1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <errno.h> 12 #include <inttypes.h> 13 #include <linux/bitops.h> 14 #include <api/fs/fs.h> 15 #include <api/fs/tracing_path.h> 16 #include <traceevent/event-parse.h> 17 #include <linux/hw_breakpoint.h> 18 #include <linux/perf_event.h> 19 #include <linux/compiler.h> 20 #include <linux/err.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include "asm/bug.h" 26 #include "callchain.h" 27 #include "cgroup.h" 28 #include "event.h" 29 #include "evsel.h" 30 #include "evlist.h" 31 #include "util.h" 32 #include "cpumap.h" 33 #include "thread_map.h" 34 #include "target.h" 35 #include "perf_regs.h" 36 #include "debug.h" 37 #include "trace-event.h" 38 #include "stat.h" 39 #include "memswap.h" 40 #include "util/parse-branch-options.h" 41 42 #include "sane_ctype.h" 43 44 struct perf_missing_features perf_missing_features; 45 46 static clockid_t clockid; 47 48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 49 { 50 return 0; 51 } 52 53 void __weak test_attr__ready(void) { } 54 55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 56 { 57 } 58 59 static struct { 60 size_t size; 61 int (*init)(struct perf_evsel *evsel); 62 void (*fini)(struct perf_evsel *evsel); 63 } perf_evsel__object = { 64 .size = sizeof(struct perf_evsel), 65 .init = perf_evsel__no_extra_init, 66 .fini = perf_evsel__no_extra_fini, 67 }; 68 69 int perf_evsel__object_config(size_t object_size, 70 int (*init)(struct perf_evsel *evsel), 71 void (*fini)(struct perf_evsel *evsel)) 72 { 73 74 if (object_size == 0) 75 goto set_methods; 76 77 if (perf_evsel__object.size > object_size) 78 return -EINVAL; 79 80 perf_evsel__object.size = object_size; 81 82 set_methods: 83 if (init != NULL) 84 perf_evsel__object.init = init; 85 86 if (fini != NULL) 87 perf_evsel__object.fini = fini; 88 89 return 0; 90 } 91 92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 93 94 int __perf_evsel__sample_size(u64 sample_type) 95 { 96 u64 mask = sample_type & PERF_SAMPLE_MASK; 97 int size = 0; 98 int i; 99 100 for (i = 0; i < 64; i++) { 101 if (mask & (1ULL << i)) 102 size++; 103 } 104 105 size *= sizeof(u64); 106 107 return size; 108 } 109 110 /** 111 * __perf_evsel__calc_id_pos - calculate id_pos. 112 * @sample_type: sample type 113 * 114 * This function returns the position of the event id (PERF_SAMPLE_ID or 115 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 116 * sample_event. 117 */ 118 static int __perf_evsel__calc_id_pos(u64 sample_type) 119 { 120 int idx = 0; 121 122 if (sample_type & PERF_SAMPLE_IDENTIFIER) 123 return 0; 124 125 if (!(sample_type & PERF_SAMPLE_ID)) 126 return -1; 127 128 if (sample_type & PERF_SAMPLE_IP) 129 idx += 1; 130 131 if (sample_type & PERF_SAMPLE_TID) 132 idx += 1; 133 134 if (sample_type & PERF_SAMPLE_TIME) 135 idx += 1; 136 137 if (sample_type & PERF_SAMPLE_ADDR) 138 idx += 1; 139 140 return idx; 141 } 142 143 /** 144 * __perf_evsel__calc_is_pos - calculate is_pos. 145 * @sample_type: sample type 146 * 147 * This function returns the position (counting backwards) of the event id 148 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 149 * sample_id_all is used there is an id sample appended to non-sample events. 150 */ 151 static int __perf_evsel__calc_is_pos(u64 sample_type) 152 { 153 int idx = 1; 154 155 if (sample_type & PERF_SAMPLE_IDENTIFIER) 156 return 1; 157 158 if (!(sample_type & PERF_SAMPLE_ID)) 159 return -1; 160 161 if (sample_type & PERF_SAMPLE_CPU) 162 idx += 1; 163 164 if (sample_type & PERF_SAMPLE_STREAM_ID) 165 idx += 1; 166 167 return idx; 168 } 169 170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 171 { 172 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 173 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 174 } 175 176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 177 enum perf_event_sample_format bit) 178 { 179 if (!(evsel->attr.sample_type & bit)) { 180 evsel->attr.sample_type |= bit; 181 evsel->sample_size += sizeof(u64); 182 perf_evsel__calc_id_pos(evsel); 183 } 184 } 185 186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 187 enum perf_event_sample_format bit) 188 { 189 if (evsel->attr.sample_type & bit) { 190 evsel->attr.sample_type &= ~bit; 191 evsel->sample_size -= sizeof(u64); 192 perf_evsel__calc_id_pos(evsel); 193 } 194 } 195 196 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 197 bool can_sample_identifier) 198 { 199 if (can_sample_identifier) { 200 perf_evsel__reset_sample_bit(evsel, ID); 201 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 202 } else { 203 perf_evsel__set_sample_bit(evsel, ID); 204 } 205 evsel->attr.read_format |= PERF_FORMAT_ID; 206 } 207 208 /** 209 * perf_evsel__is_function_event - Return whether given evsel is a function 210 * trace event 211 * 212 * @evsel - evsel selector to be tested 213 * 214 * Return %true if event is function trace event 215 */ 216 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 217 { 218 #define FUNCTION_EVENT "ftrace:function" 219 220 return evsel->name && 221 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 222 223 #undef FUNCTION_EVENT 224 } 225 226 void perf_evsel__init(struct perf_evsel *evsel, 227 struct perf_event_attr *attr, int idx) 228 { 229 evsel->idx = idx; 230 evsel->tracking = !idx; 231 evsel->attr = *attr; 232 evsel->leader = evsel; 233 evsel->unit = ""; 234 evsel->scale = 1.0; 235 evsel->evlist = NULL; 236 evsel->bpf_fd = -1; 237 INIT_LIST_HEAD(&evsel->node); 238 INIT_LIST_HEAD(&evsel->config_terms); 239 perf_evsel__object.init(evsel); 240 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 241 perf_evsel__calc_id_pos(evsel); 242 evsel->cmdline_group_boundary = false; 243 evsel->metric_expr = NULL; 244 evsel->metric_name = NULL; 245 evsel->metric_events = NULL; 246 evsel->collect_stat = false; 247 evsel->pmu_name = NULL; 248 } 249 250 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 251 { 252 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 253 254 if (evsel != NULL) 255 perf_evsel__init(evsel, attr, idx); 256 257 if (perf_evsel__is_bpf_output(evsel)) { 258 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 259 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 260 evsel->attr.sample_period = 1; 261 } 262 263 return evsel; 264 } 265 266 static bool perf_event_can_profile_kernel(void) 267 { 268 return geteuid() == 0 || perf_event_paranoid() == -1; 269 } 270 271 struct perf_evsel *perf_evsel__new_cycles(bool precise) 272 { 273 struct perf_event_attr attr = { 274 .type = PERF_TYPE_HARDWARE, 275 .config = PERF_COUNT_HW_CPU_CYCLES, 276 .exclude_kernel = !perf_event_can_profile_kernel(), 277 }; 278 struct perf_evsel *evsel; 279 280 event_attr_init(&attr); 281 282 if (!precise) 283 goto new_event; 284 /* 285 * Unnamed union member, not supported as struct member named 286 * initializer in older compilers such as gcc 4.4.7 287 * 288 * Just for probing the precise_ip: 289 */ 290 attr.sample_period = 1; 291 292 perf_event_attr__set_max_precise_ip(&attr); 293 /* 294 * Now let the usual logic to set up the perf_event_attr defaults 295 * to kick in when we return and before perf_evsel__open() is called. 296 */ 297 attr.sample_period = 0; 298 new_event: 299 evsel = perf_evsel__new(&attr); 300 if (evsel == NULL) 301 goto out; 302 303 /* use asprintf() because free(evsel) assumes name is allocated */ 304 if (asprintf(&evsel->name, "cycles%s%s%.*s", 305 (attr.precise_ip || attr.exclude_kernel) ? ":" : "", 306 attr.exclude_kernel ? "u" : "", 307 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) 308 goto error_free; 309 out: 310 return evsel; 311 error_free: 312 perf_evsel__delete(evsel); 313 evsel = NULL; 314 goto out; 315 } 316 317 /* 318 * Returns pointer with encoded error via <linux/err.h> interface. 319 */ 320 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 321 { 322 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 323 int err = -ENOMEM; 324 325 if (evsel == NULL) { 326 goto out_err; 327 } else { 328 struct perf_event_attr attr = { 329 .type = PERF_TYPE_TRACEPOINT, 330 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 331 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 332 }; 333 334 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 335 goto out_free; 336 337 evsel->tp_format = trace_event__tp_format(sys, name); 338 if (IS_ERR(evsel->tp_format)) { 339 err = PTR_ERR(evsel->tp_format); 340 goto out_free; 341 } 342 343 event_attr_init(&attr); 344 attr.config = evsel->tp_format->id; 345 attr.sample_period = 1; 346 perf_evsel__init(evsel, &attr, idx); 347 } 348 349 return evsel; 350 351 out_free: 352 zfree(&evsel->name); 353 free(evsel); 354 out_err: 355 return ERR_PTR(err); 356 } 357 358 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 359 "cycles", 360 "instructions", 361 "cache-references", 362 "cache-misses", 363 "branches", 364 "branch-misses", 365 "bus-cycles", 366 "stalled-cycles-frontend", 367 "stalled-cycles-backend", 368 "ref-cycles", 369 }; 370 371 static const char *__perf_evsel__hw_name(u64 config) 372 { 373 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 374 return perf_evsel__hw_names[config]; 375 376 return "unknown-hardware"; 377 } 378 379 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 380 { 381 int colon = 0, r = 0; 382 struct perf_event_attr *attr = &evsel->attr; 383 bool exclude_guest_default = false; 384 385 #define MOD_PRINT(context, mod) do { \ 386 if (!attr->exclude_##context) { \ 387 if (!colon) colon = ++r; \ 388 r += scnprintf(bf + r, size - r, "%c", mod); \ 389 } } while(0) 390 391 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 392 MOD_PRINT(kernel, 'k'); 393 MOD_PRINT(user, 'u'); 394 MOD_PRINT(hv, 'h'); 395 exclude_guest_default = true; 396 } 397 398 if (attr->precise_ip) { 399 if (!colon) 400 colon = ++r; 401 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 402 exclude_guest_default = true; 403 } 404 405 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 406 MOD_PRINT(host, 'H'); 407 MOD_PRINT(guest, 'G'); 408 } 409 #undef MOD_PRINT 410 if (colon) 411 bf[colon - 1] = ':'; 412 return r; 413 } 414 415 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 416 { 417 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 418 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 419 } 420 421 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 422 "cpu-clock", 423 "task-clock", 424 "page-faults", 425 "context-switches", 426 "cpu-migrations", 427 "minor-faults", 428 "major-faults", 429 "alignment-faults", 430 "emulation-faults", 431 "dummy", 432 }; 433 434 static const char *__perf_evsel__sw_name(u64 config) 435 { 436 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 437 return perf_evsel__sw_names[config]; 438 return "unknown-software"; 439 } 440 441 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 442 { 443 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 444 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 445 } 446 447 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 448 { 449 int r; 450 451 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 452 453 if (type & HW_BREAKPOINT_R) 454 r += scnprintf(bf + r, size - r, "r"); 455 456 if (type & HW_BREAKPOINT_W) 457 r += scnprintf(bf + r, size - r, "w"); 458 459 if (type & HW_BREAKPOINT_X) 460 r += scnprintf(bf + r, size - r, "x"); 461 462 return r; 463 } 464 465 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 466 { 467 struct perf_event_attr *attr = &evsel->attr; 468 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 469 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 470 } 471 472 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 473 [PERF_EVSEL__MAX_ALIASES] = { 474 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 475 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 476 { "LLC", "L2", }, 477 { "dTLB", "d-tlb", "Data-TLB", }, 478 { "iTLB", "i-tlb", "Instruction-TLB", }, 479 { "branch", "branches", "bpu", "btb", "bpc", }, 480 { "node", }, 481 }; 482 483 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 484 [PERF_EVSEL__MAX_ALIASES] = { 485 { "load", "loads", "read", }, 486 { "store", "stores", "write", }, 487 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 488 }; 489 490 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 491 [PERF_EVSEL__MAX_ALIASES] = { 492 { "refs", "Reference", "ops", "access", }, 493 { "misses", "miss", }, 494 }; 495 496 #define C(x) PERF_COUNT_HW_CACHE_##x 497 #define CACHE_READ (1 << C(OP_READ)) 498 #define CACHE_WRITE (1 << C(OP_WRITE)) 499 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 500 #define COP(x) (1 << x) 501 502 /* 503 * cache operartion stat 504 * L1I : Read and prefetch only 505 * ITLB and BPU : Read-only 506 */ 507 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 508 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 509 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 510 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 511 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 512 [C(ITLB)] = (CACHE_READ), 513 [C(BPU)] = (CACHE_READ), 514 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 515 }; 516 517 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 518 { 519 if (perf_evsel__hw_cache_stat[type] & COP(op)) 520 return true; /* valid */ 521 else 522 return false; /* invalid */ 523 } 524 525 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 526 char *bf, size_t size) 527 { 528 if (result) { 529 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 530 perf_evsel__hw_cache_op[op][0], 531 perf_evsel__hw_cache_result[result][0]); 532 } 533 534 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 535 perf_evsel__hw_cache_op[op][1]); 536 } 537 538 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 539 { 540 u8 op, result, type = (config >> 0) & 0xff; 541 const char *err = "unknown-ext-hardware-cache-type"; 542 543 if (type >= PERF_COUNT_HW_CACHE_MAX) 544 goto out_err; 545 546 op = (config >> 8) & 0xff; 547 err = "unknown-ext-hardware-cache-op"; 548 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 549 goto out_err; 550 551 result = (config >> 16) & 0xff; 552 err = "unknown-ext-hardware-cache-result"; 553 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 554 goto out_err; 555 556 err = "invalid-cache"; 557 if (!perf_evsel__is_cache_op_valid(type, op)) 558 goto out_err; 559 560 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 561 out_err: 562 return scnprintf(bf, size, "%s", err); 563 } 564 565 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 566 { 567 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 568 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 569 } 570 571 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 572 { 573 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 574 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 575 } 576 577 const char *perf_evsel__name(struct perf_evsel *evsel) 578 { 579 char bf[128]; 580 581 if (evsel->name) 582 return evsel->name; 583 584 switch (evsel->attr.type) { 585 case PERF_TYPE_RAW: 586 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 587 break; 588 589 case PERF_TYPE_HARDWARE: 590 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 591 break; 592 593 case PERF_TYPE_HW_CACHE: 594 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 595 break; 596 597 case PERF_TYPE_SOFTWARE: 598 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 599 break; 600 601 case PERF_TYPE_TRACEPOINT: 602 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 603 break; 604 605 case PERF_TYPE_BREAKPOINT: 606 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 607 break; 608 609 default: 610 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 611 evsel->attr.type); 612 break; 613 } 614 615 evsel->name = strdup(bf); 616 617 return evsel->name ?: "unknown"; 618 } 619 620 const char *perf_evsel__group_name(struct perf_evsel *evsel) 621 { 622 return evsel->group_name ?: "anon group"; 623 } 624 625 /* 626 * Returns the group details for the specified leader, 627 * with following rules. 628 * 629 * For record -e '{cycles,instructions}' 630 * 'anon group { cycles:u, instructions:u }' 631 * 632 * For record -e 'cycles,instructions' and report --group 633 * 'cycles:u, instructions:u' 634 */ 635 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 636 { 637 int ret = 0; 638 struct perf_evsel *pos; 639 const char *group_name = perf_evsel__group_name(evsel); 640 641 if (!evsel->forced_leader) 642 ret = scnprintf(buf, size, "%s { ", group_name); 643 644 ret += scnprintf(buf + ret, size - ret, "%s", 645 perf_evsel__name(evsel)); 646 647 for_each_group_member(pos, evsel) 648 ret += scnprintf(buf + ret, size - ret, ", %s", 649 perf_evsel__name(pos)); 650 651 if (!evsel->forced_leader) 652 ret += scnprintf(buf + ret, size - ret, " }"); 653 654 return ret; 655 } 656 657 static void __perf_evsel__config_callchain(struct perf_evsel *evsel, 658 struct record_opts *opts, 659 struct callchain_param *param) 660 { 661 bool function = perf_evsel__is_function_event(evsel); 662 struct perf_event_attr *attr = &evsel->attr; 663 664 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 665 666 attr->sample_max_stack = param->max_stack; 667 668 if (param->record_mode == CALLCHAIN_LBR) { 669 if (!opts->branch_stack) { 670 if (attr->exclude_user) { 671 pr_warning("LBR callstack option is only available " 672 "to get user callchain information. " 673 "Falling back to framepointers.\n"); 674 } else { 675 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 676 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 677 PERF_SAMPLE_BRANCH_CALL_STACK | 678 PERF_SAMPLE_BRANCH_NO_CYCLES | 679 PERF_SAMPLE_BRANCH_NO_FLAGS; 680 } 681 } else 682 pr_warning("Cannot use LBR callstack with branch stack. " 683 "Falling back to framepointers.\n"); 684 } 685 686 if (param->record_mode == CALLCHAIN_DWARF) { 687 if (!function) { 688 perf_evsel__set_sample_bit(evsel, REGS_USER); 689 perf_evsel__set_sample_bit(evsel, STACK_USER); 690 attr->sample_regs_user |= PERF_REGS_MASK; 691 attr->sample_stack_user = param->dump_size; 692 attr->exclude_callchain_user = 1; 693 } else { 694 pr_info("Cannot use DWARF unwind for function trace event," 695 " falling back to framepointers.\n"); 696 } 697 } 698 699 if (function) { 700 pr_info("Disabling user space callchains for function trace event.\n"); 701 attr->exclude_callchain_user = 1; 702 } 703 } 704 705 void perf_evsel__config_callchain(struct perf_evsel *evsel, 706 struct record_opts *opts, 707 struct callchain_param *param) 708 { 709 if (param->enabled) 710 return __perf_evsel__config_callchain(evsel, opts, param); 711 } 712 713 static void 714 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 715 struct callchain_param *param) 716 { 717 struct perf_event_attr *attr = &evsel->attr; 718 719 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 720 if (param->record_mode == CALLCHAIN_LBR) { 721 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 722 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 723 PERF_SAMPLE_BRANCH_CALL_STACK); 724 } 725 if (param->record_mode == CALLCHAIN_DWARF) { 726 perf_evsel__reset_sample_bit(evsel, REGS_USER); 727 perf_evsel__reset_sample_bit(evsel, STACK_USER); 728 } 729 } 730 731 static void apply_config_terms(struct perf_evsel *evsel, 732 struct record_opts *opts, bool track) 733 { 734 struct perf_evsel_config_term *term; 735 struct list_head *config_terms = &evsel->config_terms; 736 struct perf_event_attr *attr = &evsel->attr; 737 /* callgraph default */ 738 struct callchain_param param = { 739 .record_mode = callchain_param.record_mode, 740 }; 741 u32 dump_size = 0; 742 int max_stack = 0; 743 const char *callgraph_buf = NULL; 744 745 list_for_each_entry(term, config_terms, list) { 746 switch (term->type) { 747 case PERF_EVSEL__CONFIG_TERM_PERIOD: 748 if (!