xref: /openbmc/linux/tools/perf/util/evsel.c (revision 530e7a660fb795452357b36cce26b839a9a187a9)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "memswap.h"
40 #include "util/parse-branch-options.h"
41 
42 #include "sane_ctype.h"
43 
44 struct perf_missing_features perf_missing_features;
45 
46 static clockid_t clockid;
47 
48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
49 {
50 	return 0;
51 }
52 
53 void __weak test_attr__ready(void) { }
54 
55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
56 {
57 }
58 
59 static struct {
60 	size_t	size;
61 	int	(*init)(struct perf_evsel *evsel);
62 	void	(*fini)(struct perf_evsel *evsel);
63 } perf_evsel__object = {
64 	.size = sizeof(struct perf_evsel),
65 	.init = perf_evsel__no_extra_init,
66 	.fini = perf_evsel__no_extra_fini,
67 };
68 
69 int perf_evsel__object_config(size_t object_size,
70 			      int (*init)(struct perf_evsel *evsel),
71 			      void (*fini)(struct perf_evsel *evsel))
72 {
73 
74 	if (object_size == 0)
75 		goto set_methods;
76 
77 	if (perf_evsel__object.size > object_size)
78 		return -EINVAL;
79 
80 	perf_evsel__object.size = object_size;
81 
82 set_methods:
83 	if (init != NULL)
84 		perf_evsel__object.init = init;
85 
86 	if (fini != NULL)
87 		perf_evsel__object.fini = fini;
88 
89 	return 0;
90 }
91 
92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
93 
94 int __perf_evsel__sample_size(u64 sample_type)
95 {
96 	u64 mask = sample_type & PERF_SAMPLE_MASK;
97 	int size = 0;
98 	int i;
99 
100 	for (i = 0; i < 64; i++) {
101 		if (mask & (1ULL << i))
102 			size++;
103 	}
104 
105 	size *= sizeof(u64);
106 
107 	return size;
108 }
109 
110 /**
111  * __perf_evsel__calc_id_pos - calculate id_pos.
112  * @sample_type: sample type
113  *
114  * This function returns the position of the event id (PERF_SAMPLE_ID or
115  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
116  * sample_event.
117  */
118 static int __perf_evsel__calc_id_pos(u64 sample_type)
119 {
120 	int idx = 0;
121 
122 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
123 		return 0;
124 
125 	if (!(sample_type & PERF_SAMPLE_ID))
126 		return -1;
127 
128 	if (sample_type & PERF_SAMPLE_IP)
129 		idx += 1;
130 
131 	if (sample_type & PERF_SAMPLE_TID)
132 		idx += 1;
133 
134 	if (sample_type & PERF_SAMPLE_TIME)
135 		idx += 1;
136 
137 	if (sample_type & PERF_SAMPLE_ADDR)
138 		idx += 1;
139 
140 	return idx;
141 }
142 
143 /**
144  * __perf_evsel__calc_is_pos - calculate is_pos.
145  * @sample_type: sample type
146  *
147  * This function returns the position (counting backwards) of the event id
148  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
149  * sample_id_all is used there is an id sample appended to non-sample events.
150  */
151 static int __perf_evsel__calc_is_pos(u64 sample_type)
152 {
153 	int idx = 1;
154 
155 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
156 		return 1;
157 
158 	if (!(sample_type & PERF_SAMPLE_ID))
159 		return -1;
160 
161 	if (sample_type & PERF_SAMPLE_CPU)
162 		idx += 1;
163 
164 	if (sample_type & PERF_SAMPLE_STREAM_ID)
165 		idx += 1;
166 
167 	return idx;
168 }
169 
170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
171 {
172 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
173 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
174 }
175 
176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
177 				  enum perf_event_sample_format bit)
178 {
179 	if (!(evsel->attr.sample_type & bit)) {
180 		evsel->attr.sample_type |= bit;
181 		evsel->sample_size += sizeof(u64);
182 		perf_evsel__calc_id_pos(evsel);
183 	}
184 }
185 
186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
187 				    enum perf_event_sample_format bit)
188 {
189 	if (evsel->attr.sample_type & bit) {
190 		evsel->attr.sample_type &= ~bit;
191 		evsel->sample_size -= sizeof(u64);
192 		perf_evsel__calc_id_pos(evsel);
193 	}
194 }
195 
196 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
197 			       bool can_sample_identifier)
198 {
199 	if (can_sample_identifier) {
200 		perf_evsel__reset_sample_bit(evsel, ID);
201 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
202 	} else {
203 		perf_evsel__set_sample_bit(evsel, ID);
204 	}
205 	evsel->attr.read_format |= PERF_FORMAT_ID;
206 }
207 
208 /**
209  * perf_evsel__is_function_event - Return whether given evsel is a function
210  * trace event
211  *
212  * @evsel - evsel selector to be tested
213  *
214  * Return %true if event is function trace event
215  */
216 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
217 {
218 #define FUNCTION_EVENT "ftrace:function"
219 
220 	return evsel->name &&
221 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
222 
223 #undef FUNCTION_EVENT
224 }
225 
226 void perf_evsel__init(struct perf_evsel *evsel,
227 		      struct perf_event_attr *attr, int idx)
228 {
229 	evsel->idx	   = idx;
230 	evsel->tracking	   = !idx;
231 	evsel->attr	   = *attr;
232 	evsel->leader	   = evsel;
233 	evsel->unit	   = "";
234 	evsel->scale	   = 1.0;
235 	evsel->evlist	   = NULL;
236 	evsel->bpf_fd	   = -1;
237 	INIT_LIST_HEAD(&evsel->node);
238 	INIT_LIST_HEAD(&evsel->config_terms);
239 	perf_evsel__object.init(evsel);
240 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
241 	perf_evsel__calc_id_pos(evsel);
242 	evsel->cmdline_group_boundary = false;
243 	evsel->metric_expr   = NULL;
244 	evsel->metric_name   = NULL;
245 	evsel->metric_events = NULL;
246 	evsel->collect_stat  = false;
247 	evsel->pmu_name      = NULL;
248 }
249 
250 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
251 {
252 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
253 
254 	if (evsel != NULL)
255 		perf_evsel__init(evsel, attr, idx);
256 
257 	if (perf_evsel__is_bpf_output(evsel)) {
258 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
259 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
260 		evsel->attr.sample_period = 1;
261 	}
262 
263 	return evsel;
264 }
265 
266 static bool perf_event_can_profile_kernel(void)
267 {
268 	return geteuid() == 0 || perf_event_paranoid() == -1;
269 }
270 
271 struct perf_evsel *perf_evsel__new_cycles(bool precise)
272 {
273 	struct perf_event_attr attr = {
274 		.type	= PERF_TYPE_HARDWARE,
275 		.config	= PERF_COUNT_HW_CPU_CYCLES,
276 		.exclude_kernel	= !perf_event_can_profile_kernel(),
277 	};
278 	struct perf_evsel *evsel;
279 
280 	event_attr_init(&attr);
281 
282 	if (!precise)
283 		goto new_event;
284 	/*
285 	 * Unnamed union member, not supported as struct member named
286 	 * initializer in older compilers such as gcc 4.4.7
287 	 *
288 	 * Just for probing the precise_ip:
289 	 */
290 	attr.sample_period = 1;
291 
292 	perf_event_attr__set_max_precise_ip(&attr);
293 	/*
294 	 * Now let the usual logic to set up the perf_event_attr defaults
295 	 * to kick in when we return and before perf_evsel__open() is called.
296 	 */
297 	attr.sample_period = 0;
298 new_event:
299 	evsel = perf_evsel__new(&attr);
300 	if (evsel == NULL)
301 		goto out;
302 
303 	/* use asprintf() because free(evsel) assumes name is allocated */
304 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
305 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
306 		     attr.exclude_kernel ? "u" : "",
307 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
308 		goto error_free;
309 out:
310 	return evsel;
311 error_free:
312 	perf_evsel__delete(evsel);
313 	evsel = NULL;
314 	goto out;
315 }
316 
317 /*
318  * Returns pointer with encoded error via <linux/err.h> interface.
