xref: /openbmc/linux/tools/perf/util/evsel.c (revision 76466024)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
4  *
5  * Parts came from builtin-{top,stat,record}.c, see those files for further
6  * copyright notes.
7  */
8 
9 #include <byteswap.h>
10 #include <errno.h>
11 #include <inttypes.h>
12 #include <linux/bitops.h>
13 #include <api/fs/fs.h>
14 #include <api/fs/tracing_path.h>
15 #include <traceevent/event-parse.h>
16 #include <linux/hw_breakpoint.h>
17 #include <linux/perf_event.h>
18 #include <linux/compiler.h>
19 #include <linux/err.h>
20 #include <linux/zalloc.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include <perf/evsel.h>
26 #include "asm/bug.h"
27 #include "callchain.h"
28 #include "cgroup.h"
29 #include "event.h"
30 #include "evsel.h"
31 #include "evlist.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "string2.h"
40 #include "memswap.h"
41 #include "util/parse-branch-options.h"
42 #include <internal/xyarray.h>
43 
44 #include <linux/ctype.h>
45 
46 struct perf_missing_features perf_missing_features;
47 
48 static clockid_t clockid;
49 
50 static int perf_evsel__no_extra_init(struct evsel *evsel __maybe_unused)
51 {
52 	return 0;
53 }
54 
55 void __weak test_attr__ready(void) { }
56 
57 static void perf_evsel__no_extra_fini(struct evsel *evsel __maybe_unused)
58 {
59 }
60 
61 static struct {
62 	size_t	size;
63 	int	(*init)(struct evsel *evsel);
64 	void	(*fini)(struct evsel *evsel);
65 } perf_evsel__object = {
66 	.size = sizeof(struct evsel),
67 	.init = perf_evsel__no_extra_init,
68 	.fini = perf_evsel__no_extra_fini,
69 };
70 
71 int perf_evsel__object_config(size_t object_size,
72 			      int (*init)(struct evsel *evsel),
73 			      void (*fini)(struct evsel *evsel))
74 {
75 
76 	if (object_size == 0)
77 		goto set_methods;
78 
79 	if (perf_evsel__object.size > object_size)
80 		return -EINVAL;
81 
82 	perf_evsel__object.size = object_size;
83 
84 set_methods:
85 	if (init != NULL)
86 		perf_evsel__object.init = init;
87 
88 	if (fini != NULL)
89 		perf_evsel__object.fini = fini;
90 
91 	return 0;
92 }
93 
94 #define FD(e, x, y) (*(int *)xyarray__entry(e->core.fd, x, y))
95 
96 int __perf_evsel__sample_size(u64 sample_type)
97 {
98 	u64 mask = sample_type & PERF_SAMPLE_MASK;
99 	int size = 0;
100 	int i;
101 
102 	for (i = 0; i < 64; i++) {
103 		if (mask & (1ULL << i))
104 			size++;
105 	}
106 
107 	size *= sizeof(u64);
108 
109 	return size;
110 }
111 
112 /**
113  * __perf_evsel__calc_id_pos - calculate id_pos.
114  * @sample_type: sample type
115  *
116  * This function returns the position of the event id (PERF_SAMPLE_ID or
117  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
118  * sample_event.
119  */
120 static int __perf_evsel__calc_id_pos(u64 sample_type)
121 {
122 	int idx = 0;
123 
124 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
125 		return 0;
126 
127 	if (!(sample_type & PERF_SAMPLE_ID))
128 		return -1;
129 
130 	if (sample_type & PERF_SAMPLE_IP)
131 		idx += 1;
132 
133 	if (sample_type & PERF_SAMPLE_TID)
134 		idx += 1;
135 
136 	if (sample_type & PERF_SAMPLE_TIME)
137 		idx += 1;
138 
139 	if (sample_type & PERF_SAMPLE_ADDR)
140 		idx += 1;
141 
142 	return idx;
143 }
144 
145 /**
146  * __perf_evsel__calc_is_pos - calculate is_pos.
147  * @sample_type: sample type
148  *
149  * This function returns the position (counting backwards) of the event id
150  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
151  * sample_id_all is used there is an id sample appended to non-sample events.
152  */
153 static int __perf_evsel__calc_is_pos(u64 sample_type)
154 {
155 	int idx = 1;
156 
157 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
158 		return 1;
159 
160 	if (!(sample_type & PERF_SAMPLE_ID))
161 		return -1;
162 
163 	if (sample_type & PERF_SAMPLE_CPU)
164 		idx += 1;
165 
166 	if (sample_type & PERF_SAMPLE_STREAM_ID)
167 		idx += 1;
168 
169 	return idx;
170 }
171 
172 void perf_evsel__calc_id_pos(struct evsel *evsel)
173 {
174 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->core.attr.sample_type);
175 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->core.attr.sample_type);
176 }
177 
178 void __perf_evsel__set_sample_bit(struct evsel *evsel,
179 				  enum perf_event_sample_format bit)
180 {
181 	if (!(evsel->core.attr.sample_type & bit)) {
182 		evsel->core.attr.sample_type |= bit;
183 		evsel->sample_size += sizeof(u64);
184 		perf_evsel__calc_id_pos(evsel);
185 	}
186 }
187 
188 void __perf_evsel__reset_sample_bit(struct evsel *evsel,
189 				    enum perf_event_sample_format bit)
190 {
191 	if (evsel->core.attr.sample_type & bit) {
192 		evsel->core.attr.sample_type &= ~bit;
193 		evsel->sample_size -= sizeof(u64);
194 		perf_evsel__calc_id_pos(evsel);
195 	}
196 }
197 
198 void perf_evsel__set_sample_id(struct evsel *evsel,
199 			       bool can_sample_identifier)
200 {
201 	if (can_sample_identifier) {
202 		perf_evsel__reset_sample_bit(evsel, ID);
203 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
204 	} else {
205 		perf_evsel__set_sample_bit(evsel, ID);
206 	}
207 	evsel->core.attr.read_format |= PERF_FORMAT_ID;
208 }
209 
210 /**
211  * perf_evsel__is_function_event - Return whether given evsel is a function
212  * trace event
213  *
214  * @evsel - evsel selector to be tested
215  *
216  * Return %true if event is function trace event
217  */
218 bool perf_evsel__is_function_event(struct evsel *evsel)
219 {
220 #define FUNCTION_EVENT "ftrace:function"
221 
222 	return evsel->name &&
223 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
224 
225 #undef FUNCTION_EVENT
226 }
227 
228 void evsel__init(struct evsel *evsel,
229 		 struct perf_event_attr *attr, int idx)
230 {
231 	perf_evsel__init(&evsel->core, attr);
232 	evsel->idx	   = idx;
233 	evsel->tracking	   = !idx;
234 	evsel->leader	   = evsel;
235 	evsel->unit	   = "";
236 	evsel->scale	   = 1.0;
237 	evsel->max_events  = ULONG_MAX;
238 	evsel->evlist	   = NULL;
239 	evsel->bpf_obj	   = NULL;
240 	evsel->bpf_fd	   = -1;
241 	INIT_LIST_HEAD(&evsel->config_terms);
242 	perf_evsel__object.init(evsel);
243 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
244 	perf_evsel__calc_id_pos(evsel);
245 	evsel->cmdline_group_boundary = false;
246 	evsel->metric_expr   = NULL;
247 	evsel->metric_name   = NULL;
248 	evsel->metric_events = NULL;
249 	evsel->collect_stat  = false;
250 	evsel->pmu_name      = NULL;
251 }
252 
253 struct evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
254 {
255 	struct evsel *evsel = zalloc(perf_evsel__object.size);
256 
257 	if (!evsel)
258 		return NULL;
259 	evsel__init(evsel, attr, idx);
260 
261 	if (perf_evsel__is_bpf_output(evsel)) {
262 		evsel->core.attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
263 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
264 		evsel->core.attr.sample_period = 1;
265 	}
266 
267 	if (perf_evsel__is_clock(evsel)) {
268 		/*
269 		 * The evsel->unit points to static alias->unit
270 		 * so it's ok to use static string in here.
271 		 */
272 		static const char *unit = "msec";
273 
274 		evsel->unit = unit;
275 		evsel->scale = 1e-6;
276 	}
277 
278 	return evsel;
279 }
280 
281 static bool perf_event_can_profile_kernel(void)
282 {
283 	return geteuid() == 0 || perf_event_paranoid() == -1;
284 }
285 
286 struct evsel *perf_evsel__new_cycles(bool precise)
287 {
288 	struct perf_event_attr attr = {
289 		.type	= PERF_TYPE_HARDWARE,
290 		.config	= PERF_COUNT_HW_CPU_CYCLES,
291 		.exclude_kernel	= !perf_event_can_profile_kernel(),
292 	};
293 	struct evsel *evsel;
294 
295 	event_attr_init(&attr);
296 
297 	if (!precise)
298 		goto new_event;
299 
300 	/*
301 	 * Now let the usual logic to set up the perf_event_attr defaults
302 	 * to kick in when we return and before perf_evsel__open() is called.
303 	 */
304 new_event:
305 	evsel = evsel__new(&attr);
306 	if (evsel == NULL)
307 		goto out;
308 
309 	evsel->precise_max = true;
310 
311 	/* use asprintf() because free(evsel) assumes name is allocated */
312 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
313 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
314 		     attr.exclude_kernel ? "u" : "",
315 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
316 		goto error_free;
317 out:
318 	return evsel;
319 error_free:
320 	evsel__delete(evsel);
321 	evsel = NULL;
322 	goto out;
323 }
324 
325 /*
326  * Returns pointer with encoded error via <linux/err.h> interface.
