xref: /openbmc/linux/tools/perf/util/evsel.c (revision 79a93295)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/tracing_path.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <linux/err.h>
17 #include <sys/resource.h>
18 #include "asm/bug.h"
19 #include "callchain.h"
20 #include "cgroup.h"
21 #include "evsel.h"
22 #include "evlist.h"
23 #include "util.h"
24 #include "cpumap.h"
25 #include "thread_map.h"
26 #include "target.h"
27 #include "perf_regs.h"
28 #include "debug.h"
29 #include "trace-event.h"
30 #include "stat.h"
31 #include "util/parse-branch-options.h"
32 
33 static struct {
34 	bool sample_id_all;
35 	bool exclude_guest;
36 	bool mmap2;
37 	bool cloexec;
38 	bool clockid;
39 	bool clockid_wrong;
40 	bool lbr_flags;
41 	bool write_backward;
42 } perf_missing_features;
43 
44 static clockid_t clockid;
45 
46 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
47 {
48 	return 0;
49 }
50 
51 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
52 {
53 }
54 
55 static struct {
56 	size_t	size;
57 	int	(*init)(struct perf_evsel *evsel);
58 	void	(*fini)(struct perf_evsel *evsel);
59 } perf_evsel__object = {
60 	.size = sizeof(struct perf_evsel),
61 	.init = perf_evsel__no_extra_init,
62 	.fini = perf_evsel__no_extra_fini,
63 };
64 
65 int perf_evsel__object_config(size_t object_size,
66 			      int (*init)(struct perf_evsel *evsel),
67 			      void (*fini)(struct perf_evsel *evsel))
68 {
69 
70 	if (object_size == 0)
71 		goto set_methods;
72 
73 	if (perf_evsel__object.size > object_size)
74 		return -EINVAL;
75 
76 	perf_evsel__object.size = object_size;
77 
78 set_methods:
79 	if (init != NULL)
80 		perf_evsel__object.init = init;
81 
82 	if (fini != NULL)
83 		perf_evsel__object.fini = fini;
84 
85 	return 0;
86 }
87 
88 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
89 
90 int __perf_evsel__sample_size(u64 sample_type)
91 {
92 	u64 mask = sample_type & PERF_SAMPLE_MASK;
93 	int size = 0;
94 	int i;
95 
96 	for (i = 0; i < 64; i++) {
97 		if (mask & (1ULL << i))
98 			size++;
99 	}
100 
101 	size *= sizeof(u64);
102 
103 	return size;
104 }
105 
106 /**
107  * __perf_evsel__calc_id_pos - calculate id_pos.
108  * @sample_type: sample type
109  *
110  * This function returns the position of the event id (PERF_SAMPLE_ID or
111  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
112  * sample_event.
113  */
114 static int __perf_evsel__calc_id_pos(u64 sample_type)
115 {
116 	int idx = 0;
117 
118 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
119 		return 0;
120 
121 	if (!(sample_type & PERF_SAMPLE_ID))
122 		return -1;
123 
124 	if (sample_type & PERF_SAMPLE_IP)
125 		idx += 1;
126 
127 	if (sample_type & PERF_SAMPLE_TID)
128 		idx += 1;
129 
130 	if (sample_type & PERF_SAMPLE_TIME)
131 		idx += 1;
132 
133 	if (sample_type & PERF_SAMPLE_ADDR)
134 		idx += 1;
135 
136 	return idx;
137 }
138 
139 /**
140  * __perf_evsel__calc_is_pos - calculate is_pos.
141  * @sample_type: sample type
142  *
143  * This function returns the position (counting backwards) of the event id
144  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
145  * sample_id_all is used there is an id sample appended to non-sample events.
146  */
147 static int __perf_evsel__calc_is_pos(u64 sample_type)
148 {
149 	int idx = 1;
150 
151 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
152 		return 1;
153 
154 	if (!(sample_type & PERF_SAMPLE_ID))
155 		return -1;
156 
157 	if (sample_type & PERF_SAMPLE_CPU)
158 		idx += 1;
159 
160 	if (sample_type & PERF_SAMPLE_STREAM_ID)
161 		idx += 1;
162 
163 	return idx;
164 }
165 
166 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
167 {
168 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
169 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
170 }
171 
172 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
173 				  enum perf_event_sample_format bit)
174 {
175 	if (!(evsel->attr.sample_type & bit)) {
176 		evsel->attr.sample_type |= bit;
177 		evsel->sample_size += sizeof(u64);
178 		perf_evsel__calc_id_pos(evsel);
179 	}
180 }
181 
182 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
183 				    enum perf_event_sample_format bit)
184 {
185 	if (evsel->attr.sample_type & bit) {
186 		evsel->attr.sample_type &= ~bit;
187 		evsel->sample_size -= sizeof(u64);
188 		perf_evsel__calc_id_pos(evsel);
189 	}
190 }
191 
192 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
193 			       bool can_sample_identifier)
194 {
195 	if (can_sample_identifier) {
196 		perf_evsel__reset_sample_bit(evsel, ID);
197 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
198 	} else {
199 		perf_evsel__set_sample_bit(evsel, ID);
200 	}
201 	evsel->attr.read_format |= PERF_FORMAT_ID;
202 }
203 
204 /**
205  * perf_evsel__is_function_event - Return whether given evsel is a function
206  * trace event
207  *
208  * @evsel - evsel selector to be tested
209  *
210  * Return %true if event is function trace event
211  */
212 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
213 {
214 #define FUNCTION_EVENT "ftrace:function"
215 
216 	return evsel->name &&
217 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
218 
219 #undef FUNCTION_EVENT
220 }
221 
222 void perf_evsel__init(struct perf_evsel *evsel,
223 		      struct perf_event_attr *attr, int idx)
224 {
225 	evsel->idx	   = idx;
226 	evsel->tracking	   = !idx;
227 	evsel->attr	   = *attr;
228 	evsel->leader	   = evsel;
229 	evsel->unit	   = "";
230 	evsel->scale	   = 1.0;
231 	evsel->evlist	   = NULL;
232 	evsel->bpf_fd	   = -1;
233 	INIT_LIST_HEAD(&evsel->node);
234 	INIT_LIST_HEAD(&evsel->config_terms);
235 	perf_evsel__object.init(evsel);
236 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
237 	perf_evsel__calc_id_pos(evsel);
238 	evsel->cmdline_group_boundary = false;
239 }
240 
241 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
242 {
243 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
244 
245 	if (evsel != NULL)
246 		perf_evsel__init(evsel, attr, idx);
247 
248 	if (perf_evsel__is_bpf_output(evsel)) {
249 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
250 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
251 		evsel->attr.sample_period = 1;
252 	}
253 
254 	return evsel;
255 }
256 
257 struct perf_evsel *perf_evsel__new_cycles(void)
258 {
259 	struct perf_event_attr attr = {
260 		.type	= PERF_TYPE_HARDWARE,
261 		.config	= PERF_COUNT_HW_CPU_CYCLES,
262 	};
263 	struct perf_evsel *evsel;
264 
265 	event_attr_init(&attr);
266 
267 	perf_event_attr__set_max_precise_ip(&attr);
268 
269 	evsel = perf_evsel__new(&attr);
270 	if (evsel == NULL)
271 		goto out;
272 
273 	/* use asprintf() because free(evsel) assumes name is allocated */
274 	if (asprintf(&evsel->name, "cycles%.*s",
275 		     attr.precise_ip ? attr.precise_ip + 1 : 0, ":ppp") < 0)
276 		goto error_free;
277 out:
278 	return evsel;
279 error_free:
280 	perf_evsel__delete(evsel);
281 	evsel = NULL;
282 	goto out;
283 }
284 
285 /*
286  * Returns pointer with encoded error via <linux/err.h> interface.