(term->weak && opts->user_interval != ULLONG_MAX)) { 749 attr->sample_period = term->val.period; 750 attr->freq = 0; 751 perf_evsel__reset_sample_bit(evsel, PERIOD); 752 } 753 break; 754 case PERF_EVSEL__CONFIG_TERM_FREQ: 755 if (!(term->weak && opts->user_freq != UINT_MAX)) { 756 attr->sample_freq = term->val.freq; 757 attr->freq = 1; 758 perf_evsel__set_sample_bit(evsel, PERIOD); 759 } 760 break; 761 case PERF_EVSEL__CONFIG_TERM_TIME: 762 if (term->val.time) 763 perf_evsel__set_sample_bit(evsel, TIME); 764 else 765 perf_evsel__reset_sample_bit(evsel, TIME); 766 break; 767 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 768 callgraph_buf = term->val.callgraph; 769 break; 770 case PERF_EVSEL__CONFIG_TERM_BRANCH: 771 if (term->val.branch && strcmp(term->val.branch, "no")) { 772 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 773 parse_branch_str(term->val.branch, 774 &attr->branch_sample_type); 775 } else 776 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 777 break; 778 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 779 dump_size = term->val.stack_user; 780 break; 781 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 782 max_stack = term->val.max_stack; 783 break; 784 case PERF_EVSEL__CONFIG_TERM_INHERIT: 785 /* 786 * attr->inherit should has already been set by 787 * perf_evsel__config. If user explicitly set 788 * inherit using config terms, override global 789 * opt->no_inherit setting. 790 */ 791 attr->inherit = term->val.inherit ? 1 : 0; 792 break; 793 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 794 attr->write_backward = term->val.overwrite ? 1 : 0; 795 break; 796 case PERF_EVSEL__CONFIG_TERM_DRV_CFG: 797 break; 798 default: 799 break; 800 } 801 } 802 803 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 804 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 805 bool sample_address = false; 806 807 if (max_stack) { 808 param.max_stack = max_stack; 809 if (callgraph_buf == NULL) 810 callgraph_buf = "fp"; 811 } 812 813 /* parse callgraph parameters */ 814 if (callgraph_buf != NULL) { 815 if (!strcmp(callgraph_buf, "no")) { 816 param.enabled = false; 817 param.record_mode = CALLCHAIN_NONE; 818 } else { 819 param.enabled = true; 820 if (parse_callchain_record(callgraph_buf, ¶m)) { 821 pr_err("per-event callgraph setting for %s failed. " 822 "Apply callgraph global setting for it\n", 823 evsel->name); 824 return; 825 } 826 if (param.record_mode == CALLCHAIN_DWARF) 827 sample_address = true; 828 } 829 } 830 if (dump_size > 0) { 831 dump_size = round_up(dump_size, sizeof(u64)); 832 param.dump_size = dump_size; 833 } 834 835 /* If global callgraph set, clear it */ 836 if (callchain_param.enabled) 837 perf_evsel__reset_callgraph(evsel, &callchain_param); 838 839 /* set perf-event callgraph */ 840 if (param.enabled) { 841 if (sample_address) { 842 perf_evsel__set_sample_bit(evsel, ADDR); 843 perf_evsel__set_sample_bit(evsel, DATA_SRC); 844 evsel->attr.mmap_data = track; 845 } 846 perf_evsel__config_callchain(evsel, opts, ¶m); 847 } 848 } 849 } 850 851 /* 852 * The enable_on_exec/disabled value strategy: 853 * 854 * 1) For any type of traced program: 855 * - all independent events and group leaders are disabled 856 * - all group members are enabled 857 * 858 * Group members are ruled by group leaders. They need to 859 * be enabled, because the group scheduling relies on that. 860 * 861 * 2) For traced programs executed by perf: 862 * - all independent events and group leaders have 863 * enable_on_exec set 864 * - we don't specifically enable or disable any event during 865 * the record command 866 * 867 * Independent events and group leaders are initially disabled 868 * and get enabled by exec. Group members are ruled by group 869 * leaders as stated in 1). 870 * 871 * 3) For traced programs attached by perf (pid/tid): 872 * - we specifically enable or disable all events during 873 * the record command 874 * 875 * When attaching events to already running traced we 876 * enable/disable events specifically, as there's no 877 * initial traced exec call. 878 */ 879 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 880 struct callchain_param *callchain) 881 { 882 struct perf_evsel *leader = evsel->leader; 883 struct perf_event_attr *attr = &evsel->attr; 884 int track = evsel->tracking; 885 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 886 887 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 888 attr->inherit = !opts->no_inherit; 889 attr->write_backward = opts->overwrite ? 1 : 0; 890 891 perf_evsel__set_sample_bit(evsel, IP); 892 perf_evsel__set_sample_bit(evsel, TID); 893 894 if (evsel->sample_read) { 895 perf_evsel__set_sample_bit(evsel, READ); 896 897 /* 898 * We need ID even in case of single event, because 899 * PERF_SAMPLE_READ process ID specific data. 900 */ 901 perf_evsel__set_sample_id(evsel, false); 902 903 /* 904 * Apply group format only if we belong to group 905 * with more than one members. 906 */ 907 if (leader->nr_members > 1) { 908 attr->read_format |= PERF_FORMAT_GROUP; 909 attr->inherit = 0; 910 } 911 } 912 913 /* 914 * We default some events to have a default interval. But keep 915 * it a weak assumption overridable by the user. 916 */ 917 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 918 opts->user_interval != ULLONG_MAX)) { 919 if (opts->freq) { 920 perf_evsel__set_sample_bit(evsel, PERIOD); 921 attr->freq = 1; 922 attr->sample_freq = opts->freq; 923 } else { 924 attr->sample_period = opts->default_interval; 925 } 926 } 927 928 /* 929 * Disable sampling for all group members other 930 * than leader in case leader 'leads' the sampling. 931 */ 932 if ((leader != evsel) && leader->sample_read) { 933 attr->freq = 0; 934 attr->sample_freq = 0; 935 attr->sample_period = 0; 936 attr->write_backward = 0; 937 attr->sample_id_all = 0; 938 } 939 940 if (opts->no_samples) 941 attr->sample_freq = 0; 942 943 if (opts->inherit_stat) { 944 evsel->attr.read_format |= 945 PERF_FORMAT_TOTAL_TIME_ENABLED | 946 PERF_FORMAT_TOTAL_TIME_RUNNING | 947 PERF_FORMAT_ID; 948 attr->inherit_stat = 1; 949 } 950 951 if (opts->sample_address) { 952 perf_evsel__set_sample_bit(evsel, ADDR); 953 attr->mmap_data = track; 954 } 955 956 /* 957 * We don't allow user space callchains for function trace 958 * event, due to issues with page faults while tracing page 959 * fault handler and its overall trickiness nature. 960 */ 961 if (perf_evsel__is_function_event(evsel)) 962 evsel->attr.exclude_callchain_user = 1; 963 964 if (callchain && callchain->enabled && !evsel->no_aux_samples) 965 perf_evsel__config_callchain(evsel, opts, callchain); 966 967 if (opts->sample_intr_regs) { 968 attr->sample_regs_intr = opts->sample_intr_regs; 969 perf_evsel__set_sample_bit(evsel, REGS_INTR); 970 } 971 972 if (opts->sample_user_regs) { 973 attr->sample_regs_user |= opts->sample_user_regs; 974 perf_evsel__set_sample_bit(evsel, REGS_USER); 975 } 976 977 if (target__has_cpu(&opts->target) || opts->sample_cpu) 978 perf_evsel__set_sample_bit(evsel, CPU); 979 980 /* 981 * When the user explicitly disabled time don't force it here. 982 */ 983 if (opts->sample_time && 984 (!perf_missing_features.sample_id_all && 985 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 986 opts->sample_time_set))) 987 perf_evsel__set_sample_bit(evsel, TIME); 988 989 if (opts->raw_samples && !evsel->no_aux_samples) { 990 perf_evsel__set_sample_bit(evsel, TIME); 991 perf_evsel__set_sample_bit(evsel, RAW); 992 perf_evsel__set_sample_bit(evsel, CPU); 993 } 994 995 if (opts->sample_address) 996 perf_evsel__set_sample_bit(evsel, DATA_SRC); 997 998 if (opts->sample_phys_addr) 999 perf_evsel__set_sample_bit(evsel, PHYS_ADDR); 1000 1001 if (opts->no_buffering) { 1002 attr->watermark = 0; 1003 attr->wakeup_events = 1; 1004 } 1005 if (opts->branch_stack && !evsel->no_aux_samples) { 1006 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 1007 attr->branch_sample_type = opts->branch_stack; 1008 } 1009 1010 if (opts->sample_weight) 1011 perf_evsel__set_sample_bit(evsel, WEIGHT); 1012 1013 attr->task = track; 1014 attr->mmap = track; 1015 attr->mmap2 = track && !perf_missing_features.mmap2; 1016 attr->comm = track; 1017 1018 if (opts->record_namespaces) 1019 attr->namespaces = track; 1020 1021 if (opts->record_switch_events) 1022 attr->context_switch = track; 1023 1024 if (opts->sample_transaction) 1025 perf_evsel__set_sample_bit(evsel, TRANSACTION); 1026 1027 if (opts->running_time) { 1028 evsel->attr.read_format |= 1029 PERF_FORMAT_TOTAL_TIME_ENABLED | 1030 PERF_FORMAT_TOTAL_TIME_RUNNING; 1031 } 1032 1033 /* 1034 * XXX see the function comment above 1035 * 1036 * Disabling only independent events or group leaders, 1037 * keeping group members enabled. 1038 */ 1039 if (perf_evsel__is_group_leader(evsel)) 1040 attr->disabled = 1; 1041 1042 /* 1043 * Setting enable_on_exec for independent events and 1044 * group leaders for traced executed by perf. 1045 */ 1046 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 1047 !opts->initial_delay) 1048 attr->enable_on_exec = 1; 1049 1050 if (evsel->immediate) { 1051 attr->disabled = 0; 1052 attr->enable_on_exec = 0; 1053 } 1054 1055 clockid = opts->clockid; 1056 if (opts->use_clockid) { 1057 attr->use_clockid = 1; 1058 attr->clockid = opts->clockid; 1059 } 1060 1061 if (evsel->precise_max) 1062 perf_event_attr__set_max_precise_ip(attr); 1063 1064 if (opts->all_user) { 1065 attr->exclude_kernel = 1; 1066 attr->exclude_user = 0; 1067 } 1068 1069 if (opts->all_kernel) { 1070 attr->exclude_kernel = 0; 1071 attr->exclude_user = 1; 1072 } 1073 1074 /* 1075 * Apply event specific term settings, 1076 * it overloads any global configuration. 