xref: /openbmc/linux/tools/perf/util/evsel.c (revision a8da474e)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/tracing_path.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <linux/err.h>
17 #include <sys/resource.h>
18 #include "asm/bug.h"
19 #include "callchain.h"
20 #include "cgroup.h"
21 #include "evsel.h"
22 #include "evlist.h"
23 #include "util.h"
24 #include "cpumap.h"
25 #include "thread_map.h"
26 #include "target.h"
27 #include "perf_regs.h"
28 #include "debug.h"
29 #include "trace-event.h"
30 #include "stat.h"
31 
32 static struct {
33 	bool sample_id_all;
34 	bool exclude_guest;
35 	bool mmap2;
36 	bool cloexec;
37 	bool clockid;
38 	bool clockid_wrong;
39 } perf_missing_features;
40 
41 static clockid_t clockid;
42 
43 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
44 {
45 	return 0;
46 }
47 
48 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
49 {
50 }
51 
52 static struct {
53 	size_t	size;
54 	int	(*init)(struct perf_evsel *evsel);
55 	void	(*fini)(struct perf_evsel *evsel);
56 } perf_evsel__object = {
57 	.size = sizeof(struct perf_evsel),
58 	.init = perf_evsel__no_extra_init,
59 	.fini = perf_evsel__no_extra_fini,
60 };
61 
62 int perf_evsel__object_config(size_t object_size,
63 			      int (*init)(struct perf_evsel *evsel),
64 			      void (*fini)(struct perf_evsel *evsel))
65 {
66 
67 	if (object_size == 0)
68 		goto set_methods;
69 
70 	if (perf_evsel__object.size > object_size)
71 		return -EINVAL;
72 
73 	perf_evsel__object.size = object_size;
74 
75 set_methods:
76 	if (init != NULL)
77 		perf_evsel__object.init = init;
78 
79 	if (fini != NULL)
80 		perf_evsel__object.fini = fini;
81 
82 	return 0;
83 }
84 
85 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
86 
87 int __perf_evsel__sample_size(u64 sample_type)
88 {
89 	u64 mask = sample_type & PERF_SAMPLE_MASK;
90 	int size = 0;
91 	int i;
92 
93 	for (i = 0; i < 64; i++) {
94 		if (mask & (1ULL << i))
95 			size++;
96 	}
97 
98 	size *= sizeof(u64);
99 
100 	return size;
101 }
102 
103 /**
104  * __perf_evsel__calc_id_pos - calculate id_pos.
105  * @sample_type: sample type
106  *
107  * This function returns the position of the event id (PERF_SAMPLE_ID or
108  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
109  * sample_event.
110  */
111 static int __perf_evsel__calc_id_pos(u64 sample_type)
112 {
113 	int idx = 0;
114 
115 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
116 		return 0;
117 
118 	if (!(sample_type & PERF_SAMPLE_ID))
119 		return -1;
120 
121 	if (sample_type & PERF_SAMPLE_IP)
122 		idx += 1;
123 
124 	if (sample_type & PERF_SAMPLE_TID)
125 		idx += 1;
126 
127 	if (sample_type & PERF_SAMPLE_TIME)
128 		idx += 1;
129 
130 	if (sample_type & PERF_SAMPLE_ADDR)
131 		idx += 1;
132 
133 	return idx;
134 }
135 
136 /**
137  * __perf_evsel__calc_is_pos - calculate is_pos.
138  * @sample_type: sample type
139  *
140  * This function returns the position (counting backwards) of the event id
141  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
142  * sample_id_all is used there is an id sample appended to non-sample events.
143  */
144 static int __perf_evsel__calc_is_pos(u64 sample_type)
145 {
146 	int idx = 1;
147 
148 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
149 		return 1;
150 
151 	if (!(sample_type & PERF_SAMPLE_ID))
152 		return -1;
153 
154 	if (sample_type & PERF_SAMPLE_CPU)
155 		idx += 1;
156 
157 	if (sample_type & PERF_SAMPLE_STREAM_ID)
158 		idx += 1;
159 
160 	return idx;
161 }
162 
163 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
164 {
165 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
166 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
167 }
168 
169 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
170 				  enum perf_event_sample_format bit)
171 {
172 	if (!(evsel->attr.sample_type & bit)) {
173 		evsel->attr.sample_type |= bit;
174 		evsel->sample_size += sizeof(u64);
175 		perf_evsel__calc_id_pos(evsel);
176 	}
177 }
178 
179 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
180 				    enum perf_event_sample_format bit)
181 {
182 	if (evsel->attr.sample_type & bit) {
183 		evsel->attr.sample_type &= ~bit;
184 		evsel->sample_size -= sizeof(u64);
185 		perf_evsel__calc_id_pos(evsel);
186 	}
187 }
188 
189 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
190 			       bool can_sample_identifier)
191 {
192 	if (can_sample_identifier) {
193 		perf_evsel__reset_sample_bit(evsel, ID);
194 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
195 	} else {
196 		perf_evsel__set_sample_bit(evsel, ID);
197 	}
198 	evsel->attr.read_format |= PERF_FORMAT_ID;
199 }
200 
201 void perf_evsel__init(struct perf_evsel *evsel,
202 		      struct perf_event_attr *attr, int idx)
203 {
204 	evsel->idx	   = idx;
205 	evsel->tracking	   = !idx;
206 	evsel->attr	   = *attr;
207 	evsel->leader	   = evsel;
208 	evsel->unit	   = "";
209 	evsel->scale	   = 1.0;
210 	evsel->evlist	   = NULL;
211 	evsel->bpf_fd	   = -1;
212 	INIT_LIST_HEAD(&evsel->node);
213 	INIT_LIST_HEAD(&evsel->config_terms);
214 	perf_evsel__object.init(evsel);
215 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
216 	perf_evsel__calc_id_pos(evsel);
217 	evsel->cmdline_group_boundary = false;
218 }
219 
220 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
221 {
222 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
223 
224 	if (evsel != NULL)
225 		perf_evsel__init(evsel, attr, idx);
226 
227 	return evsel;
228 }
229 
230 /*
231  * Returns pointer with encoded error via <linux/err.h> interface.
232  */
233 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
234 {
235 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
236 	int err = -ENOMEM;
237 
238 	if (evsel == NULL) {
239 		goto out_err;
240 	} else {
241 		struct perf_event_attr attr = {
242 			.type	       = PERF_TYPE_TRACEPOINT,
243 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
244 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
245 		};
246 
247 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
248 			goto out_free;
249 
250 		evsel->tp_format = trace_event__tp_format(sys, name);
251 		if (IS_ERR(evsel->tp_format)) {
252 			err = PTR_ERR(evsel->tp_format);
253 			goto out_free;
254 		}
255 
256 		event_attr_init(&attr);
257 		attr.config = evsel->tp_format->id;
258 		attr.sample_period = 1;
259 		perf_evsel__init(evsel, &attr, idx);
260 	}
261 
262 	return evsel;
263 
264 out_free:
265 	zfree(&evsel->name);
266 	free(evsel);
267 out_err:
268 	return ERR_PTR(err);
269 }
270 
271 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
272 	"cycles",
273 	"instructions",
274 	"cache-references",
275 	"cache-misses",
276 	"branches",
277 	"branch-misses",
278 	"bus-cycles",
279 	"stalled-cycles-frontend",
280 	"stalled-cycles-backend",
281 	"ref-cycles",
282 };
283 
284 static const char *__perf_evsel__hw_name(u64 config)
285 {
286 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
287 		return perf_evsel__hw_names[config];
288 
289 	return "unknown-hardware";
290 }
291 
292 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
293 {
294 	int colon = 0, r = 0;
295 	struct perf_event_attr *attr = &evsel->attr;
296 	bool exclude_guest_default = false;
297 
298 #define MOD_PRINT(context, mod)	do {					\
299 		if (!attr->exclude_##context) {				\
300 			if (!colon) colon = ++r;			\
301 			r += scnprintf(bf + r, size - r, "%c", mod);	\
302 		} } while(0)
303 
304 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
305 		MOD_PRINT(kernel, 'k');
306 		MOD_PRINT(user, 'u');
307 		MOD_PRINT(hv, 'h');
308 		exclude_guest_default = true;
309 	}
310 
311 	if (attr->precise_ip) {
312 		if (!colon)
313 			colon = ++r;
314 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
315 		exclude_guest_default = true;
316 	}
317 
318 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
319 		MOD_PRINT(host, 'H');
320 		MOD_PRINT(guest, 'G');
321 	}
322 #undef MOD_PRINT
323 	if (colon)
324 		bf[colon - 1] = ':';
325 	return r;
326 }
327 
328 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
329 {
330 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
331 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
332 }
333 
334 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
335 	"cpu-clock",
336 	"task-clock",
337 	"page-faults",
338 	"context-switches",
339 	"cpu-migrations",
340 	"minor-faults",
341 	"major-faults",
342 	"alignment-faults",
343 	"emulation-faults",
344 	"dummy",
345 };
346 
347 static const char *__perf_evsel__sw_name(u64 config)
348 {
349 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
350 		return perf_evsel__sw_names[config];
351 	return "unknown-software";
352 }
353 
354 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
355 {
356 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
357 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
358 }
359 
360 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
361 {
362 	int r;
363 
364 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
365 
366 	if (type & HW_BREAKPOINT_R)
367 		r += scnprintf(bf + r, size - r, "r");
368 
369 	if (type & HW_BREAKPOINT_W)