319  */
320 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
321 {
322 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
323 	int err = -ENOMEM;
324 
325 	if (evsel == NULL) {
326 		goto out_err;
327 	} else {
328 		struct perf_event_attr attr = {
329 			.type	       = PERF_TYPE_TRACEPOINT,
330 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
331 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
332 		};
333 
334 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
335 			goto out_free;
336 
337 		evsel->tp_format = trace_event__tp_format(sys, name);
338 		if (IS_ERR(evsel->tp_format)) {
339 			err = PTR_ERR(evsel->tp_format);
340 			goto out_free;
341 		}
342 
343 		event_attr_init(&attr);
344 		attr.config = evsel->tp_format->id;
345 		attr.sample_period = 1;
346 		perf_evsel__init(evsel, &attr, idx);
347 	}
348 
349 	return evsel;
350 
351 out_free:
352 	zfree(&evsel->name);
353 	free(evsel);
354 out_err:
355 	return ERR_PTR(err);
356 }
357 
358 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
359 	"cycles",
360 	"instructions",
361 	"cache-references",
362 	"cache-misses",
363 	"branches",
364 	"branch-misses",
365 	"bus-cycles",
366 	"stalled-cycles-frontend",
367 	"stalled-cycles-backend",
368 	"ref-cycles",
369 };
370 
371 static const char *__perf_evsel__hw_name(u64 config)
372 {
373 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
374 		return perf_evsel__hw_names[config];
375 
376 	return "unknown-hardware";
377 }
378 
379 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
380 {
381 	int colon = 0, r = 0;
382 	struct perf_event_attr *attr = &evsel->attr;
383 	bool exclude_guest_default = false;
384 
385 #define MOD_PRINT(context, mod)	do {					\
386 		if (!attr->exclude_##context) {				\
387 			if (!colon) colon = ++r;			\
388 			r += scnprintf(bf + r, size - r, "%c", mod);	\
389 		} } while(0)
390 
391 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
392 		MOD_PRINT(kernel, 'k');
393 		MOD_PRINT(user, 'u');
394 		MOD_PRINT(hv, 'h');
395 		exclude_guest_default = true;
396 	}
397 
398 	if (attr->precise_ip) {
399 		if (!colon)
400 			colon = ++r;
401 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
402 		exclude_guest_default = true;
403 	}
404 
405 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
406 		MOD_PRINT(host, 'H');
407 		MOD_PRINT(guest, 'G');
408 	}
409 #undef MOD_PRINT
410 	if (colon)
411 		bf[colon - 1] = ':';
412 	return r;
413 }
414 
415 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
416 {
417 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
418 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
419 }
420 
421 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
422 	"cpu-clock",
423 	"task-clock",
424 	"page-faults",
425 	"context-switches",
426 	"cpu-migrations",
427 	"minor-faults",
428 	"major-faults",
429 	"alignment-faults",
430 	"emulation-faults",
431 	"dummy",
432 };
433 
434 static const char *__perf_evsel__sw_name(u64 config)
435 {
436 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
437 		return perf_evsel__sw_names[config];
438 	return "unknown-software";
439 }
440 
441 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
442 {
443 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
444 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
445 }
446 
447 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
448 {
449 	int r;
450 
451 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
452 
453 	if (type & HW_BREAKPOINT_R)
454 		r += scnprintf(bf + r, size - r, "r");
455 
456 	if (type & HW_BREAKPOINT_W)
457 		r += scnprintf(bf + r, size - r, "w");
458 
459 	if (type & HW_BREAKPOINT_X)
460 		r += scnprintf(bf + r, size - r, "x");
461 
462 	return r;
463 }
464 
465 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
466 {
467 	struct perf_event_attr *attr = &evsel->attr;
468 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
469 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
470 }
471 
472 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
473 				[PERF_EVSEL__MAX_ALIASES] = {
474  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
475  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
476  { "LLC",	"L2",							},
477  { "dTLB",	"d-tlb",	"Data-TLB",				},
478  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
479  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
480  { "node",								},
481 };
482 
483 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
484 				   [PERF_EVSEL__MAX_ALIASES] = {
485  { "load",	"loads",	"read",					},
486  { "store",	"stores",	"write",				},
487  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
488 };
489 
490 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
491 				       [PERF_EVSEL__MAX_ALIASES] = {
492  { "refs",	"Reference",	"ops",		"access",		},
493  { "misses",	"miss",							},
494 };
495 
496 #define C(x)		PERF_COUNT_HW_CACHE_##x
497 #define CACHE_READ	(1 << C(OP_READ))
498 #define CACHE_WRITE	(1 << C(OP_WRITE))
499 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
500 #define COP(x)		(1 << x)
501 
502 /*
503  * cache operartion stat
504  * L1I : Read and prefetch only
505  * ITLB and BPU : Read-only
506  */
507 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
508  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
509  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
510  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
511  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
512  [C(ITLB)]	= (CACHE_READ),
513  [C(BPU)]	= (CACHE_READ),
514  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
515 };
516 
517 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
518 {
519 	if (perf_evsel__hw_cache_stat[type] & COP(op))
520 		return true;	/* valid */
521 	else
522 		return false;	/* invalid */
523 }
524 
525 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
526 					    char *bf, size_t size)
527 {
528 	if (result) {
529 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
530 				 perf_evsel__hw_cache_op[op][0],
531 				 perf_evsel__hw_cache_result[result][0]);
532 	}
533 
534 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
535 			 perf_evsel__hw_cache_op[op][1]);
536 }
537 
538 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
539 {
540 	u8 op, result, type = (config >>  0) & 0xff;
541 	const char *err = "unknown-ext-hardware-cache-type";
542 
543 	if (type >= PERF_COUNT_HW_CACHE_MAX)
544 		goto out_err;
545 
546 	op = (config >>  8) & 0xff;
547 	err = "unknown-ext-hardware-cache-op";
548 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
549 		goto out_err;
550 
551 	result = (config >> 16) & 0xff;
552 	err = "unknown-ext-hardware-cache-result";
553 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
554 		goto out_err;
555 
556 	err = "invalid-cache";
557 	if (!perf_evsel__is_cache_op_valid(type, op))
558 		goto out_err;
559 
560 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
561 out_err:
562 	return scnprintf(bf, size, "%s", err);
563 }
564 
565 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
566 {
567 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
568 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
569 }
570 
571 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
572 {
573 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
574 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
575 }
576 
577 const char *perf_evsel__name(struct perf_evsel *evsel)
578 {
579 	char bf[128];
580 
581 	if (evsel->name)
582 		return evsel->name;
583 
584 	switch (evsel->attr.type) {
585 	case PERF_TYPE_RAW:
586 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
587 		break;
588 
589 	case PERF_TYPE_HARDWARE:
590 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
591 		break;
592 
593 	case PERF_TYPE_HW_CACHE:
594 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
595 		break;
596 
597 	case PERF_TYPE_SOFTWARE:
598 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
599 		break;
600 
601 	case PERF_TYPE_TRACEPOINT:
602 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
603 		break;
604 
605 	case PERF_TYPE_BREAKPOINT:
606 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
607 		break;
608 
609 	default:
610 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
611 			  evsel->attr.type);
612 		break;
613 	}
614 
615 	evsel->name = strdup(bf);
616 
617 	return evsel->name ?: "unknown";
618 }
619 
620 const char *perf_evsel__group_name(struct perf_evsel *evsel)
621 {
622 	return evsel->group_name ?: "anon group";
623 }
624 
625 /*
626  * Returns the group details for the specified leader,
627  * with following rules.