287  */
288 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
289 {
290 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
291 	int err = -ENOMEM;
292 
293 	if (evsel == NULL) {
294 		goto out_err;
295 	} else {
296 		struct perf_event_attr attr = {
297 			.type	       = PERF_TYPE_TRACEPOINT,
298 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
299 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
300 		};
301 
302 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
303 			goto out_free;
304 
305 		evsel->tp_format = trace_event__tp_format(sys, name);
306 		if (IS_ERR(evsel->tp_format)) {
307 			err = PTR_ERR(evsel->tp_format);
308 			goto out_free;
309 		}
310 
311 		event_attr_init(&attr);
312 		attr.config = evsel->tp_format->id;
313 		attr.sample_period = 1;
314 		perf_evsel__init(evsel, &attr, idx);
315 	}
316 
317 	return evsel;
318 
319 out_free:
320 	zfree(&evsel->name);
321 	free(evsel);
322 out_err:
323 	return ERR_PTR(err);
324 }
325 
326 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
327 	"cycles",
328 	"instructions",
329 	"cache-references",
330 	"cache-misses",
331 	"branches",
332 	"branch-misses",
333 	"bus-cycles",
334 	"stalled-cycles-frontend",
335 	"stalled-cycles-backend",
336 	"ref-cycles",
337 };
338 
339 static const char *__perf_evsel__hw_name(u64 config)
340 {
341 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
342 		return perf_evsel__hw_names[config];
343 
344 	return "unknown-hardware";
345 }
346 
347 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
348 {
349 	int colon = 0, r = 0;
350 	struct perf_event_attr *attr = &evsel->attr;
351 	bool exclude_guest_default = false;
352 
353 #define MOD_PRINT(context, mod)	do {					\
354 		if (!attr->exclude_##context) {				\
355 			if (!colon) colon = ++r;			\
356 			r += scnprintf(bf + r, size - r, "%c", mod);	\
357 		} } while(0)
358 
359 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
360 		MOD_PRINT(kernel, 'k');
361 		MOD_PRINT(user, 'u');
362 		MOD_PRINT(hv, 'h');
363 		exclude_guest_default = true;
364 	}
365 
366 	if (attr->precise_ip) {
367 		if (!colon)
368 			colon = ++r;
369 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
370 		exclude_guest_default = true;
371 	}
372 
373 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
374 		MOD_PRINT(host, 'H');
375 		MOD_PRINT(guest, 'G');
376 	}
377 #undef MOD_PRINT
378 	if (colon)
379 		bf[colon - 1] = ':';
380 	return r;
381 }
382 
383 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
384 {
385 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
386 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
387 }
388 
389 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
390 	"cpu-clock",
391 	"task-clock",
392 	"page-faults",
393 	"context-switches",
394 	"cpu-migrations",
395 	"minor-faults",
396 	"major-faults",
397 	"alignment-faults",
398 	"emulation-faults",
399 	"dummy",
400 };
401 
402 static const char *__perf_evsel__sw_name(u64 config)
403 {
404 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
405 		return perf_evsel__sw_names[config];
406 	return "unknown-software";
407 }
408 
409 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
410 {
411 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
412 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
413 }
414 
415 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
416 {
417 	int r;
418 
419 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
420 
421 	if (type & HW_BREAKPOINT_R)
422 		r += scnprintf(bf + r, size - r, "r");
423 
424 	if (type & HW_BREAKPOINT_W)
425 		r += scnprintf(bf + r, size - r, "w");
426 
427 	if (type & HW_BREAKPOINT_X)
428 		r += scnprintf(bf + r, size - r, "x");
429 
430 	return r;
431 }
432 
433 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
434 {
435 	struct perf_event_attr *attr = &evsel->attr;
436 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
437 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
438 }
439 
440 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
441 				[PERF_EVSEL__MAX_ALIASES] = {
442  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
443  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
444  { "LLC",	"L2",							},
445  { "dTLB",	"d-tlb",	"Data-TLB",				},
446  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
447  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
448  { "node",								},
449 };
450 
451 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
452 				   [PERF_EVSEL__MAX_ALIASES] = {
453  { "load",	"loads",	"read",					},
454  { "store",	"stores",	"write",				},
455  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
456 };
457 
458 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
459 				       [PERF_EVSEL__MAX_ALIASES] = {
460  { "refs",	"Reference",	"ops",		"access",		},
461  { "misses",	"miss",							},
462 };
463 
464 #define C(x)		PERF_COUNT_HW_CACHE_##x
465 #define CACHE_READ	(1 << C(OP_READ))
466 #define CACHE_WRITE	(1 << C(OP_WRITE))
467 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
468 #define COP(x)		(1 << x)
469 
470 /*
471  * cache operartion stat
472  * L1I : Read and prefetch only
473  * ITLB and BPU : Read-only
474  */
475 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
476  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
477  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
478  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
479  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
480  [C(ITLB)]	= (CACHE_READ),
481  [C(BPU)]	= (CACHE_READ),
482  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
483 };
484 
485 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
486 {
487 	if (perf_evsel__hw_cache_stat[type] & COP(op))
488 		return true;	/* valid */
489 	else
490 		return false;	/* invalid */
491 }
492 
493 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
494 					    char *bf, size_t size)
495 {
496 	if (result) {
497 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
498 				 perf_evsel__hw_cache_op[op][0],
499 				 perf_evsel__hw_cache_result[result][0]);
500 	}
501 
502 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
503 			 perf_evsel__hw_cache_op[op][1]);
504 }
505 
506 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
507 {
508 	u8 op, result, type = (config >>  0) & 0xff;
509 	const char *err = "unknown-ext-hardware-cache-type";
510 
511 	if (type >= PERF_COUNT_HW_CACHE_MAX)
512 		goto out_err;
513 
514 	op = (config >>  8) & 0xff;
515 	err = "unknown-ext-hardware-cache-op";
516 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
517 		goto out_err;
518 
519 	result = (config >> 16) & 0xff;
520 	err = "unknown-ext-hardware-cache-result";
521 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
522 		goto out_err;
523 
524 	err = "invalid-cache";
525 	if (!perf_evsel__is_cache_op_valid(type, op))
526 		goto out_err;
527 
528 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
529 out_err:
530 	return scnprintf(bf, size, "%s", err);
531 }
532 
533 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
534 {
535 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
536 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
537 }
538 
539 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
540 {
541 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
542 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
543 }
544 
545 const char *perf_evsel__name(struct perf_evsel *evsel)
546 {
547 	char bf[128];
548 
549 	if (evsel->name)
550 		return evsel->name;
551 
552 	switch (evsel->attr.type) {
553 	case PERF_TYPE_RAW:
554 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
555 		break;
556 
557 	case PERF_TYPE_HARDWARE:
558 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
559 		break;
560 
561 	case PERF_TYPE_HW_CACHE:
562 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
563 		break;
564 
565 	case PERF_TYPE_SOFTWARE:
566 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
567 		break;
568 
569 	case PERF_TYPE_TRACEPOINT:
570 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
571 		break;
572 
573 	case PERF_TYPE_BREAKPOINT:
574 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
575 		break;
576 
577 	default:
578 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
579 			  evsel->attr.type);
580 		break;
581 	}
582 
583 	evsel->name = strdup(bf);
584 
585 	return evsel->name ?: "unknown";
586 }
587 
588 const char *perf_evsel__group_name(struct perf_evsel *evsel)
589 {
590 	return evsel->group_name ?: "anon group";
591 }
592 
593 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
594 {
595 	int ret;
596 	struct perf_evsel *pos;
597 	const char *group_name = perf_evsel__group_name(evsel);
598 
599 	ret = scnprintf(buf, size, "%s", group_name);
600 
601 	ret += scnprintf(buf + ret, size - ret, " { %s",
602 			 perf_evsel__name(evsel));
603 
604 	for_each_group_member(pos, evsel)
605 		ret += scnprintf(buf + ret, size - ret, ", %s",
606 				 perf_evsel__name(pos));
607 
608 	ret += scnprintf(buf + ret, size - ret, " }");
609 
610 	return ret;
611 }
612 
613 void perf_evsel__config_callchain(struct perf_evsel *evsel,
614 				  struct record_opts *opts,
615 				  struct callchain_param *param)
616 {
617 	bool function = perf_evsel__is_function_event(evsel);
618 	struct perf_event_attr *attr = &evsel->attr;
619 
620 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
621 
622 	attr->sample_max_stack = param->max_stack;
623 
624 	if (param->record_mode == CALLCHAIN_LBR) {
625 		if (!opts->branch_stack) {
626 			if (attr->exclude_user) {
627 				pr_warning("LBR callstack option is only available "
628 					   "to get user callchain information. "
629 					   "Falling back to framepointers.\n");
630 			} else {
631 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
632 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
633 							PERF_SAMPLE_BRANCH_CALL_STACK |
634 							PERF_SAMPLE_BRANCH_NO_CYCLES |
635 							PERF_SAMPLE_BRANCH_NO_FLAGS;
636 			}
637 		} else
638 			 pr_warning("Cannot use LBR callstack with branch stack. "
639 				    "Falling back to framepointers.\n");
640 	}
641 
642 	if (param->record_mode == CALLCHAIN_DWARF) {
643 		if (!function) {
644 			perf_evsel__set_sample_bit(evsel, REGS_USER);
645 			perf_evsel__set_sample_bit(evsel, STACK_USER);
646 			attr->sample_regs_user = PERF_REGS_MASK;
647 			attr->sample_stack_user = param->dump_size;
648 			attr->exclude_callchain_user = 1;
649 		} else {
650 			pr_info("Cannot use DWARF unwind for function trace event,"
651 				" falling back to framepointers.\n");
652 		}
653 	}
654 
655 	if (function) {
656 		pr_info("Disabling user space callchains for function trace event.\n");
657 		attr->exclude_callchain_user = 1;
658 	}
659 }
660 
661 static void
662 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
663 			    struct callchain_param *param)
664 {
665 	struct perf_event_attr *attr = &evsel->attr;
666 
667 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
668 	if (param->record_mode == CALLCHAIN_LBR) {
669 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
670 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
671 					      PERF_SAMPLE_BRANCH_CALL_STACK);
672 	}
673 	if (param->record_mode == CALLCHAIN_DWARF) {
674 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
675 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
676 	}
677 }
678 
679 static void apply_config_terms(struct perf_evsel *evsel,
680 			       struct record_opts *opts)
681 {
682 	struct perf_evsel_config_term *term;
683 	struct list_head *config_terms = &evsel->config_terms;
684 	struct perf_event_attr *attr = &evsel->attr;
685 	struct callchain_param param;
686 	u32 dump_size = 0;
687 	int max_stack = 0;
688 	const char *callgraph_buf = NULL;
689 
690 	/* callgraph default */
691 	param.record_mode = callchain_param.record_mode;
692 
693 	list_for_each_entry(term, config_terms, list) {
694 		switch (term->type) {
695 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
696 			attr->sample_period = term->val.period;
697 			attr->freq = 0;
698 			break;
699 		case PERF_EVSEL__CONFIG_TERM_FREQ:
700 			attr->sample_freq = term->val.freq;
701 			attr->freq = 1;
702 			break;
703 		case PERF_EVSEL__CONFIG_TERM_TIME:
704 			if (term->val.time)
705 				perf_evsel__set_sample_bit(evsel, TIME);
706 			else
707 				perf_evsel__reset_sample_bit(evsel, TIME);
708 			break;
709 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
710 			callgraph_buf = term->val.callgraph;
711 			break;
712 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
713 			if (term->val.branch && strcmp(term->val.branch, "no")) {
714 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
715 				parse_branch_str(term->val.branch,
716 						 &attr->branch_sample_type);
717 			} else
718 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
719 			break;
720 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
721 			dump_size = term->val.stack_user;
722 			break;
723 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
724 			max_stack = term->val.max_stack;
725 			break;
726 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
727 			/*
728 			 * attr->inherit should has already been set by
729 			 * perf_evsel__config. If user explicitly set
730 			 * inherit using config terms, override global
731 			 * opt->no_inherit setting.
