xref: /openbmc/linux/tools/perf/util/evsel.c (revision 711aab1d)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "util/parse-branch-options.h"
40 
41 #include "sane_ctype.h"
42 
43 static struct {
44 	bool sample_id_all;
45 	bool exclude_guest;
46 	bool mmap2;
47 	bool cloexec;
48 	bool clockid;
49 	bool clockid_wrong;
50 	bool lbr_flags;
51 	bool write_backward;
52 	bool group_read;
53 } perf_missing_features;
54 
55 static clockid_t clockid;
56 
57 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
58 {
59 	return 0;
60 }
61 
62 void __weak test_attr__ready(void) { }
63 
64 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
65 {
66 }
67 
68 static struct {
69 	size_t	size;
70 	int	(*init)(struct perf_evsel *evsel);
71 	void	(*fini)(struct perf_evsel *evsel);
72 } perf_evsel__object = {
73 	.size = sizeof(struct perf_evsel),
74 	.init = perf_evsel__no_extra_init,
75 	.fini = perf_evsel__no_extra_fini,
76 };
77 
78 int perf_evsel__object_config(size_t object_size,
79 			      int (*init)(struct perf_evsel *evsel),
80 			      void (*fini)(struct perf_evsel *evsel))
81 {
82 
83 	if (object_size == 0)
84 		goto set_methods;
85 
86 	if (perf_evsel__object.size > object_size)
87 		return -EINVAL;
88 
89 	perf_evsel__object.size = object_size;
90 
91 set_methods:
92 	if (init != NULL)
93 		perf_evsel__object.init = init;
94 
95 	if (fini != NULL)
96 		perf_evsel__object.fini = fini;
97 
98 	return 0;
99 }
100 
101 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
102 
103 int __perf_evsel__sample_size(u64 sample_type)
104 {
105 	u64 mask = sample_type & PERF_SAMPLE_MASK;
106 	int size = 0;
107 	int i;
108 
109 	for (i = 0; i < 64; i++) {
110 		if (mask & (1ULL << i))
111 			size++;
112 	}
113 
114 	size *= sizeof(u64);
115 
116 	return size;
117 }
118 
119 /**
120  * __perf_evsel__calc_id_pos - calculate id_pos.
121  * @sample_type: sample type
122  *
123  * This function returns the position of the event id (PERF_SAMPLE_ID or
124  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
125  * sample_event.
126  */
127 static int __perf_evsel__calc_id_pos(u64 sample_type)
128 {
129 	int idx = 0;
130 
131 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
132 		return 0;
133 
134 	if (!(sample_type & PERF_SAMPLE_ID))
135 		return -1;
136 
137 	if (sample_type & PERF_SAMPLE_IP)
138 		idx += 1;
139 
140 	if (sample_type & PERF_SAMPLE_TID)
141 		idx += 1;
142 
143 	if (sample_type & PERF_SAMPLE_TIME)
144 		idx += 1;
145 
146 	if (sample_type & PERF_SAMPLE_ADDR)
147 		idx += 1;
148 
149 	return idx;
150 }
151 
152 /**
153  * __perf_evsel__calc_is_pos - calculate is_pos.
154  * @sample_type: sample type
155  *
156  * This function returns the position (counting backwards) of the event id
157  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
158  * sample_id_all is used there is an id sample appended to non-sample events.
159  */
160 static int __perf_evsel__calc_is_pos(u64 sample_type)
161 {
162 	int idx = 1;
163 
164 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
165 		return 1;
166 
167 	if (!(sample_type & PERF_SAMPLE_ID))
168 		return -1;
169 
170 	if (sample_type & PERF_SAMPLE_CPU)
171 		idx += 1;
172 
173 	if (sample_type & PERF_SAMPLE_STREAM_ID)
174 		idx += 1;
175 
176 	return idx;
177 }
178 
179 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
180 {
181 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
182 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
183 }
184 
185 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
186 				  enum perf_event_sample_format bit)
187 {
188 	if (!(evsel->attr.sample_type & bit)) {
189 		evsel->attr.sample_type |= bit;
190 		evsel->sample_size += sizeof(u64);
191 		perf_evsel__calc_id_pos(evsel);
192 	}
193 }
194 
195 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
196 				    enum perf_event_sample_format bit)
197 {
198 	if (evsel->attr.sample_type & bit) {
199 		evsel->attr.sample_type &= ~bit;
200 		evsel->sample_size -= sizeof(u64);
201 		perf_evsel__calc_id_pos(evsel);
202 	}
203 }
204 
205 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
206 			       bool can_sample_identifier)
207 {
208 	if (can_sample_identifier) {
209 		perf_evsel__reset_sample_bit(evsel, ID);
210 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
211 	} else {
212 		perf_evsel__set_sample_bit(evsel, ID);
213 	}
214 	evsel->attr.read_format |= PERF_FORMAT_ID;
215 }
216 
217 /**
218  * perf_evsel__is_function_event - Return whether given evsel is a function
219  * trace event
220  *
221  * @evsel - evsel selector to be tested
222  *
223  * Return %true if event is function trace event
224  */
225 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
226 {
227 #define FUNCTION_EVENT "ftrace:function"
228 
229 	return evsel->name &&
230 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
231 
232 #undef FUNCTION_EVENT
233 }
234 
235 void perf_evsel__init(struct perf_evsel *evsel,
236 		      struct perf_event_attr *attr, int idx)
237 {
238 	evsel->idx	   = idx;
239 	evsel->tracking	   = !idx;
240 	evsel->attr	   = *attr;
241 	evsel->leader	   = evsel;
242 	evsel->unit	   = "";
243 	evsel->scale	   = 1.0;
244 	evsel->evlist	   = NULL;
245 	evsel->bpf_fd	   = -1;
246 	INIT_LIST_HEAD(&evsel->node);
247 	INIT_LIST_HEAD(&evsel->config_terms);
248 	perf_evsel__object.init(evsel);
249 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
250 	perf_evsel__calc_id_pos(evsel);
251 	evsel->cmdline_group_boundary = false;
252 	evsel->metric_expr   = NULL;
253 	evsel->metric_name   = NULL;
254 	evsel->metric_events = NULL;
255 	evsel->collect_stat  = false;
256 }
257 
258 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
259 {
260 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
261 
262 	if (evsel != NULL)
263 		perf_evsel__init(evsel, attr, idx);
264 
265 	if (perf_evsel__is_bpf_output(evsel)) {
266 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
267 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
268 		evsel->attr.sample_period = 1;
269 	}
270 
271 	return evsel;
272 }
273 
274 struct perf_evsel *perf_evsel__new_cycles(bool precise)
275 {
276 	struct perf_event_attr attr = {
277 		.type	= PERF_TYPE_HARDWARE,
278 		.config	= PERF_COUNT_HW_CPU_CYCLES,
279 		.exclude_kernel	= geteuid() != 0,
280 	};
281 	struct perf_evsel *evsel;
282 
283 	event_attr_init(&attr);
284 
285 	if (!precise)
286 		goto new_event;
287 	/*
288 	 * Unnamed union member, not supported as struct member named
289 	 * initializer in older compilers such as gcc 4.4.7
290 	 *
291 	 * Just for probing the precise_ip:
292 	 */
293 	attr.sample_period = 1;
294 
295 	perf_event_attr__set_max_precise_ip(&attr);
296 	/*
297 	 * Now let the usual logic to set up the perf_event_attr defaults
298 	 * to kick in when we return and before perf_evsel__open() is called.
299 	 */
300 	attr.sample_period = 0;
301 new_event:
302 	evsel = perf_evsel__new(&attr);
303 	if (evsel == NULL)
304 		goto out;
305 
306 	/* use asprintf() because free(evsel) assumes name is allocated */
307 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
308 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
309 		     attr.exclude_kernel ? "u" : "",
310 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
311 		goto error_free;
312 out:
313 	return evsel;
314 error_free:
315 	perf_evsel__delete(evsel);
316 	evsel = NULL;
317 	goto out;
318 }
319 
320 /*
321  * Returns pointer with encoded error via <linux/err.h> interface.
