xref: /openbmc/linux/tools/perf/util/evsel.c (revision a99237af)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "memswap.h"
40 #include "util/parse-branch-options.h"
41 
42 #include "sane_ctype.h"
43 
44 struct perf_missing_features perf_missing_features;
45 
46 static clockid_t clockid;
47 
48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
49 {
50 	return 0;
51 }
52 
53 void __weak test_attr__ready(void) { }
54 
55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
56 {
57 }
58 
59 static struct {
60 	size_t	size;
61 	int	(*init)(struct perf_evsel *evsel);
62 	void	(*fini)(struct perf_evsel *evsel);
63 } perf_evsel__object = {
64 	.size = sizeof(struct perf_evsel),
65 	.init = perf_evsel__no_extra_init,
66 	.fini = perf_evsel__no_extra_fini,
67 };
68 
69 int perf_evsel__object_config(size_t object_size,
70 			      int (*init)(struct perf_evsel *evsel),
71 			      void (*fini)(struct perf_evsel *evsel))
72 {
73 
74 	if (object_size == 0)
75 		goto set_methods;
76 
77 	if (perf_evsel__object.size > object_size)
78 		return -EINVAL;
79 
80 	perf_evsel__object.size = object_size;
81 
82 set_methods:
83 	if (init != NULL)
84 		perf_evsel__object.init = init;
85 
86 	if (fini != NULL)
87 		perf_evsel__object.fini = fini;
88 
89 	return 0;
90 }
91 
92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
93 
94 int __perf_evsel__sample_size(u64 sample_type)
95 {
96 	u64 mask = sample_type & PERF_SAMPLE_MASK;
97 	int size = 0;
98 	int i;
99 
100 	for (i = 0; i < 64; i++) {
101 		if (mask & (1ULL << i))
102 			size++;
103 	}
104 
105 	size *= sizeof(u64);
106 
107 	return size;
108 }
109 
110 /**
111  * __perf_evsel__calc_id_pos - calculate id_pos.
112  * @sample_type: sample type
113  *
114  * This function returns the position of the event id (PERF_SAMPLE_ID or
115  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
116  * sample_event.
117  */
118 static int __perf_evsel__calc_id_pos(u64 sample_type)
119 {
120 	int idx = 0;
121 
122 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
123 		return 0;
124 
125 	if (!(sample_type & PERF_SAMPLE_ID))
126 		return -1;
127 
128 	if (sample_type & PERF_SAMPLE_IP)
129 		idx += 1;
130 
131 	if (sample_type & PERF_SAMPLE_TID)
132 		idx += 1;
133 
134 	if (sample_type & PERF_SAMPLE_TIME)
135 		idx += 1;
136 
137 	if (sample_type & PERF_SAMPLE_ADDR)
138 		idx += 1;
139 
140 	return idx;
141 }
142 
143 /**
144  * __perf_evsel__calc_is_pos - calculate is_pos.
145  * @sample_type: sample type
146  *
147  * This function returns the position (counting backwards) of the event id
148  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
149  * sample_id_all is used there is an id sample appended to non-sample events.
150  */
151 static int __perf_evsel__calc_is_pos(u64 sample_type)
152 {
153 	int idx = 1;
154 
155 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
156 		return 1;
157 
158 	if (!(sample_type & PERF_SAMPLE_ID))
159 		return -1;
160 
161 	if (sample_type & PERF_SAMPLE_CPU)
162 		idx += 1;
163 
164 	if (sample_type & PERF_SAMPLE_STREAM_ID)
165 		idx += 1;
166 
167 	return idx;
168 }
169 
170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
171 {
172 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
173 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
174 }
175 
176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
177 				  enum perf_event_sample_format bit)
178 {
179 	if (!(evsel->attr.sample_type & bit)) {
180 		evsel->attr.sample_type |= bit;
181 		evsel->sample_size += sizeof(u64);
182 		perf_evsel__calc_id_pos(evsel);
183 	}
184 }
185 
186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
187 				    enum perf_event_sample_format bit)
188 {
189 	if (evsel->attr.sample_type & bit) {
190 		evsel->attr.sample_type &= ~bit;
191 		evsel->sample_size -= sizeof(u64);
192 		perf_evsel__calc_id_pos(evsel);
193 	}
194 }
195 
196 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
197 			       bool can_sample_identifier)
198 {
199 	if (can_sample_identifier) {
200 		perf_evsel__reset_sample_bit(evsel, ID);
201 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
202 	} else {
203 		perf_evsel__set_sample_bit(evsel, ID);
204 	}
205 	evsel->attr.read_format |= PERF_FORMAT_ID;
206 }
207 
208 /**
209  * perf_evsel__is_function_event - Return whether given evsel is a function
210  * trace event
211  *
212  * @evsel - evsel selector to be tested
213  *
214  * Return %true if event is function trace event
215  */
216 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
217 {
218 #define FUNCTION_EVENT "ftrace:function"
219 
220 	return evsel->name &&
221 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
222 
223 #undef FUNCTION_EVENT
224 }
225 
226 void perf_evsel__init(struct perf_evsel *evsel,
227 		      struct perf_event_attr *attr, int idx)
228 {
229 	evsel->idx	   = idx;
230 	evsel->tracking	   = !idx;
231 	evsel->attr	   = *attr;
232 	evsel->leader	   = evsel;
233 	evsel->unit	   = "";
234 	evsel->scale	   = 1.0;
235 	evsel->evlist	   = NULL;
236 	evsel->bpf_fd	   = -1;
237 	INIT_LIST_HEAD(&evsel->node);
238 	INIT_LIST_HEAD(&evsel->config_terms);
239 	perf_evsel__object.init(evsel);
240 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
241 	perf_evsel__calc_id_pos(evsel);
242 	evsel->cmdline_group_boundary = false;
243 	evsel->metric_expr   = NULL;
244 	evsel->metric_name   = NULL;
245 	evsel->metric_events = NULL;
246 	evsel->collect_stat  = false;
247 	evsel->pmu_name      = NULL;
248 }
249 
250 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
251 {
252 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
253 
254 	if (evsel != NULL)
255 		perf_evsel__init(evsel, attr, idx);
256 
257 	if (perf_evsel__is_bpf_output(evsel)) {
258 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
259 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
260 		evsel->attr.sample_period = 1;
261 	}
262 
263 	if (perf_evsel__is_clock(evsel)) {
264 		/*
265 		 * The evsel->unit points to static alias->unit
266 		 * so it's ok to use static string in here.
267 		 */
268 		static const char *unit = "msec";
269 
270 		evsel->unit = unit;
271 		evsel->scale = 1e-6;
272 	}
273 
274 	return evsel;
275 }
276 
277 static bool perf_event_can_profile_kernel(void)
278 {
279 	return geteuid() == 0 || perf_event_paranoid() == -1;
280 }
281 
282 struct perf_evsel *perf_evsel__new_cycles(bool precise)
283 {
284 	struct perf_event_attr attr = {
285 		.type	= PERF_TYPE_HARDWARE,
286 		.config	= PERF_COUNT_HW_CPU_CYCLES,
287 		.exclude_kernel	= !perf_event_can_profile_kernel(),
288 	};
289 	struct perf_evsel *evsel;
290 
291 	event_attr_init(&attr);
292 
293 	if (!precise)
294 		goto new_event;
295 	/*
296 	 * Unnamed union member, not supported as struct member named
297 	 * initializer in older compilers such as gcc 4.4.7
298 	 *
299 	 * Just for probing the precise_ip:
300 	 */
301 	attr.sample_period = 1;
302 
303 	perf_event_attr__set_max_precise_ip(&attr);
304 	/*
305 	 * Now let the usual logic to set up the perf_event_attr defaults
306 	 * to kick in when we return and before perf_evsel__open() is called.
307 	 */
308 	attr.sample_period = 0;
309 new_event:
310 	evsel = perf_evsel__new(&attr);
311 	if (evsel == NULL)
312 		goto out;
313 
314 	/* use asprintf() because free(evsel) assumes name is allocated */
315 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
316 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
317 		     attr.exclude_kernel ? "u" : "",
318 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
319 		goto error_free;
320 out:
321 	return evsel;
322 error_free:
323 	perf_evsel__delete(evsel);
324 	evsel = NULL;
325 	goto out;
326 }
327 
328 /*
329  * Returns pointer with encoded error via <linux/err.h> interface.
