (bits[++i].name != NULL); 1532 } 1533 1534 static void __p_sample_type(char *buf, size_t size, u64 value) 1535 { 1536 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1537 struct bit_names bits[] = { 1538 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1539 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1540 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1541 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1542 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1543 bit_name(WEIGHT), bit_name(PHYS_ADDR), 1544 { .name = NULL, } 1545 }; 1546 #undef bit_name 1547 __p_bits(buf, size, value, bits); 1548 } 1549 1550 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1551 { 1552 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1553 struct bit_names bits[] = { 1554 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1555 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1556 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1557 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1558 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1559 { .name = NULL, } 1560 }; 1561 #undef bit_name 1562 __p_bits(buf, size, value, bits); 1563 } 1564 1565 static void __p_read_format(char *buf, size_t size, u64 value) 1566 { 1567 #define bit_name(n) { PERF_FORMAT_##n, #n } 1568 struct bit_names bits[] = { 1569 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1570 bit_name(ID), bit_name(GROUP), 1571 { .name = NULL, } 1572 }; 1573 #undef bit_name 1574 __p_bits(buf, size, value, bits); 1575 } 1576 1577 #define BUF_SIZE 1024 1578 1579 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1580 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1581 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1582 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1583 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1584 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1585 1586 #define PRINT_ATTRn(_n, _f, _p) \ 1587 do { \ 1588 if (attr->_f) { \ 1589 _p(attr->_f); \ 1590 ret += attr__fprintf(fp, _n, buf, priv);\ 1591 } \ 1592 } while (0) 1593 1594 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1595 1596 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1597 attr__fprintf_f attr__fprintf, void *priv) 1598 { 1599 char buf[BUF_SIZE]; 1600 int ret = 0; 1601 1602 PRINT_ATTRf(type, p_unsigned); 1603 PRINT_ATTRf(size, p_unsigned); 1604 PRINT_ATTRf(config, p_hex); 1605 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1606 PRINT_ATTRf(sample_type, p_sample_type); 1607 PRINT_ATTRf(read_format, p_read_format); 1608 1609 PRINT_ATTRf(disabled, p_unsigned); 1610 PRINT_ATTRf(inherit, p_unsigned); 1611 PRINT_ATTRf(pinned, p_unsigned); 1612 PRINT_ATTRf(exclusive, p_unsigned); 1613 PRINT_ATTRf(exclude_user, p_unsigned); 1614 PRINT_ATTRf(exclude_kernel, p_unsigned); 1615 PRINT_ATTRf(exclude_hv, p_unsigned); 1616 PRINT_ATTRf(exclude_idle, p_unsigned); 1617 PRINT_ATTRf(mmap, p_unsigned); 1618 PRINT_ATTRf(comm, p_unsigned); 1619 PRINT_ATTRf(freq, p_unsigned); 1620 PRINT_ATTRf(inherit_stat, p_unsigned); 1621 PRINT_ATTRf(enable_on_exec, p_unsigned); 1622 PRINT_ATTRf(task, p_unsigned); 1623 PRINT_ATTRf(watermark, p_unsigned); 1624 PRINT_ATTRf(precise_ip, p_unsigned); 1625 PRINT_ATTRf(mmap_data, p_unsigned); 1626 PRINT_ATTRf(sample_id_all, p_unsigned); 1627 PRINT_ATTRf(exclude_host, p_unsigned); 1628 PRINT_ATTRf(exclude_guest, p_unsigned); 1629 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1630 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1631 PRINT_ATTRf(mmap2, p_unsigned); 1632 PRINT_ATTRf(comm_exec, p_unsigned); 1633 PRINT_ATTRf(use_clockid, p_unsigned); 1634 PRINT_ATTRf(context_switch, p_unsigned); 1635 PRINT_ATTRf(write_backward, p_unsigned); 1636 PRINT_ATTRf(namespaces, p_unsigned); 1637 1638 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1639 PRINT_ATTRf(bp_type, p_unsigned); 1640 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1641 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1642 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1643 PRINT_ATTRf(sample_regs_user, p_hex); 1644 PRINT_ATTRf(sample_stack_user, p_unsigned); 1645 PRINT_ATTRf(clockid, p_signed); 1646 PRINT_ATTRf(sample_regs_intr, p_hex); 1647 PRINT_ATTRf(aux_watermark, p_unsigned); 1648 PRINT_ATTRf(sample_max_stack, p_unsigned); 1649 1650 return ret; 1651 } 1652 1653 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1654 void *priv __maybe_unused) 1655 { 1656 return fprintf(fp, " %-32s %s\n", name, val); 1657 } 1658 1659 static void perf_evsel__remove_fd(struct perf_evsel *pos, 1660 int nr_cpus, int nr_threads, 1661 int thread_idx) 1662 { 1663 for (int cpu = 0; cpu < nr_cpus; cpu++) 1664 for (int thread = thread_idx; thread < nr_threads - 1; thread++) 1665 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1); 1666 } 1667 1668 static