322  */
323 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
324 {
325 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
326 	int err = -ENOMEM;
327 
328 	if (evsel == NULL) {
329 		goto out_err;
330 	} else {
331 		struct perf_event_attr attr = {
332 			.type	       = PERF_TYPE_TRACEPOINT,
333 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
334 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
335 		};
336 
337 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
338 			goto out_free;
339 
340 		evsel->tp_format = trace_event__tp_format(sys, name);
341 		if (IS_ERR(evsel->tp_format)) {
342 			err = PTR_ERR(evsel->tp_format);
343 			goto out_free;
344 		}
345 
346 		event_attr_init(&attr);
347 		attr.config = evsel->tp_format->id;
348 		attr.sample_period = 1;
349 		perf_evsel__init(evsel, &attr, idx);
350 	}
351 
352 	return evsel;
353 
354 out_free:
355 	zfree(&evsel->name);
356 	free(evsel);
357 out_err:
358 	return ERR_PTR(err);
359 }
360 
361 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
362 	"cycles",
363 	"instructions",
364 	"cache-references",
365 	"cache-misses",
366 	"branches",
367 	"branch-misses",
368 	"bus-cycles",
369 	"stalled-cycles-frontend",
370 	"stalled-cycles-backend",
371 	"ref-cycles",
372 };
373 
374 static const char *__perf_evsel__hw_name(u64 config)
375 {
376 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
377 		return perf_evsel__hw_names[config];
378 
379 	return "unknown-hardware";
380 }
381 
382 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
383 {
384 	int colon = 0, r = 0;
385 	struct perf_event_attr *attr = &evsel->attr;
386 	bool exclude_guest_default = false;
387 
388 #define MOD_PRINT(context, mod)	do {					\
389 		if (!attr->exclude_##context) {				\
390 			if (!colon) colon = ++r;			\
391 			r += scnprintf(bf + r, size - r, "%c", mod);	\
392 		} } while(0)
393 
394 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
395 		MOD_PRINT(kernel, 'k');
396 		MOD_PRINT(user, 'u');
397 		MOD_PRINT(hv, 'h');
398 		exclude_guest_default = true;
399 	}
400 
401 	if (attr->precise_ip) {
402 		if (!colon)
403 			colon = ++r;
404 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
405 		exclude_guest_default = true;
406 	}
407 
408 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
409 		MOD_PRINT(host, 'H');
410 		MOD_PRINT(guest, 'G');
411 	}
412 #undef MOD_PRINT
413 	if (colon)
414 		bf[colon - 1] = ':';
415 	return r;
416 }
417 
418 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
419 {
420 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
421 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
422 }
423 
424 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
425 	"cpu-clock",
426 	"task-clock",
427 	"page-faults",
428 	"context-switches",
429 	"cpu-migrations",
430 	"minor-faults",
431 	"major-faults",
432 	"alignment-faults",
433 	"emulation-faults",
434 	"dummy",
435 };
436 
437 static const char *__perf_evsel__sw_name(u64 config)
438 {
439 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
440 		return perf_evsel__sw_names[config];
441 	return "unknown-software";
442 }
443 
444 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
445 {
446 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
447 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
448 }
449 
450 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
451 {
452 	int r;
453 
454 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
455 
456 	if (type & HW_BREAKPOINT_R)
457 		r += scnprintf(bf + r, size - r, "r");
458 
459 	if (type & HW_BREAKPOINT_W)
460 		r += scnprintf(bf + r, size - r, "w");
461 
462 	if (type & HW_BREAKPOINT_X)
463 		r += scnprintf(bf + r, size - r, "x");
464 
465 	return r;
466 }
467 
468 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
469 {
470 	struct perf_event_attr *attr = &evsel->attr;
471 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
472 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
473 }
474 
475 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
476 				[PERF_EVSEL__MAX_ALIASES] = {
477  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
478  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
479  { "LLC",	"L2",							},
480  { "dTLB",	"d-tlb",	"Data-TLB",				},
481  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
482  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
483  { "node",								},
484 };
485 
486 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
487 				   [PERF_EVSEL__MAX_ALIASES] = {
488  { "load",	"loads",	"read",					},
489  { "store",	"stores",	"write",				},
490  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
491 };
492 
493 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
494 				       [PERF_EVSEL__MAX_ALIASES] = {
495  { "refs",	"Reference",	"ops",		"access",		},
496  { "misses",	"miss",							},
497 };
498 
499 #define C(x)		PERF_COUNT_HW_CACHE_##x
500 #define CACHE_READ	(1 << C(OP_READ))
501 #define CACHE_WRITE	(1 << C(OP_WRITE))
502 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
503 #define COP(x)		(1 << x)
504 
505 /*
506  * cache operartion stat
507  * L1I : Read and prefetch only
508  * ITLB and BPU : Read-only
509  */
510 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
511  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
512  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
513  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
514  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
515  [C(ITLB)]	= (CACHE_READ),
516  [C(BPU)]	= (CACHE_READ),
517  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
518 };
519 
520 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
521 {
522 	if (perf_evsel__hw_cache_stat[type] & COP(op))
523 		return true;	/* valid */
524 	else
525 		return false;	/* invalid */
526 }
527 
528 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
529 					    char *bf, size_t size)
530 {
531 	if (result) {
532 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
533 				 perf_evsel__hw_cache_op[op][0],
534 				 perf_evsel__hw_cache_result[result][0]);
535 	}
536 
537 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
538 			 perf_evsel__hw_cache_op[op][1]);
539 }
540 
541 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
542 {
543 	u8 op, result, type = (config >>  0) & 0xff;
544 	const char *err = "unknown-ext-hardware-cache-type";
545 
546 	if (type >= PERF_COUNT_HW_CACHE_MAX)
547 		goto out_err;
548 
549 	op = (config >>  8) & 0xff;
550 	err = "unknown-ext-hardware-cache-op";
551 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
552 		goto out_err;
553 
554 	result = (config >> 16) & 0xff;
555 	err = "unknown-ext-hardware-cache-result";
556 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
557 		goto out_err;
558 
559 	err = "invalid-cache";
560 	if (!perf_evsel__is_cache_op_valid(type, op))
561 		goto out_err;
562 
563 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
564 out_err:
565 	return scnprintf(bf, size, "%s", err);
566 }
567 
568 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
569 {
570 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
571 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
572 }
573 
574 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
575 {
576 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
577 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
578 }
579 
580 const char *perf_evsel__name(struct perf_evsel *evsel)
581 {
582 	char bf[128];
583 
584 	if (evsel->name)
585 		return evsel->name;
586 
587 	switch (evsel->attr.type) {
588 	case PERF_TYPE_RAW:
589 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
590 		break;
591 
592 	case PERF_TYPE_HARDWARE:
593 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
594 		break;
595 
596 	case PERF_TYPE_HW_CACHE:
597 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
598 		break;
599 
600 	case PERF_TYPE_SOFTWARE:
601 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
602 		break;
603 
604 	case PERF_TYPE_TRACEPOINT:
605 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
606 		break;
607 
608 	case PERF_TYPE_BREAKPOINT:
609 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
610 		break;
611 
612 	default:
613 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
614 			  evsel->attr.type);
615 		break;
616 	}
617 
618 	evsel->name = strdup(bf);
619 
620 	return evsel->name ?: "unknown";
621 }
622 
623 const char *perf_evsel__group_name(struct perf_evsel *evsel)
624 {
625 	return evsel->group_name ?: "anon group";
626 }
627 
628 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
629 {
630 	int ret;
631 	struct perf_evsel *pos;
632 	const char *group_name = perf_evsel__group_name(evsel);
633 
634 	ret = scnprintf(buf, size, "%s", group_name);
635 
636 	ret += scnprintf(buf + ret, size - ret, " { %s",
637 			 perf_evsel__name(evsel));
638 
639 	for_each_group_member(pos, evsel)
640 		ret += scnprintf(buf + ret, size - ret, ", %s",
641 				 perf_evsel__name(pos));
642 
643 	ret += scnprintf(buf + ret, size - ret, " }");
644 
645 	return ret;
646 }
647 
648 void perf_evsel__config_callchain(struct perf_evsel *evsel,
649 				  struct record_opts *opts,
650 				  struct callchain_param *param)
651 {
652 	bool function = perf_evsel__is_function_event(evsel);
653 	struct perf_event_attr *attr = &evsel->attr;
654 
655 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
656 
657 	attr->sample_max_stack = param->max_stack;
658 
659 	if (param->record_mode == CALLCHAIN_LBR) {
660 		if (!opts->branch_stack) {
661 			if (attr->exclude_user) {
662 				pr_warning("LBR callstack option is only available "
663 					   "to get user callchain information. "
664 					   "Falling back to framepointers.\n");
665 			} else {
666 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
667 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
668 							PERF_SAMPLE_BRANCH_CALL_STACK |
669 							PERF_SAMPLE_BRANCH_NO_CYCLES |
670 							PERF_SAMPLE_BRANCH_NO_FLAGS;
671 			}
672 		} else
673 			 pr_warning("Cannot use LBR callstack with branch stack. "
674 				    "Falling back to framepointers.\n");
675 	}
676 
677 	if (param->record_mode == CALLCHAIN_DWARF) {
678 		if (!function) {
679 			perf_evsel__set_sample_bit(evsel, REGS_USER);
680 			perf_evsel__set_sample_bit(evsel, STACK_USER);
681 			attr->sample_regs_user = PERF_REGS_MASK;
682 			attr->sample_stack_user = param->dump_size;
683 			attr->exclude_callchain_user = 1;
684 		} else {
685 			pr_info("Cannot use DWARF unwind for function trace event,"
686 				" falling back to framepointers.\n");
687 		}
688 	}
689 
690 	if (function) {
691 		pr_info("Disabling user space callchains for function trace event.\n");
692 		attr->exclude_callchain_user = 1;
693 	}
694 }
695 
696 static void
697 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
698 			    struct callchain_param *param)
699 {
700 	struct perf_event_attr *attr = &evsel->attr;
701 
702 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
703 	if (param->record_mode == CALLCHAIN_LBR) {
704 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
705 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
706 					      PERF_SAMPLE_BRANCH_CALL_STACK);
707 	}
708 	if (param->record_mode == CALLCHAIN_DWARF) {
709 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
710 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
711 	}
712 }
713 
714 static void apply_config_terms(struct perf_evsel *evsel,
715 			       struct record_opts *opts)
716 {
717 	struct perf_evsel_config_term *term;
718 	struct list_head *config_terms = &evsel->config_terms;
719 	struct perf_event_attr *attr = &evsel->attr;
720 	struct callchain_param param;
721 	u32 dump_size = 0;
722 	int max_stack = 0;
723 	const char *callgraph_buf = NULL;
724 
725 	/* callgraph default */
726 	param.record_mode = callchain_param.record_mode;
727 
728 	list_for_each_entry(term, config_terms, list) {
729 		switch (term->type) {
730 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
731 			attr->sample_period = term->val.period;
732 			attr->freq = 0;
733 			break;
734 		case PERF_EVSEL__CONFIG_TERM_FREQ:
735 			attr->sample_freq = term->val.freq;
736 			attr->freq = 1;
737 			break;
738 		case PERF_EVSEL__CONFIG_TERM_TIME:
739 			if (term->val.time)
740 				perf_evsel__set_sample_bit(evsel, TIME);
741 			else
742 				perf_evsel__reset_sample_bit(evsel, TIME);
743 			break;
744 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
745 			callgraph_buf = term->val.callgraph;
746 			break;
747 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
748 			if (term->val.branch && strcmp(term->val.branch, "no")) {
749 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
750 				parse_branch_str(term->val.branch,
751 						 &attr->branch_sample_type);
752 			} else
753 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
754 			break;
755 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
756 			dump_size = term->val.stack_user;
757 			break;
758 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
759 			max_stack = term->val.max_stack;
760 			break;
761 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
762 			/*
763 			 * attr->inherit should has already been set by
764 			 * perf_evsel__config. If user explicitly set
765 			 * inherit using config terms, override global
766 			 * opt->no_inherit setting.