370 		r += scnprintf(bf + r, size - r, "w");
371 
372 	if (type & HW_BREAKPOINT_X)
373 		r += scnprintf(bf + r, size - r, "x");
374 
375 	return r;
376 }
377 
378 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
379 {
380 	struct perf_event_attr *attr = &evsel->attr;
381 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
382 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
383 }
384 
385 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
386 				[PERF_EVSEL__MAX_ALIASES] = {
387  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
388  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
389  { "LLC",	"L2",							},
390  { "dTLB",	"d-tlb",	"Data-TLB",				},
391  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
392  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
393  { "node",								},
394 };
395 
396 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
397 				   [PERF_EVSEL__MAX_ALIASES] = {
398  { "load",	"loads",	"read",					},
399  { "store",	"stores",	"write",				},
400  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
401 };
402 
403 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
404 				       [PERF_EVSEL__MAX_ALIASES] = {
405  { "refs",	"Reference",	"ops",		"access",		},
406  { "misses",	"miss",							},
407 };
408 
409 #define C(x)		PERF_COUNT_HW_CACHE_##x
410 #define CACHE_READ	(1 << C(OP_READ))
411 #define CACHE_WRITE	(1 << C(OP_WRITE))
412 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
413 #define COP(x)		(1 << x)
414 
415 /*
416  * cache operartion stat
417  * L1I : Read and prefetch only
418  * ITLB and BPU : Read-only
419  */
420 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
421  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
422  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
423  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
424  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
425  [C(ITLB)]	= (CACHE_READ),
426  [C(BPU)]	= (CACHE_READ),
427  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
428 };
429 
430 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
431 {
432 	if (perf_evsel__hw_cache_stat[type] & COP(op))
433 		return true;	/* valid */
434 	else
435 		return false;	/* invalid */
436 }
437 
438 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
439 					    char *bf, size_t size)
440 {
441 	if (result) {
442 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
443 				 perf_evsel__hw_cache_op[op][0],
444 				 perf_evsel__hw_cache_result[result][0]);
445 	}
446 
447 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
448 			 perf_evsel__hw_cache_op[op][1]);
449 }
450 
451 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
452 {
453 	u8 op, result, type = (config >>  0) & 0xff;
454 	const char *err = "unknown-ext-hardware-cache-type";
455 
456 	if (type > PERF_COUNT_HW_CACHE_MAX)
457 		goto out_err;
458 
459 	op = (config >>  8) & 0xff;
460 	err = "unknown-ext-hardware-cache-op";
461 	if (op > PERF_COUNT_HW_CACHE_OP_MAX)
462 		goto out_err;
463 
464 	result = (config >> 16) & 0xff;
465 	err = "unknown-ext-hardware-cache-result";
466 	if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
467 		goto out_err;
468 
469 	err = "invalid-cache";
470 	if (!perf_evsel__is_cache_op_valid(type, op))
471 		goto out_err;
472 
473 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
474 out_err:
475 	return scnprintf(bf, size, "%s", err);
476 }
477 
478 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
479 {
480 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
481 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
482 }
483 
484 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
485 {
486 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
487 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
488 }
489 
490 const char *perf_evsel__name(struct perf_evsel *evsel)
491 {
492 	char bf[128];
493 
494 	if (evsel->name)
495 		return evsel->name;
496 
497 	switch (evsel->attr.type) {
498 	case PERF_TYPE_RAW:
499 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
500 		break;
501 
502 	case PERF_TYPE_HARDWARE:
503 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
504 		break;
505 
506 	case PERF_TYPE_HW_CACHE:
507 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
508 		break;
509 
510 	case PERF_TYPE_SOFTWARE:
511 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
512 		break;
513 
514 	case PERF_TYPE_TRACEPOINT:
515 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
516 		break;
517 
518 	case PERF_TYPE_BREAKPOINT:
519 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
520 		break;
521 
522 	default:
523 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
524 			  evsel->attr.type);
525 		break;
526 	}
527 
528 	evsel->name = strdup(bf);
529 
530 	return evsel->name ?: "unknown";
531 }
532 
533 const char *perf_evsel__group_name(struct perf_evsel *evsel)
534 {
535 	return evsel->group_name ?: "anon group";
536 }
537 
538 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
539 {
540 	int ret;
541 	struct perf_evsel *pos;
542 	const char *group_name = perf_evsel__group_name(evsel);
543 
544 	ret = scnprintf(buf, size, "%s", group_name);
545 
546 	ret += scnprintf(buf + ret, size - ret, " { %s",
547 			 perf_evsel__name(evsel));
548 
549 	for_each_group_member(pos, evsel)
550 		ret += scnprintf(buf + ret, size - ret, ", %s",
551 				 perf_evsel__name(pos));
552 
553 	ret += scnprintf(buf + ret, size - ret, " }");
554 
555 	return ret;
556 }
557 
558 static void
559 perf_evsel__config_callgraph(struct perf_evsel *evsel,
560 			     struct record_opts *opts,
561 			     struct callchain_param *param)
562 {
563 	bool function = perf_evsel__is_function_event(evsel);
564 	struct perf_event_attr *attr = &evsel->attr;
565 
566 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
567 
568 	if (param->record_mode == CALLCHAIN_LBR) {
569 		if (!opts->branch_stack) {
570 			if (attr->exclude_user) {
571 				pr_warning("LBR callstack option is only available "
572 					   "to get user callchain information. "
573 					   "Falling back to framepointers.\n");
574 			} else {
575 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
576 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
577 							PERF_SAMPLE_BRANCH_CALL_STACK;
578 			}
579 		} else
580 			 pr_warning("Cannot use LBR callstack with branch stack. "
581 				    "Falling back to framepointers.\n");
582 	}
583 
584 	if (param->record_mode == CALLCHAIN_DWARF) {
585 		if (!function) {
586 			perf_evsel__set_sample_bit(evsel, REGS_USER);
587 			perf_evsel__set_sample_bit(evsel, STACK_USER);
588 			attr->sample_regs_user = PERF_REGS_MASK;
589 			attr->sample_stack_user = param->dump_size;
590 			attr->exclude_callchain_user = 1;
591 		} else {
592 			pr_info("Cannot use DWARF unwind for function trace event,"
593 				" falling back to framepointers.\n");
594 		}
595 	}
596 
597 	if (function) {
598 		pr_info("Disabling user space callchains for function trace event.\n");
599 		attr->exclude_callchain_user = 1;
600 	}
601 }
602 
603 static void
604 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
605 			    struct callchain_param *param)
606 {
607 	struct perf_event_attr *attr = &evsel->attr;
608 
609 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
610 	if (param->record_mode == CALLCHAIN_LBR) {
611 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
612 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
613 					      PERF_SAMPLE_BRANCH_CALL_STACK);
614 	}
615 	if (param->record_mode == CALLCHAIN_DWARF) {
616 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
617 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
618 	}
619 }
620 
621 static void apply_config_terms(struct perf_evsel *evsel,
622 			       struct record_opts *opts)
623 {
624 	struct perf_evsel_config_term *term;
625 	struct list_head *config_terms = &evsel->config_terms;
626 	struct perf_event_attr *attr = &evsel->attr;
627 	struct callchain_param param;
628 	u32 dump_size = 0;
629 	char *callgraph_buf = NULL;
630 
631 	/* callgraph default */
632 	param.record_mode = callchain_param.record_mode;
633 
634 	list_for_each_entry(term, config_terms, list) {
635 		switch (term->type) {
636 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
637 			attr->sample_period = term->val.period;
638 			attr->freq = 0;
639 			break;
640 		case PERF_EVSEL__CONFIG_TERM_FREQ:
641 			attr->sample_freq = term->val.freq;
642 			attr->freq = 1;
643 			break;
644 		case PERF_EVSEL__CONFIG_TERM_TIME:
645 			if (term->val.time)
646 				perf_evsel__set_sample_bit(evsel, TIME);
647 			else
648 				perf_evsel__reset_sample_bit(evsel, TIME);
649 			break;
650 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
651 			callgraph_buf = term->val.callgraph;
652 			break;
653 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
654 			dump_size = term->val.stack_user;
655 			break;
656 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
657 			/*
658 			 * attr->inherit should has already been set by
659 			 * perf_evsel__config. If user explicitly set
660 			 * inherit using config terms, override global
661 			 * opt->no_inherit setting.