628  *
629  *  For record -e '{cycles,instructions}'
630  *    'anon group { cycles:u, instructions:u }'
631  *
632  *  For record -e 'cycles,instructions' and report --group
633  *    'cycles:u, instructions:u'
634  */
635 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
636 {
637 	int ret = 0;
638 	struct perf_evsel *pos;
639 	const char *group_name = perf_evsel__group_name(evsel);
640 
641 	if (!evsel->forced_leader)
642 		ret = scnprintf(buf, size, "%s { ", group_name);
643 
644 	ret += scnprintf(buf + ret, size - ret, "%s",
645 			 perf_evsel__name(evsel));
646 
647 	for_each_group_member(pos, evsel)
648 		ret += scnprintf(buf + ret, size - ret, ", %s",
649 				 perf_evsel__name(pos));
650 
651 	if (!evsel->forced_leader)
652 		ret += scnprintf(buf + ret, size - ret, " }");
653 
654 	return ret;
655 }
656 
657 static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
658 					   struct record_opts *opts,
659 					   struct callchain_param *param)
660 {
661 	bool function = perf_evsel__is_function_event(evsel);
662 	struct perf_event_attr *attr = &evsel->attr;
663 
664 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
665 
666 	attr->sample_max_stack = param->max_stack;
667 
668 	if (param->record_mode == CALLCHAIN_LBR) {
669 		if (!opts->branch_stack) {
670 			if (attr->exclude_user) {
671 				pr_warning("LBR callstack option is only available "
672 					   "to get user callchain information. "
673 					   "Falling back to framepointers.\n");
674 			} else {
675 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
676 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
677 							PERF_SAMPLE_BRANCH_CALL_STACK |
678 							PERF_SAMPLE_BRANCH_NO_CYCLES |
679 							PERF_SAMPLE_BRANCH_NO_FLAGS;
680 			}
681 		} else
682 			 pr_warning("Cannot use LBR callstack with branch stack. "
683 				    "Falling back to framepointers.\n");
684 	}
685 
686 	if (param->record_mode == CALLCHAIN_DWARF) {
687 		if (!function) {
688 			perf_evsel__set_sample_bit(evsel, REGS_USER);
689 			perf_evsel__set_sample_bit(evsel, STACK_USER);
690 			attr->sample_regs_user |= PERF_REGS_MASK;
691 			attr->sample_stack_user = param->dump_size;
692 			attr->exclude_callchain_user = 1;
693 		} else {
694 			pr_info("Cannot use DWARF unwind for function trace event,"
695 				" falling back to framepointers.\n");
696 		}
697 	}
698 
699 	if (function) {
700 		pr_info("Disabling user space callchains for function trace event.\n");
701 		attr->exclude_callchain_user = 1;
702 	}
703 }
704 
705 void perf_evsel__config_callchain(struct perf_evsel *evsel,
706 				  struct record_opts *opts,
707 				  struct callchain_param *param)
708 {
709 	if (param->enabled)
710 		return __perf_evsel__config_callchain(evsel, opts, param);
711 }
712 
713 static void
714 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
715 			    struct callchain_param *param)
716 {
717 	struct perf_event_attr *attr = &evsel->attr;
718 
719 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
720 	if (param->record_mode == CALLCHAIN_LBR) {
721 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
722 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
723 					      PERF_SAMPLE_BRANCH_CALL_STACK);
724 	}
725 	if (param->record_mode == CALLCHAIN_DWARF) {
726 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
727 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
728 	}
729 }
730 
731 static void apply_config_terms(struct perf_evsel *evsel,
732 			       struct record_opts *opts, bool track)
733 {
734 	struct perf_evsel_config_term *term;
735 	struct list_head *config_terms = &evsel->config_terms;
736 	struct perf_event_attr *attr = &evsel->attr;
737 	/* callgraph default */
738 	struct callchain_param param = {
739 		.record_mode = callchain_param.record_mode,
740 	};
741 	u32 dump_size = 0;
742 	int max_stack = 0;
743 	const char *callgraph_buf = NULL;
744 
745 	list_for_each_entry(term, config_terms, list) {
746 		switch (term->type) {
747 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
748 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
749 				attr->sample_period = term->val.period;
750 				attr->freq = 0;
751 				perf_evsel__reset_sample_bit(evsel, PERIOD);
752 			}
753 			break;
754 		case PERF_EVSEL__CONFIG_TERM_FREQ:
755 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
756 				attr->sample_freq = term->val.freq;
757 				attr->freq = 1;
758 				perf_evsel__set_sample_bit(evsel, PERIOD);
759 			}
760 			break;
761 		case PERF_EVSEL__CONFIG_TERM_TIME:
762 			if (term->val.time)
763 				perf_evsel__set_sample_bit(evsel, TIME);
764 			else
765 				perf_evsel__reset_sample_bit(evsel, TIME);
766 			break;
767 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
768 			callgraph_buf = term->val.callgraph;
769 			break;
770 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
771 			if (term->val.branch && strcmp(term->val.branch, "no")) {
772 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
773 				parse_branch_str(term->val.branch,
774 						 &attr->branch_sample_type);
775 			} else
776 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
777 			break;
778 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
779 			dump_size = term->val.stack_user;
780 			break;
781 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
782 			max_stack = term->val.max_stack;
783 			break;
784 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
785 			/*
786 			 * attr->inherit should has already been set by
787 			 * perf_evsel__config. If user explicitly set
788 			 * inherit using config terms, override global
789 			 * opt->no_inherit setting.
790 			 */
791 			attr->inherit = term->val.inherit ? 1 : 0;
792 			break;
793 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
794 			attr->write_backward = term->val.overwrite ? 1 : 0;
795 			break;
796 		case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
797 			break;
798 		default:
799 			break;
800 		}
801 	}
802 
803 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
804 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
805 		bool sample_address = false;
806 
807 		if (max_stack) {
808 			param.max_stack = max_stack;
809 			if (callgraph_buf == NULL)
810 				callgraph_buf = "fp";
811 		}
812 
813 		/* parse callgraph parameters */
814 		if (callgraph_buf != NULL) {
815 			if (!strcmp(callgraph_buf, "no")) {
816 				param.enabled = false;
817 				param.record_mode = CALLCHAIN_NONE;
818 			} else {
819 				param.enabled = true;
820 				if (parse_callchain_record(callgraph_buf, &param)) {
821 					pr_err("per-event callgraph setting for %s failed. "
822 					       "Apply callgraph global setting for it\n",
823 					       evsel->name);
824 					return;
825 				}
826 				if (param.record_mode == CALLCHAIN_DWARF)
827 					sample_address = true;
828 			}
829 		}
830 		if (dump_size > 0) {
831 			dump_size = round_up(dump_size, sizeof(u64));
832 			param.dump_size = dump_size;
833 		}
834 
835 		/* If global callgraph set, clear it */
836 		if (callchain_param.enabled)
837 			perf_evsel__reset_callgraph(evsel, &callchain_param);
838 
839 		/* set perf-event callgraph */
840 		if (param.enabled) {
841 			if (sample_address) {
842 				perf_evsel__set_sample_bit(evsel, ADDR);
843 				perf_evsel__set_sample_bit(evsel, DATA_SRC);
844 				evsel->attr.mmap_data = track;
845 			}
846 			perf_evsel__config_callchain(evsel, opts, &param);
847 		}
848 	}
849 }
850 
851 /*
852  * The enable_on_exec/disabled value strategy:
853  *
854  *  1) For any type of traced program:
855  *    - all independent events and group leaders are disabled
856  *    - all group members are enabled
857  *
858  *     Group members are ruled by group leaders. They need to
859  *     be enabled, because the group scheduling relies on that.
860  *
861  *  2) For traced programs executed by perf:
862  *     - all independent events and group leaders have
863  *       enable_on_exec set
864  *     - we don't specifically enable or disable any event during
865  *       the record command
866  *
867  *     Independent events and group leaders are initially disabled
868  *     and get enabled by exec. Group members are ruled by group
869  *     leaders as stated in 1).
870  *
871  *  3) For traced programs attached by perf (pid/tid):
872  *     - we specifically enable or disable all events during
873  *       the record command
874  *
875  *     When attaching events to already running traced we
876  *     enable/disable events specifically, as there's no
877  *     initial traced exec call.
878  */
879 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
880 			struct callchain_param *callchain)
881 {
882 	struct perf_evsel *leader = evsel->leader;
883 	struct perf_event_attr *attr = &evsel->attr;
884 	int track = evsel->tracking;
885 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
886 
887 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
888 	attr->inherit	    = !opts->no_inherit;
889 	attr->write_backward = opts->overwrite ? 1 : 0;
890 
891 	perf_evsel__set_sample_bit(evsel, IP);
892 	perf_evsel__set_sample_bit(evsel, TID);
893 
894 	if (evsel->sample_read) {
895 		perf_evsel__set_sample_bit(evsel, READ);
896 
897 		/*
898 		 * We need ID even in case of single event, because
899 		 * PERF_SAMPLE_READ process ID specific data.
900 		 */
901 		perf_evsel__set_sample_id(evsel, false);
902 
903 		/*
904 		 * Apply group format only if we belong to group
905 		 * with more than one members.