330  */
331 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
332 {
333 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
334 	int err = -ENOMEM;
335 
336 	if (evsel == NULL) {
337 		goto out_err;
338 	} else {
339 		struct perf_event_attr attr = {
340 			.type	       = PERF_TYPE_TRACEPOINT,
341 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
342 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
343 		};
344 
345 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
346 			goto out_free;
347 
348 		evsel->tp_format = trace_event__tp_format(sys, name);
349 		if (IS_ERR(evsel->tp_format)) {
350 			err = PTR_ERR(evsel->tp_format);
351 			goto out_free;
352 		}
353 
354 		event_attr_init(&attr);
355 		attr.config = evsel->tp_format->id;
356 		attr.sample_period = 1;
357 		perf_evsel__init(evsel, &attr, idx);
358 	}
359 
360 	return evsel;
361 
362 out_free:
363 	zfree(&evsel->name);
364 	free(evsel);
365 out_err:
366 	return ERR_PTR(err);
367 }
368 
369 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
370 	"cycles",
371 	"instructions",
372 	"cache-references",
373 	"cache-misses",
374 	"branches",
375 	"branch-misses",
376 	"bus-cycles",
377 	"stalled-cycles-frontend",
378 	"stalled-cycles-backend",
379 	"ref-cycles",
380 };
381 
382 static const char *__perf_evsel__hw_name(u64 config)
383 {
384 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
385 		return perf_evsel__hw_names[config];
386 
387 	return "unknown-hardware";
388 }
389 
390 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
391 {
392 	int colon = 0, r = 0;
393 	struct perf_event_attr *attr = &evsel->attr;
394 	bool exclude_guest_default = false;
395 
396 #define MOD_PRINT(context, mod)	do {					\
397 		if (!attr->exclude_##context) {				\
398 			if (!colon) colon = ++r;			\
399 			r += scnprintf(bf + r, size - r, "%c", mod);	\
400 		} } while(0)
401 
402 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
403 		MOD_PRINT(kernel, 'k');
404 		MOD_PRINT(user, 'u');
405 		MOD_PRINT(hv, 'h');
406 		exclude_guest_default = true;
407 	}
408 
409 	if (attr->precise_ip) {
410 		if (!colon)
411 			colon = ++r;
412 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
413 		exclude_guest_default = true;
414 	}
415 
416 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
417 		MOD_PRINT(host, 'H');
418 		MOD_PRINT(guest, 'G');
419 	}
420 #undef MOD_PRINT
421 	if (colon)
422 		bf[colon - 1] = ':';
423 	return r;
424 }
425 
426 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
427 {
428 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
429 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
430 }
431 
432 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
433 	"cpu-clock",
434 	"task-clock",
435 	"page-faults",
436 	"context-switches",
437 	"cpu-migrations",
438 	"minor-faults",
439 	"major-faults",
440 	"alignment-faults",
441 	"emulation-faults",
442 	"dummy",
443 };
444 
445 static const char *__perf_evsel__sw_name(u64 config)
446 {
447 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
448 		return perf_evsel__sw_names[config];
449 	return "unknown-software";
450 }
451 
452 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
453 {
454 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
455 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
456 }
457 
458 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
459 {
460 	int r;
461 
462 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
463 
464 	if (type & HW_BREAKPOINT_R)
465 		r += scnprintf(bf + r, size - r, "r");
466 
467 	if (type & HW_BREAKPOINT_W)
468 		r += scnprintf(bf + r, size - r, "w");
469 
470 	if (type & HW_BREAKPOINT_X)
471 		r += scnprintf(bf + r, size - r, "x");
472 
473 	return r;
474 }
475 
476 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
477 {
478 	struct perf_event_attr *attr = &evsel->attr;
479 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
480 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
481 }
482 
483 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
484 				[PERF_EVSEL__MAX_ALIASES] = {
485  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
486  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
487  { "LLC",	"L2",							},
488  { "dTLB",	"d-tlb",	"Data-TLB",				},
489  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
490  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
491  { "node",								},
492 };
493 
494 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
495 				   [PERF_EVSEL__MAX_ALIASES] = {
496  { "load",	"loads",	"read",					},
497  { "store",	"stores",	"write",				},
498  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
499 };
500 
501 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
502 				       [PERF_EVSEL__MAX_ALIASES] = {
503  { "refs",	"Reference",	"ops",		"access",		},
504  { "misses",	"miss",							},
505 };
506 
507 #define C(x)		PERF_COUNT_HW_CACHE_##x
508 #define CACHE_READ	(1 << C(OP_READ))
509 #define CACHE_WRITE	(1 << C(OP_WRITE))
510 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
511 #define COP(x)		(1 << x)
512 
513 /*
514  * cache operartion stat
515  * L1I : Read and prefetch only
516  * ITLB and BPU : Read-only
517  */
518 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
519  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
520  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
521  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
522  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
523  [C(ITLB)]	= (CACHE_READ),
524  [C(BPU)]	= (CACHE_READ),
525  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
526 };
527 
528 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
529 {
530 	if (perf_evsel__hw_cache_stat[type] & COP(op))
531 		return true;	/* valid */
532 	else
533 		return false;	/* invalid */
534 }
535 
536 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
537 					    char *bf, size_t size)
538 {
539 	if (result) {
540 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
541 				 perf_evsel__hw_cache_op[op][0],
542 				 perf_evsel__hw_cache_result[result][0]);
543 	}
544 
545 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
546 			 perf_evsel__hw_cache_op[op][1]);
547 }
548 
549 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
550 {
551 	u8 op, result, type = (config >>  0) & 0xff;
552 	const char *err = "unknown-ext-hardware-cache-type";
553 
554 	if (type >= PERF_COUNT_HW_CACHE_MAX)
555 		goto out_err;
556 
557 	op = (config >>  8) & 0xff;
558 	err = "unknown-ext-hardware-cache-op";
559 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
560 		goto out_err;
561 
562 	result = (config >> 16) & 0xff;
563 	err = "unknown-ext-hardware-cache-result";
564 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
565 		goto out_err;
566 
567 	err = "invalid-cache";
568 	if (!perf_evsel__is_cache_op_valid(type, op))
569 		goto out_err;
570 
571 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
572 out_err:
573 	return scnprintf(bf, size, "%s", err);
574 }
575 
576 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
577 {
578 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
579 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
580 }
581 
582 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
583 {
584 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
585 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
586 }
587 
588 const char *perf_evsel__name(struct perf_evsel *evsel)
589 {
590 	char bf[128];
591 
592 	if (evsel->name)
593 		return evsel->name;
594 
595 	switch (evsel->attr.type) {
596 	case PERF_TYPE_RAW:
597 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
598 		break;
599 
600 	case PERF_TYPE_HARDWARE:
601 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
602 		break;
603 
604 	case PERF_TYPE_HW_CACHE:
605 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
606 		break;
607 
608 	case PERF_TYPE_SOFTWARE:
609 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
610 		break;
611 
612 	case PERF_TYPE_TRACEPOINT:
613 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
614 		break;
615 
616 	case PERF_TYPE_BREAKPOINT:
617 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
618 		break;
619 
620 	default:
621 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
622 			  evsel->attr.type);
623 		break;
624 	}
625 
626 	evsel->name = strdup(bf);
627 
628 	return evsel->name ?: "unknown";
629 }
630 
631 const char *perf_evsel__group_name(struct perf_evsel *evsel)
632 {
633 	return evsel->group_name ?: "anon group";
634 }
635 
636 /*
637  * Returns the group details for the specified leader,
638  * with following rules.
639  *
640  *  For record -e '{cycles,instructions}'
641  *    'anon group { cycles:u, instructions:u }'
642  *
643  *  For record -e 'cycles,instructions' and report --group
644  *    'cycles:u, instructions:u'
645  */
646 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
647 {
648 	int ret = 0;
649 	struct perf_evsel *pos;
650 	const char *group_name = perf_evsel__group_name(evsel);
651 
652 	if (!evsel->forced_leader)
653 		ret = scnprintf(buf, size, "%s { ", group_name);
654 
655 	ret += scnprintf(buf + ret, size - ret, "%s",
656 			 perf_evsel__name(evsel));
657 
658 	for_each_group_member(pos, evsel)
659 		ret += scnprintf(buf + ret, size - ret, ", %s",
660 				 perf_evsel__name(pos));
661 
662 	if (!evsel->forced_leader)
663 		ret += scnprintf(buf + ret, size - ret, " }");
664 
665 	return ret;
666 }
667 
668 static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
669 					   struct record_opts *opts,
670 					   struct callchain_param *param)
671 {
672 	bool function = perf_evsel__is_function_event(evsel);
673 	struct perf_event_attr *attr = &evsel->attr;
674 
675 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
676 
677 	attr->sample_max_stack = param->max_stack;
678 
679 	if (param->record_mode == CALLCHAIN_LBR) {
680 		if (!opts->branch_stack) {
681 			if (attr->exclude_user) {
682 				pr_warning("LBR callstack option is only available "
683 					   "to get user callchain information. "
684 					   "Falling back to framepointers.\n");
685 			} else {
686 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
687 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
688 							PERF_SAMPLE_BRANCH_CALL_STACK |
689 							PERF_SAMPLE_BRANCH_NO_CYCLES |
690 							PERF_SAMPLE_BRANCH_NO_FLAGS;
691 			}
692 		} else
693 			 pr_warning("Cannot use LBR callstack with branch stack. "
694 				    "Falling back to framepointers.\n");
695 	}
696 
697 	if (param->record_mode == CALLCHAIN_DWARF) {
698 		if (!function) {
699 			perf_evsel__set_sample_bit(evsel, REGS_USER);
700 			perf_evsel__set_sample_bit(evsel, STACK_USER);
701 			attr->sample_regs_user |= PERF_REGS_MASK;
702 			attr->sample_stack_user = param->dump_size;
703 			attr->exclude_callchain_user = 1;
704 		} else {
705 			pr_info("Cannot use DWARF unwind for function trace event,"
706 				" falling back to framepointers.\n");
707 		}
708 	}
709 
710 	if (function) {
711 		pr_info("Disabling user space callchains for function trace event.\n");
712 		attr->exclude_callchain_user = 1;
713 	}
714 }
715 
716 void perf_evsel__config_callchain(struct perf_evsel *evsel,
717 				  struct record_opts *opts,
718 				  struct callchain_param *param)
719 {
720 	if (param->enabled)
721 		return __perf_evsel__config_callchain(evsel, opts, param);
722 }
723 
724 static void
725 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
726 			    struct callchain_param *param)
727 {
728 	struct perf_event_attr *attr = &evsel->attr;
729 
730 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
731 	if (param->record_mode == CALLCHAIN_LBR) {
732 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
733 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
734 					      PERF_SAMPLE_BRANCH_CALL_STACK);
735 	}
736 	if (param->record_mode == CALLCHAIN_DWARF) {
737 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
738 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
739 	}
740 }
741 
742 static void apply_config_terms(struct perf_evsel *evsel,
743 			       struct record_opts *opts, bool track)
744 {
745 	struct perf_evsel_config_term *term;
746 	struct list_head *config_terms = &evsel->config_terms;
747 	struct perf_event_attr *attr = &evsel->attr;
748 	/* callgraph default */
749 	struct callchain_param param = {
750 		.record_mode = callchain_param.record_mode,
751 	};
752 	u32 dump_size = 0;
753 	int max_stack = 0;
754 	const char *callgraph_buf = NULL;
755 
756 	list_for_each_entry(term, config_terms, list) {
757 		switch (term->type) {
758 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
759 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
760 				attr->sample_period = term->val.period;
761 				attr->freq = 0;
762 				perf_evsel__reset_sample_bit(evsel, PERIOD);
763 			}
764 			break;
765 		case PERF_EVSEL__CONFIG_TERM_FREQ:
766 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
767 				attr->sample_freq = term->val.freq;
768 				attr->freq = 1;
769 				perf_evsel__set_sample_bit(evsel, PERIOD);
770 			}
771 			break;
772 		case PERF_EVSEL__CONFIG_TERM_TIME:
773 			if (term->val.time)
774 				perf_evsel__set_sample_bit(evsel, TIME);
775 			else
776 				perf_evsel__reset_sample_bit(evsel, TIME);
777 			break;
778 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
779 			callgraph_buf = term->val.callgraph;
780 			break;
781 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
782 			if (term->val.branch && strcmp(term->val.branch, "no")) {
783 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
784 				parse_branch_str(term->val.branch,
785 						 &attr->branch_sample_type);
786 			} else
787 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
788 			break;
789 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
790 			dump_size = term->val.stack_user;
791 			break;
792 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
793 			max_stack = term->val.max_stack;
794 			break;
795 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
796 			/*
797 			 * attr->inherit should has already been set by
798 			 * perf_evsel__config. If user explicitly set
799 			 * inherit using config terms, override global
800 			 * opt->no_inherit setting.