1077 */ 1078 apply_config_terms(evsel, opts, track); 1079 1080 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1081 1082 /* The --period option takes the precedence. */ 1083 if (opts->period_set) { 1084 if (opts->period) 1085 perf_evsel__set_sample_bit(evsel, PERIOD); 1086 else 1087 perf_evsel__reset_sample_bit(evsel, PERIOD); 1088 } 1089 } 1090 1091 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1092 { 1093 if (evsel->system_wide) 1094 nthreads = 1; 1095 1096 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1097 1098 if (evsel->fd) { 1099 int cpu, thread; 1100 for (cpu = 0; cpu < ncpus; cpu++) { 1101 for (thread = 0; thread < nthreads; thread++) { 1102 FD(evsel, cpu, thread) = -1; 1103 } 1104 } 1105 } 1106 1107 return evsel->fd != NULL ? 0 : -ENOMEM; 1108 } 1109 1110 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, 1111 int ioc, void *arg) 1112 { 1113 int cpu, thread; 1114 1115 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 1116 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) { 1117 int fd = FD(evsel, cpu, thread), 1118 err = ioctl(fd, ioc, arg); 1119 1120 if (err) 1121 return err; 1122 } 1123 } 1124 1125 return 0; 1126 } 1127 1128 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter) 1129 { 1130 return perf_evsel__run_ioctl(evsel, 1131 PERF_EVENT_IOC_SET_FILTER, 1132 (void *)filter); 1133 } 1134 1135 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1136 { 1137 char *new_filter = strdup(filter); 1138 1139 if (new_filter != NULL) { 1140 free(evsel->filter); 1141 evsel->filter = new_filter; 1142 return 0; 1143 } 1144 1145 return -1; 1146 } 1147 1148 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1149 const char *fmt, const char *filter) 1150 { 1151 char *new_filter; 1152 1153 if (evsel->filter == NULL) 1154 return perf_evsel__set_filter(evsel, filter); 1155 1156 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1157 free(evsel->filter); 1158 evsel->filter = new_filter; 1159 return 0; 1160 } 1161 1162 return -1; 1163 } 1164 1165 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1166 { 1167 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1168 } 1169 1170 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1171 { 1172 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1173 } 1174 1175 int perf_evsel__enable(struct perf_evsel *evsel) 1176 { 1177 return perf_evsel__run_ioctl(evsel, 1178 PERF_EVENT_IOC_ENABLE, 1179 0); 1180 } 1181 1182 int perf_evsel__disable(struct perf_evsel *evsel) 1183 { 1184 return perf_evsel__run_ioctl(evsel, 1185 PERF_EVENT_IOC_DISABLE, 1186 0); 1187 } 1188 1189 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1190 { 1191 if (ncpus == 0 || nthreads == 0) 1192 return 0; 1193 1194 if (evsel->system_wide) 1195 nthreads = 1; 1196 1197 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1198 if (evsel->sample_id == NULL) 1199 return -ENOMEM; 1200 1201 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1202 if (evsel->id == NULL) { 1203 xyarray__delete(evsel->sample_id); 1204 evsel->sample_id = NULL; 1205 return -ENOMEM; 1206 } 1207 1208 return 0; 1209 } 1210 1211 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1212 { 1213 xyarray__delete(evsel->fd); 1214 evsel->fd = NULL; 1215 } 1216 1217 static void perf_evsel__free_id(struct perf_evsel *evsel) 1218 { 1219 xyarray__delete(evsel->sample_id); 1220 evsel->sample_id = NULL; 1221 zfree(&evsel->id); 1222 } 1223 1224 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1225 { 1226 struct perf_evsel_config_term *term, *h; 1227 1228 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1229 list_del(&term->list); 1230 free(term); 1231 } 1232 } 1233 1234 void perf_evsel__close_fd(struct perf_evsel *evsel) 1235 { 1236 int cpu, thread; 1237 1238 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) 1239 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) { 1240 close(FD(evsel, cpu, thread)); 1241 FD(evsel, cpu, thread) = -1; 1242 } 1243 } 1244 1245 void perf_evsel__exit(struct perf_evsel *evsel) 1246 { 1247 assert(list_empty(&evsel->node)); 1248 assert(evsel->evlist == NULL); 1249 perf_evsel__free_fd(evsel); 1250 perf_evsel__free_id(evsel); 1251 perf_evsel__free_config_terms(evsel); 1252 cgroup__put(evsel->cgrp); 1253 cpu_map__put(evsel->cpus); 1254 cpu_map__put(evsel->own_cpus); 1255 thread_map__put(evsel->threads); 1256 zfree(&evsel->group_name); 1257 zfree(&evsel->name); 1258 perf_evsel__object.fini(evsel); 1259 } 1260 1261 void perf_evsel__delete(struct perf_evsel *evsel) 1262 { 1263 perf_evsel__exit(evsel); 1264 free(evsel); 1265 } 1266 1267 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1268 struct perf_counts_values *count) 1269 { 1270 struct perf_counts_values tmp; 1271 1272 if (!evsel->prev_raw_counts) 1273 return; 1274 1275 if (cpu == -1) { 1276 tmp = evsel->prev_raw_counts->aggr; 1277 evsel->prev_raw_counts->aggr = *count; 1278 } else { 1279 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1280 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1281 } 1282 1283 count->val = count->val - tmp.val; 1284 count->ena = count->ena - tmp.ena; 1285 count->run = count->run - tmp.run; 1286 } 1287 1288 void perf_counts_values__scale(struct perf_counts_values *count, 1289 bool scale, s8 *pscaled) 1290 { 1291 s8 scaled = 0; 1292 1293 if (scale) { 1294 if (count->run == 0) { 1295 scaled = -1; 1296 count->val = 0; 1297 } else if (count->run < count->ena) { 1298 scaled = 1; 1299 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1300 } 1301 } else 1302 count->ena = count->run = 0; 1303 1304 if (pscaled) 1305 *pscaled = scaled; 1306 } 1307 1308 static int perf_evsel__read_size(struct perf_evsel *evsel) 1309 { 1310 u64 read_format = evsel->attr.read_format; 1311 int entry = sizeof(u64); /* value */ 1312 int size = 0; 1313 int nr = 1; 1314 1315 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1316 size += sizeof(u64); 1317 1318 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1319 size += sizeof(u64); 1320 1321 if (read_format & PERF_FORMAT_ID) 1322 entry += sizeof(u64); 1323 1324 if (read_format & PERF_FORMAT_GROUP) { 1325 nr = evsel->nr_members; 1326 size += sizeof(u64); 1327 } 1328 1329 size += entry * nr; 1330 return size; 1331 } 1332 1333 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1334 struct perf_counts_values *count) 1335 { 1336 size_t size = perf_evsel__read_size(evsel); 1337 1338 memset(count, 0, sizeof(*count)); 1339 1340 if (FD(evsel, cpu, thread) < 0) 1341 return -EINVAL; 1342 1343 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0) 1344 return -errno; 1345 1346 return 0; 1347 } 1348 1349 static int 1350 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread) 1351 { 1352 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread); 1353 1354 return perf_evsel__read(evsel, cpu, thread, count); 1355 } 1356 1357 static void 1358 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread, 1359 u64 val, u64 ena, u64 run) 1360 { 1361 struct perf_counts_values *count; 1362 1363 count = perf_counts(counter->counts, cpu, thread); 1364 1365 count->val = val; 1366 count->ena = ena; 1367 count->run = run; 1368 count->loaded = true; 1369 } 1370 1371 static int 1372 perf_evsel__process_group_data(struct perf_evsel *leader, 1373 int cpu, int thread, u64 *data) 1374 { 1375 u64 read_format = leader->attr.read_format; 1376 struct sample_read_value *v; 1377 u64 nr, ena = 0, run = 0, i; 1378 1379 nr = *data++; 1380 1381 if (nr != (u64) leader->nr_members) 1382 return -EINVAL; 1383 1384 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1385 ena = *data++; 1386 1387 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1388 run = *data++; 1389 1390 v = (struct sample_read_value *) data; 1391 1392 perf_evsel__set_count(leader, cpu, thread, 1393 v[0].value, ena, run); 1394 1395 for (i = 1; i < nr; i++) { 1396 struct perf_evsel *counter; 1397 1398 counter = perf_evlist__id2evsel(leader->evlist, v[i].id); 1399 if (!counter) 1400 return -EINVAL; 1401 1402 perf_evsel__set_count(counter, cpu, thread, 1403 v[i].value, ena, run); 1404 } 1405 1406 return 0; 1407 } 1408 1409 static int 1410 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread) 1411 { 1412 struct perf_stat_evsel *ps = leader->stats; 1413 u64 read_format = leader->attr.read_format; 1414 int size = perf_evsel__read_size(leader); 1415 u64 *data = ps->group_data; 1416 1417 if (!(read_format & PERF_FORMAT_ID)) 1418 return -EINVAL; 1419 1420 if (!perf_evsel__is_group_leader(leader)) 1421 return -EINVAL; 1422 1423 if (!data) { 1424 data = zalloc(size); 1425 if (!data) 1426 return -ENOMEM; 1427 1428 ps->group_data = data; 1429 } 1430 1431 if (FD(leader, cpu, thread) < 0) 1432 return -EINVAL; 1433 1434 if (readn(FD(leader, cpu, thread), data, size) <= 0) 1435 return -errno; 1436 1437 return perf_evsel__process_group_data(leader, cpu, thread, data); 1438 } 1439 1440 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread) 1441 { 1442 u64 read_format = evsel->attr.read_format; 1443 1444 if (read_format & PERF_FORMAT_GROUP) 1445 return perf_evsel__read_group(evsel, cpu, thread); 1446 else 1447 return perf_evsel__read_one(evsel, cpu, thread); 1448 } 1449 1450 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1451 int cpu, int thread, bool scale) 1452 { 1453 struct perf_counts_values count; 1454 size_t nv = scale ? 