906 		 */
907 		if (leader->nr_members > 1) {
908 			attr->read_format |= PERF_FORMAT_GROUP;
909 			attr->inherit = 0;
910 		}
911 	}
912 
913 	/*
914 	 * We default some events to have a default interval. But keep
915 	 * it a weak assumption overridable by the user.
916 	 */
917 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
918 				     opts->user_interval != ULLONG_MAX)) {
919 		if (opts->freq) {
920 			perf_evsel__set_sample_bit(evsel, PERIOD);
921 			attr->freq		= 1;
922 			attr->sample_freq	= opts->freq;
923 		} else {
924 			attr->sample_period = opts->default_interval;
925 		}
926 	}
927 
928 	/*
929 	 * Disable sampling for all group members other
930 	 * than leader in case leader 'leads' the sampling.
931 	 */
932 	if ((leader != evsel) && leader->sample_read) {
933 		attr->freq           = 0;
934 		attr->sample_freq    = 0;
935 		attr->sample_period  = 0;
936 		attr->write_backward = 0;
937 		attr->sample_id_all  = 0;
938 	}
939 
940 	if (opts->no_samples)
941 		attr->sample_freq = 0;
942 
943 	if (opts->inherit_stat) {
944 		evsel->attr.read_format |=
945 			PERF_FORMAT_TOTAL_TIME_ENABLED |
946 			PERF_FORMAT_TOTAL_TIME_RUNNING |
947 			PERF_FORMAT_ID;
948 		attr->inherit_stat = 1;
949 	}
950 
951 	if (opts->sample_address) {
952 		perf_evsel__set_sample_bit(evsel, ADDR);
953 		attr->mmap_data = track;
954 	}
955 
956 	/*
957 	 * We don't allow user space callchains for  function trace
958 	 * event, due to issues with page faults while tracing page
959 	 * fault handler and its overall trickiness nature.
960 	 */
961 	if (perf_evsel__is_function_event(evsel))
962 		evsel->attr.exclude_callchain_user = 1;
963 
964 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
965 		perf_evsel__config_callchain(evsel, opts, callchain);
966 
967 	if (opts->sample_intr_regs) {
968 		attr->sample_regs_intr = opts->sample_intr_regs;
969 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
970 	}
971 
972 	if (opts->sample_user_regs) {
973 		attr->sample_regs_user |= opts->sample_user_regs;
974 		perf_evsel__set_sample_bit(evsel, REGS_USER);
975 	}
976 
977 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
978 		perf_evsel__set_sample_bit(evsel, CPU);
979 
980 	/*
981 	 * When the user explicitly disabled time don't force it here.
982 	 */
983 	if (opts->sample_time &&
984 	    (!perf_missing_features.sample_id_all &&
985 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
986 	     opts->sample_time_set)))
987 		perf_evsel__set_sample_bit(evsel, TIME);
988 
989 	if (opts->raw_samples && !evsel->no_aux_samples) {
990 		perf_evsel__set_sample_bit(evsel, TIME);
991 		perf_evsel__set_sample_bit(evsel, RAW);
992 		perf_evsel__set_sample_bit(evsel, CPU);
993 	}
994 
995 	if (opts->sample_address)
996 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
997 
998 	if (opts->sample_phys_addr)
999 		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1000 
1001 	if (opts->no_buffering) {
1002 		attr->watermark = 0;
1003 		attr->wakeup_events = 1;
1004 	}
1005 	if (opts->branch_stack && !evsel->no_aux_samples) {
1006 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1007 		attr->branch_sample_type = opts->branch_stack;
1008 	}
1009 
1010 	if (opts->sample_weight)
1011 		perf_evsel__set_sample_bit(evsel, WEIGHT);
1012 
1013 	attr->task  = track;
1014 	attr->mmap  = track;
1015 	attr->mmap2 = track && !perf_missing_features.mmap2;
1016 	attr->comm  = track;
1017 
1018 	if (opts->record_namespaces)
1019 		attr->namespaces  = track;
1020 
1021 	if (opts->record_switch_events)
1022 		attr->context_switch = track;
1023 
1024 	if (opts->sample_transaction)
1025 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
1026 
1027 	if (opts->running_time) {
1028 		evsel->attr.read_format |=
1029 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1030 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1031 	}
1032 
1033 	/*
1034 	 * XXX see the function comment above
1035 	 *
1036 	 * Disabling only independent events or group leaders,
1037 	 * keeping group members enabled.
1038 	 */
1039 	if (perf_evsel__is_group_leader(evsel))
1040 		attr->disabled = 1;
1041 
1042 	/*
1043 	 * Setting enable_on_exec for independent events and
1044 	 * group leaders for traced executed by perf.
1045 	 */
1046 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1047 		!opts->initial_delay)
1048 		attr->enable_on_exec = 1;
1049 
1050 	if (evsel->immediate) {
1051 		attr->disabled = 0;
1052 		attr->enable_on_exec = 0;
1053 	}
1054 
1055 	clockid = opts->clockid;
1056 	if (opts->use_clockid) {
1057 		attr->use_clockid = 1;
1058 		attr->clockid = opts->clockid;
1059 	}
1060 
1061 	if (evsel->precise_max)
1062 		perf_event_attr__set_max_precise_ip(attr);
1063 
1064 	if (opts->all_user) {
1065 		attr->exclude_kernel = 1;
1066 		attr->exclude_user   = 0;
1067 	}
1068 
1069 	if (opts->all_kernel) {
1070 		attr->exclude_kernel = 0;
1071 		attr->exclude_user   = 1;
1072 	}
1073 
1074 	/*
1075 	 * Apply event specific term settings,
1076 	 * it overloads any global configuration.
1077 	 */
1078 	apply_config_terms(evsel, opts, track);
1079 
1080 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1081 
1082 	/* The --period option takes the precedence. */
1083 	if (opts->period_set) {
1084 		if (opts->period)
1085 			perf_evsel__set_sample_bit(evsel, PERIOD);
1086 		else
1087 			perf_evsel__reset_sample_bit(evsel, PERIOD);
1088 	}
1089 }
1090 
1091 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1092 {
1093 	if (evsel->system_wide)
1094 		nthreads = 1;
1095 
1096 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1097 
1098 	if (evsel->fd) {
1099 		int cpu, thread;
1100 		for (cpu = 0; cpu < ncpus; cpu++) {
1101 			for (thread = 0; thread < nthreads; thread++) {
1102 				FD(evsel, cpu, thread) = -1;
1103 			}
1104 		}
1105 	}
1106 
1107 	return evsel->fd != NULL ? 0 : -ENOMEM;
1108 }
1109 
1110 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1111 			  int ioc,  void *arg)
1112 {
1113 	int cpu, thread;
1114 
1115 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1116 		for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1117 			int fd = FD(evsel, cpu, thread),
1118 			    err = ioctl(fd, ioc, arg);
1119 
1120 			if (err)
1121 				return err;
1122 		}
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1129 {
1130 	return perf_evsel__run_ioctl(evsel,
1131 				     PERF_EVENT_IOC_SET_FILTER,
1132 				     (void *)filter);
1133 }
1134 
1135 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1136 {
1137 	char *new_filter = strdup(filter);
1138 
1139 	if (new_filter != NULL) {
1140 		free(evsel->filter);
1141 		evsel->filter = new_filter;
1142 		return 0;
1143 	}
1144 
1145 	return -1;
1146 }
1147 
1148 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1149 				     const char *fmt, const char *filter)
1150 {
1151 	char *new_filter;
1152 
1153 	if (evsel->filter == NULL)
1154 		return perf_evsel__set_filter(evsel, filter);
1155 
1156 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1157 		free(evsel->filter);
1158 		evsel->filter = new_filter;
1159 		return 0;
1160 	}
1161 
1162 	return -1;
1163 }
1164 
1165 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1166 {
1167 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1168 }
1169 
1170 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1171 {
1172 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1173 }
1174 
1175 int perf_evsel__enable(struct perf_evsel *evsel)
1176 {
1177 	return perf_evsel__run_ioctl(evsel,
1178 				     PERF_EVENT_IOC_ENABLE,
1179 				     0);
1180 }
1181 
1182 int perf_evsel__disable(struct perf_evsel *evsel)
1183 {
1184 	return perf_evsel__run_ioctl(evsel,
1185 				     PERF_EVENT_IOC_DISABLE,
1186 				     0);
