1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <linux/bitops.h> 12 #include <api/fs/debugfs.h> 13 #include <traceevent/event-parse.h> 14 #include <linux/hw_breakpoint.h> 15 #include <linux/perf_event.h> 16 #include <sys/resource.h> 17 #include "asm/bug.h" 18 #include "callchain.h" 19 #include "cgroup.h" 20 #include "evsel.h" 21 #include "evlist.h" 22 #include "util.h" 23 #include "cpumap.h" 24 #include "thread_map.h" 25 #include "target.h" 26 #include "perf_regs.h" 27 #include "debug.h" 28 #include "trace-event.h" 29 30 static struct { 31 bool sample_id_all; 32 bool exclude_guest; 33 bool mmap2; 34 bool cloexec; 35 } perf_missing_features; 36 37 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 38 { 39 return 0; 40 } 41 42 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 43 { 44 } 45 46 static struct { 47 size_t size; 48 int (*init)(struct perf_evsel *evsel); 49 void (*fini)(struct perf_evsel *evsel); 50 } perf_evsel__object = { 51 .size = sizeof(struct perf_evsel), 52 .init = perf_evsel__no_extra_init, 53 .fini = perf_evsel__no_extra_fini, 54 }; 55 56 int perf_evsel__object_config(size_t object_size, 57 int (*init)(struct perf_evsel *evsel), 58 void (*fini)(struct perf_evsel *evsel)) 59 { 60 61 if (object_size == 0) 62 goto set_methods; 63 64 if (perf_evsel__object.size > object_size) 65 return -EINVAL; 66 67 perf_evsel__object.size = object_size; 68 69 set_methods: 70 if (init != NULL) 71 perf_evsel__object.init = init; 72 73 if (fini != NULL) 74 perf_evsel__object.fini = fini; 75 76 return 0; 77 } 78 79 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 80 81 int __perf_evsel__sample_size(u64 sample_type) 82 { 83 u64 mask = sample_type & PERF_SAMPLE_MASK; 84 int size = 0; 85 int i; 86 87 for (i = 0; i < 64; i++) { 88 if (mask & (1ULL << i)) 89 size++; 90 } 91 92 size *= sizeof(u64); 93 94 return size; 95 } 96 97 /** 98 * __perf_evsel__calc_id_pos - calculate id_pos. 99 * @sample_type: sample type 100 * 101 * This function returns the position of the event id (PERF_SAMPLE_ID or 102 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 103 * sample_event. 104 */ 105 static int __perf_evsel__calc_id_pos(u64 sample_type) 106 { 107 int idx = 0; 108 109 if (sample_type & PERF_SAMPLE_IDENTIFIER) 110 return 0; 111 112 if (!(sample_type & PERF_SAMPLE_ID)) 113 return -1; 114 115 if (sample_type & PERF_SAMPLE_IP) 116 idx += 1; 117 118 if (sample_type & PERF_SAMPLE_TID) 119 idx += 1; 120 121 if (sample_type & PERF_SAMPLE_TIME) 122 idx += 1; 123 124 if (sample_type & PERF_SAMPLE_ADDR) 125 idx += 1; 126 127 return idx; 128 } 129 130 /** 131 * __perf_evsel__calc_is_pos - calculate is_pos. 132 * @sample_type: sample type 133 * 134 * This function returns the position (counting backwards) of the event id 135 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 136 * sample_id_all is used there is an id sample appended to non-sample events. 137 */ 138 static int __perf_evsel__calc_is_pos(u64 sample_type) 139 { 140 int idx = 1; 141 142 if (sample_type & PERF_SAMPLE_IDENTIFIER) 143 return 1; 144 145 if (!(sample_type & PERF_SAMPLE_ID)) 146 return -1; 147 148 if (sample_type & PERF_SAMPLE_CPU) 149 idx += 1; 150 151 if (sample_type & PERF_SAMPLE_STREAM_ID) 152 idx += 1; 153 154 return idx; 155 } 156 157 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 158 { 159 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 160 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 161 } 162 163 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 164 enum perf_event_sample_format bit) 165 { 166 if (!(evsel->attr.sample_type & bit)) { 167 evsel->attr.sample_type |= bit; 168 evsel->sample_size += sizeof(u64); 169 perf_evsel__calc_id_pos(evsel); 170 } 171 } 172 173 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 174 enum perf_event_sample_format bit) 175 { 176 if (evsel->attr.sample_type & bit) { 177 evsel->attr.sample_type &= ~bit; 178 evsel->sample_size -= sizeof(u64); 179 perf_evsel__calc_id_pos(evsel); 180 } 181 } 182 183 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 184 bool can_sample_identifier) 185 { 186 if (can_sample_identifier) { 187 perf_evsel__reset_sample_bit(evsel, ID); 188 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 189 } else { 190 perf_evsel__set_sample_bit(evsel, ID); 191 } 192 evsel->attr.read_format |= PERF_FORMAT_ID; 193 } 194 195 void perf_evsel__init(struct perf_evsel *evsel, 196 struct perf_event_attr *attr, int idx) 197 { 198 evsel->idx = idx; 199 evsel->tracking = !idx; 200 evsel->attr = *attr; 201 evsel->leader = evsel; 202 evsel->unit = ""; 203 evsel->scale = 1.0; 204 INIT_LIST_HEAD(&evsel->node); 205 perf_evsel__object.init(evsel); 206 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 207 perf_evsel__calc_id_pos(evsel); 208 } 209 210 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 211 { 212 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 213 214 if (evsel != NULL) 215 perf_evsel__init(evsel, attr, idx); 216 217 return evsel; 218 } 219 220 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 221 { 222 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 223 224 if (evsel != NULL) { 225 struct perf_event_attr attr = { 226 .type = PERF_TYPE_TRACEPOINT, 227 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 228 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 229 }; 230 231 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 232 goto out_free; 233 234 evsel->tp_format = trace_event__tp_format(sys, name); 235 if (evsel->tp_format == NULL) 236 goto out_free; 237 238 event_attr_init(&attr); 239 attr.config = evsel->tp_format->id; 240 attr.sample_period = 1; 241 perf_evsel__init(evsel, &attr, idx); 242 } 243 244 return evsel; 245 246 out_free: 247 zfree(&evsel->name); 248 free(evsel); 249 return NULL; 250 } 251 252 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 253 "cycles", 254 "instructions", 255 "cache-references", 256 "cache-misses", 257 "branches", 258 "branch-misses", 259 "bus-cycles", 260 "stalled-cycles-frontend", 261 "stalled-cycles-backend", 262 "ref-cycles", 263 }; 264 265 static const char *__perf_evsel__hw_name(u64 config) 266 { 267 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 268 return perf_evsel__hw_names[config]; 269 270 return "unknown-hardware"; 271 } 272 273 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 274 { 275 int colon = 0, r = 0; 276 struct perf_event_attr *attr = &evsel->attr; 277 bool exclude_guest_default = false; 278 279 #define MOD_PRINT(context, mod) do { \ 280 if (!attr->exclude_##context) { \ 281 if (!colon) colon = ++r; \ 282 r += scnprintf(bf + r, size - r, "%c", mod); \ 283 } } while(0) 284 285 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 286 MOD_PRINT(kernel, 'k'); 287 MOD_PRINT(user, 'u'); 288 MOD_PRINT(hv, 'h'); 289 exclude_guest_default = true; 290 } 291 292 if (attr->precise_ip) { 293 if (!colon) 294 colon = ++r; 295 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 296 exclude_guest_default = true; 297 } 298 299 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 