1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <errno.h> 12 #include <inttypes.h> 13 #include <linux/bitops.h> 14 #include <api/fs/fs.h> 15 #include <api/fs/tracing_path.h> 16 #include <traceevent/event-parse.h> 17 #include <linux/hw_breakpoint.h> 18 #include <linux/perf_event.h> 19 #include <linux/compiler.h> 20 #include <linux/err.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include "asm/bug.h" 26 #include "callchain.h" 27 #include "cgroup.h" 28 #include "event.h" 29 #include "evsel.h" 30 #include "evlist.h" 31 #include "util.h" 32 #include "cpumap.h" 33 #include "thread_map.h" 34 #include "target.h" 35 #include "perf_regs.h" 36 #include "debug.h" 37 #include "trace-event.h" 38 #include "stat.h" 39 #include "util/parse-branch-options.h" 40 41 #include "sane_ctype.h" 42 43 static struct { 44 bool sample_id_all; 45 bool exclude_guest; 46 bool mmap2; 47 bool cloexec; 48 bool clockid; 49 bool clockid_wrong; 50 bool lbr_flags; 51 bool write_backward; 52 bool group_read; 53 } perf_missing_features; 54 55 static clockid_t clockid; 56 57 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 58 { 59 return 0; 60 } 61 62 void __weak test_attr__ready(void) { } 63 64 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 65 { 66 } 67 68 static struct { 69 size_t size; 70 int (*init)(struct perf_evsel *evsel); 71 void (*fini)(struct perf_evsel *evsel); 72 } perf_evsel__object = { 73 .size = sizeof(struct perf_evsel), 74 .init = perf_evsel__no_extra_init, 75 .fini = perf_evsel__no_extra_fini, 76 }; 77 78 int perf_evsel__object_config(size_t object_size, 79 int (*init)(struct perf_evsel *evsel), 80 void (*fini)(struct perf_evsel *evsel)) 81 { 82 83 if (object_size == 0) 84 goto set_methods; 85 86 if (perf_evsel__object.size > object_size) 87 return -EINVAL; 88 89 perf_evsel__object.size = object_size; 90 91 set_methods: 92 if (init != NULL) 93 perf_evsel__object.init = init; 94 95 if (fini != NULL) 96 perf_evsel__object.fini = fini; 97 98 return 0; 99 } 100 101 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 102 103 int __perf_evsel__sample_size(u64 sample_type) 104 { 105 u64 mask = sample_type & PERF_SAMPLE_MASK; 106 int size = 0; 107 int i; 108 109 for (i = 0; i < 64; i++) { 110 if (mask & (1ULL << i)) 111 size++; 112 } 113 114 size *= sizeof(u64); 115 116 return size; 117 } 118 119 /** 120 * __perf_evsel__calc_id_pos - calculate id_pos. 121 * @sample_type: sample type 122 * 123 * This function returns the position of the event id (PERF_SAMPLE_ID or 124 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 125 * sample_event. 126 */ 127 static int __perf_evsel__calc_id_pos(u64 sample_type) 128 { 129 int idx = 0; 130 131 if (sample_type & PERF_SAMPLE_IDENTIFIER) 132 return 0; 133 134 if (!(sample_type & PERF_SAMPLE_ID)) 135 return -1; 136 137 if (sample_type & PERF_SAMPLE_IP) 138 idx += 1; 139 140 if (sample_type & PERF_SAMPLE_TID) 141 idx += 1; 142 143 if (sample_type & PERF_SAMPLE_TIME) 144 idx += 1; 145 146 if (sample_type & PERF_SAMPLE_ADDR) 147 idx += 1; 148 149 return idx; 150 } 151 152 /** 153 * __perf_evsel__calc_is_pos - calculate is_pos. 154 * @sample_type: sample type 155 * 156 * This function returns the position (counting backwards) of the event id 157 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 158 * sample_id_all is used there is an id sample appended to non-sample events. 159 */ 160 static int __perf_evsel__calc_is_pos(u64 sample_type) 161 { 162 int idx = 1; 163 164 if (sample_type & PERF_SAMPLE_IDENTIFIER) 165 return 1; 166 167 if (!(sample_type & PERF_SAMPLE_ID)) 168 return -1; 169 170 if (sample_type & PERF_SAMPLE_CPU) 171 idx += 1; 172 173 if (sample_type & PERF_SAMPLE_STREAM_ID) 174 idx += 1; 175 176 return idx; 177 } 178 179 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 180 { 181 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 182 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 183 } 184 185 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 186 enum perf_event_sample_format bit) 187 { 188 if (!(evsel->attr.sample_type & bit)) { 189 evsel->attr.sample_type |= bit; 190 evsel->sample_size += sizeof(u64); 191 perf_evsel__calc_id_pos(evsel); 192 } 193 } 194 195 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 196 enum perf_event_sample_format bit) 197 { 198 if (evsel->attr.sample_type & bit) { 199 evsel->attr.sample_type &= ~bit; 200 evsel->sample_size -= sizeof(u64); 201 perf_evsel__calc_id_pos(evsel); 202 } 203 } 204 205 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 206 bool can_sample_identifier) 207 { 208 if (can_sample_identifier) { 209 perf_evsel__reset_sample_bit(evsel, ID); 210 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 211 } else { 212 perf_evsel__set_sample_bit(evsel, ID); 213 } 214 evsel->attr.read_format |= PERF_FORMAT_ID; 215 } 216 217 /** 218 * perf_evsel__is_function_event - Return whether given evsel is a function 219 * trace event 220 * 221 * @evsel - evsel selector to be tested 222 * 223 * Return %true if event is function trace event 224 */ 225 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 226 { 227 #define FUNCTION_EVENT "ftrace:function" 228 229 return evsel->name && 230 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 231 232 #undef FUNCTION_EVENT 233 } 234 235 void perf_evsel__init(struct perf_evsel *evsel, 236 struct perf_event_attr *attr, int idx) 237 { 238 evsel->idx = idx; 239 evsel->tracking = !idx; 240 evsel->attr = *attr; 241 evsel->leader = evsel; 242 evsel->unit = ""; 243 evsel->scale = 1.0; 244 evsel->evlist = NULL; 245 evsel->bpf_fd = -1; 246 INIT_LIST_HEAD(&evsel->node); 247 INIT_LIST_HEAD(&evsel->config_terms); 248 perf_evsel__object.init(evsel); 249 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 250 perf_evsel__calc_id_pos(evsel); 251 evsel->cmdline_group_boundary = false; 252 evsel->metric_expr = NULL; 253 evsel->metric_name = NULL; 254 evsel->metric_events = NULL; 255 evsel->collect_stat = false; 256 } 257 258 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 259 { 260 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 261 262 if (evsel != NULL) 263 perf_evsel__init(evsel, attr, idx); 264 265 if (perf_evsel__is_bpf_output(evsel)) { 266 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 267 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 268 evsel->attr.sample_period = 1; 269 } 270 271 return evsel; 272 } 273 274 struct perf_evsel *perf_evsel__new_cycles(bool precise) 275 { 276 struct perf_event_attr attr = { 277 .type = PERF_TYPE_HARDWARE, 278 .config = PERF_COUNT_HW_CPU_CYCLES, 279 .exclude_kernel = geteuid() != 0, 280 }; 281 struct perf_evsel *evsel; 282 283 event_attr_init(&attr); 284 285 if (!precise) 286 goto new_event; 287 /* 288 * Unnamed union member, not supported as struct member named 289 * initializer in older compilers such as gcc 4.4.7 290 * 291 * Just for probing the precise_ip: 292 */ 293 attr.sample_period = 1; 294 295 perf_event_attr__set_max_precise_ip(&attr); 296 /* 297 * Now let the usual logic to set up the perf_event_attr defaults 298 * to kick in when we return and before perf_evsel__open() is called. 299 */ 300 attr.sample_period = 0; 301 new_event: 302 evsel = perf_evsel__new(&attr); 303 if (evsel == NULL) 304 goto out; 305 306 /* use asprintf() because free(evsel) assumes name is allocated */ 307 if (asprintf(&evsel->name, "cycles%s%s%.*s", 308 (attr.precise_ip || attr.exclude_kernel) ? ":" : "", 309 attr.exclude_kernel ? "u" : "", 310 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) 311 goto error_free; 312 out: 313 return evsel; 314 error_free: 315 perf_evsel__delete(evsel); 316 evsel = NULL; 317 goto out; 318 } 319 320 /* 321 * Returns pointer with encoded error via <linux/err.h> interface. 322 */ 323 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 324 { 325 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 326 int err = -ENOMEM; 327 328 if (evsel == NULL) { 329 goto out_err; 330 } else { 331 struct perf_event_attr attr = { 332 .type = PERF_TYPE_TRACEPOINT, 333 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 334 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 335 }; 336 337 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 338 goto out_free; 339 340 evsel->tp_format = trace_event__tp_format(sys, name); 341 if (IS_ERR(evsel->tp_format)) { 342 err = PTR_ERR(evsel->tp_format); 343 goto out_free; 344 } 345 346 event_attr_init(&attr); 347 attr.config = evsel->tp_format->id; 348 attr.sample_period = 1; 349 perf_evsel__init(evsel, &attr, idx); 350 } 351 352 return evsel; 353 354 out_free: 355 zfree(&evsel->name); 356 free(evsel); 357 out_err: 358 return ERR_PTR(err); 359 } 360 361 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 362 "cycles", 363 "instructions", 364 "cache-references", 365 "cache-misses", 366 "branches", 367 "branch-misses", 368 "bus-cycles", 369 "stalled-cycles-frontend", 370 "stalled-cycles-backend", 371 "ref-cycles", 372 }; 373 374 static const char *__perf_evsel__hw_name(u64 config) 375 { 376 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 377 return perf_evsel__hw_names[config]; 378 379 return "unknown-hardware"; 380 } 381 382 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 383 { 384 int colon = 0, r = 0; 385 struct perf_event_attr *attr = &evsel->attr; 386 bool exclude_guest_default = false; 387 388 #define MOD_PRINT(context, mod) do { \ 389 if (!attr->exclude_##context) { \ 