3 : 1; 1455 1456 if (FD(evsel, cpu, thread) < 0) 1457 return -EINVAL; 1458 1459 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1460 return -ENOMEM; 1461 1462 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1463 return -errno; 1464 1465 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1466 perf_counts_values__scale(&count, scale, NULL); 1467 *perf_counts(evsel->counts, cpu, thread) = count; 1468 return 0; 1469 } 1470 1471 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1472 { 1473 struct perf_evsel *leader = evsel->leader; 1474 int fd; 1475 1476 if (perf_evsel__is_group_leader(evsel)) 1477 return -1; 1478 1479 /* 1480 * Leader must be already processed/open, 1481 * if not it's a bug. 1482 */ 1483 BUG_ON(!leader->fd); 1484 1485 fd = FD(leader, cpu, thread); 1486 BUG_ON(fd == -1); 1487 1488 return fd; 1489 } 1490 1491 struct bit_names { 1492 int bit; 1493 const char *name; 1494 }; 1495 1496 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1497 { 1498 bool first_bit = true; 1499 int i = 0; 1500 1501 do { 1502 if (value & bits[i].bit) { 1503 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1504 first_bit = false; 1505 } 1506 } while (bits[++i].name != NULL); 1507 } 1508 1509 static void __p_sample_type(char *buf, size_t size, u64 value) 1510 { 1511 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1512 struct bit_names bits[] = { 1513 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1514 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1515 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1516 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1517 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1518 bit_name(WEIGHT), bit_name(PHYS_ADDR), 1519 { .name = NULL, } 1520 }; 1521 #undef bit_name 1522 __p_bits(buf, size, value, bits); 1523 } 1524 1525 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1526 { 1527 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1528 struct bit_names bits[] = { 1529 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1530 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1531 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1532 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1533 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1534 { .name = NULL, } 1535 }; 1536 #undef bit_name 1537 __p_bits(buf, size, value, bits); 1538 } 1539 1540 static void __p_read_format(char *buf, size_t size, u64 value) 1541 { 1542 #define bit_name(n) { PERF_FORMAT_##n, #n } 1543 struct bit_names bits[] = { 1544 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1545 bit_name(ID), bit_name(GROUP), 1546 { .name = NULL, } 1547 }; 1548 #undef bit_name 1549 __p_bits(buf, size, value, bits); 1550 } 1551 1552 #define BUF_SIZE 1024 1553 1554 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1555 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1556 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1557 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1558 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1559 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1560 1561 #define PRINT_ATTRn(_n, _f, _p) \ 1562 do { \ 1563 if (attr->_f) { \ 1564 _p(attr->_f); \ 1565 ret += attr__fprintf(fp, _n, buf, priv);\ 1566 } \ 1567 } while (0) 1568 1569 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1570 1571 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1572 attr__fprintf_f attr__fprintf, void *priv) 1573 { 1574 char buf[BUF_SIZE]; 1575 int ret = 0; 1576 1577 PRINT_ATTRf(type, p_unsigned); 1578 PRINT_ATTRf(size, p_unsigned); 1579 PRINT_ATTRf(config, p_hex); 1580 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1581 PRINT_ATTRf(sample_type, p_sample_type); 1582 PRINT_ATTRf(read_format, p_read_format); 1583 1584 PRINT_ATTRf(disabled, p_unsigned); 1585 PRINT_ATTRf(inherit, p_unsigned); 1586 PRINT_ATTRf(pinned, p_unsigned); 1587 PRINT_ATTRf(exclusive, p_unsigned); 1588 PRINT_ATTRf(exclude_user, p_unsigned); 1589 PRINT_ATTRf(exclude_kernel, p_unsigned); 1590 PRINT_ATTRf(exclude_hv, p_unsigned); 1591 PRINT_ATTRf(exclude_idle, p_unsigned); 1592 PRINT_ATTRf(mmap, p_unsigned); 1593 PRINT_ATTRf(comm, p_unsigned); 1594 PRINT_ATTRf(freq, p_unsigned); 1595 PRINT_ATTRf(inherit_stat, p_unsigned); 1596 PRINT_ATTRf(enable_on_exec, p_unsigned); 1597 PRINT_ATTRf(task, p_unsigned); 1598 PRINT_ATTRf(watermark, p_unsigned); 1599 PRINT_ATTRf(precise_ip, p_unsigned); 1600 PRINT_ATTRf(mmap_data, p_unsigned); 1601 PRINT_ATTRf(sample_id_all, p_unsigned); 1602 PRINT_ATTRf(exclude_host, p_unsigned); 1603 PRINT_ATTRf(exclude_guest, p_unsigned); 1604 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1605 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1606 PRINT_ATTRf(mmap2, p_unsigned); 1607 PRINT_ATTRf(comm_exec, p_unsigned); 1608 PRINT_ATTRf(use_clockid, p_unsigned); 1609 PRINT_ATTRf(context_switch, p_unsigned); 1610 PRINT_ATTRf(write_backward, p_unsigned); 1611 PRINT_ATTRf(namespaces, p_unsigned); 1612 1613 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1614 PRINT_ATTRf(bp_type, p_unsigned); 1615 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1616 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1617 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1618 PRINT_ATTRf(sample_regs_user, p_hex); 1619 PRINT_ATTRf(sample_stack_user, p_unsigned); 1620 PRINT_ATTRf(clockid, p_signed); 1621 PRINT_ATTRf(sample_regs_intr, p_hex); 1622 PRINT_ATTRf(aux_watermark, p_unsigned); 1623 PRINT_ATTRf(sample_max_stack, p_unsigned); 1624 1625 return ret; 1626 } 1627 1628 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1629 void *priv __maybe_unused) 1630 { 1631 return fprintf(fp, " %-32s %s\n", name, val); 1632 } 1633 1634 static void perf_evsel__remove_fd(struct perf_evsel *pos, 1635 int nr_cpus, int nr_threads, 1636 int thread_idx) 1637 { 1638 for (int cpu = 0; cpu < nr_cpus; cpu++) 1639 for (int thread = thread_idx; thread < nr_threads - 1; thread++) 1640 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1); 1641 } 1642 1643 static int update_fds(struct perf_evsel *evsel, 1644 int nr_cpus, int cpu_idx, 1645 int nr_threads, int thread_idx) 1646 { 1647 struct perf_evsel *pos; 1648 1649 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads) 1650 return -EINVAL; 1651 1652 evlist__for_each_entry(evsel->evlist, pos) { 1653 nr_cpus = pos != evsel ? nr_cpus : cpu_idx; 1654 1655 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx); 1656 1657 /* 1658 * Since fds for next evsel has not been created, 1659 * there is no need to iterate whole event list. 1660 */ 1661 if (pos == evsel) 1662 break; 1663 } 1664 return 0; 1665 } 1666 1667 static bool ignore_missing_thread(struct perf_evsel *evsel, 1668 int nr_cpus, int cpu, 1669 struct thread_map *threads, 1670 int thread, int err) 1671 { 1672 pid_t ignore_pid = thread_map__pid(threads, thread); 1673 1674 if (!evsel->ignore_missing_thread) 1675 return false; 1676 1677 /* The system wide setup does not work with threads. */ 1678 if (evsel->system_wide) 1679 return false; 1680 1681 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1682 if (err != -ESRCH) 1683 return false; 1684 1685 /* If there's only one thread, let it fail. */ 1686 if (threads->nr == 1) 1687 return false; 1688 1689 /* 1690 * We should remove fd for missing_thread first 1691 * because thread_map__remove() will decrease threads->nr. 1692 */ 1693 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread)) 1694 return false; 1695 1696 if (thread_map__remove(threads, thread)) 1697 return false; 1698 1699 pr_warning("WARNING: Ignored open failure for pid %d\n", 1700 ignore_pid); 1701 return true; 1702 } 1703 1704 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1705 struct thread_map *threads) 1706 { 1707 int cpu, thread, nthreads; 1708 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1709 int pid = -1, err; 1710 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1711 1712 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1713 return -EINVAL; 1714 1715 if (cpus == NULL) { 1716 static struct cpu_map *empty_cpu_map; 1717 1718 if (empty_cpu_map == NULL) { 1719 empty_cpu_map = cpu_map__dummy_new(); 1720 if (empty_cpu_map == NULL) 1721 return -ENOMEM; 1722 } 1723 1724 cpus = empty_cpu_map; 1725 } 1726 1727 if (threads == NULL) { 1728 static struct thread_map *empty_thread_map; 1729 1730 if (empty_thread_map == NULL) { 1731 empty_thread_map = thread_map__new_by_tid(-1); 1732 if (empty_thread_map == NULL) 1733 return -ENOMEM; 1734 } 1735 1736 threads = empty_thread_map; 1737 } 1738 1739 if (evsel->system_wide) 1740 nthreads = 1; 1741 else 1742 nthreads = threads->nr; 1743 1744 if (evsel->fd == NULL && 1745 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1746 return -ENOMEM; 1747 1748 if (evsel->cgrp) { 1749 flags |= PERF_FLAG_PID_CGROUP; 1750 pid = evsel->cgrp->fd; 1751 } 1752 1753 fallback_missing_features: 1754 if (perf_missing_features.clockid_wrong) 1755 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1756 if (perf_missing_features.clockid) { 1757 evsel->attr.use_clockid = 0; 1758 evsel->attr.clockid = 0; 1759 } 1760 if (perf_missing_features.cloexec) 1761 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1762 if (perf_missing_features.mmap2) 1763 evsel->attr.mmap2 = 0; 1764 if (perf_missing_features.exclude_guest) 1765 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1766 if (perf_missing_features.lbr_flags) 1767 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1768 PERF_SAMPLE_BRANCH_NO_CYCLES); 1769 if (perf_missing_features.group_read && evsel->attr.inherit) 1770 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); 1771 retry_sample_id: 1772 if (perf_missing_features.sample_id_all) 1773 evsel->attr.sample_id_all = 0; 1774 1775 if (verbose >= 2) { 1776 fprintf(stderr, "%.60s\n", graph_dotted_line); 1777 fprintf(stderr, "perf_event_attr:\n"); 1778 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1779 fprintf(stderr, "%.60s\n", graph_dotted_line); 1780 } 1781 1782 for (cpu = 0; cpu < cpus->nr; cpu++) { 1783 1784 for (thread = 0; thread < nthreads; thread++) { 1785 int fd, group_fd; 1786 1787 if (!evsel->cgrp && !evsel->system_wide) 1788 pid = thread_map__pid(threads, thread); 1789 1790 group_fd = get_group_fd(evsel, cpu, thread); 1791 retry_open: 1792 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1793 pid, cpus->map[cpu], group_fd, flags); 1794 1795 test_attr__ready(); 1796 1797 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu], 1798 group_fd, flags); 1799 1800 FD(evsel, cpu, thread) = fd; 1801 1802 if (fd < 0) { 1803 err = -errno; 1804 1805 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) { 1806 /* 1807 * We just removed 1 thread, so take a step 1808 * back on thread index and lower the upper 1809 * nthreads limit. 