732 			 */
733 			attr->inherit = term->val.inherit ? 1 : 0;
734 			break;
735 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
736 			attr->write_backward = term->val.overwrite ? 1 : 0;
737 			break;
738 		default:
739 			break;
740 		}
741 	}
742 
743 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
744 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
745 		if (max_stack) {
746 			param.max_stack = max_stack;
747 			if (callgraph_buf == NULL)
748 				callgraph_buf = "fp";
749 		}
750 
751 		/* parse callgraph parameters */
752 		if (callgraph_buf != NULL) {
753 			if (!strcmp(callgraph_buf, "no")) {
754 				param.enabled = false;
755 				param.record_mode = CALLCHAIN_NONE;
756 			} else {
757 				param.enabled = true;
758 				if (parse_callchain_record(callgraph_buf, &param)) {
759 					pr_err("per-event callgraph setting for %s failed. "
760 					       "Apply callgraph global setting for it\n",
761 					       evsel->name);
762 					return;
763 				}
764 			}
765 		}
766 		if (dump_size > 0) {
767 			dump_size = round_up(dump_size, sizeof(u64));
768 			param.dump_size = dump_size;
769 		}
770 
771 		/* If global callgraph set, clear it */
772 		if (callchain_param.enabled)
773 			perf_evsel__reset_callgraph(evsel, &callchain_param);
774 
775 		/* set perf-event callgraph */
776 		if (param.enabled)
777 			perf_evsel__config_callchain(evsel, opts, &param);
778 	}
779 }
780 
781 /*
782  * The enable_on_exec/disabled value strategy:
783  *
784  *  1) For any type of traced program:
785  *    - all independent events and group leaders are disabled
786  *    - all group members are enabled
787  *
788  *     Group members are ruled by group leaders. They need to
789  *     be enabled, because the group scheduling relies on that.
790  *
791  *  2) For traced programs executed by perf:
792  *     - all independent events and group leaders have
793  *       enable_on_exec set
794  *     - we don't specifically enable or disable any event during
795  *       the record command
796  *
797  *     Independent events and group leaders are initially disabled
798  *     and get enabled by exec. Group members are ruled by group
799  *     leaders as stated in 1).
800  *
801  *  3) For traced programs attached by perf (pid/tid):
802  *     - we specifically enable or disable all events during
803  *       the record command
804  *
805  *     When attaching events to already running traced we
806  *     enable/disable events specifically, as there's no
807  *     initial traced exec call.
808  */
809 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
810 			struct callchain_param *callchain)
811 {
812 	struct perf_evsel *leader = evsel->leader;
813 	struct perf_event_attr *attr = &evsel->attr;
814 	int track = evsel->tracking;
815 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
816 
817 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
818 	attr->inherit	    = !opts->no_inherit;
819 	attr->write_backward = opts->overwrite ? 1 : 0;
820 
821 	perf_evsel__set_sample_bit(evsel, IP);
822 	perf_evsel__set_sample_bit(evsel, TID);
823 
824 	if (evsel->sample_read) {
825 		perf_evsel__set_sample_bit(evsel, READ);
826 
827 		/*
828 		 * We need ID even in case of single event, because
829 		 * PERF_SAMPLE_READ process ID specific data.
830 		 */
831 		perf_evsel__set_sample_id(evsel, false);
832 
833 		/*
834 		 * Apply group format only if we belong to group
835 		 * with more than one members.
836 		 */
837 		if (leader->nr_members > 1) {
838 			attr->read_format |= PERF_FORMAT_GROUP;
839 			attr->inherit = 0;
840 		}
841 	}
842 
843 	/*
844 	 * We default some events to have a default interval. But keep
845 	 * it a weak assumption overridable by the user.
846 	 */
847 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
848 				     opts->user_interval != ULLONG_MAX)) {
849 		if (opts->freq) {
850 			perf_evsel__set_sample_bit(evsel, PERIOD);
851 			attr->freq		= 1;
852 			attr->sample_freq	= opts->freq;
853 		} else {
854 			attr->sample_period = opts->default_interval;
855 		}
856 	}
857 
858 	/*
859 	 * Disable sampling for all group members other
860 	 * than leader in case leader 'leads' the sampling.
861 	 */
862 	if ((leader != evsel) && leader->sample_read) {
863 		attr->sample_freq   = 0;
864 		attr->sample_period = 0;
865 	}
866 
867 	if (opts->no_samples)
868 		attr->sample_freq = 0;
869 
870 	if (opts->inherit_stat)
871 		attr->inherit_stat = 1;
872 
873 	if (opts->sample_address) {
874 		perf_evsel__set_sample_bit(evsel, ADDR);
875 		attr->mmap_data = track;
876 	}
877 
878 	/*
879 	 * We don't allow user space callchains for  function trace
880 	 * event, due to issues with page faults while tracing page
881 	 * fault handler and its overall trickiness nature.
882 	 */
883 	if (perf_evsel__is_function_event(evsel))
884 		evsel->attr.exclude_callchain_user = 1;
885 
886 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
887 		perf_evsel__config_callchain(evsel, opts, callchain);
888 
889 	if (opts->sample_intr_regs) {
890 		attr->sample_regs_intr = opts->sample_intr_regs;
891 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
892 	}
893 
894 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
895 		perf_evsel__set_sample_bit(evsel, CPU);
896 
897 	if (opts->period)
898 		perf_evsel__set_sample_bit(evsel, PERIOD);
899 
900 	/*
901 	 * When the user explicitly disabled time don't force it here.
902 	 */
903 	if (opts->sample_time &&
904 	    (!perf_missing_features.sample_id_all &&
905 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
906 	     opts->sample_time_set)))
907 		perf_evsel__set_sample_bit(evsel, TIME);
908 
909 	if (opts->raw_samples && !evsel->no_aux_samples) {
910 		perf_evsel__set_sample_bit(evsel, TIME);
911 		perf_evsel__set_sample_bit(evsel, RAW);
912 		perf_evsel__set_sample_bit(evsel, CPU);
913 	}
914 
915 	if (opts->sample_address)
916 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
917 
918 	if (opts->no_buffering) {
919 		attr->watermark = 0;
920 		attr->wakeup_events = 1;
921 	}
922 	if (opts->branch_stack && !evsel->no_aux_samples) {
923 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
924 		attr->branch_sample_type = opts->branch_stack;
925 	}
926 
927 	if (opts->sample_weight)
928 		perf_evsel__set_sample_bit(evsel, WEIGHT);
929 
930 	attr->task  = track;
931 	attr->mmap  = track;
932 	attr->mmap2 = track && !perf_missing_features.mmap2;
933 	attr->comm  = track;
934 
935 	if (opts->record_switch_events)
936 		attr->context_switch = track;
937 
938 	if (opts->sample_transaction)
939 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
940 
941 	if (opts->running_time) {
942 		evsel->attr.read_format |=
943 			PERF_FORMAT_TOTAL_TIME_ENABLED |
944 			PERF_FORMAT_TOTAL_TIME_RUNNING;
945 	}
946 
947 	/*
948 	 * XXX see the function comment above
949 	 *
950 	 * Disabling only independent events or group leaders,
951 	 * keeping group members enabled.
952 	 */
953 	if (perf_evsel__is_group_leader(evsel))
954 		attr->disabled = 1;
955 
956 	/*
957 	 * Setting enable_on_exec for independent events and
958 	 * group leaders for traced executed by perf.
959 	 */
960 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
961 		!opts->initial_delay)
962 		attr->enable_on_exec = 1;
963 
964 	if (evsel->immediate) {
965 		attr->disabled = 0;
966 		attr->enable_on_exec = 0;
967 	}
968 
969 	clockid = opts->clockid;
970 	if (opts->use_clockid) {
971 		attr->use_clockid = 1;
972 		attr->clockid = opts->clockid;
973 	}
974 
975 	if (evsel->precise_max)
976 		perf_event_attr__set_max_precise_ip(attr);
977 
978 	if (opts->all_user) {
979 		attr->exclude_kernel = 1;
980 		attr->exclude_user   = 0;
981 	}
982 
983 	if (opts->all_kernel) {
984 		attr->exclude_kernel = 0;
985 		attr->exclude_user   = 1;
986 	}
987 
988 	/*
989 	 * Apply event specific term settings,
990 	 * it overloads any global configuration.