390 if (!colon) colon = ++r; \ 391 r += scnprintf(bf + r, size - r, "%c", mod); \ 392 } } while(0) 393 394 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 395 MOD_PRINT(kernel, 'k'); 396 MOD_PRINT(user, 'u'); 397 MOD_PRINT(hv, 'h'); 398 exclude_guest_default = true; 399 } 400 401 if (attr->precise_ip) { 402 if (!colon) 403 colon = ++r; 404 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 405 exclude_guest_default = true; 406 } 407 408 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 409 MOD_PRINT(host, 'H'); 410 MOD_PRINT(guest, 'G'); 411 } 412 #undef MOD_PRINT 413 if (colon) 414 bf[colon - 1] = ':'; 415 return r; 416 } 417 418 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 419 { 420 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 421 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 422 } 423 424 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 425 "cpu-clock", 426 "task-clock", 427 "page-faults", 428 "context-switches", 429 "cpu-migrations", 430 "minor-faults", 431 "major-faults", 432 "alignment-faults", 433 "emulation-faults", 434 "dummy", 435 }; 436 437 static const char *__perf_evsel__sw_name(u64 config) 438 { 439 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 440 return perf_evsel__sw_names[config]; 441 return "unknown-software"; 442 } 443 444 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 445 { 446 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 447 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 448 } 449 450 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 451 { 452 int r; 453 454 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 455 456 if (type & HW_BREAKPOINT_R) 457 r += scnprintf(bf + r, size - r, "r"); 458 459 if (type & HW_BREAKPOINT_W) 460 r += scnprintf(bf + r, size - r, "w"); 461 462 if (type & HW_BREAKPOINT_X) 463 r += scnprintf(bf + r, size - r, "x"); 464 465 return r; 466 } 467 468 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 469 { 470 struct perf_event_attr *attr = &evsel->attr; 471 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 472 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 473 } 474 475 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 476 [PERF_EVSEL__MAX_ALIASES] = { 477 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 478 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 479 { "LLC", "L2", }, 480 { "dTLB", "d-tlb", "Data-TLB", }, 481 { "iTLB", "i-tlb", "Instruction-TLB", }, 482 { "branch", "branches", "bpu", "btb", "bpc", }, 483 { "node", }, 484 }; 485 486 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 487 [PERF_EVSEL__MAX_ALIASES] = { 488 { "load", "loads", "read", }, 489 { "store", "stores", "write", }, 490 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 491 }; 492 493 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 494 [PERF_EVSEL__MAX_ALIASES] = { 495 { "refs", "Reference", "ops", "access", }, 496 { "misses", "miss", }, 497 }; 498 499 #define C(x) PERF_COUNT_HW_CACHE_##x 500 #define CACHE_READ (1 << C(OP_READ)) 501 #define CACHE_WRITE (1 << C(OP_WRITE)) 502 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 503 #define COP(x) (1 << x) 504 505 /* 506 * cache operartion stat 507 * L1I : Read and prefetch only 508 * ITLB and BPU : Read-only 509 */ 510 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 511 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 512 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 513 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 514 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 515 [C(ITLB)] = (CACHE_READ), 516 [C(BPU)] = (CACHE_READ), 517 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 518 }; 519 520 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 521 { 522 if (perf_evsel__hw_cache_stat[type] & COP(op)) 523 return true; /* valid */ 524 else 525 return false; /* invalid */ 526 } 527 528 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 529 char *bf, size_t size) 530 { 531 if (result) { 532 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 533 perf_evsel__hw_cache_op[op][0], 534 perf_evsel__hw_cache_result[result][0]); 535 } 536 537 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 538 perf_evsel__hw_cache_op[op][1]); 539 } 540 541 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 542 { 543 u8 op, result, type = (config >> 0) & 0xff; 544 const char *err = "unknown-ext-hardware-cache-type"; 545 546 if (type >= PERF_COUNT_HW_CACHE_MAX) 547 goto out_err; 548 549 op = (config >> 8) & 0xff; 550 err = "unknown-ext-hardware-cache-op"; 551 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 552 goto out_err; 553 554 result = (config >> 16) & 0xff; 555 err = "unknown-ext-hardware-cache-result"; 556 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 557 goto out_err; 558 559 err = "invalid-cache"; 560 if (!perf_evsel__is_cache_op_valid(type, op)) 561 goto out_err; 562 563 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 564 out_err: 565 return scnprintf(bf, size, "%s", err); 566 } 567 568 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 569 { 570 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 571 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 572 } 573 574 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 575 { 576 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 577 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 578 } 579 580 const char *perf_evsel__name(struct perf_evsel *evsel) 581 { 582 char bf[128]; 583 584 if (evsel->name) 585 return evsel->name; 586 587 switch (evsel->attr.type) { 588 case PERF_TYPE_RAW: 589 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 590 break; 591 592 case PERF_TYPE_HARDWARE: 593 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 594 break; 595 596 case PERF_TYPE_HW_CACHE: 597 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 598 break; 599 600 case PERF_TYPE_SOFTWARE: 601 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 602 break; 603 604 case PERF_TYPE_TRACEPOINT: 605 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 606 break; 607 608 case PERF_TYPE_BREAKPOINT: 609 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 610 break; 611 612 default: 613 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 614 evsel->attr.type); 615 break; 616 } 617 618 evsel->name = strdup(bf); 619 620 return evsel->name ?: "unknown"; 621 } 622 623 const char *perf_evsel__group_name(struct perf_evsel *evsel) 624 { 625 return evsel->group_name ?: "anon group"; 626 } 627 628 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 629 { 630 int ret; 631 struct perf_evsel *pos; 632 const char *group_name = perf_evsel__group_name(evsel); 633 634 ret = scnprintf(buf, size, "%s", group_name); 635 636 ret += scnprintf(buf + ret, size - ret, " { %s", 637 perf_evsel__name(evsel)); 638 639 for_each_group_member(pos, evsel) 640 ret += scnprintf(buf + ret, size - ret, ", %s", 641 perf_evsel__name(pos)); 642 643 ret += scnprintf(buf + ret, size - ret, " }"); 644 645 return ret; 646 } 647 648 void perf_evsel__config_callchain(struct perf_evsel *evsel, 649 struct record_opts *opts, 650 struct callchain_param *param) 651 { 652 bool function = perf_evsel__is_function_event(evsel); 653 struct perf_event_attr *attr = &evsel->attr; 654 655 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 656 657 attr->sample_max_stack = param->max_stack; 658 659 if (param->record_mode == CALLCHAIN_LBR) { 660 if (!opts->branch_stack) { 661 if (attr->exclude_user) { 662 pr_warning("LBR callstack option is only available " 663 "to get user callchain information. " 664 "Falling back to framepointers.\n"); 665 } else { 666 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 667 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 668 PERF_SAMPLE_BRANCH_CALL_STACK | 669 PERF_SAMPLE_BRANCH_NO_CYCLES | 670 PERF_SAMPLE_BRANCH_NO_FLAGS; 671 } 672 } else 673 pr_warning("Cannot use LBR callstack with branch stack. " 674 "Falling back to framepointers.\n"); 675 } 676 677 if (param->record_mode == CALLCHAIN_DWARF) { 678 if (!function) { 679 perf_evsel__set_sample_bit(evsel, REGS_USER); 680 perf_evsel__set_sample_bit(evsel, STACK_USER); 681 attr->sample_regs_user = PERF_REGS_MASK; 682 attr->sample_stack_user = param->dump_size; 683 attr->exclude_callchain_user = 1; 684 } else { 685 pr_info("Cannot use DWARF unwind for function trace event," 686 " falling back to framepointers.\n"); 687 } 688 } 689 690 if (function) { 691 pr_info("Disabling user space callchains for function trace event.