xref: /openbmc/linux/tools/perf/util/evsel.c (revision 6d99a79c)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "memswap.h"
40 #include "util/parse-branch-options.h"
41 
42 #include "sane_ctype.h"
43 
44 struct perf_missing_features perf_missing_features;
45 
46 static clockid_t clockid;
47 
48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
49 {
50 	return 0;
51 }
52 
53 void __weak test_attr__ready(void) { }
54 
55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
56 {
57 }
58 
59 static struct {
60 	size_t	size;
61 	int	(*init)(struct perf_evsel *evsel);
62 	void	(*fini)(struct perf_evsel *evsel);
63 } perf_evsel__object = {
64 	.size = sizeof(struct perf_evsel),
65 	.init = perf_evsel__no_extra_init,
66 	.fini = perf_evsel__no_extra_fini,
67 };
68 
69 int perf_evsel__object_config(size_t object_size,
70 			      int (*init)(struct perf_evsel *evsel),
71 			      void (*fini)(struct perf_evsel *evsel))
72 {
73 
74 	if (object_size == 0)
75 		goto set_methods;
76 
77 	if (perf_evsel__object.size > object_size)
78 		return -EINVAL;
79 
80 	perf_evsel__object.size = object_size;
81 
82 set_methods:
83 	if (init != NULL)
84 		perf_evsel__object.init = init;
85 
86 	if (fini != NULL)
87 		perf_evsel__object.fini = fini;
88 
89 	return 0;
90 }
91 
92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
93 
94 int __perf_evsel__sample_size(u64 sample_type)
95 {
96 	u64 mask = sample_type & PERF_SAMPLE_MASK;
97 	int size = 0;
98 	int i;
99 
100 	for (i = 0; i < 64; i++) {
101 		if (mask & (1ULL << i))
102 			size++;
103 	}
104 
105 	size *= sizeof(u64);
106 
107 	return size;
108 }
109 
110 /**
111  * __perf_evsel__calc_id_pos - calculate id_pos.
112  * @sample_type: sample type
113  *
114  * This function returns the position of the event id (PERF_SAMPLE_ID or
115  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
116  * sample_event.
117  */
118 static int __perf_evsel__calc_id_pos(u64 sample_type)
119 {
120 	int idx = 0;
121 
122 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
123 		return 0;
124 
125 	if (!(sample_type & PERF_SAMPLE_ID))
126 		return -1;
127 
128 	if (sample_type & PERF_SAMPLE_IP)
129 		idx += 1;
130 
131 	if (sample_type & PERF_SAMPLE_TID)
132 		idx += 1;
133 
134 	if (sample_type & PERF_SAMPLE_TIME)
135 		idx += 1;
136 
137 	if (sample_type & PERF_SAMPLE_ADDR)
138 		idx += 1;
139 
140 	return idx;
141 }
142 
143 /**
144  * __perf_evsel__calc_is_pos - calculate is_pos.
145  * @sample_type: sample type
146  *
147  * This function returns the position (counting backwards) of the event id
148  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
149  * sample_id_all is used there is an id sample appended to non-sample events.
150  */
151 static int __perf_evsel__calc_is_pos(u64 sample_type)
152 {
153 	int idx = 1;
154 
155 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
156 		return 1;
157 
158 	if (!(sample_type & PERF_SAMPLE_ID))
159 		return -1;
160 
161 	if (sample_type & PERF_SAMPLE_CPU)
162 		idx += 1;
163 
164 	if (sample_type & PERF_SAMPLE_STREAM_ID)
165 		idx += 1;
166 
167 	return idx;
168 }
169 
170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
171 {
172 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
173 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
174 }
175 
176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
177 				  enum perf_event_sample_format bit)
178 {
179 	if (!(evsel->attr.sample_type & bit)) {
180 		evsel->attr.sample_type |= bit;
181 		evsel->sample_size += sizeof(u64);
182 		perf_evsel__calc_id_pos(evsel);
183 	}
184 }
185 
186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
187 				    enum perf_event_sample_format bit)
188 {
189 	if (evsel->attr.sample_type & bit) {
190 		evsel->attr.sample_type &= ~bit;
191 		evsel->sample_size -= sizeof(u64);
192 		perf_evsel__calc_id_pos(evsel);
193 	}
194 }
195 
196 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
197 			       bool can_sample_identifier)
198 {
199 	if (can_sample_identifier) {
200 		perf_evsel__reset_sample_bit(evsel, ID);
201 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
202 	} else {
203 		perf_evsel__set_sample_bit(evsel, ID);
204 	}
205 	evsel->attr.read_format |= PERF_FORMAT_ID;
206 }
207 
208 /**
209  * perf_evsel__is_function_event - Return whether given evsel is a function
210  * trace event
211  *
212  * @evsel - evsel selector to be tested
213  *
214  * Return %true if event is function trace event
215  */
216 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
217 {
218 #define FUNCTION_EVENT "ftrace:function"
219 
220 	return evsel->name &&
221 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
222 
223 #undef FUNCTION_EVENT
224 }
225 
226 void perf_evsel__init(struct perf_evsel *evsel,
227 		      struct perf_event_attr *attr, int idx)
228 {
229 	evsel->idx	   = idx;
230 	evsel->tracking	   = !idx;
231 	evsel->attr	   = *attr;
232 	evsel->leader	   = evsel;
233 	evsel->unit	   = "";
234 	evsel->scale	   = 1.0;
235 	evsel->max_events  = ULONG_MAX;
236 	evsel->evlist	   = NULL;
237 	evsel->bpf_fd	   = -1;
238 	INIT_LIST_HEAD(&evsel->node);
239 	INIT_LIST_HEAD(&evsel->config_terms);
240 	perf_evsel__object.init(evsel);
241 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
242 	perf_evsel__calc_id_pos(evsel);
243 	evsel->cmdline_group_boundary = false;
244 	evsel->metric_expr   = NULL;
245 	evsel->metric_name   = NULL;
246 	evsel->metric_events = NULL;
247 	evsel->collect_stat  = false;
248 	evsel->pmu_name      = NULL;
249 }
250 
251 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
252 {
253 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
254 
255 	if (!evsel)
256 		return NULL;
257 	perf_evsel__init(evsel, attr, idx);
258 
259 	if (perf_evsel__is_bpf_output(evsel)) {
260 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
261 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
262 		evsel->attr.sample_period = 1;
263 	}
264 
265 	if (perf_evsel__is_clock(evsel)) {
266 		/*
267 		 * The evsel->unit points to static alias->unit
268 		 * so it's ok to use static string in here.
269 		 */
270 		static const char *unit = "msec";
271 
272 		evsel->unit = unit;
273 		evsel->scale = 1e-6;
274 	}
275 
276 	return evsel;
277 }
278 
279 static bool perf_event_can_profile_kernel(void)
280 {
281 	return geteuid() == 0 || perf_event_paranoid() == -1;
282 }
283 
284 struct perf_evsel *perf_evsel__new_cycles(bool precise)
285 {
286 	struct perf_event_attr attr = {
287 		.type	= PERF_TYPE_HARDWARE,
288 		.config	= PERF_COUNT_HW_CPU_CYCLES,
289 		.exclude_kernel	= !perf_event_can_profile_kernel(),
290 	};
291 	struct perf_evsel *evsel;
292 
293 	event_attr_init(&attr);
294 
295 	if (!precise)
296 		goto new_event;
297 	/*
298 	 * Unnamed union member, not supported as struct member named
299 	 * initializer in older compilers such as gcc 4.4.7
300 	 *
301 	 * Just for probing the precise_ip:
302 	 */
303 	attr.sample_period = 1;
304 
305 	perf_event_attr__set_max_precise_ip(&attr);
306 	/*
307 	 * Now let the usual logic to set up the perf_event_attr defaults
308 	 * to kick in when we return and before perf_evsel__open() is called.
309 	 */
310 	attr.sample_period = 0;
311 new_event:
312 	evsel = perf_evsel__new(&attr);
313 	if (evsel == NULL)
314 		goto out;
315 
316 	/* use asprintf() because free(evsel) assumes name is allocated */
317 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
318 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
319 		     attr.exclude_kernel ? "u" : "",
320 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
321 		goto error_free;
322 out:
323 	return evsel;
324 error_free:
325 	perf_evsel__delete(evsel);
326 	evsel = NULL;
327 	goto out;
328 }
329 
330 /*
331  * Returns pointer with encoded error via <linux/err.h> interface.
