xref: /openbmc/linux/tools/perf/util/evsel.c (revision 77d84ff8)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <lk/debugfs.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <sys/resource.h>
17 #include "asm/bug.h"
18 #include "evsel.h"
19 #include "evlist.h"
20 #include "util.h"
21 #include "cpumap.h"
22 #include "thread_map.h"
23 #include "target.h"
24 #include "perf_regs.h"
25 #include "debug.h"
26 
27 static struct {
28 	bool sample_id_all;
29 	bool exclude_guest;
30 	bool mmap2;
31 } perf_missing_features;
32 
33 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
34 
35 int __perf_evsel__sample_size(u64 sample_type)
36 {
37 	u64 mask = sample_type & PERF_SAMPLE_MASK;
38 	int size = 0;
39 	int i;
40 
41 	for (i = 0; i < 64; i++) {
42 		if (mask & (1ULL << i))
43 			size++;
44 	}
45 
46 	size *= sizeof(u64);
47 
48 	return size;
49 }
50 
51 /**
52  * __perf_evsel__calc_id_pos - calculate id_pos.
53  * @sample_type: sample type
54  *
55  * This function returns the position of the event id (PERF_SAMPLE_ID or
56  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
57  * sample_event.
58  */
59 static int __perf_evsel__calc_id_pos(u64 sample_type)
60 {
61 	int idx = 0;
62 
63 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
64 		return 0;
65 
66 	if (!(sample_type & PERF_SAMPLE_ID))
67 		return -1;
68 
69 	if (sample_type & PERF_SAMPLE_IP)
70 		idx += 1;
71 
72 	if (sample_type & PERF_SAMPLE_TID)
73 		idx += 1;
74 
75 	if (sample_type & PERF_SAMPLE_TIME)
76 		idx += 1;
77 
78 	if (sample_type & PERF_SAMPLE_ADDR)
79 		idx += 1;
80 
81 	return idx;
82 }
83 
84 /**
85  * __perf_evsel__calc_is_pos - calculate is_pos.
86  * @sample_type: sample type
87  *
88  * This function returns the position (counting backwards) of the event id
89  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
90  * sample_id_all is used there is an id sample appended to non-sample events.
91  */
92 static int __perf_evsel__calc_is_pos(u64 sample_type)
93 {
94 	int idx = 1;
95 
96 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
97 		return 1;
98 
99 	if (!(sample_type & PERF_SAMPLE_ID))
100 		return -1;
101 
102 	if (sample_type & PERF_SAMPLE_CPU)
103 		idx += 1;
104 
105 	if (sample_type & PERF_SAMPLE_STREAM_ID)
106 		idx += 1;
107 
108 	return idx;
109 }
110 
111 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
112 {
113 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
114 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
115 }
116 
117 void hists__init(struct hists *hists)
118 {
119 	memset(hists, 0, sizeof(*hists));
120 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
121 	hists->entries_in = &hists->entries_in_array[0];
122 	hists->entries_collapsed = RB_ROOT;
123 	hists->entries = RB_ROOT;
124 	pthread_mutex_init(&hists->lock, NULL);
125 }
126 
127 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
128 				  enum perf_event_sample_format bit)
129 {
130 	if (!(evsel->attr.sample_type & bit)) {
131 		evsel->attr.sample_type |= bit;
132 		evsel->sample_size += sizeof(u64);
133 		perf_evsel__calc_id_pos(evsel);
134 	}
135 }
136 
137 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
138 				    enum perf_event_sample_format bit)
139 {
140 	if (evsel->attr.sample_type & bit) {
141 		evsel->attr.sample_type &= ~bit;
142 		evsel->sample_size -= sizeof(u64);
143 		perf_evsel__calc_id_pos(evsel);
144 	}
145 }
146 
147 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
148 			       bool can_sample_identifier)
149 {
150 	if (can_sample_identifier) {
151 		perf_evsel__reset_sample_bit(evsel, ID);
152 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
153 	} else {
154 		perf_evsel__set_sample_bit(evsel, ID);
155 	}
156 	evsel->attr.read_format |= PERF_FORMAT_ID;
157 }
158 
159 void perf_evsel__init(struct perf_evsel *evsel,
160 		      struct perf_event_attr *attr, int idx)
161 {
162 	evsel->idx	   = idx;
163 	evsel->attr	   = *attr;
164 	evsel->leader	   = evsel;
165 	INIT_LIST_HEAD(&evsel->node);
166 	hists__init(&evsel->hists);
167 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
168 	perf_evsel__calc_id_pos(evsel);
169 }
170 
171 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
172 {
173 	struct perf_evsel *evsel = zalloc(sizeof(*evsel));
174 
175 	if (evsel != NULL)
176 		perf_evsel__init(evsel, attr, idx);
177 
178 	return evsel;
179 }
180 
181 struct event_format *event_format__new(const char *sys, const char *name)
182 {
183 	int fd, n;
184 	char *filename;
185 	void *bf = NULL, *nbf;
186 	size_t size = 0, alloc_size = 0;
187 	struct event_format *format = NULL;
188 
189 	if (asprintf(&filename, "%s/%s/%s/format", tracing_events_path, sys, name) < 0)
190 		goto out;
191 
192 	fd = open(filename, O_RDONLY);
193 	if (fd < 0)
194 		goto out_free_filename;
195 
196 	do {
197 		if (size == alloc_size) {
198 			alloc_size += BUFSIZ;
199 			nbf = realloc(bf, alloc_size);
200 			if (nbf == NULL)
201 				goto out_free_bf;
202 			bf = nbf;
203 		}
204 
205 		n = read(fd, bf + size, alloc_size - size);
206 		if (n < 0)
207 			goto out_free_bf;
208 		size += n;
209 	} while (n > 0);
210 
211 	pevent_parse_format(&format, bf, size, sys);
212 
213 out_free_bf:
214 	free(bf);
215 	close(fd);
216 out_free_filename:
217 	free(filename);
218 out:
219 	return format;
220 }
221 
222 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
223 {
224 	struct perf_evsel *evsel = zalloc(sizeof(*evsel));
225 
226 	if (evsel != NULL) {
227 		struct perf_event_attr attr = {
228 			.type	       = PERF_TYPE_TRACEPOINT,
229 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
230 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
231 		};
232 
233 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
234 			goto out_free;
235 
236 		evsel->tp_format = event_format__new(sys, name);
237 		if (evsel->tp_format == NULL)
238 			goto out_free;
239 
240 		event_attr_init(&attr);
241 		attr.config = evsel->tp_format->id;
242 		attr.sample_period = 1;
243 		perf_evsel__init(evsel, &attr, idx);
244 	}
245 
246 	return evsel;
247 
248 out_free:
249 	free(evsel->name);
250 	free(evsel);
251 	return NULL;
252 }
253 
254 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
255 	"cycles",
256 	"instructions",
257 	"cache-references",
258 	"cache-misses",
259 	"branches",
260 	"branch-misses",
261 	"bus-cycles",
262 	"stalled-cycles-frontend",
263 	"stalled-cycles-backend",
264 	"ref-cycles",
265 };
266 
267 static const char *__perf_evsel__hw_name(u64 config)
268 {
269 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
270 		return perf_evsel__hw_names[config];
271 
272 	return "unknown-hardware";
273 }
274 
275 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
276 {
277 	int colon = 0, r = 0;
278 	struct perf_event_attr *attr = &evsel->attr;
279 	bool exclude_guest_default = false;
280 
281 #define MOD_PRINT(context, mod)	do {					\
282 		if (!attr->exclude_##context) {				\
283 			if (!colon) colon = ++r;			\
284 			r += scnprintf(bf + r, size - r, "%c", mod);	\
285 		} } while(0)
286 
287 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
288 		MOD_PRINT(kernel, 'k');
289 		MOD_PRINT(user, 'u');
290 		MOD_PRINT(hv, 'h');
291 		exclude_guest_default = true;
292 	}
293 
294 	if (attr->precise_ip) {
295 		if (!colon)
296 			colon = ++r;
297 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
298 		exclude_guest_default = true;
299 	}
300 
301 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
302 		MOD_PRINT(host, 'H');
303 		MOD_PRINT(guest, 'G');
304 	}
305 #undef MOD_PRINT
306 	if (colon)
307 		bf[colon - 1] = ':';
308 	return r;
309 }
310 
311 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
312 {
313 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
314 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
315 }
316 
317 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
318 	"cpu-clock",
319 	"task-clock",
320 	"page-faults",
321 	"context-switches",
322 	"cpu-migrations",
323 	"minor-faults",
324 	"major-faults",
325 	"alignment-faults",
326 	"emulation-faults",
327 	"dummy",
328 };
329 