1187 }
1188 
1189 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1190 {
1191 	if (ncpus == 0 || nthreads == 0)
1192 		return 0;
1193 
1194 	if (evsel->system_wide)
1195 		nthreads = 1;
1196 
1197 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1198 	if (evsel->sample_id == NULL)
1199 		return -ENOMEM;
1200 
1201 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1202 	if (evsel->id == NULL) {
1203 		xyarray__delete(evsel->sample_id);
1204 		evsel->sample_id = NULL;
1205 		return -ENOMEM;
1206 	}
1207 
1208 	return 0;
1209 }
1210 
1211 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1212 {
1213 	xyarray__delete(evsel->fd);
1214 	evsel->fd = NULL;
1215 }
1216 
1217 static void perf_evsel__free_id(struct perf_evsel *evsel)
1218 {
1219 	xyarray__delete(evsel->sample_id);
1220 	evsel->sample_id = NULL;
1221 	zfree(&evsel->id);
1222 }
1223 
1224 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1225 {
1226 	struct perf_evsel_config_term *term, *h;
1227 
1228 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1229 		list_del(&term->list);
1230 		free(term);
1231 	}
1232 }
1233 
1234 void perf_evsel__close_fd(struct perf_evsel *evsel)
1235 {
1236 	int cpu, thread;
1237 
1238 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1239 		for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1240 			close(FD(evsel, cpu, thread));
1241 			FD(evsel, cpu, thread) = -1;
1242 		}
1243 }
1244 
1245 void perf_evsel__exit(struct perf_evsel *evsel)
1246 {
1247 	assert(list_empty(&evsel->node));
1248 	assert(evsel->evlist == NULL);
1249 	perf_evsel__free_fd(evsel);
1250 	perf_evsel__free_id(evsel);
1251 	perf_evsel__free_config_terms(evsel);
1252 	cgroup__put(evsel->cgrp);
1253 	cpu_map__put(evsel->cpus);
1254 	cpu_map__put(evsel->own_cpus);
1255 	thread_map__put(evsel->threads);
1256 	zfree(&evsel->group_name);
1257 	zfree(&evsel->name);
1258 	perf_evsel__object.fini(evsel);
1259 }
1260 
1261 void perf_evsel__delete(struct perf_evsel *evsel)
1262 {
1263 	perf_evsel__exit(evsel);
1264 	free(evsel);
1265 }
1266 
1267 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1268 				struct perf_counts_values *count)
1269 {
1270 	struct perf_counts_values tmp;
1271 
1272 	if (!evsel->prev_raw_counts)
1273 		return;
1274 
1275 	if (cpu == -1) {
1276 		tmp = evsel->prev_raw_counts->aggr;
1277 		evsel->prev_raw_counts->aggr = *count;
1278 	} else {
1279 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1280 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1281 	}
1282 
1283 	count->val = count->val - tmp.val;
1284 	count->ena = count->ena - tmp.ena;
1285 	count->run = count->run - tmp.run;
1286 }
1287 
1288 void perf_counts_values__scale(struct perf_counts_values *count,
1289 			       bool scale, s8 *pscaled)
1290 {
1291 	s8 scaled = 0;
1292 
1293 	if (scale) {
1294 		if (count->run == 0) {
1295 			scaled = -1;
1296 			count->val = 0;
1297 		} else if (count->run < count->ena) {
1298 			scaled = 1;
1299 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1300 		}
1301 	} else
1302 		count->ena = count->run = 0;
1303 
1304 	if (pscaled)
1305 		*pscaled = scaled;
1306 }
1307 
1308 static int perf_evsel__read_size(struct perf_evsel *evsel)
1309 {
1310 	u64 read_format = evsel->attr.read_format;
1311 	int entry = sizeof(u64); /* value */
1312 	int size = 0;
1313 	int nr = 1;
1314 
1315 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1316 		size += sizeof(u64);
1317 
1318 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1319 		size += sizeof(u64);
1320 
1321 	if (read_format & PERF_FORMAT_ID)
1322 		entry += sizeof(u64);
1323 
1324 	if (read_format & PERF_FORMAT_GROUP) {
1325 		nr = evsel->nr_members;
1326 		size += sizeof(u64);
1327 	}
1328 
1329 	size += entry * nr;
1330 	return size;
1331 }
1332 
1333 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1334 		     struct perf_counts_values *count)
1335 {
1336 	size_t size = perf_evsel__read_size(evsel);
1337 
1338 	memset(count, 0, sizeof(*count));
1339 
1340 	if (FD(evsel, cpu, thread) < 0)
1341 		return -EINVAL;
1342 
1343 	if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1344 		return -errno;
1345 
1346 	return 0;
1347 }
1348 
1349 static int
1350 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1351 {
1352 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1353 
1354 	return perf_evsel__read(evsel, cpu, thread, count);
1355 }
1356 
1357 static void
1358 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1359 		      u64 val, u64 ena, u64 run)
1360 {
1361 	struct perf_counts_values *count;
1362 
1363 	count = perf_counts(counter->counts, cpu, thread);
1364 
1365 	count->val    = val;
1366 	count->ena    = ena;
1367 	count->run    = run;
1368 	count->loaded = true;
1369 }
1370 
1371 static int
1372 perf_evsel__process_group_data(struct perf_evsel *leader,
1373 			       int cpu, int thread, u64 *data)
1374 {
1375 	u64 read_format = leader->attr.read_format;
1376 	struct sample_read_value *v;
1377 	u64 nr, ena = 0, run = 0, i;
1378 
1379 	nr = *data++;
1380 
1381 	if (nr != (u64) leader->nr_members)
1382 		return -EINVAL;
1383 
1384 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1385 		ena = *data++;
1386 
1387 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1388 		run = *data++;
1389 
1390 	v = (struct sample_read_value *) data;
1391 
1392 	perf_evsel__set_count(leader, cpu, thread,
1393 			      v[0].value, ena, run);
1394 
1395 	for (i = 1; i < nr; i++) {
1396 		struct perf_evsel *counter;
1397 
1398 		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1399 		if (!counter)
1400 			return -EINVAL;
1401 
1402 		perf_evsel__set_count(counter, cpu, thread,
1403 				      v[i].value, ena, run);
1404 	}
1405 
1406 	return 0;
1407 }
1408 
1409 static int
1410 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1411 {
1412 	struct perf_stat_evsel *ps = leader->stats;
1413 	u64 read_format = leader->attr.read_format;
1414 	int size = perf_evsel__read_size(leader);
1415 	u64 *data = ps->group_data;
1416 
1417 	if (!(read_format & PERF_FORMAT_ID))
1418 		return -EINVAL;
1419 
1420 	if (!perf_evsel__is_group_leader(leader))
1421 		return -EINVAL;
1422 
1423 	if (!data) {
1424 		data = zalloc(size);
1425 		if (!data)
1426 			return -ENOMEM;
1427 
1428 		ps->group_data = data;
1429 	}
1430 
1431 	if (FD(leader, cpu, thread) < 0)
1432 		return -EINVAL;
1433 
1434 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1435 		return -errno;
1436 
1437 	return perf_evsel__process_group_data(leader, cpu, thread, data);
1438 }
1439 
1440 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1441 {
1442 	u64 read_format = evsel->attr.read_format;
1443 
1444 	if (read_format & PERF_FORMAT_GROUP)
1445 		return perf_evsel__read_group(evsel, cpu, thread);
1446 	else
1447 		return perf_evsel__read_one(evsel, cpu, thread);
1448 }
1449 
1450 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1451 			      int cpu, int thread, bool scale)
1452 {
1453 	struct perf_counts_values count;
1454 	size_t nv = scale ? 3 : 1;
1455 
1456 	if (FD(evsel, cpu, thread) < 0)
1457 		return -EINVAL;
1458 
1459 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1460 		return -ENOMEM;
1461 
1462 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1463 		return -errno;
1464 
1465 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1466 	perf_counts_values__scale(&count, scale, NULL);
1467 	*perf_counts(evsel->counts, cpu, thread) = count;
1468 	return 0;
1469 }
1470 
1471 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1472 {
1473 	struct perf_evsel *leader = evsel->leader;
1474 	int fd;
1475 
1476 	if (perf_evsel__is_group_leader(evsel))
1477 		return -1;
1478 
1479 	/*
1480 	 * Leader must be already processed/open,
1481 	 * if not it's a bug.