332  */
333 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
334 {
335 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
336 	int err = -ENOMEM;
337 
338 	if (evsel == NULL) {
339 		goto out_err;
340 	} else {
341 		struct perf_event_attr attr = {
342 			.type	       = PERF_TYPE_TRACEPOINT,
343 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
344 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
345 		};
346 
347 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
348 			goto out_free;
349 
350 		evsel->tp_format = trace_event__tp_format(sys, name);
351 		if (IS_ERR(evsel->tp_format)) {
352 			err = PTR_ERR(evsel->tp_format);
353 			goto out_free;
354 		}
355 
356 		event_attr_init(&attr);
357 		attr.config = evsel->tp_format->id;
358 		attr.sample_period = 1;
359 		perf_evsel__init(evsel, &attr, idx);
360 	}
361 
362 	return evsel;
363 
364 out_free:
365 	zfree(&evsel->name);
366 	free(evsel);
367 out_err:
368 	return ERR_PTR(err);
369 }
370 
371 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
372 	"cycles",
373 	"instructions",
374 	"cache-references",
375 	"cache-misses",
376 	"branches",
377 	"branch-misses",
378 	"bus-cycles",
379 	"stalled-cycles-frontend",
380 	"stalled-cycles-backend",
381 	"ref-cycles",
382 };
383 
384 static const char *__perf_evsel__hw_name(u64 config)
385 {
386 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
387 		return perf_evsel__hw_names[config];
388 
389 	return "unknown-hardware";
390 }
391 
392 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
393 {
394 	int colon = 0, r = 0;
395 	struct perf_event_attr *attr = &evsel->attr;
396 	bool exclude_guest_default = false;
397 
398 #define MOD_PRINT(context, mod)	do {					\
399 		if (!attr->exclude_##context) {				\
400 			if (!colon) colon = ++r;			\
401 			r += scnprintf(bf + r, size - r, "%c", mod);	\
402 		} } while(0)
403 
404 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
405 		MOD_PRINT(kernel, 'k');
406 		MOD_PRINT(user, 'u');
407 		MOD_PRINT(hv, 'h');
408 		exclude_guest_default = true;
409 	}
410 
411 	if (attr->precise_ip) {
412 		if (!colon)
413 			colon = ++r;
414 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
415 		exclude_guest_default = true;
416 	}
417 
418 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
419 		MOD_PRINT(host, 'H');
420 		MOD_PRINT(guest, 'G');
421 	}
422 #undef MOD_PRINT
423 	if (colon)
424 		bf[colon - 1] = ':';
425 	return r;
426 }
427 
428 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
429 {
430 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
431 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
432 }
433 
434 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
435 	"cpu-clock",
436 	"task-clock",
437 	"page-faults",
438 	"context-switches",
439 	"cpu-migrations",
440 	"minor-faults",
441 	"major-faults",
442 	"alignment-faults",
443 	"emulation-faults",
444 	"dummy",
445 };
446 
447 static const char *__perf_evsel__sw_name(u64 config)
448 {
449 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
450 		return perf_evsel__sw_names[config];
451 	return "unknown-software";
452 }
453 
454 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
455 {
456 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
457 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
458 }
459 
460 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
461 {
462 	int r;
463 
464 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
465 
466 	if (type & HW_BREAKPOINT_R)
467 		r += scnprintf(bf + r, size - r, "r");
468 
469 	if (type & HW_BREAKPOINT_W)
470 		r += scnprintf(bf + r, size - r, "w");
471 
472 	if (type & HW_BREAKPOINT_X)
473 		r += scnprintf(bf + r, size - r, "x");
474 
475 	return r;
476 }
477 
478 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
479 {
480 	struct perf_event_attr *attr = &evsel->attr;
481 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
482 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
483 }
484 
485 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
486 				[PERF_EVSEL__MAX_ALIASES] = {
487  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
488  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
489  { "LLC",	"L2",							},
490  { "dTLB",	"d-tlb",	"Data-TLB",				},
491  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
492  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
493  { "node",								},
494 };
495 
496 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
497 				   [PERF_EVSEL__MAX_ALIASES] = {
498  { "load",	"loads",	"read",					},
499  { "store",	"stores",	"write",				},
500  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
501 };
502 
503 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
504 				       [PERF_EVSEL__MAX_ALIASES] = {
505  { "refs",	"Reference",	"ops",		"access",		},
506  { "misses",	"miss",							},
507 };
508 
509 #define C(x)		PERF_COUNT_HW_CACHE_##x
510 #define CACHE_READ	(1 << C(OP_READ))
511 #define CACHE_WRITE	(1 << C(OP_WRITE))
512 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
513 #define COP(x)		(1 << x)
514 
515 /*
516  * cache operartion stat
517  * L1I : Read and prefetch only
518  * ITLB and BPU : Read-only
519  */
520 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
521  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
522  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
523  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
524  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
525  [C(ITLB)]	= (CACHE_READ),
526  [C(BPU)]	= (CACHE_READ),
527  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
528 };
529 
530 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
531 {
532 	if (perf_evsel__hw_cache_stat[type] & COP(op))
533 		return true;	/* valid */
534 	else
535 		return false;	/* invalid */
536 }
537 
538 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
539 					    char *bf, size_t size)
540 {
541 	if (result) {
542 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
543 				 perf_evsel__hw_cache_op[op][0],
544 				 perf_evsel__hw_cache_result[result][0]);
545 	}
546 
547 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
548 			 perf_evsel__hw_cache_op[op][1]);
549 }
550 
551 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
552 {
553 	u8 op, result, type = (config >>  0) & 0xff;
554 	const char *err = "unknown-ext-hardware-cache-type";
555 
556 	if (type >= PERF_COUNT_HW_CACHE_MAX)
557 		goto out_err;
558 
559 	op = (config >>  8) & 0xff;
560 	err = "unknown-ext-hardware-cache-op";
561 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
562 		goto out_err;
563 
564 	result = (config >> 16) & 0xff;
565 	err = "unknown-ext-hardware-cache-result";
566 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
567 		goto out_err;
568 
569 	err = "invalid-cache";
570 	if (!perf_evsel__is_cache_op_valid(type, op))
571 		goto out_err;
572 
573 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
574 out_err:
575 	return scnprintf(bf, size, "%s", err);
576 }
577 
578 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
579 {
580 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
581 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
582 }
583 
584 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
585 {
586 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
587 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
588 }
589 
590 const char *perf_evsel__name(struct perf_evsel *evsel)
591 {
592 	char bf[128];
593 
594 	if (evsel->name)
595 		return evsel->name;
596 
597 	switch (evsel->attr.type) {
598 	case PERF_TYPE_RAW:
599 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
600 		break;
601 
602 	case PERF_TYPE_HARDWARE:
603 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
604 		break;
605 
606 	case PERF_TYPE_HW_CACHE:
607 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
608 		break;
609 
610 	case PERF_TYPE_SOFTWARE:
611 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
612 		break;
613 
614 	case PERF_TYPE_TRACEPOINT:
615 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
616 		break;
617 
618 	case PERF_TYPE_BREAKPOINT:
619 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
620 		break;
621 
622 	default:
623 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
624 			  evsel->attr.type);
625 		break;
626 	}
627 
628 	evsel->name = strdup(bf);
629 
630 	return evsel->name ?: "unknown";
631 }
632 
633 const char *perf_evsel__group_name(struct perf_evsel *evsel)
634 {
635 	return evsel->group_name ?: "anon group";
636 }
637 
638 /*
639  * Returns the group details for the specified leader,
640  * with following rules.
641  *
642  *  For record -e '{cycles,instructions}'
643  *    'anon group { cycles:u, instructions:u }'
644  *
645  *  For record -e 'cycles,instructions' and report --group
646  *    'cycles:u, instructions:u'
647  */
648 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
649 {
650 	int ret = 0;
651 	struct perf_evsel *pos;
652 	const char *group_name = perf_evsel__group_name(evsel);
653 
654 	if (!evsel->forced_leader)
655 		ret = scnprintf(buf, size, "%s { ", group_name);
656 
657 	ret += scnprintf(buf + ret, size - ret, "%s",
658 			 perf_evsel__name(evsel));
659 
660 	for_each_group_member(pos, evsel)
661 		ret += scnprintf(buf + ret, size - ret, ", %s",
662 				 perf_evsel__name(pos));
663 
664 	if (!evsel->forced_leader)
665 		ret += scnprintf(buf + ret, size - ret, " }");
666 
667 	return ret;
668 }
669 
670 static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
671 					   struct record_opts *opts,
672 					   struct callchain_param *param)
673 {
674 	bool function = perf_evsel__is_function_event(evsel);
675 	struct perf_event_attr *attr = &evsel->attr;
676 
677 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
678 
679 	attr->sample_max_stack = param->max_stack;
680 
681 	if (param->record_mode == CALLCHAIN_LBR) {
682 		if (!opts->branch_stack) {
683 			if (attr->exclude_user) {
684 				pr_warning("LBR callstack option is only available "
685 					   "to get user callchain information. "
686 					   "Falling back to framepointers.\n");
687 			} else {
688 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
689 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
690 							PERF_SAMPLE_BRANCH_CALL_STACK |
691 							PERF_SAMPLE_BRANCH_NO_CYCLES |
692 							PERF_SAMPLE_BRANCH_NO_FLAGS;
693 			}
694 		} else
695 			 pr_warning("Cannot use LBR callstack with branch stack. "
696 				    "Falling back to framepointers.\n");
697 	}
698 
699 	if (param->record_mode == CALLCHAIN_DWARF) {
700 		if (!function) {
701 			perf_evsel__set_sample_bit(evsel, REGS_USER);
702 			perf_evsel__set_sample_bit(evsel, STACK_USER);
703 			attr->sample_regs_user |= PERF_REGS_MASK;
704 			attr->sample_stack_user = param->dump_size;
705 			attr->exclude_callchain_user = 1;
706 		} else {
707 			pr_info("Cannot use DWARF unwind for function trace event,"
708 				" falling back to framepointers.\n");
709 		}
710 	}
711 
712 	if (function) {
713 		pr_info("Disabling user space callchains for function trace event.\n");
714 		attr->exclude_callchain_user = 1;
715 	}
716 }
717 
718 void perf_evsel__config_callchain(struct perf_evsel *evsel,
719 				  struct record_opts *opts,
720 				  struct callchain_param *param)
721 {
722 	if (param->enabled)
723 		return __perf_evsel__config_callchain(evsel, opts, param);
724 }
725 
726 static void
727 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
728 			    struct callchain_param *param)
729 {
730 	struct perf_event_attr *attr = &evsel->attr;
731 
732 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
733 	if (param->record_mode == CALLCHAIN_LBR) {
734 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
735 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
736 					      PERF_SAMPLE_BRANCH_CALL_STACK);
737 	}
738 	if (param->record_mode == CALLCHAIN_DWARF) {
739 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
740 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
741 	}
742 }
743 
744 static void apply_config_terms(struct perf_evsel *evsel,
745 			       struct record_opts *opts, bool track)
746 {
747 	struct perf_evsel_config_term *term;
748 	struct list_head *config_terms = &evsel->config_terms;
749 	struct perf_event_attr *attr = &evsel->attr;
750 	/* callgraph default */
751 	struct callchain_param param = {
752 		.record_mode = callchain_param.record_mode,
753 	};
754 	u32 dump_size = 0;
755 	int max_stack = 0;
756 	const char *callgraph_buf = NULL;
757 
758 	list_for_each_entry(term, config_terms, list) {
759 		switch (term->type) {
760 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
761 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
762 				attr->sample_period = term->val.period;
763 				attr->freq = 0;
764 				perf_evsel__reset_sample_bit(evsel, PERIOD);
765 			}
766 			break;
767 		case PERF_EVSEL__CONFIG_TERM_FREQ:
768 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
769 				attr->sample_freq = term->val.freq;
770 				attr->freq = 1;
771 				perf_evsel__set_sample_bit(evsel, PERIOD);
772 			}
773 			break;
774 		case PERF_EVSEL__CONFIG_TERM_TIME:
775 			if (term->val.time)
776 				perf_evsel__set_sample_bit(evsel, TIME);
777 			else
778 				perf_evsel__reset_sample_bit(evsel, TIME);
779 			break;
780 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
781 			callgraph_buf = term->val.callgraph;
782 			break;
783 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
784 			if (term->val.branch && strcmp(term->val.branch, "no")) {
785 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
786 				parse_branch_str(term->val.branch,
787 						 &attr->branch_sample_type);
788 			} else
789 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
790 			break;
791 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
792 			dump_size = term->val.stack_user;
793 			break;
794 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
795 			max_stack = term->val.max_stack;
796 			break;
797 		case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS:
798 			evsel->max_events = term->val.max_events;
799 			break;
800 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
801 			/*
802 			 * attr->inherit should has already been set by
803 			 * perf_evsel__config. If user explicitly set
804 			 * inherit using config terms, override global
805 			 * opt->no_inherit setting.