int update_fds(struct perf_evsel *evsel, 1669 int nr_cpus, int cpu_idx, 1670 int nr_threads, int thread_idx) 1671 { 1672 struct perf_evsel *pos; 1673 1674 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads) 1675 return -EINVAL; 1676 1677 evlist__for_each_entry(evsel->evlist, pos) { 1678 nr_cpus = pos != evsel ? nr_cpus : cpu_idx; 1679 1680 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx); 1681 1682 /* 1683 * Since fds for next evsel has not been created, 1684 * there is no need to iterate whole event list. 1685 */ 1686 if (pos == evsel) 1687 break; 1688 } 1689 return 0; 1690 } 1691 1692 static bool ignore_missing_thread(struct perf_evsel *evsel, 1693 int nr_cpus, int cpu, 1694 struct thread_map *threads, 1695 int thread, int err) 1696 { 1697 pid_t ignore_pid = thread_map__pid(threads, thread); 1698 1699 if (!evsel->ignore_missing_thread) 1700 return false; 1701 1702 /* The system wide setup does not work with threads. */ 1703 if (evsel->system_wide) 1704 return false; 1705 1706 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1707 if (err != -ESRCH) 1708 return false; 1709 1710 /* If there's only one thread, let it fail. */ 1711 if (threads->nr == 1) 1712 return false; 1713 1714 /* 1715 * We should remove fd for missing_thread first 1716 * because thread_map__remove() will decrease threads->nr. 1717 */ 1718 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread)) 1719 return false; 1720 1721 if (thread_map__remove(threads, thread)) 1722 return false; 1723 1724 pr_warning("WARNING: Ignored open failure for pid %d\n", 1725 ignore_pid); 1726 return true; 1727 } 1728 1729 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1730 struct thread_map *threads) 1731 { 1732 int cpu, thread, nthreads; 1733 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1734 int pid = -1, err; 1735 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1736 1737 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1738 return -EINVAL; 1739 1740 if (cpus == NULL) { 1741 static struct cpu_map *empty_cpu_map; 1742 1743 if (empty_cpu_map == NULL) { 1744 empty_cpu_map = cpu_map__dummy_new(); 1745 if (empty_cpu_map == NULL) 1746 return -ENOMEM; 1747 } 1748 1749 cpus = empty_cpu_map; 1750 } 1751 1752 if (threads == NULL) { 1753 static struct thread_map *empty_thread_map; 1754 1755 if (empty_thread_map == NULL) { 1756 empty_thread_map = thread_map__new_by_tid(-1); 1757 if (empty_thread_map == NULL) 1758 return -ENOMEM; 1759 } 1760 1761 threads = empty_thread_map; 1762 } 1763 1764 if (evsel->system_wide) 1765 nthreads = 1; 1766 else 1767 nthreads = threads->nr; 1768 1769 if (evsel->fd == NULL && 1770 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1771 return -ENOMEM; 1772 1773 if (evsel->cgrp) { 1774 flags |= PERF_FLAG_PID_CGROUP; 1775 pid = evsel->cgrp->fd; 1776 } 1777 1778 fallback_missing_features: 1779 if (perf_missing_features.clockid_wrong) 1780 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1781 if (perf_missing_features.clockid) { 1782 evsel->attr.use_clockid = 0; 1783 evsel->attr.clockid = 0; 1784 } 1785 if (perf_missing_features.cloexec) 1786 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1787 if (perf_missing_features.mmap2) 1788 evsel->attr.mmap2 = 0; 1789 if (perf_missing_features.exclude_guest) 1790 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1791 if (perf_missing_features.lbr_flags) 1792 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1793 PERF_SAMPLE_BRANCH_NO_CYCLES); 1794 if (perf_missing_features.group_read && evsel->attr.inherit) 1795 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); 1796 retry_sample_id: 1797 if (perf_missing_features.sample_id_all) 1798 evsel->attr.sample_id_all = 0; 1799 1800 if (verbose >= 2) { 1801 fprintf(stderr, "%.60s\n", graph_dotted_line); 1802 fprintf(stderr, "perf_event_attr:\n"); 1803 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1804 fprintf(stderr, "%.60s\n", graph_dotted_line); 1805 } 1806 1807 for (cpu = 0; cpu < cpus->nr; cpu++) { 1808 1809 for (thread = 0; thread < nthreads; thread++) { 1810 int fd, group_fd; 1811 1812 if (!evsel->cgrp && !evsel->system_wide) 1813 pid = thread_map__pid(threads, thread); 1814 1815 group_fd = get_group_fd(evsel, cpu, thread); 1816 retry_open: 1817 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1818 pid, cpus->map[cpu], group_fd, flags); 1819 1820 test_attr__ready(); 1821 1822 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu], 1823 group_fd, flags); 1824 1825 FD(evsel, cpu, thread) = fd; 1826 1827 if (fd < 0) { 1828 err = -errno; 1829 1830 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) { 1831 /* 1832 * We just removed 1 thread, so take a step 1833 * back on thread index and lower the upper 1834 * nthreads limit. 