300 MOD_PRINT(host, 'H'); 301 MOD_PRINT(guest, 'G'); 302 } 303 #undef MOD_PRINT 304 if (colon) 305 bf[colon - 1] = ':'; 306 return r; 307 } 308 309 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 310 { 311 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 312 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 313 } 314 315 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 316 "cpu-clock", 317 "task-clock", 318 "page-faults", 319 "context-switches", 320 "cpu-migrations", 321 "minor-faults", 322 "major-faults", 323 "alignment-faults", 324 "emulation-faults", 325 "dummy", 326 }; 327 328 static const char *__perf_evsel__sw_name(u64 config) 329 { 330 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 331 return perf_evsel__sw_names[config]; 332 return "unknown-software"; 333 } 334 335 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 336 { 337 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 338 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 339 } 340 341 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 342 { 343 int r; 344 345 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 346 347 if (type & HW_BREAKPOINT_R) 348 r += scnprintf(bf + r, size - r, "r"); 349 350 if (type & HW_BREAKPOINT_W) 351 r += scnprintf(bf + r, size - r, "w"); 352 353 if (type & HW_BREAKPOINT_X) 354 r += scnprintf(bf + r, size - r, "x"); 355 356 return r; 357 } 358 359 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 360 { 361 struct perf_event_attr *attr = &evsel->attr; 362 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 363 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 364 } 365 366 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 367 [PERF_EVSEL__MAX_ALIASES] = { 368 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 369 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 370 { "LLC", "L2", }, 371 { "dTLB", "d-tlb", "Data-TLB", }, 372 { "iTLB", "i-tlb", "Instruction-TLB", }, 373 { "branch", "branches", "bpu", "btb", "bpc", }, 374 { "node", }, 375 }; 376 377 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 378 [PERF_EVSEL__MAX_ALIASES] = { 379 { "load", "loads", "read", }, 380 { "store", "stores", "write", }, 381 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 382 }; 383 384 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 385 [PERF_EVSEL__MAX_ALIASES] = { 386 { "refs", "Reference", "ops", "access", }, 387 { "misses", "miss", }, 388 }; 389 390 #define C(x) PERF_COUNT_HW_CACHE_##x 391 #define CACHE_READ (1 << C(OP_READ)) 392 #define CACHE_WRITE (1 << C(OP_WRITE)) 393 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 394 #define COP(x) (1 << x) 395 396 /* 397 * cache operartion stat 398 * L1I : Read and prefetch only 399 * ITLB and BPU : Read-only 400 */ 401 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 402 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 403 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 404 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 405 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 406 [C(ITLB)] = (CACHE_READ), 407 [C(BPU)] = (CACHE_READ), 408 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 409 }; 410 411 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 412 { 413 if (perf_evsel__hw_cache_stat[type] & COP(op)) 414 return true; /* valid */ 415 else 416 return false; /* invalid */ 417 } 418 419 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 420 char *bf, size_t size) 421 { 422 if (result) { 423 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 424 perf_evsel__hw_cache_op[op][0], 425 perf_evsel__hw_cache_result[result][0]); 426 } 427 428 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 429 perf_evsel__hw_cache_op[op][1]); 430 } 431 432 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 433 { 434 u8 op, result, type = (config >> 0) & 0xff; 435 const char *err = "unknown-ext-hardware-cache-type"; 436 437 if (type > PERF_COUNT_HW_CACHE_MAX) 438 goto out_err; 439 440 op = (config >> 8) & 0xff; 441 err = "unknown-ext-hardware-cache-op"; 442 if (op > PERF_COUNT_HW_CACHE_OP_MAX) 443 goto out_err; 444 445 result = (config >> 16) & 0xff; 446 err = "unknown-ext-hardware-cache-result"; 447 if (result > PERF_COUNT_HW_CACHE_RESULT_MAX) 448 goto out_err; 449 450 err = "invalid-cache"; 451 if (!perf_evsel__is_cache_op_valid(type, op)) 452 goto out_err; 453 454 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 455 out_err: 456 return scnprintf(bf, size, "%s", err); 457 } 458 459 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 460 { 461 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 462 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 463 } 464 465 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 466 { 467 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 468 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 469 } 470 471 const char *perf_evsel__name(struct perf_evsel *evsel) 472 { 473 char bf[128]; 474 475 if (evsel->name) 476 return evsel->name; 477 478 switch (evsel->attr.type) { 479 case PERF_TYPE_RAW: 480 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 481 break; 482 483 case PERF_TYPE_HARDWARE: 484 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 485 break; 486 487 case PERF_TYPE_HW_CACHE: 488 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 489 break; 490 491 case PERF_TYPE_SOFTWARE: 492 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 493 break; 494 495 case PERF_TYPE_TRACEPOINT: 496 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 497 break; 498 499 case PERF_TYPE_BREAKPOINT: 500 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 501 break; 502 503 default: 504 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 505 evsel->attr.type); 506 break; 507 } 508 509 evsel->name = strdup(bf); 510 511 return evsel->name ?: "unknown"; 512 } 513 514 const char *perf_evsel__group_name(struct perf_evsel *evsel) 515 { 516 return evsel->group_name ?: "anon group"; 517 } 518 519 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 520 { 521 int ret; 522 struct perf_evsel *pos; 523 const char *group_name = perf_evsel__group_name(evsel); 524 525 ret = scnprintf(buf, size, "%s", group_name); 526 527 ret += scnprintf(buf + ret, size - ret, " { %s", 528 perf_evsel__name(evsel)); 529 530 for_each_group_member(pos, evsel) 531 ret += scnprintf(buf + ret, size - ret, ", %s", 532 perf_evsel__name(pos)); 533 534 ret += scnprintf(buf + ret, size - ret, " }"); 535 536 return ret; 537 } 538 539 static void 540 perf_evsel__config_callgraph(struct perf_evsel *evsel) 541 { 542 bool function = perf_evsel__is_function_event(evsel); 543 struct perf_event_attr *attr = &evsel->attr; 544 545 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 546 547 if (callchain_param.record_mode == CALLCHAIN_DWARF) { 548 if (!function) { 549 perf_evsel__set_sample_bit(evsel, REGS_USER); 550 perf_evsel__set_sample_bit(evsel, STACK_USER); 551 attr->sample_regs_user = PERF_REGS_MASK; 552 attr->sample_stack_user = callchain_param.dump_size; 553 attr->exclude_callchain_user = 1; 554 } else { 555 pr_info("Cannot use DWARF unwind for function trace event," 556 " falling back to framepointers.