991 	 */
992 	apply_config_terms(evsel, opts);
993 
994 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
995 }
996 
997 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
998 {
999 	if (evsel->system_wide)
1000 		nthreads = 1;
1001 
1002 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1003 
1004 	if (evsel->fd) {
1005 		int cpu, thread;
1006 		for (cpu = 0; cpu < ncpus; cpu++) {
1007 			for (thread = 0; thread < nthreads; thread++) {
1008 				FD(evsel, cpu, thread) = -1;
1009 			}
1010 		}
1011 	}
1012 
1013 	return evsel->fd != NULL ? 0 : -ENOMEM;
1014 }
1015 
1016 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
1017 			  int ioc,  void *arg)
1018 {
1019 	int cpu, thread;
1020 
1021 	if (evsel->system_wide)
1022 		nthreads = 1;
1023 
1024 	for (cpu = 0; cpu < ncpus; cpu++) {
1025 		for (thread = 0; thread < nthreads; thread++) {
1026 			int fd = FD(evsel, cpu, thread),
1027 			    err = ioctl(fd, ioc, arg);
1028 
1029 			if (err)
1030 				return err;
1031 		}
1032 	}
1033 
1034 	return 0;
1035 }
1036 
1037 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
1038 			     const char *filter)
1039 {
1040 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1041 				     PERF_EVENT_IOC_SET_FILTER,
1042 				     (void *)filter);
1043 }
1044 
1045 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1046 {
1047 	char *new_filter = strdup(filter);
1048 
1049 	if (new_filter != NULL) {
1050 		free(evsel->filter);
1051 		evsel->filter = new_filter;
1052 		return 0;
1053 	}
1054 
1055 	return -1;
1056 }
1057 
1058 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1059 				     const char *fmt, const char *filter)
1060 {
1061 	char *new_filter;
1062 
1063 	if (evsel->filter == NULL)
1064 		return perf_evsel__set_filter(evsel, filter);
1065 
1066 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1067 		free(evsel->filter);
1068 		evsel->filter = new_filter;
1069 		return 0;
1070 	}
1071 
1072 	return -1;
1073 }
1074 
1075 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1076 {
1077 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1078 }
1079 
1080 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1081 {
1082 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1083 }
1084 
1085 int perf_evsel__enable(struct perf_evsel *evsel)
1086 {
1087 	int nthreads = thread_map__nr(evsel->threads);
1088 	int ncpus = cpu_map__nr(evsel->cpus);
1089 
1090 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1091 				     PERF_EVENT_IOC_ENABLE,
1092 				     0);
1093 }
1094 
1095 int perf_evsel__disable(struct perf_evsel *evsel)
1096 {
1097 	int nthreads = thread_map__nr(evsel->threads);
1098 	int ncpus = cpu_map__nr(evsel->cpus);
1099 
1100 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1101 				     PERF_EVENT_IOC_DISABLE,
1102 				     0);
1103 }
1104 
1105 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1106 {
1107 	if (ncpus == 0 || nthreads == 0)
1108 		return 0;
1109 
1110 	if (evsel->system_wide)
1111 		nthreads = 1;
1112 
1113 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1114 	if (evsel->sample_id == NULL)
1115 		return -ENOMEM;
1116 
1117 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1118 	if (evsel->id == NULL) {
1119 		xyarray__delete(evsel->sample_id);
1120 		evsel->sample_id = NULL;
1121 		return -ENOMEM;
1122 	}
1123 
1124 	return 0;
1125 }
1126 
1127 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1128 {
1129 	xyarray__delete(evsel->fd);
1130 	evsel->fd = NULL;
1131 }
1132 
1133 static void perf_evsel__free_id(struct perf_evsel *evsel)
1134 {
1135 	xyarray__delete(evsel->sample_id);
1136 	evsel->sample_id = NULL;
1137 	zfree(&evsel->id);
1138 }
1139 
1140 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1141 {
1142 	struct perf_evsel_config_term *term, *h;
1143 
1144 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1145 		list_del(&term->list);
1146 		free(term);
1147 	}
1148 }
1149 
1150 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1151 {
1152 	int cpu, thread;
1153 
1154 	if (evsel->system_wide)
1155 		nthreads = 1;
1156 
1157 	for (cpu = 0; cpu < ncpus; cpu++)
1158 		for (thread = 0; thread < nthreads; ++thread) {
1159 			close(FD(evsel, cpu, thread));
1160 			FD(evsel, cpu, thread) = -1;
1161 		}
1162 }
1163 
1164 void perf_evsel__exit(struct perf_evsel *evsel)
1165 {
1166 	assert(list_empty(&evsel->node));
1167 	assert(evsel->evlist == NULL);
1168 	perf_evsel__free_fd(evsel);
1169 	perf_evsel__free_id(evsel);
1170 	perf_evsel__free_config_terms(evsel);
1171 	close_cgroup(evsel->cgrp);
1172 	cpu_map__put(evsel->cpus);
1173 	cpu_map__put(evsel->own_cpus);
1174 	thread_map__put(evsel->threads);
1175 	zfree(&evsel->group_name);
1176 	zfree(&evsel->name);
1177 	perf_evsel__object.fini(evsel);
1178 }
1179 
1180 void perf_evsel__delete(struct perf_evsel *evsel)
1181 {
1182 	perf_evsel__exit(evsel);
1183 	free(evsel);
1184 }
1185 
1186 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1187 				struct perf_counts_values *count)
1188 {
1189 	struct perf_counts_values tmp;
1190 
1191 	if (!evsel->prev_raw_counts)
1192 		return;
1193 
1194 	if (cpu == -1) {
1195 		tmp = evsel->prev_raw_counts->aggr;
1196 		evsel->prev_raw_counts->aggr = *count;
1197 	} else {
1198 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1199 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1200 	}
1201 
1202 	count->val = count->val - tmp.val;
1203 	count->ena = count->ena - tmp.ena;
1204 	count->run = count->run - tmp.run;
1205 }
1206 
1207 void perf_counts_values__scale(struct perf_counts_values *count,
1208 			       bool scale, s8 *pscaled)
1209 {
1210 	s8 scaled = 0;
1211 
1212 	if (scale) {
1213 		if (count->run == 0) {
1214 			scaled = -1;
1215 			count->val = 0;
1216 		} else if (count->run < count->ena) {
1217 			scaled = 1;
1218 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1219 		}
1220 	} else
1221 		count->ena = count->run = 0;
1222 
1223 	if (pscaled)
1224 		*pscaled = scaled;
1225 }
1226 
1227 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1228 		     struct perf_counts_values *count)
1229 {
1230 	memset(count, 0, sizeof(*count));
1231 
1232 	if (FD(evsel, cpu, thread) < 0)
1233 		return -EINVAL;
1234 
1235 	if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0)
1236 		return -errno;
1237 
1238 	return 0;
1239 }
1240 
1241 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1242 			      int cpu, int thread, bool scale)
1243 {
1244 	struct perf_counts_values count;
1245 	size_t nv = scale ? 3 : 1;
1246 
1247 	if (FD(evsel, cpu, thread) < 0)
1248 		return -EINVAL;
1249 
1250 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1251 		return -ENOMEM;
1252 
1253 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
1254 		return -errno;
1255 
1256 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1257 	perf_counts_values__scale(&count, scale, NULL);
1258 	*perf_counts(evsel->counts, cpu, thread) = count;
1259 	return 0;
1260 }
1261 
1262 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1263 {
1264 	struct perf_evsel *leader = evsel->leader;
1265 	int fd;
1266 
1267 	if (perf_evsel__is_group_leader(evsel))
1268 		return -1;
1269 
1270 	/*
1271 	 * Leader must be already processed/open,
1272 	 * if not it's a bug.