327  */
328 struct evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
329 {
330 	struct evsel *evsel = zalloc(perf_evsel__object.size);
331 	int err = -ENOMEM;
332 
333 	if (evsel == NULL) {
334 		goto out_err;
335 	} else {
336 		struct perf_event_attr attr = {
337 			.type	       = PERF_TYPE_TRACEPOINT,
338 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
339 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
340 		};
341 
342 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
343 			goto out_free;
344 
345 		evsel->tp_format = trace_event__tp_format(sys, name);
346 		if (IS_ERR(evsel->tp_format)) {
347 			err = PTR_ERR(evsel->tp_format);
348 			goto out_free;
349 		}
350 
351 		event_attr_init(&attr);
352 		attr.config = evsel->tp_format->id;
353 		attr.sample_period = 1;
354 		evsel__init(evsel, &attr, idx);
355 	}
356 
357 	return evsel;
358 
359 out_free:
360 	zfree(&evsel->name);
361 	free(evsel);
362 out_err:
363 	return ERR_PTR(err);
364 }
365 
366 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
367 	"cycles",
368 	"instructions",
369 	"cache-references",
370 	"cache-misses",
371 	"branches",
372 	"branch-misses",
373 	"bus-cycles",
374 	"stalled-cycles-frontend",
375 	"stalled-cycles-backend",
376 	"ref-cycles",
377 };
378 
379 static const char *__perf_evsel__hw_name(u64 config)
380 {
381 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
382 		return perf_evsel__hw_names[config];
383 
384 	return "unknown-hardware";
385 }
386 
387 static int perf_evsel__add_modifiers(struct evsel *evsel, char *bf, size_t size)
388 {
389 	int colon = 0, r = 0;
390 	struct perf_event_attr *attr = &evsel->core.attr;
391 	bool exclude_guest_default = false;
392 
393 #define MOD_PRINT(context, mod)	do {					\
394 		if (!attr->exclude_##context) {				\
395 			if (!colon) colon = ++r;			\
396 			r += scnprintf(bf + r, size - r, "%c", mod);	\
397 		} } while(0)
398 
399 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
400 		MOD_PRINT(kernel, 'k');
401 		MOD_PRINT(user, 'u');
402 		MOD_PRINT(hv, 'h');
403 		exclude_guest_default = true;
404 	}
405 
406 	if (attr->precise_ip) {
407 		if (!colon)
408 			colon = ++r;
409 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
410 		exclude_guest_default = true;
411 	}
412 
413 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
414 		MOD_PRINT(host, 'H');
415 		MOD_PRINT(guest, 'G');
416 	}
417 #undef MOD_PRINT
418 	if (colon)
419 		bf[colon - 1] = ':';
420 	return r;
421 }
422 
423 static int perf_evsel__hw_name(struct evsel *evsel, char *bf, size_t size)
424 {
425 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->core.attr.config));
426 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
427 }
428 
429 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
430 	"cpu-clock",
431 	"task-clock",
432 	"page-faults",
433 	"context-switches",
434 	"cpu-migrations",
435 	"minor-faults",
436 	"major-faults",
437 	"alignment-faults",
438 	"emulation-faults",
439 	"dummy",
440 };
441 
442 static const char *__perf_evsel__sw_name(u64 config)
443 {
444 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
445 		return perf_evsel__sw_names[config];
446 	return "unknown-software";
447 }
448 
449 static int perf_evsel__sw_name(struct evsel *evsel, char *bf, size_t size)
450 {
451 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->core.attr.config));
452 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
453 }
454 
455 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
456 {
457 	int r;
458 
459 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
460 
461 	if (type & HW_BREAKPOINT_R)
462 		r += scnprintf(bf + r, size - r, "r");
463 
464 	if (type & HW_BREAKPOINT_W)
465 		r += scnprintf(bf + r, size - r, "w");
466 
467 	if (type & HW_BREAKPOINT_X)
468 		r += scnprintf(bf + r, size - r, "x");
469 
470 	return r;
471 }
472 
473 static int perf_evsel__bp_name(struct evsel *evsel, char *bf, size_t size)
474 {
475 	struct perf_event_attr *attr = &evsel->core.attr;
476 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
477 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
478 }
479 
480 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
481 				[PERF_EVSEL__MAX_ALIASES] = {
482  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
483  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
484  { "LLC",	"L2",							},
485  { "dTLB",	"d-tlb",	"Data-TLB",				},
486  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
487  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
488  { "node",								},
489 };
490 
491 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
492 				   [PERF_EVSEL__MAX_ALIASES] = {
493  { "load",	"loads",	"read",					},
494  { "store",	"stores",	"write",				},
495  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
496 };
497 
498 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
499 				       [PERF_EVSEL__MAX_ALIASES] = {
500  { "refs",	"Reference",	"ops",		"access",		},
501  { "misses",	"miss",							},
502 };
503 
504 #define C(x)		PERF_COUNT_HW_CACHE_##x
505 #define CACHE_READ	(1 << C(OP_READ))
506 #define CACHE_WRITE	(1 << C(OP_WRITE))
507 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
508 #define COP(x)		(1 << x)
509 
510 /*
511  * cache operartion stat
512  * L1I : Read and prefetch only
513  * ITLB and BPU : Read-only
514  */
515 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
516  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
517  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
518  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
519  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
520  [C(ITLB)]	= (CACHE_READ),
521  [C(BPU)]	= (CACHE_READ),
522  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
523 };
524 
525 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
526 {
527 	if (perf_evsel__hw_cache_stat[type] & COP(op))
528 		return true;	/* valid */
529 	else
530 		return false;	/* invalid */
531 }
532 
533 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
534 					    char *bf, size_t size)
535 {
536 	if (result) {
537 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
538 				 perf_evsel__hw_cache_op[op][0],
539 				 perf_evsel__hw_cache_result[result][0]);
540 	}
541 
542 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
543 			 perf_evsel__hw_cache_op[op][1]);
544 }
545 
546 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
547 {
548 	u8 op, result, type = (config >>  0) & 0xff;
549 	const char *err = "unknown-ext-hardware-cache-type";
550 
551 	if (type >= PERF_COUNT_HW_CACHE_MAX)
552 		goto out_err;
553 
554 	op = (config >>  8) & 0xff;
555 	err = "unknown-ext-hardware-cache-op";
556 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
557 		goto out_err;
558 
559 	result = (config >> 16) & 0xff;
560 	err = "unknown-ext-hardware-cache-result";
561 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
562 		goto out_err;
563 
564 	err = "invalid-cache";
565 	if (!perf_evsel__is_cache_op_valid(type, op))
566 		goto out_err;
567 
568 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
569 out_err:
570 	return scnprintf(bf, size, "%s", err);
571 }
572 
573 static int perf_evsel__hw_cache_name(struct evsel *evsel, char *bf, size_t size)
574 {
575 	int ret = __perf_evsel__hw_cache_name(evsel->core.attr.config, bf, size);
576 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
577 }
578 
579 static int perf_evsel__raw_name(struct evsel *evsel, char *bf, size_t size)
580 {
581 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->core.attr.config);
582 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
583 }
584 
585 static int perf_evsel__tool_name(char *bf, size_t size)
586 {
587 	int ret = scnprintf(bf, size, "duration_time");
588 	return ret;
589 }
590 
591 const char *perf_evsel__name(struct evsel *evsel)
592 {
593 	char bf[128];
594 
595 	if (!evsel)
596 		goto out_unknown;
597 
598 	if (evsel->name)
599 		return evsel->name;
600 
601 	switch (evsel->core.attr.type) {
602 	case PERF_TYPE_RAW:
603 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
604 		break;
605 
606 	case PERF_TYPE_HARDWARE:
607 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
608 		break;
609 
610 	case PERF_TYPE_HW_CACHE:
611 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
612 		break;
613 
614 	case PERF_TYPE_SOFTWARE:
615 		if (evsel->tool_event)
616 			perf_evsel__tool_name(bf, sizeof(bf));
617 		else
618 			perf_evsel__sw_name(evsel, bf, sizeof(bf));
619 		break;
620 
621 	case PERF_TYPE_TRACEPOINT:
622 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
623 		break;
624 
625 	case PERF_TYPE_BREAKPOINT:
626 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
627 		break;
628 
629 	default:
630 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
631 			  evsel->core.attr.type);
632 		break;
633 	}
634 
635 	evsel->name = strdup(bf);
636 
637 	if (evsel->name)
638 		return evsel->name;
639 out_unknown:
640 	return "unknown";
641 }
642 
643 const char *perf_evsel__group_name(struct evsel *evsel)
644 {
645 	return evsel->group_name ?: "anon group";
646 }
647 
648 /*
649  * Returns the group details for the specified leader,
650  * with following rules.
651  *
652  *  For record -e '{cycles,instructions}'
653  *    'anon group { cycles:u, instructions:u }'
654  *
655  *  For record -e 'cycles,instructions' and report --group
656  *    'cycles:u, instructions:u'
657  */
658 int perf_evsel__group_desc(struct evsel *evsel, char *buf, size_t size)
659 {
660 	int ret = 0;
661 	struct evsel *pos;
662 	const char *group_name = perf_evsel__group_name(evsel);
663 
664 	if (!evsel->forced_leader)
665 		ret = scnprintf(buf, size, "%s { ", group_name);
666 
667 	ret += scnprintf(buf + ret, size - ret, "%s",
668 			 perf_evsel__name(evsel));
669 
670 	for_each_group_member(pos, evsel)
671 		ret += scnprintf(buf + ret, size - ret, ", %s",
672 				 perf_evsel__name(pos));
673 
674 	if (!evsel->forced_leader)
675 		ret += scnprintf(buf + ret, size - ret, " }");
676 
677 	return ret;
678 }
679 
680 static void __perf_evsel__config_callchain(struct evsel *evsel,
681 					   struct record_opts *opts,
682 					   struct callchain_param *param)
683 {
684 	bool function = perf_evsel__is_function_event(evsel);
685 	struct perf_event_attr *attr = &evsel->core.attr;
686 
687 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
688 
689 	attr->sample_max_stack = param->max_stack;
690 
691 	if (opts->kernel_callchains)
692 		attr->exclude_callchain_user = 1;
693 	if (opts->user_callchains)
694 		attr->exclude_callchain_kernel = 1;
695 	if (param->record_mode == CALLCHAIN_LBR) {
696 		if (!opts->branch_stack) {
697 			if (attr->exclude_user) {
698 				pr_warning("LBR callstack option is only available "
699 					   "to get user callchain information. "
700 					   "Falling back to framepointers.\n");
701 			} else {
702 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
703 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
704 							PERF_SAMPLE_BRANCH_CALL_STACK |
705 							PERF_SAMPLE_BRANCH_NO_CYCLES |
706 							PERF_SAMPLE_BRANCH_NO_FLAGS;
707 			}
708 		} else
709 			 pr_warning("Cannot use LBR callstack with branch stack. "
710 				    "Falling back to framepointers.\n");
711 	}
712 
713 	if (param->record_mode == CALLCHAIN_DWARF) {
714 		if (!function) {
715 			perf_evsel__set_sample_bit(evsel, REGS_USER);
716 			perf_evsel__set_sample_bit(evsel, STACK_USER);
717 			if (opts->sample_user_regs && DWARF_MINIMAL_REGS != PERF_REGS_MASK) {
718 				attr->sample_regs_user |= DWARF_MINIMAL_REGS;
719 				pr_warning("WARNING: The use of --call-graph=dwarf may require all the user registers, "
720 					   "specifying a subset with --user-regs may render DWARF unwinding unreliable, "
721 					   "so the minimal registers set (IP, SP) is explicitly forced.\n");
722 			} else {
723 				attr->sample_regs_user |= PERF_REGS_MASK;
724 			}
725 			attr->sample_stack_user = param->dump_size;
726 			attr->exclude_callchain_user = 1;
727 		} else {
728 			pr_info("Cannot use DWARF unwind for function trace event,"
729 				" falling back to framepointers.\n");
730 		}
731 	}
732 
733 	if (function) {
734 		pr_info("Disabling user space callchains for function trace event.\n");
735 		attr->exclude_callchain_user = 1;
736 	}
737 }
738 
739 void perf_evsel__config_callchain(struct evsel *evsel,
740 				  struct record_opts *opts,
741 				  struct callchain_param *param)
742 {
743 	if (param->enabled)
744 		return __perf_evsel__config_callchain(evsel, opts, param);
745 }
746 
747 static void
748 perf_evsel__reset_callgraph(struct evsel *evsel,
749 			    struct callchain_param *param)
750 {
751 	struct perf_event_attr *attr = &evsel->core.attr;
752 
753 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
754 	if (param->record_mode == CALLCHAIN_LBR) {
755 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
756 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
757 					      PERF_SAMPLE_BRANCH_CALL_STACK);
758 	}
759 	if (param->record_mode == CALLCHAIN_DWARF) {
760 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
761 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
762 	}
763 }
764 
765 static void apply_config_terms(struct evsel *evsel,
766 			       struct record_opts *opts, bool track)
767 {
768 	struct perf_evsel_config_term *term;
769 	struct list_head *config_terms = &evsel->config_terms;
770 	struct perf_event_attr *attr = &evsel->core.attr;
771 	/* callgraph default */
772 	struct callchain_param param = {
773 		.record_mode = callchain_param.record_mode,
774 	};
775 	u32 dump_size = 0;
776 	int max_stack = 0;
777 	const char *callgraph_buf = NULL;
778 
779 	list_for_each_entry(term, config_terms, list) {
780 		switch (term->type) {
781 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
782 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
783 				attr->sample_period = term->val.period;
784 				attr->freq = 0;
785 				perf_evsel__reset_sample_bit(evsel, PERIOD);
786 			}
787 			break;
788 		case PERF_EVSEL__CONFIG_TERM_FREQ:
789 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
790 				attr->sample_freq = term->val.freq;
791 				attr->freq = 1;
792 				perf_evsel__set_sample_bit(evsel, PERIOD);
793 			}
794 			break;
795 		case PERF_EVSEL__CONFIG_TERM_TIME:
796 			if (term->val.time)
797 				perf_evsel__set_sample_bit(evsel, TIME);
798 			else
799 				perf_evsel__reset_sample_bit(evsel, TIME);
800 			break;
801 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
802 			callgraph_buf = term->val.callgraph;
803 			break;
804 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
805 			if (term->val.branch && strcmp(term->val.branch, "no")) {
806 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
807 				parse_branch_str(term->val.branch,
808 						 &attr->branch_sample_type);
809 			} else
810 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
811 			break;
812 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
813 			dump_size = term->val.stack_user;
814 			break;
815 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
816 			max_stack = term->val.max_stack;
817 			break;
818 		case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS:
819 			evsel->max_events = term->val.max_events;
820 			break;
821 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
822 			/*
823 			 * attr->inherit should has already been set by
824 			 * perf_evsel__config. If user explicitly set
825 			 * inherit using config terms, override global
826 			 * opt->no_inherit setting.