1482 	 */
1483 	BUG_ON(!leader->fd);
1484 
1485 	fd = FD(leader, cpu, thread);
1486 	BUG_ON(fd == -1);
1487 
1488 	return fd;
1489 }
1490 
1491 struct bit_names {
1492 	int bit;
1493 	const char *name;
1494 };
1495 
1496 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1497 {
1498 	bool first_bit = true;
1499 	int i = 0;
1500 
1501 	do {
1502 		if (value & bits[i].bit) {
1503 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1504 			first_bit = false;
1505 		}
1506 	} while (bits[++i].name != NULL);
1507 }
1508 
1509 static void __p_sample_type(char *buf, size_t size, u64 value)
1510 {
1511 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1512 	struct bit_names bits[] = {
1513 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1514 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1515 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1516 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1517 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1518 		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1519 		{ .name = NULL, }
1520 	};
1521 #undef bit_name
1522 	__p_bits(buf, size, value, bits);
1523 }
1524 
1525 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1526 {
1527 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1528 	struct bit_names bits[] = {
1529 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1530 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1531 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1532 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1533 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1534 		{ .name = NULL, }
1535 	};
1536 #undef bit_name
1537 	__p_bits(buf, size, value, bits);
1538 }
1539 
1540 static void __p_read_format(char *buf, size_t size, u64 value)
1541 {
1542 #define bit_name(n) { PERF_FORMAT_##n, #n }
1543 	struct bit_names bits[] = {
1544 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1545 		bit_name(ID), bit_name(GROUP),
1546 		{ .name = NULL, }
1547 	};
1548 #undef bit_name
1549 	__p_bits(buf, size, value, bits);
1550 }
1551 
1552 #define BUF_SIZE		1024
1553 
1554 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1555 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1556 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1557 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1558 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1559 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1560 
1561 #define PRINT_ATTRn(_n, _f, _p)				\
1562 do {							\
1563 	if (attr->_f) {					\
1564 		_p(attr->_f);				\
1565 		ret += attr__fprintf(fp, _n, buf, priv);\
1566 	}						\
1567 } while (0)
1568 
1569 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1570 
1571 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1572 			     attr__fprintf_f attr__fprintf, void *priv)
1573 {
1574 	char buf[BUF_SIZE];
1575 	int ret = 0;
1576 
1577 	PRINT_ATTRf(type, p_unsigned);
1578 	PRINT_ATTRf(size, p_unsigned);
1579 	PRINT_ATTRf(config, p_hex);
1580 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1581 	PRINT_ATTRf(sample_type, p_sample_type);
1582 	PRINT_ATTRf(read_format, p_read_format);
1583 
1584 	PRINT_ATTRf(disabled, p_unsigned);
1585 	PRINT_ATTRf(inherit, p_unsigned);
1586 	PRINT_ATTRf(pinned, p_unsigned);
1587 	PRINT_ATTRf(exclusive, p_unsigned);
1588 	PRINT_ATTRf(exclude_user, p_unsigned);
1589 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1590 	PRINT_ATTRf(exclude_hv, p_unsigned);
1591 	PRINT_ATTRf(exclude_idle, p_unsigned);
1592 	PRINT_ATTRf(mmap, p_unsigned);
1593 	PRINT_ATTRf(comm, p_unsigned);
1594 	PRINT_ATTRf(freq, p_unsigned);
1595 	PRINT_ATTRf(inherit_stat, p_unsigned);
1596 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1597 	PRINT_ATTRf(task, p_unsigned);
1598 	PRINT_ATTRf(watermark, p_unsigned);
1599 	PRINT_ATTRf(precise_ip, p_unsigned);
1600 	PRINT_ATTRf(mmap_data, p_unsigned);
1601 	PRINT_ATTRf(sample_id_all, p_unsigned);
1602 	PRINT_ATTRf(exclude_host, p_unsigned);
1603 	PRINT_ATTRf(exclude_guest, p_unsigned);
1604 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1605 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1606 	PRINT_ATTRf(mmap2, p_unsigned);
1607 	PRINT_ATTRf(comm_exec, p_unsigned);
1608 	PRINT_ATTRf(use_clockid, p_unsigned);
1609 	PRINT_ATTRf(context_switch, p_unsigned);
1610 	PRINT_ATTRf(write_backward, p_unsigned);
1611 	PRINT_ATTRf(namespaces, p_unsigned);
1612 
1613 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1614 	PRINT_ATTRf(bp_type, p_unsigned);
1615 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1616 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1617 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1618 	PRINT_ATTRf(sample_regs_user, p_hex);
1619 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1620 	PRINT_ATTRf(clockid, p_signed);
1621 	PRINT_ATTRf(sample_regs_intr, p_hex);
1622 	PRINT_ATTRf(aux_watermark, p_unsigned);
1623 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1624 
1625 	return ret;
1626 }
1627 
1628 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1629 				void *priv __maybe_unused)
1630 {
1631 	return fprintf(fp, "  %-32s %s\n", name, val);
1632 }
1633 
1634 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1635 				  int nr_cpus, int nr_threads,
1636 				  int thread_idx)
1637 {
1638 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1639 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1640 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1641 }
1642 
1643 static int update_fds(struct perf_evsel *evsel,
1644 		      int nr_cpus, int cpu_idx,
1645 		      int nr_threads, int thread_idx)
1646 {
1647 	struct perf_evsel *pos;
1648 
1649 	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1650 		return -EINVAL;
1651 
1652 	evlist__for_each_entry(evsel->evlist, pos) {
1653 		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1654 
1655 		perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1656 
1657 		/*
1658 		 * Since fds for next evsel has not been created,
1659 		 * there is no need to iterate whole event list.
1660 		 */
1661 		if (pos == evsel)
1662 			break;
1663 	}
1664 	return 0;
1665 }
1666 
1667 static bool ignore_missing_thread(struct perf_evsel *evsel,
1668 				  int nr_cpus, int cpu,
1669 				  struct thread_map *threads,
1670 				  int thread, int err)
1671 {
1672 	pid_t ignore_pid = thread_map__pid(threads, thread);
1673 
1674 	if (!evsel->ignore_missing_thread)
1675 		return false;
1676 
1677 	/* The system wide setup does not work with threads. */
1678 	if (evsel->system_wide)
1679 		return false;
1680 
1681 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1682 	if (err != -ESRCH)
1683 		return false;
1684 
1685 	/* If there's only one thread, let it fail. */
1686 	if (threads->nr == 1)
1687 		return false;
1688 
1689 	/*
1690 	 * We should remove fd for missing_thread first
1691 	 * because thread_map__remove() will decrease threads->nr.
1692 	 */
1693 	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1694 		return false;
1695 
1696 	if (thread_map__remove(threads, thread))
1697 		return false;
1698 
1699 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1700 		   ignore_pid);
1701 	return true;
1702 }
1703 
1704 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1705 		     struct thread_map *threads)
1706 {
1707 	int cpu, thread, nthreads;
1708 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1709 	int pid = -1, err;
1710 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1711 
1712 	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1713 		return -EINVAL;
1714 
1715 	if (cpus == NULL) {
1716 		static struct cpu_map *empty_cpu_map;
1717 
1718 		if (empty_cpu_map == NULL) {
1719 			empty_cpu_map = cpu_map__dummy_new();
1720 			if (empty_cpu_map == NULL)
1721 				return -ENOMEM;
1722 		}
1723 
1724 		cpus = empty_cpu_map;
1725 	}
1726 
1727 	if (threads == NULL) {
1728 		static struct thread_map *empty_thread_map;
1729 
1730 		if (empty_thread_map == NULL) {
1731 			empty_thread_map = thread_map__new_by_tid(-1);
1732 			if (empty_thread_map == NULL)
1733 				return -ENOMEM;
1734 		}
1735 
1736 		threads = empty_thread_map;
1737 	}
1738 
1739 	if (evsel->system_wide)
1740 		nthreads = 1;
1741 	else
1742 		nthreads = threads->nr;
1743 
1744 	if (evsel->fd == NULL &&
1745 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1746 		return -ENOMEM;
1747 
1748 	if (evsel->cgrp) {
1749 		flags |= PERF_FLAG_PID_CGROUP;
1750 		pid = evsel->cgrp->fd;
1751 	}
1752 
1753 fallback_missing_features:
1754 	if (perf_missing_features.clockid_wrong)
1755 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1756 	if (perf_missing_features.clockid) {
1757 		evsel->attr.use_clockid = 0;
1758 		evsel->attr.clockid = 0;
1759 	}
1760 	if (perf_missing_features.cloexec)
1761 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1762 	if (perf_missing_features.mmap2)
1763 		evsel->attr.mmap2 = 0;
1764 	if (perf_missing_features.exclude_guest)
1765 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1766 	if (perf_missing_features.lbr_flags)
1767 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1768 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1769 	if (perf_missing_features.group_read && evsel->attr.inherit)
1770 		evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1771 retry_sample_id:
1772 	if (perf_missing_features.sample_id_all)
1773 		evsel->attr.sample_id_all = 0;
1774 
1775 	if (verbose >= 2) {
1776 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1777 		fprintf(stderr, "perf_event_attr:\n");
1778 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1779 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1780 	}
1781 
1782 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1783 
1784 		for (thread = 0; thread < nthreads; thread++) {
1785 			int fd, group_fd;
1786 
1787 			if (!evsel->cgrp && !evsel->system_wide)
1788 				pid = thread_map__pid(threads, thread);
1789 
1790 			group_fd = get_group_fd(evsel, cpu, thread);
1791 retry_open:
1792 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1793 				  pid, cpus->map[cpu], group_fd, flags);
1794 
1795 			test_attr__ready();
1796 
1797 			fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1798 						 group_fd, flags);
1799 
1800 			FD(evsel, cpu, thread) = fd;
1801 
1802 			if (fd < 0) {
1803 				err = -errno;
1804 
1805 				if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1806 					/*
1807 					 * We just removed 1 thread, so take a step
1808 					 * back on thread index and lower the upper
1809 					 * nthreads limit.