\n"); 692 attr->exclude_callchain_user = 1; 693 } 694 } 695 696 static void 697 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 698 struct callchain_param *param) 699 { 700 struct perf_event_attr *attr = &evsel->attr; 701 702 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 703 if (param->record_mode == CALLCHAIN_LBR) { 704 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 705 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 706 PERF_SAMPLE_BRANCH_CALL_STACK); 707 } 708 if (param->record_mode == CALLCHAIN_DWARF) { 709 perf_evsel__reset_sample_bit(evsel, REGS_USER); 710 perf_evsel__reset_sample_bit(evsel, STACK_USER); 711 } 712 } 713 714 static void apply_config_terms(struct perf_evsel *evsel, 715 struct record_opts *opts) 716 { 717 struct perf_evsel_config_term *term; 718 struct list_head *config_terms = &evsel->config_terms; 719 struct perf_event_attr *attr = &evsel->attr; 720 struct callchain_param param; 721 u32 dump_size = 0; 722 int max_stack = 0; 723 const char *callgraph_buf = NULL; 724 725 /* callgraph default */ 726 param.record_mode = callchain_param.record_mode; 727 728 list_for_each_entry(term, config_terms, list) { 729 switch (term->type) { 730 case PERF_EVSEL__CONFIG_TERM_PERIOD: 731 attr->sample_period = term->val.period; 732 attr->freq = 0; 733 break; 734 case PERF_EVSEL__CONFIG_TERM_FREQ: 735 attr->sample_freq = term->val.freq; 736 attr->freq = 1; 737 break; 738 case PERF_EVSEL__CONFIG_TERM_TIME: 739 if (term->val.time) 740 perf_evsel__set_sample_bit(evsel, TIME); 741 else 742 perf_evsel__reset_sample_bit(evsel, TIME); 743 break; 744 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 745 callgraph_buf = term->val.callgraph; 746 break; 747 case PERF_EVSEL__CONFIG_TERM_BRANCH: 748 if (term->val.branch && strcmp(term->val.branch, "no")) { 749 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 750 parse_branch_str(term->val.branch, 751 &attr->branch_sample_type); 752 } else 753 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 754 break; 755 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 756 dump_size = term->val.stack_user; 757 break; 758 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 759 max_stack = term->val.max_stack; 760 break; 761 case PERF_EVSEL__CONFIG_TERM_INHERIT: 762 /* 763 * attr->inherit should has already been set by 764 * perf_evsel__config. If user explicitly set 765 * inherit using config terms, override global 766 * opt->no_inherit setting. 767 */ 768 attr->inherit = term->val.inherit ? 1 : 0; 769 break; 770 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 771 attr->write_backward = term->val.overwrite ? 1 : 0; 772 break; 773 default: 774 break; 775 } 776 } 777 778 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 779 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 780 if (max_stack) { 781 param.max_stack = max_stack; 782 if (callgraph_buf == NULL) 783 callgraph_buf = "fp"; 784 } 785 786 /* parse callgraph parameters */ 787 if (callgraph_buf != NULL) { 788 if (!strcmp(callgraph_buf, "no")) { 789 param.enabled = false; 790 param.record_mode = CALLCHAIN_NONE; 791 } else { 792 param.enabled = true; 793 if (parse_callchain_record(callgraph_buf, ¶m)) { 794 pr_err("per-event callgraph setting for %s failed. " 795 "Apply callgraph global setting for it\n", 796 evsel->name); 797 return; 798 } 799 } 800 } 801 if (dump_size > 0) { 802 dump_size = round_up(dump_size, sizeof(u64)); 803 param.dump_size = dump_size; 804 } 805 806 /* If global callgraph set, clear it */ 807 if (callchain_param.enabled) 808 perf_evsel__reset_callgraph(evsel, &callchain_param); 809 810 /* set perf-event callgraph */ 811 if (param.enabled) 812 perf_evsel__config_callchain(evsel, opts, ¶m); 813 } 814 } 815 816 /* 817 * The enable_on_exec/disabled value strategy: 818 * 819 * 1) For any type of traced program: 820 * - all independent events and group leaders are disabled 821 * - all group members are enabled 822 * 823 * Group members are ruled by group leaders. They need to 824 * be enabled, because the group scheduling relies on that. 825 * 826 * 2) For traced programs executed by perf: 827 * - all independent events and group leaders have 828 * enable_on_exec set 829 * - we don't specifically enable or disable any event during 830 * the record command 831 * 832 * Independent events and group leaders are initially disabled 833 * and get enabled by exec. Group members are ruled by group 834 * leaders as stated in 1). 835 * 836 * 3) For traced programs attached by perf (pid/tid): 837 * - we specifically enable or disable all events during 838 * the record command 839 * 840 * When attaching events to already running traced we 841 * enable/disable events specifically, as there's no 842 * initial traced exec call. 843 */ 844 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 845 struct callchain_param *callchain) 846 { 847 struct perf_evsel *leader = evsel->leader; 848 struct perf_event_attr *attr = &evsel->attr; 849 int track = evsel->tracking; 850 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 851 852 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 853 attr->inherit = !opts->no_inherit; 854 attr->write_backward = opts->overwrite ? 1 : 0; 855 856 perf_evsel__set_sample_bit(evsel, IP); 857 perf_evsel__set_sample_bit(evsel, TID); 858 859 if (evsel->sample_read) { 860 perf_evsel__set_sample_bit(evsel, READ); 861 862 /* 863 * We need ID even in case of single event, because 864 * PERF_SAMPLE_READ process ID specific data. 865 */ 866 perf_evsel__set_sample_id(evsel, false); 867 868 /* 869 * Apply group format only if we belong to group 870 * with more than one members. 871 */ 872 if (leader->nr_members > 1) { 873 attr->read_format |= PERF_FORMAT_GROUP; 874 attr->inherit = 0; 875 } 876 } 877 878 /* 879 * We default some events to have a default interval. But keep 880 * it a weak assumption overridable by the user. 881 */ 882 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 883 opts->user_interval != ULLONG_MAX)) { 884 if (opts->freq) { 885 perf_evsel__set_sample_bit(evsel, PERIOD); 886 attr->freq = 1; 887 attr->sample_freq = opts->freq; 888 } else { 889 attr->sample_period = opts->default_interval; 890 } 891 } 892 893 /* 894 * Disable sampling for all group members other 895 * than leader in case leader 'leads' the sampling. 896 */ 897 if ((leader != evsel) && leader->sample_read) { 898 attr->sample_freq = 0; 899 attr->sample_period = 0; 900 } 901 902 if (opts->no_samples) 903 attr->sample_freq = 0; 904 905 if (opts->inherit_stat) { 906 evsel->attr.read_format |= 907 PERF_FORMAT_TOTAL_TIME_ENABLED | 908 PERF_FORMAT_TOTAL_TIME_RUNNING | 909 PERF_FORMAT_ID; 910 attr->inherit_stat = 1; 911 } 912 913 if (opts->sample_address) { 914 perf_evsel__set_sample_bit(evsel, ADDR); 915 attr->mmap_data = track; 916 } 917 918 /* 919 * We don't allow user space callchains for function trace 920 * event, due to issues with page faults while tracing page 921 * fault handler and its overall trickiness nature. 922 */ 923 if (perf_evsel__is_function_event(evsel)) 924 evsel->attr.exclude_callchain_user = 1; 925 926 if (callchain && callchain->enabled && !evsel->no_aux_samples) 927 perf_evsel__config_callchain(evsel, opts, callchain); 928 929 if (opts->sample_intr_regs) { 930 attr->sample_regs_intr = opts->sample_intr_regs; 931 perf_evsel__set_sample_bit(evsel, REGS_INTR); 932 } 933 934 if (target__has_cpu(&opts->target) || opts->sample_cpu) 935 perf_evsel__set_sample_bit(evsel, CPU); 936 937 if (opts->period) 938 perf_evsel__set_sample_bit(evsel, PERIOD); 939 940 /* 941 * When the user explicitly disabled time don't force it here. 942 */ 943 if (opts->sample_time && 944 (!perf_missing_features.sample_id_all && 945 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 946 opts->sample_time_set))) 947 perf_evsel__set_sample_bit(evsel, TIME); 948 949 if (opts->raw_samples && !evsel->no_aux_samples) { 950 perf_evsel__set_sample_bit(evsel, TIME); 951 perf_evsel__set_sample_bit(evsel, RAW); 952 perf_evsel__set_sample_bit(evsel, CPU); 953 } 954 955 if (opts->sample_address) 956 perf_evsel__set_sample_bit(evsel, DATA_SRC); 957 958 if (opts->sample_phys_addr) 959 perf_evsel__set_sample_bit(evsel, PHYS_ADDR); 960 961 if (opts->no_buffering) { 962 attr->watermark = 0; 963 attr->wakeup_events = 1; 964 } 965 if (opts->branch_stack && !evsel->no_aux_samples) { 966 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 967 attr->branch_sample_type = opts->branch_stack; 968 } 969 970 if (opts->sample_weight) 971 perf_evsel__set_sample_bit(evsel, WEIGHT); 972 973 attr->task = track; 974 attr->mmap = track; 975 attr->mmap2 = track && !perf_missing_features.mmap2; 976 attr->comm = track; 977 978 if (opts->record_namespaces) 979 attr->namespaces = track; 980 981 if (opts->record_switch_events) 982 attr->context_switch = track; 983 984 if (opts->sample_transaction) 985 perf_evsel__set_sample_bit(evsel, TRANSACTION); 986 987 if (opts->running_time) { 988 evsel->attr.read_format |= 989 PERF_FORMAT_TOTAL_TIME_ENABLED | 990 PERF_FORMAT_TOTAL_TIME_RUNNING; 991 } 992 993 /* 994 * XXX see the function comment above 995 * 996 * Disabling only independent events or group leaders, 997 * keeping group members enabled. 998 */ 999 if (perf_evsel__is_group_leader(evsel)) 1000 attr->disabled = 1; 1001 1002 /* 1003 * Setting enable_on_exec for independent events and 1004 * group leaders for traced executed by perf. 1005 */ 1006 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 1007 !opts->initial_delay) 1008 attr->enable_on_exec = 1; 1009 1010 if (evsel->immediate) { 1011 attr->disabled = 0; 1012 attr->enable_on_exec = 0; 1013 } 1014 1015 clockid = opts->clockid; 1016 if (opts->use_clockid) { 1017 attr->use_clockid = 1; 1018 attr->clockid = opts->clockid; 1019 } 1020 1021 if (evsel->precise_max) 1022 perf_event_attr__set_max_precise_ip(attr); 1023 1024 if (opts->all_user) { 1025 attr->exclude_kernel = 1; 1026 attr->exclude_user = 0; 1027 } 1028 1029 if (opts->all_kernel) { 1030 attr->exclude_kernel = 0; 1031 attr->exclude_user = 1; 1032 } 1033 1034 /* 1035 * Apply event specific term settings, 1036 * it overloads any global configuration. 