\n"); 557 } 558 } 559 560 if (function) { 561 pr_info("Disabling user space callchains for function trace event.\n"); 562 attr->exclude_callchain_user = 1; 563 } 564 } 565 566 /* 567 * The enable_on_exec/disabled value strategy: 568 * 569 * 1) For any type of traced program: 570 * - all independent events and group leaders are disabled 571 * - all group members are enabled 572 * 573 * Group members are ruled by group leaders. They need to 574 * be enabled, because the group scheduling relies on that. 575 * 576 * 2) For traced programs executed by perf: 577 * - all independent events and group leaders have 578 * enable_on_exec set 579 * - we don't specifically enable or disable any event during 580 * the record command 581 * 582 * Independent events and group leaders are initially disabled 583 * and get enabled by exec. Group members are ruled by group 584 * leaders as stated in 1). 585 * 586 * 3) For traced programs attached by perf (pid/tid): 587 * - we specifically enable or disable all events during 588 * the record command 589 * 590 * When attaching events to already running traced we 591 * enable/disable events specifically, as there's no 592 * initial traced exec call. 593 */ 594 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts) 595 { 596 struct perf_evsel *leader = evsel->leader; 597 struct perf_event_attr *attr = &evsel->attr; 598 int track = evsel->tracking; 599 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 600 601 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 602 attr->inherit = !opts->no_inherit; 603 604 perf_evsel__set_sample_bit(evsel, IP); 605 perf_evsel__set_sample_bit(evsel, TID); 606 607 if (evsel->sample_read) { 608 perf_evsel__set_sample_bit(evsel, READ); 609 610 /* 611 * We need ID even in case of single event, because 612 * PERF_SAMPLE_READ process ID specific data. 613 */ 614 perf_evsel__set_sample_id(evsel, false); 615 616 /* 617 * Apply group format only if we belong to group 618 * with more than one members. 619 */ 620 if (leader->nr_members > 1) { 621 attr->read_format |= PERF_FORMAT_GROUP; 622 attr->inherit = 0; 623 } 624 } 625 626 /* 627 * We default some events to have a default interval. But keep 628 * it a weak assumption overridable by the user. 629 */ 630 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 631 opts->user_interval != ULLONG_MAX)) { 632 if (opts->freq) { 633 perf_evsel__set_sample_bit(evsel, PERIOD); 634 attr->freq = 1; 635 attr->sample_freq = opts->freq; 636 } else { 637 attr->sample_period = opts->default_interval; 638 } 639 } 640 641 /* 642 * Disable sampling for all group members other 643 * than leader in case leader 'leads' the sampling. 644 */ 645 if ((leader != evsel) && leader->sample_read) { 646 attr->sample_freq = 0; 647 attr->sample_period = 0; 648 } 649 650 if (opts->no_samples) 651 attr->sample_freq = 0; 652 653 if (opts->inherit_stat) 654 attr->inherit_stat = 1; 655 656 if (opts->sample_address) { 657 perf_evsel__set_sample_bit(evsel, ADDR); 658 attr->mmap_data = track; 659 } 660 661 /* 662 * We don't allow user space callchains for function trace 663 * event, due to issues with page faults while tracing page 664 * fault handler and its overall trickiness nature. 665 */ 666 if (perf_evsel__is_function_event(evsel)) 667 evsel->attr.exclude_callchain_user = 1; 668 669 if (callchain_param.enabled && !evsel->no_aux_samples) 670 perf_evsel__config_callgraph(evsel); 671 672 if (opts->sample_intr_regs) { 673 attr->sample_regs_intr = PERF_REGS_MASK; 674 perf_evsel__set_sample_bit(evsel, REGS_INTR); 675 } 676 677 if (target__has_cpu(&opts->target)) 678 perf_evsel__set_sample_bit(evsel, CPU); 679 680 if (opts->period) 681 perf_evsel__set_sample_bit(evsel, PERIOD); 682 683 /* 684 * When the user explicitely disabled time don't force it here. 685 */ 686 if (opts->sample_time && 687 (!perf_missing_features.sample_id_all && 688 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu))) 689 perf_evsel__set_sample_bit(evsel, TIME); 690 691 if (opts->raw_samples && !evsel->no_aux_samples) { 692 perf_evsel__set_sample_bit(evsel, TIME); 693 perf_evsel__set_sample_bit(evsel, RAW); 694 perf_evsel__set_sample_bit(evsel, CPU); 695 } 696 697 if (opts->sample_address) 698 perf_evsel__set_sample_bit(evsel, DATA_SRC); 699 700 if (opts->no_buffering) { 701 attr->watermark = 0; 702 attr->wakeup_events = 1; 703 } 704 if (opts->branch_stack && !evsel->no_aux_samples) { 705 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 706 attr->branch_sample_type = opts->branch_stack; 707 } 708 709 if (opts->sample_weight) 710 perf_evsel__set_sample_bit(evsel, WEIGHT); 711 712 attr->mmap = track; 713 attr->mmap2 = track && !perf_missing_features.mmap2; 714 attr->comm = track; 715 716 if (opts->sample_transaction) 717 perf_evsel__set_sample_bit(evsel, TRANSACTION); 718 719 /* 720 * XXX see the function comment above 721 * 722 * Disabling only independent events or group leaders, 723 * keeping group members enabled. 724 */ 725 if (perf_evsel__is_group_leader(evsel)) 726 attr->disabled = 1; 727 728 /* 729 * Setting enable_on_exec for independent events and 730 * group leaders for traced executed by perf. 731 */ 732 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 733 !opts->initial_delay) 734 attr->enable_on_exec = 1; 735 736 if (evsel->immediate) { 737 attr->disabled = 0; 738 attr->enable_on_exec = 0; 739 } 740 } 741 742 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 743 { 744 int cpu, thread; 745 746 if (evsel->system_wide) 747 nthreads = 1; 748 749 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 750 751 if (evsel->fd) { 752 for (cpu = 0; cpu < ncpus; cpu++) { 753 for (thread = 0; thread < nthreads; thread++) { 754 FD(evsel, cpu, thread) = -1; 755 } 756 } 757 } 758 759 return evsel->fd != NULL ? 0 : -ENOMEM; 760 } 761 762 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads, 763 int ioc, void *arg) 764 { 765 int cpu, thread; 766 767 if (evsel->system_wide) 768 nthreads = 1; 769 770 for (cpu = 0; cpu < ncpus; cpu++) { 771 for (thread = 0; thread < nthreads; thread++) { 772 int fd = FD(evsel, cpu, thread), 773 err = ioctl(fd, ioc, arg); 774 775 if (err) 776 return err; 777 } 778 } 779 780 return 0; 781 } 782 783 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads, 784 const char *filter) 785 { 786 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 787 PERF_EVENT_IOC_SET_FILTER, 788 (void *)filter); 789 } 790 791 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads) 792 { 793 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 794 PERF_EVENT_IOC_ENABLE, 795 0); 796 } 797 798 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 799 { 800 if (evsel->system_wide) 801 nthreads = 1; 802 803 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 804 if (evsel->sample_id == NULL) 805 return -ENOMEM; 806 807 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 808 if (evsel->id == NULL) { 809 xyarray__delete(evsel->sample_id); 810 evsel->sample_id = NULL; 811 return -ENOMEM; 812 } 813 814 return 0; 815 } 816 817 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus) 818 { 819 memset(evsel->counts, 0, (sizeof(*evsel->counts) + 820 (ncpus * sizeof(struct perf_counts_values)))); 821 } 822 823 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus) 824 { 825 evsel->counts = zalloc((sizeof(*evsel->counts) + 826 (ncpus * sizeof(struct perf_counts_values)))); 827 return evsel->counts != NULL ? 