1810 */ 1811 nthreads--; 1812 thread--; 1813 1814 /* ... and pretend like nothing have happened. */ 1815 err = 0; 1816 continue; 1817 } 1818 1819 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1820 err); 1821 goto try_fallback; 1822 } 1823 1824 pr_debug2(" = %d\n", fd); 1825 1826 if (evsel->bpf_fd >= 0) { 1827 int evt_fd = fd; 1828 int bpf_fd = evsel->bpf_fd; 1829 1830 err = ioctl(evt_fd, 1831 PERF_EVENT_IOC_SET_BPF, 1832 bpf_fd); 1833 if (err && errno != EEXIST) { 1834 pr_err("failed to attach bpf fd %d: %s\n", 1835 bpf_fd, strerror(errno)); 1836 err = -EINVAL; 1837 goto out_close; 1838 } 1839 } 1840 1841 set_rlimit = NO_CHANGE; 1842 1843 /* 1844 * If we succeeded but had to kill clockid, fail and 1845 * have perf_evsel__open_strerror() print us a nice 1846 * error. 1847 */ 1848 if (perf_missing_features.clockid || 1849 perf_missing_features.clockid_wrong) { 1850 err = -EINVAL; 1851 goto out_close; 1852 } 1853 } 1854 } 1855 1856 return 0; 1857 1858 try_fallback: 1859 /* 1860 * perf stat needs between 5 and 22 fds per CPU. When we run out 1861 * of them try to increase the limits. 1862 */ 1863 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1864 struct rlimit l; 1865 int old_errno = errno; 1866 1867 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1868 if (set_rlimit == NO_CHANGE) 1869 l.rlim_cur = l.rlim_max; 1870 else { 1871 l.rlim_cur = l.rlim_max + 1000; 1872 l.rlim_max = l.rlim_cur; 1873 } 1874 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1875 set_rlimit++; 1876 errno = old_errno; 1877 goto retry_open; 1878 } 1879 } 1880 errno = old_errno; 1881 } 1882 1883 if (err != -EINVAL || cpu > 0 || thread > 0) 1884 goto out_close; 1885 1886 /* 1887 * Must probe features in the order they were added to the 1888 * perf_event_attr interface. 1889 */ 1890 if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 1891 perf_missing_features.write_backward = true; 1892 pr_debug2("switching off write_backward\n"); 1893 goto out_close; 1894 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1895 perf_missing_features.clockid_wrong = true; 1896 pr_debug2("switching off clockid\n"); 1897 goto fallback_missing_features; 1898 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1899 perf_missing_features.clockid = true; 1900 pr_debug2("switching off use_clockid\n"); 1901 goto fallback_missing_features; 1902 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1903 perf_missing_features.cloexec = true; 1904 pr_debug2("switching off cloexec flag\n"); 1905 goto fallback_missing_features; 1906 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1907 perf_missing_features.mmap2 = true; 1908 pr_debug2("switching off mmap2\n"); 1909 goto fallback_missing_features; 1910 } else if (!perf_missing_features.exclude_guest && 1911 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1912 perf_missing_features.exclude_guest = true; 1913 pr_debug2("switching off exclude_guest, exclude_host\n"); 1914 goto fallback_missing_features; 1915 } else if (!perf_missing_features.sample_id_all) { 1916 perf_missing_features.sample_id_all = true; 1917 pr_debug2("switching off sample_id_all\n"); 1918 goto retry_sample_id; 1919 } else if (!perf_missing_features.lbr_flags && 1920 (evsel->attr.branch_sample_type & 1921 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1922 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1923 perf_missing_features.lbr_flags = true; 1924 pr_debug2("switching off branch sample type no (cycles/flags)\n"); 1925 goto fallback_missing_features; 1926 } else if (!perf_missing_features.group_read && 1927 evsel->attr.inherit && 1928 (evsel->attr.read_format & PERF_FORMAT_GROUP) && 1929 perf_evsel__is_group_leader(evsel)) { 1930 perf_missing_features.group_read = true; 1931 pr_debug2("switching off group read\n"); 1932 goto fallback_missing_features; 1933 } 1934 out_close: 1935 if (err) 1936 threads->err_thread = thread; 1937 1938 do { 1939 while (--thread >= 0) { 1940 close(FD(evsel, cpu, thread)); 1941 FD(evsel, cpu, thread) = -1; 1942 } 1943 thread = nthreads; 1944 } while (--cpu >= 0); 1945 return err; 1946 } 1947 1948 void perf_evsel__close(struct perf_evsel *evsel) 1949 { 1950 if (evsel->fd == NULL) 1951 return; 1952 1953 perf_evsel__close_fd(evsel); 1954 perf_evsel__free_fd(evsel); 1955 } 1956 1957 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1958 struct cpu_map *cpus) 1959 { 1960 return perf_evsel__open(evsel, cpus, NULL); 1961 } 1962 1963 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1964 struct thread_map *threads) 1965 { 1966 return perf_evsel__open(evsel, NULL, threads); 1967 } 1968 1969 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1970 const union perf_event *event, 1971 struct perf_sample *sample) 1972 { 1973 u64 type = evsel->attr.sample_type; 1974 const u64 *array = event->sample.array; 1975 bool swapped = evsel->needs_swap; 1976 union u64_swap u; 1977 1978 array += ((event->header.size - 1979 sizeof(event->header)) / sizeof(u64)) - 1; 1980 1981 if (type & PERF_SAMPLE_IDENTIFIER) { 1982 sample->id = *array; 1983 array--; 1984 } 1985 1986 if (type & PERF_SAMPLE_CPU) { 1987 u.val64 = *array; 1988 if (swapped) { 1989 /* undo swap of u64, then swap on individual u32s */ 1990 u.val64 = bswap_64(u.val64); 1991 u.val32[0] = bswap_32(u.val32[0]); 1992 } 1993 1994 sample->cpu = u.val32[0]; 1995 array--; 1996 } 1997 1998 if (type & PERF_SAMPLE_STREAM_ID) { 1999 sample->stream_id = *array; 2000 array--; 2001 } 2002 2003 if (type & PERF_SAMPLE_ID) { 2004 sample->id = *array; 2005 array--; 2006 } 2007 2008 if (type & PERF_SAMPLE_TIME) { 2009 sample->time = *array; 2010 array--; 2011 } 2012 2013 if (type & PERF_SAMPLE_TID) { 2014 u.val64 = *array; 2015 if (swapped) { 2016 /* undo swap of u64, then swap on individual u32s */ 2017 u.val64 = bswap_64(u.val64); 2018 u.val32[0] = bswap_32(u.val32[0]); 2019 u.val32[1] = bswap_32(u.val32[1]); 2020 } 2021 2022 sample->pid = u.val32[0]; 2023 sample->tid = u.val32[1]; 2024 array--; 2025 } 2026 2027 return 0; 2028 } 2029 2030 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 2031 u64 size) 2032 { 2033 return size > max_size || offset + size > endp; 2034 } 2035 2036 #define OVERFLOW_CHECK(offset, size, max_size) \ 2037 do { \ 2038 if (overflow(endp, (max_size), (offset), (size))) \ 2039 return -EFAULT; \ 2040 } while (0) 2041 2042 #define OVERFLOW_CHECK_u64(offset) \ 2043 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 2044 2045 static int 2046 perf_event__check_size(union perf_event *event, unsigned int sample_size) 2047 { 2048 /* 2049 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 2050 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 2051 * check the format does not go past the end of the event. 2052 */ 2053 if (sample_size + sizeof(event->header) > event->header.size) 2054 return -EFAULT; 2055 2056 return 0; 2057 } 2058 2059 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 2060 struct perf_sample *data) 2061 { 2062 u64 type = evsel->attr.sample_type; 2063 bool swapped = evsel->needs_swap; 2064 const u64 *array; 2065 u16 max_size = event->header.size; 2066 const void *endp = (void *)event + max_size; 2067 u64 sz; 2068 2069 /* 2070 * used for cross-endian analysis. See git commit 65014ab3 2071 * for why this goofiness is needed. 2072 */ 2073 union u64_swap u; 2074 2075 memset(data, 0, sizeof(*data)); 2076 data->cpu = data->pid = data->tid = -1; 2077 data->stream_id = data->id = data->time = -1ULL; 2078 data->period = evsel->attr.sample_period; 2079 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2080 data->misc = event->header.misc; 2081 data->id = -1ULL; 2082 data->data_src = PERF_MEM_DATA_SRC_NONE; 2083 2084 if (event->header.type != PERF_RECORD_SAMPLE) { 2085 if (!evsel->attr.sample_id_all) 2086 return 0; 2087 return perf_evsel__parse_id_sample(evsel, event, data); 2088 } 2089 2090 array = event->sample.array; 2091 2092 if (perf_event__check_size(event, evsel->sample_size)) 2093 return -EFAULT; 2094 2095 if (type & PERF_SAMPLE_IDENTIFIER) { 2096 data->id = *array; 2097 array++; 2098 } 2099 2100 if (type & PERF_SAMPLE_IP) { 2101 data->ip = *array; 2102 array++; 2103 } 2104 2105 if (type & PERF_SAMPLE_TID) { 2106 u.val64 = *array; 2107 if (swapped) { 2108 /* undo swap of u64, then swap on individual u32s */ 2109 u.val64 = bswap_64(u.val64); 2110 u.val32[0] = bswap_32(u.val32[0]); 2111 u.val32[1] = bswap_32(u.val32[1]); 2112 } 2113 2114 data->pid = u.val32[0]; 2115 data->tid = u.val32[1]; 2116 array++; 2117 } 2118 2119 if (type & PERF_SAMPLE_TIME) { 2120 data->time = *array; 2121 array++; 2122 } 2123 2124 if (type & PERF_SAMPLE_ADDR) { 2125 data->addr = *array; 2126 array++; 2127 } 2128 2129 if (type & PERF_SAMPLE_ID) { 2130 data->id = *array; 2131 array++; 2132 } 2133 2134 if (type & PERF_SAMPLE_STREAM_ID) { 2135 data->stream_id = *array; 2136 array++; 2137 } 2138 2139 if (type & PERF_SAMPLE_CPU) { 2140 2141 u.val64 = *array; 2142 if (swapped) { 2143 /* undo swap of u64, then swap on individual u32s */ 2144 u.val64 = bswap_64(u.val64); 2145 u.val32[0] = bswap_32(u.val32[0]); 2146 } 2147 2148 data->cpu = u.val32[0]; 2149 array++; 2150 } 2151 2152 if (type & PERF_SAMPLE_PERIOD) { 2153 data->period = *array; 2154 array++; 2155 } 2156 2157 if (type & PERF_SAMPLE_READ) { 2158 u64 read_format = evsel->attr.read_format; 2159 2160 OVERFLOW_CHECK_u64(array); 2161 if (read_format & PERF_FORMAT_GROUP) 2162 data->read.group.nr = *array; 2163 else 2164 data->read.one.value = *array; 2165 2166 array++; 2167 2168 