662 			 */
663 			attr->inherit = term->val.inherit ? 1 : 0;
664 			break;
665 		default:
666 			break;
667 		}
668 	}
669 
670 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
671 	if ((callgraph_buf != NULL) || (dump_size > 0)) {
672 
673 		/* parse callgraph parameters */
674 		if (callgraph_buf != NULL) {
675 			if (!strcmp(callgraph_buf, "no")) {
676 				param.enabled = false;
677 				param.record_mode = CALLCHAIN_NONE;
678 			} else {
679 				param.enabled = true;
680 				if (parse_callchain_record(callgraph_buf, &param)) {
681 					pr_err("per-event callgraph setting for %s failed. "
682 					       "Apply callgraph global setting for it\n",
683 					       evsel->name);
684 					return;
685 				}
686 			}
687 		}
688 		if (dump_size > 0) {
689 			dump_size = round_up(dump_size, sizeof(u64));
690 			param.dump_size = dump_size;
691 		}
692 
693 		/* If global callgraph set, clear it */
694 		if (callchain_param.enabled)
695 			perf_evsel__reset_callgraph(evsel, &callchain_param);
696 
697 		/* set perf-event callgraph */
698 		if (param.enabled)
699 			perf_evsel__config_callgraph(evsel, opts, &param);
700 	}
701 }
702 
703 /*
704  * The enable_on_exec/disabled value strategy:
705  *
706  *  1) For any type of traced program:
707  *    - all independent events and group leaders are disabled
708  *    - all group members are enabled
709  *
710  *     Group members are ruled by group leaders. They need to
711  *     be enabled, because the group scheduling relies on that.
712  *
713  *  2) For traced programs executed by perf:
714  *     - all independent events and group leaders have
715  *       enable_on_exec set
716  *     - we don't specifically enable or disable any event during
717  *       the record command
718  *
719  *     Independent events and group leaders are initially disabled
720  *     and get enabled by exec. Group members are ruled by group
721  *     leaders as stated in 1).
722  *
723  *  3) For traced programs attached by perf (pid/tid):
724  *     - we specifically enable or disable all events during
725  *       the record command
726  *
727  *     When attaching events to already running traced we
728  *     enable/disable events specifically, as there's no
729  *     initial traced exec call.
730  */
731 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
732 {
733 	struct perf_evsel *leader = evsel->leader;
734 	struct perf_event_attr *attr = &evsel->attr;
735 	int track = evsel->tracking;
736 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
737 
738 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
739 	attr->inherit	    = !opts->no_inherit;
740 
741 	perf_evsel__set_sample_bit(evsel, IP);
742 	perf_evsel__set_sample_bit(evsel, TID);
743 
744 	if (evsel->sample_read) {
745 		perf_evsel__set_sample_bit(evsel, READ);
746 
747 		/*
748 		 * We need ID even in case of single event, because
749 		 * PERF_SAMPLE_READ process ID specific data.
750 		 */
751 		perf_evsel__set_sample_id(evsel, false);
752 
753 		/*
754 		 * Apply group format only if we belong to group
755 		 * with more than one members.
756 		 */
757 		if (leader->nr_members > 1) {
758 			attr->read_format |= PERF_FORMAT_GROUP;
759 			attr->inherit = 0;
760 		}
761 	}
762 
763 	/*
764 	 * We default some events to have a default interval. But keep
765 	 * it a weak assumption overridable by the user.
766 	 */
767 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
768 				     opts->user_interval != ULLONG_MAX)) {
769 		if (opts->freq) {
770 			perf_evsel__set_sample_bit(evsel, PERIOD);
771 			attr->freq		= 1;
772 			attr->sample_freq	= opts->freq;
773 		} else {
774 			attr->sample_period = opts->default_interval;
775 		}
776 	}
777 
778 	/*
779 	 * Disable sampling for all group members other
780 	 * than leader in case leader 'leads' the sampling.
781 	 */
782 	if ((leader != evsel) && leader->sample_read) {
783 		attr->sample_freq   = 0;
784 		attr->sample_period = 0;
785 	}
786 
787 	if (opts->no_samples)
788 		attr->sample_freq = 0;
789 
790 	if (opts->inherit_stat)
791 		attr->inherit_stat = 1;
792 
793 	if (opts->sample_address) {
794 		perf_evsel__set_sample_bit(evsel, ADDR);
795 		attr->mmap_data = track;
796 	}
797 
798 	/*
799 	 * We don't allow user space callchains for  function trace
800 	 * event, due to issues with page faults while tracing page
801 	 * fault handler and its overall trickiness nature.
802 	 */
803 	if (perf_evsel__is_function_event(evsel))
804 		evsel->attr.exclude_callchain_user = 1;
805 
806 	if (callchain_param.enabled && !evsel->no_aux_samples)
807 		perf_evsel__config_callgraph(evsel, opts, &callchain_param);
808 
809 	if (opts->sample_intr_regs) {
810 		attr->sample_regs_intr = opts->sample_intr_regs;
811 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
812 	}
813 
814 	if (target__has_cpu(&opts->target))
815 		perf_evsel__set_sample_bit(evsel, CPU);
816 
817 	if (opts->period)
818 		perf_evsel__set_sample_bit(evsel, PERIOD);
819 
820 	/*
821 	 * When the user explicitely disabled time don't force it here.
822 	 */
823 	if (opts->sample_time &&
824 	    (!perf_missing_features.sample_id_all &&
825 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
826 	     opts->sample_time_set)))
827 		perf_evsel__set_sample_bit(evsel, TIME);
828 
829 	if (opts->raw_samples && !evsel->no_aux_samples) {
830 		perf_evsel__set_sample_bit(evsel, TIME);
831 		perf_evsel__set_sample_bit(evsel, RAW);
832 		perf_evsel__set_sample_bit(evsel, CPU);
833 	}
834 
835 	if (opts->sample_address)
836 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
837 
838 	if (opts->no_buffering) {
839 		attr->watermark = 0;
840 		attr->wakeup_events = 1;
841 	}
842 	if (opts->branch_stack && !evsel->no_aux_samples) {
843 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
844 		attr->branch_sample_type = opts->branch_stack;
845 	}
846 
847 	if (opts->sample_weight)
848 		perf_evsel__set_sample_bit(evsel, WEIGHT);
849 
850 	attr->task  = track;
851 	attr->mmap  = track;
852 	attr->mmap2 = track && !perf_missing_features.mmap2;
853 	attr->comm  = track;
854 
855 	if (opts->record_switch_events)
856 		attr->context_switch = track;
857 
858 	if (opts->sample_transaction)
859 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
860 
861 	if (opts->running_time) {
862 		evsel->attr.read_format |=
863 			PERF_FORMAT_TOTAL_TIME_ENABLED |
864 			PERF_FORMAT_TOTAL_TIME_RUNNING;
865 	}
866 
867 	/*
868 	 * XXX see the function comment above
869 	 *
870 	 * Disabling only independent events or group leaders,
871 	 * keeping group members enabled.
872 	 */
873 	if (perf_evsel__is_group_leader(evsel))
874 		attr->disabled = 1;
875 
876 	/*
877 	 * Setting enable_on_exec for independent events and
878 	 * group leaders for traced executed by perf.
879 	 */
880 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
881 		!opts->initial_delay)
882 		attr->enable_on_exec = 1;
883 
884 	if (evsel->immediate) {
885 		attr->disabled = 0;
886 		attr->enable_on_exec = 0;
887 	}
888 
889 	clockid = opts->clockid;
890 	if (opts->use_clockid) {
891 		attr->use_clockid = 1;
892 		attr->clockid = opts->clockid;
893 	}
894 
895 	if (evsel->precise_max)
896 		perf_event_attr__set_max_precise_ip(attr);
897 
898 	/*
899 	 * Apply event specific term settings,
900 	 * it overloads any global configuration.