0 : -ENOMEM; 828 } 829 830 static void perf_evsel__free_fd(struct perf_evsel *evsel) 831 { 832 xyarray__delete(evsel->fd); 833 evsel->fd = NULL; 834 } 835 836 static void perf_evsel__free_id(struct perf_evsel *evsel) 837 { 838 xyarray__delete(evsel->sample_id); 839 evsel->sample_id = NULL; 840 zfree(&evsel->id); 841 } 842 843 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 844 { 845 int cpu, thread; 846 847 if (evsel->system_wide) 848 nthreads = 1; 849 850 for (cpu = 0; cpu < ncpus; cpu++) 851 for (thread = 0; thread < nthreads; ++thread) { 852 close(FD(evsel, cpu, thread)); 853 FD(evsel, cpu, thread) = -1; 854 } 855 } 856 857 void perf_evsel__free_counts(struct perf_evsel *evsel) 858 { 859 zfree(&evsel->counts); 860 } 861 862 void perf_evsel__exit(struct perf_evsel *evsel) 863 { 864 assert(list_empty(&evsel->node)); 865 perf_evsel__free_fd(evsel); 866 perf_evsel__free_id(evsel); 867 close_cgroup(evsel->cgrp); 868 zfree(&evsel->group_name); 869 zfree(&evsel->name); 870 perf_evsel__object.fini(evsel); 871 } 872 873 void perf_evsel__delete(struct perf_evsel *evsel) 874 { 875 perf_evsel__exit(evsel); 876 free(evsel); 877 } 878 879 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, 880 struct perf_counts_values *count) 881 { 882 struct perf_counts_values tmp; 883 884 if (!evsel->prev_raw_counts) 885 return; 886 887 if (cpu == -1) { 888 tmp = evsel->prev_raw_counts->aggr; 889 evsel->prev_raw_counts->aggr = *count; 890 } else { 891 tmp = evsel->prev_raw_counts->cpu[cpu]; 892 evsel->prev_raw_counts->cpu[cpu] = *count; 893 } 894 895 count->val = count->val - tmp.val; 896 count->ena = count->ena - tmp.ena; 897 count->run = count->run - tmp.run; 898 } 899 900 void perf_counts_values__scale(struct perf_counts_values *count, 901 bool scale, s8 *pscaled) 902 { 903 s8 scaled = 0; 904 905 if (scale) { 906 if (count->run == 0) { 907 scaled = -1; 908 count->val = 0; 909 } else if (count->run < count->ena) { 910 scaled = 1; 911 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 912 } 913 } else 914 count->ena = count->run = 0; 915 916 if (pscaled) 917 *pscaled = scaled; 918 } 919 920 int perf_evsel__read_cb(struct perf_evsel *evsel, int cpu, int thread, 921 perf_evsel__read_cb_t cb) 922 { 923 struct perf_counts_values count; 924 925 memset(&count, 0, sizeof(count)); 926 927 if (FD(evsel, cpu, thread) < 0) 928 return -EINVAL; 929 930 if (readn(FD(evsel, cpu, thread), &count, sizeof(count)) < 0) 931 return -errno; 932 933 return cb(evsel, cpu, thread, &count); 934 } 935 936 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 937 int cpu, int thread, bool scale) 938 { 939 struct perf_counts_values count; 940 size_t nv = scale ? 3 : 1; 941 942 if (FD(evsel, cpu, thread) < 0) 943 return -EINVAL; 944 945 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0) 946 return -ENOMEM; 947 948 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0) 949 return -errno; 950 951 perf_evsel__compute_deltas(evsel, cpu, &count); 952 perf_counts_values__scale(&count, scale, NULL); 953 evsel->counts->cpu[cpu] = count; 954 return 0; 955 } 956 957 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 958 { 959 struct perf_evsel *leader = evsel->leader; 960 int fd; 961 962 if (perf_evsel__is_group_leader(evsel)) 963 return -1; 964 965 /* 966 * Leader must be already processed/open, 967 * if not it's a bug. 968 */ 969 BUG_ON(!leader->fd); 970 971 fd = FD(leader, cpu, thread); 972 BUG_ON(fd == -1); 973 974 return fd; 975 } 976 977 #define __PRINT_ATTR(fmt, cast, field) \ 978 fprintf(fp, " %-19s "fmt"\n", #field, cast attr->field) 979 980 #define PRINT_ATTR_U32(field) __PRINT_ATTR("%u" , , field) 981 #define PRINT_ATTR_X32(field) __PRINT_ATTR("%#x", , field) 982 #define PRINT_ATTR_U64(field) __PRINT_ATTR("%" PRIu64, (uint64_t), field) 983 #define PRINT_ATTR_X64(field) __PRINT_ATTR("%#"PRIx64, (uint64_t), field) 984 985 #define PRINT_ATTR2N(name1, field1, name2, field2) \ 986 fprintf(fp, " %-19s %u %-19s %u\n", \ 987 name1, attr->field1, name2, attr->field2) 988 989 #define PRINT_ATTR2(field1, field2) \ 990 PRINT_ATTR2N(#field1, field1, #field2, field2) 991 992 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp) 993 { 994 size_t ret = 0; 995 996 ret += fprintf(fp, "%.60s\n", graph_dotted_line); 997 ret += fprintf(fp, "perf_event_attr:\n"); 998 999 ret += PRINT_ATTR_U32(type); 1000 ret += PRINT_ATTR_U32(size); 1001 ret += PRINT_ATTR_X64(config); 1002 ret += PRINT_ATTR_U64(sample_period); 1003 ret += PRINT_ATTR_U64(sample_freq); 1004 ret += PRINT_ATTR_X64(sample_type); 1005 ret += PRINT_ATTR_X64(read_format); 1006 1007 ret += PRINT_ATTR2(disabled, inherit); 1008 ret += PRINT_ATTR2(pinned, exclusive); 1009 ret += PRINT_ATTR2(exclude_user, exclude_kernel); 1010 ret += PRINT_ATTR2(exclude_hv, exclude_idle); 1011 ret += PRINT_ATTR2(mmap, comm); 1012 ret += PRINT_ATTR2(mmap2, comm_exec); 1013 ret += PRINT_ATTR2(freq, inherit_stat); 1014 ret += PRINT_ATTR2(enable_on_exec, task); 1015 ret += PRINT_ATTR2(watermark, precise_ip); 1016 ret += PRINT_ATTR2(mmap_data, sample_id_all); 1017 ret += PRINT_ATTR2(exclude_host, exclude_guest); 1018 ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel, 1019 "excl.callchain_user", exclude_callchain_user); 1020 1021 ret += PRINT_ATTR_U32(wakeup_events); 1022 ret += PRINT_ATTR_U32(wakeup_watermark); 1023 ret += PRINT_ATTR_X32(bp_type); 1024 ret += PRINT_ATTR_X64(bp_addr); 1025 ret += PRINT_ATTR_X64(config1); 1026 ret += PRINT_ATTR_U64(bp_len); 1027 ret += PRINT_ATTR_X64(config2); 1028 ret += PRINT_ATTR_X64(branch_sample_type); 1029 ret += PRINT_ATTR_X64(sample_regs_user); 1030 ret += PRINT_ATTR_U32(sample_stack_user); 1031 ret += PRINT_ATTR_X64(sample_regs_intr); 1032 1033 ret += fprintf(fp, "%.60s\n", graph_dotted_line); 1034 1035 return ret; 1036 } 1037 1038 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1039 struct thread_map *threads) 1040 { 1041 int cpu, thread, nthreads; 1042 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1043 int pid = -1, err; 1044 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1045 1046 if (evsel->system_wide) 1047 nthreads = 1; 1048 else 1049 nthreads = threads->nr; 1050 1051 if (evsel->fd == NULL && 1052 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1053 return -ENOMEM; 1054 1055 if (evsel->cgrp) { 1056 flags |= PERF_FLAG_PID_CGROUP; 1057 pid = evsel->cgrp->fd; 1058 } 1059 1060 fallback_missing_features: 1061 if (perf_missing_features.cloexec) 1062 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1063 if (perf_missing_features.mmap2) 1064 evsel->attr.mmap2 = 0; 1065 if (perf_missing_features.exclude_guest) 1066 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1067 retry_sample_id: 1068 if (perf_missing_features.sample_id_all) 1069 evsel->attr.sample_id_all = 0; 1070 1071 if (verbose >= 2) 1072 perf_event_attr__fprintf(&evsel->attr, stderr); 1073 1074 for (cpu = 0; cpu < cpus->nr; cpu++) { 1075 1076 for (thread = 0; thread < nthreads; thread++) { 1077 int group_fd; 1078 1079 if (!evsel->cgrp && !evsel->system_wide) 1080 pid = threads->map[thread]; 1081 1082 group_fd = get_group_fd(evsel, cpu, thread); 1083 retry_open: 1084 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx\n", 1085 pid, cpus->map[cpu], group_fd, flags); 1086 1087 FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr, 1088 pid, 1089 cpus->map[cpu], 1090 group_fd, flags); 1091 if (FD(evsel, cpu, thread) < 0) { 1092 err = -errno; 1093 pr_debug2("sys_perf_event_open failed, error %d\n", 1094 err); 1095 goto try_fallback; 1096 } 1097 set_rlimit = NO_CHANGE; 1098 } 1099 } 1100 1101 return 0; 1102 1103 try_fallback: 1104 /* 1105 * perf stat needs between 5 and 22 fds per CPU. When we run out 1106 * of them try to increase the limits. 1107 */ 1108 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1109 struct rlimit l; 1110 int old_errno = errno; 1111 1112 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1113 if (set_rlimit == NO_CHANGE) 1114 l.rlim_cur = l.rlim_max; 1115 else { 1116 l.rlim_cur = l.rlim_max + 1000; 1117 l.rlim_max = l.rlim_cur; 1118 } 1119 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1120 set_rlimit++; 1121 errno = old_errno; 1122 goto retry_open; 1123 } 1124 } 1125 errno = old_errno; 1126 } 1127 1128 if (err != -EINVAL || cpu > 0 || thread > 0) 1129 goto out_close; 1130 1131 if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1132 perf_missing_features.cloexec = true; 1133 goto fallback_missing_features; 1134 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1135 perf_missing_features.mmap2 = true; 1136 goto fallback_missing_features; 1137 } else if (!perf_missing_features.exclude_guest && 1138 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1139 perf_missing_features.exclude_guest = true; 1140 goto fallback_missing_features; 1141 } else if (!perf_missing_features.sample_id_all) { 1142 perf_missing_features.sample_id_all = true; 1143 goto retry_sample_id; 1144 } 1145 1146 out_close: 1147 do { 1148 while (--thread >= 0) { 1149 close(FD(evsel, cpu, thread)); 1150 FD(evsel, cpu, thread) = -1; 1151 } 1152 thread = nthreads; 1153 } while (--cpu >= 0); 1154 return err; 1155 } 1156 1157 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads) 1158 { 1159 if (evsel->fd == NULL) 1160 return; 1161 1162 perf_evsel__close_fd(evsel, ncpus, nthreads); 1163 perf_evsel__free_fd(evsel); 1164 } 1165 1166 static struct { 1167 struct cpu_map map; 1168 int cpus[1]; 1169 } empty_cpu_map = { 1170 .map.nr = 1, 1171 .cpus = { -1, }, 1172 }; 1173 1174 static struct { 1175 struct thread_map map; 1176 int threads[1]; 1177 } empty_thread_map = { 1178 .map.nr = 1, 1179 .threads = { -1, }, 1180 }; 1181 1182 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1183 struct thread_map *threads) 1184 { 1185 if (cpus == NULL) { 1186 /* Work around old compiler warnings about strict aliasing */ 1187 cpus = &empty_cpu_map.map; 1188 } 1189 1190 if (threads == NULL) 1191 threads = &empty_thread_map.map; 1192 1193 return __perf_evsel__open(evsel, cpus, threads); 1194 } 1195 1196 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1197 struct cpu_map *cpus) 1198 { 1199 return __perf_evsel__open(evsel, cpus, &empty_thread_map.map); 1200 } 1201 1202 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1203 struct thread_map *threads) 1204 { 1205 return __perf_evsel__open(evsel, &empty_cpu_map.map, threads); 1206 } 1207 1208 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1209 const union perf_event *event, 1210 struct perf_sample *sample) 1211 { 1212 u64 type = evsel->attr.sample_type; 1213 const u64 *array = event->sample.array; 1214 bool swapped = evsel->needs_swap; 1215 union u64_swap u; 1216 1217 array += ((event->header.size - 1218 sizeof(event->header)) / sizeof(u64)) - 1; 1219 1220 if (type & PERF_SAMPLE_IDENTIFIER) { 1221 sample->id = *array; 1222 array--; 1223 } 1224 1225 if (type & PERF_SAMPLE_CPU) { 1226 u.val64 = *array; 1227 if (swapped) { 1228 /* undo swap of u64, then swap on individual u32s */ 1229 u.val64 = bswap_64(u.val64); 1230 u.val32[0] = bswap_32(u.val32[0]); 1231 } 1232 1233 sample->cpu = u.val32[0]; 1234 array--; 1235 } 1236 1237 if (type & PERF_SAMPLE_STREAM_ID) { 1238 sample->stream_id = *array; 1239 array--; 1240 } 1241 1242 if (type & PERF_SAMPLE_ID) { 1243 sample->id = *array; 1244 array--; 1245 } 1246 1247 if (type & PERF_SAMPLE_TIME) { 1248 sample->time = *array; 1249 array--; 1250 } 1251 1252 if (type & PERF_SAMPLE_TID) { 1253 u.val64 = *array; 1254 if (swapped) { 1255 /* undo swap of u64, then swap on individual u32s */ 1256 u.val64 = bswap_64(u.val64); 1257 u.val32[0] = bswap_32(u.val32[0]); 1258 u.val32[1] = bswap_32(u.val32[1]); 1259 } 1260 1261 sample->pid = u.val32[0]; 1262 sample->tid = u.val32[1]; 1263 array--; 1264 } 1265 1266 return 0; 1267 } 1268 1269 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 1270 u64 size) 1271 { 1272 return size > max_size || offset + size > endp; 1273 } 1274 1275 #define OVERFLOW_CHECK(offset, size, max_size) \ 1276 do { \ 1277 if (overflow(endp, (max_size), (offset), (size))) \ 1278 return -EFAULT; \ 1279 } while (0) 1280 1281 #define OVERFLOW_CHECK_u64(offset) \ 1282 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 1283 1284 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 1285 struct perf_sample *data) 1286 { 1287 u64 type = evsel->attr.sample_type; 1288 bool swapped = evsel->needs_swap; 1289 const u64 *array; 1290 u16 max_size = event->header.size; 1291 const void *endp = (void *)event + max_size; 1292 u64 sz; 1293 1294 /* 1295 * used for cross-endian analysis. See git commit 65014ab3 1296 * for why this goofiness is needed. 1297 */ 1298 union u64_swap u; 1299 1300 memset(data, 0, sizeof(*data)); 1301 data->cpu = data->pid = data->tid = -1; 1302 data->stream_id = data->id = data->time = -1ULL; 1303 data->period = evsel->attr.sample_period; 1304 data->weight = 0; 1305 1306 if (event->header.type != PERF_RECORD_SAMPLE) { 1307 if (!evsel->attr.sample_id_all) 1308 return 0; 1309 return perf_evsel__parse_id_sample(evsel, event, data); 1310 } 1311 1312 array = event->sample.array; 1313 1314 /* 1315 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 1316 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 1317 * check the format does not go past the end of the event. 