801 			 */
802 			attr->inherit = term->val.inherit ? 1 : 0;
803 			break;
804 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
805 			attr->write_backward = term->val.overwrite ? 1 : 0;
806 			break;
807 		case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
808 			break;
809 		default:
810 			break;
811 		}
812 	}
813 
814 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
815 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
816 		bool sample_address = false;
817 
818 		if (max_stack) {
819 			param.max_stack = max_stack;
820 			if (callgraph_buf == NULL)
821 				callgraph_buf = "fp";
822 		}
823 
824 		/* parse callgraph parameters */
825 		if (callgraph_buf != NULL) {
826 			if (!strcmp(callgraph_buf, "no")) {
827 				param.enabled = false;
828 				param.record_mode = CALLCHAIN_NONE;
829 			} else {
830 				param.enabled = true;
831 				if (parse_callchain_record(callgraph_buf, &param)) {
832 					pr_err("per-event callgraph setting for %s failed. "
833 					       "Apply callgraph global setting for it\n",
834 					       evsel->name);
835 					return;
836 				}
837 				if (param.record_mode == CALLCHAIN_DWARF)
838 					sample_address = true;
839 			}
840 		}
841 		if (dump_size > 0) {
842 			dump_size = round_up(dump_size, sizeof(u64));
843 			param.dump_size = dump_size;
844 		}
845 
846 		/* If global callgraph set, clear it */
847 		if (callchain_param.enabled)
848 			perf_evsel__reset_callgraph(evsel, &callchain_param);
849 
850 		/* set perf-event callgraph */
851 		if (param.enabled) {
852 			if (sample_address) {
853 				perf_evsel__set_sample_bit(evsel, ADDR);
854 				perf_evsel__set_sample_bit(evsel, DATA_SRC);
855 				evsel->attr.mmap_data = track;
856 			}
857 			perf_evsel__config_callchain(evsel, opts, &param);
858 		}
859 	}
860 }
861 
862 static bool is_dummy_event(struct perf_evsel *evsel)
863 {
864 	return (evsel->attr.type == PERF_TYPE_SOFTWARE) &&
865 	       (evsel->attr.config == PERF_COUNT_SW_DUMMY);
866 }
867 
868 /*
869  * The enable_on_exec/disabled value strategy:
870  *
871  *  1) For any type of traced program:
872  *    - all independent events and group leaders are disabled
873  *    - all group members are enabled
874  *
875  *     Group members are ruled by group leaders. They need to
876  *     be enabled, because the group scheduling relies on that.
877  *
878  *  2) For traced programs executed by perf:
879  *     - all independent events and group leaders have
880  *       enable_on_exec set
881  *     - we don't specifically enable or disable any event during
882  *       the record command
883  *
884  *     Independent events and group leaders are initially disabled
885  *     and get enabled by exec. Group members are ruled by group
886  *     leaders as stated in 1).
887  *
888  *  3) For traced programs attached by perf (pid/tid):
889  *     - we specifically enable or disable all events during
890  *       the record command
891  *
892  *     When attaching events to already running traced we
893  *     enable/disable events specifically, as there's no
894  *     initial traced exec call.
895  */
896 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
897 			struct callchain_param *callchain)
898 {
899 	struct perf_evsel *leader = evsel->leader;
900 	struct perf_event_attr *attr = &evsel->attr;
901 	int track = evsel->tracking;
902 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
903 
904 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
905 	attr->inherit	    = !opts->no_inherit;
906 	attr->write_backward = opts->overwrite ? 1 : 0;
907 
908 	perf_evsel__set_sample_bit(evsel, IP);
909 	perf_evsel__set_sample_bit(evsel, TID);
910 
911 	if (evsel->sample_read) {
912 		perf_evsel__set_sample_bit(evsel, READ);
913 
914 		/*
915 		 * We need ID even in case of single event, because
916 		 * PERF_SAMPLE_READ process ID specific data.
917 		 */
918 		perf_evsel__set_sample_id(evsel, false);
919 
920 		/*
921 		 * Apply group format only if we belong to group
922 		 * with more than one members.
923 		 */
924 		if (leader->nr_members > 1) {
925 			attr->read_format |= PERF_FORMAT_GROUP;
926 			attr->inherit = 0;
927 		}
928 	}
929 
930 	/*
931 	 * We default some events to have a default interval. But keep
932 	 * it a weak assumption overridable by the user.
933 	 */
934 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
935 				     opts->user_interval != ULLONG_MAX)) {
936 		if (opts->freq) {
937 			perf_evsel__set_sample_bit(evsel, PERIOD);
938 			attr->freq		= 1;
939 			attr->sample_freq	= opts->freq;
940 		} else {
941 			attr->sample_period = opts->default_interval;
942 		}
943 	}
944 
945 	/*
946 	 * Disable sampling for all group members other
947 	 * than leader in case leader 'leads' the sampling.
948 	 */
949 	if ((leader != evsel) && leader->sample_read) {
950 		attr->freq           = 0;
951 		attr->sample_freq    = 0;
952 		attr->sample_period  = 0;
953 		attr->write_backward = 0;
954 		attr->sample_id_all  = 0;
955 	}
956 
957 	if (opts->no_samples)
958 		attr->sample_freq = 0;
959 
960 	if (opts->inherit_stat) {
961 		evsel->attr.read_format |=
962 			PERF_FORMAT_TOTAL_TIME_ENABLED |
963 			PERF_FORMAT_TOTAL_TIME_RUNNING |
964 			PERF_FORMAT_ID;
965 		attr->inherit_stat = 1;
966 	}
967 
968 	if (opts->sample_address) {
969 		perf_evsel__set_sample_bit(evsel, ADDR);
970 		attr->mmap_data = track;
971 	}
972 
973 	/*
974 	 * We don't allow user space callchains for  function trace
975 	 * event, due to issues with page faults while tracing page
976 	 * fault handler and its overall trickiness nature.
977 	 */
978 	if (perf_evsel__is_function_event(evsel))
979 		evsel->attr.exclude_callchain_user = 1;
980 
981 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
982 		perf_evsel__config_callchain(evsel, opts, callchain);
983 
984 	if (opts->sample_intr_regs) {
985 		attr->sample_regs_intr = opts->sample_intr_regs;
986 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
987 	}
988 
989 	if (opts->sample_user_regs) {
990 		attr->sample_regs_user |= opts->sample_user_regs;
991 		perf_evsel__set_sample_bit(evsel, REGS_USER);
992 	}
993 
994 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
995 		perf_evsel__set_sample_bit(evsel, CPU);
996 
997 	/*
998 	 * When the user explicitly disabled time don't force it here.
999 	 */
1000 	if (opts->sample_time &&
1001 	    (!perf_missing_features.sample_id_all &&
1002 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1003 	     opts->sample_time_set)))
1004 		perf_evsel__set_sample_bit(evsel, TIME);
1005 
1006 	if (opts->raw_samples && !evsel->no_aux_samples) {
1007 		perf_evsel__set_sample_bit(evsel, TIME);
1008 		perf_evsel__set_sample_bit(evsel, RAW);
1009 		perf_evsel__set_sample_bit(evsel, CPU);
1010 	}
1011 
1012 	if (opts->sample_address)
1013 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
1014 
1015 	if (opts->sample_phys_addr)
1016 		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1017 
1018 	if (opts->no_buffering) {
1019 		attr->watermark = 0;
1020 		attr->wakeup_events = 1;
1021 	}
1022 	if (opts->branch_stack && !evsel->no_aux_samples) {
1023 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1024 		attr->branch_sample_type = opts->branch_stack;
1025 	}
1026 
1027 	if (opts->sample_weight)
1028 		perf_evsel__set_sample_bit(evsel, WEIGHT);
1029 
1030 	attr->task  = track;
1031 	attr->mmap  = track;
1032 	attr->mmap2 = track && !perf_missing_features.mmap2;
1033 	attr->comm  = track;
1034 
1035 	if (opts->record_namespaces)
1036 		attr->namespaces  = track;
1037 
1038 	if (opts->record_switch_events)
1039 		attr->context_switch = track;
1040 
1041 	if (opts->sample_transaction)
1042 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
1043 
1044 	if (opts->running_time) {
1045 		evsel->attr.read_format |=
1046 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1047 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1048 	}
1049 
1050 	/*
1051 	 * XXX see the function comment above
1052 	 *
1053 	 * Disabling only independent events or group leaders,
1054 	 * keeping group members enabled.
1055 	 */
1056 	if (perf_evsel__is_group_leader(evsel))
1057 		attr->disabled = 1;
1058 
1059 	/*
1060 	 * Setting enable_on_exec for independent events and
1061 	 * group leaders for traced executed by perf.
1062 	 */
1063 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1064 		!opts->initial_delay)
1065 		attr->enable_on_exec = 1;
1066 
1067 	if (evsel->immediate) {
1068 		attr->disabled = 0;
1069 		attr->enable_on_exec = 0;
1070 	}
1071 
1072 	clockid = opts->clockid;
1073 	if (opts->use_clockid) {
1074 		attr->use_clockid = 1;
1075 		attr->clockid = opts->clockid;
1076 	}
1077 
1078 	if (evsel->precise_max)
1079 		perf_event_attr__set_max_precise_ip(attr);
1080 
1081 	if (opts->all_user) {
1082 		attr->exclude_kernel = 1;
1083 		attr->exclude_user   = 0;
1084 	}
1085 
1086 	if (opts->all_kernel) {
1087 		attr->exclude_kernel = 0;
1088 		attr->exclude_user   = 1;
1089 	}
1090 
1091 	/*
1092 	 * Apply event specific term settings,
1093 	 * it overloads any global configuration.
1094 	 */
1095 	apply_config_terms(evsel, opts, track);
1096 
1097 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1098 
1099 	/* The --period option takes the precedence. */
1100 	if (opts->period_set) {
1101 		if (opts->period)
1102 			perf_evsel__set_sample_bit(evsel, PERIOD);
1103 		else
1104 			perf_evsel__reset_sample_bit(evsel, PERIOD);
1105 	}
1106 
1107 	/*
1108 	 * For initial_delay, a dummy event is added implicitly.
1109 	 * The software event will trigger -EOPNOTSUPP error out,
1110 	 * if BRANCH_STACK bit is set.