767 			 */
768 			attr->inherit = term->val.inherit ? 1 : 0;
769 			break;
770 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
771 			attr->write_backward = term->val.overwrite ? 1 : 0;
772 			break;
773 		default:
774 			break;
775 		}
776 	}
777 
778 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
779 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
780 		if (max_stack) {
781 			param.max_stack = max_stack;
782 			if (callgraph_buf == NULL)
783 				callgraph_buf = "fp";
784 		}
785 
786 		/* parse callgraph parameters */
787 		if (callgraph_buf != NULL) {
788 			if (!strcmp(callgraph_buf, "no")) {
789 				param.enabled = false;
790 				param.record_mode = CALLCHAIN_NONE;
791 			} else {
792 				param.enabled = true;
793 				if (parse_callchain_record(callgraph_buf, &param)) {
794 					pr_err("per-event callgraph setting for %s failed. "
795 					       "Apply callgraph global setting for it\n",
796 					       evsel->name);
797 					return;
798 				}
799 			}
800 		}
801 		if (dump_size > 0) {
802 			dump_size = round_up(dump_size, sizeof(u64));
803 			param.dump_size = dump_size;
804 		}
805 
806 		/* If global callgraph set, clear it */
807 		if (callchain_param.enabled)
808 			perf_evsel__reset_callgraph(evsel, &callchain_param);
809 
810 		/* set perf-event callgraph */
811 		if (param.enabled)
812 			perf_evsel__config_callchain(evsel, opts, &param);
813 	}
814 }
815 
816 /*
817  * The enable_on_exec/disabled value strategy:
818  *
819  *  1) For any type of traced program:
820  *    - all independent events and group leaders are disabled
821  *    - all group members are enabled
822  *
823  *     Group members are ruled by group leaders. They need to
824  *     be enabled, because the group scheduling relies on that.
825  *
826  *  2) For traced programs executed by perf:
827  *     - all independent events and group leaders have
828  *       enable_on_exec set
829  *     - we don't specifically enable or disable any event during
830  *       the record command
831  *
832  *     Independent events and group leaders are initially disabled
833  *     and get enabled by exec. Group members are ruled by group
834  *     leaders as stated in 1).
835  *
836  *  3) For traced programs attached by perf (pid/tid):
837  *     - we specifically enable or disable all events during
838  *       the record command
839  *
840  *     When attaching events to already running traced we
841  *     enable/disable events specifically, as there's no
842  *     initial traced exec call.
843  */
844 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
845 			struct callchain_param *callchain)
846 {
847 	struct perf_evsel *leader = evsel->leader;
848 	struct perf_event_attr *attr = &evsel->attr;
849 	int track = evsel->tracking;
850 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
851 
852 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
853 	attr->inherit	    = !opts->no_inherit;
854 	attr->write_backward = opts->overwrite ? 1 : 0;
855 
856 	perf_evsel__set_sample_bit(evsel, IP);
857 	perf_evsel__set_sample_bit(evsel, TID);
858 
859 	if (evsel->sample_read) {
860 		perf_evsel__set_sample_bit(evsel, READ);
861 
862 		/*
863 		 * We need ID even in case of single event, because
864 		 * PERF_SAMPLE_READ process ID specific data.
865 		 */
866 		perf_evsel__set_sample_id(evsel, false);
867 
868 		/*
869 		 * Apply group format only if we belong to group
870 		 * with more than one members.
871 		 */
872 		if (leader->nr_members > 1) {
873 			attr->read_format |= PERF_FORMAT_GROUP;
874 			attr->inherit = 0;
875 		}
876 	}
877 
878 	/*
879 	 * We default some events to have a default interval. But keep
880 	 * it a weak assumption overridable by the user.
881 	 */
882 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
883 				     opts->user_interval != ULLONG_MAX)) {
884 		if (opts->freq) {
885 			perf_evsel__set_sample_bit(evsel, PERIOD);
886 			attr->freq		= 1;
887 			attr->sample_freq	= opts->freq;
888 		} else {
889 			attr->sample_period = opts->default_interval;
890 		}
891 	}
892 
893 	/*
894 	 * Disable sampling for all group members other
895 	 * than leader in case leader 'leads' the sampling.
896 	 */
897 	if ((leader != evsel) && leader->sample_read) {
898 		attr->sample_freq   = 0;
899 		attr->sample_period = 0;
900 	}
901 
902 	if (opts->no_samples)
903 		attr->sample_freq = 0;
904 
905 	if (opts->inherit_stat) {
906 		evsel->attr.read_format |=
907 			PERF_FORMAT_TOTAL_TIME_ENABLED |
908 			PERF_FORMAT_TOTAL_TIME_RUNNING |
909 			PERF_FORMAT_ID;
910 		attr->inherit_stat = 1;
911 	}
912 
913 	if (opts->sample_address) {
914 		perf_evsel__set_sample_bit(evsel, ADDR);
915 		attr->mmap_data = track;
916 	}
917 
918 	/*
919 	 * We don't allow user space callchains for  function trace
920 	 * event, due to issues with page faults while tracing page
921 	 * fault handler and its overall trickiness nature.
922 	 */
923 	if (perf_evsel__is_function_event(evsel))
924 		evsel->attr.exclude_callchain_user = 1;
925 
926 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
927 		perf_evsel__config_callchain(evsel, opts, callchain);
928 
929 	if (opts->sample_intr_regs) {
930 		attr->sample_regs_intr = opts->sample_intr_regs;
931 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
932 	}
933 
934 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
935 		perf_evsel__set_sample_bit(evsel, CPU);
936 
937 	if (opts->period)
938 		perf_evsel__set_sample_bit(evsel, PERIOD);
939 
940 	/*
941 	 * When the user explicitly disabled time don't force it here.
942 	 */
943 	if (opts->sample_time &&
944 	    (!perf_missing_features.sample_id_all &&
945 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
946 	     opts->sample_time_set)))
947 		perf_evsel__set_sample_bit(evsel, TIME);
948 
949 	if (opts->raw_samples && !evsel->no_aux_samples) {
950 		perf_evsel__set_sample_bit(evsel, TIME);
951 		perf_evsel__set_sample_bit(evsel, RAW);
952 		perf_evsel__set_sample_bit(evsel, CPU);
953 	}
954 
955 	if (opts->sample_address)
956 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
957 
958 	if (opts->sample_phys_addr)
959 		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
960 
961 	if (opts->no_buffering) {
962 		attr->watermark = 0;
963 		attr->wakeup_events = 1;
964 	}
965 	if (opts->branch_stack && !evsel->no_aux_samples) {
966 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
967 		attr->branch_sample_type = opts->branch_stack;
968 	}
969 
970 	if (opts->sample_weight)
971 		perf_evsel__set_sample_bit(evsel, WEIGHT);
972 
973 	attr->task  = track;
974 	attr->mmap  = track;
975 	attr->mmap2 = track && !perf_missing_features.mmap2;
976 	attr->comm  = track;
977 
978 	if (opts->record_namespaces)
979 		attr->namespaces  = track;
980 
981 	if (opts->record_switch_events)
982 		attr->context_switch = track;
983 
984 	if (opts->sample_transaction)
985 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
986 
987 	if (opts->running_time) {
988 		evsel->attr.read_format |=
989 			PERF_FORMAT_TOTAL_TIME_ENABLED |
990 			PERF_FORMAT_TOTAL_TIME_RUNNING;
991 	}
992 
993 	/*
994 	 * XXX see the function comment above
995 	 *
996 	 * Disabling only independent events or group leaders,
997 	 * keeping group members enabled.
998 	 */
999 	if (perf_evsel__is_group_leader(evsel))
1000 		attr->disabled = 1;
1001 
1002 	/*
1003 	 * Setting enable_on_exec for independent events and
1004 	 * group leaders for traced executed by perf.
1005 	 */
1006 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1007 		!opts->initial_delay)
1008 		attr->enable_on_exec = 1;
1009 
1010 	if (evsel->immediate) {
1011 		attr->disabled = 0;
1012 		attr->enable_on_exec = 0;
1013 	}
1014 
1015 	clockid = opts->clockid;
1016 	if (opts->use_clockid) {
1017 		attr->use_clockid = 1;
1018 		attr->clockid = opts->clockid;
1019 	}
1020 
1021 	if (evsel->precise_max)
1022 		perf_event_attr__set_max_precise_ip(attr);
1023 
1024 	if (opts->all_user) {
1025 		attr->exclude_kernel = 1;
1026 		attr->exclude_user   = 0;
1027 	}
1028 
1029 	if (opts->all_kernel) {
1030 		attr->exclude_kernel = 0;
1031 		attr->exclude_user   = 1;
1032 	}
1033 
1034 	/*
1035 	 * Apply event specific term settings,
1036 	 * it overloads any global configuration.