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2169 OVERFLOW_CHECK_u64(array); 2170 data->read.time_enabled = *array; 2171 array++; 2172 } 2173 2174 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2175 OVERFLOW_CHECK_u64(array); 2176 data->read.time_running = *array; 2177 array++; 2178 } 2179 2180 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2181 if (read_format & PERF_FORMAT_GROUP) { 2182 const u64 max_group_nr = UINT64_MAX / 2183 sizeof(struct sample_read_value); 2184 2185 if (data->read.group.nr > max_group_nr) 2186 return -EFAULT; 2187 sz = data->read.group.nr * 2188 sizeof(struct sample_read_value); 2189 OVERFLOW_CHECK(array, sz, max_size); 2190 data->read.group.values = 2191 (struct sample_read_value *)array; 2192 array = (void *)array + sz; 2193 } else { 2194 OVERFLOW_CHECK_u64(array); 2195 data->read.one.id = *array; 2196 array++; 2197 } 2198 } 2199 2200 if (evsel__has_callchain(evsel)) { 2201 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 2202 2203 OVERFLOW_CHECK_u64(array); 2204 data->callchain = (struct ip_callchain *)array++; 2205 if (data->callchain->nr > max_callchain_nr) 2206 return -EFAULT; 2207 sz = data->callchain->nr * sizeof(u64); 2208 OVERFLOW_CHECK(array, sz, max_size); 2209 array = (void *)array + sz; 2210 } 2211 2212 if (type & PERF_SAMPLE_RAW) { 2213 OVERFLOW_CHECK_u64(array); 2214 u.val64 = *array; 2215 2216 /* 2217 * Undo swap of u64, then swap on individual u32s, 2218 * get the size of the raw area and undo all of the 2219 * swap. The pevent interface handles endianity by 2220 * itself. 2221 */ 2222 if (swapped) { 2223 u.val64 = bswap_64(u.val64); 2224 u.val32[0] = bswap_32(u.val32[0]); 2225 u.val32[1] = bswap_32(u.val32[1]); 2226 } 2227 data->raw_size = u.val32[0]; 2228 2229 /* 2230 * The raw data is aligned on 64bits including the 2231 * u32 size, so it's safe to use mem_bswap_64. 2232 */ 2233 if (swapped) 2234 mem_bswap_64((void *) array, data->raw_size); 2235 2236 array = (void *)array + sizeof(u32); 2237 2238 OVERFLOW_CHECK(array, data->raw_size, max_size); 2239 data->raw_data = (void *)array; 2240 array = (void *)array + data->raw_size; 2241 } 2242 2243 if (type & PERF_SAMPLE_BRANCH_STACK) { 2244 const u64 max_branch_nr = UINT64_MAX / 2245 sizeof(struct branch_entry); 2246 2247 OVERFLOW_CHECK_u64(array); 2248 data->branch_stack = (struct branch_stack *)array++; 2249 2250 if (data->branch_stack->nr > max_branch_nr) 2251 return -EFAULT; 2252 sz = data->branch_stack->nr * sizeof(struct branch_entry); 2253 OVERFLOW_CHECK(array, sz, max_size); 2254 array = (void *)array + sz; 2255 } 2256 2257 if (type & PERF_SAMPLE_REGS_USER) { 2258 OVERFLOW_CHECK_u64(array); 2259 data->user_regs.abi = *array; 2260 array++; 2261 2262 if (data->user_regs.abi) { 2263 u64 mask = evsel->attr.sample_regs_user; 2264 2265 sz = hweight_long(mask) * sizeof(u64); 2266 OVERFLOW_CHECK(array, sz, max_size); 2267 data->user_regs.mask = mask; 2268 data->user_regs.regs = (u64 *)array; 2269 array = (void *)array + sz; 2270 } 2271 } 2272 2273 if (type & PERF_SAMPLE_STACK_USER) { 2274 OVERFLOW_CHECK_u64(array); 2275 sz = *array++; 2276 2277 data->user_stack.offset = ((char *)(array - 1) 2278 - (char *) event); 2279 2280 if (!sz) { 2281 data->user_stack.size = 0; 2282 } else { 2283 OVERFLOW_CHECK(array, sz, max_size); 2284 data->user_stack.data = (char *)array; 2285 array = (void *)array + sz; 2286 OVERFLOW_CHECK_u64(array); 2287 data->user_stack.size = *array++; 2288 if (WARN_ONCE(data->user_stack.size > sz, 2289 "user stack dump failure\n")) 2290 return -EFAULT; 2291 } 2292 } 2293 2294 if (type & PERF_SAMPLE_WEIGHT) { 2295 OVERFLOW_CHECK_u64(array); 2296 data->weight = *array; 2297 array++; 2298 } 2299 2300 if (type & PERF_SAMPLE_DATA_SRC) { 2301 OVERFLOW_CHECK_u64(array); 2302 data->data_src = *array; 2303 array++; 2304 } 2305 2306 if (type & PERF_SAMPLE_TRANSACTION) { 2307 OVERFLOW_CHECK_u64(array); 2308 data->transaction = *array; 2309 array++; 2310 } 2311 2312 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2313 if (type & PERF_SAMPLE_REGS_INTR) { 2314 OVERFLOW_CHECK_u64(array); 2315 data->intr_regs.abi = *array; 2316 array++; 2317 2318 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2319 u64 mask = evsel->attr.sample_regs_intr; 2320 2321 sz = hweight_long(mask) * sizeof(u64); 2322 OVERFLOW_CHECK(array, sz, max_size); 2323 data->intr_regs.mask = mask; 2324 data->intr_regs.regs = (u64 *)array; 2325 array = (void *)array + sz; 2326 } 2327 } 2328 2329 data->phys_addr = 0; 2330 if (type & PERF_SAMPLE_PHYS_ADDR) { 2331 data->phys_addr = *array; 2332 array++; 2333 } 2334 2335 return 0; 2336 } 2337 2338 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel, 2339 union perf_event *event, 2340 u64 *timestamp) 2341 { 2342 u64 type = evsel->attr.sample_type; 2343 const u64 *array; 2344 2345 if (!(type & PERF_SAMPLE_TIME)) 2346 return -1; 2347 2348 if (event->header.type != PERF_RECORD_SAMPLE) { 2349 struct perf_sample data = { 2350 .time = -1ULL, 2351 }; 2352 2353 if (!evsel->attr.sample_id_all) 2354 return -1; 2355 if (perf_evsel__parse_id_sample(evsel, event, &data)) 2356 return -1; 2357 2358 *timestamp = data.time; 2359 return 0; 2360 } 2361 2362 array = event->sample.array; 2363 2364 if (perf_event__check_size(event, evsel->sample_size)) 2365 return -EFAULT; 2366 2367 if (type & PERF_SAMPLE_IDENTIFIER) 2368 array++; 2369 2370 if (type & PERF_SAMPLE_IP) 2371 array++; 2372 2373 if (type & PERF_SAMPLE_TID) 2374 array++; 2375 2376 if (type & PERF_SAMPLE_TIME) 2377 *timestamp = *array; 2378 2379 return 0; 2380 } 2381 2382 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2383 u64 read_format) 2384 { 2385 size_t sz, result = sizeof(struct sample_event); 2386 2387 if (type & PERF_SAMPLE_IDENTIFIER) 2388 result += sizeof(u64); 2389 2390 if (type & PERF_SAMPLE_IP) 2391 result += sizeof(u64); 2392 2393 if (type & PERF_SAMPLE_TID) 2394 result += sizeof(u64); 2395 2396 if (type & PERF_SAMPLE_TIME) 2397 result += sizeof(u64); 2398 2399 if (type & PERF_SAMPLE_ADDR) 2400 result += sizeof(u64); 2401 2402 if (type & PERF_SAMPLE_ID) 2403 result += sizeof(u64); 2404 2405 if (type & PERF_SAMPLE_STREAM_ID) 2406 result += sizeof(u64); 2407 2408 if (type & PERF_SAMPLE_CPU) 2409 result += sizeof(u64); 2410 2411 if (type & PERF_SAMPLE_PERIOD) 2412 result += sizeof(u64); 2413 2414 if (type & PERF_SAMPLE_READ) { 2415 result += sizeof(u64); 2416 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2417 result += sizeof(u64); 2418 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2419 result += sizeof(u64); 2420 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2421 if (read_format & PERF_FORMAT_GROUP) { 2422 sz = sample->read.group.nr * 2423 sizeof(struct sample_read_value); 2424 result += sz; 2425 } else { 2426 result += sizeof(u64); 2427 } 2428 } 2429 2430 if (type & PERF_SAMPLE_CALLCHAIN) { 2431 sz = (sample->callchain->nr + 1) * sizeof(u64); 2432 result += sz; 2433 } 2434 2435 if (type & PERF_SAMPLE_RAW) { 2436 result += sizeof(u32); 2437 result += sample->raw_size; 2438 } 2439 2440 if (type & PERF_SAMPLE_BRANCH_STACK) { 2441 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2442 sz += sizeof(u64); 2443 result += sz; 2444 } 2445 2446 if (type & PERF_SAMPLE_REGS_USER) { 2447 if (sample->user_regs.abi) { 2448 result += sizeof(u64); 2449 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2450 result += sz; 2451 } else { 2452 result += sizeof(u64); 2453 } 2454 } 2455 2456 if (type & PERF_SAMPLE_STACK_USER) { 2457 sz = sample->user_stack.size; 2458 result += sizeof(u64); 2459 if (sz) { 2460 result += sz; 2461 result += sizeof(u64); 2462 } 2463 } 2464 2465 if (type & PERF_SAMPLE_WEIGHT) 2466 result += sizeof(u64); 2467 2468 if (type & PERF_SAMPLE_DATA_SRC) 2469 result += sizeof(u64); 2470 2471 if (type & PERF_SAMPLE_TRANSACTION) 2472 result += sizeof(u64); 2473 2474 if (type & PERF_SAMPLE_REGS_INTR) { 2475 if (sample->intr_regs.abi) { 2476 result += sizeof(u64); 2477 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2478 result += sz; 2479 } else { 2480 result += sizeof(u64); 2481 } 2482 } 2483 2484 if (type & PERF_SAMPLE_PHYS_ADDR) 2485 result += sizeof(u64); 2486 2487 return result; 2488 } 2489 2490 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2491 u64 read_format, 2492 const struct perf_sample *sample) 2493 { 2494 u64 *array; 2495 size_t sz; 2496 /* 2497 * used for cross-endian analysis. See git commit 65014ab3 2498 * for why this goofiness is needed. 