1037 */ 1038 apply_config_terms(evsel, opts); 1039 1040 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1041 } 1042 1043 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1044 { 1045 if (evsel->system_wide) 1046 nthreads = 1; 1047 1048 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1049 1050 if (evsel->fd) { 1051 int cpu, thread; 1052 for (cpu = 0; cpu < ncpus; cpu++) { 1053 for (thread = 0; thread < nthreads; thread++) { 1054 FD(evsel, cpu, thread) = -1; 1055 } 1056 } 1057 } 1058 1059 return evsel->fd != NULL ? 0 : -ENOMEM; 1060 } 1061 1062 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, 1063 int ioc, void *arg) 1064 { 1065 int cpu, thread; 1066 1067 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 1068 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) { 1069 int fd = FD(evsel, cpu, thread), 1070 err = ioctl(fd, ioc, arg); 1071 1072 if (err) 1073 return err; 1074 } 1075 } 1076 1077 return 0; 1078 } 1079 1080 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter) 1081 { 1082 return perf_evsel__run_ioctl(evsel, 1083 PERF_EVENT_IOC_SET_FILTER, 1084 (void *)filter); 1085 } 1086 1087 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1088 { 1089 char *new_filter = strdup(filter); 1090 1091 if (new_filter != NULL) { 1092 free(evsel->filter); 1093 evsel->filter = new_filter; 1094 return 0; 1095 } 1096 1097 return -1; 1098 } 1099 1100 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1101 const char *fmt, const char *filter) 1102 { 1103 char *new_filter; 1104 1105 if (evsel->filter == NULL) 1106 return perf_evsel__set_filter(evsel, filter); 1107 1108 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1109 free(evsel->filter); 1110 evsel->filter = new_filter; 1111 return 0; 1112 } 1113 1114 return -1; 1115 } 1116 1117 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1118 { 1119 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1120 } 1121 1122 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1123 { 1124 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1125 } 1126 1127 int perf_evsel__enable(struct perf_evsel *evsel) 1128 { 1129 return perf_evsel__run_ioctl(evsel, 1130 PERF_EVENT_IOC_ENABLE, 1131 0); 1132 } 1133 1134 int perf_evsel__disable(struct perf_evsel *evsel) 1135 { 1136 return perf_evsel__run_ioctl(evsel, 1137 PERF_EVENT_IOC_DISABLE, 1138 0); 1139 } 1140 1141 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1142 { 1143 if (ncpus == 0 || nthreads == 0) 1144 return 0; 1145 1146 if (evsel->system_wide) 1147 nthreads = 1; 1148 1149 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1150 if (evsel->sample_id == NULL) 1151 return -ENOMEM; 1152 1153 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1154 if (evsel->id == NULL) { 1155 xyarray__delete(evsel->sample_id); 1156 evsel->sample_id = NULL; 1157 return -ENOMEM; 1158 } 1159 1160 return 0; 1161 } 1162 1163 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1164 { 1165 xyarray__delete(evsel->fd); 1166 evsel->fd = NULL; 1167 } 1168 1169 static void perf_evsel__free_id(struct perf_evsel *evsel) 1170 { 1171 xyarray__delete(evsel->sample_id); 1172 evsel->sample_id = NULL; 1173 zfree(&evsel->id); 1174 } 1175 1176 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1177 { 1178 struct perf_evsel_config_term *term, *h; 1179 1180 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1181 list_del(&term->list); 1182 free(term); 1183 } 1184 } 1185 1186 void perf_evsel__close_fd(struct perf_evsel *evsel) 1187 { 1188 int cpu, thread; 1189 1190 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) 1191 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) { 1192 close(FD(evsel, cpu, thread)); 1193 FD(evsel, cpu, thread) = -1; 1194 } 1195 } 1196 1197 void perf_evsel__exit(struct perf_evsel *evsel) 1198 { 1199 assert(list_empty(&evsel->node)); 1200 assert(evsel->evlist == NULL); 1201 perf_evsel__free_fd(evsel); 1202 perf_evsel__free_id(evsel); 1203 perf_evsel__free_config_terms(evsel); 1204 close_cgroup(evsel->cgrp); 1205 cpu_map__put(evsel->cpus); 1206 cpu_map__put(evsel->own_cpus); 1207 thread_map__put(evsel->threads); 1208 zfree(&evsel->group_name); 1209 zfree(&evsel->name); 1210 perf_evsel__object.fini(evsel); 1211 } 1212 1213 void perf_evsel__delete(struct perf_evsel *evsel) 1214 { 1215 perf_evsel__exit(evsel); 1216 free(evsel); 1217 } 1218 1219 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1220 struct perf_counts_values *count) 1221 { 1222 struct perf_counts_values tmp; 1223 1224 if (!evsel->prev_raw_counts) 1225 return; 1226 1227 if (cpu == -1) { 1228 tmp = evsel->prev_raw_counts->aggr; 1229 evsel->prev_raw_counts->aggr = *count; 1230 } else { 1231 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1232 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1233 } 1234 1235 count->val = count->val - tmp.val; 1236 count->ena = count->ena - tmp.ena; 1237 count->run = count->run - tmp.run; 1238 } 1239 1240 void perf_counts_values__scale(struct perf_counts_values *count, 1241 bool scale, s8 *pscaled) 1242 { 1243 s8 scaled = 0; 1244 1245 if (scale) { 1246 if (count->run == 0) { 1247 scaled = -1; 1248 count->val = 0; 1249 } else if (count->run < count->ena) { 1250 scaled = 1; 1251 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1252 } 1253 } else 1254 count->ena = count->run = 0; 1255 1256 if (pscaled) 1257 *pscaled = scaled; 1258 } 1259 1260 static int perf_evsel__read_size(struct perf_evsel *evsel) 1261 { 1262 u64 read_format = evsel->attr.read_format; 1263 int entry = sizeof(u64); /* value */ 1264 int size = 0; 1265 int nr = 1; 1266 1267 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1268 size += sizeof(u64); 1269 1270 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1271 size += sizeof(u64); 1272 1273 if (read_format & PERF_FORMAT_ID) 1274 entry += sizeof(u64); 1275 1276 if (read_format & PERF_FORMAT_GROUP) { 1277 nr = evsel->nr_members; 1278 size += sizeof(u64); 1279 } 1280 1281 size += entry * nr; 1282 return size; 1283 } 1284 1285 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1286 struct perf_counts_values *count) 1287 { 1288 size_t size = perf_evsel__read_size(evsel); 1289 1290 memset(count, 0, sizeof(*count)); 1291 1292 if (FD(evsel, cpu, thread) < 0) 1293 return -EINVAL; 1294 1295 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0) 1296 return -errno; 1297 1298 return 0; 1299 } 1300 1301 static int 1302 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread) 1303 { 1304 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread); 1305 1306 return perf_evsel__read(evsel, cpu, thread, count); 1307 } 1308 1309 static void 1310 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread, 1311 u64 val, u64 ena, u64 run) 1312 { 1313 struct perf_counts_values *count; 1314 1315 count = perf_counts(counter->counts, cpu, thread); 1316 1317 count->val = val; 1318 count->ena = ena; 1319 count->run = run; 1320 count->loaded = true; 1321 } 1322 1323 static int 1324 perf_evsel__process_group_data(struct perf_evsel *leader, 1325 int cpu, int thread, u64 *data) 1326 { 1327 u64 read_format = leader->attr.read_format; 1328 struct sample_read_value *v; 1329 u64 nr, ena = 0, run = 0, i; 1330 1331 nr = *data++; 1332 1333 if (nr != (u64) leader->nr_members) 1334 return -EINVAL; 1335 1336 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1337 ena = *data++; 1338 1339 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1340 run = *data++; 1341 1342 v = (struct sample_read_value *) data; 1343 1344 perf_evsel__set_count(leader, cpu, thread, 1345 v[0].value, ena, run); 1346 1347 for (i = 1; i < nr; i++) { 1348 struct perf_evsel *counter; 1349 1350 counter = perf_evlist__id2evsel(leader->evlist, v[i].id); 1351 if (!counter) 1352 return -EINVAL; 1353 1354 perf_evsel__set_count(counter, cpu, thread, 1355 v[i].value, ena, run); 1356 } 1357 1358 return 0; 1359 } 1360 1361 static int 1362 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread) 1363 { 1364 struct perf_stat_evsel *ps = leader->priv; 1365 u64 read_format = leader->attr.read_format; 1366 int size = perf_evsel__read_size(leader); 1367 u64 *data = ps->group_data; 1368 1369 if (!(read_format & PERF_FORMAT_ID)) 1370 return -EINVAL; 1371 1372 if (!perf_evsel__is_group_leader(leader)) 1373 return -EINVAL; 1374 1375 if (!data) { 1376 data = zalloc(size); 1377 if (!data) 1378 return -ENOMEM; 1379 1380 ps->group_data = data; 1381 } 1382 1383 if (FD(leader, cpu, thread) < 0) 1384 return -EINVAL; 1385 1386 if (readn(FD(leader, cpu, thread), data, size) <= 0) 1387 return -errno; 1388 1389 return perf_evsel__process_group_data(leader, cpu, thread, data); 1390 } 1391 1392 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread) 1393 { 1394 u64 read_format = evsel->attr.read_format; 1395 1396 if (read_format & PERF_FORMAT_GROUP) 1397 return perf_evsel__read_group(evsel, cpu, thread); 1398 else 1399 return perf_evsel__read_one(evsel, cpu, thread); 1400 } 1401 1402 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1403 int cpu, int thread, bool scale) 1404 { 1405 struct perf_counts_values count; 1406 size_t nv = scale ? 