901 	 */
902 	apply_config_terms(evsel, opts);
903 }
904 
905 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
906 {
907 	int cpu, thread;
908 
909 	if (evsel->system_wide)
910 		nthreads = 1;
911 
912 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
913 
914 	if (evsel->fd) {
915 		for (cpu = 0; cpu < ncpus; cpu++) {
916 			for (thread = 0; thread < nthreads; thread++) {
917 				FD(evsel, cpu, thread) = -1;
918 			}
919 		}
920 	}
921 
922 	return evsel->fd != NULL ? 0 : -ENOMEM;
923 }
924 
925 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
926 			  int ioc,  void *arg)
927 {
928 	int cpu, thread;
929 
930 	if (evsel->system_wide)
931 		nthreads = 1;
932 
933 	for (cpu = 0; cpu < ncpus; cpu++) {
934 		for (thread = 0; thread < nthreads; thread++) {
935 			int fd = FD(evsel, cpu, thread),
936 			    err = ioctl(fd, ioc, arg);
937 
938 			if (err)
939 				return err;
940 		}
941 	}
942 
943 	return 0;
944 }
945 
946 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
947 			     const char *filter)
948 {
949 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
950 				     PERF_EVENT_IOC_SET_FILTER,
951 				     (void *)filter);
952 }
953 
954 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
955 {
956 	char *new_filter = strdup(filter);
957 
958 	if (new_filter != NULL) {
959 		free(evsel->filter);
960 		evsel->filter = new_filter;
961 		return 0;
962 	}
963 
964 	return -1;
965 }
966 
967 int perf_evsel__append_filter(struct perf_evsel *evsel,
968 			      const char *op, const char *filter)
969 {
970 	char *new_filter;
971 
972 	if (evsel->filter == NULL)
973 		return perf_evsel__set_filter(evsel, filter);
974 
975 	if (asprintf(&new_filter,"(%s) %s (%s)", evsel->filter, op, filter) > 0) {
976 		free(evsel->filter);
977 		evsel->filter = new_filter;
978 		return 0;
979 	}
980 
981 	return -1;
982 }
983 
984 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
985 {
986 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
987 				     PERF_EVENT_IOC_ENABLE,
988 				     0);
989 }
990 
991 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
992 {
993 	if (ncpus == 0 || nthreads == 0)
994 		return 0;
995 
996 	if (evsel->system_wide)
997 		nthreads = 1;
998 
999 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1000 	if (evsel->sample_id == NULL)
1001 		return -ENOMEM;
1002 
1003 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1004 	if (evsel->id == NULL) {
1005 		xyarray__delete(evsel->sample_id);
1006 		evsel->sample_id = NULL;
1007 		return -ENOMEM;
1008 	}
1009 
1010 	return 0;
1011 }
1012 
1013 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1014 {
1015 	xyarray__delete(evsel->fd);
1016 	evsel->fd = NULL;
1017 }
1018 
1019 static void perf_evsel__free_id(struct perf_evsel *evsel)
1020 {
1021 	xyarray__delete(evsel->sample_id);
1022 	evsel->sample_id = NULL;
1023 	zfree(&evsel->id);
1024 }
1025 
1026 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1027 {
1028 	struct perf_evsel_config_term *term, *h;
1029 
1030 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1031 		list_del(&term->list);
1032 		free(term);
1033 	}
1034 }
1035 
1036 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1037 {
1038 	int cpu, thread;
1039 
1040 	if (evsel->system_wide)
1041 		nthreads = 1;
1042 
1043 	for (cpu = 0; cpu < ncpus; cpu++)
1044 		for (thread = 0; thread < nthreads; ++thread) {
1045 			close(FD(evsel, cpu, thread));
1046 			FD(evsel, cpu, thread) = -1;
1047 		}
1048 }
1049 
1050 void perf_evsel__exit(struct perf_evsel *evsel)
1051 {
1052 	assert(list_empty(&evsel->node));
1053 	assert(evsel->evlist == NULL);
1054 	perf_evsel__free_fd(evsel);
1055 	perf_evsel__free_id(evsel);
1056 	perf_evsel__free_config_terms(evsel);
1057 	close_cgroup(evsel->cgrp);
1058 	cpu_map__put(evsel->cpus);
1059 	cpu_map__put(evsel->own_cpus);
1060 	thread_map__put(evsel->threads);
1061 	zfree(&evsel->group_name);
1062 	zfree(&evsel->name);
1063 	perf_evsel__object.fini(evsel);
1064 }
1065 
1066 void perf_evsel__delete(struct perf_evsel *evsel)
1067 {
1068 	perf_evsel__exit(evsel);
1069 	free(evsel);
1070 }
1071 
1072 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1073 				struct perf_counts_values *count)
1074 {
1075 	struct perf_counts_values tmp;
1076 
1077 	if (!evsel->prev_raw_counts)
1078 		return;
1079 
1080 	if (cpu == -1) {
1081 		tmp = evsel->prev_raw_counts->aggr;
1082 		evsel->prev_raw_counts->aggr = *count;
1083 	} else {
1084 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1085 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1086 	}
1087 
1088 	count->val = count->val - tmp.val;
1089 	count->ena = count->ena - tmp.ena;
1090 	count->run = count->run - tmp.run;
1091 }
1092 
1093 void perf_counts_values__scale(struct perf_counts_values *count,
1094 			       bool scale, s8 *pscaled)
1095 {
1096 	s8 scaled = 0;
1097 
1098 	if (scale) {
1099 		if (count->run == 0) {
1100 			scaled = -1;
1101 			count->val = 0;
1102 		} else if (count->run < count->ena) {
1103 			scaled = 1;
1104 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1105 		}
1106 	} else
1107 		count->ena = count->run = 0;
1108 
1109 	if (pscaled)
1110 		*pscaled = scaled;
1111 }
1112 
1113 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1114 		     struct perf_counts_values *count)
1115 {
1116 	memset(count, 0, sizeof(*count));
1117 
1118 	if (FD(evsel, cpu, thread) < 0)
1119 		return -EINVAL;
1120 
1121 	if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0)
1122 		return -errno;
1123 
1124 	return 0;
1125 }
1126 
1127 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1128 			      int cpu, int thread, bool scale)
1129 {
1130 	struct perf_counts_values count;
1131 	size_t nv = scale ? 3 : 1;
1132 
1133 	if (FD(evsel, cpu, thread) < 0)
1134 		return -EINVAL;
1135 
1136 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1137 		return -ENOMEM;
1138 
1139 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
1140 		return -errno;
1141 
1142 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1143 	perf_counts_values__scale(&count, scale, NULL);
1144 	*perf_counts(evsel->counts, cpu, thread) = count;
1145 	return 0;
1146 }
1147 
1148 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1149 {
1150 	struct perf_evsel *leader = evsel->leader;
1151 	int fd;
1152 
1153 	if (perf_evsel__is_group_leader(evsel))
1154 		return -1;
1155 
1156 	/*
1157 	 * Leader must be already processed/open,
1158 	 * if not it's a bug.
1159 	 */
1160 	BUG_ON(!leader->fd);
1161 
1162 	fd = FD(leader, cpu, thread);
1163 	BUG_ON(fd == -1);
1164 
1165 	return fd;
1166 }
1167 
1168 struct bit_names {
1169 	int bit;
1170 	const char *name;
1171 };
1172 
1173 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1174 {
1175 	bool first_bit = true;
1176 	int i = 0;
1177 
1178 	do {
1179 		if (value & bits[i].bit) {
1180 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1181 			first_bit = false;
1182 		}
1183 	} while (bits[++i].name != NULL);
1184 }
1185 
1186 static void __p_sample_type(char *buf, size_t size, u64 value)
1187 {
1188 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1189 	struct bit_names bits[] = {
1190 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1191 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1192 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1193 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1194 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1195 		{ .name = NULL, }
1196 	};
1197 #undef bit_name
1198 	__p_bits(buf, size, value, bits);
1199 }
1200 
1201 static void __p_read_format(char *buf, size_t size, u64 value)
1202 {
1203 #define bit_name(n) { PERF_FORMAT_##n, #n }
1204 	struct bit_names bits[] = {
1205 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1206 		bit_name(ID), bit_name(GROUP),
1207 		{ .name = NULL, }
1208 	};
1209 #undef bit_name
1210 	__p_bits(buf, size, value, bits);
1211 }
1212 
1213 #define BUF_SIZE		1024
1214 
1215 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1216 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1217 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1218 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1219 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1220 
1221 #define PRINT_ATTRn(_n, _f, _p)				\
1222 do {							\
1223 	if (attr->_f) {					\
1224 		_p(attr->_f);				\
1225 		ret += attr__fprintf(fp, _n, buf, priv);\
1226 	}						\
1227 } while (0)
1228 
1229 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1230 
1231 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1232 			     attr__fprintf_f attr__fprintf, void *priv)
1233 {
1234 	char buf[BUF_SIZE];
1235 	int ret = 0;
1236 
1237 	PRINT_ATTRf(type, p_unsigned);
1238 	PRINT_ATTRf(size, p_unsigned);
1239 	PRINT_ATTRf(config, p_hex);
1240 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1241 	PRINT_ATTRf(sample_type, p_sample_type);
1242 	PRINT_ATTRf(read_format, p_read_format);
1243 
1244 	PRINT_ATTRf(disabled, p_unsigned);
1245 	PRINT_ATTRf(inherit, p_unsigned);
1246 	PRINT_ATTRf(pinned, p_unsigned);
1247 	PRINT_ATTRf(exclusive, p_unsigned);
1248 	PRINT_ATTRf(exclude_user, p_unsigned);
1249 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1250 	PRINT_ATTRf(exclude_hv, p_unsigned);
1251 	PRINT_ATTRf(exclude_idle, p_unsigned);
1252 	PRINT_ATTRf(mmap, p_unsigned);
1253 	PRINT_ATTRf(comm, p_unsigned);
1254 	PRINT_ATTRf(freq, p_unsigned);
1255 	PRINT_ATTRf(inherit_stat, p_unsigned);
1256 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1257 	PRINT_ATTRf(task, p_unsigned);
1258 	PRINT_ATTRf(watermark, p_unsigned);
1259 	PRINT_ATTRf(precise_ip, p_unsigned);
1260 	PRINT_ATTRf(mmap_data, p_unsigned);
1261 	PRINT_ATTRf(sample_id_all, p_unsigned);
1262 	PRINT_ATTRf(exclude_host, p_unsigned);
1263 	PRINT_ATTRf(exclude_guest, p_unsigned);