806 			 */
807 			attr->inherit = term->val.inherit ? 1 : 0;
808 			break;
809 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
810 			attr->write_backward = term->val.overwrite ? 1 : 0;
811 			break;
812 		case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
813 			break;
814 		default:
815 			break;
816 		}
817 	}
818 
819 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
820 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
821 		bool sample_address = false;
822 
823 		if (max_stack) {
824 			param.max_stack = max_stack;
825 			if (callgraph_buf == NULL)
826 				callgraph_buf = "fp";
827 		}
828 
829 		/* parse callgraph parameters */
830 		if (callgraph_buf != NULL) {
831 			if (!strcmp(callgraph_buf, "no")) {
832 				param.enabled = false;
833 				param.record_mode = CALLCHAIN_NONE;
834 			} else {
835 				param.enabled = true;
836 				if (parse_callchain_record(callgraph_buf, &param)) {
837 					pr_err("per-event callgraph setting for %s failed. "
838 					       "Apply callgraph global setting for it\n",
839 					       evsel->name);
840 					return;
841 				}
842 				if (param.record_mode == CALLCHAIN_DWARF)
843 					sample_address = true;
844 			}
845 		}
846 		if (dump_size > 0) {
847 			dump_size = round_up(dump_size, sizeof(u64));
848 			param.dump_size = dump_size;
849 		}
850 
851 		/* If global callgraph set, clear it */
852 		if (callchain_param.enabled)
853 			perf_evsel__reset_callgraph(evsel, &callchain_param);
854 
855 		/* set perf-event callgraph */
856 		if (param.enabled) {
857 			if (sample_address) {
858 				perf_evsel__set_sample_bit(evsel, ADDR);
859 				perf_evsel__set_sample_bit(evsel, DATA_SRC);
860 				evsel->attr.mmap_data = track;
861 			}
862 			perf_evsel__config_callchain(evsel, opts, &param);
863 		}
864 	}
865 }
866 
867 static bool is_dummy_event(struct perf_evsel *evsel)
868 {
869 	return (evsel->attr.type == PERF_TYPE_SOFTWARE) &&
870 	       (evsel->attr.config == PERF_COUNT_SW_DUMMY);
871 }
872 
873 /*
874  * The enable_on_exec/disabled value strategy:
875  *
876  *  1) For any type of traced program:
877  *    - all independent events and group leaders are disabled
878  *    - all group members are enabled
879  *
880  *     Group members are ruled by group leaders. They need to
881  *     be enabled, because the group scheduling relies on that.
882  *
883  *  2) For traced programs executed by perf:
884  *     - all independent events and group leaders have
885  *       enable_on_exec set
886  *     - we don't specifically enable or disable any event during
887  *       the record command
888  *
889  *     Independent events and group leaders are initially disabled
890  *     and get enabled by exec. Group members are ruled by group
891  *     leaders as stated in 1).
892  *
893  *  3) For traced programs attached by perf (pid/tid):
894  *     - we specifically enable or disable all events during
895  *       the record command
896  *
897  *     When attaching events to already running traced we
898  *     enable/disable events specifically, as there's no
899  *     initial traced exec call.
900  */
901 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
902 			struct callchain_param *callchain)
903 {
904 	struct perf_evsel *leader = evsel->leader;
905 	struct perf_event_attr *attr = &evsel->attr;
906 	int track = evsel->tracking;
907 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
908 
909 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
910 	attr->inherit	    = !opts->no_inherit;
911 	attr->write_backward = opts->overwrite ? 1 : 0;
912 
913 	perf_evsel__set_sample_bit(evsel, IP);
914 	perf_evsel__set_sample_bit(evsel, TID);
915 
916 	if (evsel->sample_read) {
917 		perf_evsel__set_sample_bit(evsel, READ);
918 
919 		/*
920 		 * We need ID even in case of single event, because
921 		 * PERF_SAMPLE_READ process ID specific data.
922 		 */
923 		perf_evsel__set_sample_id(evsel, false);
924 
925 		/*
926 		 * Apply group format only if we belong to group
927 		 * with more than one members.
928 		 */
929 		if (leader->nr_members > 1) {
930 			attr->read_format |= PERF_FORMAT_GROUP;
931 			attr->inherit = 0;
932 		}
933 	}
934 
935 	/*
936 	 * We default some events to have a default interval. But keep
937 	 * it a weak assumption overridable by the user.
938 	 */
939 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
940 				     opts->user_interval != ULLONG_MAX)) {
941 		if (opts->freq) {
942 			perf_evsel__set_sample_bit(evsel, PERIOD);
943 			attr->freq		= 1;
944 			attr->sample_freq	= opts->freq;
945 		} else {
946 			attr->sample_period = opts->default_interval;
947 		}
948 	}
949 
950 	/*
951 	 * Disable sampling for all group members other
952 	 * than leader in case leader 'leads' the sampling.
953 	 */
954 	if ((leader != evsel) && leader->sample_read) {
955 		attr->freq           = 0;
956 		attr->sample_freq    = 0;
957 		attr->sample_period  = 0;
958 		attr->write_backward = 0;
959 	}
960 
961 	if (opts->no_samples)
962 		attr->sample_freq = 0;
963 
964 	if (opts->inherit_stat) {
965 		evsel->attr.read_format |=
966 			PERF_FORMAT_TOTAL_TIME_ENABLED |
967 			PERF_FORMAT_TOTAL_TIME_RUNNING |
968 			PERF_FORMAT_ID;
969 		attr->inherit_stat = 1;
970 	}
971 
972 	if (opts->sample_address) {
973 		perf_evsel__set_sample_bit(evsel, ADDR);
974 		attr->mmap_data = track;
975 	}
976 
977 	/*
978 	 * We don't allow user space callchains for  function trace
979 	 * event, due to issues with page faults while tracing page
980 	 * fault handler and its overall trickiness nature.
981 	 */
982 	if (perf_evsel__is_function_event(evsel))
983 		evsel->attr.exclude_callchain_user = 1;
984 
985 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
986 		perf_evsel__config_callchain(evsel, opts, callchain);
987 
988 	if (opts->sample_intr_regs) {
989 		attr->sample_regs_intr = opts->sample_intr_regs;
990 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
991 	}
992 
993 	if (opts->sample_user_regs) {
994 		attr->sample_regs_user |= opts->sample_user_regs;
995 		perf_evsel__set_sample_bit(evsel, REGS_USER);
996 	}
997 
998 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
999 		perf_evsel__set_sample_bit(evsel, CPU);
1000 
1001 	/*
1002 	 * When the user explicitly disabled time don't force it here.
1003 	 */
1004 	if (opts->sample_time &&
1005 	    (!perf_missing_features.sample_id_all &&
1006 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1007 	     opts->sample_time_set)))
1008 		perf_evsel__set_sample_bit(evsel, TIME);
1009 
1010 	if (opts->raw_samples && !evsel->no_aux_samples) {
1011 		perf_evsel__set_sample_bit(evsel, TIME);
1012 		perf_evsel__set_sample_bit(evsel, RAW);
1013 		perf_evsel__set_sample_bit(evsel, CPU);
1014 	}
1015 
1016 	if (opts->sample_address)
1017 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
1018 
1019 	if (opts->sample_phys_addr)
1020 		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1021 
1022 	if (opts->no_buffering) {
1023 		attr->watermark = 0;
1024 		attr->wakeup_events = 1;
1025 	}
1026 	if (opts->branch_stack && !evsel->no_aux_samples) {
1027 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1028 		attr->branch_sample_type = opts->branch_stack;
1029 	}
1030 
1031 	if (opts->sample_weight)
1032 		perf_evsel__set_sample_bit(evsel, WEIGHT);
1033 
1034 	attr->task  = track;
1035 	attr->mmap  = track;
1036 	attr->mmap2 = track && !perf_missing_features.mmap2;
1037 	attr->comm  = track;
1038 
1039 	if (opts->record_namespaces)
1040 		attr->namespaces  = track;
1041 
1042 	if (opts->record_switch_events)
1043 		attr->context_switch = track;
1044 
1045 	if (opts->sample_transaction)
1046 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
1047 
1048 	if (opts->running_time) {
1049 		evsel->attr.read_format |=
1050 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1051 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1052 	}
1053 
1054 	/*
1055 	 * XXX see the function comment above
1056 	 *
1057 	 * Disabling only independent events or group leaders,
1058 	 * keeping group members enabled.
1059 	 */
1060 	if (perf_evsel__is_group_leader(evsel))
1061 		attr->disabled = 1;
1062 
1063 	/*
1064 	 * Setting enable_on_exec for independent events and
1065 	 * group leaders for traced executed by perf.
1066 	 */
1067 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1068 		!opts->initial_delay)
1069 		attr->enable_on_exec = 1;
1070 
1071 	if (evsel->immediate) {
1072 		attr->disabled = 0;
1073 		attr->enable_on_exec = 0;
1074 	}
1075 
1076 	clockid = opts->clockid;
1077 	if (opts->use_clockid) {
1078 		attr->use_clockid = 1;
1079 		attr->clockid = opts->clockid;
1080 	}
1081 
1082 	if (evsel->precise_max)
1083 		perf_event_attr__set_max_precise_ip(attr);
1084 
1085 	if (opts->all_user) {
1086 		attr->exclude_kernel = 1;
1087 		attr->exclude_user   = 0;
1088 	}
1089 
1090 	if (opts->all_kernel) {
1091 		attr->exclude_kernel = 0;
1092 		attr->exclude_user   = 1;
1093 	}
1094 
1095 	if (evsel->own_cpus || evsel->unit)
1096 		evsel->attr.read_format |= PERF_FORMAT_ID;
1097 
1098 	/*
1099 	 * Apply event specific term settings,
1100 	 * it overloads any global configuration.
1101 	 */
1102 	apply_config_terms(evsel, opts, track);
1103 
1104 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1105 
1106 	/* The --period option takes the precedence. */
1107 	if (opts->period_set) {
1108 		if (opts->period)
1109 			perf_evsel__set_sample_bit(evsel, PERIOD);
1110 		else
1111 			perf_evsel__reset_sample_bit(evsel, PERIOD);
1112 	}
1113 
1114 	/*
1115 	 * For initial_delay, a dummy event is added implicitly.
1116 	 * The software event will trigger -EOPNOTSUPP error out,
1117 	 * if BRANCH_STACK bit is set.
1118 	 */
1119 	if (opts->initial_delay && is_dummy_event(evsel))
1120 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1121 }
1122 
1123 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1124 {
1125 	if (evsel->system_wide)
1126 		nthreads = 1;
1127 
1128 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1129 
1130 	if (evsel->fd) {
1131 		int cpu, thread;
1132 		for (cpu = 0; cpu < ncpus; cpu++) {
1133 			for (thread = 0; thread < nthreads; thread++) {
1134 				FD(evsel, cpu, thread) = -1;
1135 			}
1136 		}
1137 	}
1138 
1139 	return evsel->fd != NULL ? 0 : -ENOMEM;
1140 }
1141 
1142 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1143 			  int ioc,  void *arg)
1144 {
1145 	int cpu, thread;
1146 
1147 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1148 		for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1149 			int fd = FD(evsel, cpu, thread),
1150 			    err = ioctl(fd, ioc, arg);
1151 
1152 			if (err)
1153 				return err;
1154 		}
1155 	}
1156 
1157 	return 0;
1158 }
1159 
1160 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1161 {
1162 	return perf_evsel__run_ioctl(evsel,
1163 				     PERF_EVENT_IOC_SET_FILTER,
1164 				     (void *)filter);
1165 }
1166 
1167 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1168 {
1169 	char *new_filter = strdup(filter);
1170 
1171 	if (new_filter != NULL) {
1172 		free(evsel->filter);
1173 		evsel->filter = new_filter;
1174 		return 0;
1175 	}
1176 
1177 	return -1;
1178 }
1179 
1180 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1181 				     const char *fmt, const char *filter)
1182 {
1183 	char *new_filter;
1184 
1185 	if (evsel->filter == NULL)
1186 		return perf_evsel__set_filter(evsel, filter);
1187 
1188 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1189 		free(evsel->filter);
1190 		evsel->filter = new_filter;
1191 		return 0;
1192 	}
1193 
1194 	return -1;
1195 }
1196 
1197 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1198 {
1199 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1200 }
1201 
1202 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1203 {
1204 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1205 }
1206 
1207 int perf_evsel__enable(struct perf_evsel *evsel)
1208 {
1209 	int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0);
1210 
1211 	if (!err)
1212 		evsel->disabled = false;
1213 
1214 	return err;
1215 }
1216 
1217 int perf_evsel__disable(struct perf_evsel *evsel)
1218 {
1219 	int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0);
1220 	/*
1221 	 * We mark it disabled here so that tools that disable a event can
1222 	 * ignore events after they disable it. I.e. the ring buffer may have
1223 	 * already a few more events queued up before the kernel got the stop
1224 	 * request.