1318 */ 1319 if (evsel->sample_size + sizeof(event->header) > event->header.size) 1320 return -EFAULT; 1321 1322 data->id = -1ULL; 1323 if (type & PERF_SAMPLE_IDENTIFIER) { 1324 data->id = *array; 1325 array++; 1326 } 1327 1328 if (type & PERF_SAMPLE_IP) { 1329 data->ip = *array; 1330 array++; 1331 } 1332 1333 if (type & PERF_SAMPLE_TID) { 1334 u.val64 = *array; 1335 if (swapped) { 1336 /* undo swap of u64, then swap on individual u32s */ 1337 u.val64 = bswap_64(u.val64); 1338 u.val32[0] = bswap_32(u.val32[0]); 1339 u.val32[1] = bswap_32(u.val32[1]); 1340 } 1341 1342 data->pid = u.val32[0]; 1343 data->tid = u.val32[1]; 1344 array++; 1345 } 1346 1347 if (type & PERF_SAMPLE_TIME) { 1348 data->time = *array; 1349 array++; 1350 } 1351 1352 data->addr = 0; 1353 if (type & PERF_SAMPLE_ADDR) { 1354 data->addr = *array; 1355 array++; 1356 } 1357 1358 if (type & PERF_SAMPLE_ID) { 1359 data->id = *array; 1360 array++; 1361 } 1362 1363 if (type & PERF_SAMPLE_STREAM_ID) { 1364 data->stream_id = *array; 1365 array++; 1366 } 1367 1368 if (type & PERF_SAMPLE_CPU) { 1369 1370 u.val64 = *array; 1371 if (swapped) { 1372 /* undo swap of u64, then swap on individual u32s */ 1373 u.val64 = bswap_64(u.val64); 1374 u.val32[0] = bswap_32(u.val32[0]); 1375 } 1376 1377 data->cpu = u.val32[0]; 1378 array++; 1379 } 1380 1381 if (type & PERF_SAMPLE_PERIOD) { 1382 data->period = *array; 1383 array++; 1384 } 1385 1386 if (type & PERF_SAMPLE_READ) { 1387 u64 read_format = evsel->attr.read_format; 1388 1389 OVERFLOW_CHECK_u64(array); 1390 if (read_format & PERF_FORMAT_GROUP) 1391 data->read.group.nr = *array; 1392 else 1393 data->read.one.value = *array; 1394 1395 array++; 1396 1397 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 1398 OVERFLOW_CHECK_u64(array); 1399 data->read.time_enabled = *array; 1400 array++; 1401 } 1402 1403 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 1404 OVERFLOW_CHECK_u64(array); 1405 data->read.time_running = *array; 1406 array++; 1407 } 1408 1409 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1410 if (read_format & PERF_FORMAT_GROUP) { 1411 const u64 max_group_nr = UINT64_MAX / 1412 sizeof(struct sample_read_value); 1413 1414 if (data->read.group.nr > max_group_nr) 1415 return -EFAULT; 1416 sz = data->read.group.nr * 1417 sizeof(struct sample_read_value); 1418 OVERFLOW_CHECK(array, sz, max_size); 1419 data->read.group.values = 1420 (struct sample_read_value *)array; 1421 array = (void *)array + sz; 1422 } else { 1423 OVERFLOW_CHECK_u64(array); 1424 data->read.one.id = *array; 1425 array++; 1426 } 1427 } 1428 1429 if (type & PERF_SAMPLE_CALLCHAIN) { 1430 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 1431 1432 OVERFLOW_CHECK_u64(array); 1433 data->callchain = (struct ip_callchain *)array++; 1434 if (data->callchain->nr > max_callchain_nr) 1435 return -EFAULT; 1436 sz = data->callchain->nr * sizeof(u64); 1437 OVERFLOW_CHECK(array, sz, max_size); 1438 array = (void *)array + sz; 1439 } 1440 1441 if (type & PERF_SAMPLE_RAW) { 1442 OVERFLOW_CHECK_u64(array); 1443 u.val64 = *array; 1444 if (WARN_ONCE(swapped, 1445 "Endianness of raw data not corrected!\n")) { 1446 /* undo swap of u64, then swap on individual u32s */ 1447 u.val64 = bswap_64(u.val64); 1448 u.val32[0] = bswap_32(u.val32[0]); 1449 u.val32[1] = bswap_32(u.val32[1]); 1450 } 1451 data->raw_size = u.val32[0]; 1452 array = (void *)array + sizeof(u32); 1453 1454 OVERFLOW_CHECK(array, data->raw_size, max_size); 1455 data->raw_data = (void *)array; 1456 array = (void *)array + data->raw_size; 1457 } 1458 1459 if (type & PERF_SAMPLE_BRANCH_STACK) { 1460 const u64 max_branch_nr = UINT64_MAX / 1461 sizeof(struct branch_entry); 1462 1463 OVERFLOW_CHECK_u64(array); 1464 data->branch_stack = (struct branch_stack *)array++; 1465 1466 if (data->branch_stack->nr > max_branch_nr) 1467 return -EFAULT; 1468 sz = data->branch_stack->nr * sizeof(struct branch_entry); 1469 OVERFLOW_CHECK(array, sz, max_size); 1470 array = (void *)array + sz; 1471 } 1472 1473 if (type & PERF_SAMPLE_REGS_USER) { 1474 OVERFLOW_CHECK_u64(array); 1475 data->user_regs.abi = *array; 1476 array++; 1477 1478 if (data->user_regs.abi) { 1479 u64 mask = evsel->attr.sample_regs_user; 1480 1481 sz = hweight_long(mask) * sizeof(u64); 1482 OVERFLOW_CHECK(array, sz, max_size); 1483 data->user_regs.mask = mask; 1484 data->user_regs.regs = (u64 *)array; 1485 array = (void *)array + sz; 1486 } 1487 } 1488 1489 if (type & PERF_SAMPLE_STACK_USER) { 1490 OVERFLOW_CHECK_u64(array); 1491 sz = *array++; 1492 1493 data->user_stack.offset = ((char *)(array - 1) 1494 - (char *) event); 1495 1496 if (!sz) { 1497 data->user_stack.size = 0; 1498 } else { 1499 OVERFLOW_CHECK(array, sz, max_size); 1500 data->user_stack.data = (char *)array; 1501 array = (void *)array + sz; 1502 OVERFLOW_CHECK_u64(array); 1503 data->user_stack.size = *array++; 1504 if (WARN_ONCE(data->user_stack.size > sz, 1505 "user stack dump failure\n")) 1506 return -EFAULT; 1507 } 1508 } 1509 1510 data->weight = 0; 1511 if (type & PERF_SAMPLE_WEIGHT) { 1512 OVERFLOW_CHECK_u64(array); 1513 data->weight = *array; 1514 array++; 1515 } 1516 1517 data->data_src = PERF_MEM_DATA_SRC_NONE; 1518 if (type & PERF_SAMPLE_DATA_SRC) { 1519 OVERFLOW_CHECK_u64(array); 1520 data->data_src = *array; 1521 array++; 1522 } 1523 1524 data->transaction = 0; 1525 if (type & PERF_SAMPLE_TRANSACTION) { 1526 OVERFLOW_CHECK_u64(array); 1527 data->transaction = *array; 1528 array++; 1529 } 1530 1531 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 1532 if (type & PERF_SAMPLE_REGS_INTR) { 1533 OVERFLOW_CHECK_u64(array); 1534 data->intr_regs.abi = *array; 1535 array++; 1536 1537 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 1538 u64 mask = evsel->attr.sample_regs_intr; 1539 1540 sz = hweight_long(mask) * sizeof(u64); 1541 OVERFLOW_CHECK(array, sz, max_size); 1542 data->intr_regs.mask = mask; 1543 data->intr_regs.regs = (u64 *)array; 1544 array = (void *)array + sz; 1545 } 1546 } 1547 1548 return 0; 1549 } 1550 1551 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 1552 u64 read_format) 1553 { 1554 size_t sz, result = sizeof(struct sample_event); 1555 1556 if (type & PERF_SAMPLE_IDENTIFIER) 1557 result += sizeof(u64); 1558 1559 if (type & PERF_SAMPLE_IP) 1560 result += sizeof(u64); 1561 1562 if (type & PERF_SAMPLE_TID) 1563 result += sizeof(u64); 1564 1565 if (type & PERF_SAMPLE_TIME) 1566 result += sizeof(u64); 1567 1568 if (type & PERF_SAMPLE_ADDR) 1569 result += sizeof(u64); 1570 1571 if (type & PERF_SAMPLE_ID) 1572 result += sizeof(u64); 1573 1574 if (type & PERF_SAMPLE_STREAM_ID) 1575 result += sizeof(u64); 1576 1577 if (type & PERF_SAMPLE_CPU) 1578 result += sizeof(u64); 1579 1580 if (type & PERF_SAMPLE_PERIOD) 1581 result += sizeof(u64); 1582 1583 if (type & PERF_SAMPLE_READ) { 1584 result += sizeof(u64); 1585 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1586 result += sizeof(u64); 1587 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1588 result += sizeof(u64); 1589 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1590 if (read_format & PERF_FORMAT_GROUP) { 1591 sz = sample->read.group.nr * 1592 sizeof(struct sample_read_value); 1593 result += sz; 1594 } else { 1595 result += sizeof(u64); 1596 } 1597 } 1598 1599 if (type & PERF_SAMPLE_CALLCHAIN) { 1600 sz = (sample->callchain->nr + 1) * sizeof(u64); 1601 result += sz; 1602 } 1603 1604 if (type & PERF_SAMPLE_RAW) { 1605 result += sizeof(u32); 1606 result += sample->raw_size; 1607 } 1608 1609 if (type & PERF_SAMPLE_BRANCH_STACK) { 1610 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 1611 sz += sizeof(u64); 1612 result += sz; 1613 } 1614 1615 if (type & PERF_SAMPLE_REGS_USER) { 1616 if (sample->user_regs.abi) { 1617 result += sizeof(u64); 1618 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 1619 result += sz; 1620 } else { 1621 result += sizeof(u64); 1622 } 1623 } 1624 1625 if (type & PERF_SAMPLE_STACK_USER) { 1626 sz = sample->user_stack.size; 1627 result += sizeof(u64); 1628 if (sz) { 1629 result += sz; 1630 result += sizeof(u64); 1631 } 1632 } 1633 1634 if (type & PERF_SAMPLE_WEIGHT) 1635 result += sizeof(u64); 1636 1637 if (type & PERF_SAMPLE_DATA_SRC) 1638 result += sizeof(u64); 1639 1640 if (type & PERF_SAMPLE_TRANSACTION) 1641 result += sizeof(u64); 1642 1643 if (type & PERF_SAMPLE_REGS_INTR) { 1644 if (sample->intr_regs.abi) { 1645 result += sizeof(u64); 1646 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 1647 result += sz; 1648 } else { 1649 result += sizeof(u64); 1650 } 1651 } 1652 1653 return result; 1654 } 1655 1656 int perf_event__synthesize_sample(union perf_event *event, u64 type, 1657 u64 read_format, 1658 const struct perf_sample *sample, 1659 bool swapped) 1660 { 1661 u64 *array; 1662 size_t sz; 1663 /* 1664 * used for cross-endian analysis. See git commit 65014ab3 1665 * for why this goofiness is needed. 1666 */ 1667 union u64_swap u; 1668 1669 array = event->sample.array; 1670 1671 if (type & PERF_SAMPLE_IDENTIFIER) { 1672 *array = sample->id; 1673 array++; 1674 } 1675 1676 if (type & PERF_SAMPLE_IP) { 1677 *array = sample->ip; 1678 array++; 1679 } 1680 1681 if (type & PERF_SAMPLE_TID) { 1682 u.val32[0] = sample->pid; 1683 u.val32[1] = sample->tid; 1684 if (swapped) { 1685 /* 1686 * Inverse of what is done in perf_evsel__parse_sample 1687 */ 1688 u.val32[0] = bswap_32(u.val32[0]); 1689 u.val32[1] = bswap_32(u.val32[1]); 1690 u.val64 = bswap_64(u.val64); 1691 } 1692 1693 *array = u.val64; 1694 array++; 1695 } 1696 1697 if (type & PERF_SAMPLE_TIME) { 1698 *array = sample->time; 1699 array++; 1700 } 1701 1702 if (type & PERF_SAMPLE_ADDR) { 1703 *array = sample->addr; 1704 array++; 1705 } 1706 1707 if (type & PERF_SAMPLE_ID) { 1708 *array = sample->id; 1709 array++; 1710 } 1711 1712 if (type & PERF_SAMPLE_STREAM_ID) { 1713 *array = sample->stream_id; 1714 array++; 1715 } 1716 1717 if (type & PERF_SAMPLE_CPU) { 1718 u.val32[0] = sample->cpu; 1719 if (swapped) { 1720 /* 1721 * Inverse of what is done in perf_evsel__parse_sample 1722 */ 1723 u.val32[0] = bswap_32(u.val32[0]); 1724 u.val64 = bswap_64(u.val64); 1725 } 1726 *array = u.val64; 1727 array++; 1728 } 1729 1730 if (type & PERF_SAMPLE_PERIOD) { 1731 *array = sample->period; 1732 array++; 1733 } 1734 1735 if (type & PERF_SAMPLE_READ) { 1736 if (read_format & PERF_FORMAT_GROUP) 1737 *array = sample->read.group.nr; 1738 else 1739 *array = sample->read.one.value; 1740 array++; 1741 1742 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 1743 *array = sample->read.time_enabled; 1744 array++; 1745 } 1746 1747 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 1748 *array = sample->read.time_running; 1749 array++; 1750 } 1751 1752 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1753 if (read_format & PERF_FORMAT_GROUP) { 1754 sz = sample->read.group.nr * 1755 sizeof(struct sample_read_value); 1756 memcpy(array, sample->read.group.values, sz); 1757 array = (void *)array + sz; 1758 } else { 1759 *array = sample->read.one.id; 1760 array++; 1761 } 1762 } 1763 1764 if (type & PERF_SAMPLE_CALLCHAIN) { 1765 sz = (sample->callchain->nr + 1) * sizeof(u64); 1766 memcpy(array, sample->callchain, sz); 1767 array = (void *)array + sz; 1768 } 1769 1770 if (type & PERF_SAMPLE_RAW) { 1771 u.val32[0] = sample->raw_size; 1772 if (WARN_ONCE(swapped, 1773 "Endianness of raw data not corrected!\n")) { 1774 /* 1775 * Inverse of what is done in perf_evsel__parse_sample 1776 */ 1777 u.val32[0] = bswap_32(u.val32[0]); 1778 u.val32[1] = bswap_32(u.val32[1]); 1779 u.val64 = bswap_64(u.val64); 1780 } 1781 *array = u.val64; 1782 array = (void *)array + sizeof(u32); 1783 1784 memcpy(array, sample->raw_data, sample->raw_size); 1785 array = (void *)array + sample->raw_size; 1786 } 1787 1788 if (type & PERF_SAMPLE_BRANCH_STACK) { 1789 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 1790 sz += sizeof(u64); 1791 memcpy(array, sample->branch_stack, sz); 1792 array = (void *)array + sz; 1793 } 1794 1795 if (type & PERF_SAMPLE_REGS_USER) { 1796 if (sample->user_regs.abi) { 1797 *array++ = sample->user_regs.abi; 1798 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 1799 memcpy(array, sample->user_regs.regs, sz); 1800 array = (void *)array + sz; 1801 } else { 1802 *array++ = 0; 1803 } 1804 } 1805 1806 if (type & PERF_SAMPLE_STACK_USER) { 1807 sz = sample->user_stack.size; 1808 *array++ = sz; 1809 if (sz) { 1810 memcpy(array, sample->user_stack.data, sz); 1811 array = (void *)array + sz; 1812 *array++ = sz; 1813 } 1814 } 1815 1816 if (type & PERF_SAMPLE_WEIGHT) { 1817 *array = sample->weight; 1818 array++; 1819 } 1820 1821 if (type & PERF_SAMPLE_DATA_SRC) { 1822 *array = sample->data_src; 1823 array++; 1824 } 1825 1826 if (type & PERF_SAMPLE_TRANSACTION) { 1827 *array = sample->transaction; 1828 array++; 1829 } 1830 1831 if (type & PERF_SAMPLE_REGS_INTR) { 1832 if (sample->intr_regs.abi) { 1833 *array++ = sample->intr_regs.abi; 1834 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 1835 memcpy(array, sample->intr_regs.regs, sz); 1836 array = (void *)array + sz; 1837 } else { 1838 *array++ = 0; 1839 } 1840 } 1841 1842 return 0; 1843 } 1844 1845 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 1846 { 1847 return pevent_find_field(evsel->tp_format, name); 1848 } 1849 1850 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 1851 const char *name) 1852 { 1853 struct format_field *field = perf_evsel__field(evsel, name); 1854 int offset; 1855 1856 if (!field) 1857 return NULL; 1858 1859 offset = field->offset; 1860 1861 if (field->flags & FIELD_IS_DYNAMIC) { 1862 offset = *(int *)(sample->raw_data + field->offset); 1863 offset &= 0xffff; 1864 } 1865 1866 return sample->raw_data + offset; 1867 } 1868 1869 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 1870 const char *name) 1871 { 1872 struct format_field *field = perf_evsel__field(evsel, name); 1873 void *ptr; 1874 u64 value; 1875 1876 if (!field) 1877 return 0; 1878 1879 ptr = sample->raw_data + field->offset; 1880 1881 switch (field->size) { 1882 case 1: 1883 return *(u8 *)ptr; 1884 case 2: 1885 value = *(u16 *)ptr; 1886 break; 1887 case 4: 1888 value = *(u32 *)ptr; 1889 break; 1890 case 8: 1891 value = *(u64 *)ptr; 1892 break; 1893 default: 1894 return 0; 1895 } 1896 1897 if (!evsel->needs_swap) 1898 return value; 1899 1900 switch (field->size) { 1901 case 2: 1902 return bswap_16(value); 1903 case 4: 1904 return bswap_32(value); 1905 case 8: 1906 return bswap_64(value); 1907 default: 1908 return 0; 1909 } 1910 1911 return 0; 1912 } 1913 1914 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...) 