1264 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1265 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1266 	PRINT_ATTRf(mmap2, p_unsigned);
1267 	PRINT_ATTRf(comm_exec, p_unsigned);
1268 	PRINT_ATTRf(use_clockid, p_unsigned);
1269 	PRINT_ATTRf(context_switch, p_unsigned);
1270 
1271 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1272 	PRINT_ATTRf(bp_type, p_unsigned);
1273 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1274 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1275 	PRINT_ATTRf(branch_sample_type, p_unsigned);
1276 	PRINT_ATTRf(sample_regs_user, p_hex);
1277 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1278 	PRINT_ATTRf(clockid, p_signed);
1279 	PRINT_ATTRf(sample_regs_intr, p_hex);
1280 	PRINT_ATTRf(aux_watermark, p_unsigned);
1281 
1282 	return ret;
1283 }
1284 
1285 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1286 				void *priv __attribute__((unused)))
1287 {
1288 	return fprintf(fp, "  %-32s %s\n", name, val);
1289 }
1290 
1291 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1292 			      struct thread_map *threads)
1293 {
1294 	int cpu, thread, nthreads;
1295 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1296 	int pid = -1, err;
1297 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1298 
1299 	if (evsel->system_wide)
1300 		nthreads = 1;
1301 	else
1302 		nthreads = threads->nr;
1303 
1304 	if (evsel->fd == NULL &&
1305 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1306 		return -ENOMEM;
1307 
1308 	if (evsel->cgrp) {
1309 		flags |= PERF_FLAG_PID_CGROUP;
1310 		pid = evsel->cgrp->fd;
1311 	}
1312 
1313 fallback_missing_features:
1314 	if (perf_missing_features.clockid_wrong)
1315 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1316 	if (perf_missing_features.clockid) {
1317 		evsel->attr.use_clockid = 0;
1318 		evsel->attr.clockid = 0;
1319 	}
1320 	if (perf_missing_features.cloexec)
1321 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1322 	if (perf_missing_features.mmap2)
1323 		evsel->attr.mmap2 = 0;
1324 	if (perf_missing_features.exclude_guest)
1325 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1326 retry_sample_id:
1327 	if (perf_missing_features.sample_id_all)
1328 		evsel->attr.sample_id_all = 0;
1329 
1330 	if (verbose >= 2) {
1331 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1332 		fprintf(stderr, "perf_event_attr:\n");
1333 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1334 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1335 	}
1336 
1337 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1338 
1339 		for (thread = 0; thread < nthreads; thread++) {
1340 			int group_fd;
1341 
1342 			if (!evsel->cgrp && !evsel->system_wide)
1343 				pid = thread_map__pid(threads, thread);
1344 
1345 			group_fd = get_group_fd(evsel, cpu, thread);
1346 retry_open:
1347 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1348 				  pid, cpus->map[cpu], group_fd, flags);
1349 
1350 			FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1351 								     pid,
1352 								     cpus->map[cpu],
1353 								     group_fd, flags);
1354 			if (FD(evsel, cpu, thread) < 0) {
1355 				err = -errno;
1356 				pr_debug2("sys_perf_event_open failed, error %d\n",
1357 					  err);
1358 				goto try_fallback;
1359 			}
1360 
1361 			if (evsel->bpf_fd >= 0) {
1362 				int evt_fd = FD(evsel, cpu, thread);
1363 				int bpf_fd = evsel->bpf_fd;
1364 
1365 				err = ioctl(evt_fd,
1366 					    PERF_EVENT_IOC_SET_BPF,
1367 					    bpf_fd);
1368 				if (err && errno != EEXIST) {
1369 					pr_err("failed to attach bpf fd %d: %s\n",
1370 					       bpf_fd, strerror(errno));
1371 					err = -EINVAL;
1372 					goto out_close;
1373 				}
1374 			}
1375 
1376 			set_rlimit = NO_CHANGE;
1377 
1378 			/*
1379 			 * If we succeeded but had to kill clockid, fail and
1380 			 * have perf_evsel__open_strerror() print us a nice
1381 			 * error.
1382 			 */
1383 			if (perf_missing_features.clockid ||
1384 			    perf_missing_features.clockid_wrong) {
1385 				err = -EINVAL;
1386 				goto out_close;
1387 			}
1388 		}
1389 	}
1390 
1391 	return 0;
1392 
1393 try_fallback:
1394 	/*
1395 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1396 	 * of them try to increase the limits.
1397 	 */
1398 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1399 		struct rlimit l;
1400 		int old_errno = errno;
1401 
1402 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1403 			if (set_rlimit == NO_CHANGE)
1404 				l.rlim_cur = l.rlim_max;
1405 			else {
1406 				l.rlim_cur = l.rlim_max + 1000;
1407 				l.rlim_max = l.rlim_cur;
1408 			}
1409 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1410 				set_rlimit++;
1411 				errno = old_errno;
1412 				goto retry_open;
1413 			}
1414 		}
1415 		errno = old_errno;
1416 	}
1417 
1418 	if (err != -EINVAL || cpu > 0 || thread > 0)
1419 		goto out_close;
1420 
1421 	/*
1422 	 * Must probe features in the order they were added to the
1423 	 * perf_event_attr interface.
1424 	 */
1425 	if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1426 		perf_missing_features.clockid_wrong = true;
1427 		goto fallback_missing_features;
1428 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1429 		perf_missing_features.clockid = true;
1430 		goto fallback_missing_features;
1431 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1432 		perf_missing_features.cloexec = true;
1433 		goto fallback_missing_features;
1434 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1435 		perf_missing_features.mmap2 = true;
1436 		goto fallback_missing_features;
1437 	} else if (!perf_missing_features.exclude_guest &&
1438 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1439 		perf_missing_features.exclude_guest = true;
1440 		goto fallback_missing_features;
1441 	} else if (!perf_missing_features.sample_id_all) {
1442 		perf_missing_features.sample_id_all = true;
1443 		goto retry_sample_id;
1444 	}
1445 
1446 out_close:
1447 	do {
1448 		while (--thread >= 0) {
1449 			close(FD(evsel, cpu, thread));
1450 			FD(evsel, cpu, thread) = -1;
1451 		}
1452 		thread = nthreads;
1453 	} while (--cpu >= 0);
1454 	return err;
1455 }
1456 
1457 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1458 {
1459 	if (evsel->fd == NULL)
1460 		return;
1461 
1462 	perf_evsel__close_fd(evsel, ncpus, nthreads);
1463 	perf_evsel__free_fd(evsel);
1464 }
1465 
1466 static struct {
1467 	struct cpu_map map;
1468 	int cpus[1];
1469 } empty_cpu_map = {
1470 	.map.nr	= 1,
1471 	.cpus	= { -1, },
1472 };
1473 
1474 static struct {
1475 	struct thread_map map;
1476 	int threads[1];
1477 } empty_thread_map = {
1478 	.map.nr	 = 1,
1479 	.threads = { -1, },
1480 };
1481 
1482 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1483 		     struct thread_map *threads)
1484 {
1485 	if (cpus == NULL) {
1486 		/* Work around old compiler warnings about strict aliasing */
1487 		cpus = &empty_cpu_map.map;
1488 	}
1489 
1490 	if (threads == NULL)
1491 		threads = &empty_thread_map.map;
1492 
1493 	return __perf_evsel__open(evsel, cpus, threads);
1494 }
1495 
1496 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1497 			     struct cpu_map *cpus)
1498 {
1499 	return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1500 }
1501 
1502 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1503 				struct thread_map *threads)
1504 {
1505 	return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1506 }
1507 
1508 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1509 				       const union perf_event *event,
1510 				       struct perf_sample *sample)
1511 {
1512 	u64 type = evsel->attr.sample_type;
1513 	const u64 *array = event->sample.array;
1514 	bool swapped = evsel->needs_swap;
1515 	union u64_swap u;
1516 
1517 	array += ((event->header.size -
1518 		   sizeof(event->header)) / sizeof(u64)) - 1;
1519 
1520 	if (type & PERF_SAMPLE_IDENTIFIER) {
1521 		sample->id = *array;
1522 		array--;
1523 	}
1524 
1525 	if (type & PERF_SAMPLE_CPU) {
1526 		u.val64 = *array;
1527 		if (swapped) {
1528 			/* undo swap of u64, then swap on individual u32s */
1529 			u.val64 = bswap_64(u.val64);
1530 			u.val32[0] = bswap_32(u.val32[0]);
1531 		}
1532 
1533 		sample->cpu = u.val32[0];
1534 		array--;
1535 	}
1536 
1537 	if (type & PERF_SAMPLE_STREAM_ID) {
1538 		sample->stream_id = *array;
1539 		array--;
1540 	}
1541 
1542 	if (type & PERF_SAMPLE_ID) {
1543 		sample->id = *array;
1544 		array--;
1545 	}
1546 
1547 	if (type & PERF_SAMPLE_TIME) {
1548 		sample->time = *array;
1549 		array--;
1550 	}
1551 
1552 	if (type & PERF_SAMPLE_TID) {
1553 		u.val64 = *array;
1554 		if (swapped) {
1555 			/* undo swap of u64, then swap on individual u32s */
1556 			u.val64 = bswap_64(u.val64);
1557 			u.val32[0] = bswap_32(u.val32[0]);
1558 			u.val32[1] = bswap_32(u.val32[1]);
1559 		}
1560 
1561 		sample->pid = u.val32[0];
1562 		sample->tid = u.val32[1];
1563 		array--;
1564 	}
1565 
1566 	return 0;
1567 }
1568 
1569 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1570 			    u64 size)
1571 {
1572 	return size > max_size || offset + size > endp;
1573 }
1574 
1575 #define OVERFLOW_CHECK(offset, size, max_size)				\
1576 	do {								\
1577 		if (overflow(endp, (max_size), (offset), (size)))	\
1578 			return -EFAULT;					\
1579 	} while (0)
1580 
1581 #define OVERFLOW_CHECK_u64(offset) \
1582 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1583 
1584 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1585 			     struct perf_sample *data)
1586 {
1587 	u64 type = evsel->attr.sample_type;
1588 	bool swapped = evsel->needs_swap;
1589 	const u64 *array;
1590 	u16 max_size = event->header.size;
1591 	const void *endp = (void *)event + max_size;
1592 	u64 sz;
1593 
1594 	/*
1595 	 * used for cross-endian analysis. See git commit 65014ab3
1596 	 * for why this goofiness is needed.