1111 	 */
1112 	if (opts->initial_delay && is_dummy_event(evsel))
1113 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1114 }
1115 
1116 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1117 {
1118 	if (evsel->system_wide)
1119 		nthreads = 1;
1120 
1121 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1122 
1123 	if (evsel->fd) {
1124 		int cpu, thread;
1125 		for (cpu = 0; cpu < ncpus; cpu++) {
1126 			for (thread = 0; thread < nthreads; thread++) {
1127 				FD(evsel, cpu, thread) = -1;
1128 			}
1129 		}
1130 	}
1131 
1132 	return evsel->fd != NULL ? 0 : -ENOMEM;
1133 }
1134 
1135 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1136 			  int ioc,  void *arg)
1137 {
1138 	int cpu, thread;
1139 
1140 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1141 		for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1142 			int fd = FD(evsel, cpu, thread),
1143 			    err = ioctl(fd, ioc, arg);
1144 
1145 			if (err)
1146 				return err;
1147 		}
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1154 {
1155 	return perf_evsel__run_ioctl(evsel,
1156 				     PERF_EVENT_IOC_SET_FILTER,
1157 				     (void *)filter);
1158 }
1159 
1160 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1161 {
1162 	char *new_filter = strdup(filter);
1163 
1164 	if (new_filter != NULL) {
1165 		free(evsel->filter);
1166 		evsel->filter = new_filter;
1167 		return 0;
1168 	}
1169 
1170 	return -1;
1171 }
1172 
1173 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1174 				     const char *fmt, const char *filter)
1175 {
1176 	char *new_filter;
1177 
1178 	if (evsel->filter == NULL)
1179 		return perf_evsel__set_filter(evsel, filter);
1180 
1181 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1182 		free(evsel->filter);
1183 		evsel->filter = new_filter;
1184 		return 0;
1185 	}
1186 
1187 	return -1;
1188 }
1189 
1190 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1191 {
1192 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1193 }
1194 
1195 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1196 {
1197 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1198 }
1199 
1200 int perf_evsel__enable(struct perf_evsel *evsel)
1201 {
1202 	return perf_evsel__run_ioctl(evsel,
1203 				     PERF_EVENT_IOC_ENABLE,
1204 				     0);
1205 }
1206 
1207 int perf_evsel__disable(struct perf_evsel *evsel)
1208 {
1209 	return perf_evsel__run_ioctl(evsel,
1210 				     PERF_EVENT_IOC_DISABLE,
1211 				     0);
1212 }
1213 
1214 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1215 {
1216 	if (ncpus == 0 || nthreads == 0)
1217 		return 0;
1218 
1219 	if (evsel->system_wide)
1220 		nthreads = 1;
1221 
1222 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1223 	if (evsel->sample_id == NULL)
1224 		return -ENOMEM;
1225 
1226 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1227 	if (evsel->id == NULL) {
1228 		xyarray__delete(evsel->sample_id);
1229 		evsel->sample_id = NULL;
1230 		return -ENOMEM;
1231 	}
1232 
1233 	return 0;
1234 }
1235 
1236 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1237 {
1238 	xyarray__delete(evsel->fd);
1239 	evsel->fd = NULL;
1240 }
1241 
1242 static void perf_evsel__free_id(struct perf_evsel *evsel)
1243 {
1244 	xyarray__delete(evsel->sample_id);
1245 	evsel->sample_id = NULL;
1246 	zfree(&evsel->id);
1247 }
1248 
1249 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1250 {
1251 	struct perf_evsel_config_term *term, *h;
1252 
1253 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1254 		list_del(&term->list);
1255 		free(term);
1256 	}
1257 }
1258 
1259 void perf_evsel__close_fd(struct perf_evsel *evsel)
1260 {
1261 	int cpu, thread;
1262 
1263 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1264 		for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1265 			close(FD(evsel, cpu, thread));
1266 			FD(evsel, cpu, thread) = -1;
1267 		}
1268 }
1269 
1270 void perf_evsel__exit(struct perf_evsel *evsel)
1271 {
1272 	assert(list_empty(&evsel->node));
1273 	assert(evsel->evlist == NULL);
1274 	perf_evsel__free_fd(evsel);
1275 	perf_evsel__free_id(evsel);
1276 	perf_evsel__free_config_terms(evsel);
1277 	cgroup__put(evsel->cgrp);
1278 	cpu_map__put(evsel->cpus);
1279 	cpu_map__put(evsel->own_cpus);
1280 	thread_map__put(evsel->threads);
1281 	zfree(&evsel->group_name);
1282 	zfree(&evsel->name);
1283 	perf_evsel__object.fini(evsel);
1284 }
1285 
1286 void perf_evsel__delete(struct perf_evsel *evsel)
1287 {
1288 	perf_evsel__exit(evsel);
1289 	free(evsel);
1290 }
1291 
1292 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1293 				struct perf_counts_values *count)
1294 {
1295 	struct perf_counts_values tmp;
1296 
1297 	if (!evsel->prev_raw_counts)
1298 		return;
1299 
1300 	if (cpu == -1) {
1301 		tmp = evsel->prev_raw_counts->aggr;
1302 		evsel->prev_raw_counts->aggr = *count;
1303 	} else {
1304 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1305 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1306 	}
1307 
1308 	count->val = count->val - tmp.val;
1309 	count->ena = count->ena - tmp.ena;
1310 	count->run = count->run - tmp.run;
1311 }
1312 
1313 void perf_counts_values__scale(struct perf_counts_values *count,
1314 			       bool scale, s8 *pscaled)
1315 {
1316 	s8 scaled = 0;
1317 
1318 	if (scale) {
1319 		if (count->run == 0) {
1320 			scaled = -1;
1321 			count->val = 0;
1322 		} else if (count->run < count->ena) {
1323 			scaled = 1;
1324 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1325 		}
1326 	} else
1327 		count->ena = count->run = 0;
1328 
1329 	if (pscaled)
1330 		*pscaled = scaled;
1331 }
1332 
1333 static int perf_evsel__read_size(struct perf_evsel *evsel)
1334 {
1335 	u64 read_format = evsel->attr.read_format;
1336 	int entry = sizeof(u64); /* value */
1337 	int size = 0;
1338 	int nr = 1;
1339 
1340 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1341 		size += sizeof(u64);
1342 
1343 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1344 		size += sizeof(u64);
1345 
1346 	if (read_format & PERF_FORMAT_ID)
1347 		entry += sizeof(u64);
1348 
1349 	if (read_format & PERF_FORMAT_GROUP) {
1350 		nr = evsel->nr_members;
1351 		size += sizeof(u64);
1352 	}
1353 
1354 	size += entry * nr;
1355 	return size;
1356 }
1357 
1358 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1359 		     struct perf_counts_values *count)
1360 {
1361 	size_t size = perf_evsel__read_size(evsel);
1362 
1363 	memset(count, 0, sizeof(*count));
1364 
1365 	if (FD(evsel, cpu, thread) < 0)
1366 		return -EINVAL;
1367 
1368 	if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1369 		return -errno;
1370 
1371 	return 0;
1372 }
1373 
1374 static int
1375 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1376 {
1377 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1378 
1379 	return perf_evsel__read(evsel, cpu, thread, count);
1380 }
1381 
1382 static void
1383 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1384 		      u64 val, u64 ena, u64 run)
1385 {
1386 	struct perf_counts_values *count;
1387 
1388 	count = perf_counts(counter->counts, cpu, thread);
1389 
1390 	count->val    = val;
1391 	count->ena    = ena;
1392 	count->run    = run;
1393 	count->loaded = true;
1394 }
1395 
1396 static int
1397 perf_evsel__process_group_data(struct perf_evsel *leader,
1398 			       int cpu, int thread, u64 *data)
1399 {
1400 	u64 read_format = leader->attr.read_format;
1401 	struct sample_read_value *v;
1402 	u64 nr, ena = 0, run = 0, i;
1403 
1404 	nr = *data++;
1405 
1406 	if (nr != (u64) leader->nr_members)
1407 		return -EINVAL;
1408 
1409 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1410 		ena = *data++;
1411 
1412 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1413 		run = *data++;
1414 
1415 	v = (struct sample_read_value *) data;
1416 
1417 	perf_evsel__set_count(leader, cpu, thread,
1418 			      v[0].value, ena, run);
1419 
1420 	for (i = 1; i < nr; i++) {
1421 		struct perf_evsel *counter;
1422 
1423 		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1424 		if (!counter)
1425 			return -EINVAL;
1426 
1427 		perf_evsel__set_count(counter, cpu, thread,
1428 				      v[i].value, ena, run);
1429 	}
1430 
1431 	return 0;
1432 }
1433 
1434 static int
1435 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1436 {
1437 	struct perf_stat_evsel *ps = leader->stats;
1438 	u64 read_format = leader->attr.read_format;
1439 	int size = perf_evsel__read_size(leader);
1440 	u64 *data = ps->group_data;
1441 
1442 	if (!(read_format & PERF_FORMAT_ID))
1443 		return -EINVAL;
1444 
1445 	if (!perf_evsel__is_group_leader(leader))
1446 		return -EINVAL;
1447 
1448 	if (!data) {
1449 		data = zalloc(size);
1450 		if (!data)
1451 			return -ENOMEM;
1452 
1453 		ps->group_data = data;
1454 	}
1455 
1456 	if (FD(leader, cpu, thread) < 0)
1457 		return -EINVAL;
1458 
1459 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1460 		return -errno;
1461 
1462 	return perf_evsel__process_group_data(leader, cpu, thread, data);
1463 }
1464 
1465 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1466 {
1467 	u64 read_format = evsel->attr.read_format;
1468 
1469 	if (read_format & PERF_FORMAT_GROUP)
1470 		return perf_evsel__read_group(evsel, cpu, thread);
1471 	else
1472 		return perf_evsel__read_one(evsel, cpu, thread);
1473 }
1474 
1475 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1476 			      int cpu, int thread, bool scale)
1477 {
1478 	struct perf_counts_values count;
1479 	size_t nv = scale ? 3 : 1;
1480 
1481 	if (FD(evsel, cpu, thread) < 0)
1482 		return -EINVAL;
1483 
1484 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1485 		return -ENOMEM;
1486 
1487 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1488 		return -errno;
1489 
1490 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1491 	perf_counts_values__scale(&count, scale, NULL);
1492 	*perf_counts(evsel->counts, cpu, thread) = count;
1493 	return 0;
1494 }
1495 
1496 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1497 {
1498 	struct perf_evsel *leader = evsel->leader;
1499 	int fd;
1500 
1501 	if (perf_evsel__is_group_leader(evsel))
1502 		return -1;
1503 
1504 	/*
1505 	 * Leader must be already processed/open,
1506 	 * if not it's a bug.