1037 	 */
1038 	apply_config_terms(evsel, opts);
1039 
1040 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1041 }
1042 
1043 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1044 {
1045 	if (evsel->system_wide)
1046 		nthreads = 1;
1047 
1048 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1049 
1050 	if (evsel->fd) {
1051 		int cpu, thread;
1052 		for (cpu = 0; cpu < ncpus; cpu++) {
1053 			for (thread = 0; thread < nthreads; thread++) {
1054 				FD(evsel, cpu, thread) = -1;
1055 			}
1056 		}
1057 	}
1058 
1059 	return evsel->fd != NULL ? 0 : -ENOMEM;
1060 }
1061 
1062 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1063 			  int ioc,  void *arg)
1064 {
1065 	int cpu, thread;
1066 
1067 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1068 		for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1069 			int fd = FD(evsel, cpu, thread),
1070 			    err = ioctl(fd, ioc, arg);
1071 
1072 			if (err)
1073 				return err;
1074 		}
1075 	}
1076 
1077 	return 0;
1078 }
1079 
1080 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1081 {
1082 	return perf_evsel__run_ioctl(evsel,
1083 				     PERF_EVENT_IOC_SET_FILTER,
1084 				     (void *)filter);
1085 }
1086 
1087 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1088 {
1089 	char *new_filter = strdup(filter);
1090 
1091 	if (new_filter != NULL) {
1092 		free(evsel->filter);
1093 		evsel->filter = new_filter;
1094 		return 0;
1095 	}
1096 
1097 	return -1;
1098 }
1099 
1100 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1101 				     const char *fmt, const char *filter)
1102 {
1103 	char *new_filter;
1104 
1105 	if (evsel->filter == NULL)
1106 		return perf_evsel__set_filter(evsel, filter);
1107 
1108 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1109 		free(evsel->filter);
1110 		evsel->filter = new_filter;
1111 		return 0;
1112 	}
1113 
1114 	return -1;
1115 }
1116 
1117 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1118 {
1119 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1120 }
1121 
1122 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1123 {
1124 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1125 }
1126 
1127 int perf_evsel__enable(struct perf_evsel *evsel)
1128 {
1129 	return perf_evsel__run_ioctl(evsel,
1130 				     PERF_EVENT_IOC_ENABLE,
1131 				     0);
1132 }
1133 
1134 int perf_evsel__disable(struct perf_evsel *evsel)
1135 {
1136 	return perf_evsel__run_ioctl(evsel,
1137 				     PERF_EVENT_IOC_DISABLE,
1138 				     0);
1139 }
1140 
1141 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1142 {
1143 	if (ncpus == 0 || nthreads == 0)
1144 		return 0;
1145 
1146 	if (evsel->system_wide)
1147 		nthreads = 1;
1148 
1149 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1150 	if (evsel->sample_id == NULL)
1151 		return -ENOMEM;
1152 
1153 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1154 	if (evsel->id == NULL) {
1155 		xyarray__delete(evsel->sample_id);
1156 		evsel->sample_id = NULL;
1157 		return -ENOMEM;
1158 	}
1159 
1160 	return 0;
1161 }
1162 
1163 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1164 {
1165 	xyarray__delete(evsel->fd);
1166 	evsel->fd = NULL;
1167 }
1168 
1169 static void perf_evsel__free_id(struct perf_evsel *evsel)
1170 {
1171 	xyarray__delete(evsel->sample_id);
1172 	evsel->sample_id = NULL;
1173 	zfree(&evsel->id);
1174 }
1175 
1176 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1177 {
1178 	struct perf_evsel_config_term *term, *h;
1179 
1180 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1181 		list_del(&term->list);
1182 		free(term);
1183 	}
1184 }
1185 
1186 void perf_evsel__close_fd(struct perf_evsel *evsel)
1187 {
1188 	int cpu, thread;
1189 
1190 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1191 		for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1192 			close(FD(evsel, cpu, thread));
1193 			FD(evsel, cpu, thread) = -1;
1194 		}
1195 }
1196 
1197 void perf_evsel__exit(struct perf_evsel *evsel)
1198 {
1199 	assert(list_empty(&evsel->node));
1200 	assert(evsel->evlist == NULL);
1201 	perf_evsel__free_fd(evsel);
1202 	perf_evsel__free_id(evsel);
1203 	perf_evsel__free_config_terms(evsel);
1204 	close_cgroup(evsel->cgrp);
1205 	cpu_map__put(evsel->cpus);
1206 	cpu_map__put(evsel->own_cpus);
1207 	thread_map__put(evsel->threads);
1208 	zfree(&evsel->group_name);
1209 	zfree(&evsel->name);
1210 	perf_evsel__object.fini(evsel);
1211 }
1212 
1213 void perf_evsel__delete(struct perf_evsel *evsel)
1214 {
1215 	perf_evsel__exit(evsel);
1216 	free(evsel);
1217 }
1218 
1219 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1220 				struct perf_counts_values *count)
1221 {
1222 	struct perf_counts_values tmp;
1223 
1224 	if (!evsel->prev_raw_counts)
1225 		return;
1226 
1227 	if (cpu == -1) {
1228 		tmp = evsel->prev_raw_counts->aggr;
1229 		evsel->prev_raw_counts->aggr = *count;
1230 	} else {
1231 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1232 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1233 	}
1234 
1235 	count->val = count->val - tmp.val;
1236 	count->ena = count->ena - tmp.ena;
1237 	count->run = count->run - tmp.run;
1238 }
1239 
1240 void perf_counts_values__scale(struct perf_counts_values *count,
1241 			       bool scale, s8 *pscaled)
1242 {
1243 	s8 scaled = 0;
1244 
1245 	if (scale) {
1246 		if (count->run == 0) {
1247 			scaled = -1;
1248 			count->val = 0;
1249 		} else if (count->run < count->ena) {
1250 			scaled = 1;
1251 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1252 		}
1253 	} else
1254 		count->ena = count->run = 0;
1255 
1256 	if (pscaled)
1257 		*pscaled = scaled;
1258 }
1259 
1260 static int perf_evsel__read_size(struct perf_evsel *evsel)
1261 {
1262 	u64 read_format = evsel->attr.read_format;
1263 	int entry = sizeof(u64); /* value */
1264 	int size = 0;
1265 	int nr = 1;
1266 
1267 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1268 		size += sizeof(u64);
1269 
1270 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1271 		size += sizeof(u64);
1272 
1273 	if (read_format & PERF_FORMAT_ID)
1274 		entry += sizeof(u64);
1275 
1276 	if (read_format & PERF_FORMAT_GROUP) {
1277 		nr = evsel->nr_members;
1278 		size += sizeof(u64);
1279 	}
1280 
1281 	size += entry * nr;
1282 	return size;
1283 }
1284 
1285 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1286 		     struct perf_counts_values *count)
1287 {
1288 	size_t size = perf_evsel__read_size(evsel);
1289 
1290 	memset(count, 0, sizeof(*count));
1291 
1292 	if (FD(evsel, cpu, thread) < 0)
1293 		return -EINVAL;
1294 
1295 	if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1296 		return -errno;
1297 
1298 	return 0;
1299 }
1300 
1301 static int
1302 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1303 {
1304 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1305 
1306 	return perf_evsel__read(evsel, cpu, thread, count);
1307 }
1308 
1309 static void
1310 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1311 		      u64 val, u64 ena, u64 run)
1312 {
1313 	struct perf_counts_values *count;
1314 
1315 	count = perf_counts(counter->counts, cpu, thread);
1316 
1317 	count->val    = val;
1318 	count->ena    = ena;
1319 	count->run    = run;
1320 	count->loaded = true;
1321 }
1322 
1323 static int
1324 perf_evsel__process_group_data(struct perf_evsel *leader,
1325 			       int cpu, int thread, u64 *data)
1326 {
1327 	u64 read_format = leader->attr.read_format;
1328 	struct sample_read_value *v;
1329 	u64 nr, ena = 0, run = 0, i;
1330 
1331 	nr = *data++;
1332 
1333 	if (nr != (u64) leader->nr_members)
1334 		return -EINVAL;
1335 
1336 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1337 		ena = *data++;
1338 
1339 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1340 		run = *data++;
1341 
1342 	v = (struct sample_read_value *) data;
1343 
1344 	perf_evsel__set_count(leader, cpu, thread,
1345 			      v[0].value, ena, run);
1346 
1347 	for (i = 1; i < nr; i++) {
1348 		struct perf_evsel *counter;
1349 
1350 		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1351 		if (!counter)
1352 			return -EINVAL;
1353 
1354 		perf_evsel__set_count(counter, cpu, thread,
1355 				      v[i].value, ena, run);
1356 	}
1357 
1358 	return 0;
1359 }
1360 
1361 static int
1362 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1363 {
1364 	struct perf_stat_evsel *ps = leader->priv;
1365 	u64 read_format = leader->attr.read_format;
1366 	int size = perf_evsel__read_size(leader);
1367 	u64 *data = ps->group_data;
1368 
1369 	if (!(read_format & PERF_FORMAT_ID))
1370 		return -EINVAL;
1371 
1372 	if (!perf_evsel__is_group_leader(leader))
1373 		return -EINVAL;
1374 
1375 	if (!data) {
1376 		data = zalloc(size);
1377 		if (!data)
1378 			return -ENOMEM;
1379 
1380 		ps->group_data = data;
1381 	}
1382 
1383 	if (FD(leader, cpu, thread) < 0)
1384 		return -EINVAL;
1385 
1386 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1387 		return -errno;
1388 
1389 	return perf_evsel__process_group_data(leader, cpu, thread, data);
1390 }
1391 
1392 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1393 {
1394 	u64 read_format = evsel->attr.read_format;
1395 
1396 	if (read_format & PERF_FORMAT_GROUP)
1397 		return perf_evsel__read_group(evsel, cpu, thread);
1398 	else
1399 		return perf_evsel__read_one(evsel, cpu, thread);
1400 }
1401 
1402 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1403 			      int cpu, int thread, bool scale)
1404 {
1405 	struct perf_counts_values count;
1406 	size_t nv = scale ? 3 : 1;
1407 
1408 	if (FD(evsel, cpu, thread) < 0)
1409 		return -EINVAL;
1410 
1411 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1412 		return -ENOMEM;
1413 
1414 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1415 		return -errno;
1416 
1417 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1418 	perf_counts_values__scale(&count, scale, NULL);
1419 	*perf_counts(evsel->counts, cpu, thread) = count;
1420 	return 0;
1421 }
1422 
1423 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1424 {
1425 	struct perf_evsel *leader = evsel->leader;
1426 	int fd;
1427 
1428 	if (perf_evsel__is_group_leader(evsel))
1429 		return -1;
1430 
1431 	/*
1432 	 * Leader must be already processed/open,
1433 	 * if not it's a bug.