1225 	 */
1226 	if (!err)
1227 		evsel->disabled = true;
1228 
1229 	return err;
1230 }
1231 
1232 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1233 {
1234 	if (ncpus == 0 || nthreads == 0)
1235 		return 0;
1236 
1237 	if (evsel->system_wide)
1238 		nthreads = 1;
1239 
1240 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1241 	if (evsel->sample_id == NULL)
1242 		return -ENOMEM;
1243 
1244 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1245 	if (evsel->id == NULL) {
1246 		xyarray__delete(evsel->sample_id);
1247 		evsel->sample_id = NULL;
1248 		return -ENOMEM;
1249 	}
1250 
1251 	return 0;
1252 }
1253 
1254 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1255 {
1256 	xyarray__delete(evsel->fd);
1257 	evsel->fd = NULL;
1258 }
1259 
1260 static void perf_evsel__free_id(struct perf_evsel *evsel)
1261 {
1262 	xyarray__delete(evsel->sample_id);
1263 	evsel->sample_id = NULL;
1264 	zfree(&evsel->id);
1265 }
1266 
1267 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1268 {
1269 	struct perf_evsel_config_term *term, *h;
1270 
1271 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1272 		list_del(&term->list);
1273 		free(term);
1274 	}
1275 }
1276 
1277 void perf_evsel__close_fd(struct perf_evsel *evsel)
1278 {
1279 	int cpu, thread;
1280 
1281 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1282 		for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1283 			close(FD(evsel, cpu, thread));
1284 			FD(evsel, cpu, thread) = -1;
1285 		}
1286 }
1287 
1288 void perf_evsel__exit(struct perf_evsel *evsel)
1289 {
1290 	assert(list_empty(&evsel->node));
1291 	assert(evsel->evlist == NULL);
1292 	perf_evsel__free_fd(evsel);
1293 	perf_evsel__free_id(evsel);
1294 	perf_evsel__free_config_terms(evsel);
1295 	cgroup__put(evsel->cgrp);
1296 	cpu_map__put(evsel->cpus);
1297 	cpu_map__put(evsel->own_cpus);
1298 	thread_map__put(evsel->threads);
1299 	zfree(&evsel->group_name);
1300 	zfree(&evsel->name);
1301 	perf_evsel__object.fini(evsel);
1302 }
1303 
1304 void perf_evsel__delete(struct perf_evsel *evsel)
1305 {
1306 	perf_evsel__exit(evsel);
1307 	free(evsel);
1308 }
1309 
1310 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1311 				struct perf_counts_values *count)
1312 {
1313 	struct perf_counts_values tmp;
1314 
1315 	if (!evsel->prev_raw_counts)
1316 		return;
1317 
1318 	if (cpu == -1) {
1319 		tmp = evsel->prev_raw_counts->aggr;
1320 		evsel->prev_raw_counts->aggr = *count;
1321 	} else {
1322 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1323 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1324 	}
1325 
1326 	count->val = count->val - tmp.val;
1327 	count->ena = count->ena - tmp.ena;
1328 	count->run = count->run - tmp.run;
1329 }
1330 
1331 void perf_counts_values__scale(struct perf_counts_values *count,
1332 			       bool scale, s8 *pscaled)
1333 {
1334 	s8 scaled = 0;
1335 
1336 	if (scale) {
1337 		if (count->run == 0) {
1338 			scaled = -1;
1339 			count->val = 0;
1340 		} else if (count->run < count->ena) {
1341 			scaled = 1;
1342 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1343 		}
1344 	} else
1345 		count->ena = count->run = 0;
1346 
1347 	if (pscaled)
1348 		*pscaled = scaled;
1349 }
1350 
1351 static int perf_evsel__read_size(struct perf_evsel *evsel)
1352 {
1353 	u64 read_format = evsel->attr.read_format;
1354 	int entry = sizeof(u64); /* value */
1355 	int size = 0;
1356 	int nr = 1;
1357 
1358 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1359 		size += sizeof(u64);
1360 
1361 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1362 		size += sizeof(u64);
1363 
1364 	if (read_format & PERF_FORMAT_ID)
1365 		entry += sizeof(u64);
1366 
1367 	if (read_format & PERF_FORMAT_GROUP) {
1368 		nr = evsel->nr_members;
1369 		size += sizeof(u64);
1370 	}
1371 
1372 	size += entry * nr;
1373 	return size;
1374 }
1375 
1376 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1377 		     struct perf_counts_values *count)
1378 {
1379 	size_t size = perf_evsel__read_size(evsel);
1380 
1381 	memset(count, 0, sizeof(*count));
1382 
1383 	if (FD(evsel, cpu, thread) < 0)
1384 		return -EINVAL;
1385 
1386 	if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1387 		return -errno;
1388 
1389 	return 0;
1390 }
1391 
1392 static int
1393 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1394 {
1395 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1396 
1397 	return perf_evsel__read(evsel, cpu, thread, count);
1398 }
1399 
1400 static void
1401 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1402 		      u64 val, u64 ena, u64 run)
1403 {
1404 	struct perf_counts_values *count;
1405 
1406 	count = perf_counts(counter->counts, cpu, thread);
1407 
1408 	count->val    = val;
1409 	count->ena    = ena;
1410 	count->run    = run;
1411 	count->loaded = true;
1412 }
1413 
1414 static int
1415 perf_evsel__process_group_data(struct perf_evsel *leader,
1416 			       int cpu, int thread, u64 *data)
1417 {
1418 	u64 read_format = leader->attr.read_format;
1419 	struct sample_read_value *v;
1420 	u64 nr, ena = 0, run = 0, i;
1421 
1422 	nr = *data++;
1423 
1424 	if (nr != (u64) leader->nr_members)
1425 		return -EINVAL;
1426 
1427 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1428 		ena = *data++;
1429 
1430 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1431 		run = *data++;
1432 
1433 	v = (struct sample_read_value *) data;
1434 
1435 	perf_evsel__set_count(leader, cpu, thread,
1436 			      v[0].value, ena, run);
1437 
1438 	for (i = 1; i < nr; i++) {
1439 		struct perf_evsel *counter;
1440 
1441 		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1442 		if (!counter)
1443 			return -EINVAL;
1444 
1445 		perf_evsel__set_count(counter, cpu, thread,
1446 				      v[i].value, ena, run);
1447 	}
1448 
1449 	return 0;
1450 }
1451 
1452 static int
1453 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1454 {
1455 	struct perf_stat_evsel *ps = leader->stats;
1456 	u64 read_format = leader->attr.read_format;
1457 	int size = perf_evsel__read_size(leader);
1458 	u64 *data = ps->group_data;
1459 
1460 	if (!(read_format & PERF_FORMAT_ID))
1461 		return -EINVAL;
1462 
1463 	if (!perf_evsel__is_group_leader(leader))
1464 		return -EINVAL;
1465 
1466 	if (!data) {
1467 		data = zalloc(size);
1468 		if (!data)
1469 			return -ENOMEM;
1470 
1471 		ps->group_data = data;
1472 	}
1473 
1474 	if (FD(leader, cpu, thread) < 0)
1475 		return -EINVAL;
1476 
1477 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1478 		return -errno;
1479 
1480 	return perf_evsel__process_group_data(leader, cpu, thread, data);
1481 }
1482 
1483 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1484 {
1485 	u64 read_format = evsel->attr.read_format;
1486 
1487 	if (read_format & PERF_FORMAT_GROUP)
1488 		return perf_evsel__read_group(evsel, cpu, thread);
1489 	else
1490 		return perf_evsel__read_one(evsel, cpu, thread);
1491 }
1492 
1493 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1494 			      int cpu, int thread, bool scale)
1495 {
1496 	struct perf_counts_values count;
1497 	size_t nv = scale ? 3 : 1;
1498 
1499 	if (FD(evsel, cpu, thread) < 0)
1500 		return -EINVAL;
1501 
1502 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1503 		return -ENOMEM;
1504 
1505 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1506 		return -errno;
1507 
1508 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1509 	perf_counts_values__scale(&count, scale, NULL);
1510 	*perf_counts(evsel->counts, cpu, thread) = count;
1511 	return 0;
1512 }
1513 
1514 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1515 {
1516 	struct perf_evsel *leader = evsel->leader;
1517 	int fd;
1518 
1519 	if (perf_evsel__is_group_leader(evsel))
1520 		return -1;
1521 
1522 	/*
1523 	 * Leader must be already processed/open,
1524 	 * if not it's a bug.