1507 	 */
1508 	BUG_ON(!leader->fd);
1509 
1510 	fd = FD(leader, cpu, thread);
1511 	BUG_ON(fd == -1);
1512 
1513 	return fd;
1514 }
1515 
1516 struct bit_names {
1517 	int bit;
1518 	const char *name;
1519 };
1520 
1521 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1522 {
1523 	bool first_bit = true;
1524 	int i = 0;
1525 
1526 	do {
1527 		if (value & bits[i].bit) {
1528 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1529 			first_bit = false;
1530 		}
1531 	} while (bits[++i].name != NULL);
1532 }
1533 
1534 static void __p_sample_type(char *buf, size_t size, u64 value)
1535 {
1536 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1537 	struct bit_names bits[] = {
1538 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1539 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1540 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1541 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1542 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1543 		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1544 		{ .name = NULL, }
1545 	};
1546 #undef bit_name
1547 	__p_bits(buf, size, value, bits);
1548 }
1549 
1550 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1551 {
1552 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1553 	struct bit_names bits[] = {
1554 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1555 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1556 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1557 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1558 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1559 		{ .name = NULL, }
1560 	};
1561 #undef bit_name
1562 	__p_bits(buf, size, value, bits);
1563 }
1564 
1565 static void __p_read_format(char *buf, size_t size, u64 value)
1566 {
1567 #define bit_name(n) { PERF_FORMAT_##n, #n }
1568 	struct bit_names bits[] = {
1569 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1570 		bit_name(ID), bit_name(GROUP),
1571 		{ .name = NULL, }
1572 	};
1573 #undef bit_name
1574 	__p_bits(buf, size, value, bits);
1575 }
1576 
1577 #define BUF_SIZE		1024
1578 
1579 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1580 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1581 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1582 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1583 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1584 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1585 
1586 #define PRINT_ATTRn(_n, _f, _p)				\
1587 do {							\
1588 	if (attr->_f) {					\
1589 		_p(attr->_f);				\
1590 		ret += attr__fprintf(fp, _n, buf, priv);\
1591 	}						\
1592 } while (0)
1593 
1594 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1595 
1596 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1597 			     attr__fprintf_f attr__fprintf, void *priv)
1598 {
1599 	char buf[BUF_SIZE];
1600 	int ret = 0;
1601 
1602 	PRINT_ATTRf(type, p_unsigned);
1603 	PRINT_ATTRf(size, p_unsigned);
1604 	PRINT_ATTRf(config, p_hex);
1605 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1606 	PRINT_ATTRf(sample_type, p_sample_type);
1607 	PRINT_ATTRf(read_format, p_read_format);
1608 
1609 	PRINT_ATTRf(disabled, p_unsigned);
1610 	PRINT_ATTRf(inherit, p_unsigned);
1611 	PRINT_ATTRf(pinned, p_unsigned);
1612 	PRINT_ATTRf(exclusive, p_unsigned);
1613 	PRINT_ATTRf(exclude_user, p_unsigned);
1614 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1615 	PRINT_ATTRf(exclude_hv, p_unsigned);
1616 	PRINT_ATTRf(exclude_idle, p_unsigned);
1617 	PRINT_ATTRf(mmap, p_unsigned);
1618 	PRINT_ATTRf(comm, p_unsigned);
1619 	PRINT_ATTRf(freq, p_unsigned);
1620 	PRINT_ATTRf(inherit_stat, p_unsigned);
1621 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1622 	PRINT_ATTRf(task, p_unsigned);
1623 	PRINT_ATTRf(watermark, p_unsigned);
1624 	PRINT_ATTRf(precise_ip, p_unsigned);
1625 	PRINT_ATTRf(mmap_data, p_unsigned);
1626 	PRINT_ATTRf(sample_id_all, p_unsigned);
1627 	PRINT_ATTRf(exclude_host, p_unsigned);
1628 	PRINT_ATTRf(exclude_guest, p_unsigned);
1629 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1630 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1631 	PRINT_ATTRf(mmap2, p_unsigned);
1632 	PRINT_ATTRf(comm_exec, p_unsigned);
1633 	PRINT_ATTRf(use_clockid, p_unsigned);
1634 	PRINT_ATTRf(context_switch, p_unsigned);
1635 	PRINT_ATTRf(write_backward, p_unsigned);
1636 	PRINT_ATTRf(namespaces, p_unsigned);
1637 
1638 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1639 	PRINT_ATTRf(bp_type, p_unsigned);
1640 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1641 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1642 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1643 	PRINT_ATTRf(sample_regs_user, p_hex);
1644 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1645 	PRINT_ATTRf(clockid, p_signed);
1646 	PRINT_ATTRf(sample_regs_intr, p_hex);
1647 	PRINT_ATTRf(aux_watermark, p_unsigned);
1648 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1649 
1650 	return ret;
1651 }
1652 
1653 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1654 				void *priv __maybe_unused)
1655 {
1656 	return fprintf(fp, "  %-32s %s\n", name, val);
1657 }
1658 
1659 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1660 				  int nr_cpus, int nr_threads,
1661 				  int thread_idx)
1662 {
1663 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1664 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1665 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1666 }
1667 
1668 static int update_fds(struct perf_evsel *evsel,
1669 		      int nr_cpus, int cpu_idx,
1670 		      int nr_threads, int thread_idx)
1671 {
1672 	struct perf_evsel *pos;
1673 
1674 	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1675 		return -EINVAL;
1676 
1677 	evlist__for_each_entry(evsel->evlist, pos) {
1678 		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1679 
1680 		perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1681 
1682 		/*
1683 		 * Since fds for next evsel has not been created,
1684 		 * there is no need to iterate whole event list.
1685 		 */
1686 		if (pos == evsel)
1687 			break;
1688 	}
1689 	return 0;
1690 }
1691 
1692 static bool ignore_missing_thread(struct perf_evsel *evsel,
1693 				  int nr_cpus, int cpu,
1694 				  struct thread_map *threads,
1695 				  int thread, int err)
1696 {
1697 	pid_t ignore_pid = thread_map__pid(threads, thread);
1698 
1699 	if (!evsel->ignore_missing_thread)
1700 		return false;
1701 
1702 	/* The system wide setup does not work with threads. */
1703 	if (evsel->system_wide)
1704 		return false;
1705 
1706 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1707 	if (err != -ESRCH)
1708 		return false;
1709 
1710 	/* If there's only one thread, let it fail. */
1711 	if (threads->nr == 1)
1712 		return false;
1713 
1714 	/*
1715 	 * We should remove fd for missing_thread first
1716 	 * because thread_map__remove() will decrease threads->nr.
1717 	 */
1718 	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1719 		return false;
1720 
1721 	if (thread_map__remove(threads, thread))
1722 		return false;
1723 
1724 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1725 		   ignore_pid);
1726 	return true;
1727 }
1728 
1729 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1730 		     struct thread_map *threads)
1731 {
1732 	int cpu, thread, nthreads;
1733 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1734 	int pid = -1, err;
1735 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1736 
1737 	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1738 		return -EINVAL;
1739 
1740 	if (cpus == NULL) {
1741 		static struct cpu_map *empty_cpu_map;
1742 
1743 		if (empty_cpu_map == NULL) {
1744 			empty_cpu_map = cpu_map__dummy_new();
1745 			if (empty_cpu_map == NULL)
1746 				return -ENOMEM;
1747 		}
1748 
1749 		cpus = empty_cpu_map;
1750 	}
1751 
1752 	if (threads == NULL) {
1753 		static struct thread_map *empty_thread_map;
1754 
1755 		if (empty_thread_map == NULL) {
1756 			empty_thread_map = thread_map__new_by_tid(-1);
1757 			if (empty_thread_map == NULL)
1758 				return -ENOMEM;
1759 		}
1760 
1761 		threads = empty_thread_map;
1762 	}
1763 
1764 	if (evsel->system_wide)
1765 		nthreads = 1;
1766 	else
1767 		nthreads = threads->nr;
1768 
1769 	if (evsel->fd == NULL &&
1770 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1771 		return -ENOMEM;
1772 
1773 	if (evsel->cgrp) {
1774 		flags |= PERF_FLAG_PID_CGROUP;
1775 		pid = evsel->cgrp->fd;
1776 	}
1777 
1778 fallback_missing_features:
1779 	if (perf_missing_features.clockid_wrong)
1780 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1781 	if (perf_missing_features.clockid) {
1782 		evsel->attr.use_clockid = 0;
1783 		evsel->attr.clockid = 0;
1784 	}
1785 	if (perf_missing_features.cloexec)
1786 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1787 	if (perf_missing_features.mmap2)
1788 		evsel->attr.mmap2 = 0;
1789 	if (perf_missing_features.exclude_guest)
1790 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1791 	if (perf_missing_features.lbr_flags)
1792 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1793 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1794 	if (perf_missing_features.group_read && evsel->attr.inherit)
1795 		evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1796 retry_sample_id:
1797 	if (perf_missing_features.sample_id_all)
1798 		evsel->attr.sample_id_all = 0;
1799 
1800 	if (verbose >= 2) {
1801 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1802 		fprintf(stderr, "perf_event_attr:\n");
1803 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1804 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1805 	}
1806 
1807 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1808 
1809 		for (thread = 0; thread < nthreads; thread++) {
1810 			int fd, group_fd;
1811 
1812 			if (!evsel->cgrp && !evsel->system_wide)
1813 				pid = thread_map__pid(threads, thread);
1814 
1815 			group_fd = get_group_fd(evsel, cpu, thread);
1816 retry_open:
1817 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1818 				  pid, cpus->map[cpu], group_fd, flags);
1819 
1820 			test_attr__ready();
1821 
1822 			fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1823 						 group_fd, flags);
1824 
1825 			FD(evsel, cpu, thread) = fd;
1826 
1827 			if (fd < 0) {
1828 				err = -errno;
1829 
1830 				if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1831 					/*
1832 					 * We just removed 1 thread, so take a step
1833 					 * back on thread index and lower the upper
1834 					 * nthreads limit.
1835 					 */
1836 					nthreads--;
1837 					thread--;
1838 
1839 					/* ... and pretend like nothing have happened. */
1840 					err = 0;
1841 					continue;
1842 				}
1843 
1844 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1845 					  err);
1846 				goto try_fallback;
1847 			}
1848 
1849 			pr_debug2(" = %d\n", fd);
1850 
1851 			if (evsel->bpf_fd >= 0) {
1852 				int evt_fd = fd;
1853 				int bpf_fd = evsel->bpf_fd;
1854 
1855 				err = ioctl(evt_fd,
1856 					    PERF_EVENT_IOC_SET_BPF,
1857 					    bpf_fd);
1858 				if (err && errno != EEXIST) {
1859 					pr_err("failed to attach bpf fd %d: %s\n",
1860 					       bpf_fd, strerror(errno));
1861 					err = -EINVAL;
1862 					goto out_close;
1863 				}
1864 			}
1865 
1866 			set_rlimit = NO_CHANGE;
1867 
1868 			/*
1869 			 * If we succeeded but had to kill clockid, fail and
1870 			 * have perf_evsel__open_strerror() print us a nice
1871 			 * error.
1872 			 */
1873 			if (perf_missing_features.clockid ||
1874 			    perf_missing_features.clockid_wrong) {
1875 				err = -EINVAL;
1876 				goto out_close;
1877 			}
1878 		}
1879 	}
1880 
1881 	return 0;
1882 
1883 try_fallback:
1884 	/*
1885 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1886 	 * of them try to increase the limits.
1887 	 */
1888 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1889 		struct rlimit l;
1890 		int old_errno = errno;
1891 
1892 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1893 			if (set_rlimit == NO_CHANGE)
1894 				l.rlim_cur = l.rlim_max;
1895 			else {
1896 				l.rlim_cur = l.rlim_max + 1000;
1897 				l.rlim_max = l.rlim_cur;
1898 			}
1899 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1900 				set_rlimit++;
1901 				errno = old_errno;
1902 				goto retry_open;
1903 			}
1904 		}
1905 		errno = old_errno;
1906 	}
1907 
1908 	if (err != -EINVAL || cpu > 0 || thread > 0)
1909 		goto out_close;
1910 
1911 	/*
1912 	 * Must probe features in the order they were added to the
1913 	 * perf_event_attr interface.