1835 */ 1836 nthreads--; 1837 thread--; 1838 1839 /* ... and pretend like nothing have happened. */ 1840 err = 0; 1841 continue; 1842 } 1843 1844 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1845 err); 1846 goto try_fallback; 1847 } 1848 1849 pr_debug2(" = %d\n", fd); 1850 1851 if (evsel->bpf_fd >= 0) { 1852 int evt_fd = fd; 1853 int bpf_fd = evsel->bpf_fd; 1854 1855 err = ioctl(evt_fd, 1856 PERF_EVENT_IOC_SET_BPF, 1857 bpf_fd); 1858 if (err && errno != EEXIST) { 1859 pr_err("failed to attach bpf fd %d: %s\n", 1860 bpf_fd, strerror(errno)); 1861 err = -EINVAL; 1862 goto out_close; 1863 } 1864 } 1865 1866 set_rlimit = NO_CHANGE; 1867 1868 /* 1869 * If we succeeded but had to kill clockid, fail and 1870 * have perf_evsel__open_strerror() print us a nice 1871 * error. 1872 */ 1873 if (perf_missing_features.clockid || 1874 perf_missing_features.clockid_wrong) { 1875 err = -EINVAL; 1876 goto out_close; 1877 } 1878 } 1879 } 1880 1881 return 0; 1882 1883 try_fallback: 1884 /* 1885 * perf stat needs between 5 and 22 fds per CPU. When we run out 1886 * of them try to increase the limits. 1887 */ 1888 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1889 struct rlimit l; 1890 int old_errno = errno; 1891 1892 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1893 if (set_rlimit == NO_CHANGE) 1894 l.rlim_cur = l.rlim_max; 1895 else { 1896 l.rlim_cur = l.rlim_max + 1000; 1897 l.rlim_max = l.rlim_cur; 1898 } 1899 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1900 set_rlimit++; 1901 errno = old_errno; 1902 goto retry_open; 1903 } 1904 } 1905 errno = old_errno; 1906 } 1907 1908 if (err != -EINVAL || cpu > 0 || thread > 0) 1909 goto out_close; 1910 1911 /* 1912 * Must probe features in the order they were added to the 1913 * perf_event_attr interface. 1914 */ 1915 if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 1916 perf_missing_features.write_backward = true; 1917 pr_debug2("switching off write_backward\n"); 1918 goto out_close; 1919 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1920 perf_missing_features.clockid_wrong = true; 1921 pr_debug2("switching off clockid\n"); 1922 goto fallback_missing_features; 1923 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1924 perf_missing_features.clockid = true; 1925 pr_debug2("switching off use_clockid\n"); 1926 goto fallback_missing_features; 1927 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1928 perf_missing_features.cloexec = true; 1929 pr_debug2("switching off cloexec flag\n"); 1930 goto fallback_missing_features; 1931 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1932 perf_missing_features.mmap2 = true; 1933 pr_debug2("switching off mmap2\n"); 1934 goto fallback_missing_features; 1935 } else if (!perf_missing_features.exclude_guest && 1936 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1937 perf_missing_features.exclude_guest = true; 1938 pr_debug2("switching off exclude_guest, exclude_host\n"); 1939 goto fallback_missing_features; 1940 } else if (!perf_missing_features.sample_id_all) { 1941 perf_missing_features.sample_id_all = true; 1942 pr_debug2("switching off sample_id_all\n"); 1943 goto retry_sample_id; 1944 } else if (!perf_missing_features.lbr_flags && 1945 (evsel->attr.branch_sample_type & 1946 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1947 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1948 perf_missing_features.lbr_flags = true; 1949 pr_debug2("switching off branch sample type no (cycles/flags)\n"); 1950 goto fallback_missing_features; 1951 } else if (!perf_missing_features.group_read && 1952 evsel->attr.inherit && 1953 (evsel->attr.read_format & PERF_FORMAT_GROUP) && 1954 perf_evsel__is_group_leader(evsel)) { 1955 perf_missing_features.group_read = true; 1956 pr_debug2("switching off group read\n"); 1957 goto fallback_missing_features; 1958 } 1959 out_close: 1960 if (err) 1961 threads->err_thread = thread; 1962 1963 do { 1964 while (--thread >= 0) { 1965 close(FD(evsel, cpu, thread)); 1966 FD(evsel, cpu, thread) = -1; 1967 } 1968 thread = nthreads; 1969 } while (--cpu >= 0); 1970 return err; 1971 } 1972 1973 void perf_evsel__close(struct perf_evsel *evsel) 1974 { 1975 if (evsel->fd == NULL) 1976 return; 1977 1978 perf_evsel__close_fd(evsel); 1979 perf_evsel__free_fd(evsel); 1980 } 1981 1982 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1983 struct cpu_map *cpus) 1984 { 1985 return perf_evsel__open(evsel, cpus, NULL); 1986 } 1987 1988 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1989 struct thread_map *threads) 1990 { 1991 return perf_evsel__open(evsel, NULL, threads); 1992 } 1993 1994 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1995 const union perf_event *event, 1996 struct perf_sample *sample) 1997 { 1998 u64 type = evsel->attr.sample_type; 1999 const u64 *array = event->sample.array; 2000 bool swapped = evsel->needs_swap; 2001 union u64_swap u; 2002 2003 array += ((event->header.size - 2004 sizeof(event->header)) / sizeof(u64)) - 