330 static const char *__perf_evsel__sw_name(u64 config)
331 {
332 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
333 		return perf_evsel__sw_names[config];
334 	return "unknown-software";
335 }
336 
337 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
338 {
339 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
340 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
341 }
342 
343 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
344 {
345 	int r;
346 
347 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
348 
349 	if (type & HW_BREAKPOINT_R)
350 		r += scnprintf(bf + r, size - r, "r");
351 
352 	if (type & HW_BREAKPOINT_W)
353 		r += scnprintf(bf + r, size - r, "w");
354 
355 	if (type & HW_BREAKPOINT_X)
356 		r += scnprintf(bf + r, size - r, "x");
357 
358 	return r;
359 }
360 
361 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
362 {
363 	struct perf_event_attr *attr = &evsel->attr;
364 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
365 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
366 }
367 
368 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
369 				[PERF_EVSEL__MAX_ALIASES] = {
370  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
371  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
372  { "LLC",	"L2",							},
373  { "dTLB",	"d-tlb",	"Data-TLB",				},
374  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
375  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
376  { "node",								},
377 };
378 
379 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
380 				   [PERF_EVSEL__MAX_ALIASES] = {
381  { "load",	"loads",	"read",					},
382  { "store",	"stores",	"write",				},
383  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
384 };
385 
386 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
387 				       [PERF_EVSEL__MAX_ALIASES] = {
388  { "refs",	"Reference",	"ops",		"access",		},
389  { "misses",	"miss",							},
390 };
391 
392 #define C(x)		PERF_COUNT_HW_CACHE_##x
393 #define CACHE_READ	(1 << C(OP_READ))
394 #define CACHE_WRITE	(1 << C(OP_WRITE))
395 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
396 #define COP(x)		(1 << x)
397 
398 /*
399  * cache operartion stat
400  * L1I : Read and prefetch only
401  * ITLB and BPU : Read-only
402  */
403 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
404  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
405  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
406  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
407  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
408  [C(ITLB)]	= (CACHE_READ),
409  [C(BPU)]	= (CACHE_READ),
410  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
411 };
412 
413 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
414 {
415 	if (perf_evsel__hw_cache_stat[type] & COP(op))
416 		return true;	/* valid */
417 	else
418 		return false;	/* invalid */
419 }
420 
421 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
422 					    char *bf, size_t size)
423 {
424 	if (result) {
425 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
426 				 perf_evsel__hw_cache_op[op][0],
427 				 perf_evsel__hw_cache_result[result][0]);
428 	}
429 
430 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
431 			 perf_evsel__hw_cache_op[op][1]);
432 }
433 
434 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
435 {
436 	u8 op, result, type = (config >>  0) & 0xff;
437 	const char *err = "unknown-ext-hardware-cache-type";
438 
439 	if (type > PERF_COUNT_HW_CACHE_MAX)
440 		goto out_err;
441 
442 	op = (config >>  8) & 0xff;
443 	err = "unknown-ext-hardware-cache-op";
444 	if (op > PERF_COUNT_HW_CACHE_OP_MAX)
445 		goto out_err;
446 
447 	result = (config >> 16) & 0xff;
448 	err = "unknown-ext-hardware-cache-result";
449 	if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
450 		goto out_err;
451 
452 	err = "invalid-cache";
453 	if (!perf_evsel__is_cache_op_valid(type, op))
454 		goto out_err;
455 
456 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
457 out_err:
458 	return scnprintf(bf, size, "%s", err);
459 }
460 
461 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
462 {
463 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
464 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
465 }
466 
467 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
468 {
469 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
470 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
471 }
472 
473 const char *perf_evsel__name(struct perf_evsel *evsel)
474 {
475 	char bf[128];
476 
477 	if (evsel->name)
478 		return evsel->name;
479 
480 	switch (evsel->attr.type) {
481 	case PERF_TYPE_RAW:
482 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
483 		break;
484 
485 	case PERF_TYPE_HARDWARE:
486 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
487 		break;
488 
489 	case PERF_TYPE_HW_CACHE:
490 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
491 		break;
492 
493 	case PERF_TYPE_SOFTWARE:
494 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
495 		break;
496 
497 	case PERF_TYPE_TRACEPOINT:
498 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
499 		break;
500 
501 	case PERF_TYPE_BREAKPOINT:
502 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
503 		break;
504 
505 	default:
506 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
507 			  evsel->attr.type);
508 		break;
509 	}
510 
511 	evsel->name = strdup(bf);
512 
513 	return evsel->name ?: "unknown";
514 }
515 
516 const char *perf_evsel__group_name(struct perf_evsel *evsel)
517 {
518 	return evsel->group_name ?: "anon group";
519 }
520 
521 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
522 {
523 	int ret;
524 	struct perf_evsel *pos;
525 	const char *group_name = perf_evsel__group_name(evsel);
526 
527 	ret = scnprintf(buf, size, "%s", group_name);
528 
529 	ret += scnprintf(buf + ret, size - ret, " { %s",
530 			 perf_evsel__name(evsel));
531 
532 	for_each_group_member(pos, evsel)
533 		ret += scnprintf(buf + ret, size - ret, ", %s",
534 				 perf_evsel__name(pos));
535 
536 	ret += scnprintf(buf + ret, size - ret, " }");
537 
538 	return ret;
539 }
540 
541 /*
542  * The enable_on_exec/disabled value strategy:
543  *
544  *  1) For any type of traced program:
545  *    - all independent events and group leaders are disabled
546  *    - all group members are enabled
547  *
548  *     Group members are ruled by group leaders. They need to
549  *     be enabled, because the group scheduling relies on that.
550  *
551  *  2) For traced programs executed by perf:
552  *     - all independent events and group leaders have
553  *       enable_on_exec set
554  *     - we don't specifically enable or disable any event during
555  *       the record command
556  *
557  *     Independent events and group leaders are initially disabled
558  *     and get enabled by exec. Group members are ruled by group
559  *     leaders as stated in 1).
560  *
561  *  3) For traced programs attached by perf (pid/tid):
562  *     - we specifically enable or disable all events during
563  *       the record command
564  *
565  *     When attaching events to already running traced we
566  *     enable/disable events specifically, as there's no
567  *     initial traced exec call.
568  */
569 void perf_evsel__config(struct perf_evsel *evsel,
570 			struct perf_record_opts *opts)
571 {
572 	struct perf_evsel *leader = evsel->leader;
573 	struct perf_event_attr *attr = &evsel->attr;
574 	int track = !evsel->idx; /* only the first counter needs these */
575 
576 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
577 	attr->inherit	    = !opts->no_inherit;
578 
579 	perf_evsel__set_sample_bit(evsel, IP);
580 	perf_evsel__set_sample_bit(evsel, TID);
581 
582 	if (evsel->sample_read) {
583 		perf_evsel__set_sample_bit(evsel, READ);
584 
585 		/*
586 		 * We need ID even in case of single event, because
587 		 * PERF_SAMPLE_READ process ID specific data.
588 		 */
589 		perf_evsel__set_sample_id(evsel, false);
590 
591 		/*
592 		 * Apply group format only if we belong to group
593 		 * with more than one members.