3 : 1; 1407 1408 if (FD(evsel, cpu, thread) < 0) 1409 return -EINVAL; 1410 1411 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1412 return -ENOMEM; 1413 1414 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1415 return -errno; 1416 1417 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1418 perf_counts_values__scale(&count, scale, NULL); 1419 *perf_counts(evsel->counts, cpu, thread) = count; 1420 return 0; 1421 } 1422 1423 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1424 { 1425 struct perf_evsel *leader = evsel->leader; 1426 int fd; 1427 1428 if (perf_evsel__is_group_leader(evsel)) 1429 return -1; 1430 1431 /* 1432 * Leader must be already processed/open, 1433 * if not it's a bug. 1434 */ 1435 BUG_ON(!leader->fd); 1436 1437 fd = FD(leader, cpu, thread); 1438 BUG_ON(fd == -1); 1439 1440 return fd; 1441 } 1442 1443 struct bit_names { 1444 int bit; 1445 const char *name; 1446 }; 1447 1448 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1449 { 1450 bool first_bit = true; 1451 int i = 0; 1452 1453 do { 1454 if (value & bits[i].bit) { 1455 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1456 first_bit = false; 1457 } 1458 } while (bits[++i].name != NULL); 1459 } 1460 1461 static void __p_sample_type(char *buf, size_t size, u64 value) 1462 { 1463 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1464 struct bit_names bits[] = { 1465 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1466 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1467 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1468 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1469 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1470 bit_name(WEIGHT), bit_name(PHYS_ADDR), 1471 { .name = NULL, } 1472 }; 1473 #undef bit_name 1474 __p_bits(buf, size, value, bits); 1475 } 1476 1477 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1478 { 1479 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1480 struct bit_names bits[] = { 1481 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1482 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1483 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1484 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1485 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1486 { .name = NULL, } 1487 }; 1488 #undef bit_name 1489 __p_bits(buf, size, value, bits); 1490 } 1491 1492 static void __p_read_format(char *buf, size_t size, u64 value) 1493 { 1494 #define bit_name(n) { PERF_FORMAT_##n, #n } 1495 struct bit_names bits[] = { 1496 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1497 bit_name(ID), bit_name(GROUP), 1498 { .name = NULL, } 1499 }; 1500 #undef bit_name 1501 __p_bits(buf, size, value, bits); 1502 } 1503 1504 #define BUF_SIZE 1024 1505 1506 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1507 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1508 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1509 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1510 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1511 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1512 1513 #define PRINT_ATTRn(_n, _f, _p) \ 1514 do { \ 1515 if (attr->_f) { \ 1516 _p(attr->_f); \ 1517 ret += attr__fprintf(fp, _n, buf, priv);\ 1518 } \ 1519 } while (0) 1520 1521 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1522 1523 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1524 attr__fprintf_f attr__fprintf, void *priv) 1525 { 1526 char buf[BUF_SIZE]; 1527 int ret = 0; 1528 1529 PRINT_ATTRf(type, p_unsigned); 1530 PRINT_ATTRf(size, p_unsigned); 1531 PRINT_ATTRf(config, p_hex); 1532 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1533 PRINT_ATTRf(sample_type, p_sample_type); 1534 PRINT_ATTRf(read_format, p_read_format); 1535 1536 PRINT_ATTRf(disabled, p_unsigned); 1537 PRINT_ATTRf(inherit, p_unsigned); 1538 PRINT_ATTRf(pinned, p_unsigned); 1539 PRINT_ATTRf(exclusive, p_unsigned); 1540 PRINT_ATTRf(exclude_user, p_unsigned); 1541 PRINT_ATTRf(exclude_kernel, p_unsigned); 1542 PRINT_ATTRf(exclude_hv, p_unsigned); 1543 PRINT_ATTRf(exclude_idle, p_unsigned); 1544 PRINT_ATTRf(mmap, p_unsigned); 1545 PRINT_ATTRf(comm, p_unsigned); 1546 PRINT_ATTRf(freq, p_unsigned); 1547 PRINT_ATTRf(inherit_stat, p_unsigned); 1548 PRINT_ATTRf(enable_on_exec, p_unsigned); 1549 PRINT_ATTRf(task, p_unsigned); 1550 PRINT_ATTRf(watermark, p_unsigned); 1551 PRINT_ATTRf(precise_ip, p_unsigned); 1552 PRINT_ATTRf(mmap_data, p_unsigned); 1553 PRINT_ATTRf(sample_id_all, p_unsigned); 1554 PRINT_ATTRf(exclude_host, p_unsigned); 1555 PRINT_ATTRf(exclude_guest, p_unsigned); 1556 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1557 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1558 PRINT_ATTRf(mmap2, p_unsigned); 1559 PRINT_ATTRf(comm_exec, p_unsigned); 1560 PRINT_ATTRf(use_clockid, p_unsigned); 1561 PRINT_ATTRf(context_switch, p_unsigned); 1562 PRINT_ATTRf(write_backward, p_unsigned); 1563 1564 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1565 PRINT_ATTRf(bp_type, p_unsigned); 1566 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1567 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1568 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1569 PRINT_ATTRf(sample_regs_user, p_hex); 1570 PRINT_ATTRf(sample_stack_user, p_unsigned); 1571 PRINT_ATTRf(clockid, p_signed); 1572 PRINT_ATTRf(sample_regs_intr, p_hex); 1573 PRINT_ATTRf(aux_watermark, p_unsigned); 1574 PRINT_ATTRf(sample_max_stack, p_unsigned); 1575 1576 return ret; 1577 } 1578 1579 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1580 void *priv __maybe_unused) 1581 { 1582 return fprintf(fp, " %-32s %s\n", name, val); 1583 } 1584 1585 static bool ignore_missing_thread(struct perf_evsel *evsel, 1586 struct thread_map *threads, 1587 int thread, int err) 1588 { 1589 if (!evsel->ignore_missing_thread) 1590 return false; 1591 1592 /* The system wide setup does not work with threads. */ 1593 if (evsel->system_wide) 1594 return false; 1595 1596 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1597 if (err != -ESRCH) 1598 return false; 1599 1600 /* If there's only one thread, let it fail. */ 1601 if (threads->nr == 1) 1602 return false; 1603 1604 if (thread_map__remove(threads, thread)) 1605 return false; 1606 1607 pr_warning("WARNING: Ignored open failure for pid %d\n", 1608 thread_map__pid(threads, thread)); 1609 return true; 1610 } 1611 1612 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1613 struct thread_map *threads) 1614 { 1615 int cpu, thread, nthreads; 1616 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1617 int pid = -1, err; 1618 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1619 1620 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1621 return -EINVAL; 1622 1623 if (cpus == NULL) { 1624 static struct cpu_map *empty_cpu_map; 1625 1626 if (empty_cpu_map == NULL) { 1627 empty_cpu_map = cpu_map__dummy_new(); 1628 if (empty_cpu_map == NULL) 1629 return -ENOMEM; 1630 } 1631 1632 cpus = empty_cpu_map; 1633 } 1634 1635 if (threads == NULL) { 1636 static struct thread_map *empty_thread_map; 1637 1638 if (empty_thread_map == NULL) { 1639 empty_thread_map = thread_map__new_by_tid(-1); 1640 if (empty_thread_map == NULL) 1641 return -ENOMEM; 1642 } 1643 1644 threads = empty_thread_map; 1645 } 1646 1647 if (evsel->system_wide) 1648 nthreads = 1; 1649 else 1650 nthreads = threads->nr; 1651 1652 if (evsel->fd == NULL && 1653 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1654 return -ENOMEM; 1655 1656 if (evsel->cgrp) { 1657 flags |= PERF_FLAG_PID_CGROUP; 1658 pid = evsel->cgrp->fd; 1659 } 1660 1661 fallback_missing_features: 1662 if (perf_missing_features.clockid_wrong) 1663 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1664 if (perf_missing_features.clockid) { 1665 evsel->attr.use_clockid = 0; 1666 evsel->attr.clockid = 0; 1667 } 1668 if (perf_missing_features.cloexec) 1669 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1670 if (perf_missing_features.mmap2) 1671 evsel->attr.mmap2 = 0; 1672 if (perf_missing_features.exclude_guest) 1673 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1674 if (perf_missing_features.lbr_flags) 1675 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1676 PERF_SAMPLE_BRANCH_NO_CYCLES); 1677 if (perf_missing_features.group_read && evsel->attr.inherit) 1678 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); 1679 retry_sample_id: 1680 if (perf_missing_features.sample_id_all) 1681 evsel->attr.sample_id_all = 0; 1682 1683 if (verbose >= 2) { 1684 fprintf(stderr, "%.60s\n", graph_dotted_line); 1685 fprintf(stderr, "perf_event_attr:\n"); 1686 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1687 fprintf(stderr, "%.60s\n", graph_dotted_line); 1688 } 1689 1690 for (cpu = 0; cpu < cpus->nr; cpu++) { 1691 1692 for (thread = 0; thread < nthreads; thread++) { 1693 int fd, group_fd; 1694 1695 if (!evsel->cgrp && !evsel->system_wide) 1696 pid = thread_map__pid(threads, thread); 1697 1698 group_fd = get_group_fd(evsel, cpu, thread); 1699 retry_open: 1700 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1701 pid, cpus->map[cpu], group_fd, flags); 1702 1703 test_attr__ready(); 1704 1705 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu], 1706 group_fd, flags); 1707 1708 FD(evsel, cpu, thread) = fd; 1709 1710 if (fd < 0) { 1711 err = -errno; 1712 1713 if (ignore_missing_thread(evsel, threads, thread, err)) { 1714 /* 1715 * We just removed 1 thread, so take a step 1716 * back on thread index and lower the upper 1717 * nthreads limit. 