1273 	 */
1274 	BUG_ON(!leader->fd);
1275 
1276 	fd = FD(leader, cpu, thread);
1277 	BUG_ON(fd == -1);
1278 
1279 	return fd;
1280 }
1281 
1282 struct bit_names {
1283 	int bit;
1284 	const char *name;
1285 };
1286 
1287 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1288 {
1289 	bool first_bit = true;
1290 	int i = 0;
1291 
1292 	do {
1293 		if (value & bits[i].bit) {
1294 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1295 			first_bit = false;
1296 		}
1297 	} while (bits[++i].name != NULL);
1298 }
1299 
1300 static void __p_sample_type(char *buf, size_t size, u64 value)
1301 {
1302 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1303 	struct bit_names bits[] = {
1304 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1305 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1306 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1307 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1308 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1309 		bit_name(WEIGHT),
1310 		{ .name = NULL, }
1311 	};
1312 #undef bit_name
1313 	__p_bits(buf, size, value, bits);
1314 }
1315 
1316 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1317 {
1318 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1319 	struct bit_names bits[] = {
1320 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1321 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1322 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1323 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1324 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1325 		{ .name = NULL, }
1326 	};
1327 #undef bit_name
1328 	__p_bits(buf, size, value, bits);
1329 }
1330 
1331 static void __p_read_format(char *buf, size_t size, u64 value)
1332 {
1333 #define bit_name(n) { PERF_FORMAT_##n, #n }
1334 	struct bit_names bits[] = {
1335 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1336 		bit_name(ID), bit_name(GROUP),
1337 		{ .name = NULL, }
1338 	};
1339 #undef bit_name
1340 	__p_bits(buf, size, value, bits);
1341 }
1342 
1343 #define BUF_SIZE		1024
1344 
1345 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1346 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1347 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1348 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1349 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1350 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1351 
1352 #define PRINT_ATTRn(_n, _f, _p)				\
1353 do {							\
1354 	if (attr->_f) {					\
1355 		_p(attr->_f);				\
1356 		ret += attr__fprintf(fp, _n, buf, priv);\
1357 	}						\
1358 } while (0)
1359 
1360 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1361 
1362 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1363 			     attr__fprintf_f attr__fprintf, void *priv)
1364 {
1365 	char buf[BUF_SIZE];
1366 	int ret = 0;
1367 
1368 	PRINT_ATTRf(type, p_unsigned);
1369 	PRINT_ATTRf(size, p_unsigned);
1370 	PRINT_ATTRf(config, p_hex);
1371 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1372 	PRINT_ATTRf(sample_type, p_sample_type);
1373 	PRINT_ATTRf(read_format, p_read_format);
1374 
1375 	PRINT_ATTRf(disabled, p_unsigned);
1376 	PRINT_ATTRf(inherit, p_unsigned);
1377 	PRINT_ATTRf(pinned, p_unsigned);
1378 	PRINT_ATTRf(exclusive, p_unsigned);
1379 	PRINT_ATTRf(exclude_user, p_unsigned);
1380 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1381 	PRINT_ATTRf(exclude_hv, p_unsigned);
1382 	PRINT_ATTRf(exclude_idle, p_unsigned);
1383 	PRINT_ATTRf(mmap, p_unsigned);
1384 	PRINT_ATTRf(comm, p_unsigned);
1385 	PRINT_ATTRf(freq, p_unsigned);
1386 	PRINT_ATTRf(inherit_stat, p_unsigned);
1387 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1388 	PRINT_ATTRf(task, p_unsigned);
1389 	PRINT_ATTRf(watermark, p_unsigned);
1390 	PRINT_ATTRf(precise_ip, p_unsigned);
1391 	PRINT_ATTRf(mmap_data, p_unsigned);
1392 	PRINT_ATTRf(sample_id_all, p_unsigned);
1393 	PRINT_ATTRf(exclude_host, p_unsigned);
1394 	PRINT_ATTRf(exclude_guest, p_unsigned);
1395 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1396 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1397 	PRINT_ATTRf(mmap2, p_unsigned);
1398 	PRINT_ATTRf(comm_exec, p_unsigned);
1399 	PRINT_ATTRf(use_clockid, p_unsigned);
1400 	PRINT_ATTRf(context_switch, p_unsigned);
1401 	PRINT_ATTRf(write_backward, p_unsigned);
1402 
1403 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1404 	PRINT_ATTRf(bp_type, p_unsigned);
1405 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1406 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1407 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1408 	PRINT_ATTRf(sample_regs_user, p_hex);
1409 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1410 	PRINT_ATTRf(clockid, p_signed);
1411 	PRINT_ATTRf(sample_regs_intr, p_hex);
1412 	PRINT_ATTRf(aux_watermark, p_unsigned);
1413 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1414 
1415 	return ret;
1416 }
1417 
1418 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1419 				void *priv __attribute__((unused)))
1420 {
1421 	return fprintf(fp, "  %-32s %s\n", name, val);
1422 }
1423 
1424 static bool ignore_missing_thread(struct perf_evsel *evsel,
1425 				  struct thread_map *threads,
1426 				  int thread, int err)
1427 {
1428 	if (!evsel->ignore_missing_thread)
1429 		return false;
1430 
1431 	/* The system wide setup does not work with threads. */
1432 	if (evsel->system_wide)
1433 		return false;
1434 
1435 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1436 	if (err != -ESRCH)
1437 		return false;
1438 
1439 	/* If there's only one thread, let it fail. */
1440 	if (threads->nr == 1)
1441 		return false;
1442 
1443 	if (thread_map__remove(threads, thread))
1444 		return false;
1445 
1446 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1447 		   thread_map__pid(threads, thread));
1448 	return true;
1449 }
1450 
1451 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1452 			      struct thread_map *threads)
1453 {
1454 	int cpu, thread, nthreads;
1455 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1456 	int pid = -1, err;
1457 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1458 
1459 	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1460 		return -EINVAL;
1461 
1462 	if (evsel->system_wide)
1463 		nthreads = 1;
1464 	else
1465 		nthreads = threads->nr;
1466 
1467 	if (evsel->fd == NULL &&
1468 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1469 		return -ENOMEM;
1470 
1471 	if (evsel->cgrp) {
1472 		flags |= PERF_FLAG_PID_CGROUP;
1473 		pid = evsel->cgrp->fd;
1474 	}
1475 
1476 fallback_missing_features:
1477 	if (perf_missing_features.clockid_wrong)
1478 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1479 	if (perf_missing_features.clockid) {
1480 		evsel->attr.use_clockid = 0;
1481 		evsel->attr.clockid = 0;
1482 	}
1483 	if (perf_missing_features.cloexec)
1484 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1485 	if (perf_missing_features.mmap2)
1486 		evsel->attr.mmap2 = 0;
1487 	if (perf_missing_features.exclude_guest)
1488 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1489 	if (perf_missing_features.lbr_flags)
1490 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1491 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1492 retry_sample_id:
1493 	if (perf_missing_features.sample_id_all)
1494 		evsel->attr.sample_id_all = 0;
1495 
1496 	if (verbose >= 2) {
1497 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1498 		fprintf(stderr, "perf_event_attr:\n");
1499 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1500 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1501 	}
1502 
1503 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1504 
1505 		for (thread = 0; thread < nthreads; thread++) {
1506 			int fd, group_fd;
1507 
1508 			if (!evsel->cgrp && !evsel->system_wide)
1509 				pid = thread_map__pid(threads, thread);
1510 
1511 			group_fd = get_group_fd(evsel, cpu, thread);
1512 retry_open:
1513 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1514 				  pid, cpus->map[cpu], group_fd, flags);
1515 
1516 			fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1517 						 group_fd, flags);
1518 
1519 			FD(evsel, cpu, thread) = fd;
1520 
1521 			if (fd < 0) {
1522 				err = -errno;
1523 
1524 				if (ignore_missing_thread(evsel, threads, thread, err)) {
1525 					/*
1526 					 * We just removed 1 thread, so take a step
1527 					 * back on thread index and lower the upper
1528 					 * nthreads limit.
1529 					 */
1530 					nthreads--;
1531 					thread--;
1532 
1533 					/* ... and pretend like nothing have happened. */
1534 					err = 0;
1535 					continue;
1536 				}
1537 
1538 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1539 					  err);
1540 				goto try_fallback;
1541 			}
1542 
1543 			pr_debug2(" = %d\n", fd);
1544 
1545 			if (evsel->bpf_fd >= 0) {
1546 				int evt_fd = fd;
1547 				int bpf_fd = evsel->bpf_fd;
1548 
1549 				err = ioctl(evt_fd,
1550 					    PERF_EVENT_IOC_SET_BPF,
1551 					    bpf_fd);
1552 				if (err && errno != EEXIST) {
1553 					pr_err("failed to attach bpf fd %d: %s\n",
1554 					       bpf_fd, strerror(errno));
1555 					err = -EINVAL;
1556 					goto out_close;
1557 				}
1558 			}
1559 
1560 			set_rlimit = NO_CHANGE;
1561 
1562 			/*
1563 			 * If we succeeded but had to kill clockid, fail and
1564 			 * have perf_evsel__open_strerror() print us a nice
1565 			 * error.
1566 			 */
1567 			if (perf_missing_features.clockid ||
1568 			    perf_missing_features.clockid_wrong) {
1569 				err = -EINVAL;
1570 				goto out_close;
1571 			}
1572 		}
1573 	}
1574 
1575 	return 0;
1576 
1577 try_fallback:
1578 	/*
1579 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1580 	 * of them try to increase the limits.
1581 	 */
1582 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1583 		struct rlimit l;
1584 		int old_errno = errno;
1585 
1586 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1587 			if (set_rlimit == NO_CHANGE)
1588 				l.rlim_cur = l.rlim_max;
1589 			else {
1590 				l.rlim_cur = l.rlim_max + 1000;
1591 				l.rlim_max = l.rlim_cur;
1592 			}
1593 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1594 				set_rlimit++;
1595 				errno = old_errno;
1596 				goto retry_open;
1597 			}
1598 		}
1599 		errno = old_errno;
1600 	}
1601 
1602 	if (err != -EINVAL || cpu > 0 || thread > 0)
1603 		goto out_close;
1604 
1605 	/*
1606 	 * Must probe features in the order they were added to the
1607 	 * perf_event_attr interface.