1434 	 */
1435 	BUG_ON(!leader->fd);
1436 
1437 	fd = FD(leader, cpu, thread);
1438 	BUG_ON(fd == -1);
1439 
1440 	return fd;
1441 }
1442 
1443 struct bit_names {
1444 	int bit;
1445 	const char *name;
1446 };
1447 
1448 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1449 {
1450 	bool first_bit = true;
1451 	int i = 0;
1452 
1453 	do {
1454 		if (value & bits[i].bit) {
1455 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1456 			first_bit = false;
1457 		}
1458 	} while (bits[++i].name != NULL);
1459 }
1460 
1461 static void __p_sample_type(char *buf, size_t size, u64 value)
1462 {
1463 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1464 	struct bit_names bits[] = {
1465 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1466 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1467 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1468 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1469 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1470 		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1471 		{ .name = NULL, }
1472 	};
1473 #undef bit_name
1474 	__p_bits(buf, size, value, bits);
1475 }
1476 
1477 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1478 {
1479 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1480 	struct bit_names bits[] = {
1481 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1482 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1483 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1484 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1485 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1486 		{ .name = NULL, }
1487 	};
1488 #undef bit_name
1489 	__p_bits(buf, size, value, bits);
1490 }
1491 
1492 static void __p_read_format(char *buf, size_t size, u64 value)
1493 {
1494 #define bit_name(n) { PERF_FORMAT_##n, #n }
1495 	struct bit_names bits[] = {
1496 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1497 		bit_name(ID), bit_name(GROUP),
1498 		{ .name = NULL, }
1499 	};
1500 #undef bit_name
1501 	__p_bits(buf, size, value, bits);
1502 }
1503 
1504 #define BUF_SIZE		1024
1505 
1506 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1507 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1508 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1509 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1510 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1511 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1512 
1513 #define PRINT_ATTRn(_n, _f, _p)				\
1514 do {							\
1515 	if (attr->_f) {					\
1516 		_p(attr->_f);				\
1517 		ret += attr__fprintf(fp, _n, buf, priv);\
1518 	}						\
1519 } while (0)
1520 
1521 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1522 
1523 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1524 			     attr__fprintf_f attr__fprintf, void *priv)
1525 {
1526 	char buf[BUF_SIZE];
1527 	int ret = 0;
1528 
1529 	PRINT_ATTRf(type, p_unsigned);
1530 	PRINT_ATTRf(size, p_unsigned);
1531 	PRINT_ATTRf(config, p_hex);
1532 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1533 	PRINT_ATTRf(sample_type, p_sample_type);
1534 	PRINT_ATTRf(read_format, p_read_format);
1535 
1536 	PRINT_ATTRf(disabled, p_unsigned);
1537 	PRINT_ATTRf(inherit, p_unsigned);
1538 	PRINT_ATTRf(pinned, p_unsigned);
1539 	PRINT_ATTRf(exclusive, p_unsigned);
1540 	PRINT_ATTRf(exclude_user, p_unsigned);
1541 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1542 	PRINT_ATTRf(exclude_hv, p_unsigned);
1543 	PRINT_ATTRf(exclude_idle, p_unsigned);
1544 	PRINT_ATTRf(mmap, p_unsigned);
1545 	PRINT_ATTRf(comm, p_unsigned);
1546 	PRINT_ATTRf(freq, p_unsigned);
1547 	PRINT_ATTRf(inherit_stat, p_unsigned);
1548 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1549 	PRINT_ATTRf(task, p_unsigned);
1550 	PRINT_ATTRf(watermark, p_unsigned);
1551 	PRINT_ATTRf(precise_ip, p_unsigned);
1552 	PRINT_ATTRf(mmap_data, p_unsigned);
1553 	PRINT_ATTRf(sample_id_all, p_unsigned);
1554 	PRINT_ATTRf(exclude_host, p_unsigned);
1555 	PRINT_ATTRf(exclude_guest, p_unsigned);
1556 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1557 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1558 	PRINT_ATTRf(mmap2, p_unsigned);
1559 	PRINT_ATTRf(comm_exec, p_unsigned);
1560 	PRINT_ATTRf(use_clockid, p_unsigned);
1561 	PRINT_ATTRf(context_switch, p_unsigned);
1562 	PRINT_ATTRf(write_backward, p_unsigned);
1563 
1564 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1565 	PRINT_ATTRf(bp_type, p_unsigned);
1566 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1567 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1568 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1569 	PRINT_ATTRf(sample_regs_user, p_hex);
1570 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1571 	PRINT_ATTRf(clockid, p_signed);
1572 	PRINT_ATTRf(sample_regs_intr, p_hex);
1573 	PRINT_ATTRf(aux_watermark, p_unsigned);
1574 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1575 
1576 	return ret;
1577 }
1578 
1579 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1580 				void *priv __maybe_unused)
1581 {
1582 	return fprintf(fp, "  %-32s %s\n", name, val);
1583 }
1584 
1585 static bool ignore_missing_thread(struct perf_evsel *evsel,
1586 				  struct thread_map *threads,
1587 				  int thread, int err)
1588 {
1589 	if (!evsel->ignore_missing_thread)
1590 		return false;
1591 
1592 	/* The system wide setup does not work with threads. */
1593 	if (evsel->system_wide)
1594 		return false;
1595 
1596 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1597 	if (err != -ESRCH)
1598 		return false;
1599 
1600 	/* If there's only one thread, let it fail. */
1601 	if (threads->nr == 1)
1602 		return false;
1603 
1604 	if (thread_map__remove(threads, thread))
1605 		return false;
1606 
1607 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1608 		   thread_map__pid(threads, thread));
1609 	return true;
1610 }
1611 
1612 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1613 		     struct thread_map *threads)
1614 {
1615 	int cpu, thread, nthreads;
1616 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1617 	int pid = -1, err;
1618 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1619 
1620 	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1621 		return -EINVAL;
1622 
1623 	if (cpus == NULL) {
1624 		static struct cpu_map *empty_cpu_map;
1625 
1626 		if (empty_cpu_map == NULL) {
1627 			empty_cpu_map = cpu_map__dummy_new();
1628 			if (empty_cpu_map == NULL)
1629 				return -ENOMEM;
1630 		}
1631 
1632 		cpus = empty_cpu_map;
1633 	}
1634 
1635 	if (threads == NULL) {
1636 		static struct thread_map *empty_thread_map;
1637 
1638 		if (empty_thread_map == NULL) {
1639 			empty_thread_map = thread_map__new_by_tid(-1);
1640 			if (empty_thread_map == NULL)
1641 				return -ENOMEM;
1642 		}
1643 
1644 		threads = empty_thread_map;
1645 	}
1646 
1647 	if (evsel->system_wide)
1648 		nthreads = 1;
1649 	else
1650 		nthreads = threads->nr;
1651 
1652 	if (evsel->fd == NULL &&
1653 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1654 		return -ENOMEM;
1655 
1656 	if (evsel->cgrp) {
1657 		flags |= PERF_FLAG_PID_CGROUP;
1658 		pid = evsel->cgrp->fd;
1659 	}
1660 
1661 fallback_missing_features:
1662 	if (perf_missing_features.clockid_wrong)
1663 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1664 	if (perf_missing_features.clockid) {
1665 		evsel->attr.use_clockid = 0;
1666 		evsel->attr.clockid = 0;
1667 	}
1668 	if (perf_missing_features.cloexec)
1669 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1670 	if (perf_missing_features.mmap2)
1671 		evsel->attr.mmap2 = 0;
1672 	if (perf_missing_features.exclude_guest)
1673 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1674 	if (perf_missing_features.lbr_flags)
1675 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1676 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1677 	if (perf_missing_features.group_read && evsel->attr.inherit)
1678 		evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1679 retry_sample_id:
1680 	if (perf_missing_features.sample_id_all)
1681 		evsel->attr.sample_id_all = 0;
1682 
1683 	if (verbose >= 2) {
1684 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1685 		fprintf(stderr, "perf_event_attr:\n");
1686 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1687 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1688 	}
1689 
1690 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1691 
1692 		for (thread = 0; thread < nthreads; thread++) {
1693 			int fd, group_fd;
1694 
1695 			if (!evsel->cgrp && !evsel->system_wide)
1696 				pid = thread_map__pid(threads, thread);
1697 
1698 			group_fd = get_group_fd(evsel, cpu, thread);
1699 retry_open:
1700 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1701 				  pid, cpus->map[cpu], group_fd, flags);
1702 
1703 			test_attr__ready();
1704 
1705 			fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1706 						 group_fd, flags);
1707 
1708 			FD(evsel, cpu, thread) = fd;
1709 
1710 			if (fd < 0) {
1711 				err = -errno;
1712 
1713 				if (ignore_missing_thread(evsel, threads, thread, err)) {
1714 					/*
1715 					 * We just removed 1 thread, so take a step
1716 					 * back on thread index and lower the upper
1717 					 * nthreads limit.
1718 					 */
1719 					nthreads--;
1720 					thread--;
1721 
1722 					/* ... and pretend like nothing have happened. */
1723 					err = 0;
1724 					continue;
1725 				}
1726 
1727 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1728 					  err);
1729 				goto try_fallback;
1730 			}
1731 
1732 			pr_debug2(" = %d\n", fd);
1733 
1734 			if (evsel->bpf_fd >= 0) {
1735 				int evt_fd = fd;
1736 				int bpf_fd = evsel->bpf_fd;
1737 
1738 				err = ioctl(evt_fd,
1739 					    PERF_EVENT_IOC_SET_BPF,
1740 					    bpf_fd);
1741 				if (err && errno != EEXIST) {
1742 					pr_err("failed to attach bpf fd %d: %s\n",
1743 					       bpf_fd, strerror(errno));
1744 					err = -EINVAL;
1745 					goto out_close;
1746 				}
1747 			}
1748 
1749 			set_rlimit = NO_CHANGE;
1750 
1751 			/*
1752 			 * If we succeeded but had to kill clockid, fail and
1753 			 * have perf_evsel__open_strerror() print us a nice
1754 			 * error.
1755 			 */
1756 			if (perf_missing_features.clockid ||
1757 			    perf_missing_features.clockid_wrong) {
1758 				err = -EINVAL;
1759 				goto out_close;
1760 			}
1761 		}
1762 	}
1763 
1764 	return 0;
1765 
1766 try_fallback:
1767 	/*
1768 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1769 	 * of them try to increase the limits.
1770 	 */
1771 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1772 		struct rlimit l;
1773 		int old_errno = errno;
1774 
1775 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1776 			if (set_rlimit == NO_CHANGE)
1777 				l.rlim_cur = l.rlim_max;
1778 			else {
1779 				l.rlim_cur = l.rlim_max + 1000;
1780 				l.rlim_max = l.rlim_cur;
1781 			}
1782 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1783 				set_rlimit++;
1784 				errno = old_errno;
1785 				goto retry_open;
1786 			}
1787 		}
1788 		errno = old_errno;
1789 	}
1790 
1791 	if (err != -EINVAL || cpu > 0 || thread > 0)
1792 		goto out_close;
1793 
1794 	/*
1795 	 * Must probe features in the order they were added to the
1796 	 * perf_event_attr interface.