1914 	 */
1915 	if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1916 		perf_missing_features.write_backward = true;
1917 		pr_debug2("switching off write_backward\n");
1918 		goto out_close;
1919 	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1920 		perf_missing_features.clockid_wrong = true;
1921 		pr_debug2("switching off clockid\n");
1922 		goto fallback_missing_features;
1923 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1924 		perf_missing_features.clockid = true;
1925 		pr_debug2("switching off use_clockid\n");
1926 		goto fallback_missing_features;
1927 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1928 		perf_missing_features.cloexec = true;
1929 		pr_debug2("switching off cloexec flag\n");
1930 		goto fallback_missing_features;
1931 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1932 		perf_missing_features.mmap2 = true;
1933 		pr_debug2("switching off mmap2\n");
1934 		goto fallback_missing_features;
1935 	} else if (!perf_missing_features.exclude_guest &&
1936 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1937 		perf_missing_features.exclude_guest = true;
1938 		pr_debug2("switching off exclude_guest, exclude_host\n");
1939 		goto fallback_missing_features;
1940 	} else if (!perf_missing_features.sample_id_all) {
1941 		perf_missing_features.sample_id_all = true;
1942 		pr_debug2("switching off sample_id_all\n");
1943 		goto retry_sample_id;
1944 	} else if (!perf_missing_features.lbr_flags &&
1945 			(evsel->attr.branch_sample_type &
1946 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1947 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1948 		perf_missing_features.lbr_flags = true;
1949 		pr_debug2("switching off branch sample type no (cycles/flags)\n");
1950 		goto fallback_missing_features;
1951 	} else if (!perf_missing_features.group_read &&
1952 		    evsel->attr.inherit &&
1953 		   (evsel->attr.read_format & PERF_FORMAT_GROUP) &&
1954 		   perf_evsel__is_group_leader(evsel)) {
1955 		perf_missing_features.group_read = true;
1956 		pr_debug2("switching off group read\n");
1957 		goto fallback_missing_features;
1958 	}
1959 out_close:
1960 	if (err)
1961 		threads->err_thread = thread;
1962 
1963 	do {
1964 		while (--thread >= 0) {
1965 			close(FD(evsel, cpu, thread));
1966 			FD(evsel, cpu, thread) = -1;
1967 		}
1968 		thread = nthreads;
1969 	} while (--cpu >= 0);
1970 	return err;
1971 }
1972 
1973 void perf_evsel__close(struct perf_evsel *evsel)
1974 {
1975 	if (evsel->fd == NULL)
1976 		return;
1977 
1978 	perf_evsel__close_fd(evsel);
1979 	perf_evsel__free_fd(evsel);
1980 }
1981 
1982 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1983 			     struct cpu_map *cpus)
1984 {
1985 	return perf_evsel__open(evsel, cpus, NULL);
1986 }
1987 
1988 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1989 				struct thread_map *threads)
1990 {
1991 	return perf_evsel__open(evsel, NULL, threads);
1992 }
1993 
1994 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1995 				       const union perf_event *event,
1996 				       struct perf_sample *sample)
1997 {
1998 	u64 type = evsel->attr.sample_type;
1999 	const u64 *array = event->sample.array;
2000 	bool swapped = evsel->needs_swap;
2001 	union u64_swap u;
2002 
2003 	array += ((event->header.size -
2004 		   sizeof(event->header)) / sizeof(u64)) - 1;
2005 
2006 	if (type & PERF_SAMPLE_IDENTIFIER) {
2007 		sample->id = *array;
2008 		array--;
2009 	}
2010 
2011 	if (type & PERF_SAMPLE_CPU) {
2012 		u.val64 = *array;
2013 		if (swapped) {
2014 			/* undo swap of u64, then swap on individual u32s */
2015 			u.val64 = bswap_64(u.val64);
2016 			u.val32[0] = bswap_32(u.val32[0]);
2017 		}
2018 
2019 		sample->cpu = u.val32[0];
2020 		array--;
2021 	}
2022 
2023 	if (type & PERF_SAMPLE_STREAM_ID) {
2024 		sample->stream_id = *array;
2025 		array--;
2026 	}
2027 
2028 	if (type & PERF_SAMPLE_ID) {
2029 		sample->id = *array;
2030 		array--;
2031 	}
2032 
2033 	if (type & PERF_SAMPLE_TIME) {
2034 		sample->time = *array;
2035 		array--;
2036 	}
2037 
2038 	if (type & PERF_SAMPLE_TID) {
2039 		u.val64 = *array;
2040 		if (swapped) {
2041 			/* undo swap of u64, then swap on individual u32s */
2042 			u.val64 = bswap_64(u.val64);
2043 			u.val32[0] = bswap_32(u.val32[0]);
2044 			u.val32[1] = bswap_32(u.val32[1]);
2045 		}
2046 
2047 		sample->pid = u.val32[0];
2048 		sample->tid = u.val32[1];
2049 		array--;
2050 	}
2051 
2052 	return 0;
2053 }
2054 
2055 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2056 			    u64 size)
2057 {
2058 	return size > max_size || offset + size > endp;
2059 }
2060 
2061 #define OVERFLOW_CHECK(offset, size, max_size)				\
2062 	do {								\
2063 		if (overflow(endp, (max_size), (offset), (size)))	\
2064 			return -EFAULT;					\
2065 	} while (0)
2066 
2067 #define OVERFLOW_CHECK_u64(offset) \
2068 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2069 
2070 static int
2071 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2072 {
2073 	/*
2074 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2075 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2076 	 * check the format does not go past the end of the event.
2077 	 */
2078 	if (sample_size + sizeof(event->header) > event->header.size)
2079 		return -EFAULT;
2080 
2081 	return 0;
2082 }
2083 
2084 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2085 			     struct perf_sample *data)
2086 {
2087 	u64 type = evsel->attr.sample_type;
2088 	bool swapped = evsel->needs_swap;
2089 	const u64 *array;
2090 	u16 max_size = event->header.size;
2091 	const void *endp = (void *)event + max_size;
2092 	u64 sz;
2093 
2094 	/*
2095 	 * used for cross-endian analysis. See git commit 65014ab3
2096 	 * for why this goofiness is needed.
2097 	 */
2098 	union u64_swap u;
2099 
2100 	memset(data, 0, sizeof(*data));
2101 	data->cpu = data->pid = data->tid = -1;
2102 	data->stream_id = data->id = data->time = -1ULL;
2103 	data->period = evsel->attr.sample_period;
2104 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2105 	data->misc    = event->header.misc;
2106 	data->id = -1ULL;
2107 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2108 
2109 	if (event->header.type != PERF_RECORD_SAMPLE) {
2110 		if (!evsel->attr.sample_id_all)
2111 			return 0;
2112 		return perf_evsel__parse_id_sample(evsel, event, data);
2113 	}
2114 
2115 	array = event->sample.array;
2116 
2117 	if (perf_event__check_size(event, evsel->sample_size))
2118 		return -EFAULT;
2119 
2120 	if (type & PERF_SAMPLE_IDENTIFIER) {
2121 		data->id = *array;
2122 		array++;
2123 	}
2124 
2125 	if (type & PERF_SAMPLE_IP) {
2126 		data->ip = *array;
2127 		array++;
2128 	}
2129 
2130 	if (type & PERF_SAMPLE_TID) {
2131 		u.val64 = *array;
2132 		if (swapped) {
2133 			/* undo swap of u64, then swap on individual u32s */
2134 			u.val64 = bswap_64(u.val64);
2135 			u.val32[0] = bswap_32(u.val32[0]);
2136 			u.val32[1] = bswap_32(u.val32[1]);
2137 		}
2138 
2139 		data->pid = u.val32[0];
2140 		data->tid = u.val32[1];
2141 		array++;
2142 	}
2143 
2144 	if (type & PERF_SAMPLE_TIME) {
2145 		data->time = *array;
2146 		array++;
2147 	}
2148 
2149 	if (type & PERF_SAMPLE_ADDR) {
2150 		data->addr = *array;
2151 		array++;
2152 	}
2153 
2154 	if (type & PERF_SAMPLE_ID) {
2155 		data->id = *array;
2156 		array++;
2157 	}
2158 
2159 	if (type & PERF_SAMPLE_STREAM_ID) {
2160 		data->stream_id = *array;
2161 		array++;
2162 	}
2163 
2164 	if (type & PERF_SAMPLE_CPU) {
2165 
2166 		u.val64 = *array;
2167 		if (swapped) {
2168 			/* undo swap of u64, then swap on individual u32s */
2169 			u.val64 = bswap_64(u.val64);
2170 			u.val32[0] = bswap_32(u.val32[0]);
2171 		}
2172 
2173 		data->cpu = u.val32[0];
2174 		array++;
2175 	}
2176 
2177 	if (type & PERF_SAMPLE_PERIOD) {
2178 		data->period = *array;
2179 		array++;
2180 	}
2181 
2182 	if (type & PERF_SAMPLE_READ) {
2183 		u64 read_format = evsel->attr.read_format;
2184 
2185 		OVERFLOW_CHECK_u64(array);
2186 		if (read_format & PERF_FORMAT_GROUP)
2187 			data->read.group.nr = *array;
2188 		else
2189 			data->read.one.value = *array;
2190 
2191 		array++;
2192 
2193 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2194 			OVERFLOW_CHECK_u64(array);
2195 			data->read.time_enabled = *array;
2196 			array++;
2197 		}
2198 
2199 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2200 			OVERFLOW_CHECK_u64(array);
2201 			data->read.time_running = *array;
2202 			array++;
2203 		}
2204 
2205 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2206 		if (read_format & PERF_FORMAT_GROUP) {
2207 			const u64 max_group_nr = UINT64_MAX /
2208 					sizeof(struct sample_read_value);
2209 
2210 			if (data->read.group.nr > max_group_nr)
2211 				return -EFAULT;
2212 			sz = data->read.group.nr *
2213 			     sizeof(struct sample_read_value);
2214 			OVERFLOW_CHECK(array, sz, max_size);
2215 			data->read.group.values =
2216 					(struct sample_read_value *)array;
2217 			array = (void *)array + sz;
2218 		} else {
2219 			OVERFLOW_CHECK_u64(array);
2220 			data->read.one.id = *array;
2221 			array++;
2222 		}
2223 	}
2224 
2225 	if (evsel__has_callchain(evsel)) {
2226 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2227 
2228 		OVERFLOW_CHECK_u64(array);
2229 		data->callchain = (struct ip_callchain *)array++;
2230 		if (data->callchain->nr > max_callchain_nr)
2231 			return -EFAULT;
2232 		sz = data->callchain->nr * sizeof(u64);
2233 		OVERFLOW_CHECK(array, sz, max_size);
2234 		array = (void *)array + sz;
2235 	}
2236 
2237 	if (type & PERF_SAMPLE_RAW) {
2238 		OVERFLOW_CHECK_u64(array);
2239 		u.val64 = *array;
2240 
2241 		/*
2242 		 * Undo swap of u64, then swap on individual u32s,
2243 		 * get the size of the raw area and undo all of the
2244 		 * swap. The pevent interface handles endianity by
2245 		 * itself.