1525 	 */
1526 	BUG_ON(!leader->fd);
1527 
1528 	fd = FD(leader, cpu, thread);
1529 	BUG_ON(fd == -1);
1530 
1531 	return fd;
1532 }
1533 
1534 struct bit_names {
1535 	int bit;
1536 	const char *name;
1537 };
1538 
1539 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1540 {
1541 	bool first_bit = true;
1542 	int i = 0;
1543 
1544 	do {
1545 		if (value & bits[i].bit) {
1546 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1547 			first_bit = false;
1548 		}
1549 	} while (bits[++i].name != NULL);
1550 }
1551 
1552 static void __p_sample_type(char *buf, size_t size, u64 value)
1553 {
1554 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1555 	struct bit_names bits[] = {
1556 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1557 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1558 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1559 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1560 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1561 		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1562 		{ .name = NULL, }
1563 	};
1564 #undef bit_name
1565 	__p_bits(buf, size, value, bits);
1566 }
1567 
1568 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1569 {
1570 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1571 	struct bit_names bits[] = {
1572 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1573 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1574 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1575 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1576 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1577 		{ .name = NULL, }
1578 	};
1579 #undef bit_name
1580 	__p_bits(buf, size, value, bits);
1581 }
1582 
1583 static void __p_read_format(char *buf, size_t size, u64 value)
1584 {
1585 #define bit_name(n) { PERF_FORMAT_##n, #n }
1586 	struct bit_names bits[] = {
1587 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1588 		bit_name(ID), bit_name(GROUP),
1589 		{ .name = NULL, }
1590 	};
1591 #undef bit_name
1592 	__p_bits(buf, size, value, bits);
1593 }
1594 
1595 #define BUF_SIZE		1024
1596 
1597 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1598 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1599 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1600 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1601 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1602 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1603 
1604 #define PRINT_ATTRn(_n, _f, _p)				\
1605 do {							\
1606 	if (attr->_f) {					\
1607 		_p(attr->_f);				\
1608 		ret += attr__fprintf(fp, _n, buf, priv);\
1609 	}						\
1610 } while (0)
1611 
1612 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1613 
1614 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1615 			     attr__fprintf_f attr__fprintf, void *priv)
1616 {
1617 	char buf[BUF_SIZE];
1618 	int ret = 0;
1619 
1620 	PRINT_ATTRf(type, p_unsigned);
1621 	PRINT_ATTRf(size, p_unsigned);
1622 	PRINT_ATTRf(config, p_hex);
1623 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1624 	PRINT_ATTRf(sample_type, p_sample_type);
1625 	PRINT_ATTRf(read_format, p_read_format);
1626 
1627 	PRINT_ATTRf(disabled, p_unsigned);
1628 	PRINT_ATTRf(inherit, p_unsigned);
1629 	PRINT_ATTRf(pinned, p_unsigned);
1630 	PRINT_ATTRf(exclusive, p_unsigned);
1631 	PRINT_ATTRf(exclude_user, p_unsigned);
1632 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1633 	PRINT_ATTRf(exclude_hv, p_unsigned);
1634 	PRINT_ATTRf(exclude_idle, p_unsigned);
1635 	PRINT_ATTRf(mmap, p_unsigned);
1636 	PRINT_ATTRf(comm, p_unsigned);
1637 	PRINT_ATTRf(freq, p_unsigned);
1638 	PRINT_ATTRf(inherit_stat, p_unsigned);
1639 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1640 	PRINT_ATTRf(task, p_unsigned);
1641 	PRINT_ATTRf(watermark, p_unsigned);
1642 	PRINT_ATTRf(precise_ip, p_unsigned);
1643 	PRINT_ATTRf(mmap_data, p_unsigned);
1644 	PRINT_ATTRf(sample_id_all, p_unsigned);
1645 	PRINT_ATTRf(exclude_host, p_unsigned);
1646 	PRINT_ATTRf(exclude_guest, p_unsigned);
1647 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1648 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1649 	PRINT_ATTRf(mmap2, p_unsigned);
1650 	PRINT_ATTRf(comm_exec, p_unsigned);
1651 	PRINT_ATTRf(use_clockid, p_unsigned);
1652 	PRINT_ATTRf(context_switch, p_unsigned);
1653 	PRINT_ATTRf(write_backward, p_unsigned);
1654 	PRINT_ATTRf(namespaces, p_unsigned);
1655 
1656 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1657 	PRINT_ATTRf(bp_type, p_unsigned);
1658 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1659 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1660 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1661 	PRINT_ATTRf(sample_regs_user, p_hex);
1662 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1663 	PRINT_ATTRf(clockid, p_signed);
1664 	PRINT_ATTRf(sample_regs_intr, p_hex);
1665 	PRINT_ATTRf(aux_watermark, p_unsigned);
1666 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1667 
1668 	return ret;
1669 }
1670 
1671 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1672 				void *priv __maybe_unused)
1673 {
1674 	return fprintf(fp, "  %-32s %s\n", name, val);
1675 }
1676 
1677 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1678 				  int nr_cpus, int nr_threads,
1679 				  int thread_idx)
1680 {
1681 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1682 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1683 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1684 }
1685 
1686 static int update_fds(struct perf_evsel *evsel,
1687 		      int nr_cpus, int cpu_idx,
1688 		      int nr_threads, int thread_idx)
1689 {
1690 	struct perf_evsel *pos;
1691 
1692 	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1693 		return -EINVAL;
1694 
1695 	evlist__for_each_entry(evsel->evlist, pos) {
1696 		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1697 
1698 		perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1699 
1700 		/*
1701 		 * Since fds for next evsel has not been created,
1702 		 * there is no need to iterate whole event list.
1703 		 */
1704 		if (pos == evsel)
1705 			break;
1706 	}
1707 	return 0;
1708 }
1709 
1710 static bool ignore_missing_thread(struct perf_evsel *evsel,
1711 				  int nr_cpus, int cpu,
1712 				  struct thread_map *threads,
1713 				  int thread, int err)
1714 {
1715 	pid_t ignore_pid = thread_map__pid(threads, thread);
1716 
1717 	if (!evsel->ignore_missing_thread)
1718 		return false;
1719 
1720 	/* The system wide setup does not work with threads. */
1721 	if (evsel->system_wide)
1722 		return false;
1723 
1724 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1725 	if (err != -ESRCH)
1726 		return false;
1727 
1728 	/* If there's only one thread, let it fail. */
1729 	if (threads->nr == 1)
1730 		return false;
1731 
1732 	/*
1733 	 * We should remove fd for missing_thread first
1734 	 * because thread_map__remove() will decrease threads->nr.
1735 	 */
1736 	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1737 		return false;
1738 
1739 	if (thread_map__remove(threads, thread))
1740 		return false;
1741 
1742 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1743 		   ignore_pid);
1744 	return true;
1745 }
1746 
1747 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1748 		     struct thread_map *threads)
1749 {
1750 	int cpu, thread, nthreads;
1751 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1752 	int pid = -1, err;
1753 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1754 
1755 	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1756 		return -EINVAL;
1757 
1758 	if (cpus == NULL) {
1759 		static struct cpu_map *empty_cpu_map;
1760 
1761 		if (empty_cpu_map == NULL) {
1762 			empty_cpu_map = cpu_map__dummy_new();
1763 			if (empty_cpu_map == NULL)
1764 				return -ENOMEM;
1765 		}
1766 
1767 		cpus = empty_cpu_map;
1768 	}
1769 
1770 	if (threads == NULL) {
1771 		static struct thread_map *empty_thread_map;
1772 
1773 		if (empty_thread_map == NULL) {
1774 			empty_thread_map = thread_map__new_by_tid(-1);
1775 			if (empty_thread_map == NULL)
1776 				return -ENOMEM;
1777 		}
1778 
1779 		threads = empty_thread_map;
1780 	}
1781 
1782 	if (evsel->system_wide)
1783 		nthreads = 1;
1784 	else
1785 		nthreads = threads->nr;
1786 
1787 	if (evsel->fd == NULL &&
1788 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1789 		return -ENOMEM;
1790 
1791 	if (evsel->cgrp) {
1792 		flags |= PERF_FLAG_PID_CGROUP;
1793 		pid = evsel->cgrp->fd;
1794 	}
1795 
1796 fallback_missing_features:
1797 	if (perf_missing_features.clockid_wrong)
1798 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1799 	if (perf_missing_features.clockid) {
1800 		evsel->attr.use_clockid = 0;
1801 		evsel->attr.clockid = 0;
1802 	}
1803 	if (perf_missing_features.cloexec)
1804 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1805 	if (perf_missing_features.mmap2)
1806 		evsel->attr.mmap2 = 0;
1807 	if (perf_missing_features.exclude_guest)
1808 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1809 	if (perf_missing_features.lbr_flags)
1810 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1811 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1812 	if (perf_missing_features.group_read && evsel->attr.inherit)
1813 		evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1814 retry_sample_id:
1815 	if (perf_missing_features.sample_id_all)
1816 		evsel->attr.sample_id_all = 0;
1817 
1818 	if (verbose >= 2) {
1819 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1820 		fprintf(stderr, "perf_event_attr:\n");
1821 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1822 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1823 	}
1824 
1825 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1826 
1827 		for (thread = 0; thread < nthreads; thread++) {
1828 			int fd, group_fd;
1829 
1830 			if (!evsel->cgrp && !evsel->system_wide)
1831 				pid = thread_map__pid(threads, thread);
1832 
1833 			group_fd = get_group_fd(evsel, cpu, thread);
1834 retry_open:
1835 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1836 				  pid, cpus->map[cpu], group_fd, flags);
1837 
1838 			test_attr__ready();
1839 
1840 			fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1841 						 group_fd, flags);
1842 
1843 			FD(evsel, cpu, thread) = fd;
1844 
1845 			if (fd < 0) {
1846 				err = -errno;
1847 
1848 				if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1849 					/*
1850 					 * We just removed 1 thread, so take a step
1851 					 * back on thread index and lower the upper
1852 					 * nthreads limit.
1853 					 */
1854 					nthreads--;
1855 					thread--;
1856 
1857 					/* ... and pretend like nothing have happened. */
1858 					err = 0;
1859 					continue;
1860 				}
1861 
1862 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1863 					  err);
1864 				goto try_fallback;
1865 			}
1866 
1867 			pr_debug2(" = %d\n", fd);
1868 
1869 			if (evsel->bpf_fd >= 0) {
1870 				int evt_fd = fd;
1871 				int bpf_fd = evsel->bpf_fd;
1872 
1873 				err = ioctl(evt_fd,
1874 					    PERF_EVENT_IOC_SET_BPF,
1875 					    bpf_fd);
1876 				if (err && errno != EEXIST) {
1877 					pr_err("failed to attach bpf fd %d: %s\n",
1878 					       bpf_fd, strerror(errno));
1879 					err = -EINVAL;
1880 					goto out_close;
1881 				}
1882 			}
1883 
1884 			set_rlimit = NO_CHANGE;
1885 
1886 			/*
1887 			 * If we succeeded but had to kill clockid, fail and
1888 			 * have perf_evsel__open_strerror() print us a nice
1889 			 * error.
1890 			 */
1891 			if (perf_missing_features.clockid ||
1892 			    perf_missing_features.clockid_wrong) {
1893 				err = -EINVAL;
1894 				goto out_close;
1895 			}
1896 		}
1897 	}
1898 
1899 	return 0;
1900 
1901 try_fallback:
1902 	/*
1903 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1904 	 * of them try to increase the limits.
1905 	 */
1906 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1907 		struct rlimit l;
1908 		int old_errno = errno;
1909 
1910 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1911 			if (set_rlimit == NO_CHANGE)
1912 				l.rlim_cur = l.rlim_max;
1913 			else {
1914 				l.rlim_cur = l.rlim_max + 1000;
1915 				l.rlim_max = l.rlim_cur;
1916 			}
1917 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1918 				set_rlimit++;
1919 				errno = old_errno;
1920 				goto retry_open;
1921 			}
1922 		}
1923 		errno = old_errno;
1924 	}
1925 
1926 	if (err != -EINVAL || cpu > 0 || thread > 0)
1927 		goto out_close;
1928 
1929 	/*
1930 	 * Must probe features in the order they were added to the
1931 	 * perf_event_attr interface.