1597 	 */
1598 	union u64_swap u;
1599 
1600 	memset(data, 0, sizeof(*data));
1601 	data->cpu = data->pid = data->tid = -1;
1602 	data->stream_id = data->id = data->time = -1ULL;
1603 	data->period = evsel->attr.sample_period;
1604 	data->weight = 0;
1605 
1606 	if (event->header.type != PERF_RECORD_SAMPLE) {
1607 		if (!evsel->attr.sample_id_all)
1608 			return 0;
1609 		return perf_evsel__parse_id_sample(evsel, event, data);
1610 	}
1611 
1612 	array = event->sample.array;
1613 
1614 	/*
1615 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1616 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1617 	 * check the format does not go past the end of the event.
1618 	 */
1619 	if (evsel->sample_size + sizeof(event->header) > event->header.size)
1620 		return -EFAULT;
1621 
1622 	data->id = -1ULL;
1623 	if (type & PERF_SAMPLE_IDENTIFIER) {
1624 		data->id = *array;
1625 		array++;
1626 	}
1627 
1628 	if (type & PERF_SAMPLE_IP) {
1629 		data->ip = *array;
1630 		array++;
1631 	}
1632 
1633 	if (type & PERF_SAMPLE_TID) {
1634 		u.val64 = *array;
1635 		if (swapped) {
1636 			/* undo swap of u64, then swap on individual u32s */
1637 			u.val64 = bswap_64(u.val64);
1638 			u.val32[0] = bswap_32(u.val32[0]);
1639 			u.val32[1] = bswap_32(u.val32[1]);
1640 		}
1641 
1642 		data->pid = u.val32[0];
1643 		data->tid = u.val32[1];
1644 		array++;
1645 	}
1646 
1647 	if (type & PERF_SAMPLE_TIME) {
1648 		data->time = *array;
1649 		array++;
1650 	}
1651 
1652 	data->addr = 0;
1653 	if (type & PERF_SAMPLE_ADDR) {
1654 		data->addr = *array;
1655 		array++;
1656 	}
1657 
1658 	if (type & PERF_SAMPLE_ID) {
1659 		data->id = *array;
1660 		array++;
1661 	}
1662 
1663 	if (type & PERF_SAMPLE_STREAM_ID) {
1664 		data->stream_id = *array;
1665 		array++;
1666 	}
1667 
1668 	if (type & PERF_SAMPLE_CPU) {
1669 
1670 		u.val64 = *array;
1671 		if (swapped) {
1672 			/* undo swap of u64, then swap on individual u32s */
1673 			u.val64 = bswap_64(u.val64);
1674 			u.val32[0] = bswap_32(u.val32[0]);
1675 		}
1676 
1677 		data->cpu = u.val32[0];
1678 		array++;
1679 	}
1680 
1681 	if (type & PERF_SAMPLE_PERIOD) {
1682 		data->period = *array;
1683 		array++;
1684 	}
1685 
1686 	if (type & PERF_SAMPLE_READ) {
1687 		u64 read_format = evsel->attr.read_format;
1688 
1689 		OVERFLOW_CHECK_u64(array);
1690 		if (read_format & PERF_FORMAT_GROUP)
1691 			data->read.group.nr = *array;
1692 		else
1693 			data->read.one.value = *array;
1694 
1695 		array++;
1696 
1697 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1698 			OVERFLOW_CHECK_u64(array);
1699 			data->read.time_enabled = *array;
1700 			array++;
1701 		}
1702 
1703 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1704 			OVERFLOW_CHECK_u64(array);
1705 			data->read.time_running = *array;
1706 			array++;
1707 		}
1708 
1709 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1710 		if (read_format & PERF_FORMAT_GROUP) {
1711 			const u64 max_group_nr = UINT64_MAX /
1712 					sizeof(struct sample_read_value);
1713 
1714 			if (data->read.group.nr > max_group_nr)
1715 				return -EFAULT;
1716 			sz = data->read.group.nr *
1717 			     sizeof(struct sample_read_value);
1718 			OVERFLOW_CHECK(array, sz, max_size);
1719 			data->read.group.values =
1720 					(struct sample_read_value *)array;
1721 			array = (void *)array + sz;
1722 		} else {
1723 			OVERFLOW_CHECK_u64(array);
1724 			data->read.one.id = *array;
1725 			array++;
1726 		}
1727 	}
1728 
1729 	if (type & PERF_SAMPLE_CALLCHAIN) {
1730 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1731 
1732 		OVERFLOW_CHECK_u64(array);
1733 		data->callchain = (struct ip_callchain *)array++;
1734 		if (data->callchain->nr > max_callchain_nr)
1735 			return -EFAULT;
1736 		sz = data->callchain->nr * sizeof(u64);
1737 		OVERFLOW_CHECK(array, sz, max_size);
1738 		array = (void *)array + sz;
1739 	}
1740 
1741 	if (type & PERF_SAMPLE_RAW) {
1742 		OVERFLOW_CHECK_u64(array);
1743 		u.val64 = *array;
1744 		if (WARN_ONCE(swapped,
1745 			      "Endianness of raw data not corrected!\n")) {
1746 			/* undo swap of u64, then swap on individual u32s */
1747 			u.val64 = bswap_64(u.val64);
1748 			u.val32[0] = bswap_32(u.val32[0]);
1749 			u.val32[1] = bswap_32(u.val32[1]);
1750 		}
1751 		data->raw_size = u.val32[0];
1752 		array = (void *)array + sizeof(u32);
1753 
1754 		OVERFLOW_CHECK(array, data->raw_size, max_size);
1755 		data->raw_data = (void *)array;
1756 		array = (void *)array + data->raw_size;
1757 	}
1758 
1759 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1760 		const u64 max_branch_nr = UINT64_MAX /
1761 					  sizeof(struct branch_entry);
1762 
1763 		OVERFLOW_CHECK_u64(array);
1764 		data->branch_stack = (struct branch_stack *)array++;
1765 
1766 		if (data->branch_stack->nr > max_branch_nr)
1767 			return -EFAULT;
1768 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
1769 		OVERFLOW_CHECK(array, sz, max_size);
1770 		array = (void *)array + sz;
1771 	}
1772 
1773 	if (type & PERF_SAMPLE_REGS_USER) {
1774 		OVERFLOW_CHECK_u64(array);
1775 		data->user_regs.abi = *array;
1776 		array++;
1777 
1778 		if (data->user_regs.abi) {
1779 			u64 mask = evsel->attr.sample_regs_user;
1780 
1781 			sz = hweight_long(mask) * sizeof(u64);
1782 			OVERFLOW_CHECK(array, sz, max_size);
1783 			data->user_regs.mask = mask;
1784 			data->user_regs.regs = (u64 *)array;
1785 			array = (void *)array + sz;
1786 		}
1787 	}
1788 
1789 	if (type & PERF_SAMPLE_STACK_USER) {
1790 		OVERFLOW_CHECK_u64(array);
1791 		sz = *array++;
1792 
1793 		data->user_stack.offset = ((char *)(array - 1)
1794 					  - (char *) event);
1795 
1796 		if (!sz) {
1797 			data->user_stack.size = 0;
1798 		} else {
1799 			OVERFLOW_CHECK(array, sz, max_size);
1800 			data->user_stack.data = (char *)array;
1801 			array = (void *)array + sz;
1802 			OVERFLOW_CHECK_u64(array);
1803 			data->user_stack.size = *array++;
1804 			if (WARN_ONCE(data->user_stack.size > sz,
1805 				      "user stack dump failure\n"))
1806 				return -EFAULT;
1807 		}
1808 	}
1809 
1810 	data->weight = 0;
1811 	if (type & PERF_SAMPLE_WEIGHT) {
1812 		OVERFLOW_CHECK_u64(array);
1813 		data->weight = *array;
1814 		array++;
1815 	}
1816 
1817 	data->data_src = PERF_MEM_DATA_SRC_NONE;
1818 	if (type & PERF_SAMPLE_DATA_SRC) {
1819 		OVERFLOW_CHECK_u64(array);
1820 		data->data_src = *array;
1821 		array++;
1822 	}
1823 
1824 	data->transaction = 0;
1825 	if (type & PERF_SAMPLE_TRANSACTION) {
1826 		OVERFLOW_CHECK_u64(array);
1827 		data->transaction = *array;
1828 		array++;
1829 	}
1830 
1831 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1832 	if (type & PERF_SAMPLE_REGS_INTR) {
1833 		OVERFLOW_CHECK_u64(array);
1834 		data->intr_regs.abi = *array;
1835 		array++;
1836 
1837 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1838 			u64 mask = evsel->attr.sample_regs_intr;
1839 
1840 			sz = hweight_long(mask) * sizeof(u64);
1841 			OVERFLOW_CHECK(array, sz, max_size);
1842 			data->intr_regs.mask = mask;
1843 			data->intr_regs.regs = (u64 *)array;
1844 			array = (void *)array + sz;
1845 		}
1846 	}
1847 
1848 	return 0;
1849 }
1850 