1608 	 */
1609 	if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1610 		perf_missing_features.write_backward = true;
1611 		goto out_close;
1612 	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1613 		perf_missing_features.clockid_wrong = true;
1614 		goto fallback_missing_features;
1615 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1616 		perf_missing_features.clockid = true;
1617 		goto fallback_missing_features;
1618 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1619 		perf_missing_features.cloexec = true;
1620 		goto fallback_missing_features;
1621 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1622 		perf_missing_features.mmap2 = true;
1623 		goto fallback_missing_features;
1624 	} else if (!perf_missing_features.exclude_guest &&
1625 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1626 		perf_missing_features.exclude_guest = true;
1627 		goto fallback_missing_features;
1628 	} else if (!perf_missing_features.sample_id_all) {
1629 		perf_missing_features.sample_id_all = true;
1630 		goto retry_sample_id;
1631 	} else if (!perf_missing_features.lbr_flags &&
1632 			(evsel->attr.branch_sample_type &
1633 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1634 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1635 		perf_missing_features.lbr_flags = true;
1636 		goto fallback_missing_features;
1637 	}
1638 out_close:
1639 	do {
1640 		while (--thread >= 0) {
1641 			close(FD(evsel, cpu, thread));
1642 			FD(evsel, cpu, thread) = -1;
1643 		}
1644 		thread = nthreads;
1645 	} while (--cpu >= 0);
1646 	return err;
1647 }
1648 
1649 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1650 {
1651 	if (evsel->fd == NULL)
1652 		return;
1653 
1654 	perf_evsel__close_fd(evsel, ncpus, nthreads);
1655 	perf_evsel__free_fd(evsel);
1656 }
1657 
1658 static struct {
1659 	struct cpu_map map;
1660 	int cpus[1];
1661 } empty_cpu_map = {
1662 	.map.nr	= 1,
1663 	.cpus	= { -1, },
1664 };
1665 
1666 static struct {
1667 	struct thread_map map;
1668 	int threads[1];
1669 } empty_thread_map = {
1670 	.map.nr	 = 1,
1671 	.threads = { -1, },
1672 };
1673 
1674 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1675 		     struct thread_map *threads)
1676 {
1677 	if (cpus == NULL) {
1678 		/* Work around old compiler warnings about strict aliasing */
1679 		cpus = &empty_cpu_map.map;
1680 	}
1681 
1682 	if (threads == NULL)
1683 		threads = &empty_thread_map.map;
1684 
1685 	return __perf_evsel__open(evsel, cpus, threads);
1686 }
1687 
1688 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1689 			     struct cpu_map *cpus)
1690 {
1691 	return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1692 }
1693 
1694 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1695 				struct thread_map *threads)
1696 {
1697 	return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1698 }
1699 
1700 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1701 				       const union perf_event *event,
1702 				       struct perf_sample *sample)
1703 {
1704 	u64 type = evsel->attr.sample_type;
1705 	const u64 *array = event->sample.array;
1706 	bool swapped = evsel->needs_swap;
1707 	union u64_swap u;
1708 
1709 	array += ((event->header.size -
1710 		   sizeof(event->header)) / sizeof(u64)) - 1;
1711 
1712 	if (type & PERF_SAMPLE_IDENTIFIER) {
1713 		sample->id = *array;
1714 		array--;
1715 	}
1716 
1717 	if (type & PERF_SAMPLE_CPU) {
1718 		u.val64 = *array;
1719 		if (swapped) {
1720 			/* undo swap of u64, then swap on individual u32s */
1721 			u.val64 = bswap_64(u.val64);
1722 			u.val32[0] = bswap_32(u.val32[0]);
1723 		}
1724 
1725 		sample->cpu = u.val32[0];
1726 		array--;
1727 	}
1728 
1729 	if (type & PERF_SAMPLE_STREAM_ID) {
1730 		sample->stream_id = *array;
1731 		array--;
1732 	}
1733 
1734 	if (type & PERF_SAMPLE_ID) {
1735 		sample->id = *array;
1736 		array--;
1737 	}
1738 
1739 	if (type & PERF_SAMPLE_TIME) {
1740 		sample->time = *array;
1741 		array--;
1742 	}
1743 
1744 	if (type & PERF_SAMPLE_TID) {
1745 		u.val64 = *array;
1746 		if (swapped) {
1747 			/* undo swap of u64, then swap on individual u32s */
1748 			u.val64 = bswap_64(u.val64);
1749 			u.val32[0] = bswap_32(u.val32[0]);
1750 			u.val32[1] = bswap_32(u.val32[1]);
1751 		}
1752 
1753 		sample->pid = u.val32[0];
1754 		sample->tid = u.val32[1];
1755 		array--;
1756 	}
1757 
1758 	return 0;
1759 }
1760 
1761 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1762 			    u64 size)
1763 {
1764 	return size > max_size || offset + size > endp;
1765 }
1766 
1767 #define OVERFLOW_CHECK(offset, size, max_size)				\
1768 	do {								\
1769 		if (overflow(endp, (max_size), (offset), (size)))	\
1770 			return -EFAULT;					\
1771 	} while (0)
1772 
1773 #define OVERFLOW_CHECK_u64(offset) \
1774 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1775 
1776 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1777 			     struct perf_sample *data)
1778 {
1779 	u64 type = evsel->attr.sample_type;
1780 	bool swapped = evsel->needs_swap;
1781 	const u64 *array;
1782 	u16 max_size = event->header.size;
1783 	const void *endp = (void *)event + max_size;
1784 	u64 sz;
1785 
1786 	/*
1787 	 * used for cross-endian analysis. See git commit 65014ab3
1788 	 * for why this goofiness is needed.
1789 	 */
1790 	union u64_swap u;
1791 
1792 	memset(data, 0, sizeof(*data));
1793 	data->cpu = data->pid = data->tid = -1;
1794 	data->stream_id = data->id = data->time = -1ULL;
1795 	data->period = evsel->attr.sample_period;
1796 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1797 
1798 	if (event->header.type != PERF_RECORD_SAMPLE) {
1799 		if (!evsel->attr.sample_id_all)
1800 			return 0;
1801 		return perf_evsel__parse_id_sample(evsel, event, data);
1802 	}
1803 
1804 	array = event->sample.array;
1805 
1806 	/*
1807 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1808 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1809 	 * check the format does not go past the end of the event.
1810 	 */
1811 	if (evsel->sample_size + sizeof(event->header) > event->header.size)
1812 		return -EFAULT;
1813 
1814 	data->id = -1ULL;
1815 	if (type & PERF_SAMPLE_IDENTIFIER) {
1816 		data->id = *array;
1817 		array++;
1818 	}
1819 
1820 	if (type & PERF_SAMPLE_IP) {
1821 		data->ip = *array;
1822 		array++;
1823 	}
1824 
1825 	if (type & PERF_SAMPLE_TID) {
1826 		u.val64 = *array;
1827 		if (swapped) {
1828 			/* undo swap of u64, then swap on individual u32s */
1829 			u.val64 = bswap_64(u.val64);
1830 			u.val32[0] = bswap_32(u.val32[0]);
1831 			u.val32[1] = bswap_32(u.val32[1]);
1832 		}
1833 
1834 		data->pid = u.val32[0];
1835 		data->tid = u.val32[1];
1836 		array++;
1837 	}
1838 
1839 	if (type & PERF_SAMPLE_TIME) {
1840 		data->time = *array;
1841 		array++;
1842 	}
1843 
1844 	data->addr = 0;
1845 	if (type & PERF_SAMPLE_ADDR) {
1846 		data->addr = *array;
1847 		array++;
1848 	}
1849 
1850 	if (type & PERF_SAMPLE_ID) {
1851 		data->id = *array;
1852 		array++;
1853 	}
1854 
1855 	if (type & PERF_SAMPLE_STREAM_ID) {
1856 		data->stream_id = *array;
1857 		array++;
1858 	}
1859 
1860 	if (type & PERF_SAMPLE_CPU) {
1861 
1862 		u.val64 = *array;
1863 		if (swapped) {
1864 			/* undo swap of u64, then swap on individual u32s */
1865 			u.val64 = bswap_64(u.val64);
1866 			u.val32[0] = bswap_32(u.val32[0]);
1867 		}
1868 
1869 		data->cpu = u.val32[0];
1870 		array++;
1871 	}
1872 
1873 	if (type & PERF_SAMPLE_PERIOD) {
1874 		data->period = *array;
1875 		array++;
1876 	}
1877 
1878 	if (type & PERF_SAMPLE_READ) {
1879 		u64 read_format = evsel->attr.read_format;
1880 
1881 		OVERFLOW_CHECK_u64(array);
1882 		if (read_format & PERF_FORMAT_GROUP)
1883 			data->read.group.nr = *array;
1884 		else