1; 2005 2006 if (type & PERF_SAMPLE_IDENTIFIER) { 2007 sample->id = *array; 2008 array--; 2009 } 2010 2011 if (type & PERF_SAMPLE_CPU) { 2012 u.val64 = *array; 2013 if (swapped) { 2014 /* undo swap of u64, then swap on individual u32s */ 2015 u.val64 = bswap_64(u.val64); 2016 u.val32[0] = bswap_32(u.val32[0]); 2017 } 2018 2019 sample->cpu = u.val32[0]; 2020 array--; 2021 } 2022 2023 if (type & PERF_SAMPLE_STREAM_ID) { 2024 sample->stream_id = *array; 2025 array--; 2026 } 2027 2028 if (type & PERF_SAMPLE_ID) { 2029 sample->id = *array; 2030 array--; 2031 } 2032 2033 if (type & PERF_SAMPLE_TIME) { 2034 sample->time = *array; 2035 array--; 2036 } 2037 2038 if (type & PERF_SAMPLE_TID) { 2039 u.val64 = *array; 2040 if (swapped) { 2041 /* undo swap of u64, then swap on individual u32s */ 2042 u.val64 = bswap_64(u.val64); 2043 u.val32[0] = bswap_32(u.val32[0]); 2044 u.val32[1] = bswap_32(u.val32[1]); 2045 } 2046 2047 sample->pid = u.val32[0]; 2048 sample->tid = u.val32[1]; 2049 array--; 2050 } 2051 2052 return 0; 2053 } 2054 2055 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 2056 u64 size) 2057 { 2058 return size > max_size || offset + size > endp; 2059 } 2060 2061 #define OVERFLOW_CHECK(offset, size, max_size) \ 2062 do { \ 2063 if (overflow(endp, (max_size), (offset), (size))) \ 2064 return -EFAULT; \ 2065 } while (0) 2066 2067 #define OVERFLOW_CHECK_u64(offset) \ 2068 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 2069 2070 static int 2071 perf_event__check_size(union perf_event *event, unsigned int sample_size) 2072 { 2073 /* 2074 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 2075 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 2076 * check the format does not go past the end of the event. 2077 */ 2078 if (sample_size + sizeof(event->header) > event->header.size) 2079 return -EFAULT; 2080 2081 return 0; 2082 } 2083 2084 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 2085 struct perf_sample *data) 2086 { 2087 u64 type = evsel->attr.sample_type; 2088 bool swapped = evsel->needs_swap; 2089 const u64 *array; 2090 u16 max_size = event->header.size; 2091 const void *endp = (void *)event + max_size; 2092 u64 sz; 2093 2094 /* 2095 * used for cross-endian analysis. See git commit 65014ab3 2096 * for why this goofiness is needed. 2097 */ 2098 union u64_swap u; 2099 2100 memset(data, 0, sizeof(*data)); 2101 data->cpu = data->pid = data->tid = -1; 2102 data->stream_id = data->id = data->time = -1ULL; 2103 data->period = evsel->attr.sample_period; 2104 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2105 data->misc = event->header.misc; 2106 data->id = -1ULL; 2107 data->data_src = PERF_MEM_DATA_SRC_NONE; 2108 2109 if (event->header.type != PERF_RECORD_SAMPLE) { 2110 if (!evsel->attr.sample_id_all) 2111 return 0; 2112 return perf_evsel__parse_id_sample(evsel, event, data); 2113 } 2114 2115 array = event->sample.array; 2116 2117 if (perf_event__check_size(event, evsel->sample_size)) 2118 return -EFAULT; 2119 2120 if (type & PERF_SAMPLE_IDENTIFIER) { 2121 data->id = *array; 2122 array++; 2123 } 2124 2125 if (type & PERF_SAMPLE_IP) { 2126 data->ip = *array; 2127 array++; 2128 } 2129 2130 if (type & PERF_SAMPLE_TID) { 2131 u.val64 = *array; 2132 if (swapped) { 2133 /* undo swap of u64, then swap on individual u32s */ 2134 u.val64 = bswap_64(u.val64); 2135 u.val32[0] = bswap_32(u.val32[0]); 2136 u.val32[1] = bswap_32(u.val32[1]); 2137 } 2138 2139 data->pid = u.val32[0]; 2140 data->tid = u.val32[1]; 2141 array++; 2142 } 2143 2144 if (type & PERF_SAMPLE_TIME) { 2145 data->time = *array; 2146 array++; 2147 } 2148 2149 if (type & PERF_SAMPLE_ADDR) { 2150 data->addr = *array; 2151 array++; 2152 } 2153 2154 if (type & PERF_SAMPLE_ID) { 2155 data->id = *array; 2156 array++; 2157 } 2158 2159 if (type & PERF_SAMPLE_STREAM_ID) { 2160 data->stream_id = *array; 2161 array++; 2162 } 2163 2164 if (type & PERF_SAMPLE_CPU) { 2165 2166 u.val64 = *array; 2167 if (swapped) { 2168 /* undo swap of u64, then swap on individual u32s */ 2169 u.val64 = bswap_64(u.val64); 2170 u.val32[0] = bswap_32(u.val32[0]); 2171 } 2172 2173 data->cpu = u.val32[0]; 2174 array++; 2175 } 2176 2177 if (type & PERF_SAMPLE_PERIOD) { 2178 data->period = *array; 2179 array++; 2180 } 2181 2182 if (type & PERF_SAMPLE_READ) { 2183 u64 read_format = evsel->attr.read_format; 2184 2185 OVERFLOW_CHECK_u64(array); 2186 if (read_format & PERF_FORMAT_GROUP) 2187 data->read.group.nr = *array; 2188 else 2189 data->read.one.value = *array; 2190 2191 array++; 2192 2193 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2194 OVERFLOW_CHECK_u64(array); 2195 data->read.time_enabled = *array; 2196 array++; 2197 } 2198 2199 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2200 OVERFLOW_CHECK_u64(array); 2201 data->read.time_running = *array; 2202 array++; 2203 } 2204 2205 