1915 { 1916 va_list args; 1917 int ret = 0; 1918 1919 if (!*first) { 1920 ret += fprintf(fp, ","); 1921 } else { 1922 ret += fprintf(fp, ":"); 1923 *first = false; 1924 } 1925 1926 va_start(args, fmt); 1927 ret += vfprintf(fp, fmt, args); 1928 va_end(args); 1929 return ret; 1930 } 1931 1932 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value) 1933 { 1934 if (value == 0) 1935 return 0; 1936 1937 return comma_fprintf(fp, first, " %s: %" PRIu64, field, value); 1938 } 1939 1940 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field) 1941 1942 struct bit_names { 1943 int bit; 1944 const char *name; 1945 }; 1946 1947 static int bits__fprintf(FILE *fp, const char *field, u64 value, 1948 struct bit_names *bits, bool *first) 1949 { 1950 int i = 0, printed = comma_fprintf(fp, first, " %s: ", field); 1951 bool first_bit = true; 1952 1953 do { 1954 if (value & bits[i].bit) { 1955 printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name); 1956 first_bit = false; 1957 } 1958 } while (bits[++i].name != NULL); 1959 1960 return printed; 1961 } 1962 1963 static int sample_type__fprintf(FILE *fp, bool *first, u64 value) 1964 { 1965 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1966 struct bit_names bits[] = { 1967 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1968 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1969 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1970 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1971 bit_name(IDENTIFIER), bit_name(REGS_INTR), 1972 { .name = NULL, } 1973 }; 1974 #undef bit_name 1975 return bits__fprintf(fp, "sample_type", value, bits, first); 1976 } 1977 1978 static int read_format__fprintf(FILE *fp, bool *first, u64 value) 1979 { 1980 #define bit_name(n) { PERF_FORMAT_##n, #n } 1981 struct bit_names bits[] = { 1982 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1983 bit_name(ID), bit_name(GROUP), 1984 { .name = NULL, } 1985 }; 1986 #undef bit_name 1987 return bits__fprintf(fp, "read_format", value, bits, first); 1988 } 1989 1990 int perf_evsel__fprintf(struct perf_evsel *evsel, 1991 struct perf_attr_details *details, FILE *fp) 1992 { 1993 bool first = true; 1994 int printed = 0; 1995 1996 if (details->event_group) { 1997 struct perf_evsel *pos; 1998 1999 if (!perf_evsel__is_group_leader(evsel)) 2000 return 0; 2001 2002 if (evsel->nr_members > 1) 2003 printed += fprintf(fp, "%s{", evsel->group_name ?: ""); 2004 2005 printed += fprintf(fp, "%s", perf_evsel__name(evsel)); 2006 for_each_group_member(pos, evsel) 2007 printed += fprintf(fp, ",%s", perf_evsel__name(pos)); 2008 2009 if (evsel->nr_members > 1) 2010 printed += fprintf(fp, "}"); 2011 goto out; 2012 } 2013 2014 printed += fprintf(fp, "%s", perf_evsel__name(evsel)); 2015 2016 if (details->verbose || details->freq) { 2017 printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64, 2018 (u64)evsel->attr.sample_freq); 2019 } 2020 2021 if (details->verbose) { 2022 if_print(type); 2023 if_print(config); 2024 if_print(config1); 2025 if_print(config2); 2026 if_print(size); 2027 printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type); 2028 if (evsel->attr.read_format) 2029 printed += read_format__fprintf(fp, &first, evsel->attr.read_format); 2030 if_print(disabled); 2031 if_print(inherit); 2032 if_print(pinned); 2033 if_print(exclusive); 2034 if_print(exclude_user); 2035 if_print(exclude_kernel); 2036 if_print(exclude_hv); 2037 if_print(exclude_idle); 2038 if_print(mmap); 2039 if_print(mmap2); 2040 if_print(comm); 2041 if_print(comm_exec); 2042 if_print(freq); 2043 if_print(inherit_stat); 2044 if_print(enable_on_exec); 2045 if_print(task); 2046 if_print(watermark); 2047 if_print(precise_ip); 2048 if_print(mmap_data); 2049 if_print(sample_id_all); 2050 if_print(exclude_host); 2051 if_print(exclude_guest); 2052 if_print(__reserved_1); 2053 if_print(wakeup_events); 2054 if_print(bp_type); 2055 if_print(branch_sample_type); 2056 } 2057 out: 2058 fputc('\n', fp); 2059 return ++printed; 2060 } 2061 2062 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2063 char *msg, size_t msgsize) 2064 { 2065 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2066 evsel->attr.type == PERF_TYPE_HARDWARE && 2067 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2068 /* 2069 * If it's cycles then fall back to hrtimer based 2070 * cpu-clock-tick sw counter, which is always available even if 2071 * no PMU support. 2072 * 2073 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2074 * b0a873e). 2075 */ 2076 scnprintf(msg, msgsize, "%s", 2077 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2078 2079 evsel->attr.type = PERF_TYPE_SOFTWARE; 2080 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2081 2082 zfree(&evsel->name); 2083 return true; 2084 } 2085 2086 return false; 2087 } 2088 2089 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2090 int err, char *msg, size_t size) 2091 { 2092 char sbuf[STRERR_BUFSIZE]; 2093 2094 switch (err) { 2095 case EPERM: 2096 case EACCES: 2097 return scnprintf(msg, size, 2098 "You may not have permission to collect %sstats.\n" 2099 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n" 2100 " -1 - Not paranoid at all\n" 2101 " 0 - Disallow raw tracepoint access for unpriv\n" 2102 " 1 - Disallow cpu events for unpriv\n" 2103 " 2 - Disallow kernel profiling for unpriv", 2104 target->system_wide ? "system-wide " : ""); 2105 case ENOENT: 2106 return scnprintf(msg, size, "The %s event is not supported.", 2107 perf_evsel__name(evsel)); 2108 case EMFILE: 2109 return scnprintf(msg, size, "%s", 2110 "Too many events are opened.\n" 2111 "Try again after reducing the number of events."); 2112 case ENODEV: 2113 if (target->cpu_list) 2114 return scnprintf(msg, size, "%s", 2115 "No such device - did you specify an out-of-range profile CPU?\n"); 2116 break; 2117 case EOPNOTSUPP: 2118 if (evsel->attr.precise_ip) 2119 return scnprintf(msg, size, "%s", 2120 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2121 #if defined(__i386__) || defined(__x86_64__) 2122 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2123 return scnprintf(msg, size, "%s", 2124 "No hardware sampling interrupt available.\n" 2125 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); 2126 #endif 2127 break; 2128 case EBUSY: 2129 if (find_process("oprofiled")) 2130 return scnprintf(msg, size, 2131 "The PMU counters are busy/taken by another profiler.\n" 2132 "We found oprofile daemon running, please stop it and try again."); 2133 break; 2134 default: 2135 break; 2136 } 2137 2138 return scnprintf(msg, size, 2139 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2140 "/bin/dmesg may provide additional information.\n" 2141 "No CONFIG_PERF_EVENTS=y kernel support configured?\n", 2142 err, strerror_r(err, sbuf, sizeof(sbuf)), 2143 perf_evsel__name(evsel)); 2144 } 2145