827 			 */
828 			attr->inherit = term->val.inherit ? 1 : 0;
829 			break;
830 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
831 			attr->write_backward = term->val.overwrite ? 1 : 0;
832 			break;
833 		case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
834 			break;
835 		case PERF_EVSEL__CONFIG_TERM_PERCORE:
836 			break;
837 		case PERF_EVSEL__CONFIG_TERM_AUX_OUTPUT:
838 			attr->aux_output = term->val.aux_output ? 1 : 0;
839 			break;
840 		default:
841 			break;
842 		}
843 	}
844 
845 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
846 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
847 		bool sample_address = false;
848 
849 		if (max_stack) {
850 			param.max_stack = max_stack;
851 			if (callgraph_buf == NULL)
852 				callgraph_buf = "fp";
853 		}
854 
855 		/* parse callgraph parameters */
856 		if (callgraph_buf != NULL) {
857 			if (!strcmp(callgraph_buf, "no")) {
858 				param.enabled = false;
859 				param.record_mode = CALLCHAIN_NONE;
860 			} else {
861 				param.enabled = true;
862 				if (parse_callchain_record(callgraph_buf, &param)) {
863 					pr_err("per-event callgraph setting for %s failed. "
864 					       "Apply callgraph global setting for it\n",
865 					       evsel->name);
866 					return;
867 				}
868 				if (param.record_mode == CALLCHAIN_DWARF)
869 					sample_address = true;
870 			}
871 		}
872 		if (dump_size > 0) {
873 			dump_size = round_up(dump_size, sizeof(u64));
874 			param.dump_size = dump_size;
875 		}
876 
877 		/* If global callgraph set, clear it */
878 		if (callchain_param.enabled)
879 			perf_evsel__reset_callgraph(evsel, &callchain_param);
880 
881 		/* set perf-event callgraph */
882 		if (param.enabled) {
883 			if (sample_address) {
884 				perf_evsel__set_sample_bit(evsel, ADDR);
885 				perf_evsel__set_sample_bit(evsel, DATA_SRC);
886 				evsel->core.attr.mmap_data = track;
887 			}
888 			perf_evsel__config_callchain(evsel, opts, &param);
889 		}
890 	}
891 }
892 
893 static bool is_dummy_event(struct evsel *evsel)
894 {
895 	return (evsel->core.attr.type == PERF_TYPE_SOFTWARE) &&
896 	       (evsel->core.attr.config == PERF_COUNT_SW_DUMMY);
897 }
898 
899 /*
900  * The enable_on_exec/disabled value strategy:
901  *
902  *  1) For any type of traced program:
903  *    - all independent events and group leaders are disabled
904  *    - all group members are enabled
905  *
906  *     Group members are ruled by group leaders. They need to
907  *     be enabled, because the group scheduling relies on that.
908  *
909  *  2) For traced programs executed by perf:
910  *     - all independent events and group leaders have
911  *       enable_on_exec set
912  *     - we don't specifically enable or disable any event during
913  *       the record command
914  *
915  *     Independent events and group leaders are initially disabled
916  *     and get enabled by exec. Group members are ruled by group
917  *     leaders as stated in 1).
918  *
919  *  3) For traced programs attached by perf (pid/tid):
920  *     - we specifically enable or disable all events during
921  *       the record command
922  *
923  *     When attaching events to already running traced we
924  *     enable/disable events specifically, as there's no
925  *     initial traced exec call.
926  */
927 void perf_evsel__config(struct evsel *evsel, struct record_opts *opts,
928 			struct callchain_param *callchain)
929 {
930 	struct evsel *leader = evsel->leader;
931 	struct perf_event_attr *attr = &evsel->core.attr;
932 	int track = evsel->tracking;
933 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
934 
935 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
936 	attr->inherit	    = !opts->no_inherit;
937 	attr->write_backward = opts->overwrite ? 1 : 0;
938 
939 	perf_evsel__set_sample_bit(evsel, IP);
940 	perf_evsel__set_sample_bit(evsel, TID);
941 
942 	if (evsel->sample_read) {
943 		perf_evsel__set_sample_bit(evsel, READ);
944 
945 		/*
946 		 * We need ID even in case of single event, because
947 		 * PERF_SAMPLE_READ process ID specific data.
948 		 */
949 		perf_evsel__set_sample_id(evsel, false);
950 
951 		/*
952 		 * Apply group format only if we belong to group
953 		 * with more than one members.
954 		 */
955 		if (leader->core.nr_members > 1) {
956 			attr->read_format |= PERF_FORMAT_GROUP;
957 			attr->inherit = 0;
958 		}
959 	}
960 
961 	/*
962 	 * We default some events to have a default interval. But keep
963 	 * it a weak assumption overridable by the user.
964 	 */
965 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
966 				     opts->user_interval != ULLONG_MAX)) {
967 		if (opts->freq) {
968 			perf_evsel__set_sample_bit(evsel, PERIOD);
969 			attr->freq		= 1;
970 			attr->sample_freq	= opts->freq;
971 		} else {
972 			attr->sample_period = opts->default_interval;
973 		}
974 	}
975 
976 	/*
977 	 * Disable sampling for all group members other
978 	 * than leader in case leader 'leads' the sampling.
979 	 */
980 	if ((leader != evsel) && leader->sample_read) {
981 		attr->freq           = 0;
982 		attr->sample_freq    = 0;
983 		attr->sample_period  = 0;
984 		attr->write_backward = 0;
985 
986 		/*
987 		 * We don't get sample for slave events, we make them
988 		 * when delivering group leader sample. Set the slave
989 		 * event to follow the master sample_type to ease up
990 		 * report.
991 		 */
992 		attr->sample_type = leader->core.attr.sample_type;
993 	}
994 
995 	if (opts->no_samples)
996 		attr->sample_freq = 0;
997 
998 	if (opts->inherit_stat) {
999 		evsel->core.attr.read_format |=
1000 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1001 			PERF_FORMAT_TOTAL_TIME_RUNNING |
1002 			PERF_FORMAT_ID;
1003 		attr->inherit_stat = 1;
1004 	}
1005 
1006 	if (opts->sample_address) {
1007 		perf_evsel__set_sample_bit(evsel, ADDR);
1008 		attr->mmap_data = track;
1009 	}
1010 
1011 	/*
1012 	 * We don't allow user space callchains for  function trace
1013 	 * event, due to issues with page faults while tracing page
1014 	 * fault handler and its overall trickiness nature.
1015 	 */
1016 	if (perf_evsel__is_function_event(evsel))
1017 		evsel->core.attr.exclude_callchain_user = 1;
1018 
1019 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
1020 		perf_evsel__config_callchain(evsel, opts, callchain);
1021 
1022 	if (opts->sample_intr_regs) {
1023 		attr->sample_regs_intr = opts->sample_intr_regs;
1024 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
1025 	}
1026 
1027 	if (opts->sample_user_regs) {
1028 		attr->sample_regs_user |= opts->sample_user_regs;
1029 		perf_evsel__set_sample_bit(evsel, REGS_USER);
1030 	}
1031 
1032 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
1033 		perf_evsel__set_sample_bit(evsel, CPU);
1034 
1035 	/*
1036 	 * When the user explicitly disabled time don't force it here.
1037 	 */
1038 	if (opts->sample_time &&
1039 	    (!perf_missing_features.sample_id_all &&
1040 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1041 	     opts->sample_time_set)))
1042 		perf_evsel__set_sample_bit(evsel, TIME);
1043 
1044 	if (opts->raw_samples && !evsel->no_aux_samples) {
1045 		perf_evsel__set_sample_bit(evsel, TIME);
1046 		perf_evsel__set_sample_bit(evsel, RAW);
1047 		perf_evsel__set_sample_bit(evsel, CPU);
1048 	}
1049 
1050 	if (opts->sample_address)
1051 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
1052 
1053 	if (opts->sample_phys_addr)
1054 		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1055 
1056 	if (opts->no_buffering) {
1057 		attr->watermark = 0;
1058 		attr->wakeup_events = 1;
1059 	}
1060 	if (opts->branch_stack && !evsel->no_aux_samples) {
1061 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1062 		attr->branch_sample_type = opts->branch_stack;
1063 	}
1064 
1065 	if (opts->sample_weight)
1066 		perf_evsel__set_sample_bit(evsel, WEIGHT);
1067 
1068 	attr->task  = track;
1069 	attr->mmap  = track;
1070 	attr->mmap2 = track && !perf_missing_features.mmap2;
1071 	attr->comm  = track;
1072 	attr->ksymbol = track && !perf_missing_features.ksymbol;
1073 	attr->bpf_event = track && !opts->no_bpf_event &&
1074 		!perf_missing_features.bpf_event;
1075 
1076 	if (opts->record_namespaces)
1077 		attr->namespaces  = track;
1078 
1079 	if (opts->record_switch_events)
1080 		attr->context_switch = track;
1081 
1082 	if (opts->sample_transaction)
1083 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
1084 
1085 	if (opts->running_time) {
1086 		evsel->core.attr.read_format |=
1087 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1088 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1089 	}
1090 
1091 	/*
1092 	 * XXX see the function comment above
1093 	 *
1094 	 * Disabling only independent events or group leaders,
1095 	 * keeping group members enabled.
1096 	 */
1097 	if (perf_evsel__is_group_leader(evsel))
1098 		attr->disabled = 1;
1099 
1100 	/*
1101 	 * Setting enable_on_exec for independent events and
1102 	 * group leaders for traced executed by perf.
1103 	 */
1104 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1105 		!opts->initial_delay)
1106 		attr->enable_on_exec = 1;
1107 
1108 	if (evsel->immediate) {
1109 		attr->disabled = 0;
1110 		attr->enable_on_exec = 0;
1111 	}
1112 
1113 	clockid = opts->clockid;
1114 	if (opts->use_clockid) {
1115 		attr->use_clockid = 1;
1116 		attr->clockid = opts->clockid;
1117 	}
1118 
1119 	if (evsel->precise_max)
1120 		attr->precise_ip = 3;
1121 
1122 	if (opts->all_user) {
1123 		attr->exclude_kernel = 1;
1124 		attr->exclude_user   = 0;
1125 	}
1126 
1127 	if (opts->all_kernel) {
1128 		attr->exclude_kernel = 0;
1129 		attr->exclude_user   = 1;
1130 	}
1131 
1132 	if (evsel->core.own_cpus || evsel->unit)
1133 		evsel->core.attr.read_format |= PERF_FORMAT_ID;
1134 
1135 	/*
1136 	 * Apply event specific term settings,
1137 	 * it overloads any global configuration.
1138 	 */
1139 	apply_config_terms(evsel, opts, track);
1140 
1141 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1142 
1143 	/* The --period option takes the precedence. */
1144 	if (opts->period_set) {
1145 		if (opts->period)
1146 			perf_evsel__set_sample_bit(evsel, PERIOD);
1147 		else
1148 			perf_evsel__reset_sample_bit(evsel, PERIOD);
1149 	}
1150 
1151 	/*
1152 	 * For initial_delay, a dummy event is added implicitly.
1153 	 * The software event will trigger -EOPNOTSUPP error out,
1154 	 * if BRANCH_STACK bit is set.