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2206 if (read_format & PERF_FORMAT_GROUP) { 2207 const u64 max_group_nr = UINT64_MAX / 2208 sizeof(struct sample_read_value); 2209 2210 if (data->read.group.nr > max_group_nr) 2211 return -EFAULT; 2212 sz = data->read.group.nr * 2213 sizeof(struct sample_read_value); 2214 OVERFLOW_CHECK(array, sz, max_size); 2215 data->read.group.values = 2216 (struct sample_read_value *)array; 2217 array = (void *)array + sz; 2218 } else { 2219 OVERFLOW_CHECK_u64(array); 2220 data->read.one.id = *array; 2221 array++; 2222 } 2223 } 2224 2225 if (evsel__has_callchain(evsel)) { 2226 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 2227 2228 OVERFLOW_CHECK_u64(array); 2229 data->callchain = (struct ip_callchain *)array++; 2230 if (data->callchain->nr > max_callchain_nr) 2231 return -EFAULT; 2232 sz = data->callchain->nr * sizeof(u64); 2233 OVERFLOW_CHECK(array, sz, max_size); 2234 array = (void *)array + sz; 2235 } 2236 2237 if (type & PERF_SAMPLE_RAW) { 2238 OVERFLOW_CHECK_u64(array); 2239 u.val64 = *array; 2240 2241 /* 2242 * Undo swap of u64, then swap on individual u32s, 2243 * get the size of the raw area and undo all of the 2244 * swap. The pevent interface handles endianity by 2245 * itself. 2246 */ 2247 if (swapped) { 2248 u.val64 = bswap_64(u.val64); 2249 u.val32[0] = bswap_32(u.val32[0]); 2250 u.val32[1] = bswap_32(u.val32[1]); 2251 } 2252 data->raw_size = u.val32[0]; 2253 2254 /* 2255 * The raw data is aligned on 64bits including the 2256 * u32 size, so it's safe to use mem_bswap_64. 2257 */ 2258 if (swapped) 2259 mem_bswap_64((void *) array, data->raw_size); 2260 2261 array = (void *)array + sizeof(u32); 2262 2263 OVERFLOW_CHECK(array, data->raw_size, max_size); 2264 data->raw_data = (void *)array; 2265 array = (void *)array + data->raw_size; 2266 } 2267 2268 if (type & PERF_SAMPLE_BRANCH_STACK) { 2269 const u64 max_branch_nr = UINT64_MAX / 2270 sizeof(struct branch_entry); 2271 2272 OVERFLOW_CHECK_u64(array); 2273 data->branch_stack = (struct branch_stack *)array++; 2274 2275 if (data->branch_stack->nr > max_branch_nr) 2276 return -EFAULT; 2277 sz = data->branch_stack->nr * sizeof(struct branch_entry); 2278 OVERFLOW_CHECK(array, sz, max_size); 2279 array = (void *)array + sz; 2280 } 2281 2282 if (type & PERF_SAMPLE_REGS_USER) { 2283 OVERFLOW_CHECK_u64(array); 2284 data->user_regs.abi = *array; 2285 array++; 2286 2287 if (data->user_regs.abi) { 2288 u64 mask = evsel->attr.sample_regs_user; 2289 2290 sz = hweight_long(mask) * sizeof(u64); 2291 OVERFLOW_CHECK(array, sz, max_size); 2292 data->user_regs.mask = mask; 2293 data->user_regs.regs = (u64 *)array; 2294 array = (void *)array + sz; 2295 } 2296 } 2297 2298 if (type & PERF_SAMPLE_STACK_USER) { 2299 OVERFLOW_CHECK_u64(array); 2300 sz = *array++; 2301 2302 data->user_stack.offset = ((char *)(array - 1) 2303 - (char *) event); 2304 2305 if (!sz) { 2306 data->user_stack.size = 0; 2307 } else { 2308 OVERFLOW_CHECK(array, sz, max_size); 2309 data->user_stack.data = (char *)array; 2310 array = (void *)array + sz; 2311 OVERFLOW_CHECK_u64(array); 2312 data->user_stack.size = *array++; 2313 if (WARN_ONCE(data->user_stack.size > sz, 2314 "user stack dump failure\n")) 2315 return -EFAULT; 2316 } 2317 } 2318 2319 if (type & PERF_SAMPLE_WEIGHT) { 2320 OVERFLOW_CHECK_u64(array); 2321 data->weight = *array; 2322 array++; 2323 } 2324 2325 if (type & PERF_SAMPLE_DATA_SRC) { 2326 OVERFLOW_CHECK_u64(array); 2327 data->data_src = *array; 2328 array++; 2329 } 2330 2331 if (type & PERF_SAMPLE_TRANSACTION) { 2332 OVERFLOW_CHECK_u64(array); 2333 data->transaction = *array; 2334 array++; 2335 } 2336 2337 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2338 if (type & PERF_SAMPLE_REGS_INTR) { 2339 OVERFLOW_CHECK_u64(array); 2340 data->intr_regs.abi = *array; 2341 array++; 2342 2343 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2344 u64 mask = evsel->attr.sample_regs_intr; 2345 2346 sz = hweight_long(mask) * sizeof(u64); 2347 OVERFLOW_CHECK(array, sz, max_size); 2348 data->intr_regs.mask = mask; 2349 data->intr_regs.regs = (u64 *)array; 2350 array = (void *)array + sz; 2351 } 2352 } 2353 2354 data->phys_addr = 0; 2355 if (type & PERF_SAMPLE_PHYS_ADDR) { 2356 data->phys_addr = *array; 2357 array++; 2358 } 2359 2360 return 0; 2361 } 2362 2363 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel, 2364 union perf_event *event, 2365 u64 *timestamp) 2366 { 2367 u64 type = evsel->attr.sample_type; 2368 const u64 *array; 2369 2370 if (!