2499 */ 2500 union u64_swap u; 2501 2502 array = event->sample.array; 2503 2504 if (type & PERF_SAMPLE_IDENTIFIER) { 2505 *array = sample->id; 2506 array++; 2507 } 2508 2509 if (type & PERF_SAMPLE_IP) { 2510 *array = sample->ip; 2511 array++; 2512 } 2513 2514 if (type & PERF_SAMPLE_TID) { 2515 u.val32[0] = sample->pid; 2516 u.val32[1] = sample->tid; 2517 *array = u.val64; 2518 array++; 2519 } 2520 2521 if (type & PERF_SAMPLE_TIME) { 2522 *array = sample->time; 2523 array++; 2524 } 2525 2526 if (type & PERF_SAMPLE_ADDR) { 2527 *array = sample->addr; 2528 array++; 2529 } 2530 2531 if (type & PERF_SAMPLE_ID) { 2532 *array = sample->id; 2533 array++; 2534 } 2535 2536 if (type & PERF_SAMPLE_STREAM_ID) { 2537 *array = sample->stream_id; 2538 array++; 2539 } 2540 2541 if (type & PERF_SAMPLE_CPU) { 2542 u.val32[0] = sample->cpu; 2543 u.val32[1] = 0; 2544 *array = u.val64; 2545 array++; 2546 } 2547 2548 if (type & PERF_SAMPLE_PERIOD) { 2549 *array = sample->period; 2550 array++; 2551 } 2552 2553 if (type & PERF_SAMPLE_READ) { 2554 if (read_format & PERF_FORMAT_GROUP) 2555 *array = sample->read.group.nr; 2556 else 2557 *array = sample->read.one.value; 2558 array++; 2559 2560 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2561 *array = sample->read.time_enabled; 2562 array++; 2563 } 2564 2565 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2566 *array = sample->read.time_running; 2567 array++; 2568 } 2569 2570 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2571 if (read_format & PERF_FORMAT_GROUP) { 2572 sz = sample->read.group.nr * 2573 sizeof(struct sample_read_value); 2574 memcpy(array, sample->read.group.values, sz); 2575 array = (void *)array + sz; 2576 } else { 2577 *array = sample->read.one.id; 2578 array++; 2579 } 2580 } 2581 2582 if (type & PERF_SAMPLE_CALLCHAIN) { 2583 sz = (sample->callchain->nr + 1) * sizeof(u64); 2584 memcpy(array, sample->callchain, sz); 2585 array = (void *)array + sz; 2586 } 2587 2588 if (type & PERF_SAMPLE_RAW) { 2589 u.val32[0] = sample->raw_size; 2590 *array = u.val64; 2591 array = (void *)array + sizeof(u32); 2592 2593 memcpy(array, sample->raw_data, sample->raw_size); 2594 array = (void *)array + sample->raw_size; 2595 } 2596 2597 if (type & PERF_SAMPLE_BRANCH_STACK) { 2598 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2599 sz += sizeof(u64); 2600 memcpy(array, sample->branch_stack, sz); 2601 array = (void *)array + sz; 2602 } 2603 2604 if (type & PERF_SAMPLE_REGS_USER) { 2605 if (sample->user_regs.abi) { 2606 *array++ = sample->user_regs.abi; 2607 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2608 memcpy(array, sample->user_regs.regs, sz); 2609 array = (void *)array + sz; 2610 } else { 2611 *array++ = 0; 2612 } 2613 } 2614 2615 if (type & PERF_SAMPLE_STACK_USER) { 2616 sz = sample->user_stack.size; 2617 *array++ = sz; 2618 if (sz) { 2619 memcpy(array, sample->user_stack.data, sz); 2620 array = (void *)array + sz; 2621 *array++ = sz; 2622 } 2623 } 2624 2625 if (type & PERF_SAMPLE_WEIGHT) { 2626 *array = sample->weight; 2627 array++; 2628 } 2629 2630 if (type & PERF_SAMPLE_DATA_SRC) { 2631 *array = sample->data_src; 2632 array++; 2633 } 2634 2635 if (type & PERF_SAMPLE_TRANSACTION) { 2636 *array = sample->transaction; 2637 array++; 2638 } 2639 2640 if (type & PERF_SAMPLE_REGS_INTR) { 2641 if (sample->intr_regs.abi) { 2642 *array++ = sample->intr_regs.abi; 2643 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2644 memcpy(array, sample->intr_regs.regs, sz); 2645 array = (void *)array + sz; 2646 } else { 2647 *array++ = 0; 2648 } 2649 } 2650 2651 if (type & PERF_SAMPLE_PHYS_ADDR) { 2652 *array = sample->phys_addr; 2653 array++; 2654 } 2655 2656 return 0; 2657 } 2658 2659 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2660 { 2661 return pevent_find_field(evsel->tp_format, name); 2662 } 2663 2664 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2665 const char *name) 2666 { 2667 struct format_field *field = perf_evsel__field(evsel, name); 2668 int offset; 2669 2670 if (!field) 2671 return NULL; 2672 2673 offset = field->offset; 2674 2675 if (field->flags & FIELD_IS_DYNAMIC) { 2676 offset = *(int *)(sample->raw_data + field->offset); 2677 offset &= 0xffff; 2678 } 2679 2680 return sample->raw_data + offset; 2681 } 2682 2683 u64 format_field__intval(struct format_field *field, struct perf_sample *sample, 2684 bool needs_swap) 2685 { 2686 u64 value; 2687 void *ptr = sample->raw_data + field->offset; 2688 2689 switch (field->size) { 2690 case 1: 2691 return *(u8 *)ptr; 2692 case 2: 2693 value = *(u16 *)ptr; 2694 break; 2695 case 4: 2696 value = *(u32 *)ptr; 2697 break; 2698 case 8: 2699 memcpy(&value, ptr, sizeof(u64)); 2700 break; 2701 default: 2702 return 0; 2703 } 2704 2705 if (!needs_swap) 2706 return value; 2707 2708 switch (field->size) { 2709 case 2: 2710 return bswap_16(value); 2711 case 4: 2712 return bswap_32(value); 2713 case 8: 2714 return bswap_64(value); 2715 default: 2716 return 0; 2717 } 2718 2719 return 0; 2720 } 2721 2722 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2723 const char *name) 2724 { 2725 struct format_field *field = perf_evsel__field(evsel, name); 2726 2727 if (!field) 2728 return 0; 2729 2730 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2731 } 2732 2733 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2734 char *msg, size_t msgsize) 2735 { 2736 int paranoid; 2737 2738 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2739 evsel->attr.type == PERF_TYPE_HARDWARE && 2740 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2741 /* 2742 * If it's cycles then fall back to hrtimer based 2743 * cpu-clock-tick sw counter, which is always available even if 2744 * no PMU support. 2745 * 2746 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2747 * b0a873e). 2748 */ 2749 scnprintf(msg, msgsize, "%s", 2750 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2751 2752 evsel->attr.type = PERF_TYPE_SOFTWARE; 2753 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2754 2755 zfree(&evsel->name); 2756 return true; 2757 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2758 (paranoid = perf_event_paranoid()) > 1) { 2759 const char *name = perf_evsel__name(evsel); 2760 char *new_name; 2761 const char *sep = ":"; 2762 2763 /* Is there already the separator in the name. */ 2764 if (strchr(name, '/') || 2765 strchr(name, ':')) 2766 sep = ""; 2767 2768 if (asprintf(&new_name, "%s%su", name, sep) < 0) 2769 return false; 2770 2771 if (evsel->name) 2772 free(evsel->name); 2773 evsel->name = new_name; 2774 scnprintf(msg, msgsize, 2775 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2776 evsel->attr.exclude_kernel = 1; 2777 2778 return true; 2779 } 2780 2781 return false; 2782 } 2783 2784 static bool find_process(const char *name) 2785 { 2786 size_t len = strlen(name); 2787 DIR *dir; 2788 struct dirent *d; 2789 int ret = -1; 2790 2791 dir = opendir(procfs__mountpoint()); 2792 if (!dir) 2793 return false; 2794 2795 /* Walk through the directory. */ 2796 while (ret && (d = readdir(dir)) != NULL) { 2797 char path[PATH_MAX]; 2798 char *data; 2799 size_t size; 2800 2801 if ((d->d_type != DT_DIR) || 2802 !strcmp(".", d->d_name) || 2803 !strcmp("..", d->d_name)) 2804 continue; 2805 2806 scnprintf(path, sizeof(path), "%s/%s/comm", 2807 procfs__mountpoint(), d->d_name); 2808 2809 if (filename__read_str(path, &data, &size)) 2810 continue; 2811 2812 ret = strncmp(name, data, len); 2813 free(data); 2814 } 2815 2816 closedir(dir); 2817 return ret ? false : true; 2818 } 2819 2820 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2821 int err, char *msg, size_t size) 2822 { 2823 char sbuf[STRERR_BUFSIZE]; 2824 int printed = 0; 2825 2826 switch (err) { 2827 case EPERM: 2828 case EACCES: 2829 if (err == EPERM) 2830 printed = scnprintf(msg, size, 2831 "No permission to enable %s event.\n\n", 2832 perf_evsel__name(evsel)); 2833 2834 return scnprintf(msg + printed, size - printed, 2835 "You may not have permission to collect %sstats.\n\n" 2836 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2837 "which controls use of the performance events system by\n" 2838 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2839 "The current value is %d:\n\n" 2840 " -1: Allow use of (almost) all events by all users\n" 2841 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" 2842 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n" 2843 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n" 2844 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2845 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2846 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2847 " kernel.perf_event_paranoid = -1\n" , 2848 target->system_wide ? "system-wide " : "", 2849 perf_event_paranoid()); 2850 case ENOENT: 2851 return scnprintf(msg, size, "The %s event is not supported.", 2852 perf_evsel__name(evsel)); 2853 case EMFILE: 2854 return scnprintf(msg, size, "%s", 2855 "Too many events are opened.\n" 2856 "Probably the maximum number of open file descriptors has been reached.\n" 2857 "Hint: Try again after reducing the number of events.\n" 2858 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2859 case ENOMEM: 2860 if (evsel__has_callchain(evsel) && 2861 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2862 return scnprintf(msg, size, 2863 "Not enough memory to setup event with callchain.\n" 2864 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2865 "Hint: Current value: %d", sysctl__max_stack()); 2866 break; 2867 case ENODEV: 2868 if (target->cpu_list) 2869 return scnprintf(msg, size, "%s", 2870 "No such device - did you specify an out-of-range profile CPU?"); 2871 break; 2872 case EOPNOTSUPP: 2873 if (evsel->attr.sample_period != 0) 2874 return scnprintf(msg, size, 2875 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'", 2876 perf_evsel__name(evsel)); 2877 if (evsel->attr.precise_ip) 2878 return scnprintf(msg, size, "%s", 2879 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2880 #if defined(__i386__) || defined(__x86_64__) 2881 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2882 return scnprintf(msg, size, "%s", 2883 "No hardware sampling interrupt available.\n"); 2884 #endif 2885 break; 2886 case EBUSY: 2887 if (find_process("oprofiled")) 2888 return scnprintf(msg, size, 2889 "The PMU counters are busy/taken by another profiler.\n" 2890 "We found oprofile daemon running, please stop it and try again."); 2891 break; 2892 case EINVAL: 2893 if (evsel->attr.write_backward && perf_missing_features.write_backward) 2894 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2895 if (perf_missing_features.clockid) 2896 return scnprintf(msg, size, "clockid feature not supported."); 2897 if (perf_missing_features.clockid_wrong) 2898 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2899 break; 2900 default: 2901 break; 2902 } 2903 2904 return scnprintf(msg, size, 2905 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2906 "/bin/dmesg | grep -i perf may provide additional information.\n", 2907 err, str_error_r(err, sbuf, sizeof(sbuf)), 2908 perf_evsel__name(evsel)); 2909 } 2910 2911 struct perf_env *perf_evsel__env(struct perf_evsel *evsel) 2912 { 2913 if (evsel && evsel->evlist) 2914 return evsel->evlist->env; 2915 return NULL; 2916 } 2917