594 		 */
595 		if (leader->nr_members > 1) {
596 			attr->read_format |= PERF_FORMAT_GROUP;
597 			attr->inherit = 0;
598 		}
599 	}
600 
601 	/*
602 	 * We default some events to a 1 default interval. But keep
603 	 * it a weak assumption overridable by the user.
604 	 */
605 	if (!attr->sample_period || (opts->user_freq != UINT_MAX &&
606 				     opts->user_interval != ULLONG_MAX)) {
607 		if (opts->freq) {
608 			perf_evsel__set_sample_bit(evsel, PERIOD);
609 			attr->freq		= 1;
610 			attr->sample_freq	= opts->freq;
611 		} else {
612 			attr->sample_period = opts->default_interval;
613 		}
614 	}
615 
616 	/*
617 	 * Disable sampling for all group members other
618 	 * than leader in case leader 'leads' the sampling.
619 	 */
620 	if ((leader != evsel) && leader->sample_read) {
621 		attr->sample_freq   = 0;
622 		attr->sample_period = 0;
623 	}
624 
625 	if (opts->no_samples)
626 		attr->sample_freq = 0;
627 
628 	if (opts->inherit_stat)
629 		attr->inherit_stat = 1;
630 
631 	if (opts->sample_address) {
632 		perf_evsel__set_sample_bit(evsel, ADDR);
633 		attr->mmap_data = track;
634 	}
635 
636 	if (opts->call_graph) {
637 		perf_evsel__set_sample_bit(evsel, CALLCHAIN);
638 
639 		if (opts->call_graph == CALLCHAIN_DWARF) {
640 			perf_evsel__set_sample_bit(evsel, REGS_USER);
641 			perf_evsel__set_sample_bit(evsel, STACK_USER);
642 			attr->sample_regs_user = PERF_REGS_MASK;
643 			attr->sample_stack_user = opts->stack_dump_size;
644 			attr->exclude_callchain_user = 1;
645 		}
646 	}
647 
648 	if (target__has_cpu(&opts->target) || opts->target.force_per_cpu)
649 		perf_evsel__set_sample_bit(evsel, CPU);
650 
651 	if (opts->period)
652 		perf_evsel__set_sample_bit(evsel, PERIOD);
653 
654 	if (!perf_missing_features.sample_id_all &&
655 	    (opts->sample_time || !opts->no_inherit ||
656 	     target__has_cpu(&opts->target) || opts->target.force_per_cpu))
657 		perf_evsel__set_sample_bit(evsel, TIME);
658 
659 	if (opts->raw_samples) {
660 		perf_evsel__set_sample_bit(evsel, TIME);
661 		perf_evsel__set_sample_bit(evsel, RAW);
662 		perf_evsel__set_sample_bit(evsel, CPU);
663 	}
664 
665 	if (opts->sample_address)
666 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
667 
668 	if (opts->no_delay) {
669 		attr->watermark = 0;
670 		attr->wakeup_events = 1;
671 	}
672 	if (opts->branch_stack) {
673 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
674 		attr->branch_sample_type = opts->branch_stack;
675 	}
676 
677 	if (opts->sample_weight)
678 		perf_evsel__set_sample_bit(evsel, WEIGHT);
679 
680 	attr->mmap  = track;
681 	attr->comm  = track;
682 
683 	if (opts->sample_transaction)
684 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
685 
686 	/*
687 	 * XXX see the function comment above
688 	 *
689 	 * Disabling only independent events or group leaders,
690 	 * keeping group members enabled.
691 	 */
692 	if (perf_evsel__is_group_leader(evsel))
693 		attr->disabled = 1;
694 
695 	/*
696 	 * Setting enable_on_exec for independent events and
697 	 * group leaders for traced executed by perf.
698 	 */
699 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel))
700 		attr->enable_on_exec = 1;
701 }
702 
703 int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
704 {
705 	int cpu, thread;
706 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
707 
708 	if (evsel->fd) {
709 		for (cpu = 0; cpu < ncpus; cpu++) {
710 			for (thread = 0; thread < nthreads; thread++) {
711 				FD(evsel, cpu, thread) = -1;
712 			}
713 		}
714 	}
715 
716 	return evsel->fd != NULL ? 0 : -ENOMEM;
717 }
718 
719 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
720 			  int ioc,  void *arg)
721 {
722 	int cpu, thread;
723 
724 	for (cpu = 0; cpu < ncpus; cpu++) {
725 		for (thread = 0; thread < nthreads; thread++) {
726 			int fd = FD(evsel, cpu, thread),
727 			    err = ioctl(fd, ioc, arg);
728 
729 			if (err)
730 				return err;
731 		}
732 	}
733 
734 	return 0;
735 }
736 
737 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
738 			   const char *filter)
739 {
740 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
741 				     PERF_EVENT_IOC_SET_FILTER,
742 				     (void *)filter);
743 }
744 
745 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
746 {
747 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
748 				     PERF_EVENT_IOC_ENABLE,
749 				     0);
750 }
751 
752 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
753 {
754 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
755 	if (evsel->sample_id == NULL)
756 		return -ENOMEM;
757 
758 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
759 	if (evsel->id == NULL) {
760 		xyarray__delete(evsel->sample_id);
761 		evsel->sample_id = NULL;
762 		return -ENOMEM;
763 	}
764 
765 	return 0;
766 }
767 
768 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
769 {
770 	memset(evsel->counts, 0, (sizeof(*evsel->counts) +
771 				 (ncpus * sizeof(struct perf_counts_values))));
772 }
773 
774 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
775 {
776 	evsel->counts = zalloc((sizeof(*evsel->counts) +
777 				(ncpus * sizeof(struct perf_counts_values))));
778 	return evsel->counts != NULL ? 0 : -ENOMEM;
779 }
780 
781 void perf_evsel__free_fd(struct perf_evsel *evsel)
782 {
783 	xyarray__delete(evsel->fd);
784 	evsel->fd = NULL;
785 }
786 
787 void perf_evsel__free_id(struct perf_evsel *evsel)
788 {
789 	xyarray__delete(evsel->sample_id);
790 	evsel->sample_id = NULL;
791 	free(evsel->id);
792 	evsel->id = NULL;
793 }
794 
795 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
796 {
797 	int cpu, thread;
798 
799 	for (cpu = 0; cpu < ncpus; cpu++)
800 		for (thread = 0; thread < nthreads; ++thread) {
801 			close(FD(evsel, cpu, thread));
802 			FD(evsel, cpu, thread) = -1;
803 		}
804 }
805 
806 void perf_evsel__free_counts(struct perf_evsel *evsel)
807 {
808 	free(evsel->counts);
809 }
810 
811 void perf_evsel__exit(struct perf_evsel *evsel)
812 {
813 	assert(list_empty(&evsel->node));
814 	perf_evsel__free_fd(evsel);
815 	perf_evsel__free_id(evsel);
816 }
817 
818 void perf_evsel__delete(struct perf_evsel *evsel)
819 {
820 	perf_evsel__exit(evsel);
821 	close_cgroup(evsel->cgrp);
822 	free(evsel->group_name);
823 	if (evsel->tp_format)
824 		pevent_free_format(evsel->tp_format);
825 	free(evsel->name);
826 	free(evsel);
827 }
828 
829 static inline void compute_deltas(struct perf_evsel *evsel,
830 				  int cpu,
831 				  struct perf_counts_values *count)
832 {
833 	struct perf_counts_values tmp;
834 
835 	if (!evsel->prev_raw_counts)
836 		return;
837 
838 	if (cpu == -1) {
839 		tmp = evsel->prev_raw_counts->aggr;
840 		evsel->prev_raw_counts->aggr = *count;