(type & PERF_SAMPLE_TIME)) 2371 return -1; 2372 2373 if (event->header.type != PERF_RECORD_SAMPLE) { 2374 struct perf_sample data = { 2375 .time = -1ULL, 2376 }; 2377 2378 if (!evsel->attr.sample_id_all) 2379 return -1; 2380 if (perf_evsel__parse_id_sample(evsel, event, &data)) 2381 return -1; 2382 2383 *timestamp = data.time; 2384 return 0; 2385 } 2386 2387 array = event->sample.array; 2388 2389 if (perf_event__check_size(event, evsel->sample_size)) 2390 return -EFAULT; 2391 2392 if (type & PERF_SAMPLE_IDENTIFIER) 2393 array++; 2394 2395 if (type & PERF_SAMPLE_IP) 2396 array++; 2397 2398 if (type & PERF_SAMPLE_TID) 2399 array++; 2400 2401 if (type & PERF_SAMPLE_TIME) 2402 *timestamp = *array; 2403 2404 return 0; 2405 } 2406 2407 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2408 u64 read_format) 2409 { 2410 size_t sz, result = sizeof(struct sample_event); 2411 2412 if (type & PERF_SAMPLE_IDENTIFIER) 2413 result += sizeof(u64); 2414 2415 if (type & PERF_SAMPLE_IP) 2416 result += sizeof(u64); 2417 2418 if (type & PERF_SAMPLE_TID) 2419 result += sizeof(u64); 2420 2421 if (type & PERF_SAMPLE_TIME) 2422 result += sizeof(u64); 2423 2424 if (type & PERF_SAMPLE_ADDR) 2425 result += sizeof(u64); 2426 2427 if (type & PERF_SAMPLE_ID) 2428 result += sizeof(u64); 2429 2430 if (type & PERF_SAMPLE_STREAM_ID) 2431 result += sizeof(u64); 2432 2433 if (type & PERF_SAMPLE_CPU) 2434 result += sizeof(u64); 2435 2436 if (type & PERF_SAMPLE_PERIOD) 2437 result += sizeof(u64); 2438 2439 if (type & PERF_SAMPLE_READ) { 2440 result += sizeof(u64); 2441 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2442 result += sizeof(u64); 2443 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2444 result += sizeof(u64); 2445 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2446 if (read_format & PERF_FORMAT_GROUP) { 2447 sz = sample->read.group.nr * 2448 sizeof(struct sample_read_value); 2449 result += sz; 2450 } else { 2451 result += sizeof(u64); 2452 } 2453 } 2454 2455 if (type & PERF_SAMPLE_CALLCHAIN) { 2456 sz = (sample->callchain->nr + 1) * sizeof(u64); 2457 result += sz; 2458 } 2459 2460 if (type & PERF_SAMPLE_RAW) { 2461 result += sizeof(u32); 2462 result += sample->raw_size; 2463 } 2464 2465 if (type & PERF_SAMPLE_BRANCH_STACK) { 2466 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2467 sz += sizeof(u64); 2468 result += sz; 2469 } 2470 2471 if (type & PERF_SAMPLE_REGS_USER) { 2472 if (sample->user_regs.abi) { 2473 result += sizeof(u64); 2474 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2475 result += sz; 2476 } else { 2477 result += sizeof(u64); 2478 } 2479 } 2480 2481 if (type & PERF_SAMPLE_STACK_USER) { 2482 sz = sample->user_stack.size; 2483 result += sizeof(u64); 2484 if (sz) { 2485 result += sz; 2486 result += sizeof(u64); 2487 } 2488 } 2489 2490 if (type & PERF_SAMPLE_WEIGHT) 2491 result += sizeof(u64); 2492 2493 if (type & PERF_SAMPLE_DATA_SRC) 2494 result += sizeof(u64); 2495 2496 if (type & PERF_SAMPLE_TRANSACTION) 2497 result += sizeof(u64); 2498 2499 if (type & PERF_SAMPLE_REGS_INTR) { 2500 if (sample->intr_regs.abi) { 2501 result += sizeof(u64); 2502 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2503 result += sz; 2504 } else { 2505 result += sizeof(u64); 2506 } 2507 } 2508 2509 if (type & PERF_SAMPLE_PHYS_ADDR) 2510 result += sizeof(u64); 2511 2512 return result; 2513 } 2514 2515 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2516 u64 read_format, 2517 const struct perf_sample *sample) 2518 { 2519 u64 *array; 2520 size_t sz; 2521 /* 2522 * used for cross-endian analysis. See git commit 65014ab3 2523 * for why this goofiness is needed. 2524 */ 2525 union u64_swap u; 2526 2527 array = event->sample.array; 2528 2529 if (type & PERF_SAMPLE_IDENTIFIER) { 2530 *array = sample->id; 2531 array++; 2532 } 2533 2534 if (type & PERF_SAMPLE_IP) { 2535 *array = sample->ip; 2536 array++; 2537 } 2538 2539 if (type & PERF_SAMPLE_TID) { 2540 u.val32[0] = sample->pid; 2541 u.val32[1] = sample->tid; 2542 *array = u.val64; 2543 array++; 2544 } 2545 2546 if (type & PERF_SAMPLE_TIME) { 2547 *array = sample->time; 2548 array++; 2549 } 2550 2551 if (type & PERF_SAMPLE_ADDR) { 2552 *array = sample->addr; 2553 array++; 2554 } 2555 2556 if (type & PERF_SAMPLE_ID) { 2557 *array = sample->id; 2558 array++; 2559 } 2560 2561 if (type & PERF_SAMPLE_STREAM_ID) { 2562 *array = sample->stream_id; 2563 array++; 2564 } 2565 2566 if (type & PERF_SAMPLE_CPU) { 2567 u.val32[0] = sample->cpu; 2568 u.val32[1] = 0; 2569 *array = u.val64; 2570 array++; 2571 } 2572 2573 if (type & PERF_SAMPLE_PERIOD) { 2574 *array = sample->period; 2575 array++; 2576 } 2577 2578 if (type & PERF_SAMPLE_READ) { 2579 if (read_format & PERF_FORMAT_GROUP) 2580 *array = sample->read.group.nr; 2581 else 2582 *array = sample->read.one.value; 2583 array++; 2584 2585 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2586 *array = sample->read.time_enabled; 2587 array++; 2588 } 2589 2590 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2591 *array = sample->read.time_running; 2592 array++; 2593 } 2594 2595 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2596 if (read_format & PERF_FORMAT_GROUP) { 2597 sz = sample->read.group.nr * 2598 sizeof(struct sample_read_value); 2599 memcpy(array, sample->read.group.values, sz); 2600 array = (void *)array + sz; 2601 } else { 2602 *array = sample->read.one.id; 2603 array++; 2604 } 2605 } 2606 2607 if (type & PERF_SAMPLE_CALLCHAIN) { 2608 sz = (sample->callchain->nr + 1) * sizeof(u64); 2609 memcpy(array, sample->callchain, sz); 2610 array = (void *)array + sz; 2611 } 2612 2613 if (type & PERF_SAMPLE_RAW) { 2614 u.val32[0] = sample->raw_size; 2615 *array = u.val64; 2616 array = (void *)array + sizeof(u32); 2617 2618 memcpy(array, sample->raw_data, sample->raw_size); 2619 array = (void *)array + sample->raw_size; 2620 } 2621 2622 if (type & PERF_SAMPLE_BRANCH_STACK) { 2623 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2624 sz += sizeof(u64); 2625 memcpy(array, sample->branch_stack, sz); 2626 array = (void *)array + sz; 2627 } 2628 2629 if (type & PERF_SAMPLE_REGS_USER) { 2630 if (sample->user_regs.abi) { 2631 *array++ = sample->user_regs.abi; 2632 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2633 memcpy(array, sample->user_regs.regs, sz); 2634 array = (void *)array + sz; 2635 } else { 2636 *array++ = 0; 2637 } 2638 } 2639 2640 if (type & PERF_SAMPLE_STACK_USER) { 2641 sz = sample->user_stack.size; 2642 *array++ = sz; 2643 if (sz) { 2644 memcpy(array, sample->user_stack.data, sz); 2645 array = (void *)array + sz; 2646 *array++ = sz; 2647 } 2648 } 2649 2650 if (type & PERF_SAMPLE_WEIGHT) { 2651 *array = sample->weight; 2652 array++; 2653 } 2654 2655 if (type & PERF_SAMPLE_DATA_SRC) { 2656 *array = sample->data_src; 2657 array++; 2658 } 2659 2660 if (type & PERF_SAMPLE_TRANSACTION) { 2661 *array = sample->transaction; 2662 array++; 2663 } 2664 2665 if (type & PERF_SAMPLE_REGS_INTR) { 2666 if (sample->intr_regs.abi) { 2667 *array++ = sample->intr_regs.abi; 2668 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2669 memcpy(array, sample->intr_regs.regs, sz); 2670 array = (void *)array + sz; 2671 } else { 2672 *array++ = 0; 2673 } 2674 } 2675 2676 if (type & PERF_SAMPLE_PHYS_ADDR) { 2677 *array = sample->phys_addr; 2678 array++; 2679 } 2680 2681 return 0; 2682 } 2683 2684 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2685 { 2686 return pevent_find_field(evsel->tp_format, name); 2687 } 2688 2689 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2690 const char *name) 2691 { 2692 struct format_field *field = perf_evsel__field(evsel, name); 2693 int offset; 2694 2695 if (!field) 2696 return NULL; 2697 2698 offset = field->offset; 2699 2700 if (field->flags & FIELD_IS_DYNAMIC) { 2701 offset = *(int *)(sample->raw_data + field->offset); 2702 offset &= 0xffff; 2703 } 2704 2705 return sample->raw_data + offset; 2706 } 2707 2708 u64 format_field__intval(struct format_field *field, struct perf_sample *sample, 2709 bool needs_swap) 2710 { 2711 u64 value; 2712 void *ptr = sample->raw_data + field->offset; 2713 2714 switch (field->size) { 2715 case 1: 2716 return *(u8 *)ptr; 2717 case 2: 2718 value = *(u16 *)ptr; 2719 break; 2720 case 4: 2721 value = *(u32 *)ptr; 2722 break; 2723 case 8: 2724 memcpy(&value, ptr, sizeof(u64)); 2725 break; 2726 default: 2727 return 0; 2728 } 2729 2730 if (!needs_swap) 2731 return value; 2732 2733 switch (field->size) { 2734 case 2: 2735 return bswap_16(value); 2736 case 4: 2737 return bswap_32(value); 2738 case 8: 2739 return bswap_64(value); 2740 default: 2741 return 0; 2742 } 2743 2744 return 0; 2745 } 2746 2747 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2748 const char *name) 2749 { 2750 struct format_field *field = perf_evsel__field(evsel, name); 2751 2752 if (!field) 2753 return 0; 2754 2755 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2756 } 2757 2758 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2759 char *msg, size_t msgsize) 2760 { 2761 int paranoid; 2762 2763 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2764 evsel->attr.type == PERF_TYPE_HARDWARE && 2765 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2766 /* 2767 * If it's cycles then fall back to hrtimer based 2768 * cpu-clock-tick sw counter, which is always available even if 2769 * no PMU support. 2770 * 2771 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2772 * b0a873e). 