1851 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1852 				     u64 read_format)
1853 {
1854 	size_t sz, result = sizeof(struct sample_event);
1855 
1856 	if (type & PERF_SAMPLE_IDENTIFIER)
1857 		result += sizeof(u64);
1858 
1859 	if (type & PERF_SAMPLE_IP)
1860 		result += sizeof(u64);
1861 
1862 	if (type & PERF_SAMPLE_TID)
1863 		result += sizeof(u64);
1864 
1865 	if (type & PERF_SAMPLE_TIME)
1866 		result += sizeof(u64);
1867 
1868 	if (type & PERF_SAMPLE_ADDR)
1869 		result += sizeof(u64);
1870 
1871 	if (type & PERF_SAMPLE_ID)
1872 		result += sizeof(u64);
1873 
1874 	if (type & PERF_SAMPLE_STREAM_ID)
1875 		result += sizeof(u64);
1876 
1877 	if (type & PERF_SAMPLE_CPU)
1878 		result += sizeof(u64);
1879 
1880 	if (type & PERF_SAMPLE_PERIOD)
1881 		result += sizeof(u64);
1882 
1883 	if (type & PERF_SAMPLE_READ) {
1884 		result += sizeof(u64);
1885 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1886 			result += sizeof(u64);
1887 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1888 			result += sizeof(u64);
1889 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1890 		if (read_format & PERF_FORMAT_GROUP) {
1891 			sz = sample->read.group.nr *
1892 			     sizeof(struct sample_read_value);
1893 			result += sz;
1894 		} else {
1895 			result += sizeof(u64);
1896 		}
1897 	}
1898 
1899 	if (type & PERF_SAMPLE_CALLCHAIN) {
1900 		sz = (sample->callchain->nr + 1) * sizeof(u64);
1901 		result += sz;
1902 	}
1903 
1904 	if (type & PERF_SAMPLE_RAW) {
1905 		result += sizeof(u32);
1906 		result += sample->raw_size;
1907 	}
1908 
1909 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1910 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1911 		sz += sizeof(u64);
1912 		result += sz;
1913 	}
1914 
1915 	if (type & PERF_SAMPLE_REGS_USER) {
1916 		if (sample->user_regs.abi) {
1917 			result += sizeof(u64);
1918 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1919 			result += sz;
1920 		} else {
1921 			result += sizeof(u64);
1922 		}
1923 	}
1924 
1925 	if (type & PERF_SAMPLE_STACK_USER) {
1926 		sz = sample->user_stack.size;
1927 		result += sizeof(u64);
1928 		if (sz) {
1929 			result += sz;
1930 			result += sizeof(u64);
1931 		}
1932 	}
1933 
1934 	if (type & PERF_SAMPLE_WEIGHT)
1935 		result += sizeof(u64);
1936 
1937 	if (type & PERF_SAMPLE_DATA_SRC)
1938 		result += sizeof(u64);
1939 
1940 	if (type & PERF_SAMPLE_TRANSACTION)
1941 		result += sizeof(u64);
1942 
1943 	if (type & PERF_SAMPLE_REGS_INTR) {
1944 		if (sample->intr_regs.abi) {
1945 			result += sizeof(u64);
1946 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1947 			result += sz;
1948 		} else {
1949 			result += sizeof(u64);
1950 		}
1951 	}
1952 
1953 	return result;
1954 }
1955 
1956 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1957 				  u64 read_format,
1958 				  const struct perf_sample *sample,
1959 				  bool swapped)
1960 {
1961 	u64 *array;
1962 	size_t sz;
1963 	/*
1964 	 * used for cross-endian analysis. See git commit 65014ab3
1965 	 * for why this goofiness is needed.
1966 	 */
1967 	union u64_swap u;
1968 
1969 	array = event->sample.array;
1970 
1971 	if (type & PERF_SAMPLE_IDENTIFIER) {
1972 		*array = sample->id;
1973 		array++;
1974 	}
1975 
1976 	if (type & PERF_SAMPLE_IP) {
1977 		*array = sample->ip;
1978 		array++;
1979 	}
1980 
1981 	if (type & PERF_SAMPLE_TID) {
1982 		u.val32[0] = sample->pid;
1983 		u.val32[1] = sample->tid;
1984 		if (swapped) {
1985 			/*
1986 			 * Inverse of what is done in perf_evsel__parse_sample
1987 			 */
1988 			u.val32[0] = bswap_32(u.val32[0]);
1989 			u.val32[1] = bswap_32(u.val32[1]);
1990 			u.val64 = bswap_64(u.val64);
1991 		}
1992 
1993 		*array = u.val64;
1994 		array++;
1995 	}
1996 
1997 	if (type & PERF_SAMPLE_TIME) {
1998 		*array = sample->time;
1999 		array++;
2000 	}
2001 
2002 	if (type & PERF_SAMPLE_ADDR) {
2003 		*array = sample->addr;
2004 		array++;
2005 	}
2006 
2007 	if (type & PERF_SAMPLE_ID) {
2008 		*array = sample->id;
2009 		array++;
2010 	}
2011 
2012 	if (type & PERF_SAMPLE_STREAM_ID) {
2013 		*array = sample->stream_id;
2014 		array++;
2015 	}
2016 
2017 	if (type & PERF_SAMPLE_CPU) {
2018 		u.val32[0] = sample->cpu;
2019 		if (swapped) {
2020 			/*
2021 			 * Inverse of what is done in perf_evsel__parse_sample
2022 			 */
2023 			u.val32[0] = bswap_32(u.val32[0]);
2024 			u.val64 = bswap_64(u.val64);
2025 		}
2026 		*array = u.val64;
2027 		array++;
2028 	}
2029 
2030 	if (type & PERF_SAMPLE_PERIOD) {
2031 		*array = sample->period;
2032 		array++;
2033 	}
2034 
2035 	if (type & PERF_SAMPLE_READ) {
2036 		if (read_format & PERF_FORMAT_GROUP)
2037 			*array = sample->read.group.nr;
2038 		else
2039 			*array = sample->read.one.value;
2040 		array++;
2041 
2042 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2043 			*array = sample->read.time_enabled;
2044 			array++;
2045 		}
2046 
2047 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2048 			*array = sample->read.time_running;
2049 			array++;
2050 		}
2051 
2052 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2053 		if (read_format & PERF_FORMAT_GROUP) {
2054 			sz = sample->read.group.nr *
2055 			     sizeof(struct sample_read_value);
2056 			memcpy(array, sample->read.group.values, sz);
2057 			array = (void *)array + sz;
2058 		} else {
2059 			*array = sample->read.one.id;
2060 			array++;
2061 		}
2062 	}
2063 
2064 	if (type & PERF_SAMPLE_CALLCHAIN) {
2065 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2066 		memcpy(array, sample->callchain, sz);
2067 		array = (void *)array + sz;
2068 	}
2069 
2070 	if (type & PERF_SAMPLE_RAW) {
2071 		u.val32[0] = sample->raw_size;
2072 		if (WARN_ONCE(swapped,
2073 			      "Endianness of raw data not corrected!\n")) {
2074 			/*
2075 			 * Inverse of what is done in perf_evsel__parse_sample
2076 			 */
2077 			u.val32[0] = bswap_32(u.val32[0]);
2078 			u.val32[1] = bswap_32(u.val32[1]);
2079 			u.val64 = bswap_64(u.val64);
2080 		}
2081 		*array = u.val64;
2082 		array = (void *)array + sizeof(u32);
2083 
2084 		memcpy(array, sample->raw_data, sample->raw_size);
2085 		array = (void *)array + sample->raw_size;
2086 	}
2087 
2088 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2089 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2090 		sz += sizeof(u64);
2091 		memcpy(array, sample->branch_stack, sz);
2092 		array = (void *)array + sz;
2093 	}
2094 
2095 	if (type & PERF_SAMPLE_REGS_USER) {
2096 		if (sample->user_regs.abi) {
2097 			*array++ = sample->user_regs.abi;
2098 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2099 			memcpy(array, sample->user_regs.regs, sz);
2100 			array = (void *)array + sz;
2101 		} else {
2102 			*array++ = 0;
2103 		}
2104 	}
2105 
2106 	if (type & PERF_SAMPLE_STACK_USER) {
2107 		sz = sample->user_stack.size;
2108 		*array++ = sz;
2109 		if (sz) {
2110 			memcpy(array, sample->user_stack.data, sz);
2111 			array = (void *)array + sz;
2112 			*array++ = sz;
2113 		}
2114 	}
2115 
2116 	if (type & PERF_SAMPLE_WEIGHT) {
2117 		*array = sample->weight;
2118 		array++;
2119 	}
2120 
2121 	if (type & PERF_SAMPLE_DATA_SRC) {
2122 		*array = sample->data_src;