1155 	 */
1156 	if (opts->initial_delay && is_dummy_event(evsel))
1157 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1158 }
1159 
1160 int perf_evsel__set_filter(struct evsel *evsel, const char *filter)
1161 {
1162 	char *new_filter = strdup(filter);
1163 
1164 	if (new_filter != NULL) {
1165 		free(evsel->filter);
1166 		evsel->filter = new_filter;
1167 		return 0;
1168 	}
1169 
1170 	return -1;
1171 }
1172 
1173 static int perf_evsel__append_filter(struct evsel *evsel,
1174 				     const char *fmt, const char *filter)
1175 {
1176 	char *new_filter;
1177 
1178 	if (evsel->filter == NULL)
1179 		return perf_evsel__set_filter(evsel, filter);
1180 
1181 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1182 		free(evsel->filter);
1183 		evsel->filter = new_filter;
1184 		return 0;
1185 	}
1186 
1187 	return -1;
1188 }
1189 
1190 int perf_evsel__append_tp_filter(struct evsel *evsel, const char *filter)
1191 {
1192 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1193 }
1194 
1195 int perf_evsel__append_addr_filter(struct evsel *evsel, const char *filter)
1196 {
1197 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1198 }
1199 
1200 int evsel__enable(struct evsel *evsel)
1201 {
1202 	int err = perf_evsel__enable(&evsel->core);
1203 
1204 	if (!err)
1205 		evsel->disabled = false;
1206 
1207 	return err;
1208 }
1209 
1210 int evsel__disable(struct evsel *evsel)
1211 {
1212 	int err = perf_evsel__disable(&evsel->core);
1213 	/*
1214 	 * We mark it disabled here so that tools that disable a event can
1215 	 * ignore events after they disable it. I.e. the ring buffer may have
1216 	 * already a few more events queued up before the kernel got the stop
1217 	 * request.
1218 	 */
1219 	if (!err)
1220 		evsel->disabled = true;
1221 
1222 	return err;
1223 }
1224 
1225 int perf_evsel__alloc_id(struct evsel *evsel, int ncpus, int nthreads)
1226 {
1227 	if (ncpus == 0 || nthreads == 0)
1228 		return 0;
1229 
1230 	if (evsel->system_wide)
1231 		nthreads = 1;
1232 
1233 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1234 	if (evsel->sample_id == NULL)
1235 		return -ENOMEM;
1236 
1237 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1238 	if (evsel->id == NULL) {
1239 		xyarray__delete(evsel->sample_id);
1240 		evsel->sample_id = NULL;
1241 		return -ENOMEM;
1242 	}
1243 
1244 	return 0;
1245 }
1246 
1247 static void perf_evsel__free_id(struct evsel *evsel)
1248 {
1249 	xyarray__delete(evsel->sample_id);
1250 	evsel->sample_id = NULL;
1251 	zfree(&evsel->id);
1252 	evsel->ids = 0;
1253 }
1254 
1255 static void perf_evsel__free_config_terms(struct evsel *evsel)
1256 {
1257 	struct perf_evsel_config_term *term, *h;
1258 
1259 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1260 		list_del_init(&term->list);
1261 		free(term);
1262 	}
1263 }
1264 
1265 void perf_evsel__exit(struct evsel *evsel)
1266 {
1267 	assert(list_empty(&evsel->core.node));
1268 	assert(evsel->evlist == NULL);
1269 	perf_evsel__free_counts(evsel);
1270 	perf_evsel__free_fd(&evsel->core);
1271 	perf_evsel__free_id(evsel);
1272 	perf_evsel__free_config_terms(evsel);
1273 	cgroup__put(evsel->cgrp);
1274 	perf_cpu_map__put(evsel->core.cpus);
1275 	perf_cpu_map__put(evsel->core.own_cpus);
1276 	perf_thread_map__put(evsel->core.threads);
1277 	zfree(&evsel->group_name);
1278 	zfree(&evsel->name);
1279 	perf_evsel__object.fini(evsel);
1280 }
1281 
1282 void evsel__delete(struct evsel *evsel)
1283 {
1284 	perf_evsel__exit(evsel);
1285 	free(evsel);
1286 }
1287 
1288 void perf_evsel__compute_deltas(struct evsel *evsel, int cpu, int thread,
1289 				struct perf_counts_values *count)
1290 {
1291 	struct perf_counts_values tmp;
1292 
1293 	if (!evsel->prev_raw_counts)
1294 		return;
1295 
1296 	if (cpu == -1) {
1297 		tmp = evsel->prev_raw_counts->aggr;
1298 		evsel->prev_raw_counts->aggr = *count;
1299 	} else {
1300 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1301 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1302 	}
1303 
1304 	count->val = count->val - tmp.val;
1305 	count->ena = count->ena - tmp.ena;
1306 	count->run = count->run - tmp.run;
1307 }
1308 
1309 void perf_counts_values__scale(struct perf_counts_values *count,
1310 			       bool scale, s8 *pscaled)
1311 {
1312 	s8 scaled = 0;
1313 
1314 	if (scale) {
1315 		if (count->run == 0) {
1316 			scaled = -1;
1317 			count->val = 0;
1318 		} else if (count->run < count->ena) {
1319 			scaled = 1;
1320 			count->val = (u64)((double) count->val * count->ena / count->run);
1321 		}
1322 	}
1323 
1324 	if (pscaled)
1325 		*pscaled = scaled;
1326 }
1327 
1328 static int
1329 perf_evsel__read_one(struct evsel *evsel, int cpu, int thread)
1330 {
1331 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1332 
1333 	return perf_evsel__read(&evsel->core, cpu, thread, count);
1334 }
1335 
1336 static void
1337 perf_evsel__set_count(struct evsel *counter, int cpu, int thread,
1338 		      u64 val, u64 ena, u64 run)
1339 {
1340 	struct perf_counts_values *count;
1341 
1342 	count = perf_counts(counter->counts, cpu, thread);
1343 
1344 	count->val    = val;
1345 	count->ena    = ena;
1346 	count->run    = run;
1347 
1348 	perf_counts__set_loaded(counter->counts, cpu, thread, true);
1349 }
1350 
1351 static int
1352 perf_evsel__process_group_data(struct evsel *leader,
1353 			       int cpu, int thread, u64 *data)
1354 {
1355 	u64 read_format = leader->core.attr.read_format;
1356 	struct sample_read_value *v;
1357 	u64 nr, ena = 0, run = 0, i;
1358 
1359 	nr = *data++;
1360 
1361 	if (nr != (u64) leader->core.nr_members)
1362 		return -EINVAL;
1363 
1364 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1365 		ena = *data++;
1366 
1367 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1368 		run = *data++;
1369 
1370 	v = (struct sample_read_value *) data;
1371 
1372 	perf_evsel__set_count(leader, cpu, thread,
1373 			      v[0].value, ena, run);
1374 
1375 	for (i = 1; i < nr; i++) {
1376 		struct evsel *counter;
1377 
1378 		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1379 		if (!counter)
1380 			return -EINVAL;
1381 
1382 		perf_evsel__set_count(counter, cpu, thread,
1383 				      v[i].value, ena, run);
1384 	}
1385 
1386 	return 0;
1387 }
1388 
1389 static int
1390 perf_evsel__read_group(struct evsel *leader, int cpu, int thread)
1391 {
1392 	struct perf_stat_evsel *ps = leader->stats;
1393 	u64 read_format = leader->core.attr.read_format;
1394 	int size = perf_evsel__read_size(&leader->core);
1395 	u64 *data = ps->group_data;
1396 
1397 	if (!(read_format & PERF_FORMAT_ID))
1398 		return -EINVAL;
1399 
1400 	if (!perf_evsel__is_group_leader(leader))
1401 		return -EINVAL;
1402 
1403 	if (!data) {
1404 		data = zalloc(size);
1405 		if (!data)
1406 			return -ENOMEM;
1407 
1408 		ps->group_data = data;
1409 	}
1410 
1411 	if (FD(leader, cpu, thread) < 0)
1412 		return -EINVAL;
1413 
1414 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1415 		return -errno;
1416 
1417 	return perf_evsel__process_group_data(leader, cpu, thread, data);
1418 }
1419 
1420 int perf_evsel__read_counter(struct evsel *evsel, int cpu, int thread)
1421 {
1422 	u64 read_format = evsel->core.attr.read_format;
1423 
1424 	if (read_format & PERF_FORMAT_GROUP)
1425 		return perf_evsel__read_group(evsel, cpu, thread);
1426 	else
1427 		return perf_evsel__read_one(evsel, cpu, thread);
1428 }
1429 
1430 int __perf_evsel__read_on_cpu(struct evsel *evsel,
1431 			      int cpu, int thread, bool scale)
1432 {
1433 	struct perf_counts_values count;
1434 	size_t nv = scale ? 3 : 1;
1435 
1436 	if (FD(evsel, cpu, thread) < 0)
1437 		return -EINVAL;
1438 
1439 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1440 		return -ENOMEM;
1441 
1442 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1443 		return -errno;
1444 
1445 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1446 	perf_counts_values__scale(&count, scale, NULL);
1447 	*perf_counts(evsel->counts, cpu, thread) = count;
1448 	return 0;
1449 }
1450 
1451 static int get_group_fd(struct evsel *evsel, int cpu, int thread)
1452 {
1453 	struct evsel *leader = evsel->leader;
1454 	int fd;
1455 
1456 	if (perf_evsel__is_group_leader(evsel))
1457 		return -1;
1458 
1459 	/*
1460 	 * Leader must be already processed/open,
1461 	 * if not it's a bug.