1932 	 */
1933 	if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1934 		perf_missing_features.write_backward = true;
1935 		pr_debug2("switching off write_backward\n");
1936 		goto out_close;
1937 	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1938 		perf_missing_features.clockid_wrong = true;
1939 		pr_debug2("switching off clockid\n");
1940 		goto fallback_missing_features;
1941 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1942 		perf_missing_features.clockid = true;
1943 		pr_debug2("switching off use_clockid\n");
1944 		goto fallback_missing_features;
1945 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1946 		perf_missing_features.cloexec = true;
1947 		pr_debug2("switching off cloexec flag\n");
1948 		goto fallback_missing_features;
1949 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1950 		perf_missing_features.mmap2 = true;
1951 		pr_debug2("switching off mmap2\n");
1952 		goto fallback_missing_features;
1953 	} else if (!perf_missing_features.exclude_guest &&
1954 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1955 		perf_missing_features.exclude_guest = true;
1956 		pr_debug2("switching off exclude_guest, exclude_host\n");
1957 		goto fallback_missing_features;
1958 	} else if (!perf_missing_features.sample_id_all) {
1959 		perf_missing_features.sample_id_all = true;
1960 		pr_debug2("switching off sample_id_all\n");
1961 		goto retry_sample_id;
1962 	} else if (!perf_missing_features.lbr_flags &&
1963 			(evsel->attr.branch_sample_type &
1964 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1965 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1966 		perf_missing_features.lbr_flags = true;
1967 		pr_debug2("switching off branch sample type no (cycles/flags)\n");
1968 		goto fallback_missing_features;
1969 	} else if (!perf_missing_features.group_read &&
1970 		    evsel->attr.inherit &&
1971 		   (evsel->attr.read_format & PERF_FORMAT_GROUP) &&
1972 		   perf_evsel__is_group_leader(evsel)) {
1973 		perf_missing_features.group_read = true;
1974 		pr_debug2("switching off group read\n");
1975 		goto fallback_missing_features;
1976 	}
1977 out_close:
1978 	if (err)
1979 		threads->err_thread = thread;
1980 
1981 	do {
1982 		while (--thread >= 0) {
1983 			close(FD(evsel, cpu, thread));
1984 			FD(evsel, cpu, thread) = -1;
1985 		}
1986 		thread = nthreads;
1987 	} while (--cpu >= 0);
1988 	return err;
1989 }
1990 
1991 void perf_evsel__close(struct perf_evsel *evsel)
1992 {
1993 	if (evsel->fd == NULL)
1994 		return;
1995 
1996 	perf_evsel__close_fd(evsel);
1997 	perf_evsel__free_fd(evsel);
1998 }
1999 
2000 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
2001 			     struct cpu_map *cpus)
2002 {
2003 	return perf_evsel__open(evsel, cpus, NULL);
2004 }
2005 
2006 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
2007 				struct thread_map *threads)
2008 {
2009 	return perf_evsel__open(evsel, NULL, threads);
2010 }
2011 
2012 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
2013 				       const union perf_event *event,
2014 				       struct perf_sample *sample)
2015 {
2016 	u64 type = evsel->attr.sample_type;
2017 	const u64 *array = event->sample.array;
2018 	bool swapped = evsel->needs_swap;
2019 	union u64_swap u;
2020 
2021 	array += ((event->header.size -
2022 		   sizeof(event->header)) / sizeof(u64)) - 1;
2023 
2024 	if (type & PERF_SAMPLE_IDENTIFIER) {
2025 		sample->id = *array;
2026 		array--;
2027 	}
2028 
2029 	if (type & PERF_SAMPLE_CPU) {
2030 		u.val64 = *array;
2031 		if (swapped) {
2032 			/* undo swap of u64, then swap on individual u32s */
2033 			u.val64 = bswap_64(u.val64);
2034 			u.val32[0] = bswap_32(u.val32[0]);
2035 		}
2036 
2037 		sample->cpu = u.val32[0];
2038 		array--;
2039 	}
2040 
2041 	if (type & PERF_SAMPLE_STREAM_ID) {
2042 		sample->stream_id = *array;
2043 		array--;
2044 	}
2045 
2046 	if (type & PERF_SAMPLE_ID) {
2047 		sample->id = *array;
2048 		array--;
2049 	}
2050 
2051 	if (type & PERF_SAMPLE_TIME) {
2052 		sample->time = *array;
2053 		array--;
2054 	}
2055 
2056 	if (type & PERF_SAMPLE_TID) {
2057 		u.val64 = *array;
2058 		if (swapped) {
2059 			/* undo swap of u64, then swap on individual u32s */
2060 			u.val64 = bswap_64(u.val64);
2061 			u.val32[0] = bswap_32(u.val32[0]);
2062 			u.val32[1] = bswap_32(u.val32[1]);
2063 		}
2064 
2065 		sample->pid = u.val32[0];
2066 		sample->tid = u.val32[1];
2067 		array--;
2068 	}
2069 
2070 	return 0;
2071 }
2072 
2073 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2074 			    u64 size)
2075 {
2076 	return size > max_size || offset + size > endp;
2077 }
2078 
2079 #define OVERFLOW_CHECK(offset, size, max_size)				\
2080 	do {								\
2081 		if (overflow(endp, (max_size), (offset), (size)))	\
2082 			return -EFAULT;					\
2083 	} while (0)
2084 
2085 #define OVERFLOW_CHECK_u64(offset) \
2086 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2087 
2088 static int
2089 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2090 {
2091 	/*
2092 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2093 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2094 	 * check the format does not go past the end of the event.
2095 	 */
2096 	if (sample_size + sizeof(event->header) > event->header.size)
2097 		return -EFAULT;
2098 
2099 	return 0;
2100 }
2101 
2102 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2103 			     struct perf_sample *data)
2104 {
2105 	u64 type = evsel->attr.sample_type;
2106 	bool swapped = evsel->needs_swap;
2107 	const u64 *array;
2108 	u16 max_size = event->header.size;
2109 	const void *endp = (void *)event + max_size;
2110 	u64 sz;
2111 
2112 	/*
2113 	 * used for cross-endian analysis. See git commit 65014ab3
2114 	 * for why this goofiness is needed.
2115 	 */
2116 	union u64_swap u;
2117 
2118 	memset(data, 0, sizeof(*data));
2119 	data->cpu = data->pid = data->tid = -1;
2120 	data->stream_id = data->id = data->time = -1ULL;
2121 	data->period = evsel->attr.sample_period;
2122 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2123 	data->misc    = event->header.misc;
2124 	data->id = -1ULL;
2125 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2126 
2127 	if (event->header.type != PERF_RECORD_SAMPLE) {
2128 		if (!evsel->attr.sample_id_all)
2129 			return 0;
2130 		return perf_evsel__parse_id_sample(evsel, event, data);
2131 	}
2132 
2133 	array = event->sample.array;
2134 
2135 	if (perf_event__check_size(event, evsel->sample_size))
2136 		return -EFAULT;
2137 
2138 	if (type & PERF_SAMPLE_IDENTIFIER) {
2139 		data->id = *array;
2140 		array++;
2141 	}
2142 
2143 	if (type & PERF_SAMPLE_IP) {
2144 		data->ip = *array;
2145 		array++;
2146 	}
2147 
2148 	if (type & PERF_SAMPLE_TID) {
2149 		u.val64 = *array;
2150 		if (swapped) {
2151 			/* undo swap of u64, then swap on individual u32s */
2152 			u.val64 = bswap_64(u.val64);
2153 			u.val32[0] = bswap_32(u.val32[0]);
2154 			u.val32[1] = bswap_32(u.val32[1]);
2155 		}
2156 
2157 		data->pid = u.val32[0];
2158 		data->tid = u.val32[1];
2159 		array++;
2160 	}
2161 
2162 	if (type & PERF_SAMPLE_TIME) {
2163 		data->time = *array;
2164 		array++;
2165 	}
2166 
2167 	if (type & PERF_SAMPLE_ADDR) {
2168 		data->addr = *array;
2169 		array++;
2170 	}
2171 
2172 	if (type & PERF_SAMPLE_ID) {
2173 		data->id = *array;
2174 		array++;
2175 	}
2176 
2177 	if (type & PERF_SAMPLE_STREAM_ID) {
2178 		data->stream_id = *array;
2179 		array++;
2180 	}
2181 
2182 	if (type & PERF_SAMPLE_CPU) {
2183 
2184 		u.val64 = *array;
2185 		if (swapped) {
2186 			/* undo swap of u64, then swap on individual u32s */
2187 			u.val64 = bswap_64(u.val64);
2188 			u.val32[0] = bswap_32(u.val32[0]);
2189 		}
2190 
2191 		data->cpu = u.val32[0];
2192 		array++;
2193 	}
2194 
2195 	if (type & PERF_SAMPLE_PERIOD) {
2196 		data->period = *array;
2197 		array++;
2198 	}
2199 
2200 	if (type & PERF_SAMPLE_READ) {
2201 		u64 read_format = evsel->attr.read_format;
2202 
2203 		OVERFLOW_CHECK_u64(array);
2204 		if (read_format & PERF_FORMAT_GROUP)
2205 			data->read.group.nr = *array;
2206 		else
2207 			data->read.one.value = *array;
2208 
2209 		array++;
2210 
2211 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2212 			OVERFLOW_CHECK_u64(array);
2213 			data->read.time_enabled = *array;
2214 			array++;
2215 		}
2216 
2217 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2218 			OVERFLOW_CHECK_u64(array);
2219 			data->read.time_running = *array;
2220 			array++;
2221 		}
2222 
2223 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2224 		if (read_format & PERF_FORMAT_GROUP) {
2225 			const u64 max_group_nr = UINT64_MAX /
2226 					sizeof(struct sample_read_value);
2227 
2228 			if (data->read.group.nr > max_group_nr)
2229 				return -EFAULT;
2230 			sz = data->read.group.nr *
2231 			     sizeof(struct sample_read_value);
2232 			OVERFLOW_CHECK(array, sz, max_size);
2233 			data->read.group.values =
2234 					(struct sample_read_value *)array;
2235 			array = (void *)array + sz;
2236 		} else {
2237 			OVERFLOW_CHECK_u64(array);
2238 			data->read.one.id = *array;
2239 			array++;
2240 		}
2241 	}
2242 
2243 	if (evsel__has_callchain(evsel)) {
2244 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2245 
2246 		OVERFLOW_CHECK_u64(array);
2247 		data->callchain = (struct ip_callchain *)array++;
2248 		if (data->callchain->nr > max_callchain_nr)
2249 			return -EFAULT;
2250 		sz = data->callchain->nr * sizeof(u64);
2251 		OVERFLOW_CHECK(array, sz, max_size);
2252 		array = (void *)array + sz;
2253 	}
2254 
2255 	if (type & PERF_SAMPLE_RAW) {
2256 		OVERFLOW_CHECK_u64(array);
2257 		u.val64 = *array;
2258 
2259 		/*
2260 		 * Undo swap of u64, then swap on individual u32s,
2261 		 * get the size of the raw area and undo all of the
2262 		 * swap. The pevent interface handles endianity by
2263 		 * itself.
2264 		 */
2265 		if (swapped) {
2266 			u.val64 = bswap_64(u.val64);
2267 			u.val32[0] = bswap_32(u.val32[0]);
2268 			u.val32[1] = bswap_32(u.val32[1]);
2269 		}
2270 		data->raw_size = u.val32[0];
2271 
2272 		/*
2273 		 * The raw data is aligned on 64bits including the
2274 		 * u32 size, so it's safe to use mem_bswap_64.