2773 */ 2774 scnprintf(msg, msgsize, "%s", 2775 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2776 2777 evsel->attr.type = PERF_TYPE_SOFTWARE; 2778 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2779 2780 zfree(&evsel->name); 2781 return true; 2782 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2783 (paranoid = perf_event_paranoid()) > 1) { 2784 const char *name = perf_evsel__name(evsel); 2785 char *new_name; 2786 const char *sep = ":"; 2787 2788 /* Is there already the separator in the name. */ 2789 if (strchr(name, '/') || 2790 strchr(name, ':')) 2791 sep = ""; 2792 2793 if (asprintf(&new_name, "%s%su", name, sep) < 0) 2794 return false; 2795 2796 if (evsel->name) 2797 free(evsel->name); 2798 evsel->name = new_name; 2799 scnprintf(msg, msgsize, 2800 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2801 evsel->attr.exclude_kernel = 1; 2802 2803 return true; 2804 } 2805 2806 return false; 2807 } 2808 2809 static bool find_process(const char *name) 2810 { 2811 size_t len = strlen(name); 2812 DIR *dir; 2813 struct dirent *d; 2814 int ret = -1; 2815 2816 dir = opendir(procfs__mountpoint()); 2817 if (!dir) 2818 return false; 2819 2820 /* Walk through the directory. */ 2821 while (ret && (d = readdir(dir)) != NULL) { 2822 char path[PATH_MAX]; 2823 char *data; 2824 size_t size; 2825 2826 if ((d->d_type != DT_DIR) || 2827 !strcmp(".", d->d_name) || 2828 !strcmp("..", d->d_name)) 2829 continue; 2830 2831 scnprintf(path, sizeof(path), "%s/%s/comm", 2832 procfs__mountpoint(), d->d_name); 2833 2834 if (filename__read_str(path, &data, &size)) 2835 continue; 2836 2837 ret = strncmp(name, data, len); 2838 free(data); 2839 } 2840 2841 closedir(dir); 2842 return ret ? false : true; 2843 } 2844 2845 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2846 int err, char *msg, size_t size) 2847 { 2848 char sbuf[STRERR_BUFSIZE]; 2849 int printed = 0; 2850 2851 switch (err) { 2852 case EPERM: 2853 case EACCES: 2854 if (err == EPERM) 2855 printed = scnprintf(msg, size, 2856 "No permission to enable %s event.\n\n", 2857 perf_evsel__name(evsel)); 2858 2859 return scnprintf(msg + printed, size - printed, 2860 "You may not have permission to collect %sstats.\n\n" 2861 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2862 "which controls use of the performance events system by\n" 2863 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2864 "The current value is %d:\n\n" 2865 " -1: Allow use of (almost) all events by all users\n" 2866 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" 2867 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n" 2868 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n" 2869 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2870 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2871 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2872 " kernel.perf_event_paranoid = -1\n" , 2873 target->system_wide ? "system-wide " : "", 2874 perf_event_paranoid()); 2875 case ENOENT: 2876 return scnprintf(msg, size, "The %s event is not supported.", 2877 perf_evsel__name(evsel)); 2878 case EMFILE: 2879 return scnprintf(msg, size, "%s", 2880 "Too many events are opened.\n" 2881 "Probably the maximum number of open file descriptors has been reached.\n" 2882 "Hint: Try again after reducing the number of events.\n" 2883 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2884 case ENOMEM: 2885 if (evsel__has_callchain(evsel) && 2886 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2887 return scnprintf(msg, size, 2888 "Not enough memory to setup event with callchain.\n" 2889 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2890 "Hint: Current value: %d", sysctl__max_stack()); 2891 break; 2892 case ENODEV: 2893 if (target->cpu_list) 2894 return scnprintf(msg, size, "%s", 2895 "No such device - did you specify an out-of-range profile CPU?"); 2896 break; 2897 case EOPNOTSUPP: 2898 if (evsel->attr.sample_period != 0) 2899 return scnprintf(msg, size, 2900 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'", 2901 perf_evsel__name(evsel)); 2902 if (evsel->attr.precise_ip) 2903 return scnprintf(msg, size, "%s", 2904 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2905 #if defined(__i386__) || defined(__x86_64__) 2906 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2907 return scnprintf(msg, size, "%s", 2908 "No hardware sampling interrupt available.\n"); 2909 #endif 2910 break; 2911 case EBUSY: 2912 if (find_process("oprofiled")) 2913 return scnprintf(msg, size, 2914 "The PMU counters are busy/taken by another profiler.\n" 2915 "We found oprofile daemon running, please stop it and try again."); 2916 break; 2917 case EINVAL: 2918 if (evsel->attr.write_backward && perf_missing_features.write_backward) 2919 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2920 if (perf_missing_features.clockid) 2921 return scnprintf(msg, size, "clockid feature not supported."); 2922 if (perf_missing_features.clockid_wrong) 2923 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2924 break; 2925 default: 2926 break; 2927 } 2928 2929 return scnprintf(msg, size, 2930 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2931 "/bin/dmesg | grep -i perf may provide additional information.\n", 2932 err, str_error_r(err, sbuf, sizeof(sbuf)), 2933 perf_evsel__name(evsel)); 2934 } 2935 2936 struct perf_env *perf_evsel__env(struct perf_evsel *evsel) 2937 { 2938 if (evsel && evsel->evlist) 2939 return evsel->evlist->env; 2940 return NULL; 2941 } 2942