1462 	 */
1463 	BUG_ON(!leader->core.fd);
1464 
1465 	fd = FD(leader, cpu, thread);
1466 	BUG_ON(fd == -1);
1467 
1468 	return fd;
1469 }
1470 
1471 struct bit_names {
1472 	int bit;
1473 	const char *name;
1474 };
1475 
1476 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1477 {
1478 	bool first_bit = true;
1479 	int i = 0;
1480 
1481 	do {
1482 		if (value & bits[i].bit) {
1483 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1484 			first_bit = false;
1485 		}
1486 	} while (bits[++i].name != NULL);
1487 }
1488 
1489 static void __p_sample_type(char *buf, size_t size, u64 value)
1490 {
1491 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1492 	struct bit_names bits[] = {
1493 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1494 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1495 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1496 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1497 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1498 		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1499 		{ .name = NULL, }
1500 	};
1501 #undef bit_name
1502 	__p_bits(buf, size, value, bits);
1503 }
1504 
1505 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1506 {
1507 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1508 	struct bit_names bits[] = {
1509 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1510 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1511 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1512 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1513 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1514 		{ .name = NULL, }
1515 	};
1516 #undef bit_name
1517 	__p_bits(buf, size, value, bits);
1518 }
1519 
1520 static void __p_read_format(char *buf, size_t size, u64 value)
1521 {
1522 #define bit_name(n) { PERF_FORMAT_##n, #n }
1523 	struct bit_names bits[] = {
1524 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1525 		bit_name(ID), bit_name(GROUP),
1526 		{ .name = NULL, }
1527 	};
1528 #undef bit_name
1529 	__p_bits(buf, size, value, bits);
1530 }
1531 
1532 #define BUF_SIZE		1024
1533 
1534 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1535 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1536 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1537 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1538 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1539 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1540 
1541 #define PRINT_ATTRn(_n, _f, _p)				\
1542 do {							\
1543 	if (attr->_f) {					\
1544 		_p(attr->_f);				\
1545 		ret += attr__fprintf(fp, _n, buf, priv);\
1546 	}						\
1547 } while (0)
1548 
1549 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1550 
1551 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1552 			     attr__fprintf_f attr__fprintf, void *priv)
1553 {
1554 	char buf[BUF_SIZE];
1555 	int ret = 0;
1556 
1557 	PRINT_ATTRf(type, p_unsigned);
1558 	PRINT_ATTRf(size, p_unsigned);
1559 	PRINT_ATTRf(config, p_hex);
1560 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1561 	PRINT_ATTRf(sample_type, p_sample_type);
1562 	PRINT_ATTRf(read_format, p_read_format);
1563 
1564 	PRINT_ATTRf(disabled, p_unsigned);
1565 	PRINT_ATTRf(inherit, p_unsigned);
1566 	PRINT_ATTRf(pinned, p_unsigned);
1567 	PRINT_ATTRf(exclusive, p_unsigned);
1568 	PRINT_ATTRf(exclude_user, p_unsigned);
1569 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1570 	PRINT_ATTRf(exclude_hv, p_unsigned);
1571 	PRINT_ATTRf(exclude_idle, p_unsigned);
1572 	PRINT_ATTRf(mmap, p_unsigned);
1573 	PRINT_ATTRf(comm, p_unsigned);
1574 	PRINT_ATTRf(freq, p_unsigned);
1575 	PRINT_ATTRf(inherit_stat, p_unsigned);
1576 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1577 	PRINT_ATTRf(task, p_unsigned);
1578 	PRINT_ATTRf(watermark, p_unsigned);
1579 	PRINT_ATTRf(precise_ip, p_unsigned);
1580 	PRINT_ATTRf(mmap_data, p_unsigned);
1581 	PRINT_ATTRf(sample_id_all, p_unsigned);
1582 	PRINT_ATTRf(exclude_host, p_unsigned);
1583 	PRINT_ATTRf(exclude_guest, p_unsigned);
1584 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1585 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1586 	PRINT_ATTRf(mmap2, p_unsigned);
1587 	PRINT_ATTRf(comm_exec, p_unsigned);
1588 	PRINT_ATTRf(use_clockid, p_unsigned);
1589 	PRINT_ATTRf(context_switch, p_unsigned);
1590 	PRINT_ATTRf(write_backward, p_unsigned);
1591 	PRINT_ATTRf(namespaces, p_unsigned);
1592 	PRINT_ATTRf(ksymbol, p_unsigned);
1593 	PRINT_ATTRf(bpf_event, p_unsigned);
1594 	PRINT_ATTRf(aux_output, p_unsigned);
1595 
1596 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1597 	PRINT_ATTRf(bp_type, p_unsigned);
1598 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1599 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1600 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1601 	PRINT_ATTRf(sample_regs_user, p_hex);
1602 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1603 	PRINT_ATTRf(clockid, p_signed);
1604 	PRINT_ATTRf(sample_regs_intr, p_hex);
1605 	PRINT_ATTRf(aux_watermark, p_unsigned);
1606 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1607 
1608 	return ret;
1609 }
1610 
1611 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1612 				void *priv __maybe_unused)
1613 {
1614 	return fprintf(fp, "  %-32s %s\n", name, val);
1615 }
1616 
1617 static void perf_evsel__remove_fd(struct evsel *pos,
1618 				  int nr_cpus, int nr_threads,
1619 				  int thread_idx)
1620 {
1621 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1622 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1623 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1624 }
1625 
1626 static int update_fds(struct evsel *evsel,
1627 		      int nr_cpus, int cpu_idx,
1628 		      int nr_threads, int thread_idx)
1629 {
1630 	struct evsel *pos;
1631 
1632 	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1633 		return -EINVAL;
1634 
1635 	evlist__for_each_entry(evsel->evlist, pos) {
1636 		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1637 
1638 		perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1639 
1640 		/*
1641 		 * Since fds for next evsel has not been created,
1642 		 * there is no need to iterate whole event list.
1643 		 */
1644 		if (pos == evsel)
1645 			break;
1646 	}
1647 	return 0;
1648 }
1649 
1650 static bool ignore_missing_thread(struct evsel *evsel,
1651 				  int nr_cpus, int cpu,
1652 				  struct perf_thread_map *threads,
1653 				  int thread, int err)
1654 {
1655 	pid_t ignore_pid = thread_map__pid(threads, thread);
1656 
1657 	if (!evsel->ignore_missing_thread)
1658 		return false;
1659 
1660 	/* The system wide setup does not work with threads. */
1661 	if (evsel->system_wide)
1662 		return false;
1663 
1664 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1665 	if (err != -ESRCH)
1666 		return false;
1667 
1668 	/* If there's only one thread, let it fail. */
1669 	if (threads->nr == 1)
1670 		return false;
1671 
1672 	/*
1673 	 * We should remove fd for missing_thread first
1674 	 * because thread_map__remove() will decrease threads->nr.
1675 	 */
1676 	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1677 		return false;
1678 
1679 	if (thread_map__remove(threads, thread))
1680 		return false;
1681 
1682 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1683 		   ignore_pid);
1684 	return true;
1685 }
1686 
1687 static void display_attr(struct perf_event_attr *attr)
1688 {
1689 	if (verbose >= 2) {
1690 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1691 		fprintf(stderr, "perf_event_attr:\n");
1692 		perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL);
1693 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1694 	}
1695 }
1696 
1697 static int perf_event_open(struct evsel *evsel,
1698 			   pid_t pid, int cpu, int group_fd,
1699 			   unsigned long flags)
1700 {
1701 	int precise_ip = evsel->core.attr.precise_ip;
1702 	int fd;
1703 
1704 	while (1) {
1705 		pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1706 			  pid, cpu, group_fd, flags);
1707 
1708 		fd = sys_perf_event_open(&evsel->core.attr, pid, cpu, group_fd, flags);
1709 		if (fd >= 0)
1710 			break;
1711 
1712 		/* Do not try less precise if not requested. */
1713 		if (!evsel->precise_max)
1714 			break;
1715 
1716 		/*
1717 		 * We tried all the precise_ip values, and it's
1718 		 * still failing, so leave it to standard fallback.
1719 		 */
1720 		if (!evsel->core.attr.precise_ip) {
1721 			evsel->core.attr.precise_ip = precise_ip;
1722 			break;
1723 		}
1724 
1725 		pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP);
1726 		evsel->core.attr.precise_ip--;
1727 		pr_debug2("decreasing precise_ip by one (%d)\n", evsel->core.attr.precise_ip);
1728 		display_attr(&evsel->core.attr);
1729 	}
1730 
1731 	return fd;
1732 }
1733 
1734 int evsel__open(struct evsel *evsel, struct perf_cpu_map *cpus,
1735 		struct perf_thread_map *threads)
1736 {
1737 	int cpu, thread, nthreads;
1738 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1739 	int pid = -1, err;
1740 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1741 
1742 	if ((perf_missing_features.write_backward && evsel->core.attr.write_backward) ||
1743 	    (perf_missing_features.aux_output     && evsel->core.attr.aux_output))
1744 		return -EINVAL;
1745 
1746 	if (cpus == NULL) {
1747 		static struct perf_cpu_map *empty_cpu_map;
1748 
1749 		if (empty_cpu_map == NULL) {
1750 			empty_cpu_map = perf_cpu_map__dummy_new();
1751 			if (empty_cpu_map == NULL)
1752 				return -ENOMEM;
1753 		}
1754 
1755 		cpus = empty_cpu_map;
1756 	}
1757 
1758 	if (threads == NULL) {
1759 		static struct perf_thread_map *empty_thread_map;
1760 
1761 		if (empty_thread_map == NULL) {
1762 			empty_thread_map = thread_map__new_by_tid(-1);
1763 			if (empty_thread_map == NULL)
1764 				return -ENOMEM;
1765 		}
1766 
1767 		threads = empty_thread_map;
1768 	}
1769 
1770 	if (evsel->system_wide)
1771 		nthreads = 1;
1772 	else
1773 		nthreads = threads->nr;
1774 
1775 	if (evsel->core.fd == NULL &&
1776 	    perf_evsel__alloc_fd(&evsel->core, cpus->nr, nthreads) < 0)
1777 		return -ENOMEM;
1778 
1779 	if (evsel->cgrp) {
1780 		flags |= PERF_FLAG_PID_CGROUP;
1781 		pid = evsel->cgrp->fd;
1782 	}
1783 
1784 fallback_missing_features:
1785 	if (perf_missing_features.clockid_wrong)
1786 		evsel->core.attr.clockid = CLOCK_MONOTONIC; /* should always work */
1787 	if (perf_missing_features.clockid) {
1788 		evsel->core.attr.use_clockid = 0;
1789 		evsel->core.attr.clockid = 0;
1790 	}
1791 	if (perf_missing_features.cloexec)
1792 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1793 	if (perf_missing_features.mmap2)
1794 		evsel->core.attr.mmap2 = 0;
1795 	if (perf_missing_features.exclude_guest)
1796 		evsel->core.attr.exclude_guest = evsel->core.attr.exclude_host = 0;
1797 	if (perf_missing_features.lbr_flags)
1798 		evsel->core.attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1799 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1800 	if (perf_missing_features.group_read && evsel->core.attr.inherit)
1801 		evsel->core.attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1802 	if (perf_missing_features.ksymbol)
1803 		evsel->core.attr.ksymbol = 0;
1804 	if (perf_missing_features.bpf_event)
1805 		evsel->core.attr.bpf_event = 0;
1806 retry_sample_id:
1807 	if (perf_missing_features.sample_id_all)
1808 		evsel->core.attr.sample_id_all = 0;
1809 
1810 	display_attr(&evsel->core.attr);
1811 
1812 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1813 
1814 		for (thread = 0; thread < nthreads; thread++) {
1815 			int fd, group_fd;
1816 
1817 			if (!evsel->cgrp && !evsel->system_wide)
1818 				pid = thread_map__pid(threads, thread);
1819 
1820 			group_fd = get_group_fd(evsel, cpu, thread);
1821 retry_open:
1822 			test_attr__ready();
1823 
1824 			fd = perf_event_open(evsel, pid, cpus->map[cpu],
1825 					     group_fd, flags);
1826 
1827 			FD(evsel, cpu, thread) = fd;
1828 
1829 			if (fd < 0) {
1830 				err = -errno;
1831 
1832 				if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1833 					/*
1834 					 * We just removed 1 thread, so take a step
1835 					 * back on thread index and lower the upper
1836 					 * nthreads limit.
1837 					 */
1838 					nthreads--;
1839 					thread--;
1840 
1841 					/* ... and pretend like nothing have happened. */
1842 					err = 0;
1843 					continue;
1844 				}
1845 
1846 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1847 					  err);
1848 				goto try_fallback;
1849 			}
1850 
1851 			pr_debug2(" = %d\n", fd);
1852 
1853 			if (evsel->bpf_fd >= 0) {
1854 				int evt_fd = fd;
1855 				int bpf_fd = evsel->bpf_fd;
1856 
1857 				err = ioctl(evt_fd,
1858 					    PERF_EVENT_IOC_SET_BPF,
1859 					    bpf_fd);
1860 				if (err && errno != EEXIST) {
1861 					pr_err("failed to attach bpf fd %d: %s\n",
1862 					       bpf_fd, strerror(errno));
1863 					err = -EINVAL;
1864 					goto out_close;
1865 				}
1866 			}
1867 
1868 			set_rlimit = NO_CHANGE;
1869 
1870 			/*
1871 			 * If we succeeded but had to kill clockid, fail and
1872 			 * have perf_evsel__open_strerror() print us a nice
1873 			 * error.
1874 			 */
1875 			if (perf_missing_features.clockid ||
1876 			    perf_missing_features.clockid_wrong) {
1877 				err = -EINVAL;
1878 				goto out_close;
1879 			}
1880 		}
1881 	}
1882 
1883 	return 0;
1884 
1885 try_fallback:
1886 	/*
1887 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1888 	 * of them try to increase the limits.
1889 	 */
1890 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1891 		struct rlimit l;
1892 		int old_errno = errno;
1893 
1894 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1895 			if (set_rlimit == NO_CHANGE)
1896 				l.rlim_cur = l.rlim_max;
1897 			else {
1898 				l.rlim_cur = l.rlim_max + 1000;
1899 				l.rlim_max = l.rlim_cur;
1900 			}
1901 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1902 				set_rlimit++;
1903 				errno = old_errno;
1904 				goto retry_open;
1905 			}
1906 		}
1907 		errno = old_errno;
1908 	}
1909 
1910 	if (err != -EINVAL || cpu > 0 || thread > 0)
1911 		goto out_close;
1912 
1913 	/*
1914 	 * Must probe features in the order they were added to the
1915 	 * perf_event_attr interface.