1718 */ 1719 nthreads--; 1720 thread--; 1721 1722 /* ... and pretend like nothing have happened. */ 1723 err = 0; 1724 continue; 1725 } 1726 1727 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1728 err); 1729 goto try_fallback; 1730 } 1731 1732 pr_debug2(" = %d\n", fd); 1733 1734 if (evsel->bpf_fd >= 0) { 1735 int evt_fd = fd; 1736 int bpf_fd = evsel->bpf_fd; 1737 1738 err = ioctl(evt_fd, 1739 PERF_EVENT_IOC_SET_BPF, 1740 bpf_fd); 1741 if (err && errno != EEXIST) { 1742 pr_err("failed to attach bpf fd %d: %s\n", 1743 bpf_fd, strerror(errno)); 1744 err = -EINVAL; 1745 goto out_close; 1746 } 1747 } 1748 1749 set_rlimit = NO_CHANGE; 1750 1751 /* 1752 * If we succeeded but had to kill clockid, fail and 1753 * have perf_evsel__open_strerror() print us a nice 1754 * error. 1755 */ 1756 if (perf_missing_features.clockid || 1757 perf_missing_features.clockid_wrong) { 1758 err = -EINVAL; 1759 goto out_close; 1760 } 1761 } 1762 } 1763 1764 return 0; 1765 1766 try_fallback: 1767 /* 1768 * perf stat needs between 5 and 22 fds per CPU. When we run out 1769 * of them try to increase the limits. 1770 */ 1771 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1772 struct rlimit l; 1773 int old_errno = errno; 1774 1775 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1776 if (set_rlimit == NO_CHANGE) 1777 l.rlim_cur = l.rlim_max; 1778 else { 1779 l.rlim_cur = l.rlim_max + 1000; 1780 l.rlim_max = l.rlim_cur; 1781 } 1782 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1783 set_rlimit++; 1784 errno = old_errno; 1785 goto retry_open; 1786 } 1787 } 1788 errno = old_errno; 1789 } 1790 1791 if (err != -EINVAL || cpu > 0 || thread > 0) 1792 goto out_close; 1793 1794 /* 1795 * Must probe features in the order they were added to the 1796 * perf_event_attr interface. 1797 */ 1798 if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 1799 perf_missing_features.write_backward = true; 1800 pr_debug2("switching off write_backward\n"); 1801 goto out_close; 1802 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1803 perf_missing_features.clockid_wrong = true; 1804 pr_debug2("switching off clockid\n"); 1805 goto fallback_missing_features; 1806 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1807 perf_missing_features.clockid = true; 1808 pr_debug2("switching off use_clockid\n"); 1809 goto fallback_missing_features; 1810 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1811 perf_missing_features.cloexec = true; 1812 pr_debug2("switching off cloexec flag\n"); 1813 goto fallback_missing_features; 1814 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1815 perf_missing_features.mmap2 = true; 1816 pr_debug2("switching off mmap2\n"); 1817 goto fallback_missing_features; 1818 } else if (!perf_missing_features.exclude_guest && 1819 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1820 perf_missing_features.exclude_guest = true; 1821 pr_debug2("switching off exclude_guest, exclude_host\n"); 1822 goto fallback_missing_features; 1823 } else if (!perf_missing_features.sample_id_all) { 1824 perf_missing_features.sample_id_all = true; 1825 pr_debug2("switching off sample_id_all\n"); 1826 goto retry_sample_id; 1827 } else if (!perf_missing_features.lbr_flags && 1828 (evsel->attr.branch_sample_type & 1829 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1830 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1831 perf_missing_features.lbr_flags = true; 1832 pr_debug2("switching off branch sample type no (cycles/flags)\n"); 1833 goto fallback_missing_features; 1834 } else if (!perf_missing_features.group_read && 1835 evsel->attr.inherit && 1836 (evsel->attr.read_format & PERF_FORMAT_GROUP)) { 1837 perf_missing_features.group_read = true; 1838 pr_debug2("switching off group read\n"); 1839 goto fallback_missing_features; 1840 } 1841 out_close: 1842 do { 1843 while (--thread >= 0) { 1844 close(FD(evsel, cpu, thread)); 1845 FD(evsel, cpu, thread) = -1; 1846 } 1847 thread = nthreads; 1848 } while (--cpu >= 0); 1849 return err; 1850 } 1851 1852 void perf_evsel__close(struct perf_evsel *evsel) 1853 { 1854 if (evsel->fd == NULL) 1855 return; 1856 1857 perf_evsel__close_fd(evsel); 1858 perf_evsel__free_fd(evsel); 1859 } 1860 1861 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1862 struct cpu_map *cpus) 1863 { 1864 return perf_evsel__open(evsel, cpus, NULL); 1865 } 1866 1867 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1868 struct thread_map *threads) 1869 { 1870 return perf_evsel__open(evsel, NULL, threads); 1871 } 1872 1873 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1874 const union perf_event *event, 1875 struct perf_sample *sample) 1876 { 1877 u64 type = evsel->attr.sample_type; 1878 const u64 *array = event->sample.array; 1879 bool swapped = evsel->needs_swap; 1880 union u64_swap u; 1881 1882 array += ((event->header.size - 1883 sizeof(event->header)) / sizeof(u64)) - 1; 1884 1885 if (type & PERF_SAMPLE_IDENTIFIER) { 1886 sample->id = *array; 1887 array--; 1888 } 1889 1890 if (type & PERF_SAMPLE_CPU) { 1891 u.val64 = *array; 1892 if (swapped) { 1893 /* undo swap of u64, then swap on individual u32s */ 1894 u.val64 = bswap_64(u.val64); 1895 u.val32[0] = bswap_32(u.val32[0]); 1896 } 1897 1898 sample->cpu = u.val32[0]; 1899 array--; 1900 } 1901 1902 if (type & PERF_SAMPLE_STREAM_ID) { 1903 sample->stream_id = *array; 1904 array--; 1905 } 1906 1907 if (type & PERF_SAMPLE_ID) { 1908 sample->id = *array; 1909 array--; 1910 } 1911 1912 if (type & PERF_SAMPLE_TIME) { 1913 sample->time = *array; 1914 array--; 1915 } 1916 1917 if (type & PERF_SAMPLE_TID) { 1918 u.val64 = *array; 1919 if (swapped) { 1920 /* undo swap of u64, then swap on individual u32s */ 1921 u.val64 = bswap_64(u.val64); 1922 u.val32[0] = bswap_32(u.val32[0]); 1923 u.val32[1] = bswap_32(u.val32[1]); 1924 } 1925 1926 sample->pid = u.val32[0]; 1927 sample->tid = u.val32[1]; 1928 array--; 1929 } 1930 1931 return 0; 1932 } 1933 1934 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 1935 u64 size) 1936 { 1937 return size > max_size || offset + size > endp; 1938 } 1939 1940 #define OVERFLOW_CHECK(offset, size, max_size) \ 1941 do { \ 1942 if (overflow(endp, (max_size), (offset), (size))) \ 1943 return -EFAULT; \ 1944 } while (0) 1945 1946 #define OVERFLOW_CHECK_u64(offset) \ 1947 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 1948 1949 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 1950 struct perf_sample *data) 1951 { 1952 u64 type = evsel->attr.sample_type; 1953 bool swapped = evsel->needs_swap; 1954 const u64 *array; 1955 u16 max_size = event->header.size; 1956 const void *endp = (void *)event + max_size; 1957 u64 sz; 1958 1959 /* 1960 * used for cross-endian analysis. See git commit 65014ab3 1961 * for why this goofiness is needed. 1962 */ 1963 union u64_swap u; 1964 1965 memset(data, 0, sizeof(*data)); 1966 data->cpu = data->pid = data->tid = -1; 1967 data->stream_id = data->id = data->time = -1ULL; 1968 data->period = evsel->attr.sample_period; 1969 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1970 1971 if (event->header.type != PERF_RECORD_SAMPLE) { 1972 if (!evsel->attr.sample_id_all) 1973 return 0; 1974 return perf_evsel__parse_id_sample(evsel, event, data); 1975 } 1976 1977 array = event->sample.array; 1978 1979 /* 1980 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 1981 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 1982 * check the format does not go past the end of the event. 1983 */ 1984 if (evsel->sample_size + sizeof(event->header) > event->header.size) 1985 return -EFAULT; 1986 1987 data->id = -1ULL; 1988 if (type & PERF_SAMPLE_IDENTIFIER) { 1989 data->id = *array; 1990 array++; 1991 } 1992 1993 if (type & PERF_SAMPLE_IP) { 1994 data->ip = *array; 1995 array++; 1996 } 1997 1998 if (type & PERF_SAMPLE_TID) { 1999 u.val64 = *array; 2000 if (swapped) { 2001 /* undo swap of u64, then swap on individual u32s */ 2002 u.val64 = bswap_64(u.val64); 2003 u.val32[0] = bswap_32(u.val32[0]); 2004 u.val32[1] = bswap_32(u.val32[1]); 2005 } 2006 2007 data->pid = u.val32[0]; 2008 data->tid = u.val32[1]; 2009 array++; 2010 } 2011 2012 if (type & PERF_SAMPLE_TIME) { 2013 data->time = *array; 2014 array++; 2015 } 2016 2017 data->addr = 0; 2018 if (type & PERF_SAMPLE_ADDR) { 2019 data->addr = *array; 2020 array++; 2021 } 2022 2023 if (type & PERF_SAMPLE_ID) { 2024 data->id = *array; 2025 array++; 2026 } 2027 2028 if (type & PERF_SAMPLE_STREAM_ID) { 2029 data->stream_id = *array; 2030 array++; 2031 } 2032 2033 if (type & PERF_SAMPLE_CPU) { 2034 2035 u.val64 = *array; 2036 if (swapped) { 2037 /* undo swap of u64, then swap on individual u32s */ 2038 u.val64 = bswap_64(u.val64); 2039 u.val32[0] = bswap_32(u.val32[0]); 2040 } 2041 2042 data->cpu = u.val32[0]; 2043 array++; 2044 } 2045 2046 if (type & PERF_SAMPLE_PERIOD) { 2047 data->period = *array; 2048 array++; 2049 } 2050 2051 if (type & PERF_SAMPLE_READ) { 2052 u64 read_format = evsel->attr.read_format; 2053 2054 OVERFLOW_CHECK_u64(array); 2055 if (read_format & PERF_FORMAT_GROUP) 2056 data->read.group.nr = *array; 2057 else 2058 data->read.one.value = *array; 2059 2060 array++; 2061 2062 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2063 OVERFLOW_CHECK_u64(array); 2064 data->read.time_enabled = *array; 2065 array++; 2066 } 2067 2068 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2069 OVERFLOW_CHECK_u64(array); 2070 data->read.time_running = *array; 2071 array++; 2072 } 2073 2074 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2075 if (read_format & PERF_FORMAT_GROUP) { 2076 const u64 max_group_nr = UINT64_MAX / 2077 sizeof(struct sample_read_value); 2078 2079 if (data->read.group.nr > max_group_nr) 2080 return -EFAULT; 2081 sz = data->read.group.nr * 2082 sizeof(struct sample_read_value); 2083 OVERFLOW_CHECK(array, sz, max_size); 2084 data->read.group.values = 2085 (struct sample_read_value *)array; 2086 array = (void *)array + sz; 2087 } else { 2088 OVERFLOW_CHECK_u64(array); 2089 data->read.one.id = *array; 2090 array++; 2091 } 2092 } 2093 2094 if (type & PERF_SAMPLE_CALLCHAIN) { 2095 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 2096 2097 OVERFLOW_CHECK_u64(array); 2098 data->callchain = (struct ip_callchain *)array++; 2099 if (data->callchain->nr > max_callchain_nr) 2100 return -EFAULT; 2101 sz = data->callchain->nr * sizeof(u64); 2102 OVERFLOW_CHECK(array, sz, max_size); 2103 array = (void *)array + sz; 2104 } 2105 2106 if (type & PERF_SAMPLE_RAW) { 2107 OVERFLOW_CHECK_u64(array); 2108 u.val64 = *array; 2109 if (WARN_ONCE(swapped, 2110 "Endianness of raw data not corrected!