2123 		array++;
2124 	}
2125 
2126 	if (type & PERF_SAMPLE_TRANSACTION) {
2127 		*array = sample->transaction;
2128 		array++;
2129 	}
2130 
2131 	if (type & PERF_SAMPLE_REGS_INTR) {
2132 		if (sample->intr_regs.abi) {
2133 			*array++ = sample->intr_regs.abi;
2134 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2135 			memcpy(array, sample->intr_regs.regs, sz);
2136 			array = (void *)array + sz;
2137 		} else {
2138 			*array++ = 0;
2139 		}
2140 	}
2141 
2142 	return 0;
2143 }
2144 
2145 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2146 {
2147 	return pevent_find_field(evsel->tp_format, name);
2148 }
2149 
2150 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2151 			 const char *name)
2152 {
2153 	struct format_field *field = perf_evsel__field(evsel, name);
2154 	int offset;
2155 
2156 	if (!field)
2157 		return NULL;
2158 
2159 	offset = field->offset;
2160 
2161 	if (field->flags & FIELD_IS_DYNAMIC) {
2162 		offset = *(int *)(sample->raw_data + field->offset);
2163 		offset &= 0xffff;
2164 	}
2165 
2166 	return sample->raw_data + offset;
2167 }
2168 
2169 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2170 		       const char *name)
2171 {
2172 	struct format_field *field = perf_evsel__field(evsel, name);
2173 	void *ptr;
2174 	u64 value;
2175 
2176 	if (!field)
2177 		return 0;
2178 
2179 	ptr = sample->raw_data + field->offset;
2180 
2181 	switch (field->size) {
2182 	case 1:
2183 		return *(u8 *)ptr;
2184 	case 2:
2185 		value = *(u16 *)ptr;
2186 		break;
2187 	case 4:
2188 		value = *(u32 *)ptr;
2189 		break;
2190 	case 8:
2191 		memcpy(&value, ptr, sizeof(u64));
2192 		break;
2193 	default:
2194 		return 0;
2195 	}
2196 
2197 	if (!evsel->needs_swap)
2198 		return value;
2199 
2200 	switch (field->size) {
2201 	case 2:
2202 		return bswap_16(value);
2203 	case 4:
2204 		return bswap_32(value);
2205 	case 8:
2206 		return bswap_64(value);
2207 	default:
2208 		return 0;
2209 	}
2210 
2211 	return 0;
2212 }
2213 
2214 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
2215 {
2216 	va_list args;
2217 	int ret = 0;
2218 
2219 	if (!*first) {
2220 		ret += fprintf(fp, ",");
2221 	} else {
2222 		ret += fprintf(fp, ":");
2223 		*first = false;
2224 	}
2225 
2226 	va_start(args, fmt);
2227 	ret += vfprintf(fp, fmt, args);
2228 	va_end(args);
2229 	return ret;
2230 }
2231 
2232 static int __print_attr__fprintf(FILE *fp, const char *name, const char *val, void *priv)
2233 {
2234 	return comma_fprintf(fp, (bool *)priv, " %s: %s", name, val);
2235 }
2236 
2237 int perf_evsel__fprintf(struct perf_evsel *evsel,
2238 			struct perf_attr_details *details, FILE *fp)
2239 {
2240 	bool first = true;
2241 	int printed = 0;
2242 
2243 	if (details->event_group) {
2244 		struct perf_evsel *pos;
2245 
2246 		if (!perf_evsel__is_group_leader(evsel))
2247 			return 0;
2248 
2249 		if (evsel->nr_members > 1)
2250 			printed += fprintf(fp, "%s{", evsel->group_name ?: "");
2251 
2252 		printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2253 		for_each_group_member(pos, evsel)
2254 			printed += fprintf(fp, ",%s", perf_evsel__name(pos));
2255 
2256 		if (evsel->nr_members > 1)
2257 			printed += fprintf(fp, "}");
2258 		goto out;
2259 	}
2260 
2261 	printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2262 
2263 	if (details->verbose) {
2264 		printed += perf_event_attr__fprintf(fp, &evsel->attr,
2265 						    __print_attr__fprintf, &first);
2266 	} else if (details->freq) {
2267 		const char *term = "sample_freq";
2268 
2269 		if (!evsel->attr.freq)
2270 			term = "sample_period";
2271 
2272 		printed += comma_fprintf(fp, &first, " %s=%" PRIu64,
2273 					 term, (u64)evsel->attr.sample_freq);
2274 	}
2275 out:
2276 	fputc('\n', fp);
2277 	return ++printed;
2278 }
2279 
2280 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2281 			  char *msg, size_t msgsize)
2282 {
2283 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2284 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2285 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2286 		/*
2287 		 * If it's cycles then fall back to hrtimer based
2288 		 * cpu-clock-tick sw counter, which is always available even if
2289 		 * no PMU support.
2290 		 *
2291 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2292 		 * b0a873e).
2293 		 */
2294 		scnprintf(msg, msgsize, "%s",
2295 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2296 
2297 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2298 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2299 
2300 		zfree(&evsel->name);
2301 		return true;
2302 	}
2303 
2304 	return false;
2305 }
2306 
2307 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2308 			      int err, char *msg, size_t size)
2309 {
2310 	char sbuf[STRERR_BUFSIZE];
2311 
2312 	switch (err) {
2313 	case EPERM:
2314 	case EACCES:
2315 		return scnprintf(msg, size,
2316 		 "You may not have permission to collect %sstats.\n"
2317 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
2318 		 " -1 - Not paranoid at all\n"
2319 		 "  0 - Disallow raw tracepoint access for unpriv\n"
2320 		 "  1 - Disallow cpu events for unpriv\n"
2321 		 "  2 - Disallow kernel profiling for unpriv",
2322 				 target->system_wide ? "system-wide " : "");
2323 	case ENOENT:
2324 		return scnprintf(msg, size, "The %s event is not supported.",
2325 				 perf_evsel__name(evsel));
2326 	case EMFILE:
2327 		return scnprintf(msg, size, "%s",
2328 			 "Too many events are opened.\n"
2329 			 "Probably the maximum number of open file descriptors has been reached.\n"
2330 			 "Hint: Try again after reducing the number of events.\n"
2331 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2332 	case ENODEV:
2333 		if (target->cpu_list)
2334 			return scnprintf(msg, size, "%s",
2335 	 "No such device - did you specify an out-of-range profile CPU?\n");
2336 		break;
2337 	case EOPNOTSUPP:
2338 		if (evsel->attr.precise_ip)
2339 			return scnprintf(msg, size, "%s",
2340 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2341 #if defined(__i386__) || defined(__x86_64__)
2342 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2343 			return scnprintf(msg, size, "%s",
2344 	"No hardware sampling interrupt available.\n"
2345 	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2346 #endif
2347 		break;
2348 	case EBUSY:
2349 		if (find_process("oprofiled"))
2350 			return scnprintf(msg, size,
2351 	"The PMU counters are busy/taken by another profiler.\n"
2352 	"We found oprofile daemon running, please stop it and try again.");
2353 		break;
2354 	case EINVAL:
2355 		if (perf_missing_features.clockid)
2356 			return scnprintf(msg, size, "clockid feature not supported.");
2357 		if (perf_missing_features.clockid_wrong)
2358 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2359 		break;
2360 	default:
2361 		break;
2362 	}
2363 
2364 	return scnprintf(msg, size,
2365 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2366 	"/bin/dmesg may provide additional information.\n"
2367 	"No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2368 			 err, strerror_r(err, sbuf, sizeof(sbuf)),
2369 			 perf_evsel__name(evsel));
2370 }
2371