841 	} else {
842 		tmp = evsel->prev_raw_counts->cpu[cpu];
843 		evsel->prev_raw_counts->cpu[cpu] = *count;
844 	}
845 
846 	count->val = count->val - tmp.val;
847 	count->ena = count->ena - tmp.ena;
848 	count->run = count->run - tmp.run;
849 }
850 
851 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
852 			      int cpu, int thread, bool scale)
853 {
854 	struct perf_counts_values count;
855 	size_t nv = scale ? 3 : 1;
856 
857 	if (FD(evsel, cpu, thread) < 0)
858 		return -EINVAL;
859 
860 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
861 		return -ENOMEM;
862 
863 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
864 		return -errno;
865 
866 	compute_deltas(evsel, cpu, &count);
867 
868 	if (scale) {
869 		if (count.run == 0)
870 			count.val = 0;
871 		else if (count.run < count.ena)
872 			count.val = (u64)((double)count.val * count.ena / count.run + 0.5);
873 	} else
874 		count.ena = count.run = 0;
875 
876 	evsel->counts->cpu[cpu] = count;
877 	return 0;
878 }
879 
880 int __perf_evsel__read(struct perf_evsel *evsel,
881 		       int ncpus, int nthreads, bool scale)
882 {
883 	size_t nv = scale ? 3 : 1;
884 	int cpu, thread;
885 	struct perf_counts_values *aggr = &evsel->counts->aggr, count;
886 
887 	aggr->val = aggr->ena = aggr->run = 0;
888 
889 	for (cpu = 0; cpu < ncpus; cpu++) {
890 		for (thread = 0; thread < nthreads; thread++) {
891 			if (FD(evsel, cpu, thread) < 0)
892 				continue;
893 
894 			if (readn(FD(evsel, cpu, thread),
895 				  &count, nv * sizeof(u64)) < 0)
896 				return -errno;
897 
898 			aggr->val += count.val;
899 			if (scale) {
900 				aggr->ena += count.ena;
901 				aggr->run += count.run;
902 			}
903 		}
904 	}
905 
906 	compute_deltas(evsel, -1, aggr);
907 
908 	evsel->counts->scaled = 0;
909 	if (scale) {
910 		if (aggr->run == 0) {
911 			evsel->counts->scaled = -1;
912 			aggr->val = 0;
913 			return 0;
914 		}
915 
916 		if (aggr->run < aggr->ena) {
917 			evsel->counts->scaled = 1;
918 			aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5);
919 		}
920 	} else
921 		aggr->ena = aggr->run = 0;
922 
923 	return 0;
924 }
925 
926 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
927 {
928 	struct perf_evsel *leader = evsel->leader;
929 	int fd;
930 
931 	if (perf_evsel__is_group_leader(evsel))
932 		return -1;
933 
934 	/*
935 	 * Leader must be already processed/open,
936 	 * if not it's a bug.
937 	 */
938 	BUG_ON(!leader->fd);
939 
940 	fd = FD(leader, cpu, thread);
941 	BUG_ON(fd == -1);
942 
943 	return fd;
944 }
945 
946 #define __PRINT_ATTR(fmt, cast, field)  \
947 	fprintf(fp, "  %-19s "fmt"\n", #field, cast attr->field)
948 
949 #define PRINT_ATTR_U32(field)  __PRINT_ATTR("%u" , , field)
950 #define PRINT_ATTR_X32(field)  __PRINT_ATTR("%#x", , field)
951 #define PRINT_ATTR_U64(field)  __PRINT_ATTR("%" PRIu64, (uint64_t), field)
952 #define PRINT_ATTR_X64(field)  __PRINT_ATTR("%#"PRIx64, (uint64_t), field)
953 
954 #define PRINT_ATTR2N(name1, field1, name2, field2)	\
955 	fprintf(fp, "  %-19s %u    %-19s %u\n",		\
956 	name1, attr->field1, name2, attr->field2)
957 
958 #define PRINT_ATTR2(field1, field2) \
959 	PRINT_ATTR2N(#field1, field1, #field2, field2)
960 
961 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp)
962 {
963 	size_t ret = 0;
964 
965 	ret += fprintf(fp, "%.60s\n", graph_dotted_line);
966 	ret += fprintf(fp, "perf_event_attr:\n");
967 
968 	ret += PRINT_ATTR_U32(type);
969 	ret += PRINT_ATTR_U32(size);
970 	ret += PRINT_ATTR_X64(config);
971 	ret += PRINT_ATTR_U64(sample_period);
972 	ret += PRINT_ATTR_U64(sample_freq);
973 	ret += PRINT_ATTR_X64(sample_type);
974 	ret += PRINT_ATTR_X64(read_format);
975 
976 	ret += PRINT_ATTR2(disabled, inherit);
977 	ret += PRINT_ATTR2(pinned, exclusive);
978 	ret += PRINT_ATTR2(exclude_user, exclude_kernel);
979 	ret += PRINT_ATTR2(exclude_hv, exclude_idle);
980 	ret += PRINT_ATTR2(mmap, comm);
981 	ret += PRINT_ATTR2(freq, inherit_stat);
982 	ret += PRINT_ATTR2(enable_on_exec, task);
983 	ret += PRINT_ATTR2(watermark, precise_ip);
984 	ret += PRINT_ATTR2(mmap_data, sample_id_all);
985 	ret += PRINT_ATTR2(exclude_host, exclude_guest);
986 	ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel,
987 			    "excl.callchain_user", exclude_callchain_user);
988 	ret += PRINT_ATTR_U32(mmap2);
989 
990 	ret += PRINT_ATTR_U32(wakeup_events);
991 	ret += PRINT_ATTR_U32(wakeup_watermark);
992 	ret += PRINT_ATTR_X32(bp_type);
993 	ret += PRINT_ATTR_X64(bp_addr);
994 	ret += PRINT_ATTR_X64(config1);
995 	ret += PRINT_ATTR_U64(bp_len);
996 	ret += PRINT_ATTR_X64(config2);
997 	ret += PRINT_ATTR_X64(branch_sample_type);
998 	ret += PRINT_ATTR_X64(sample_regs_user);
999 	ret += PRINT_ATTR_U32(sample_stack_user);
1000 
1001 	ret += fprintf(fp, "%.60s\n", graph_dotted_line);
1002 
1003 	return ret;
1004 }
1005 
1006 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1007 			      struct thread_map *threads)
1008 {
1009 	int cpu, thread;
1010 	unsigned long flags = 0;
1011 	int pid = -1, err;
1012 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1013 
1014 	if (evsel->fd == NULL &&
1015 	    perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0)
1016 		return -ENOMEM;
1017 
1018 	if (evsel->cgrp) {
1019 		flags = PERF_FLAG_PID_CGROUP;
1020 		pid = evsel->cgrp->fd;
1021 	}
1022 
1023 fallback_missing_features:
1024 	if (perf_missing_features.mmap2)
1025 		evsel->attr.mmap2 = 0;
1026 	if (perf_missing_features.exclude_guest)
1027 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1028 retry_sample_id:
1029 	if (perf_missing_features.sample_id_all)
1030 		evsel->attr.sample_id_all = 0;
1031 
1032 	if (verbose >= 2)
1033 		perf_event_attr__fprintf(&evsel->attr, stderr);
1034 
1035 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1036 
1037 		for (thread = 0; thread < threads->nr; thread++) {
1038 			int group_fd;
1039 
1040 			if (!evsel->cgrp)
1041 				pid = threads->map[thread];
1042 
1043 			group_fd = get_group_fd(evsel, cpu, thread);
1044 retry_open:
1045 			pr_debug2("perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1046 				  pid, cpus->map[cpu], group_fd, flags);
1047 
1048 			FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1049 								     pid,
1050 								     cpus->map[cpu],
1051 								     group_fd, flags);
1052 			if (FD(evsel, cpu, thread) < 0) {
1053 				err = -errno;
1054 				pr_debug2("perf_event_open failed, error %d\n",
1055 					  err);
1056 				goto try_fallback;
1057 			}
1058 			set_rlimit = NO_CHANGE;
1059 		}
1060 	}
1061 
1062 	return 0;
1063 
1064 try_fallback:
1065 	/*
1066 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1067 	 * of them try to increase the limits.