1916 	 */
1917 	if (!perf_missing_features.aux_output && evsel->core.attr.aux_output) {
1918 		perf_missing_features.aux_output = true;
1919 		pr_debug2("Kernel has no attr.aux_output support, bailing out\n");
1920 		goto out_close;
1921 	} else if (!perf_missing_features.bpf_event && evsel->core.attr.bpf_event) {
1922 		perf_missing_features.bpf_event = true;
1923 		pr_debug2("switching off bpf_event\n");
1924 		goto fallback_missing_features;
1925 	} else if (!perf_missing_features.ksymbol && evsel->core.attr.ksymbol) {
1926 		perf_missing_features.ksymbol = true;
1927 		pr_debug2("switching off ksymbol\n");
1928 		goto fallback_missing_features;
1929 	} else if (!perf_missing_features.write_backward && evsel->core.attr.write_backward) {
1930 		perf_missing_features.write_backward = true;
1931 		pr_debug2("switching off write_backward\n");
1932 		goto out_close;
1933 	} else if (!perf_missing_features.clockid_wrong && evsel->core.attr.use_clockid) {
1934 		perf_missing_features.clockid_wrong = true;
1935 		pr_debug2("switching off clockid\n");
1936 		goto fallback_missing_features;
1937 	} else if (!perf_missing_features.clockid && evsel->core.attr.use_clockid) {
1938 		perf_missing_features.clockid = true;
1939 		pr_debug2("switching off use_clockid\n");
1940 		goto fallback_missing_features;
1941 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1942 		perf_missing_features.cloexec = true;
1943 		pr_debug2("switching off cloexec flag\n");
1944 		goto fallback_missing_features;
1945 	} else if (!perf_missing_features.mmap2 && evsel->core.attr.mmap2) {
1946 		perf_missing_features.mmap2 = true;
1947 		pr_debug2("switching off mmap2\n");
1948 		goto fallback_missing_features;
1949 	} else if (!perf_missing_features.exclude_guest &&
1950 		   (evsel->core.attr.exclude_guest || evsel->core.attr.exclude_host)) {
1951 		perf_missing_features.exclude_guest = true;
1952 		pr_debug2("switching off exclude_guest, exclude_host\n");
1953 		goto fallback_missing_features;
1954 	} else if (!perf_missing_features.sample_id_all) {
1955 		perf_missing_features.sample_id_all = true;
1956 		pr_debug2("switching off sample_id_all\n");
1957 		goto retry_sample_id;
1958 	} else if (!perf_missing_features.lbr_flags &&
1959 			(evsel->core.attr.branch_sample_type &
1960 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1961 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1962 		perf_missing_features.lbr_flags = true;
1963 		pr_debug2("switching off branch sample type no (cycles/flags)\n");
1964 		goto fallback_missing_features;
1965 	} else if (!perf_missing_features.group_read &&
1966 		    evsel->core.attr.inherit &&
1967 		   (evsel->core.attr.read_format & PERF_FORMAT_GROUP) &&
1968 		   perf_evsel__is_group_leader(evsel)) {
1969 		perf_missing_features.group_read = true;
1970 		pr_debug2("switching off group read\n");
1971 		goto fallback_missing_features;
1972 	}
1973 out_close:
1974 	if (err)
1975 		threads->err_thread = thread;
1976 
1977 	do {
1978 		while (--thread >= 0) {
1979 			close(FD(evsel, cpu, thread));
1980 			FD(evsel, cpu, thread) = -1;
1981 		}
1982 		thread = nthreads;
1983 	} while (--cpu >= 0);
1984 	return err;
1985 }
1986 
1987 void evsel__close(struct evsel *evsel)
1988 {
1989 	perf_evsel__close(&evsel->core);
1990 	perf_evsel__free_id(evsel);
1991 }
1992 
1993 int perf_evsel__open_per_cpu(struct evsel *evsel,
1994 			     struct perf_cpu_map *cpus)
1995 {
1996 	return evsel__open(evsel, cpus, NULL);
1997 }
1998 
1999 int perf_evsel__open_per_thread(struct evsel *evsel,
2000 				struct perf_thread_map *threads)
2001 {
2002 	return evsel__open(evsel, NULL, threads);
2003 }
2004 
2005 static int perf_evsel__parse_id_sample(const struct evsel *evsel,
2006 				       const union perf_event *event,
2007 				       struct perf_sample *sample)
2008 {
2009 	u64 type = evsel->core.attr.sample_type;
2010 	const u64 *array = event->sample.array;
2011 	bool swapped = evsel->needs_swap;
2012 	union u64_swap u;
2013 
2014 	array += ((event->header.size -
2015 		   sizeof(event->header)) / sizeof(u64)) - 1;
2016 
2017 	if (type & PERF_SAMPLE_IDENTIFIER) {
2018 		sample->id = *array;
2019 		array--;
2020 	}
2021 
2022 	if (type & PERF_SAMPLE_CPU) {
2023 		u.val64 = *array;
2024 		if (swapped) {
2025 			/* undo swap of u64, then swap on individual u32s */
2026 			u.val64 = bswap_64(u.val64);
2027 			u.val32[0] = bswap_32(u.val32[0]);
2028 		}
2029 
2030 		sample->cpu = u.val32[0];
2031 		array--;
2032 	}
2033 
2034 	if (type & PERF_SAMPLE_STREAM_ID) {
2035 		sample->stream_id = *array;
2036 		array--;
2037 	}
2038 
2039 	if (type & PERF_SAMPLE_ID) {
2040 		sample->id = *array;
2041 		array--;
2042 	}
2043 
2044 	if (type & PERF_SAMPLE_TIME) {
2045 		sample->time = *array;
2046 		array--;
2047 	}
2048 
2049 	if (type & PERF_SAMPLE_TID) {
2050 		u.val64 = *array;
2051 		if (swapped) {
2052 			/* undo swap of u64, then swap on individual u32s */
2053 			u.val64 = bswap_64(u.val64);
2054 			u.val32[0] = bswap_32(u.val32[0]);
2055 			u.val32[1] = bswap_32(u.val32[1]);
2056 		}
2057 
2058 		sample->pid = u.val32[0];
2059 		sample->tid = u.val32[1];
2060 		array--;
2061 	}
2062 
2063 	return 0;
2064 }
2065 
2066 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2067 			    u64 size)
2068 {
2069 	return size > max_size || offset + size > endp;
2070 }
2071 
2072 #define OVERFLOW_CHECK(offset, size, max_size)				\
2073 	do {								\
2074 		if (overflow(endp, (max_size), (offset), (size)))	\
2075 			return -EFAULT;					\
2076 	} while (0)
2077 
2078 #define OVERFLOW_CHECK_u64(offset) \
2079 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2080 
2081 static int
2082 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2083 {
2084 	/*
2085 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2086 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2087 	 * check the format does not go past the end of the event.
2088 	 */
2089 	if (sample_size + sizeof(event->header) > event->header.size)
2090 		return -EFAULT;
2091 
2092 	return 0;
2093 }
2094 
2095 int perf_evsel__parse_sample(struct evsel *evsel, union perf_event *event,
2096 			     struct perf_sample *data)
2097 {
2098 	u64 type = evsel->core.attr.sample_type;
2099 	bool swapped = evsel->needs_swap;
2100 	const u64 *array;
2101 	u16 max_size = event->header.size;
2102 	const void *endp = (void *)event + max_size;
2103 	u64 sz;
2104 
2105 	/*
2106 	 * used for cross-endian analysis. See git commit 65014ab3
2107 	 * for why this goofiness is needed.
2108 	 */
2109 	union u64_swap u;
2110 
2111 	memset(data, 0, sizeof(*data));
2112 	data->cpu = data->pid = data->tid = -1;
2113 	data->stream_id = data->id = data->time = -1ULL;
2114 	data->period = evsel->core.attr.sample_period;
2115 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2116 	data->misc    = event->header.misc;
2117 	data->id = -1ULL;
2118 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2119 
2120 	if (event->header.type != PERF_RECORD_SAMPLE) {
2121 		if (!evsel->core.attr.sample_id_all)
2122 			return 0;
2123 		return perf_evsel__parse_id_sample(evsel, event, data);
2124 	}
2125 
2126 	array = event->sample.array;
2127 
2128 	if (perf_event__check_size(event, evsel->sample_size))
2129 		return -EFAULT;
2130 
2131 	if (type & PERF_SAMPLE_IDENTIFIER) {
2132 		data->id = *array;
2133 		array++;
2134 	}
2135 
2136 	if (type & PERF_SAMPLE_IP) {
2137 		data->ip = *array;
2138 		array++;
2139 	}
2140 
2141 	if (type & PERF_SAMPLE_TID) {
2142 		u.val64 = *array;
2143 		if (swapped) {
2144 			/* undo swap of u64, then swap on individual u32s */
2145 			u.val64 = bswap_64(u.val64);
2146 			u.val32[0] = bswap_32(u.val32[0]);
2147 			u.val32[1] = bswap_32(u.val32[1]);
2148 		}
2149 
2150 		data->pid = u.val32[0];
2151 		data->tid = u.val32[1];
2152 		array++;
2153 	}
2154 
2155 	if (type & PERF_SAMPLE_TIME) {
2156 		data->time = *array;
2157 		array++;
2158 	}
2159 
2160 	if (type & PERF_SAMPLE_ADDR) {
2161 		data->addr = *array;
2162 		array++;
2163 	}
2164 
2165 	if (type & PERF_SAMPLE_ID) {
2166 		data->id = *array;
2167 		array++;
2168 	}
2169 
2170 	if (type & PERF_SAMPLE_STREAM_ID) {
2171 		data->stream_id = *array;
2172 		array++;
2173 	}
2174 
2175 	if (type & PERF_SAMPLE_CPU) {
2176 
2177 		u.val64 = *array;
2178 		if (swapped) {
2179 			/* undo swap of u64, then swap on individual u32s */
2180 			u.val64 = bswap_64(u.val64);
2181 			u.val32[0] = bswap_32(u.val32[0]);
2182 		}
2183 
2184 		data->cpu = u.val32[0];
2185 		array++;
2186 	}
2187 
2188 	if (type & PERF_SAMPLE_PERIOD) {
2189 		data->period = *array;
2190 		array++;
2191 	}
2192 
2193 	if (type & PERF_SAMPLE_READ) {
2194 		u64 read_format = evsel->core.attr.read_format;
2195 
2196 		OVERFLOW_CHECK_u64(array);
2197 		if (read_format & PERF_FORMAT_GROUP)
2198 			data->read.group.nr = *array;
2199 		else
2200 			data->read.one.value = *array;
2201 
2202 		array++;
2203 
2204 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2205 			OVERFLOW_CHECK_u64(array);
2206 			data->read.time_enabled = *array;
2207 			array++;
2208 		}
2209 
2210 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2211 			OVERFLOW_CHECK_u64(array);
2212 			data->read.time_running = *array;
2213 			array++;
2214 		}
2215 
2216 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2217 		if (read_format & PERF_FORMAT_GROUP) {
2218 			const u64 max_group_nr = UINT64_MAX /
2219 					sizeof(struct sample_read_value);
2220 
2221 			if (data->read.group.nr > max_group_nr)
2222 				return -EFAULT;
2223 			sz = data->read.group.nr *
2224 			     sizeof(struct sample_read_value);
2225 			OVERFLOW_CHECK(array, sz, max_size);
2226 			data->read.group.values =
2227 					(struct sample_read_value *)array;
2228 			array = (void *)array + sz;
2229 		} else {
2230 			OVERFLOW_CHECK_u64(array);
2231 			data->read.one.id = *array;
2232 			array++;
2233 		}
2234 	}
2235 
2236 	if (evsel__has_callchain(evsel)) {
2237 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2238 
2239 		OVERFLOW_CHECK_u64(array);
2240 		data->callchain = (struct ip_callchain *)array++;
2241 		if (data->callchain->nr > max_callchain_nr)
2242 			return -EFAULT;
2243 		sz = data->callchain->nr * sizeof(u64);
2244 		OVERFLOW_CHECK(array, sz, max_size);
2245 		array = (void *)array + sz;
2246 	}
2247 
2248 	if (type & PERF_SAMPLE_RAW) {
2249 		OVERFLOW_CHECK_u64(array);
2250 		u.val64 = *array;
2251 
2252 		/*
2253 		 * Undo swap of u64, then swap on individual u32s,
2254 		 * get the size of the raw area and undo all of the
2255 		 * swap. The pevent interface handles endianity by
2256 		 * itself.