1810 					 */
1811 					nthreads--;
1812 					thread--;
1813 
1814 					/* ... and pretend like nothing have happened. */
1815 					err = 0;
1816 					continue;
1817 				}
1818 
1819 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1820 					  err);
1821 				goto try_fallback;
1822 			}
1823 
1824 			pr_debug2(" = %d\n", fd);
1825 
1826 			if (evsel->bpf_fd >= 0) {
1827 				int evt_fd = fd;
1828 				int bpf_fd = evsel->bpf_fd;
1829 
1830 				err = ioctl(evt_fd,
1831 					    PERF_EVENT_IOC_SET_BPF,
1832 					    bpf_fd);
1833 				if (err && errno != EEXIST) {
1834 					pr_err("failed to attach bpf fd %d: %s\n",
1835 					       bpf_fd, strerror(errno));
1836 					err = -EINVAL;
1837 					goto out_close;
1838 				}
1839 			}
1840 
1841 			set_rlimit = NO_CHANGE;
1842 
1843 			/*
1844 			 * If we succeeded but had to kill clockid, fail and
1845 			 * have perf_evsel__open_strerror() print us a nice
1846 			 * error.
1847 			 */
1848 			if (perf_missing_features.clockid ||
1849 			    perf_missing_features.clockid_wrong) {
1850 				err = -EINVAL;
1851 				goto out_close;
1852 			}
1853 		}
1854 	}
1855 
1856 	return 0;
1857 
1858 try_fallback:
1859 	/*
1860 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1861 	 * of them try to increase the limits.
1862 	 */
1863 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1864 		struct rlimit l;
1865 		int old_errno = errno;
1866 
1867 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1868 			if (set_rlimit == NO_CHANGE)
1869 				l.rlim_cur = l.rlim_max;
1870 			else {
1871 				l.rlim_cur = l.rlim_max + 1000;
1872 				l.rlim_max = l.rlim_cur;
1873 			}
1874 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1875 				set_rlimit++;
1876 				errno = old_errno;
1877 				goto retry_open;
1878 			}
1879 		}
1880 		errno = old_errno;
1881 	}
1882 
1883 	if (err != -EINVAL || cpu > 0 || thread > 0)
1884 		goto out_close;
1885 
1886 	/*
1887 	 * Must probe features in the order they were added to the
1888 	 * perf_event_attr interface.
1889 	 */
1890 	if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1891 		perf_missing_features.write_backward = true;
1892 		pr_debug2("switching off write_backward\n");
1893 		goto out_close;
1894 	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1895 		perf_missing_features.clockid_wrong = true;
1896 		pr_debug2("switching off clockid\n");
1897 		goto fallback_missing_features;
1898 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1899 		perf_missing_features.clockid = true;
1900 		pr_debug2("switching off use_clockid\n");
1901 		goto fallback_missing_features;
1902 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1903 		perf_missing_features.cloexec = true;
1904 		pr_debug2("switching off cloexec flag\n");
1905 		goto fallback_missing_features;
1906 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1907 		perf_missing_features.mmap2 = true;
1908 		pr_debug2("switching off mmap2\n");
1909 		goto fallback_missing_features;
1910 	} else if (!perf_missing_features.exclude_guest &&
1911 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1912 		perf_missing_features.exclude_guest = true;
1913 		pr_debug2("switching off exclude_guest, exclude_host\n");
1914 		goto fallback_missing_features;
1915 	} else if (!perf_missing_features.sample_id_all) {
1916 		perf_missing_features.sample_id_all = true;
1917 		pr_debug2("switching off sample_id_all\n");
1918 		goto retry_sample_id;
1919 	} else if (!perf_missing_features.lbr_flags &&
1920 			(evsel->attr.branch_sample_type &
1921 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1922 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1923 		perf_missing_features.lbr_flags = true;
1924 		pr_debug2("switching off branch sample type no (cycles/flags)\n");
1925 		goto fallback_missing_features;
1926 	} else if (!perf_missing_features.group_read &&
1927 		    evsel->attr.inherit &&
1928 		   (evsel->attr.read_format & PERF_FORMAT_GROUP) &&
1929 		   perf_evsel__is_group_leader(evsel)) {
1930 		perf_missing_features.group_read = true;
1931 		pr_debug2("switching off group read\n");
1932 		goto fallback_missing_features;
1933 	}
1934 out_close:
1935 	if (err)
1936 		threads->err_thread = thread;
1937 
1938 	do {
1939 		while (--thread >= 0) {
1940 			close(FD(evsel, cpu, thread));
1941 			FD(evsel, cpu, thread) = -1;
1942 		}
1943 		thread = nthreads;
1944 	} while (--cpu >= 0);
1945 	return err;
1946 }
1947 
1948 void perf_evsel__close(struct perf_evsel *evsel)
1949 {
1950 	if (evsel->fd == NULL)
1951 		return;
1952 
1953 	perf_evsel__close_fd(evsel);
1954 	perf_evsel__free_fd(evsel);
1955 }
1956 
1957 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1958 			     struct cpu_map *cpus)
1959 {
1960 	return perf_evsel__open(evsel, cpus, NULL);
1961 }
1962 
1963 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1964 				struct thread_map *threads)
1965 {
1966 	return perf_evsel__open(evsel, NULL, threads);
1967 }
1968 
1969 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1970 				       const union perf_event *event,
1971 				       struct perf_sample *sample)
1972 {
1973 	u64 type = evsel->attr.sample_type;
1974 	const u64 *array = event->sample.array;
1975 	bool swapped = evsel->needs_swap;
1976 	union u64_swap u;
1977 
1978 	array += ((event->header.size -
1979 		   sizeof(event->header)) / sizeof(u64)) - 1;
1980 
1981 	if (type & PERF_SAMPLE_IDENTIFIER) {
1982 		sample->id = *array;
1983 		array--;
1984 	}
1985 
1986 	if (type & PERF_SAMPLE_CPU) {
1987 		u.val64 = *array;
1988 		if (swapped) {
1989 			/* undo swap of u64, then swap on individual u32s */
1990 			u.val64 = bswap_64(u.val64);
1991 			u.val32[0] = bswap_32(u.val32[0]);
1992 		}
1993 
1994 		sample->cpu = u.val32[0];
1995 		array--;
1996 	}
1997 
1998 	if (type & PERF_SAMPLE_STREAM_ID) {
1999 		sample->stream_id = *array;
2000 		array--;
2001 	}
2002 
2003 	if (type & PERF_SAMPLE_ID) {
2004 		sample->id = *array;
2005 		array--;
2006 	}
2007 
2008 	if (type & PERF_SAMPLE_TIME) {
2009 		sample->time = *array;
2010 		array--;
2011 	}
2012 
2013 	if (type & PERF_SAMPLE_TID) {
2014 		u.val64 = *array;
2015 		if (swapped) {
2016 			/* undo swap of u64, then swap on individual u32s */
2017 			u.val64 = bswap_64(u.val64);
2018 			u.val32[0] = bswap_32(u.val32[0]);
2019 			u.val32[1] = bswap_32(u.val32[1]);
2020 		}
2021 
2022 		sample->pid = u.val32[0];
2023 		sample->tid = u.val32[1];
2024 		array--;
2025 	}
2026 
2027 	return 0;
2028 }
2029 
2030 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2031 			    u64 size)
2032 {
2033 	return size > max_size || offset + size > endp;
2034 }
2035 
2036 #define OVERFLOW_CHECK(offset, size, max_size)				\
2037 	do {								\
2038 		if (overflow(endp, (max_size), (offset), (size)))	\
2039 			return -EFAULT;					\
2040 	} while (0)
2041 
2042 #define OVERFLOW_CHECK_u64(offset) \
2043 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2044 
2045 static int
2046 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2047 {
2048 	/*
2049 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2050 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2051 	 * check the format does not go past the end of the event.