2275 		 */
2276 		if (swapped)
2277 			mem_bswap_64((void *) array, data->raw_size);
2278 
2279 		array = (void *)array + sizeof(u32);
2280 
2281 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2282 		data->raw_data = (void *)array;
2283 		array = (void *)array + data->raw_size;
2284 	}
2285 
2286 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2287 		const u64 max_branch_nr = UINT64_MAX /
2288 					  sizeof(struct branch_entry);
2289 
2290 		OVERFLOW_CHECK_u64(array);
2291 		data->branch_stack = (struct branch_stack *)array++;
2292 
2293 		if (data->branch_stack->nr > max_branch_nr)
2294 			return -EFAULT;
2295 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2296 		OVERFLOW_CHECK(array, sz, max_size);
2297 		array = (void *)array + sz;
2298 	}
2299 
2300 	if (type & PERF_SAMPLE_REGS_USER) {
2301 		OVERFLOW_CHECK_u64(array);
2302 		data->user_regs.abi = *array;
2303 		array++;
2304 
2305 		if (data->user_regs.abi) {
2306 			u64 mask = evsel->attr.sample_regs_user;
2307 
2308 			sz = hweight_long(mask) * sizeof(u64);
2309 			OVERFLOW_CHECK(array, sz, max_size);
2310 			data->user_regs.mask = mask;
2311 			data->user_regs.regs = (u64 *)array;
2312 			array = (void *)array + sz;
2313 		}
2314 	}
2315 
2316 	if (type & PERF_SAMPLE_STACK_USER) {
2317 		OVERFLOW_CHECK_u64(array);
2318 		sz = *array++;
2319 
2320 		data->user_stack.offset = ((char *)(array - 1)
2321 					  - (char *) event);
2322 
2323 		if (!sz) {
2324 			data->user_stack.size = 0;
2325 		} else {
2326 			OVERFLOW_CHECK(array, sz, max_size);
2327 			data->user_stack.data = (char *)array;
2328 			array = (void *)array + sz;
2329 			OVERFLOW_CHECK_u64(array);
2330 			data->user_stack.size = *array++;
2331 			if (WARN_ONCE(data->user_stack.size > sz,
2332 				      "user stack dump failure\n"))
2333 				return -EFAULT;
2334 		}
2335 	}
2336 
2337 	if (type & PERF_SAMPLE_WEIGHT) {
2338 		OVERFLOW_CHECK_u64(array);
2339 		data->weight = *array;
2340 		array++;
2341 	}
2342 
2343 	if (type & PERF_SAMPLE_DATA_SRC) {
2344 		OVERFLOW_CHECK_u64(array);
2345 		data->data_src = *array;
2346 		array++;
2347 	}
2348 
2349 	if (type & PERF_SAMPLE_TRANSACTION) {
2350 		OVERFLOW_CHECK_u64(array);
2351 		data->transaction = *array;
2352 		array++;
2353 	}
2354 
2355 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2356 	if (type & PERF_SAMPLE_REGS_INTR) {
2357 		OVERFLOW_CHECK_u64(array);
2358 		data->intr_regs.abi = *array;
2359 		array++;
2360 
2361 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2362 			u64 mask = evsel->attr.sample_regs_intr;
2363 
2364 			sz = hweight_long(mask) * sizeof(u64);
2365 			OVERFLOW_CHECK(array, sz, max_size);
2366 			data->intr_regs.mask = mask;
2367 			data->intr_regs.regs = (u64 *)array;
2368 			array = (void *)array + sz;
2369 		}
2370 	}
2371 
2372 	data->phys_addr = 0;
2373 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2374 		data->phys_addr = *array;
2375 		array++;
2376 	}
2377 
2378 	return 0;
2379 }
2380 
2381 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2382 				       union perf_event *event,
2383 				       u64 *timestamp)
2384 {
2385 	u64 type = evsel->attr.sample_type;
2386 	const u64 *array;
2387 
2388 	if (!(type & PERF_SAMPLE_TIME))
2389 		return -1;
2390 
2391 	if (event->header.type != PERF_RECORD_SAMPLE) {
2392 		struct perf_sample data = {
2393 			.time = -1ULL,
2394 		};
2395 
2396 		if (!evsel->attr.sample_id_all)
2397 			return -1;
2398 		if (perf_evsel__parse_id_sample(evsel, event, &data))
2399 			return -1;
2400 
2401 		*timestamp = data.time;
2402 		return 0;
2403 	}
2404 
2405 	array = event->sample.array;
2406 
2407 	if (perf_event__check_size(event, evsel->sample_size))
2408 		return -EFAULT;
2409 
2410 	if (type & PERF_SAMPLE_IDENTIFIER)
2411 		array++;
2412 
2413 	if (type & PERF_SAMPLE_IP)
2414 		array++;
2415 
2416 	if (type & PERF_SAMPLE_TID)
2417 		array++;
2418 
2419 	if (type & PERF_SAMPLE_TIME)
2420 		*timestamp = *array;
2421 
2422 	return 0;
2423 }
2424 
2425 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2426 				     u64 read_format)
2427 {
2428 	size_t sz, result = sizeof(struct sample_event);
2429 
2430 	if (type & PERF_SAMPLE_IDENTIFIER)
2431 		result += sizeof(u64);
2432 
2433 	if (type & PERF_SAMPLE_IP)
2434 		result += sizeof(u64);
2435 
2436 	if (type & PERF_SAMPLE_TID)
2437 		result += sizeof(u64);
2438 
2439 	if (type & PERF_SAMPLE_TIME)
2440 		result += sizeof(u64);
2441 
2442 	if (type & PERF_SAMPLE_ADDR)
2443 		result += sizeof(u64);
2444 
2445 	if (type & PERF_SAMPLE_ID)
2446 		result += sizeof(u64);
2447 
2448 	if (type & PERF_SAMPLE_STREAM_ID)
2449 		result += sizeof(u64);
2450 
2451 	if (type & PERF_SAMPLE_CPU)
2452 		result += sizeof(u64);
2453 
2454 	if (type & PERF_SAMPLE_PERIOD)
2455 		result += sizeof(u64);
2456 
2457 	if (type & PERF_SAMPLE_READ) {
2458 		result += sizeof(u64);
2459 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2460 			result += sizeof(u64);
2461 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2462 			result += sizeof(u64);
2463 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2464 		if (read_format & PERF_FORMAT_GROUP) {
2465 			sz = sample->read.group.nr *
2466 			     sizeof(struct sample_read_value);
2467 			result += sz;
2468 		} else {
2469 			result += sizeof(u64);
2470 		}
2471 	}
2472 
2473 	if (type & PERF_SAMPLE_CALLCHAIN) {
2474 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2475 		result += sz;
2476 	}
2477 
2478 	if (type & PERF_SAMPLE_RAW) {
2479 		result += sizeof(u32);
2480 		result += sample->raw_size;
2481 	}
2482 
2483 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2484 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2485 		sz += sizeof(u64);
2486 		result += sz;
2487 	}
2488 
2489 	if (type & PERF_SAMPLE_REGS_USER) {
2490 		if (sample->user_regs.abi) {
2491 			result += sizeof(u64);
2492 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2493 			result += sz;
2494 		} else {
2495 			result += sizeof(u64);
2496 		}
2497 	}
2498 
2499 	if (type & PERF_SAMPLE_STACK_USER) {
2500 		sz = sample->user_stack.size;
2501 		result += sizeof(u64);
2502 		if (sz) {
2503 			result += sz;
2504 			result += sizeof(u64);
2505 		}
2506 	}
2507 
2508 	if (type & PERF_SAMPLE_WEIGHT)
2509 		result += sizeof(u64);
2510 
2511 	if (type & PERF_SAMPLE_DATA_SRC)
2512 		result += sizeof(u64);
2513 
2514 	if (type & PERF_SAMPLE_TRANSACTION)
2515 		result += sizeof(u64);
2516 
2517 	if (type & PERF_SAMPLE_REGS_INTR) {
2518 		if (sample->intr_regs.abi) {
2519 			result += sizeof(u64);
2520 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2521 			result += sz;
2522 		} else {
2523 			result += sizeof(u64);
2524 		}
2525 	}
2526 
2527 	if (type & PERF_SAMPLE_PHYS_ADDR)
2528 		result += sizeof(u64);
2529 
2530 	return result;
2531 }
2532 
2533 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2534 				  u64 read_format,
2535 				  const struct perf_sample *sample)
2536 {
2537 	u64 *array;
2538 	size_t sz;
2539 	/*
2540 	 * used for cross-endian analysis. See git commit 65014ab3
2541 	 * for why this goofiness is needed.