2246 		 */
2247 		if (swapped) {
2248 			u.val64 = bswap_64(u.val64);
2249 			u.val32[0] = bswap_32(u.val32[0]);
2250 			u.val32[1] = bswap_32(u.val32[1]);
2251 		}
2252 		data->raw_size = u.val32[0];
2253 
2254 		/*
2255 		 * The raw data is aligned on 64bits including the
2256 		 * u32 size, so it's safe to use mem_bswap_64.
2257 		 */
2258 		if (swapped)
2259 			mem_bswap_64((void *) array, data->raw_size);
2260 
2261 		array = (void *)array + sizeof(u32);
2262 
2263 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2264 		data->raw_data = (void *)array;
2265 		array = (void *)array + data->raw_size;
2266 	}
2267 
2268 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2269 		const u64 max_branch_nr = UINT64_MAX /
2270 					  sizeof(struct branch_entry);
2271 
2272 		OVERFLOW_CHECK_u64(array);
2273 		data->branch_stack = (struct branch_stack *)array++;
2274 
2275 		if (data->branch_stack->nr > max_branch_nr)
2276 			return -EFAULT;
2277 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2278 		OVERFLOW_CHECK(array, sz, max_size);
2279 		array = (void *)array + sz;
2280 	}
2281 
2282 	if (type & PERF_SAMPLE_REGS_USER) {
2283 		OVERFLOW_CHECK_u64(array);
2284 		data->user_regs.abi = *array;
2285 		array++;
2286 
2287 		if (data->user_regs.abi) {
2288 			u64 mask = evsel->attr.sample_regs_user;
2289 
2290 			sz = hweight_long(mask) * sizeof(u64);
2291 			OVERFLOW_CHECK(array, sz, max_size);
2292 			data->user_regs.mask = mask;
2293 			data->user_regs.regs = (u64 *)array;
2294 			array = (void *)array + sz;
2295 		}
2296 	}
2297 
2298 	if (type & PERF_SAMPLE_STACK_USER) {
2299 		OVERFLOW_CHECK_u64(array);
2300 		sz = *array++;
2301 
2302 		data->user_stack.offset = ((char *)(array - 1)
2303 					  - (char *) event);
2304 
2305 		if (!sz) {
2306 			data->user_stack.size = 0;
2307 		} else {
2308 			OVERFLOW_CHECK(array, sz, max_size);
2309 			data->user_stack.data = (char *)array;
2310 			array = (void *)array + sz;
2311 			OVERFLOW_CHECK_u64(array);
2312 			data->user_stack.size = *array++;
2313 			if (WARN_ONCE(data->user_stack.size > sz,
2314 				      "user stack dump failure\n"))
2315 				return -EFAULT;
2316 		}
2317 	}
2318 
2319 	if (type & PERF_SAMPLE_WEIGHT) {
2320 		OVERFLOW_CHECK_u64(array);
2321 		data->weight = *array;
2322 		array++;
2323 	}
2324 
2325 	if (type & PERF_SAMPLE_DATA_SRC) {
2326 		OVERFLOW_CHECK_u64(array);
2327 		data->data_src = *array;
2328 		array++;
2329 	}
2330 
2331 	if (type & PERF_SAMPLE_TRANSACTION) {
2332 		OVERFLOW_CHECK_u64(array);
2333 		data->transaction = *array;
2334 		array++;
2335 	}
2336 
2337 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2338 	if (type & PERF_SAMPLE_REGS_INTR) {
2339 		OVERFLOW_CHECK_u64(array);
2340 		data->intr_regs.abi = *array;
2341 		array++;
2342 
2343 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2344 			u64 mask = evsel->attr.sample_regs_intr;
2345 
2346 			sz = hweight_long(mask) * sizeof(u64);
2347 			OVERFLOW_CHECK(array, sz, max_size);
2348 			data->intr_regs.mask = mask;
2349 			data->intr_regs.regs = (u64 *)array;
2350 			array = (void *)array + sz;
2351 		}
2352 	}
2353 
2354 	data->phys_addr = 0;
2355 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2356 		data->phys_addr = *array;
2357 		array++;
2358 	}
2359 
2360 	return 0;
2361 }
2362 
2363 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2364 				       union perf_event *event,
2365 				       u64 *timestamp)
2366 {
2367 	u64 type = evsel->attr.sample_type;
2368 	const u64 *array;
2369 
2370 	if (!(type & PERF_SAMPLE_TIME))
2371 		return -1;
2372 
2373 	if (event->header.type != PERF_RECORD_SAMPLE) {
2374 		struct perf_sample data = {
2375 			.time = -1ULL,
2376 		};
2377 
2378 		if (!evsel->attr.sample_id_all)
2379 			return -1;
2380 		if (perf_evsel__parse_id_sample(evsel, event, &data))
2381 			return -1;
2382 
2383 		*timestamp = data.time;
2384 		return 0;
2385 	}
2386 
2387 	array = event->sample.array;
2388 
2389 	if (perf_event__check_size(event, evsel->sample_size))
2390 		return -EFAULT;
2391 
2392 	if (type & PERF_SAMPLE_IDENTIFIER)
2393 		array++;
2394 
2395 	if (type & PERF_SAMPLE_IP)
2396 		array++;
2397 
2398 	if (type & PERF_SAMPLE_TID)
2399 		array++;
2400 
2401 	if (type & PERF_SAMPLE_TIME)
2402 		*timestamp = *array;
2403 
2404 	return 0;
2405 }
2406 
2407 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2408 				     u64 read_format)
2409 {
2410 	size_t sz, result = sizeof(struct sample_event);
2411 
2412 	if (type & PERF_SAMPLE_IDENTIFIER)
2413 		result += sizeof(u64);
2414 
2415 	if (type & PERF_SAMPLE_IP)
2416 		result += sizeof(u64);
2417 
2418 	if (type & PERF_SAMPLE_TID)
2419 		result += sizeof(u64);
2420 
2421 	if (type & PERF_SAMPLE_TIME)
2422 		result += sizeof(u64);
2423 
2424 	if (type & PERF_SAMPLE_ADDR)
2425 		result += sizeof(u64);
2426 
2427 	if (type & PERF_SAMPLE_ID)
2428 		result += sizeof(u64);
2429 
2430 	if (type & PERF_SAMPLE_STREAM_ID)
2431 		result += sizeof(u64);
2432 
2433 	if (type & PERF_SAMPLE_CPU)
2434 		result += sizeof(u64);
2435 
2436 	if (type & PERF_SAMPLE_PERIOD)
2437 		result += sizeof(u64);
2438 
2439 	if (type & PERF_SAMPLE_READ) {
2440 		result += sizeof(u64);
2441 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2442 			result += sizeof(u64);
2443 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2444 			result += sizeof(u64);
2445 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2446 		if (read_format & PERF_FORMAT_GROUP) {
2447 			sz = sample->read.group.nr *
2448 			     sizeof(struct sample_read_value);
2449 			result += sz;
2450 		} else {
2451 			result += sizeof(u64);
2452 		}
2453 	}
2454 
2455 	if (type & PERF_SAMPLE_CALLCHAIN) {
2456 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2457 		result += sz;
2458 	}
2459 
2460 	if (type & PERF_SAMPLE_RAW) {
2461 		result += sizeof(u32);
2462 		result += sample->raw_size;
2463 	}
2464 
2465 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2466 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2467 		sz += sizeof(u64);
2468 		result += sz;
2469 	}
2470 
2471 	if (type & PERF_SAMPLE_REGS_USER) {
2472 		if (sample->user_regs.abi) {
2473 			result += sizeof(u64);
2474 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2475 			result += sz;
2476 		} else {
2477 			result += sizeof(u64);
2478 		}
2479 	}
2480 
2481 	if (type & PERF_SAMPLE_STACK_USER) {
2482 		sz = sample->user_stack.size;
2483 		result += sizeof(u64);
2484 		if (sz) {
2485 			result += sz;
2486 			result += sizeof(u64);
2487 		}
2488 	}
2489 
2490 	if (type & PERF_SAMPLE_WEIGHT)
2491 		result += sizeof(u64);
2492 
2493 	if (type & PERF_SAMPLE_DATA_SRC)
2494 		result += sizeof(u64);
2495 
2496 	if (type & PERF_SAMPLE_TRANSACTION)
2497 		result += sizeof(u64);
2498 
2499 	if (type & PERF_SAMPLE_REGS_INTR) {
2500 		if (sample->intr_regs.abi) {
2501 			result += sizeof(u64);
2502 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2503 			result += sz;
2504 		} else {
2505 			result += sizeof(u64);
2506 		}
2507 	}
2508 
2509 	if (type & PERF_SAMPLE_PHYS_ADDR)
2510 		result += sizeof(u64);
2511 
2512 	return result;
2513 }
2514 
2515 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2516 				  u64 read_format,
2517 				  const struct perf_sample *sample)
2518 {
2519 	u64 *array;
2520 	size_t sz;
2521 	/*
2522 	 * used for cross-endian analysis. See git commit 65014ab3
2523 	 * for why this goofiness is needed.