1797 	 */
1798 	if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1799 		perf_missing_features.write_backward = true;
1800 		pr_debug2("switching off write_backward\n");
1801 		goto out_close;
1802 	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1803 		perf_missing_features.clockid_wrong = true;
1804 		pr_debug2("switching off clockid\n");
1805 		goto fallback_missing_features;
1806 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1807 		perf_missing_features.clockid = true;
1808 		pr_debug2("switching off use_clockid\n");
1809 		goto fallback_missing_features;
1810 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1811 		perf_missing_features.cloexec = true;
1812 		pr_debug2("switching off cloexec flag\n");
1813 		goto fallback_missing_features;
1814 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1815 		perf_missing_features.mmap2 = true;
1816 		pr_debug2("switching off mmap2\n");
1817 		goto fallback_missing_features;
1818 	} else if (!perf_missing_features.exclude_guest &&
1819 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1820 		perf_missing_features.exclude_guest = true;
1821 		pr_debug2("switching off exclude_guest, exclude_host\n");
1822 		goto fallback_missing_features;
1823 	} else if (!perf_missing_features.sample_id_all) {
1824 		perf_missing_features.sample_id_all = true;
1825 		pr_debug2("switching off sample_id_all\n");
1826 		goto retry_sample_id;
1827 	} else if (!perf_missing_features.lbr_flags &&
1828 			(evsel->attr.branch_sample_type &
1829 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1830 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1831 		perf_missing_features.lbr_flags = true;
1832 		pr_debug2("switching off branch sample type no (cycles/flags)\n");
1833 		goto fallback_missing_features;
1834 	} else if (!perf_missing_features.group_read &&
1835 		    evsel->attr.inherit &&
1836 		   (evsel->attr.read_format & PERF_FORMAT_GROUP)) {
1837 		perf_missing_features.group_read = true;
1838 		pr_debug2("switching off group read\n");
1839 		goto fallback_missing_features;
1840 	}
1841 out_close:
1842 	do {
1843 		while (--thread >= 0) {
1844 			close(FD(evsel, cpu, thread));
1845 			FD(evsel, cpu, thread) = -1;
1846 		}
1847 		thread = nthreads;
1848 	} while (--cpu >= 0);
1849 	return err;
1850 }
1851 
1852 void perf_evsel__close(struct perf_evsel *evsel)
1853 {
1854 	if (evsel->fd == NULL)
1855 		return;
1856 
1857 	perf_evsel__close_fd(evsel);
1858 	perf_evsel__free_fd(evsel);
1859 }
1860 
1861 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1862 			     struct cpu_map *cpus)
1863 {
1864 	return perf_evsel__open(evsel, cpus, NULL);
1865 }
1866 
1867 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1868 				struct thread_map *threads)
1869 {
1870 	return perf_evsel__open(evsel, NULL, threads);
1871 }
1872 
1873 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1874 				       const union perf_event *event,
1875 				       struct perf_sample *sample)
1876 {
1877 	u64 type = evsel->attr.sample_type;
1878 	const u64 *array = event->sample.array;
1879 	bool swapped = evsel->needs_swap;
1880 	union u64_swap u;
1881 
1882 	array += ((event->header.size -
1883 		   sizeof(event->header)) / sizeof(u64)) - 1;
1884 
1885 	if (type & PERF_SAMPLE_IDENTIFIER) {
1886 		sample->id = *array;
1887 		array--;
1888 	}
1889 
1890 	if (type & PERF_SAMPLE_CPU) {
1891 		u.val64 = *array;
1892 		if (swapped) {
1893 			/* undo swap of u64, then swap on individual u32s */
1894 			u.val64 = bswap_64(u.val64);
1895 			u.val32[0] = bswap_32(u.val32[0]);
1896 		}
1897 
1898 		sample->cpu = u.val32[0];
1899 		array--;
1900 	}
1901 
1902 	if (type & PERF_SAMPLE_STREAM_ID) {
1903 		sample->stream_id = *array;
1904 		array--;
1905 	}
1906 
1907 	if (type & PERF_SAMPLE_ID) {
1908 		sample->id = *array;
1909 		array--;
1910 	}
1911 
1912 	if (type & PERF_SAMPLE_TIME) {
1913 		sample->time = *array;
1914 		array--;
1915 	}
1916 
1917 	if (type & PERF_SAMPLE_TID) {
1918 		u.val64 = *array;
1919 		if (swapped) {
1920 			/* undo swap of u64, then swap on individual u32s */
1921 			u.val64 = bswap_64(u.val64);
1922 			u.val32[0] = bswap_32(u.val32[0]);
1923 			u.val32[1] = bswap_32(u.val32[1]);
1924 		}
1925 
1926 		sample->pid = u.val32[0];
1927 		sample->tid = u.val32[1];
1928 		array--;
1929 	}
1930 
1931 	return 0;
1932 }
1933 
1934 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1935 			    u64 size)
1936 {
1937 	return size > max_size || offset + size > endp;
1938 }
1939 
1940 #define OVERFLOW_CHECK(offset, size, max_size)				\
1941 	do {								\
1942 		if (overflow(endp, (max_size), (offset), (size)))	\
1943 			return -EFAULT;					\
1944 	} while (0)
1945 
1946 #define OVERFLOW_CHECK_u64(offset) \
1947 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1948 
1949 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1950 			     struct perf_sample *data)
1951 {
1952 	u64 type = evsel->attr.sample_type;
1953 	bool swapped = evsel->needs_swap;
1954 	const u64 *array;
1955 	u16 max_size = event->header.size;
1956 	const void *endp = (void *)event + max_size;
1957 	u64 sz;
1958 
1959 	/*
1960 	 * used for cross-endian analysis. See git commit 65014ab3
1961 	 * for why this goofiness is needed.
1962 	 */
1963 	union u64_swap u;
1964 
1965 	memset(data, 0, sizeof(*data));
1966 	data->cpu = data->pid = data->tid = -1;
1967 	data->stream_id = data->id = data->time = -1ULL;
1968 	data->period = evsel->attr.sample_period;
1969 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1970 
1971 	if (event->header.type != PERF_RECORD_SAMPLE) {
1972 		if (!evsel->attr.sample_id_all)
1973 			return 0;
1974 		return perf_evsel__parse_id_sample(evsel, event, data);
1975 	}
1976 
1977 	array = event->sample.array;
1978 
1979 	/*
1980 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1981 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1982 	 * check the format does not go past the end of the event.
1983 	 */
1984 	if (evsel->sample_size + sizeof(event->header) > event->header.size)
1985 		return -EFAULT;
1986 
1987 	data->id = -1ULL;
1988 	if (type & PERF_SAMPLE_IDENTIFIER) {
1989 		data->id = *array;
1990 		array++;
1991 	}
1992 
1993 	if (type & PERF_SAMPLE_IP) {
1994 		data->ip = *array;
1995 		array++;
1996 	}
1997 
1998 	if (type & PERF_SAMPLE_TID) {
1999 		u.val64 = *array;
2000 		if (swapped) {
2001 			/* undo swap of u64, then swap on individual u32s */
2002 			u.val64 = bswap_64(u.val64);
2003 			u.val32[0] = bswap_32(u.val32[0]);
2004 			u.val32[1] = bswap_32(u.val32[1]);
2005 		}
2006 
2007 		data->pid = u.val32[0];
2008 		data->tid = u.val32[1];
2009 		array++;
2010 	}
2011 
2012 	if (type & PERF_SAMPLE_TIME) {
2013 		data->time = *array;
2014 		array++;
2015 	}
2016 
2017 	data->addr = 0;
2018 	if (type & PERF_SAMPLE_ADDR) {
2019 		data->addr = *array;
2020 		array++;
2021 	}
2022 
2023 	if (type & PERF_SAMPLE_ID) {
2024 		data->id = *array;
2025 		array++;
2026 	}
2027 
2028 	if (type & PERF_SAMPLE_STREAM_ID) {
2029 		data->stream_id = *array;
2030 		array++;
2031 	}
2032 
2033 	if (type & PERF_SAMPLE_CPU) {
2034 
2035 		u.val64 = *array;
2036 		if (swapped) {
2037 			/* undo swap of u64, then swap on individual u32s */
2038 			u.val64 = bswap_64(u.val64);
2039 			u.val32[0] = bswap_32(u.val32[0]);
2040 		}
2041 
2042 		data->cpu = u.val32[0];
2043 		array++;
2044 	}
2045 
2046 	if (type & PERF_SAMPLE_PERIOD) {
2047 		data->period = *array;
2048 		array++;
2049 	}
2050 
2051 	if (type & PERF_SAMPLE_READ) {
2052 		u64 read_format = evsel->attr.read_format;
2053 
2054 		OVERFLOW_CHECK_u64(array);
2055 		if (read_format & PERF_FORMAT_GROUP)
2056 			data->read.group.nr = *array;
2057 		else
2058 			data->read.one.value = *array;
2059 
2060 		array++;
2061 
2062 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2063 			OVERFLOW_CHECK_u64(array);
2064 			data->read.time_enabled = *array;
2065 			array++;
2066 		}
2067 
2068 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2069 			OVERFLOW_CHECK_u64(array);
2070 			data->read.time_running = *array;
2071 			array++;
2072 		}
2073 
2074 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2075 		if (read_format & PERF_FORMAT_GROUP) {
2076 			const u64 max_group_nr = UINT64_MAX /
2077 					sizeof(struct sample_read_value);
2078 
2079 			if (data->read.group.nr > max_group_nr)
2080 				return -EFAULT;
2081 			sz = data->read.group.nr *
2082 			     sizeof(struct sample_read_value);
2083 			OVERFLOW_CHECK(array, sz, max_size);
2084 			data->read.group.values =
2085 					(struct sample_read_value *)array;
2086 			array = (void *)array + sz;
2087 		} else {
2088 			OVERFLOW_CHECK_u64(array);
2089 			data->read.one.id = *array;
2090 			array++;
2091 		}
2092 	}
2093 
2094 	if (type & PERF_SAMPLE_CALLCHAIN) {
2095 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2096 
2097 		OVERFLOW_CHECK_u64(array);
2098 		data->callchain = (struct ip_callchain *)array++;
2099 		if (data->callchain->nr > max_callchain_nr)
2100 			return -EFAULT;
2101 		sz = data->callchain->nr * sizeof(u64);
2102 		OVERFLOW_CHECK(array, sz, max_size);
2103 		array = (void *)array + sz;
2104 	}
2105 
2106 	if (type & PERF_SAMPLE_RAW) {
2107 		OVERFLOW_CHECK_u64(array);
2108 		u.val64 = *array;
2109 		if (WARN_ONCE(swapped,
2110 			      "Endianness of raw data not corrected!\n")) {
2111 			/* undo swap of u64, then swap on individual u32s */
2112 			u.val64 = bswap_64(u.val64);
2113 			u.val32[0] = bswap_32(u.val32[0]);
2114 			u.val32[1] = bswap_32(u.val32[1]);