2257 		 */
2258 		if (swapped) {
2259 			u.val64 = bswap_64(u.val64);
2260 			u.val32[0] = bswap_32(u.val32[0]);
2261 			u.val32[1] = bswap_32(u.val32[1]);
2262 		}
2263 		data->raw_size = u.val32[0];
2264 
2265 		/*
2266 		 * The raw data is aligned on 64bits including the
2267 		 * u32 size, so it's safe to use mem_bswap_64.
2268 		 */
2269 		if (swapped)
2270 			mem_bswap_64((void *) array, data->raw_size);
2271 
2272 		array = (void *)array + sizeof(u32);
2273 
2274 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2275 		data->raw_data = (void *)array;
2276 		array = (void *)array + data->raw_size;
2277 	}
2278 
2279 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2280 		const u64 max_branch_nr = UINT64_MAX /
2281 					  sizeof(struct branch_entry);
2282 
2283 		OVERFLOW_CHECK_u64(array);
2284 		data->branch_stack = (struct branch_stack *)array++;
2285 
2286 		if (data->branch_stack->nr > max_branch_nr)
2287 			return -EFAULT;
2288 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2289 		OVERFLOW_CHECK(array, sz, max_size);
2290 		array = (void *)array + sz;
2291 	}
2292 
2293 	if (type & PERF_SAMPLE_REGS_USER) {
2294 		OVERFLOW_CHECK_u64(array);
2295 		data->user_regs.abi = *array;
2296 		array++;
2297 
2298 		if (data->user_regs.abi) {
2299 			u64 mask = evsel->core.attr.sample_regs_user;
2300 
2301 			sz = hweight64(mask) * sizeof(u64);
2302 			OVERFLOW_CHECK(array, sz, max_size);
2303 			data->user_regs.mask = mask;
2304 			data->user_regs.regs = (u64 *)array;
2305 			array = (void *)array + sz;
2306 		}
2307 	}
2308 
2309 	if (type & PERF_SAMPLE_STACK_USER) {
2310 		OVERFLOW_CHECK_u64(array);
2311 		sz = *array++;
2312 
2313 		data->user_stack.offset = ((char *)(array - 1)
2314 					  - (char *) event);
2315 
2316 		if (!sz) {
2317 			data->user_stack.size = 0;
2318 		} else {
2319 			OVERFLOW_CHECK(array, sz, max_size);
2320 			data->user_stack.data = (char *)array;
2321 			array = (void *)array + sz;
2322 			OVERFLOW_CHECK_u64(array);
2323 			data->user_stack.size = *array++;
2324 			if (WARN_ONCE(data->user_stack.size > sz,
2325 				      "user stack dump failure\n"))
2326 				return -EFAULT;
2327 		}
2328 	}
2329 
2330 	if (type & PERF_SAMPLE_WEIGHT) {
2331 		OVERFLOW_CHECK_u64(array);
2332 		data->weight = *array;
2333 		array++;
2334 	}
2335 
2336 	if (type & PERF_SAMPLE_DATA_SRC) {
2337 		OVERFLOW_CHECK_u64(array);
2338 		data->data_src = *array;
2339 		array++;
2340 	}
2341 
2342 	if (type & PERF_SAMPLE_TRANSACTION) {
2343 		OVERFLOW_CHECK_u64(array);
2344 		data->transaction = *array;
2345 		array++;
2346 	}
2347 
2348 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2349 	if (type & PERF_SAMPLE_REGS_INTR) {
2350 		OVERFLOW_CHECK_u64(array);
2351 		data->intr_regs.abi = *array;
2352 		array++;
2353 
2354 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2355 			u64 mask = evsel->core.attr.sample_regs_intr;
2356 
2357 			sz = hweight64(mask) * sizeof(u64);
2358 			OVERFLOW_CHECK(array, sz, max_size);
2359 			data->intr_regs.mask = mask;
2360 			data->intr_regs.regs = (u64 *)array;
2361 			array = (void *)array + sz;
2362 		}
2363 	}
2364 
2365 	data->phys_addr = 0;
2366 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2367 		data->phys_addr = *array;
2368 		array++;
2369 	}
2370 
2371 	return 0;
2372 }
2373 
2374 int perf_evsel__parse_sample_timestamp(struct evsel *evsel,
2375 				       union perf_event *event,
2376 				       u64 *timestamp)
2377 {
2378 	u64 type = evsel->core.attr.sample_type;
2379 	const u64 *array;
2380 
2381 	if (!(type & PERF_SAMPLE_TIME))
2382 		return -1;
2383 
2384 	if (event->header.type != PERF_RECORD_SAMPLE) {
2385 		struct perf_sample data = {
2386 			.time = -1ULL,
2387 		};
2388 
2389 		if (!evsel->core.attr.sample_id_all)
2390 			return -1;
2391 		if (perf_evsel__parse_id_sample(evsel, event, &data))
2392 			return -1;
2393 
2394 		*timestamp = data.time;
2395 		return 0;
2396 	}
2397 
2398 	array = event->sample.array;
2399 
2400 	if (perf_event__check_size(event, evsel->sample_size))
2401 		return -EFAULT;
2402 
2403 	if (type & PERF_SAMPLE_IDENTIFIER)
2404 		array++;
2405 
2406 	if (type & PERF_SAMPLE_IP)
2407 		array++;
2408 
2409 	if (type & PERF_SAMPLE_TID)
2410 		array++;
2411 
2412 	if (type & PERF_SAMPLE_TIME)
2413 		*timestamp = *array;
2414 
2415 	return 0;
2416 }
2417 
2418 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2419 				     u64 read_format)
2420 {
2421 	size_t sz, result = sizeof(struct sample_event);
2422 
2423 	if (type & PERF_SAMPLE_IDENTIFIER)
2424 		result += sizeof(u64);
2425 
2426 	if (type & PERF_SAMPLE_IP)
2427 		result += sizeof(u64);
2428 
2429 	if (type & PERF_SAMPLE_TID)
2430 		result += sizeof(u64);
2431 
2432 	if (type & PERF_SAMPLE_TIME)
2433 		result += sizeof(u64);
2434 
2435 	if (type & PERF_SAMPLE_ADDR)
2436 		result += sizeof(u64);
2437 
2438 	if (type & PERF_SAMPLE_ID)
2439 		result += sizeof(u64);
2440 
2441 	if (type & PERF_SAMPLE_STREAM_ID)
2442 		result += sizeof(u64);
2443 
2444 	if (type & PERF_SAMPLE_CPU)
2445 		result += sizeof(u64);
2446 
2447 	if (type & PERF_SAMPLE_PERIOD)
2448 		result += sizeof(u64);
2449 
2450 	if (type & PERF_SAMPLE_READ) {
2451 		result += sizeof(u64);
2452 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2453 			result += sizeof(u64);
2454 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2455 			result += sizeof(u64);
2456 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2457 		if (read_format & PERF_FORMAT_GROUP) {
2458 			sz = sample->read.group.nr *
2459 			     sizeof(struct sample_read_value);
2460 			result += sz;
2461 		} else {
2462 			result += sizeof(u64);
2463 		}
2464 	}
2465 
2466 	if (type & PERF_SAMPLE_CALLCHAIN) {
2467 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2468 		result += sz;
2469 	}
2470 
2471 	if (type & PERF_SAMPLE_RAW) {
2472 		result += sizeof(u32);
2473 		result += sample->raw_size;
2474 	}
2475 
2476 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2477 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2478 		sz += sizeof(u64);
2479 		result += sz;
2480 	}
2481 
2482 	if (type & PERF_SAMPLE_REGS_USER) {
2483 		if (sample->user_regs.abi) {
2484 			result += sizeof(u64);
2485 			sz = hweight64(sample->user_regs.mask) * sizeof(u64);
2486 			result += sz;
2487 		} else {
2488 			result += sizeof(u64);
2489 		}
2490 	}
2491 
2492 	if (type & PERF_SAMPLE_STACK_USER) {
2493 		sz = sample->user_stack.size;
2494 		result += sizeof(u64);
2495 		if (sz) {
2496 			result += sz;
2497 			result += sizeof(u64);
2498 		}
2499 	}
2500 
2501 	if (type & PERF_SAMPLE_WEIGHT)
2502 		result += sizeof(u64);
2503 
2504 	if (type & PERF_SAMPLE_DATA_SRC)
2505 		result += sizeof(u64);
2506 
2507 	if (type & PERF_SAMPLE_TRANSACTION)
2508 		result += sizeof(u64);
2509 
2510 	if (type & PERF_SAMPLE_REGS_INTR) {
2511 		if (sample->intr_regs.abi) {
2512 			result += sizeof(u64);
2513 			sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
2514 			result += sz;
2515 		} else {
2516 			result += sizeof(u64);
2517 		}
2518 	}
2519 
2520 	if (type & PERF_SAMPLE_PHYS_ADDR)
2521 		result += sizeof(u64);
2522 
2523 	return result;
2524 }
2525 
2526 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2527 				  u64 read_format,
2528 				  const struct perf_sample *sample)
2529 {
2530 	u64 *array;
2531 	size_t sz;
2532 	/*
2533 	 * used for cross-endian analysis. See git commit 65014ab3
2534 	 * for why this goofiness is needed.