1885 			data->read.one.value = *array;
1886 
1887 		array++;
1888 
1889 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1890 			OVERFLOW_CHECK_u64(array);
1891 			data->read.time_enabled = *array;
1892 			array++;
1893 		}
1894 
1895 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1896 			OVERFLOW_CHECK_u64(array);
1897 			data->read.time_running = *array;
1898 			array++;
1899 		}
1900 
1901 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1902 		if (read_format & PERF_FORMAT_GROUP) {
1903 			const u64 max_group_nr = UINT64_MAX /
1904 					sizeof(struct sample_read_value);
1905 
1906 			if (data->read.group.nr > max_group_nr)
1907 				return -EFAULT;
1908 			sz = data->read.group.nr *
1909 			     sizeof(struct sample_read_value);
1910 			OVERFLOW_CHECK(array, sz, max_size);
1911 			data->read.group.values =
1912 					(struct sample_read_value *)array;
1913 			array = (void *)array + sz;
1914 		} else {
1915 			OVERFLOW_CHECK_u64(array);
1916 			data->read.one.id = *array;
1917 			array++;
1918 		}
1919 	}
1920 
1921 	if (type & PERF_SAMPLE_CALLCHAIN) {
1922 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1923 
1924 		OVERFLOW_CHECK_u64(array);
1925 		data->callchain = (struct ip_callchain *)array++;
1926 		if (data->callchain->nr > max_callchain_nr)
1927 			return -EFAULT;
1928 		sz = data->callchain->nr * sizeof(u64);
1929 		OVERFLOW_CHECK(array, sz, max_size);
1930 		array = (void *)array + sz;
1931 	}
1932 
1933 	if (type & PERF_SAMPLE_RAW) {
1934 		OVERFLOW_CHECK_u64(array);
1935 		u.val64 = *array;
1936 		if (WARN_ONCE(swapped,
1937 			      "Endianness of raw data not corrected!\n")) {
1938 			/* undo swap of u64, then swap on individual u32s */
1939 			u.val64 = bswap_64(u.val64);
1940 			u.val32[0] = bswap_32(u.val32[0]);
1941 			u.val32[1] = bswap_32(u.val32[1]);
1942 		}
1943 		data->raw_size = u.val32[0];
1944 		array = (void *)array + sizeof(u32);
1945 
1946 		OVERFLOW_CHECK(array, data->raw_size, max_size);
1947 		data->raw_data = (void *)array;
1948 		array = (void *)array + data->raw_size;
1949 	}
1950 
1951 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1952 		const u64 max_branch_nr = UINT64_MAX /
1953 					  sizeof(struct branch_entry);
1954 
1955 		OVERFLOW_CHECK_u64(array);
1956 		data->branch_stack = (struct branch_stack *)array++;
1957 
1958 		if (data->branch_stack->nr > max_branch_nr)
1959 			return -EFAULT;
1960 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
1961 		OVERFLOW_CHECK(array, sz, max_size);
1962 		array = (void *)array + sz;
1963 	}
1964 
1965 	if (type & PERF_SAMPLE_REGS_USER) {
1966 		OVERFLOW_CHECK_u64(array);
1967 		data->user_regs.abi = *array;
1968 		array++;
1969 
1970 		if (data->user_regs.abi) {
1971 			u64 mask = evsel->attr.sample_regs_user;
1972 
1973 			sz = hweight_long(mask) * sizeof(u64);
1974 			OVERFLOW_CHECK(array, sz, max_size);
1975 			data->user_regs.mask = mask;
1976 			data->user_regs.regs = (u64 *)array;
1977 			array = (void *)array + sz;
1978 		}
1979 	}
1980 
1981 	if (type & PERF_SAMPLE_STACK_USER) {
1982 		OVERFLOW_CHECK_u64(array);
1983 		sz = *array++;
1984 
1985 		data->user_stack.offset = ((char *)(array - 1)
1986 					  - (char *) event);
1987 
1988 		if (!sz) {
1989 			data->user_stack.size = 0;
1990 		} else {
1991 			OVERFLOW_CHECK(array, sz, max_size);
1992 			data->user_stack.data = (char *)array;
1993 			array = (void *)array + sz;
1994 			OVERFLOW_CHECK_u64(array);
1995 			data->user_stack.size = *array++;
1996 			if (WARN_ONCE(data->user_stack.size > sz,
1997 				      "user stack dump failure\n"))
1998 				return -EFAULT;
1999 		}
2000 	}
2001 
2002 	if (type & PERF_SAMPLE_WEIGHT) {
2003 		OVERFLOW_CHECK_u64(array);
2004 		data->weight = *array;
2005 		array++;
2006 	}
2007 
2008 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2009 	if (type & PERF_SAMPLE_DATA_SRC) {
2010 		OVERFLOW_CHECK_u64(array);
2011 		data->data_src = *array;
2012 		array++;
2013 	}
2014 
2015 	data->transaction = 0;
2016 	if (type & PERF_SAMPLE_TRANSACTION) {
2017 		OVERFLOW_CHECK_u64(array);
2018 		data->transaction = *array;
2019 		array++;
2020 	}
2021 
2022 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2023 	if (type & PERF_SAMPLE_REGS_INTR) {
2024 		OVERFLOW_CHECK_u64(array);
2025 		data->intr_regs.abi = *array;
2026 		array++;
2027 
2028 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2029 			u64 mask = evsel->attr.sample_regs_intr;
2030 
2031 			sz = hweight_long(mask) * sizeof(u64);
2032 			OVERFLOW_CHECK(array, sz, max_size);
2033 			data->intr_regs.mask = mask;
2034 			data->intr_regs.regs = (u64 *)array;
2035 			array = (void *)array + sz;
2036 		}
2037 	}
2038 
2039 	return 0;
2040 }
2041 
2042 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2043 				     u64 read_format)
2044 {
2045 	size_t sz, result = sizeof(struct sample_event);
2046 
2047 	if (type & PERF_SAMPLE_IDENTIFIER)
2048 		result += sizeof(u64);
2049 
2050 	if (type & PERF_SAMPLE_IP)
2051 		result += sizeof(u64);
2052 
2053 	if (type & PERF_SAMPLE_TID)
2054 		result += sizeof(u64);
2055 
2056 	if (type & PERF_SAMPLE_TIME)
2057 		result += sizeof(u64);
2058 
2059 	if (type & PERF_SAMPLE_ADDR)
2060 		result += sizeof(u64);
2061 
2062 	if (type & PERF_SAMPLE_ID)
2063 		result += sizeof(u64);
2064 
2065 	if (type & PERF_SAMPLE_STREAM_ID)
2066 		result += sizeof(u64);
2067 
2068 	if (type & PERF_SAMPLE_CPU)
2069 		result += sizeof(u64);
2070 
2071 	if (type & PERF_SAMPLE_PERIOD)
2072 		result += sizeof(u64);
2073 
2074 	if (type & PERF_SAMPLE_READ) {
2075 		result += sizeof(u64);
2076 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2077 			result += sizeof(u64);
2078 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2079 			result += sizeof(u64);
2080 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2081 		if (read_format & PERF_FORMAT_GROUP) {
2082 			sz = sample->read.group.nr *
2083 			     sizeof(struct sample_read_value);
2084 			result += sz;
2085 		} else {
2086 			result += sizeof(u64);
2087 		}
2088 	}
2089 
2090 	if (type & PERF_SAMPLE_CALLCHAIN) {
2091 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2092 		result += sz;
2093 	}
2094 
2095 	if (type & PERF_SAMPLE_RAW) {
2096 		result += sizeof(u32);
2097 		result += sample->raw_size;
2098 	}
2099 
2100 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2101 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2102 		sz += sizeof(u64);
2103 		result += sz;
2104 	}
2105 
2106 	if (type & PERF_SAMPLE_REGS_USER) {
2107 		if (sample->user_regs.abi) {
2108 			result += sizeof(u64);
2109 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2110 			result += sz;
2111 		} else {
2112 			result += sizeof(u64);
2113 		}
2114 	}
2115 
2116 	if (type & PERF_SAMPLE_STACK_USER) {
2117 		sz = sample->user_stack.size;
2118 		result += sizeof(u64);
2119 		if (sz) {
2120 			result += sz;
2121 			result += sizeof(u64);
2122 		}
2123 	}
2124 
2125 	if (type & PERF_SAMPLE_WEIGHT)
2126 		result += sizeof(u64);
2127 
2128 	if (type & PERF_SAMPLE_DATA_SRC)
2129 		result += sizeof(u64);
2130 
2131 	if (type & PERF_SAMPLE_TRANSACTION)
2132 		result += sizeof(u64);
2133 
2134 	if (type & PERF_SAMPLE_REGS_INTR) {
2135 		if (sample->intr_regs.abi) {
2136 			result += sizeof(u64);
2137 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2138 			result += sz;
2139 		} else {
2140 			result += sizeof(u64);
2141 		}
2142 	}
2143 
2144 	return result;
2145 }
2146 
2147 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2148 				  u64 read_format,
2149 				  const struct perf_sample *sample,
2150 				  bool swapped)
2151 {
2152 	u64 *array;
2153 	size_t sz;
2154 	/*
2155 	 * used for cross-endian analysis. See git commit 65014ab3
2156 	 * for why this goofiness is needed.