2115 		}
2116 		data->raw_size = u.val32[0];
2117 		array = (void *)array + sizeof(u32);
2118 
2119 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2120 		data->raw_data = (void *)array;
2121 		array = (void *)array + data->raw_size;
2122 	}
2123 
2124 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2125 		const u64 max_branch_nr = UINT64_MAX /
2126 					  sizeof(struct branch_entry);
2127 
2128 		OVERFLOW_CHECK_u64(array);
2129 		data->branch_stack = (struct branch_stack *)array++;
2130 
2131 		if (data->branch_stack->nr > max_branch_nr)
2132 			return -EFAULT;
2133 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2134 		OVERFLOW_CHECK(array, sz, max_size);
2135 		array = (void *)array + sz;
2136 	}
2137 
2138 	if (type & PERF_SAMPLE_REGS_USER) {
2139 		OVERFLOW_CHECK_u64(array);
2140 		data->user_regs.abi = *array;
2141 		array++;
2142 
2143 		if (data->user_regs.abi) {
2144 			u64 mask = evsel->attr.sample_regs_user;
2145 
2146 			sz = hweight_long(mask) * sizeof(u64);
2147 			OVERFLOW_CHECK(array, sz, max_size);
2148 			data->user_regs.mask = mask;
2149 			data->user_regs.regs = (u64 *)array;
2150 			array = (void *)array + sz;
2151 		}
2152 	}
2153 
2154 	if (type & PERF_SAMPLE_STACK_USER) {
2155 		OVERFLOW_CHECK_u64(array);
2156 		sz = *array++;
2157 
2158 		data->user_stack.offset = ((char *)(array - 1)
2159 					  - (char *) event);
2160 
2161 		if (!sz) {
2162 			data->user_stack.size = 0;
2163 		} else {
2164 			OVERFLOW_CHECK(array, sz, max_size);
2165 			data->user_stack.data = (char *)array;
2166 			array = (void *)array + sz;
2167 			OVERFLOW_CHECK_u64(array);
2168 			data->user_stack.size = *array++;
2169 			if (WARN_ONCE(data->user_stack.size > sz,
2170 				      "user stack dump failure\n"))
2171 				return -EFAULT;
2172 		}
2173 	}
2174 
2175 	if (type & PERF_SAMPLE_WEIGHT) {
2176 		OVERFLOW_CHECK_u64(array);
2177 		data->weight = *array;
2178 		array++;
2179 	}
2180 
2181 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2182 	if (type & PERF_SAMPLE_DATA_SRC) {
2183 		OVERFLOW_CHECK_u64(array);
2184 		data->data_src = *array;
2185 		array++;
2186 	}
2187 
2188 	data->transaction = 0;
2189 	if (type & PERF_SAMPLE_TRANSACTION) {
2190 		OVERFLOW_CHECK_u64(array);
2191 		data->transaction = *array;
2192 		array++;
2193 	}
2194 
2195 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2196 	if (type & PERF_SAMPLE_REGS_INTR) {
2197 		OVERFLOW_CHECK_u64(array);
2198 		data->intr_regs.abi = *array;
2199 		array++;
2200 
2201 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2202 			u64 mask = evsel->attr.sample_regs_intr;
2203 
2204 			sz = hweight_long(mask) * sizeof(u64);
2205 			OVERFLOW_CHECK(array, sz, max_size);
2206 			data->intr_regs.mask = mask;
2207 			data->intr_regs.regs = (u64 *)array;
2208 			array = (void *)array + sz;
2209 		}
2210 	}
2211 
2212 	data->phys_addr = 0;
2213 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2214 		data->phys_addr = *array;
2215 		array++;
2216 	}
2217 
2218 	return 0;
2219 }
2220 
2221 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2222 				     u64 read_format)
2223 {
2224 	size_t sz, result = sizeof(struct sample_event);
2225 
2226 	if (type & PERF_SAMPLE_IDENTIFIER)
2227 		result += sizeof(u64);
2228 
2229 	if (type & PERF_SAMPLE_IP)
2230 		result += sizeof(u64);
2231 
2232 	if (type & PERF_SAMPLE_TID)
2233 		result += sizeof(u64);
2234 
2235 	if (type & PERF_SAMPLE_TIME)
2236 		result += sizeof(u64);
2237 
2238 	if (type & PERF_SAMPLE_ADDR)
2239 		result += sizeof(u64);
2240 
2241 	if (type & PERF_SAMPLE_ID)
2242 		result += sizeof(u64);
2243 
2244 	if (type & PERF_SAMPLE_STREAM_ID)
2245 		result += sizeof(u64);
2246 
2247 	if (type & PERF_SAMPLE_CPU)
2248 		result += sizeof(u64);
2249 
2250 	if (type & PERF_SAMPLE_PERIOD)
2251 		result += sizeof(u64);
2252 
2253 	if (type & PERF_SAMPLE_READ) {
2254 		result += sizeof(u64);
2255 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2256 			result += sizeof(u64);
2257 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2258 			result += sizeof(u64);
2259 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2260 		if (read_format & PERF_FORMAT_GROUP) {
2261 			sz = sample->read.group.nr *
2262 			     sizeof(struct sample_read_value);
2263 			result += sz;
2264 		} else {
2265 			result += sizeof(u64);
2266 		}
2267 	}
2268 
2269 	if (type & PERF_SAMPLE_CALLCHAIN) {
2270 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2271 		result += sz;
2272 	}
2273 
2274 	if (type & PERF_SAMPLE_RAW) {
2275 		result += sizeof(u32);
2276 		result += sample->raw_size;
2277 	}
2278 
2279 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2280 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2281 		sz += sizeof(u64);
2282 		result += sz;
2283 	}
2284 
2285 	if (type & PERF_SAMPLE_REGS_USER) {
2286 		if (sample->user_regs.abi) {
2287 			result += sizeof(u64);
2288 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2289 			result += sz;
2290 		} else {
2291 			result += sizeof(u64);
2292 		}
2293 	}
2294 
2295 	if (type & PERF_SAMPLE_STACK_USER) {
2296 		sz = sample->user_stack.size;
2297 		result += sizeof(u64);
2298 		if (sz) {
2299 			result += sz;
2300 			result += sizeof(u64);
2301 		}
2302 	}
2303 
2304 	if (type & PERF_SAMPLE_WEIGHT)
2305 		result += sizeof(u64);
2306 
2307 	if (type & PERF_SAMPLE_DATA_SRC)
2308 		result += sizeof(u64);
2309 
2310 	if (type & PERF_SAMPLE_TRANSACTION)
2311 		result += sizeof(u64);
2312 
2313 	if (type & PERF_SAMPLE_REGS_INTR) {
2314 		if (sample->intr_regs.abi) {
2315 			result += sizeof(u64);
2316 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2317 			result += sz;
2318 		} else {
2319 			result += sizeof(u64);
2320 		}
2321 	}
2322 
2323 	if (type & PERF_SAMPLE_PHYS_ADDR)
2324 		result += sizeof(u64);
2325 
2326 	return result;
2327 }
2328 
2329 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2330 				  u64 read_format,
2331 				  const struct perf_sample *sample,
2332 				  bool swapped)
2333 {
2334 	u64 *array;
2335 	size_t sz;
2336 	/*
2337 	 * used for cross-endian analysis. See git commit 65014ab3
2338 	 * for why this goofiness is needed.
2339 	 */
2340 	union u64_swap u;
2341 
2342 	array = event->sample.array;
2343 
2344 	if (type & PERF_SAMPLE_IDENTIFIER) {
2345 		*array = sample->id;
2346 		array++;
2347 	}
2348 
2349 	if (type & PERF_SAMPLE_IP) {
2350 		*array = sample->ip;
2351 		array++;
2352 	}
2353 
2354 	if (type & PERF_SAMPLE_TID) {
2355 		u.val32[0] = sample->pid;
2356 		u.val32[1] = sample->tid;
2357 		if (swapped) {
2358 			/*
2359 			 * Inverse of what is done in perf_evsel__parse_sample
2360 			 */
2361 			u.val32[0] = bswap_32(u.val32[0]);
2362 			u.val32[1] = bswap_32(u.val32[1]);
2363 			u.val64 = bswap_64(u.val64);
2364 		}
2365 
2366 		*array = u.val64;
2367 		array++;
2368 	}
2369 
2370 	if (type & PERF_SAMPLE_TIME) {
2371 		*array = sample->time;
2372 		array++;
2373 	}
2374 
2375 	if (type & PERF_SAMPLE_ADDR) {
2376 		*array = sample->addr;
2377 		array++;
2378 	}
2379 
2380 	if (type & PERF_SAMPLE_ID) {
2381 		*array = sample->id;
2382 		array++;
2383 	}
2384 
2385 	if (type & PERF_SAMPLE_STREAM_ID) {
2386 		*array = sample->stream_id;
2387 		array++;
2388 	}
2389 
2390 	if (type & PERF_SAMPLE_CPU) {
2391 		u.val32[0] = sample->cpu;
2392 		if (swapped) {
2393 			/*
2394 			 * Inverse of what is done in perf_evsel__parse_sample
2395 			 */
2396 			u.val32[0] = bswap_32(u.val32[0]);
2397 			u.val64 = bswap_64(u.val64);
2398 		}
2399 		*array = u.val64;
2400 		array++;
2401 	}
2402 
2403 	if (type & PERF_SAMPLE_PERIOD) {
2404 		*array = sample->period;
2405 		array++;
2406 	}
2407 
2408 	if (type & PERF_SAMPLE_READ) {
2409 		if (read_format & PERF_FORMAT_GROUP)
2410 			*array = sample->read.group.nr;
2411 		else
2412 			*array = sample->read.one.value;
2413 		array++;
2414 
2415 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2416 			*array = sample->read.time_enabled;
2417 			array++;
2418 		}
2419 
2420 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2421 			*array = sample->read.time_running;
2422 			array++;
2423 		}
2424 
2425 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2426 		if (read_format & PERF_FORMAT_GROUP) {
2427 			sz = sample->read.group.nr *
2428 			     sizeof(struct sample_read_value);
2429 			memcpy(array, sample->read.group.values, sz);
2430 			array = (void *)array + sz;
2431 		} else {
2432 			*array = sample->read.one.id;
2433 			array++;
2434 		}
2435 	}
2436 
2437 	if (type & PERF_SAMPLE_CALLCHAIN) {
2438 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2439 		memcpy(array, sample->callchain, sz);
2440 		array = (void *)array + sz;
2441 	}
2442 
2443 	if (type & PERF_SAMPLE_RAW) {
2444 		u.val32[0] = sample->raw_size;
2445 		if (WARN_ONCE(swapped,
2446 			      "Endianness of raw data not corrected!\n")) {
2447 			/*
2448 			 * Inverse of what is done in perf_evsel__parse_sample
2449 			 */
2450 			u.val32[0] = bswap_32(u.val32[0]);
2451 			u.val32[1] = bswap_32(u.val32[1]);
2452 			u.val64 = bswap_64(u.val64);
2453 		}
2454 		*array = u.val64;
2455 		array = (void *)array + sizeof(u32);
2456 
2457 		memcpy(array, sample->raw_data, sample->raw_size);
2458 		array = (void *)array + sample->raw_size;
2459 	}
2460 
2461 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2462 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2463 		sz += sizeof(u64);
2464 		memcpy(array, sample->branch_stack, sz);
2465 		array = (void *)array + sz;
2466 	}
2467 