1068 	 */
1069 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1070 		struct rlimit l;
1071 		int old_errno = errno;
1072 
1073 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1074 			if (set_rlimit == NO_CHANGE)
1075 				l.rlim_cur = l.rlim_max;
1076 			else {
1077 				l.rlim_cur = l.rlim_max + 1000;
1078 				l.rlim_max = l.rlim_cur;
1079 			}
1080 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1081 				set_rlimit++;
1082 				errno = old_errno;
1083 				goto retry_open;
1084 			}
1085 		}
1086 		errno = old_errno;
1087 	}
1088 
1089 	if (err != -EINVAL || cpu > 0 || thread > 0)
1090 		goto out_close;
1091 
1092 	if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1093 		perf_missing_features.mmap2 = true;
1094 		goto fallback_missing_features;
1095 	} else if (!perf_missing_features.exclude_guest &&
1096 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1097 		perf_missing_features.exclude_guest = true;
1098 		goto fallback_missing_features;
1099 	} else if (!perf_missing_features.sample_id_all) {
1100 		perf_missing_features.sample_id_all = true;
1101 		goto retry_sample_id;
1102 	}
1103 
1104 out_close:
1105 	do {
1106 		while (--thread >= 0) {
1107 			close(FD(evsel, cpu, thread));
1108 			FD(evsel, cpu, thread) = -1;
1109 		}
1110 		thread = threads->nr;
1111 	} while (--cpu >= 0);
1112 	return err;
1113 }
1114 
1115 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1116 {
1117 	if (evsel->fd == NULL)
1118 		return;
1119 
1120 	perf_evsel__close_fd(evsel, ncpus, nthreads);
1121 	perf_evsel__free_fd(evsel);
1122 	evsel->fd = NULL;
1123 }
1124 
1125 static struct {
1126 	struct cpu_map map;
1127 	int cpus[1];
1128 } empty_cpu_map = {
1129 	.map.nr	= 1,
1130 	.cpus	= { -1, },
1131 };
1132 
1133 static struct {
1134 	struct thread_map map;
1135 	int threads[1];
1136 } empty_thread_map = {
1137 	.map.nr	 = 1,
1138 	.threads = { -1, },
1139 };
1140 
1141 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1142 		     struct thread_map *threads)
1143 {
1144 	if (cpus == NULL) {
1145 		/* Work around old compiler warnings about strict aliasing */
1146 		cpus = &empty_cpu_map.map;
1147 	}
1148 
1149 	if (threads == NULL)
1150 		threads = &empty_thread_map.map;
1151 
1152 	return __perf_evsel__open(evsel, cpus, threads);
1153 }
1154 
1155 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1156 			     struct cpu_map *cpus)
1157 {
1158 	return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1159 }
1160 
1161 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1162 				struct thread_map *threads)
1163 {
1164 	return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1165 }
1166 
1167 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1168 				       const union perf_event *event,
1169 				       struct perf_sample *sample)
1170 {
1171 	u64 type = evsel->attr.sample_type;
1172 	const u64 *array = event->sample.array;
1173 	bool swapped = evsel->needs_swap;
1174 	union u64_swap u;
1175 
1176 	array += ((event->header.size -
1177 		   sizeof(event->header)) / sizeof(u64)) - 1;
1178 
1179 	if (type & PERF_SAMPLE_IDENTIFIER) {
1180 		sample->id = *array;
1181 		array--;
1182 	}
1183 
1184 	if (type & PERF_SAMPLE_CPU) {
1185 		u.val64 = *array;
1186 		if (swapped) {
1187 			/* undo swap of u64, then swap on individual u32s */
1188 			u.val64 = bswap_64(u.val64);
1189 			u.val32[0] = bswap_32(u.val32[0]);
1190 		}
1191 
1192 		sample->cpu = u.val32[0];
1193 		array--;
1194 	}
1195 
1196 	if (type & PERF_SAMPLE_STREAM_ID) {
1197 		sample->stream_id = *array;
1198 		array--;
1199 	}
1200 
1201 	if (type & PERF_SAMPLE_ID) {
1202 		sample->id = *array;
1203 		array--;
1204 	}
1205 
1206 	if (type & PERF_SAMPLE_TIME) {
1207 		sample->time = *array;
1208 		array--;
1209 	}
1210 
1211 	if (type & PERF_SAMPLE_TID) {
1212 		u.val64 = *array;
1213 		if (swapped) {
1214 			/* undo swap of u64, then swap on individual u32s */
1215 			u.val64 = bswap_64(u.val64);
1216 			u.val32[0] = bswap_32(u.val32[0]);
1217 			u.val32[1] = bswap_32(u.val32[1]);
1218 		}
1219 
1220 		sample->pid = u.val32[0];
1221 		sample->tid = u.val32[1];
1222 		array--;
1223 	}
1224 
1225 	return 0;
1226 }
1227 
1228 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1229 			    u64 size)
1230 {
1231 	return size > max_size || offset + size > endp;
1232 }
1233 
1234 #define OVERFLOW_CHECK(offset, size, max_size)				\
1235 	do {								\
1236 		if (overflow(endp, (max_size), (offset), (size)))	\
1237 			return -EFAULT;					\
1238 	} while (0)
1239 
1240 #define OVERFLOW_CHECK_u64(offset) \
1241 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1242 
1243 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1244 			     struct perf_sample *data)
1245 {
1246 	u64 type = evsel->attr.sample_type;
1247 	bool swapped = evsel->needs_swap;
1248 	const u64 *array;
1249 	u16 max_size = event->header.size;
1250 	const void *endp = (void *)event + max_size;
1251 	u64 sz;
1252 
1253 	/*
1254 	 * used for cross-endian analysis. See git commit 65014ab3
1255 	 * for why this goofiness is needed.
1256 	 */
1257 	union u64_swap u;
1258 
1259 	memset(data, 0, sizeof(*data));
1260 	data->cpu = data->pid = data->tid = -1;
1261 	data->stream_id = data->id = data->time = -1ULL;
1262 	data->period = 1;
1263 	data->weight = 0;
1264 
1265 	if (event->header.type != PERF_RECORD_SAMPLE) {
1266 		if (!evsel->attr.sample_id_all)
1267 			return 0;
1268 		return perf_evsel__parse_id_sample(evsel, event, data);
1269 	}
1270 
1271 	array = event->sample.array;
1272 
1273 	/*
1274 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1275 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1276 	 * check the format does not go past the end of the event.