2535 	 */
2536 	union u64_swap u;
2537 
2538 	array = event->sample.array;
2539 
2540 	if (type & PERF_SAMPLE_IDENTIFIER) {
2541 		*array = sample->id;
2542 		array++;
2543 	}
2544 
2545 	if (type & PERF_SAMPLE_IP) {
2546 		*array = sample->ip;
2547 		array++;
2548 	}
2549 
2550 	if (type & PERF_SAMPLE_TID) {
2551 		u.val32[0] = sample->pid;
2552 		u.val32[1] = sample->tid;
2553 		*array = u.val64;
2554 		array++;
2555 	}
2556 
2557 	if (type & PERF_SAMPLE_TIME) {
2558 		*array = sample->time;
2559 		array++;
2560 	}
2561 
2562 	if (type & PERF_SAMPLE_ADDR) {
2563 		*array = sample->addr;
2564 		array++;
2565 	}
2566 
2567 	if (type & PERF_SAMPLE_ID) {
2568 		*array = sample->id;
2569 		array++;
2570 	}
2571 
2572 	if (type & PERF_SAMPLE_STREAM_ID) {
2573 		*array = sample->stream_id;
2574 		array++;
2575 	}
2576 
2577 	if (type & PERF_SAMPLE_CPU) {
2578 		u.val32[0] = sample->cpu;
2579 		u.val32[1] = 0;
2580 		*array = u.val64;
2581 		array++;
2582 	}
2583 
2584 	if (type & PERF_SAMPLE_PERIOD) {
2585 		*array = sample->period;
2586 		array++;
2587 	}
2588 
2589 	if (type & PERF_SAMPLE_READ) {
2590 		if (read_format & PERF_FORMAT_GROUP)
2591 			*array = sample->read.group.nr;
2592 		else
2593 			*array = sample->read.one.value;
2594 		array++;
2595 
2596 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2597 			*array = sample->read.time_enabled;
2598 			array++;
2599 		}
2600 
2601 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2602 			*array = sample->read.time_running;
2603 			array++;
2604 		}
2605 
2606 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2607 		if (read_format & PERF_FORMAT_GROUP) {
2608 			sz = sample->read.group.nr *
2609 			     sizeof(struct sample_read_value);
2610 			memcpy(array, sample->read.group.values, sz);
2611 			array = (void *)array + sz;
2612 		} else {
2613 			*array = sample->read.one.id;
2614 			array++;
2615 		}
2616 	}
2617 
2618 	if (type & PERF_SAMPLE_CALLCHAIN) {
2619 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2620 		memcpy(array, sample->callchain, sz);
2621 		array = (void *)array + sz;
2622 	}
2623 
2624 	if (type & PERF_SAMPLE_RAW) {
2625 		u.val32[0] = sample->raw_size;
2626 		*array = u.val64;
2627 		array = (void *)array + sizeof(u32);
2628 
2629 		memcpy(array, sample->raw_data, sample->raw_size);
2630 		array = (void *)array + sample->raw_size;
2631 	}
2632 
2633 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2634 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2635 		sz += sizeof(u64);
2636 		memcpy(array, sample->branch_stack, sz);
2637 		array = (void *)array + sz;
2638 	}
2639 
2640 	if (type & PERF_SAMPLE_REGS_USER) {
2641 		if (sample->user_regs.abi) {
2642 			*array++ = sample->user_regs.abi;
2643 			sz = hweight64(sample->user_regs.mask) * sizeof(u64);
2644 			memcpy(array, sample->user_regs.regs, sz);
2645 			array = (void *)array + sz;
2646 		} else {
2647 			*array++ = 0;
2648 		}
2649 	}
2650 
2651 	if (type & PERF_SAMPLE_STACK_USER) {
2652 		sz = sample->user_stack.size;
2653 		*array++ = sz;
2654 		if (sz) {
2655 			memcpy(array, sample->user_stack.data, sz);
2656 			array = (void *)array + sz;
2657 			*array++ = sz;
2658 		}
2659 	}
2660 
2661 	if (type & PERF_SAMPLE_WEIGHT) {
2662 		*array = sample->weight;
2663 		array++;
2664 	}
2665 
2666 	if (type & PERF_SAMPLE_DATA_SRC) {
2667 		*array = sample->data_src;
2668 		array++;
2669 	}
2670 
2671 	if (type & PERF_SAMPLE_TRANSACTION) {
2672 		*array = sample->transaction;
2673 		array++;
2674 	}
2675 
2676 	if (type & PERF_SAMPLE_REGS_INTR) {
2677 		if (sample->intr_regs.abi) {
2678 			*array++ = sample->intr_regs.abi;
2679 			sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
2680 			memcpy(array, sample->intr_regs.regs, sz);
2681 			array = (void *)array + sz;
2682 		} else {
2683 			*array++ = 0;
2684 		}
2685 	}
2686 
2687 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2688 		*array = sample->phys_addr;
2689 		array++;
2690 	}
2691 
2692 	return 0;
2693 }
2694 
2695 struct tep_format_field *perf_evsel__field(struct evsel *evsel, const char *name)
2696 {
2697 	return tep_find_field(evsel->tp_format, name);
2698 }
2699 
2700 void *perf_evsel__rawptr(struct evsel *evsel, struct perf_sample *sample,
2701 			 const char *name)
2702 {
2703 	struct tep_format_field *field = perf_evsel__field(evsel, name);
2704 	int offset;
2705 
2706 	if (!field)
2707 		return NULL;
2708 
2709 	offset = field->offset;
2710 
2711 	if (field->flags & TEP_FIELD_IS_DYNAMIC) {
2712 		offset = *(int *)(sample->raw_data + field->offset);
2713 		offset &= 0xffff;
2714 	}
2715 
2716 	return sample->raw_data + offset;
2717 }
2718 
2719 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample,
2720 			 bool needs_swap)
2721 {
2722 	u64 value;
2723 	void *ptr = sample->raw_data + field->offset;
2724 
2725 	switch (field->size) {
2726 	case 1:
2727 		return *(u8 *)ptr;
2728 	case 2:
2729 		value = *(u16 *)ptr;
2730 		break;
2731 	case 4:
2732 		value = *(u32 *)ptr;
2733 		break;
2734 	case 8:
2735 		memcpy(&value, ptr, sizeof(u64));
2736 		break;
2737 	default:
2738 		return 0;
2739 	}
2740 
2741 	if (!needs_swap)
2742 		return value;
2743 
2744 	switch (field->size) {
2745 	case 2:
2746 		return bswap_16(value);
2747 	case 4:
2748 		return bswap_32(value);
2749 	case 8:
2750 		return bswap_64(value);
2751 	default:
2752 		return 0;
2753 	}
2754 
2755 	return 0;
2756 }
2757 
2758 u64 perf_evsel__intval(struct evsel *evsel, struct perf_sample *sample,
2759 		       const char *name)
2760 {
2761 	struct tep_format_field *field = perf_evsel__field(evsel, name);
2762 
2763 	if (!field)
2764 		return 0;
2765 
2766 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2767 }
2768 
2769 bool perf_evsel__fallback(struct evsel *evsel, int err,
2770 			  char *msg, size_t msgsize)
2771 {
2772 	int paranoid;
2773 
2774 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2775 	    evsel->core.attr.type   == PERF_TYPE_HARDWARE &&
2776 	    evsel->core.attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2777 		/*
2778 		 * If it's cycles then fall back to hrtimer based
2779 		 * cpu-clock-tick sw counter, which is always available even if
2780 		 * no PMU support.
2781 		 *
2782 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2783 		 * b0a873e).
2784 		 */
2785 		scnprintf(msg, msgsize, "%s",
2786 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2787 
2788 		evsel->core.attr.type   = PERF_TYPE_SOFTWARE;
2789 		evsel->core.attr.config = PERF_COUNT_SW_CPU_CLOCK;
2790 
2791 		zfree(&evsel->name);
2792 		return true;
2793 	} else if (err == EACCES && !evsel->core.attr.exclude_kernel &&
2794 		   (paranoid = perf_event_paranoid()) > 1) {
2795 		const char *name = perf_evsel__name(evsel);
2796 		char *new_name;
2797 		const char *sep = ":";
2798 
2799 		/* Is there already the separator in the name. */
2800 		if (strchr(name, '/') ||
2801 		    strchr(name, ':'))
2802 			sep = "";
2803 
2804 		if (asprintf(&new_name, "%s%su", name, sep) < 0)
2805 			return false;
2806 
2807 		if (evsel->name)
2808 			free(evsel->name);
2809 		evsel->name = new_name;
2810 		scnprintf(msg, msgsize,
2811 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2812 		evsel->core.attr.exclude_kernel = 1;
2813 
2814 		return true;
2815 	}
2816 
2817 	return false;
2818 }
2819 
2820 static bool find_process(const char *name)
2821 {
2822 	size_t len = strlen(name);
2823 	DIR *dir;
2824 	struct dirent *d;
2825 	int ret = -1;
2826 
2827 	dir = opendir(procfs__mountpoint());
2828 	if (!dir)
2829 		return false;
2830 
2831 	/* Walk through the directory. */
2832 	while (ret && (d = readdir(dir)) != NULL) {
2833 		char path[PATH_MAX];
2834 		char *data;
2835 		size_t size;
2836 
2837 		if ((d->d_type != DT_DIR) ||
2838 		     !strcmp(".", d->d_name) ||
2839 		     !strcmp("..", d->d_name))
2840 			continue;
2841 
2842 		scnprintf(path, sizeof(path), "%s/%s/comm",
2843 			  procfs__mountpoint(), d->d_name);
2844 
2845 		if (filename__read_str(path, &data, &size))
2846 			continue;
2847 
2848 		ret = strncmp(name, data, len);
2849 		free(data);
2850 	}
2851 
2852 	closedir(dir);
2853 	return ret ? false : true;
2854 }
2855 
2856 int perf_evsel__open_strerror(struct evsel *evsel, struct target *target,
2857 			      int err, char *msg, size_t size)
2858 {
2859 	char sbuf[STRERR_BUFSIZE];
2860 	int printed = 0;
2861 
2862 	switch (err) {
2863 	case EPERM:
2864 	case EACCES:
2865 		if (err == EPERM)
2866 			printed = scnprintf(msg, size,
2867 				"No permission to enable %s event.\n\n",
2868 				perf_evsel__name(evsel));
2869 
2870 		return scnprintf(msg + printed, size - printed,
2871 		 "You may not have permission to collect %sstats.\n\n"
2872 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2873 		 "which controls use of the performance events system by\n"
2874 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2875 		 "The current value is %d:\n\n"
2876 		 "  -1: Allow use of (almost) all events by all users\n"
2877 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2878 		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2879 		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2880 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2881 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2882 		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2883 		 "	kernel.perf_event_paranoid = -1\n" ,
2884 				 target->system_wide ? "system-wide " : "",
2885 				 perf_event_paranoid());
2886 	case ENOENT:
2887 		return scnprintf(msg, size, "The %s event is not supported.",
2888 				 perf_evsel__name(evsel));
2889 	case EMFILE:
2890 		return scnprintf(msg, size, "%s",
2891 			 "Too many events are opened.\n"
2892 			 "Probably the maximum number of open file descriptors has been reached.\n"
2893 			 "Hint: Try again after reducing the number of events.\n"
2894 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2895 	case ENOMEM:
2896 		if (evsel__has_callchain(evsel) &&
2897 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2898 			return scnprintf(msg, size,
2899 					 "Not enough memory to setup event with callchain.\n"
2900 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2901 					 "Hint: Current value: %d", sysctl__max_stack());
2902 		break;
2903 	case ENODEV:
2904 		if (target->cpu_list)
2905 			return scnprintf(msg, size, "%s",
2906 	 "No such device - did you specify an out-of-range profile CPU?");
2907 		break;
2908 	case EOPNOTSUPP:
2909 		if (evsel->core.attr.sample_period != 0)
2910 			return scnprintf(msg, size,
2911 	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2912 					 perf_evsel__name(evsel));
2913 		if (evsel->core.attr.precise_ip)
2914 			return scnprintf(msg, size, "%s",
2915 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2916 #if defined(__i386__) || defined(__x86_64__)
2917 		if (evsel->core.attr.type == PERF_TYPE_HARDWARE)
2918 			return scnprintf(msg, size, "%s",
2919 	"No hardware sampling interrupt available.\n");
2920 #endif
2921 		break;
2922 	case EBUSY:
2923 		if (find_process("oprofiled"))
2924 			return scnprintf(msg, size,
2925 	"The PMU counters are busy/taken by another profiler.\n"
2926 	"We found oprofile daemon running, please stop it and try again.");
2927 		break;
2928 	case EINVAL:
2929 		if (evsel->core.attr.write_backward && perf_missing_features.write_backward)
2930 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2931 		if (perf_missing_features.clockid)
2932 			return scnprintf(msg, size, "clockid feature not supported.");
2933 		if (perf_missing_features.clockid_wrong)
2934 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2935 		if (perf_missing_features.aux_output)
2936 			return scnprintf(msg, size, "The 'aux_output' feature is not supported, update the kernel.");
2937 		break;
2938 	default:
2939 		break;
2940 	}
2941 
2942 	return scnprintf(msg, size,
2943 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2944 	"/bin/dmesg | grep -i perf may provide additional information.\n",
2945 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2946 			 perf_evsel__name(evsel));
2947 }
2948 
2949 struct perf_env *perf_evsel__env(struct evsel *evsel)
2950 {
2951 	if (evsel && evsel->evlist)
2952 		return evsel->evlist->env;
2953 	return NULL;
2954 }
2955 
2956 static int store_evsel_ids(struct evsel *evsel, struct evlist *evlist)
2957 {
2958 	int cpu, thread;
2959 
2960 	for (cpu = 0; cpu < xyarray__max_x(evsel->core.fd); cpu++) {
2961 		for (thread = 0; thread < xyarray__max_y(evsel->core.fd);
2962 		     thread++) {
2963 			int fd = FD(evsel, cpu, thread);
2964 
2965 			if (perf_evlist__id_add_fd(evlist, evsel,
2966 						   cpu, thread, fd) < 0)
2967 				return -1;
2968 		}
2969 	}
2970 
2971 	return 0;
2972 }
2973 
2974 int perf_evsel__store_ids(struct evsel *evsel, struct evlist *evlist)
2975 {
2976 	struct perf_cpu_map *cpus = evsel->core.cpus;
2977 	struct perf_thread_map *threads = evsel->core.threads;
2978 
2979 	if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr))
2980 		return -ENOMEM;
2981 
2982 	return store_evsel_ids(evsel, evlist);
2983 }
2984