2468 	if (type & PERF_SAMPLE_REGS_USER) {
2469 		if (sample->user_regs.abi) {
2470 			*array++ = sample->user_regs.abi;
2471 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2472 			memcpy(array, sample->user_regs.regs, sz);
2473 			array = (void *)array + sz;
2474 		} else {
2475 			*array++ = 0;
2476 		}
2477 	}
2478 
2479 	if (type & PERF_SAMPLE_STACK_USER) {
2480 		sz = sample->user_stack.size;
2481 		*array++ = sz;
2482 		if (sz) {
2483 			memcpy(array, sample->user_stack.data, sz);
2484 			array = (void *)array + sz;
2485 			*array++ = sz;
2486 		}
2487 	}
2488 
2489 	if (type & PERF_SAMPLE_WEIGHT) {
2490 		*array = sample->weight;
2491 		array++;
2492 	}
2493 
2494 	if (type & PERF_SAMPLE_DATA_SRC) {
2495 		*array = sample->data_src;
2496 		array++;
2497 	}
2498 
2499 	if (type & PERF_SAMPLE_TRANSACTION) {
2500 		*array = sample->transaction;
2501 		array++;
2502 	}
2503 
2504 	if (type & PERF_SAMPLE_REGS_INTR) {
2505 		if (sample->intr_regs.abi) {
2506 			*array++ = sample->intr_regs.abi;
2507 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2508 			memcpy(array, sample->intr_regs.regs, sz);
2509 			array = (void *)array + sz;
2510 		} else {
2511 			*array++ = 0;
2512 		}
2513 	}
2514 
2515 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2516 		*array = sample->phys_addr;
2517 		array++;
2518 	}
2519 
2520 	return 0;
2521 }
2522 
2523 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2524 {
2525 	return pevent_find_field(evsel->tp_format, name);
2526 }
2527 
2528 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2529 			 const char *name)
2530 {
2531 	struct format_field *field = perf_evsel__field(evsel, name);
2532 	int offset;
2533 
2534 	if (!field)
2535 		return NULL;
2536 
2537 	offset = field->offset;
2538 
2539 	if (field->flags & FIELD_IS_DYNAMIC) {
2540 		offset = *(int *)(sample->raw_data + field->offset);
2541 		offset &= 0xffff;
2542 	}
2543 
2544 	return sample->raw_data + offset;
2545 }
2546 
2547 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2548 			 bool needs_swap)
2549 {
2550 	u64 value;
2551 	void *ptr = sample->raw_data + field->offset;
2552 
2553 	switch (field->size) {
2554 	case 1:
2555 		return *(u8 *)ptr;
2556 	case 2:
2557 		value = *(u16 *)ptr;
2558 		break;
2559 	case 4:
2560 		value = *(u32 *)ptr;
2561 		break;
2562 	case 8:
2563 		memcpy(&value, ptr, sizeof(u64));
2564 		break;
2565 	default:
2566 		return 0;
2567 	}
2568 
2569 	if (!needs_swap)
2570 		return value;
2571 
2572 	switch (field->size) {
2573 	case 2:
2574 		return bswap_16(value);
2575 	case 4:
2576 		return bswap_32(value);
2577 	case 8:
2578 		return bswap_64(value);
2579 	default:
2580 		return 0;
2581 	}
2582 
2583 	return 0;
2584 }
2585 
2586 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2587 		       const char *name)
2588 {
2589 	struct format_field *field = perf_evsel__field(evsel, name);
2590 
2591 	if (!field)
2592 		return 0;
2593 
2594 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2595 }
2596 
2597 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2598 			  char *msg, size_t msgsize)
2599 {
2600 	int paranoid;
2601 
2602 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2603 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2604 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2605 		/*
2606 		 * If it's cycles then fall back to hrtimer based
2607 		 * cpu-clock-tick sw counter, which is always available even if
2608 		 * no PMU support.
2609 		 *
2610 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2611 		 * b0a873e).
2612 		 */
2613 		scnprintf(msg, msgsize, "%s",
2614 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2615 
2616 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2617 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2618 
2619 		zfree(&evsel->name);
2620 		return true;
2621 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2622 		   (paranoid = perf_event_paranoid()) > 1) {
2623 		const char *name = perf_evsel__name(evsel);
2624 		char *new_name;
2625 
2626 		if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2627 			return false;
2628 
2629 		if (evsel->name)
2630 			free(evsel->name);
2631 		evsel->name = new_name;
2632 		scnprintf(msg, msgsize,
2633 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2634 		evsel->attr.exclude_kernel = 1;
2635 
2636 		return true;
2637 	}
2638 
2639 	return false;
2640 }
2641 
2642 static bool find_process(const char *name)
2643 {
2644 	size_t len = strlen(name);
2645 	DIR *dir;
2646 	struct dirent *d;
2647 	int ret = -1;
2648 
2649 	dir = opendir(procfs__mountpoint());
2650 	if (!dir)
2651 		return false;
2652 
2653 	/* Walk through the directory. */
2654 	while (ret && (d = readdir(dir)) != NULL) {
2655 		char path[PATH_MAX];
2656 		char *data;
2657 		size_t size;
2658 
2659 		if ((d->d_type != DT_DIR) ||
2660 		     !strcmp(".", d->d_name) ||
2661 		     !strcmp("..", d->d_name))
2662 			continue;
2663 
2664 		scnprintf(path, sizeof(path), "%s/%s/comm",
2665 			  procfs__mountpoint(), d->d_name);
2666 
2667 		if (filename__read_str(path, &data, &size))
2668 			continue;
2669 
2670 		ret = strncmp(name, data, len);
2671 		free(data);
2672 	}
2673 
2674 	closedir(dir);
2675 	return ret ? false : true;
2676 }
2677 
2678 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2679 			      int err, char *msg, size_t size)
2680 {
2681 	char sbuf[STRERR_BUFSIZE];
2682 	int printed = 0;
2683 
2684 	switch (err) {
2685 	case EPERM:
2686 	case EACCES:
2687 		if (err == EPERM)
2688 			printed = scnprintf(msg, size,
2689 				"No permission to enable %s event.\n\n",
2690 				perf_evsel__name(evsel));
2691 
2692 		return scnprintf(msg + printed, size - printed,
2693 		 "You may not have permission to collect %sstats.\n\n"
2694 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2695 		 "which controls use of the performance events system by\n"
2696 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2697 		 "The current value is %d:\n\n"
2698 		 "  -1: Allow use of (almost) all events by all users\n"
2699 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2700 		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2701 		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2702 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2703 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2704 		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2705 		 "	kernel.perf_event_paranoid = -1\n" ,
2706 				 target->system_wide ? "system-wide " : "",
2707 				 perf_event_paranoid());
2708 	case ENOENT:
2709 		return scnprintf(msg, size, "The %s event is not supported.",
2710 				 perf_evsel__name(evsel));
2711 	case EMFILE:
2712 		return scnprintf(msg, size, "%s",
2713 			 "Too many events are opened.\n"
2714 			 "Probably the maximum number of open file descriptors has been reached.\n"
2715 			 "Hint: Try again after reducing the number of events.\n"
2716 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2717 	case ENOMEM:
2718 		if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2719 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2720 			return scnprintf(msg, size,
2721 					 "Not enough memory to setup event with callchain.\n"
2722 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2723 					 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2724 		break;
2725 	case ENODEV:
2726 		if (target->cpu_list)
2727 			return scnprintf(msg, size, "%s",
2728 	 "No such device - did you specify an out-of-range profile CPU?");
2729 		break;
2730 	case EOPNOTSUPP:
2731 		if (evsel->attr.sample_period != 0)
2732 			return scnprintf(msg, size, "%s",
2733 	"PMU Hardware doesn't support sampling/overflow-interrupts.");
2734 		if (evsel->attr.precise_ip)
2735 			return scnprintf(msg, size, "%s",
2736 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2737 #if defined(__i386__) || defined(__x86_64__)
2738 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2739 			return scnprintf(msg, size, "%s",
2740 	"No hardware sampling interrupt available.\n"
2741 	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2742 #endif
2743 		break;
2744 	case EBUSY:
2745 		if (find_process("oprofiled"))
2746 			return scnprintf(msg, size,
2747 	"The PMU counters are busy/taken by another profiler.\n"
2748 	"We found oprofile daemon running, please stop it and try again.");
2749 		break;
2750 	case EINVAL:
2751 		if (evsel->attr.write_backward && perf_missing_features.write_backward)
2752 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2753 		if (perf_missing_features.clockid)
2754 			return scnprintf(msg, size, "clockid feature not supported.");
2755 		if (perf_missing_features.clockid_wrong)
2756 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2757 		break;
2758 	default:
2759 		break;
2760 	}
2761 
2762 	return scnprintf(msg, size,
2763 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2764 	"/bin/dmesg may provide additional information.\n"
2765 	"No CONFIG_PERF_EVENTS=y kernel support configured?",
2766 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2767 			 perf_evsel__name(evsel));
2768 }
2769 
2770 char *perf_evsel__env_arch(struct perf_evsel *evsel)
2771 {
2772 	if (evsel && evsel->evlist && evsel->evlist->env)
2773 		return evsel->evlist->env->arch;
2774 	return NULL;
2775 }
2776 
2777 char *perf_evsel__env_cpuid(struct perf_evsel *evsel)
2778 {
2779 	if (evsel && evsel->evlist && evsel->evlist->env)
2780 		return evsel->evlist->env->cpuid;
2781 	return NULL;
2782 }
2783