1277 	 */
1278 	if (evsel->sample_size + sizeof(event->header) > event->header.size)
1279 		return -EFAULT;
1280 
1281 	data->id = -1ULL;
1282 	if (type & PERF_SAMPLE_IDENTIFIER) {
1283 		data->id = *array;
1284 		array++;
1285 	}
1286 
1287 	if (type & PERF_SAMPLE_IP) {
1288 		data->ip = *array;
1289 		array++;
1290 	}
1291 
1292 	if (type & PERF_SAMPLE_TID) {
1293 		u.val64 = *array;
1294 		if (swapped) {
1295 			/* undo swap of u64, then swap on individual u32s */
1296 			u.val64 = bswap_64(u.val64);
1297 			u.val32[0] = bswap_32(u.val32[0]);
1298 			u.val32[1] = bswap_32(u.val32[1]);
1299 		}
1300 
1301 		data->pid = u.val32[0];
1302 		data->tid = u.val32[1];
1303 		array++;
1304 	}
1305 
1306 	if (type & PERF_SAMPLE_TIME) {
1307 		data->time = *array;
1308 		array++;
1309 	}
1310 
1311 	data->addr = 0;
1312 	if (type & PERF_SAMPLE_ADDR) {
1313 		data->addr = *array;
1314 		array++;
1315 	}
1316 
1317 	if (type & PERF_SAMPLE_ID) {
1318 		data->id = *array;
1319 		array++;
1320 	}
1321 
1322 	if (type & PERF_SAMPLE_STREAM_ID) {
1323 		data->stream_id = *array;
1324 		array++;
1325 	}
1326 
1327 	if (type & PERF_SAMPLE_CPU) {
1328 
1329 		u.val64 = *array;
1330 		if (swapped) {
1331 			/* undo swap of u64, then swap on individual u32s */
1332 			u.val64 = bswap_64(u.val64);
1333 			u.val32[0] = bswap_32(u.val32[0]);
1334 		}
1335 
1336 		data->cpu = u.val32[0];
1337 		array++;
1338 	}
1339 
1340 	if (type & PERF_SAMPLE_PERIOD) {
1341 		data->period = *array;
1342 		array++;
1343 	}
1344 
1345 	if (type & PERF_SAMPLE_READ) {
1346 		u64 read_format = evsel->attr.read_format;
1347 
1348 		OVERFLOW_CHECK_u64(array);
1349 		if (read_format & PERF_FORMAT_GROUP)
1350 			data->read.group.nr = *array;
1351 		else
1352 			data->read.one.value = *array;
1353 
1354 		array++;
1355 
1356 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1357 			OVERFLOW_CHECK_u64(array);
1358 			data->read.time_enabled = *array;
1359 			array++;
1360 		}
1361 
1362 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1363 			OVERFLOW_CHECK_u64(array);
1364 			data->read.time_running = *array;
1365 			array++;
1366 		}
1367 
1368 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1369 		if (read_format & PERF_FORMAT_GROUP) {
1370 			const u64 max_group_nr = UINT64_MAX /
1371 					sizeof(struct sample_read_value);
1372 
1373 			if (data->read.group.nr > max_group_nr)
1374 				return -EFAULT;
1375 			sz = data->read.group.nr *
1376 			     sizeof(struct sample_read_value);
1377 			OVERFLOW_CHECK(array, sz, max_size);
1378 			data->read.group.values =
1379 					(struct sample_read_value *)array;
1380 			array = (void *)array + sz;
1381 		} else {
1382 			OVERFLOW_CHECK_u64(array);
1383 			data->read.one.id = *array;
1384 			array++;
1385 		}
1386 	}
1387 
1388 	if (type & PERF_SAMPLE_CALLCHAIN) {
1389 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1390 
1391 		OVERFLOW_CHECK_u64(array);
1392 		data->callchain = (struct ip_callchain *)array++;
1393 		if (data->callchain->nr > max_callchain_nr)
1394 			return -EFAULT;
1395 		sz = data->callchain->nr * sizeof(u64);
1396 		OVERFLOW_CHECK(array, sz, max_size);
1397 		array = (void *)array + sz;
1398 	}
1399 
1400 	if (type & PERF_SAMPLE_RAW) {
1401 		OVERFLOW_CHECK_u64(array);
1402 		u.val64 = *array;
1403 		if (WARN_ONCE(swapped,
1404 			      "Endianness of raw data not corrected!\n")) {
1405 			/* undo swap of u64, then swap on individual u32s */
1406 			u.val64 = bswap_64(u.val64);
1407 			u.val32[0] = bswap_32(u.val32[0]);
1408 			u.val32[1] = bswap_32(u.val32[1]);
1409 		}
1410 		data->raw_size = u.val32[0];
1411 		array = (void *)array + sizeof(u32);
1412 
1413 		OVERFLOW_CHECK(array, data->raw_size, max_size);
1414 		data->raw_data = (void *)array;
1415 		array = (void *)array + data->raw_size;
1416 	}
1417 
1418 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1419 		const u64 max_branch_nr = UINT64_MAX /
1420 					  sizeof(struct branch_entry);
1421 
1422 		OVERFLOW_CHECK_u64(array);
1423 		data->branch_stack = (struct branch_stack *)array++;
1424 
1425 		if (data->branch_stack->nr > max_branch_nr)
1426 			return -EFAULT;
1427 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
1428 		OVERFLOW_CHECK(array, sz, max_size);
1429 		array = (void *)array + sz;
1430 	}
1431 
1432 	if (type & PERF_SAMPLE_REGS_USER) {
1433 		OVERFLOW_CHECK_u64(array);
1434 		data->user_regs.abi = *array;
1435 		array++;
1436 
1437 		if (data->user_regs.abi) {
1438 			u64 regs_user = evsel->attr.sample_regs_user;
1439 
1440 			sz = hweight_long(regs_user) * sizeof(u64);
1441 			OVERFLOW_CHECK(array, sz, max_size);
1442 			data->user_regs.regs = (u64 *)array;
1443 			array = (void *)array + sz;
1444 		}
1445 	}
1446 
1447 	if (type & PERF_SAMPLE_STACK_USER) {
1448 		OVERFLOW_CHECK_u64(array);
1449 		sz = *array++;
1450 
1451 		data->user_stack.offset = ((char *)(array - 1)
1452 					  - (char *) event);
1453 
1454 		if (!sz) {
1455 			data->user_stack.size = 0;
1456 		} else {
1457 			OVERFLOW_CHECK(array, sz, max_size);
1458 			data->user_stack.data = (char *)array;
1459 			array = (void *)array + sz;
1460 			OVERFLOW_CHECK_u64(array);
1461 			data->user_stack.size = *array++;
1462 			if (WARN_ONCE(data->user_stack.size > sz,
1463 				      "user stack dump failure\n"))
1464 				return -EFAULT;
1465 		}
1466 	}
1467 
1468 	data->weight = 0;
1469 	if (type & PERF_SAMPLE_WEIGHT) {
1470 		OVERFLOW_CHECK_u64(array);
1471 		data->weight = *array;
1472 		array++;
1473 	}
1474 
1475 	data->data_src = PERF_MEM_DATA_SRC_NONE;
1476 	if (type & PERF_SAMPLE_DATA_SRC) {
1477 		OVERFLOW_CHECK_u64(array);
1478 		data->data_src = *array;
1479 		array++;
1480 	}
1481 
1482 	data->transaction = 0;
1483 	if (type & PERF_SAMPLE_TRANSACTION) {
1484 		OVERFLOW_CHECK_u64(array);
1485 		data->transaction = *array;
1486 		array++;
1487 	}
1488 
1489 	return 0;
1490 }
1491 
1492 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1493 				     u64 sample_regs_user, u64 read_format)
1494 {
1495 	size_t sz, result = sizeof(struct sample_event);
1496 
1497 	if (type & PERF_SAMPLE_IDENTIFIER)
1498 		result += sizeof(u64);
1499 
1500 	if (type & PERF_SAMPLE_IP)
1501 		result += sizeof(u64);
1502 
1503 	if (type & PERF_SAMPLE_TID)
1504 		result += sizeof(u64);
1505 
1506 	if (type & PERF_SAMPLE_TIME)
1507 		result += sizeof(u64);
1508 
1509 	if (type & PERF_SAMPLE_ADDR)
1510 		result += sizeof(u64);
1511 
1512 	if (type & PERF_SAMPLE_ID)
1513 		result += sizeof(u64);
1514 
1515 	if (type & PERF_SAMPLE_STREAM_ID)
1516 		result += sizeof(u64);
1517 
1518 	if (type & PERF_SAMPLE_CPU)
1519 		result += sizeof(u64);
1520 
1521 	if (type & PERF_SAMPLE_PERIOD)
1522 		result += sizeof(u64);
1523 
1524 	if (type & PERF_SAMPLE_READ) {
1525 		result += sizeof(u64);
1526 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1527 			result += sizeof(u64);
1528 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1529 			result += sizeof(u64);
1530 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1531 		if (read_format & PERF_FORMAT_GROUP) {
1532 			sz = sample->read.group.nr *
1533 			     sizeof(struct sample_read_value);
1534 			result += sz;
1535 		} else {
1536 			result += sizeof(u64);
1537 		}
1538 	}
1539 
1540 	if (type & PERF_SAMPLE_CALLCHAIN) {
1541 		sz = (sample->callchain->nr + 1) * sizeof(u64);
1542 		result += sz;
1543 	}
1544 
1545 	if (type & PERF_SAMPLE_RAW) {
1546 		result += sizeof(u32);
1547 		result += sample->raw_size;
1548 	}
1549 
1550 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1551 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1552 		sz += sizeof(u64);
1553 		result += sz;
1554 	}
1555 
1556 	if (type & PERF_SAMPLE_REGS_USER) {
1557 		if (sample->user_regs.abi) {
1558 			result += sizeof(u64);
1559 			sz = hweight_long(sample_regs_user) * sizeof(u64);
1560 			result += sz;
1561 		} else {
1562 			result += sizeof(u64);
1563 		}
1564 	}
1565 
1566 	if (type & PERF_SAMPLE_STACK_USER) {
1567 		sz = sample->user_stack.size;
1568 		result += sizeof(u64);
1569 		if (sz) {
1570 			result += sz;
1571 			result += sizeof(u64);
1572 		}
1573 	}
1574 
1575 	if (type & PERF_SAMPLE_WEIGHT)
1576 		result += sizeof(u64);
1577 
1578 	if (type & PERF_SAMPLE_DATA_SRC)
1579 		result += sizeof(u64);
1580 
1581 	if (type & PERF_SAMPLE_TRANSACTION)
1582 		result += sizeof(u64);
1583 
1584 	return result;
1585 }
1586 
1587 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1588 				  u64 sample_regs_user, u64 read_format,
1589 				  const struct perf_sample *sample,
1590 				  bool swapped)
1591 {
1592 	u64 *array;
1593 	size_t sz;
1594 	/*
1595 	 * used for cross-endian analysis. See git commit 65014ab3
1596 	 * for why this goofiness is needed.