2542 	 */
2543 	union u64_swap u;
2544 
2545 	array = event->sample.array;
2546 
2547 	if (type & PERF_SAMPLE_IDENTIFIER) {
2548 		*array = sample->id;
2549 		array++;
2550 	}
2551 
2552 	if (type & PERF_SAMPLE_IP) {
2553 		*array = sample->ip;
2554 		array++;
2555 	}
2556 
2557 	if (type & PERF_SAMPLE_TID) {
2558 		u.val32[0] = sample->pid;
2559 		u.val32[1] = sample->tid;
2560 		*array = u.val64;
2561 		array++;
2562 	}
2563 
2564 	if (type & PERF_SAMPLE_TIME) {
2565 		*array = sample->time;
2566 		array++;
2567 	}
2568 
2569 	if (type & PERF_SAMPLE_ADDR) {
2570 		*array = sample->addr;
2571 		array++;
2572 	}
2573 
2574 	if (type & PERF_SAMPLE_ID) {
2575 		*array = sample->id;
2576 		array++;
2577 	}
2578 
2579 	if (type & PERF_SAMPLE_STREAM_ID) {
2580 		*array = sample->stream_id;
2581 		array++;
2582 	}
2583 
2584 	if (type & PERF_SAMPLE_CPU) {
2585 		u.val32[0] = sample->cpu;
2586 		u.val32[1] = 0;
2587 		*array = u.val64;
2588 		array++;
2589 	}
2590 
2591 	if (type & PERF_SAMPLE_PERIOD) {
2592 		*array = sample->period;
2593 		array++;
2594 	}
2595 
2596 	if (type & PERF_SAMPLE_READ) {
2597 		if (read_format & PERF_FORMAT_GROUP)
2598 			*array = sample->read.group.nr;
2599 		else
2600 			*array = sample->read.one.value;
2601 		array++;
2602 
2603 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2604 			*array = sample->read.time_enabled;
2605 			array++;
2606 		}
2607 
2608 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2609 			*array = sample->read.time_running;
2610 			array++;
2611 		}
2612 
2613 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2614 		if (read_format & PERF_FORMAT_GROUP) {
2615 			sz = sample->read.group.nr *
2616 			     sizeof(struct sample_read_value);
2617 			memcpy(array, sample->read.group.values, sz);
2618 			array = (void *)array + sz;
2619 		} else {
2620 			*array = sample->read.one.id;
2621 			array++;
2622 		}
2623 	}
2624 
2625 	if (type & PERF_SAMPLE_CALLCHAIN) {
2626 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2627 		memcpy(array, sample->callchain, sz);
2628 		array = (void *)array + sz;
2629 	}
2630 
2631 	if (type & PERF_SAMPLE_RAW) {
2632 		u.val32[0] = sample->raw_size;
2633 		*array = u.val64;
2634 		array = (void *)array + sizeof(u32);
2635 
2636 		memcpy(array, sample->raw_data, sample->raw_size);
2637 		array = (void *)array + sample->raw_size;
2638 	}
2639 
2640 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2641 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2642 		sz += sizeof(u64);
2643 		memcpy(array, sample->branch_stack, sz);
2644 		array = (void *)array + sz;
2645 	}
2646 
2647 	if (type & PERF_SAMPLE_REGS_USER) {
2648 		if (sample->user_regs.abi) {
2649 			*array++ = sample->user_regs.abi;
2650 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2651 			memcpy(array, sample->user_regs.regs, sz);
2652 			array = (void *)array + sz;
2653 		} else {
2654 			*array++ = 0;
2655 		}
2656 	}
2657 
2658 	if (type & PERF_SAMPLE_STACK_USER) {
2659 		sz = sample->user_stack.size;
2660 		*array++ = sz;
2661 		if (sz) {
2662 			memcpy(array, sample->user_stack.data, sz);
2663 			array = (void *)array + sz;
2664 			*array++ = sz;
2665 		}
2666 	}
2667 
2668 	if (type & PERF_SAMPLE_WEIGHT) {
2669 		*array = sample->weight;
2670 		array++;
2671 	}
2672 
2673 	if (type & PERF_SAMPLE_DATA_SRC) {
2674 		*array = sample->data_src;
2675 		array++;
2676 	}
2677 
2678 	if (type & PERF_SAMPLE_TRANSACTION) {
2679 		*array = sample->transaction;
2680 		array++;
2681 	}
2682 
2683 	if (type & PERF_SAMPLE_REGS_INTR) {
2684 		if (sample->intr_regs.abi) {
2685 			*array++ = sample->intr_regs.abi;
2686 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2687 			memcpy(array, sample->intr_regs.regs, sz);
2688 			array = (void *)array + sz;
2689 		} else {
2690 			*array++ = 0;
2691 		}
2692 	}
2693 
2694 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2695 		*array = sample->phys_addr;
2696 		array++;
2697 	}
2698 
2699 	return 0;
2700 }
2701 
2702 struct tep_format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2703 {
2704 	return tep_find_field(evsel->tp_format, name);
2705 }
2706 
2707 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2708 			 const char *name)
2709 {
2710 	struct tep_format_field *field = perf_evsel__field(evsel, name);
2711 	int offset;
2712 
2713 	if (!field)
2714 		return NULL;
2715 
2716 	offset = field->offset;
2717 
2718 	if (field->flags & TEP_FIELD_IS_DYNAMIC) {
2719 		offset = *(int *)(sample->raw_data + field->offset);
2720 		offset &= 0xffff;
2721 	}
2722 
2723 	return sample->raw_data + offset;
2724 }
2725 
2726 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample,
2727 			 bool needs_swap)
2728 {
2729 	u64 value;
2730 	void *ptr = sample->raw_data + field->offset;
2731 
2732 	switch (field->size) {
2733 	case 1:
2734 		return *(u8 *)ptr;
2735 	case 2:
2736 		value = *(u16 *)ptr;
2737 		break;
2738 	case 4:
2739 		value = *(u32 *)ptr;
2740 		break;
2741 	case 8:
2742 		memcpy(&value, ptr, sizeof(u64));
2743 		break;
2744 	default:
2745 		return 0;
2746 	}
2747 
2748 	if (!needs_swap)
2749 		return value;
2750 
2751 	switch (field->size) {
2752 	case 2:
2753 		return bswap_16(value);
2754 	case 4:
2755 		return bswap_32(value);
2756 	case 8:
2757 		return bswap_64(value);
2758 	default:
2759 		return 0;
2760 	}
2761 
2762 	return 0;
2763 }
2764 
2765 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2766 		       const char *name)
2767 {
2768 	struct tep_format_field *field = perf_evsel__field(evsel, name);
2769 
2770 	if (!field)
2771 		return 0;
2772 
2773 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2774 }
2775 
2776 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2777 			  char *msg, size_t msgsize)
2778 {
2779 	int paranoid;
2780 
2781 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2782 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2783 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2784 		/*
2785 		 * If it's cycles then fall back to hrtimer based
2786 		 * cpu-clock-tick sw counter, which is always available even if
2787 		 * no PMU support.
2788 		 *
2789 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2790 		 * b0a873e).
2791 		 */
2792 		scnprintf(msg, msgsize, "%s",
2793 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2794 
2795 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2796 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2797 
2798 		zfree(&evsel->name);
2799 		return true;
2800 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2801 		   (paranoid = perf_event_paranoid()) > 1) {
2802 		const char *name = perf_evsel__name(evsel);
2803 		char *new_name;
2804 		const char *sep = ":";
2805 
2806 		/* Is there already the separator in the name. */
2807 		if (strchr(name, '/') ||
2808 		    strchr(name, ':'))
2809 			sep = "";
2810 
2811 		if (asprintf(&new_name, "%s%su", name, sep) < 0)
2812 			return false;
2813 
2814 		if (evsel->name)
2815 			free(evsel->name);
2816 		evsel->name = new_name;
2817 		scnprintf(msg, msgsize,
2818 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2819 		evsel->attr.exclude_kernel = 1;
2820 
2821 		return true;
2822 	}
2823 
2824 	return false;
2825 }
2826 
2827 static bool find_process(const char *name)
2828 {
2829 	size_t len = strlen(name);
2830 	DIR *dir;
2831 	struct dirent *d;
2832 	int ret = -1;
2833 
2834 	dir = opendir(procfs__mountpoint());
2835 	if (!dir)
2836 		return false;
2837 
2838 	/* Walk through the directory. */
2839 	while (ret && (d = readdir(dir)) != NULL) {
2840 		char path[PATH_MAX];
2841 		char *data;
2842 		size_t size;
2843 
2844 		if ((d->d_type != DT_DIR) ||
2845 		     !strcmp(".", d->d_name) ||
2846 		     !strcmp("..", d->d_name))
2847 			continue;
2848 
2849 		scnprintf(path, sizeof(path), "%s/%s/comm",
2850 			  procfs__mountpoint(), d->d_name);
2851 
2852 		if (filename__read_str(path, &data, &size))
2853 			continue;
2854 
2855 		ret = strncmp(name, data, len);
2856 		free(data);
2857 	}
2858 
2859 	closedir(dir);
2860 	return ret ? false : true;
2861 }
2862 
2863 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2864 			      int err, char *msg, size_t size)
2865 {
2866 	char sbuf[STRERR_BUFSIZE];
2867 	int printed = 0;
2868 
2869 	switch (err) {
2870 	case EPERM:
2871 	case EACCES:
2872 		if (err == EPERM)
2873 			printed = scnprintf(msg, size,
2874 				"No permission to enable %s event.\n\n",
2875 				perf_evsel__name(evsel));
2876 
2877 		return scnprintf(msg + printed, size - printed,
2878 		 "You may not have permission to collect %sstats.\n\n"
2879 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2880 		 "which controls use of the performance events system by\n"
2881 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2882 		 "The current value is %d:\n\n"
2883 		 "  -1: Allow use of (almost) all events by all users\n"
2884 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2885 		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2886 		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2887 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2888 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2889 		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2890 		 "	kernel.perf_event_paranoid = -1\n" ,
2891 				 target->system_wide ? "system-wide " : "",
2892 				 perf_event_paranoid());
2893 	case ENOENT:
2894 		return scnprintf(msg, size, "The %s event is not supported.",
2895 				 perf_evsel__name(evsel));
2896 	case EMFILE:
2897 		return scnprintf(msg, size, "%s",
2898 			 "Too many events are opened.\n"
2899 			 "Probably the maximum number of open file descriptors has been reached.\n"
2900 			 "Hint: Try again after reducing the number of events.\n"
2901 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2902 	case ENOMEM:
2903 		if (evsel__has_callchain(evsel) &&
2904 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2905 			return scnprintf(msg, size,
2906 					 "Not enough memory to setup event with callchain.\n"
2907 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2908 					 "Hint: Current value: %d", sysctl__max_stack());
2909 		break;
2910 	case ENODEV:
2911 		if (target->cpu_list)
2912 			return scnprintf(msg, size, "%s",
2913 	 "No such device - did you specify an out-of-range profile CPU?");
2914 		break;
2915 	case EOPNOTSUPP:
2916 		if (evsel->attr.sample_period != 0)
2917 			return scnprintf(msg, size,
2918 	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2919 					 perf_evsel__name(evsel));
2920 		if (evsel->attr.precise_ip)
2921 			return scnprintf(msg, size, "%s",
2922 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2923 #if defined(__i386__) || defined(__x86_64__)
2924 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2925 			return scnprintf(msg, size, "%s",
2926 	"No hardware sampling interrupt available.\n");
2927 #endif
2928 		break;
2929 	case EBUSY:
2930 		if (find_process("oprofiled"))
2931 			return scnprintf(msg, size,
2932 	"The PMU counters are busy/taken by another profiler.\n"
2933 	"We found oprofile daemon running, please stop it and try again.");
2934 		break;
2935 	case EINVAL:
2936 		if (evsel->attr.write_backward && perf_missing_features.write_backward)
2937 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2938 		if (perf_missing_features.clockid)
2939 			return scnprintf(msg, size, "clockid feature not supported.");
2940 		if (perf_missing_features.clockid_wrong)
2941 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2942 		break;
2943 	default:
2944 		break;
2945 	}
2946 
2947 	return scnprintf(msg, size,
2948 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2949 	"/bin/dmesg | grep -i perf may provide additional information.\n",
2950 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2951 			 perf_evsel__name(evsel));
2952 }
2953 
2954 struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
2955 {
2956 	if (evsel && evsel->evlist)
2957 		return evsel->evlist->env;
2958 	return NULL;
2959 }
2960 
2961 static int store_evsel_ids(struct perf_evsel *evsel, struct perf_evlist *evlist)
2962 {
2963 	int cpu, thread;
2964 
2965 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
2966 		for (thread = 0; thread < xyarray__max_y(evsel->fd);
2967 		     thread++) {
2968 			int fd = FD(evsel, cpu, thread);
2969 
2970 			if (perf_evlist__id_add_fd(evlist, evsel,
2971 						   cpu, thread, fd) < 0)
2972 				return -1;
2973 		}
2974 	}
2975 
2976 	return 0;
2977 }
2978 
2979 int perf_evsel__store_ids(struct perf_evsel *evsel, struct perf_evlist *evlist)
2980 {
2981 	struct cpu_map *cpus = evsel->cpus;
2982 	struct thread_map *threads = evsel->threads;
2983 
2984 	if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr))
2985 		return -ENOMEM;
2986 
2987 	return store_evsel_ids(evsel, evlist);
2988 }
2989