\n")) { 2111 /* undo swap of u64, then swap on individual u32s */ 2112 u.val64 = bswap_64(u.val64); 2113 u.val32[0] = bswap_32(u.val32[0]); 2114 u.val32[1] = bswap_32(u.val32[1]); 2115 } 2116 data->raw_size = u.val32[0]; 2117 array = (void *)array + sizeof(u32); 2118 2119 OVERFLOW_CHECK(array, data->raw_size, max_size); 2120 data->raw_data = (void *)array; 2121 array = (void *)array + data->raw_size; 2122 } 2123 2124 if (type & PERF_SAMPLE_BRANCH_STACK) { 2125 const u64 max_branch_nr = UINT64_MAX / 2126 sizeof(struct branch_entry); 2127 2128 OVERFLOW_CHECK_u64(array); 2129 data->branch_stack = (struct branch_stack *)array++; 2130 2131 if (data->branch_stack->nr > max_branch_nr) 2132 return -EFAULT; 2133 sz = data->branch_stack->nr * sizeof(struct branch_entry); 2134 OVERFLOW_CHECK(array, sz, max_size); 2135 array = (void *)array + sz; 2136 } 2137 2138 if (type & PERF_SAMPLE_REGS_USER) { 2139 OVERFLOW_CHECK_u64(array); 2140 data->user_regs.abi = *array; 2141 array++; 2142 2143 if (data->user_regs.abi) { 2144 u64 mask = evsel->attr.sample_regs_user; 2145 2146 sz = hweight_long(mask) * sizeof(u64); 2147 OVERFLOW_CHECK(array, sz, max_size); 2148 data->user_regs.mask = mask; 2149 data->user_regs.regs = (u64 *)array; 2150 array = (void *)array + sz; 2151 } 2152 } 2153 2154 if (type & PERF_SAMPLE_STACK_USER) { 2155 OVERFLOW_CHECK_u64(array); 2156 sz = *array++; 2157 2158 data->user_stack.offset = ((char *)(array - 1) 2159 - (char *) event); 2160 2161 if (!sz) { 2162 data->user_stack.size = 0; 2163 } else { 2164 OVERFLOW_CHECK(array, sz, max_size); 2165 data->user_stack.data = (char *)array; 2166 array = (void *)array + sz; 2167 OVERFLOW_CHECK_u64(array); 2168 data->user_stack.size = *array++; 2169 if (WARN_ONCE(data->user_stack.size > sz, 2170 "user stack dump failure\n")) 2171 return -EFAULT; 2172 } 2173 } 2174 2175 if (type & PERF_SAMPLE_WEIGHT) { 2176 OVERFLOW_CHECK_u64(array); 2177 data->weight = *array; 2178 array++; 2179 } 2180 2181 data->data_src = PERF_MEM_DATA_SRC_NONE; 2182 if (type & PERF_SAMPLE_DATA_SRC) { 2183 OVERFLOW_CHECK_u64(array); 2184 data->data_src = *array; 2185 array++; 2186 } 2187 2188 data->transaction = 0; 2189 if (type & PERF_SAMPLE_TRANSACTION) { 2190 OVERFLOW_CHECK_u64(array); 2191 data->transaction = *array; 2192 array++; 2193 } 2194 2195 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2196 if (type & PERF_SAMPLE_REGS_INTR) { 2197 OVERFLOW_CHECK_u64(array); 2198 data->intr_regs.abi = *array; 2199 array++; 2200 2201 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2202 u64 mask = evsel->attr.sample_regs_intr; 2203 2204 sz = hweight_long(mask) * sizeof(u64); 2205 OVERFLOW_CHECK(array, sz, max_size); 2206 data->intr_regs.mask = mask; 2207 data->intr_regs.regs = (u64 *)array; 2208 array = (void *)array + sz; 2209 } 2210 } 2211 2212 data->phys_addr = 0; 2213 if (type & PERF_SAMPLE_PHYS_ADDR) { 2214 data->phys_addr = *array; 2215 array++; 2216 } 2217 2218 return 0; 2219 } 2220 2221 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2222 u64 read_format) 2223 { 2224 size_t sz, result = sizeof(struct sample_event); 2225 2226 if (type & PERF_SAMPLE_IDENTIFIER) 2227 result += sizeof(u64); 2228 2229 if (type & PERF_SAMPLE_IP) 2230 result += sizeof(u64); 2231 2232 if (type & PERF_SAMPLE_TID) 2233 result += sizeof(u64); 2234 2235 if (type & PERF_SAMPLE_TIME) 2236 result += sizeof(u64); 2237 2238 if (type & PERF_SAMPLE_ADDR) 2239 result += sizeof(u64); 2240 2241 if (type & PERF_SAMPLE_ID) 2242 result += sizeof(u64); 2243 2244 if (type & PERF_SAMPLE_STREAM_ID) 2245 result += sizeof(u64); 2246 2247 if (type & PERF_SAMPLE_CPU) 2248 result += sizeof(u64); 2249 2250 if (type & PERF_SAMPLE_PERIOD) 2251 result += sizeof(u64); 2252 2253 if (type & PERF_SAMPLE_READ) { 2254 result += sizeof(u64); 2255 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2256 result += sizeof(u64); 2257 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2258 result += sizeof(u64); 2259 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2260 if (read_format & PERF_FORMAT_GROUP) { 2261 sz = sample->read.group.nr * 2262 sizeof(struct sample_read_value); 2263 result += sz; 2264 } else { 2265 result += sizeof(u64); 2266 } 2267 } 2268 2269 if (type & PERF_SAMPLE_CALLCHAIN) { 2270 sz = (sample->callchain->nr + 1) * sizeof(u64); 2271 result += sz; 2272 } 2273 2274 if (type & PERF_SAMPLE_RAW) { 2275 result += sizeof(u32); 2276 result += sample->raw_size; 2277 } 2278 2279 if (type & PERF_SAMPLE_BRANCH_STACK) { 2280 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2281 sz += sizeof(u64); 2282 result += sz; 2283 } 2284 2285 if (type & PERF_SAMPLE_REGS_USER) { 2286 if (sample->user_regs.abi) { 2287 result += sizeof(u64); 2288 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2289 result += sz; 2290 } else { 2291 result += sizeof(u64); 2292 } 2293 } 2294 2295 if (type & PERF_SAMPLE_STACK_USER) { 2296 sz = sample->user_stack.size; 2297 result += sizeof(u64); 2298 if (sz) { 2299 result += sz; 2300 result += sizeof(u64); 2301 } 2302 } 2303 2304 if (type & PERF_SAMPLE_WEIGHT) 2305 result += sizeof(u64); 2306 2307 if (type & PERF_SAMPLE_DATA_SRC) 2308 result += sizeof(u64); 2309 2310 if (type & PERF_SAMPLE_TRANSACTION) 2311 result += sizeof(u64); 2312 2313 if (type & PERF_SAMPLE_REGS_INTR) { 2314 if (sample->intr_regs.abi) { 2315 result += sizeof(u64); 2316 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2317 result += sz; 2318 } else { 2319 result += sizeof(u64); 2320 } 2321 } 2322 2323 if (type & PERF_SAMPLE_PHYS_ADDR) 2324 result += sizeof(u64); 2325 2326 return result; 2327 } 2328 2329 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2330 u64 read_format, 2331 const struct perf_sample *sample, 2332 bool swapped) 2333 { 2334 u64 *array; 2335 size_t sz; 2336 /* 2337 * used for cross-endian analysis. See git commit 65014ab3 2338 * for why this goofiness is needed. 2339 */ 2340 union u64_swap u; 2341 2342 array = event->sample.array; 2343 2344 if (type & PERF_SAMPLE_IDENTIFIER) { 2345 *array = sample->id; 2346 array++; 2347 } 2348 2349 if (type & PERF_SAMPLE_IP) { 2350 *array = sample->ip; 2351 array++; 2352 } 2353 2354 if (type & PERF_SAMPLE_TID) { 2355 u.val32[0] = sample->pid; 2356 u.val32[1] = sample->tid; 2357 if (swapped) { 2358 /* 2359 * Inverse of what is done in perf_evsel__parse_sample 2360 */ 2361 u.val32[0] = bswap_32(u.val32[0]); 2362 u.val32[1] = bswap_32(u.val32[1]); 2363 u.val64 = bswap_64(u.val64); 2364 } 2365 2366 *array = u.val64; 2367 array++; 2368 } 2369 2370 if (type & PERF_SAMPLE_TIME) { 2371 *array = sample->time; 2372 array++; 2373 } 2374 2375 if (type & PERF_SAMPLE_ADDR) { 2376 *array = sample->addr; 2377 array++; 2378 } 2379 2380 if (type & PERF_SAMPLE_ID) { 2381 *array = sample->id; 2382 array++; 2383 } 2384 2385 if (type & PERF_SAMPLE_STREAM_ID) { 2386 *array = sample->stream_id; 2387 array++; 2388 } 2389 2390 if (type & PERF_SAMPLE_CPU) { 2391 u.val32[0] = sample->cpu; 2392 if (swapped) { 2393 /* 2394 * Inverse of what is done in perf_evsel__parse_sample 2395 */ 2396 u.val32[0] = bswap_32(u.val32[0]); 2397 u.val64 = bswap_64(u.val64); 2398 } 2399 *array = u.val64; 2400 array++; 2401 } 2402 2403 if (type & PERF_SAMPLE_PERIOD) { 2404 *array = sample->period; 2405 array++; 2406 } 2407 2408 if (type & PERF_SAMPLE_READ) { 2409 if (read_format & PERF_FORMAT_GROUP) 2410 *array = sample->read.group.nr; 2411 else 2412 *array = sample->read.one.value; 2413 array++; 2414 2415 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2416 *array = sample->read.time_enabled; 2417 array++; 2418 } 2419 2420 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2421 *array = sample->read.time_running; 2422 array++; 2423 } 2424 2425 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2426 if (read_format & PERF_FORMAT_GROUP) { 2427 sz = sample->read.group.nr * 2428 sizeof(struct sample_read_value); 2429 memcpy(array, sample->read.group.values, sz); 2430 array = (void *)array + sz; 2431 } else { 2432 *array = sample->read.one.id; 2433 array++; 2434 } 2435 } 2436 2437 if (type & PERF_SAMPLE_CALLCHAIN) { 2438 sz = (sample->callchain->nr + 1) * sizeof(u64); 2439 memcpy(array, sample->callchain, sz); 2440 array = (void *)array + sz; 2441 } 2442 2443 if (type & PERF_SAMPLE_RAW) { 2444 u.val32[0] = sample->raw_size; 2445 if (WARN_ONCE(swapped, 2446 "Endianness of raw data not corrected!