1597 	 */
1598 	union u64_swap u;
1599 
1600 	array = event->sample.array;
1601 
1602 	if (type & PERF_SAMPLE_IDENTIFIER) {
1603 		*array = sample->id;
1604 		array++;
1605 	}
1606 
1607 	if (type & PERF_SAMPLE_IP) {
1608 		*array = sample->ip;
1609 		array++;
1610 	}
1611 
1612 	if (type & PERF_SAMPLE_TID) {
1613 		u.val32[0] = sample->pid;
1614 		u.val32[1] = sample->tid;
1615 		if (swapped) {
1616 			/*
1617 			 * Inverse of what is done in perf_evsel__parse_sample
1618 			 */
1619 			u.val32[0] = bswap_32(u.val32[0]);
1620 			u.val32[1] = bswap_32(u.val32[1]);
1621 			u.val64 = bswap_64(u.val64);
1622 		}
1623 
1624 		*array = u.val64;
1625 		array++;
1626 	}
1627 
1628 	if (type & PERF_SAMPLE_TIME) {
1629 		*array = sample->time;
1630 		array++;
1631 	}
1632 
1633 	if (type & PERF_SAMPLE_ADDR) {
1634 		*array = sample->addr;
1635 		array++;
1636 	}
1637 
1638 	if (type & PERF_SAMPLE_ID) {
1639 		*array = sample->id;
1640 		array++;
1641 	}
1642 
1643 	if (type & PERF_SAMPLE_STREAM_ID) {
1644 		*array = sample->stream_id;
1645 		array++;
1646 	}
1647 
1648 	if (type & PERF_SAMPLE_CPU) {
1649 		u.val32[0] = sample->cpu;
1650 		if (swapped) {
1651 			/*
1652 			 * Inverse of what is done in perf_evsel__parse_sample
1653 			 */
1654 			u.val32[0] = bswap_32(u.val32[0]);
1655 			u.val64 = bswap_64(u.val64);
1656 		}
1657 		*array = u.val64;
1658 		array++;
1659 	}
1660 
1661 	if (type & PERF_SAMPLE_PERIOD) {
1662 		*array = sample->period;
1663 		array++;
1664 	}
1665 
1666 	if (type & PERF_SAMPLE_READ) {
1667 		if (read_format & PERF_FORMAT_GROUP)
1668 			*array = sample->read.group.nr;
1669 		else
1670 			*array = sample->read.one.value;
1671 		array++;
1672 
1673 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1674 			*array = sample->read.time_enabled;
1675 			array++;
1676 		}
1677 
1678 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1679 			*array = sample->read.time_running;
1680 			array++;
1681 		}
1682 
1683 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1684 		if (read_format & PERF_FORMAT_GROUP) {
1685 			sz = sample->read.group.nr *
1686 			     sizeof(struct sample_read_value);
1687 			memcpy(array, sample->read.group.values, sz);
1688 			array = (void *)array + sz;
1689 		} else {
1690 			*array = sample->read.one.id;
1691 			array++;
1692 		}
1693 	}
1694 
1695 	if (type & PERF_SAMPLE_CALLCHAIN) {
1696 		sz = (sample->callchain->nr + 1) * sizeof(u64);
1697 		memcpy(array, sample->callchain, sz);
1698 		array = (void *)array + sz;
1699 	}
1700 
1701 	if (type & PERF_SAMPLE_RAW) {
1702 		u.val32[0] = sample->raw_size;
1703 		if (WARN_ONCE(swapped,
1704 			      "Endianness of raw data not corrected!\n")) {
1705 			/*
1706 			 * Inverse of what is done in perf_evsel__parse_sample
1707 			 */
1708 			u.val32[0] = bswap_32(u.val32[0]);
1709 			u.val32[1] = bswap_32(u.val32[1]);
1710 			u.val64 = bswap_64(u.val64);
1711 		}
1712 		*array = u.val64;
1713 		array = (void *)array + sizeof(u32);
1714 
1715 		memcpy(array, sample->raw_data, sample->raw_size);
1716 		array = (void *)array + sample->raw_size;
1717 	}
1718 
1719 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1720 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1721 		sz += sizeof(u64);
1722 		memcpy(array, sample->branch_stack, sz);
1723 		array = (void *)array + sz;
1724 	}
1725 
1726 	if (type & PERF_SAMPLE_REGS_USER) {
1727 		if (sample->user_regs.abi) {
1728 			*array++ = sample->user_regs.abi;
1729 			sz = hweight_long(sample_regs_user) * sizeof(u64);
1730 			memcpy(array, sample->user_regs.regs, sz);
1731 			array = (void *)array + sz;
1732 		} else {
1733 			*array++ = 0;
1734 		}
1735 	}
1736 
1737 	if (type & PERF_SAMPLE_STACK_USER) {
1738 		sz = sample->user_stack.size;
1739 		*array++ = sz;
1740 		if (sz) {
1741 			memcpy(array, sample->user_stack.data, sz);
1742 			array = (void *)array + sz;
1743 			*array++ = sz;
1744 		}
1745 	}
1746 
1747 	if (type & PERF_SAMPLE_WEIGHT) {
1748 		*array = sample->weight;
1749 		array++;
1750 	}
1751 
1752 	if (type & PERF_SAMPLE_DATA_SRC) {
1753 		*array = sample->data_src;
1754 		array++;
1755 	}
1756 
1757 	if (type & PERF_SAMPLE_TRANSACTION) {
1758 		*array = sample->transaction;
1759 		array++;
1760 	}
1761 
1762 	return 0;
1763 }
1764 
1765 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1766 {
1767 	return pevent_find_field(evsel->tp_format, name);
1768 }
1769 
1770 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1771 			 const char *name)
1772 {
1773 	struct format_field *field = perf_evsel__field(evsel, name);
1774 	int offset;
1775 
1776 	if (!field)
1777 		return NULL;
1778 
1779 	offset = field->offset;
1780 
1781 	if (field->flags & FIELD_IS_DYNAMIC) {
1782 		offset = *(int *)(sample->raw_data + field->offset);
1783 		offset &= 0xffff;
1784 	}
1785 
1786 	return sample->raw_data + offset;
1787 }
1788 
1789 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1790 		       const char *name)
1791 {
1792 	struct format_field *field = perf_evsel__field(evsel, name);
1793 	void *ptr;
1794 	u64 value;
1795 
1796 	if (!field)
1797 		return 0;
1798 
1799 	ptr = sample->raw_data + field->offset;
1800 
1801 	switch (field->size) {
1802 	case 1:
1803 		return *(u8 *)ptr;
1804 	case 2:
1805 		value = *(u16 *)ptr;
1806 		break;
1807 	case 4:
1808 		value = *(u32 *)ptr;
1809 		break;
1810 	case 8:
1811 		value = *(u64 *)ptr;
1812 		break;
1813 	default:
1814 		return 0;
1815 	}
1816 
1817 	if (!evsel->needs_swap)
1818 		return value;
1819 
1820 	switch (field->size) {
1821 	case 2:
1822 		return bswap_16(value);
1823 	case 4:
1824 		return bswap_32(value);
1825 	case 8:
1826 		return bswap_64(value);
1827 	default:
1828 		return 0;
1829 	}
1830 
1831 	return 0;
1832 }
1833 
1834 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
1835 {
1836 	va_list args;
1837 	int ret = 0;
1838 
1839 	if (!*first) {
1840 		ret += fprintf(fp, ",");
1841 	} else {
1842 		ret += fprintf(fp, ":");
1843 		*first = false;
1844 	}
1845 
1846 	va_start(args, fmt);
1847 	ret += vfprintf(fp, fmt, args);
1848 	va_end(args);
1849 	return ret;
1850 }
1851 
1852 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value)
1853 {
1854 	if (value == 0)
1855 		return 0;
1856 
1857 	return comma_fprintf(fp, first, " %s: %" PRIu64, field, value);
1858 }
1859 