2157 	 */
2158 	union u64_swap u;
2159 
2160 	array = event->sample.array;
2161 
2162 	if (type & PERF_SAMPLE_IDENTIFIER) {
2163 		*array = sample->id;
2164 		array++;
2165 	}
2166 
2167 	if (type & PERF_SAMPLE_IP) {
2168 		*array = sample->ip;
2169 		array++;
2170 	}
2171 
2172 	if (type & PERF_SAMPLE_TID) {
2173 		u.val32[0] = sample->pid;
2174 		u.val32[1] = sample->tid;
2175 		if (swapped) {
2176 			/*
2177 			 * Inverse of what is done in perf_evsel__parse_sample
2178 			 */
2179 			u.val32[0] = bswap_32(u.val32[0]);
2180 			u.val32[1] = bswap_32(u.val32[1]);
2181 			u.val64 = bswap_64(u.val64);
2182 		}
2183 
2184 		*array = u.val64;
2185 		array++;
2186 	}
2187 
2188 	if (type & PERF_SAMPLE_TIME) {
2189 		*array = sample->time;
2190 		array++;
2191 	}
2192 
2193 	if (type & PERF_SAMPLE_ADDR) {
2194 		*array = sample->addr;
2195 		array++;
2196 	}
2197 
2198 	if (type & PERF_SAMPLE_ID) {
2199 		*array = sample->id;
2200 		array++;
2201 	}
2202 
2203 	if (type & PERF_SAMPLE_STREAM_ID) {
2204 		*array = sample->stream_id;
2205 		array++;
2206 	}
2207 
2208 	if (type & PERF_SAMPLE_CPU) {
2209 		u.val32[0] = sample->cpu;
2210 		if (swapped) {
2211 			/*
2212 			 * Inverse of what is done in perf_evsel__parse_sample
2213 			 */
2214 			u.val32[0] = bswap_32(u.val32[0]);
2215 			u.val64 = bswap_64(u.val64);
2216 		}
2217 		*array = u.val64;
2218 		array++;
2219 	}
2220 
2221 	if (type & PERF_SAMPLE_PERIOD) {
2222 		*array = sample->period;
2223 		array++;
2224 	}
2225 
2226 	if (type & PERF_SAMPLE_READ) {
2227 		if (read_format & PERF_FORMAT_GROUP)
2228 			*array = sample->read.group.nr;
2229 		else
2230 			*array = sample->read.one.value;
2231 		array++;
2232 
2233 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2234 			*array = sample->read.time_enabled;
2235 			array++;
2236 		}
2237 
2238 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2239 			*array = sample->read.time_running;
2240 			array++;
2241 		}
2242 
2243 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2244 		if (read_format & PERF_FORMAT_GROUP) {
2245 			sz = sample->read.group.nr *
2246 			     sizeof(struct sample_read_value);
2247 			memcpy(array, sample->read.group.values, sz);
2248 			array = (void *)array + sz;
2249 		} else {
2250 			*array = sample->read.one.id;
2251 			array++;
2252 		}
2253 	}
2254 
2255 	if (type & PERF_SAMPLE_CALLCHAIN) {
2256 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2257 		memcpy(array, sample->callchain, sz);
2258 		array = (void *)array + sz;
2259 	}
2260 
2261 	if (type & PERF_SAMPLE_RAW) {
2262 		u.val32[0] = sample->raw_size;
2263 		if (WARN_ONCE(swapped,
2264 			      "Endianness of raw data not corrected!\n")) {
2265 			/*
2266 			 * Inverse of what is done in perf_evsel__parse_sample
2267 			 */
2268 			u.val32[0] = bswap_32(u.val32[0]);
2269 			u.val32[1] = bswap_32(u.val32[1]);
2270 			u.val64 = bswap_64(u.val64);
2271 		}
2272 		*array = u.val64;
2273 		array = (void *)array + sizeof(u32);
2274 
2275 		memcpy(array, sample->raw_data, sample->raw_size);
2276 		array = (void *)array + sample->raw_size;
2277 	}
2278 
2279 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2280 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2281 		sz += sizeof(u64);
2282 		memcpy(array, sample->branch_stack, sz);
2283 		array = (void *)array + sz;
2284 	}
2285 
2286 	if (type & PERF_SAMPLE_REGS_USER) {
2287 		if (sample->user_regs.abi) {
2288 			*array++ = sample->user_regs.abi;
2289 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2290 			memcpy(array, sample->user_regs.regs, sz);
2291 			array = (void *)array + sz;
2292 		} else {
2293 			*array++ = 0;
2294 		}
2295 	}
2296 
2297 	if (type & PERF_SAMPLE_STACK_USER) {
2298 		sz = sample->user_stack.size;
2299 		*array++ = sz;
2300 		if (sz) {
2301 			memcpy(array, sample->user_stack.data, sz);
2302 			array = (void *)array + sz;
2303 			*array++ = sz;
2304 		}
2305 	}
2306 
2307 	if (type & PERF_SAMPLE_WEIGHT) {
2308 		*array = sample->weight;
2309 		array++;
2310 	}
2311 
2312 	if (type & PERF_SAMPLE_DATA_SRC) {
2313 		*array = sample->data_src;
2314 		array++;
2315 	}
2316 
2317 	if (type & PERF_SAMPLE_TRANSACTION) {
2318 		*array = sample->transaction;
2319 		array++;
2320 	}
2321 
2322 	if (type & PERF_SAMPLE_REGS_INTR) {
2323 		if (sample->intr_regs.abi) {
2324 			*array++ = sample->intr_regs.abi;
2325 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2326 			memcpy(array, sample->intr_regs.regs, sz);
2327 			array = (void *)array + sz;
2328 		} else {
2329 			*array++ = 0;
2330 		}
2331 	}
2332 
2333 	return 0;
2334 }
2335 
2336 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2337 {
2338 	return pevent_find_field(evsel->tp_format, name);
2339 }
2340 
2341 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2342 			 const char *name)
2343 {
2344 	struct format_field *field = perf_evsel__field(evsel, name);
2345 	int offset;
2346 
2347 	if (!field)
2348 		return NULL;
2349 
2350 	offset = field->offset;
2351 
2352 	if (field->flags & FIELD_IS_DYNAMIC) {
2353 		offset = *(int *)(sample->raw_data + field->offset);
2354 		offset &= 0xffff;
2355 	}
2356 
2357 	return sample->raw_data + offset;
2358 }
2359 
2360 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2361 			 bool needs_swap)
2362 {
2363 	u64 value;
2364 	void *ptr = sample->raw_data + field->offset;
2365 
2366 	switch (field->size) {
2367 	case 1:
2368 		return *(u8 *)ptr;
2369 	case 2:
2370 		value = *(u16 *)ptr;
2371 		break;
2372 	case 4:
2373 		value = *(u32 *)ptr;
2374 		break;
2375 	case 8:
2376 		memcpy(&value, ptr, sizeof(u64));
2377 		break;
2378 	default:
2379 		return 0;
2380 	}
2381 
2382 	if (!needs_swap)
2383 		return value;
2384 
2385 	switch (field->size) {
2386 	case 2:
2387 		return bswap_16(value);
2388 	case 4:
2389 		return bswap_32(value);
2390 	case 8:
2391 		return bswap_64(value);
2392 	default:
2393 		return 0;
2394 	}
2395 
2396 	return 0;
2397 }
2398 
2399 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2400 		       const char *name)
2401 {
2402 	struct format_field *field = perf_evsel__field(evsel, name);
2403 
2404 	if (!field)
2405 		return 0;
2406 
2407 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2408 }
2409 
2410 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2411 			  char *msg, size_t msgsize)
2412 {
2413 	int paranoid;
2414 
2415 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2416 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2417 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2418 		/*
2419 		 * If it's cycles then fall back to hrtimer based
2420 		 * cpu-clock-tick sw counter, which is always available even if
2421 		 * no PMU support.
2422 		 *
2423 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2424 		 * b0a873e).
2425 		 */
2426 		scnprintf(msg, msgsize, "%s",
2427 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2428 
2429 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2430 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2431 
2432 		zfree(&evsel->name);
2433 		return true;
2434 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2435 		   (paranoid = perf_event_paranoid()) > 1) {
2436 		const char *name = perf_evsel__name(evsel);
2437 		char *new_name;
2438 
2439 		if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2440 			return false;
2441 
2442 		if (evsel->name)
2443 			free(evsel->name);
2444 		evsel->name = new_name;
2445 		scnprintf(msg, msgsize,
2446 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2447 		evsel->attr.exclude_kernel = 1;
2448 
2449 		return true;
2450 	}
2451 
2452 	return false;
2453 }
2454 
2455 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2456 			      int err, char *msg, size_t size)
2457 {
2458 	char sbuf[STRERR_BUFSIZE];
2459 
2460 	switch (err) {
2461 	case EPERM:
2462 	case EACCES:
2463 		return scnprintf(msg, size,
2464 		 "You may not have permission to collect %sstats.\n\n"
2465 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2466 		 "which controls use of the performance events system by\n"
2467 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2468 		 "The current value is %d:\n\n"
2469 		 "  -1: Allow use of (almost) all events by all users\n"
2470 		 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n"
2471 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2472 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN",
2473 				 target->system_wide ? "system-wide " : "",
2474 				 perf_event_paranoid());
2475 	case ENOENT:
2476 		return scnprintf(msg, size, "The %s event is not supported.",
2477 				 perf_evsel__name(evsel));
2478 	case EMFILE:
2479 		return scnprintf(msg, size, "%s",
2480 			 "Too many events are opened.\n"
2481 			 "Probably the maximum number of open file descriptors has been reached.\n"
2482 			 "Hint: Try again after reducing the number of events.\n"
2483 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2484 	case ENOMEM:
2485 		if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2486 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2487 			return scnprintf(msg, size,
2488 					 "Not enough memory to setup event with callchain.\n"
2489 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2490 					 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2491 		break;
2492 	case ENODEV:
2493 		if (target->cpu_list)
2494 			return scnprintf(msg, size, "%s",
2495 	 "No such device - did you specify an out-of-range profile CPU?");
2496 		break;
2497 	case EOPNOTSUPP:
2498 		if (evsel->attr.sample_period != 0)
2499 			return scnprintf(msg, size, "%s",
2500 	"PMU Hardware doesn't support sampling/overflow-interrupts.");
2501 		if (evsel->attr.precise_ip)
2502 			return scnprintf(msg, size, "%s",
2503 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2504 #if defined(__i386__) || defined(__x86_64__)
2505 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2506 			return scnprintf(msg, size, "%s",
2507 	"No hardware sampling interrupt available.\n"
2508 	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2509 #endif
2510 		break;
2511 	case EBUSY:
2512 		if (find_process("oprofiled"))
2513 			return scnprintf(msg, size,
2514 	"The PMU counters are busy/taken by another profiler.\n"
2515 	"We found oprofile daemon running, please stop it and try again.");
2516 		break;
2517 	case EINVAL:
2518 		if (evsel->attr.write_backward && perf_missing_features.write_backward)
2519 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2520 		if (perf_missing_features.clockid)
2521 			return scnprintf(msg, size, "clockid feature not supported.");
2522 		if (perf_missing_features.clockid_wrong)
2523 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2524 		break;
2525 	default:
2526 		break;
2527 	}
2528 
2529 	return scnprintf(msg, size,
2530 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2531 	"/bin/dmesg may provide additional information.\n"
2532 	"No CONFIG_PERF_EVENTS=y kernel support configured?",
2533 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2534 			 perf_evsel__name(evsel));
2535 }
2536 
2537 char *perf_evsel__env_arch(struct perf_evsel *evsel)
2538 {
2539 	if (evsel && evsel->evlist && evsel->evlist->env)
2540 		return evsel->evlist->env->arch;
2541 	return NULL;
2542 }
2543