2524 	 */
2525 	union u64_swap u;
2526 
2527 	array = event->sample.array;
2528 
2529 	if (type & PERF_SAMPLE_IDENTIFIER) {
2530 		*array = sample->id;
2531 		array++;
2532 	}
2533 
2534 	if (type & PERF_SAMPLE_IP) {
2535 		*array = sample->ip;
2536 		array++;
2537 	}
2538 
2539 	if (type & PERF_SAMPLE_TID) {
2540 		u.val32[0] = sample->pid;
2541 		u.val32[1] = sample->tid;
2542 		*array = u.val64;
2543 		array++;
2544 	}
2545 
2546 	if (type & PERF_SAMPLE_TIME) {
2547 		*array = sample->time;
2548 		array++;
2549 	}
2550 
2551 	if (type & PERF_SAMPLE_ADDR) {
2552 		*array = sample->addr;
2553 		array++;
2554 	}
2555 
2556 	if (type & PERF_SAMPLE_ID) {
2557 		*array = sample->id;
2558 		array++;
2559 	}
2560 
2561 	if (type & PERF_SAMPLE_STREAM_ID) {
2562 		*array = sample->stream_id;
2563 		array++;
2564 	}
2565 
2566 	if (type & PERF_SAMPLE_CPU) {
2567 		u.val32[0] = sample->cpu;
2568 		u.val32[1] = 0;
2569 		*array = u.val64;
2570 		array++;
2571 	}
2572 
2573 	if (type & PERF_SAMPLE_PERIOD) {
2574 		*array = sample->period;
2575 		array++;
2576 	}
2577 
2578 	if (type & PERF_SAMPLE_READ) {
2579 		if (read_format & PERF_FORMAT_GROUP)
2580 			*array = sample->read.group.nr;
2581 		else
2582 			*array = sample->read.one.value;
2583 		array++;
2584 
2585 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2586 			*array = sample->read.time_enabled;
2587 			array++;
2588 		}
2589 
2590 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2591 			*array = sample->read.time_running;
2592 			array++;
2593 		}
2594 
2595 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2596 		if (read_format & PERF_FORMAT_GROUP) {
2597 			sz = sample->read.group.nr *
2598 			     sizeof(struct sample_read_value);
2599 			memcpy(array, sample->read.group.values, sz);
2600 			array = (void *)array + sz;
2601 		} else {
2602 			*array = sample->read.one.id;
2603 			array++;
2604 		}
2605 	}
2606 
2607 	if (type & PERF_SAMPLE_CALLCHAIN) {
2608 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2609 		memcpy(array, sample->callchain, sz);
2610 		array = (void *)array + sz;
2611 	}
2612 
2613 	if (type & PERF_SAMPLE_RAW) {
2614 		u.val32[0] = sample->raw_size;
2615 		*array = u.val64;
2616 		array = (void *)array + sizeof(u32);
2617 
2618 		memcpy(array, sample->raw_data, sample->raw_size);
2619 		array = (void *)array + sample->raw_size;
2620 	}
2621 
2622 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2623 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2624 		sz += sizeof(u64);
2625 		memcpy(array, sample->branch_stack, sz);
2626 		array = (void *)array + sz;
2627 	}
2628 
2629 	if (type & PERF_SAMPLE_REGS_USER) {
2630 		if (sample->user_regs.abi) {
2631 			*array++ = sample->user_regs.abi;
2632 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2633 			memcpy(array, sample->user_regs.regs, sz);
2634 			array = (void *)array + sz;
2635 		} else {
2636 			*array++ = 0;
2637 		}
2638 	}
2639 
2640 	if (type & PERF_SAMPLE_STACK_USER) {
2641 		sz = sample->user_stack.size;
2642 		*array++ = sz;
2643 		if (sz) {
2644 			memcpy(array, sample->user_stack.data, sz);
2645 			array = (void *)array + sz;
2646 			*array++ = sz;
2647 		}
2648 	}
2649 
2650 	if (type & PERF_SAMPLE_WEIGHT) {
2651 		*array = sample->weight;
2652 		array++;
2653 	}
2654 
2655 	if (type & PERF_SAMPLE_DATA_SRC) {
2656 		*array = sample->data_src;
2657 		array++;
2658 	}
2659 
2660 	if (type & PERF_SAMPLE_TRANSACTION) {
2661 		*array = sample->transaction;
2662 		array++;
2663 	}
2664 
2665 	if (type & PERF_SAMPLE_REGS_INTR) {
2666 		if (sample->intr_regs.abi) {
2667 			*array++ = sample->intr_regs.abi;
2668 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2669 			memcpy(array, sample->intr_regs.regs, sz);
2670 			array = (void *)array + sz;
2671 		} else {
2672 			*array++ = 0;
2673 		}
2674 	}
2675 
2676 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2677 		*array = sample->phys_addr;
2678 		array++;
2679 	}
2680 
2681 	return 0;
2682 }
2683 
2684 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2685 {
2686 	return pevent_find_field(evsel->tp_format, name);
2687 }
2688 
2689 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2690 			 const char *name)
2691 {
2692 	struct format_field *field = perf_evsel__field(evsel, name);
2693 	int offset;
2694 
2695 	if (!field)
2696 		return NULL;
2697 
2698 	offset = field->offset;
2699 
2700 	if (field->flags & FIELD_IS_DYNAMIC) {
2701 		offset = *(int *)(sample->raw_data + field->offset);
2702 		offset &= 0xffff;
2703 	}
2704 
2705 	return sample->raw_data + offset;
2706 }
2707 
2708 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2709 			 bool needs_swap)
2710 {
2711 	u64 value;
2712 	void *ptr = sample->raw_data + field->offset;
2713 
2714 	switch (field->size) {
2715 	case 1:
2716 		return *(u8 *)ptr;
2717 	case 2:
2718 		value = *(u16 *)ptr;
2719 		break;
2720 	case 4:
2721 		value = *(u32 *)ptr;
2722 		break;
2723 	case 8:
2724 		memcpy(&value, ptr, sizeof(u64));
2725 		break;
2726 	default:
2727 		return 0;
2728 	}
2729 
2730 	if (!needs_swap)
2731 		return value;
2732 
2733 	switch (field->size) {
2734 	case 2:
2735 		return bswap_16(value);
2736 	case 4:
2737 		return bswap_32(value);
2738 	case 8:
2739 		return bswap_64(value);
2740 	default:
2741 		return 0;
2742 	}
2743 
2744 	return 0;
2745 }
2746 
2747 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2748 		       const char *name)
2749 {
2750 	struct format_field *field = perf_evsel__field(evsel, name);
2751 
2752 	if (!field)
2753 		return 0;
2754 
2755 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2756 }
2757 
2758 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2759 			  char *msg, size_t msgsize)
2760 {
2761 	int paranoid;
2762 
2763 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2764 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2765 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2766 		/*
2767 		 * If it's cycles then fall back to hrtimer based
2768 		 * cpu-clock-tick sw counter, which is always available even if
2769 		 * no PMU support.
2770 		 *
2771 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2772 		 * b0a873e).
2773 		 */
2774 		scnprintf(msg, msgsize, "%s",
2775 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2776 
2777 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2778 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2779 
2780 		zfree(&evsel->name);
2781 		return true;
2782 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2783 		   (paranoid = perf_event_paranoid()) > 1) {
2784 		const char *name = perf_evsel__name(evsel);
2785 		char *new_name;
2786 		const char *sep = ":";
2787 
2788 		/* Is there already the separator in the name. */
2789 		if (strchr(name, '/') ||
2790 		    strchr(name, ':'))
2791 			sep = "";
2792 
2793 		if (asprintf(&new_name, "%s%su", name, sep) < 0)
2794 			return false;
2795 
2796 		if (evsel->name)
2797 			free(evsel->name);
2798 		evsel->name = new_name;
2799 		scnprintf(msg, msgsize,
2800 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2801 		evsel->attr.exclude_kernel = 1;
2802 
2803 		return true;
2804 	}
2805 
2806 	return false;
2807 }
2808 
2809 static bool find_process(const char *name)
2810 {
2811 	size_t len = strlen(name);
2812 	DIR *dir;
2813 	struct dirent *d;
2814 	int ret = -1;
2815 
2816 	dir = opendir(procfs__mountpoint());
2817 	if (!dir)
2818 		return false;
2819 
2820 	/* Walk through the directory. */
2821 	while (ret && (d = readdir(dir)) != NULL) {
2822 		char path[PATH_MAX];
2823 		char *data;
2824 		size_t size;
2825 
2826 		if ((d->d_type != DT_DIR) ||
2827 		     !strcmp(".", d->d_name) ||
2828 		     !strcmp("..", d->d_name))
2829 			continue;
2830 
2831 		scnprintf(path, sizeof(path), "%s/%s/comm",
2832 			  procfs__mountpoint(), d->d_name);
2833 
2834 		if (filename__read_str(path, &data, &size))
2835 			continue;
2836 
2837 		ret = strncmp(name, data, len);
2838 		free(data);
2839 	}
2840 
2841 	closedir(dir);
2842 	return ret ? false : true;
2843 }
2844 
2845 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2846 			      int err, char *msg, size_t size)
2847 {
2848 	char sbuf[STRERR_BUFSIZE];
2849 	int printed = 0;
2850 
2851 	switch (err) {
2852 	case EPERM:
2853 	case EACCES:
2854 		if (err == EPERM)
2855 			printed = scnprintf(msg, size,
2856 				"No permission to enable %s event.\n\n",
2857 				perf_evsel__name(evsel));
2858 
2859 		return scnprintf(msg + printed, size - printed,
2860 		 "You may not have permission to collect %sstats.\n\n"
2861 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2862 		 "which controls use of the performance events system by\n"
2863 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2864 		 "The current value is %d:\n\n"
2865 		 "  -1: Allow use of (almost) all events by all users\n"
2866 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2867 		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2868 		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2869 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2870 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2871 		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2872 		 "	kernel.perf_event_paranoid = -1\n" ,
2873 				 target->system_wide ? "system-wide " : "",
2874 				 perf_event_paranoid());
2875 	case ENOENT:
2876 		return scnprintf(msg, size, "The %s event is not supported.",
2877 				 perf_evsel__name(evsel));
2878 	case EMFILE:
2879 		return scnprintf(msg, size, "%s",
2880 			 "Too many events are opened.\n"
2881 			 "Probably the maximum number of open file descriptors has been reached.\n"
2882 			 "Hint: Try again after reducing the number of events.\n"
2883 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2884 	case ENOMEM:
2885 		if (evsel__has_callchain(evsel) &&
2886 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2887 			return scnprintf(msg, size,
2888 					 "Not enough memory to setup event with callchain.\n"
2889 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2890 					 "Hint: Current value: %d", sysctl__max_stack());
2891 		break;
2892 	case ENODEV:
2893 		if (target->cpu_list)
2894 			return scnprintf(msg, size, "%s",
2895 	 "No such device - did you specify an out-of-range profile CPU?");
2896 		break;
2897 	case EOPNOTSUPP:
2898 		if (evsel->attr.sample_period != 0)
2899 			return scnprintf(msg, size,
2900 	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2901 					 perf_evsel__name(evsel));
2902 		if (evsel->attr.precise_ip)
2903 			return scnprintf(msg, size, "%s",
2904 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2905 #if defined(__i386__) || defined(__x86_64__)
2906 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2907 			return scnprintf(msg, size, "%s",
2908 	"No hardware sampling interrupt available.\n");
2909 #endif
2910 		break;
2911 	case EBUSY:
2912 		if (find_process("oprofiled"))
2913 			return scnprintf(msg, size,
2914 	"The PMU counters are busy/taken by another profiler.\n"
2915 	"We found oprofile daemon running, please stop it and try again.");
2916 		break;
2917 	case EINVAL:
2918 		if (evsel->attr.write_backward && perf_missing_features.write_backward)
2919 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2920 		if (perf_missing_features.clockid)
2921 			return scnprintf(msg, size, "clockid feature not supported.");
2922 		if (perf_missing_features.clockid_wrong)
2923 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2924 		break;
2925 	default:
2926 		break;
2927 	}
2928 
2929 	return scnprintf(msg, size,
2930 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2931 	"/bin/dmesg | grep -i perf may provide additional information.\n",
2932 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2933 			 perf_evsel__name(evsel));
2934 }
2935 
2936 struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
2937 {
2938 	if (evsel && evsel->evlist)
2939 		return evsel->evlist->env;
2940 	return NULL;
2941 }
2942