\n")) { 2447 /* 2448 * Inverse of what is done in perf_evsel__parse_sample 2449 */ 2450 u.val32[0] = bswap_32(u.val32[0]); 2451 u.val32[1] = bswap_32(u.val32[1]); 2452 u.val64 = bswap_64(u.val64); 2453 } 2454 *array = u.val64; 2455 array = (void *)array + sizeof(u32); 2456 2457 memcpy(array, sample->raw_data, sample->raw_size); 2458 array = (void *)array + sample->raw_size; 2459 } 2460 2461 if (type & PERF_SAMPLE_BRANCH_STACK) { 2462 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2463 sz += sizeof(u64); 2464 memcpy(array, sample->branch_stack, sz); 2465 array = (void *)array + sz; 2466 } 2467 2468 if (type & PERF_SAMPLE_REGS_USER) { 2469 if (sample->user_regs.abi) { 2470 *array++ = sample->user_regs.abi; 2471 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2472 memcpy(array, sample->user_regs.regs, sz); 2473 array = (void *)array + sz; 2474 } else { 2475 *array++ = 0; 2476 } 2477 } 2478 2479 if (type & PERF_SAMPLE_STACK_USER) { 2480 sz = sample->user_stack.size; 2481 *array++ = sz; 2482 if (sz) { 2483 memcpy(array, sample->user_stack.data, sz); 2484 array = (void *)array + sz; 2485 *array++ = sz; 2486 } 2487 } 2488 2489 if (type & PERF_SAMPLE_WEIGHT) { 2490 *array = sample->weight; 2491 array++; 2492 } 2493 2494 if (type & PERF_SAMPLE_DATA_SRC) { 2495 *array = sample->data_src; 2496 array++; 2497 } 2498 2499 if (type & PERF_SAMPLE_TRANSACTION) { 2500 *array = sample->transaction; 2501 array++; 2502 } 2503 2504 if (type & PERF_SAMPLE_REGS_INTR) { 2505 if (sample->intr_regs.abi) { 2506 *array++ = sample->intr_regs.abi; 2507 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2508 memcpy(array, sample->intr_regs.regs, sz); 2509 array = (void *)array + sz; 2510 } else { 2511 *array++ = 0; 2512 } 2513 } 2514 2515 if (type & PERF_SAMPLE_PHYS_ADDR) { 2516 *array = sample->phys_addr; 2517 array++; 2518 } 2519 2520 return 0; 2521 } 2522 2523 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2524 { 2525 return pevent_find_field(evsel->tp_format, name); 2526 } 2527 2528 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2529 const char *name) 2530 { 2531 struct format_field *field = perf_evsel__field(evsel, name); 2532 int offset; 2533 2534 if (!field) 2535 return NULL; 2536 2537 offset = field->offset; 2538 2539 if (field->flags & FIELD_IS_DYNAMIC) { 2540 offset = *(int *)(sample->raw_data + field->offset); 2541 offset &= 0xffff; 2542 } 2543 2544 return sample->raw_data + offset; 2545 } 2546 2547 u64 format_field__intval(struct format_field *field, struct perf_sample *sample, 2548 bool needs_swap) 2549 { 2550 u64 value; 2551 void *ptr = sample->raw_data + field->offset; 2552 2553 switch (field->size) { 2554 case 1: 2555 return *(u8 *)ptr; 2556 case 2: 2557 value = *(u16 *)ptr; 2558 break; 2559 case 4: 2560 value = *(u32 *)ptr; 2561 break; 2562 case 8: 2563 memcpy(&value, ptr, sizeof(u64)); 2564 break; 2565 default: 2566 return 0; 2567 } 2568 2569 if (!needs_swap) 2570 return value; 2571 2572 switch (field->size) { 2573 case 2: 2574 return bswap_16(value); 2575 case 4: 2576 return bswap_32(value); 2577 case 8: 2578 return bswap_64(value); 2579 default: 2580 return 0; 2581 } 2582 2583 return 0; 2584 } 2585 2586 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2587 const char *name) 2588 { 2589 struct format_field *field = perf_evsel__field(evsel, name); 2590 2591 if (!field) 2592 return 0; 2593 2594 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2595 } 2596 2597 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2598 char *msg, size_t msgsize) 2599 { 2600 int paranoid; 2601 2602 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2603 evsel->attr.type == PERF_TYPE_HARDWARE && 2604 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2605 /* 2606 * If it's cycles then fall back to hrtimer based 2607 * cpu-clock-tick sw counter, which is always available even if 2608 * no PMU support. 2609 * 2610 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2611 * b0a873e). 2612 */ 2613 scnprintf(msg, msgsize, "%s", 2614 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2615 2616 evsel->attr.type = PERF_TYPE_SOFTWARE; 2617 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2618 2619 zfree(&evsel->name); 2620 return true; 2621 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2622 (paranoid = perf_event_paranoid()) > 1) { 2623 const char *name = perf_evsel__name(evsel); 2624 char *new_name; 2625 2626 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0) 2627 return false; 2628 2629 if (evsel->name) 2630 free(evsel->name); 2631 evsel->name = new_name; 2632 scnprintf(msg, msgsize, 2633 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2634 evsel->attr.exclude_kernel = 1; 2635 2636 return true; 2637 } 2638 2639 return false; 2640 } 2641 2642 static bool find_process(const char *name) 2643 { 2644 size_t len = strlen(name); 2645 DIR *dir; 2646 struct dirent *d; 2647 int ret = -1; 2648 2649 dir = opendir(procfs__mountpoint()); 2650 if (!dir) 2651 return false; 2652 2653 /* Walk through the directory. */ 2654 while (ret && (d = readdir(dir)) != NULL) { 2655 char path[PATH_MAX]; 2656 char *data; 2657 size_t size; 2658 2659 if ((d->d_type != DT_DIR) || 2660 !strcmp(".", d->d_name) || 2661 !strcmp("..", d->d_name)) 2662 continue; 2663 2664 scnprintf(path, sizeof(path), "%s/%s/comm", 2665 procfs__mountpoint(), d->d_name); 2666 2667 if (filename__read_str(path, &data, &size)) 2668 continue; 2669 2670 ret = strncmp(name, data, len); 2671 free(data); 2672 } 2673 2674 closedir(dir); 2675 return ret ? false : true; 2676 } 2677 2678 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2679 int err, char *msg, size_t size) 2680 { 2681 char sbuf[STRERR_BUFSIZE]; 2682 int printed = 0; 2683 2684 switch (err) { 2685 case EPERM: 2686 case EACCES: 2687 if (err == EPERM) 2688 printed = scnprintf(msg, size, 2689 "No permission to enable %s event.\n\n", 2690 perf_evsel__name(evsel)); 2691 2692 return scnprintf(msg + printed, size - printed, 2693 "You may not have permission to collect %sstats.\n\n" 2694 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2695 "which controls use of the performance events system by\n" 2696 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2697 "The current value is %d:\n\n" 2698 " -1: Allow use of (almost) all events by all users\n" 2699 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" 2700 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n" 2701 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n" 2702 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2703 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2704 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2705 " kernel.perf_event_paranoid = -1\n" , 2706 target->system_wide ? "system-wide " : "", 2707 perf_event_paranoid()); 2708 case ENOENT: 2709 return scnprintf(msg, size, "The %s event is not supported.", 2710 perf_evsel__name(evsel)); 2711 case EMFILE: 2712 return scnprintf(msg, size, "%s", 2713 "Too many events are opened.\n" 2714 "Probably the maximum number of open file descriptors has been reached.\n" 2715 "Hint: Try again after reducing the number of events.\n" 2716 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2717 case ENOMEM: 2718 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 && 2719 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2720 return scnprintf(msg, size, 2721 "Not enough memory to setup event with callchain.\n" 2722 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2723 "Hint: Current value: %d", sysctl_perf_event_max_stack); 2724 break; 2725 case ENODEV: 2726 if (target->cpu_list) 2727 return scnprintf(msg, size, "%s", 2728 "No such device - did you specify an out-of-range profile CPU?"); 2729 break; 2730 case EOPNOTSUPP: 2731 if (evsel->attr.sample_period != 0) 2732 return scnprintf(msg, size, "%s", 2733 "PMU Hardware doesn't support sampling/overflow-interrupts."); 2734 if (evsel->attr.precise_ip) 2735 return scnprintf(msg, size, "%s", 2736 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2737 #if defined(__i386__) || defined(__x86_64__) 2738 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2739 return scnprintf(msg, size, "%s", 2740 "No hardware sampling interrupt available.\n" 2741 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); 2742 #endif 2743 break; 2744 case EBUSY: 2745 if (find_process("oprofiled")) 2746 return scnprintf(msg, size, 2747 "The PMU counters are busy/taken by another profiler.\n" 2748 "We found oprofile daemon running, please stop it and try again."); 2749 break; 2750 case EINVAL: 2751 if (evsel->attr.write_backward && perf_missing_features.write_backward) 2752 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2753 if (perf_missing_features.clockid) 2754 return scnprintf(msg, size, "clockid feature not supported."); 2755 if (perf_missing_features.clockid_wrong) 2756 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2757 break; 2758 default: 2759 break; 2760 } 2761 2762 return scnprintf(msg, size, 2763 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2764 "/bin/dmesg may provide additional information.\n" 2765 "No CONFIG_PERF_EVENTS=y kernel support configured?", 2766 err, str_error_r(err, sbuf, sizeof(sbuf)), 2767 perf_evsel__name(evsel)); 2768 } 2769 2770 char *perf_evsel__env_arch(struct perf_evsel *evsel) 2771 { 2772 if (evsel && evsel->evlist && evsel->evlist->env) 2773 return evsel->evlist->env->arch; 2774 return NULL; 2775 } 2776 2777 char *perf_evsel__env_cpuid(struct perf_evsel *evsel) 2778 { 2779 if (evsel && evsel->evlist && evsel->evlist->env) 2780 return evsel->evlist->env->cpuid; 2781 return NULL; 2782 } 2783