1860 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field)
1861 
1862 struct bit_names {
1863 	int bit;
1864 	const char *name;
1865 };
1866 
1867 static int bits__fprintf(FILE *fp, const char *field, u64 value,
1868 			 struct bit_names *bits, bool *first)
1869 {
1870 	int i = 0, printed = comma_fprintf(fp, first, " %s: ", field);
1871 	bool first_bit = true;
1872 
1873 	do {
1874 		if (value & bits[i].bit) {
1875 			printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name);
1876 			first_bit = false;
1877 		}
1878 	} while (bits[++i].name != NULL);
1879 
1880 	return printed;
1881 }
1882 
1883 static int sample_type__fprintf(FILE *fp, bool *first, u64 value)
1884 {
1885 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1886 	struct bit_names bits[] = {
1887 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1888 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1889 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1890 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1891 		bit_name(IDENTIFIER),
1892 		{ .name = NULL, }
1893 	};
1894 #undef bit_name
1895 	return bits__fprintf(fp, "sample_type", value, bits, first);
1896 }
1897 
1898 static int read_format__fprintf(FILE *fp, bool *first, u64 value)
1899 {
1900 #define bit_name(n) { PERF_FORMAT_##n, #n }
1901 	struct bit_names bits[] = {
1902 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1903 		bit_name(ID), bit_name(GROUP),
1904 		{ .name = NULL, }
1905 	};
1906 #undef bit_name
1907 	return bits__fprintf(fp, "read_format", value, bits, first);
1908 }
1909 
1910 int perf_evsel__fprintf(struct perf_evsel *evsel,
1911 			struct perf_attr_details *details, FILE *fp)
1912 {
1913 	bool first = true;
1914 	int printed = 0;
1915 
1916 	if (details->event_group) {
1917 		struct perf_evsel *pos;
1918 
1919 		if (!perf_evsel__is_group_leader(evsel))
1920 			return 0;
1921 
1922 		if (evsel->nr_members > 1)
1923 			printed += fprintf(fp, "%s{", evsel->group_name ?: "");
1924 
1925 		printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1926 		for_each_group_member(pos, evsel)
1927 			printed += fprintf(fp, ",%s", perf_evsel__name(pos));
1928 
1929 		if (evsel->nr_members > 1)
1930 			printed += fprintf(fp, "}");
1931 		goto out;
1932 	}
1933 
1934 	printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1935 
1936 	if (details->verbose || details->freq) {
1937 		printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
1938 					 (u64)evsel->attr.sample_freq);
1939 	}
1940 
1941 	if (details->verbose) {
1942 		if_print(type);
1943 		if_print(config);
1944 		if_print(config1);
1945 		if_print(config2);
1946 		if_print(size);
1947 		printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type);
1948 		if (evsel->attr.read_format)
1949 			printed += read_format__fprintf(fp, &first, evsel->attr.read_format);
1950 		if_print(disabled);
1951 		if_print(inherit);
1952 		if_print(pinned);
1953 		if_print(exclusive);
1954 		if_print(exclude_user);
1955 		if_print(exclude_kernel);
1956 		if_print(exclude_hv);
1957 		if_print(exclude_idle);
1958 		if_print(mmap);
1959 		if_print(mmap2);
1960 		if_print(comm);
1961 		if_print(freq);
1962 		if_print(inherit_stat);
1963 		if_print(enable_on_exec);
1964 		if_print(task);
1965 		if_print(watermark);
1966 		if_print(precise_ip);
1967 		if_print(mmap_data);
1968 		if_print(sample_id_all);
1969 		if_print(exclude_host);
1970 		if_print(exclude_guest);
1971 		if_print(__reserved_1);
1972 		if_print(wakeup_events);
1973 		if_print(bp_type);
1974 		if_print(branch_sample_type);
1975 	}
1976 out:
1977 	fputc('\n', fp);
1978 	return ++printed;
1979 }
1980 
1981 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
1982 			  char *msg, size_t msgsize)
1983 {
1984 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
1985 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
1986 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
1987 		/*
1988 		 * If it's cycles then fall back to hrtimer based
1989 		 * cpu-clock-tick sw counter, which is always available even if
1990 		 * no PMU support.
1991 		 *
1992 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
1993 		 * b0a873e).
1994 		 */
1995 		scnprintf(msg, msgsize, "%s",
1996 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
1997 
1998 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
1999 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2000 
2001 		free(evsel->name);
2002 		evsel->name = NULL;
2003 		return true;
2004 	}
2005 
2006 	return false;
2007 }
2008 
2009 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2010 			      int err, char *msg, size_t size)
2011 {
2012 	switch (err) {
2013 	case EPERM:
2014 	case EACCES:
2015 		return scnprintf(msg, size,
2016 		 "You may not have permission to collect %sstats.\n"
2017 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
2018 		 " -1 - Not paranoid at all\n"
2019 		 "  0 - Disallow raw tracepoint access for unpriv\n"
2020 		 "  1 - Disallow cpu events for unpriv\n"
2021 		 "  2 - Disallow kernel profiling for unpriv",
2022 				 target->system_wide ? "system-wide " : "");
2023 	case ENOENT:
2024 		return scnprintf(msg, size, "The %s event is not supported.",
2025 				 perf_evsel__name(evsel));
2026 	case EMFILE:
2027 		return scnprintf(msg, size, "%s",
2028 			 "Too many events are opened.\n"
2029 			 "Try again after reducing the number of events.");
2030 	case ENODEV:
2031 		if (target->cpu_list)
2032 			return scnprintf(msg, size, "%s",
2033 	 "No such device - did you specify an out-of-range profile CPU?\n");
2034 		break;
2035 	case EOPNOTSUPP:
2036 		if (evsel->attr.precise_ip)
2037 			return scnprintf(msg, size, "%s",
2038 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2039 #if defined(__i386__) || defined(__x86_64__)
2040 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2041 			return scnprintf(msg, size, "%s",
2042 	"No hardware sampling interrupt available.\n"
2043 	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2044 #endif
2045 		break;
2046 	default:
2047 		break;
2048 	}
2049 
2050 	return scnprintf(msg, size,
2051 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).  \n"
2052 	"/bin/dmesg may provide additional information.\n"
2053 	"No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2054 			 err, strerror(err), perf_evsel__name(evsel));
2055 }
2056