2052 	 */
2053 	if (sample_size + sizeof(event->header) > event->header.size)
2054 		return -EFAULT;
2055 
2056 	return 0;
2057 }
2058 
2059 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2060 			     struct perf_sample *data)
2061 {
2062 	u64 type = evsel->attr.sample_type;
2063 	bool swapped = evsel->needs_swap;
2064 	const u64 *array;
2065 	u16 max_size = event->header.size;
2066 	const void *endp = (void *)event + max_size;
2067 	u64 sz;
2068 
2069 	/*
2070 	 * used for cross-endian analysis. See git commit 65014ab3
2071 	 * for why this goofiness is needed.
2072 	 */
2073 	union u64_swap u;
2074 
2075 	memset(data, 0, sizeof(*data));
2076 	data->cpu = data->pid = data->tid = -1;
2077 	data->stream_id = data->id = data->time = -1ULL;
2078 	data->period = evsel->attr.sample_period;
2079 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2080 	data->misc    = event->header.misc;
2081 	data->id = -1ULL;
2082 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2083 
2084 	if (event->header.type != PERF_RECORD_SAMPLE) {
2085 		if (!evsel->attr.sample_id_all)
2086 			return 0;
2087 		return perf_evsel__parse_id_sample(evsel, event, data);
2088 	}
2089 
2090 	array = event->sample.array;
2091 
2092 	if (perf_event__check_size(event, evsel->sample_size))
2093 		return -EFAULT;
2094 
2095 	if (type & PERF_SAMPLE_IDENTIFIER) {
2096 		data->id = *array;
2097 		array++;
2098 	}
2099 
2100 	if (type & PERF_SAMPLE_IP) {
2101 		data->ip = *array;
2102 		array++;
2103 	}
2104 
2105 	if (type & PERF_SAMPLE_TID) {
2106 		u.val64 = *array;
2107 		if (swapped) {
2108 			/* undo swap of u64, then swap on individual u32s */
2109 			u.val64 = bswap_64(u.val64);
2110 			u.val32[0] = bswap_32(u.val32[0]);
2111 			u.val32[1] = bswap_32(u.val32[1]);
2112 		}
2113 
2114 		data->pid = u.val32[0];
2115 		data->tid = u.val32[1];
2116 		array++;
2117 	}
2118 
2119 	if (type & PERF_SAMPLE_TIME) {
2120 		data->time = *array;
2121 		array++;
2122 	}
2123 
2124 	if (type & PERF_SAMPLE_ADDR) {
2125 		data->addr = *array;
2126 		array++;
2127 	}
2128 
2129 	if (type & PERF_SAMPLE_ID) {
2130 		data->id = *array;
2131 		array++;
2132 	}
2133 
2134 	if (type & PERF_SAMPLE_STREAM_ID) {
2135 		data->stream_id = *array;
2136 		array++;
2137 	}
2138 
2139 	if (type & PERF_SAMPLE_CPU) {
2140 
2141 		u.val64 = *array;
2142 		if (swapped) {
2143 			/* undo swap of u64, then swap on individual u32s */
2144 			u.val64 = bswap_64(u.val64);
2145 			u.val32[0] = bswap_32(u.val32[0]);
2146 		}
2147 
2148 		data->cpu = u.val32[0];
2149 		array++;
2150 	}
2151 
2152 	if (type & PERF_SAMPLE_PERIOD) {
2153 		data->period = *array;
2154 		array++;
2155 	}
2156 
2157 	if (type & PERF_SAMPLE_READ) {
2158 		u64 read_format = evsel->attr.read_format;
2159 
2160 		OVERFLOW_CHECK_u64(array);
2161 		if (read_format & PERF_FORMAT_GROUP)
2162 			data->read.group.nr = *array;
2163 		else
2164 			data->read.one.value = *array;
2165 
2166 		array++;
2167 
2168 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2169 			OVERFLOW_CHECK_u64(array);
2170 			data->read.time_enabled = *array;
2171 			array++;
2172 		}
2173 
2174 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2175 			OVERFLOW_CHECK_u64(array);
2176 			data->read.time_running = *array;
2177 			array++;
2178 		}
2179 
2180 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2181 		if (read_format & PERF_FORMAT_GROUP) {
2182 			const u64 max_group_nr = UINT64_MAX /
2183 					sizeof(struct sample_read_value);
2184 
2185 			if (data->read.group.nr > max_group_nr)
2186 				return -EFAULT;
2187 			sz = data->read.group.nr *
2188 			     sizeof(struct sample_read_value);
2189 			OVERFLOW_CHECK(array, sz, max_size);
2190 			data->read.group.values =
2191 					(struct sample_read_value *)array;
2192 			array = (void *)array + sz;
2193 		} else {
2194 			OVERFLOW_CHECK_u64(array);
2195 			data->read.one.id = *array;
2196 			array++;
2197 		}
2198 	}
2199 
2200 	if (evsel__has_callchain(evsel)) {
2201 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2202 
2203 		OVERFLOW_CHECK_u64(array);
2204 		data->callchain = (struct ip_callchain *)array++;
2205 		if (data->callchain->nr > max_callchain_nr)
2206 			return -EFAULT;
2207 		sz = data->callchain->nr * sizeof(u64);
2208 		OVERFLOW_CHECK(array, sz, max_size);
2209 		array = (void *)array + sz;
2210 	}
2211 
2212 	if (type & PERF_SAMPLE_RAW) {
2213 		OVERFLOW_CHECK_u64(array);
2214 		u.val64 = *array;
2215 
2216 		/*
2217 		 * Undo swap of u64, then swap on individual u32s,
2218 		 * get the size of the raw area and undo all of the
2219 		 * swap. The pevent interface handles endianity by
2220 		 * itself.
2221 		 */
2222 		if (swapped) {
2223 			u.val64 = bswap_64(u.val64);
2224 			u.val32[0] = bswap_32(u.val32[0]);
2225 			u.val32[1] = bswap_32(u.val32[1]);
2226 		}
2227 		data->raw_size = u.val32[0];
2228 
2229 		/*
2230 		 * The raw data is aligned on 64bits including the
2231 		 * u32 size, so it's safe to use mem_bswap_64.
2232 		 */
2233 		if (swapped)
2234 			mem_bswap_64((void *) array, data->raw_size);
2235 
2236 		array = (void *)array + sizeof(u32);
2237 
2238 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2239 		data->raw_data = (void *)array;
2240 		array = (void *)array + data->raw_size;
2241 	}
2242 
2243 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2244 		const u64 max_branch_nr = UINT64_MAX /
2245 					  sizeof(struct branch_entry);
2246 
2247 		OVERFLOW_CHECK_u64(array);
2248 		data->branch_stack = (struct branch_stack *)array++;
2249 
2250 		if (data->branch_stack->nr > max_branch_nr)
2251 			return -EFAULT;
2252 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2253 		OVERFLOW_CHECK(array, sz, max_size);
2254 		array = (void *)array + sz;
2255 	}
2256 
2257 	if (type & PERF_SAMPLE_REGS_USER) {
2258 		OVERFLOW_CHECK_u64(array);
2259 		data->user_regs.abi = *array;
2260 		array++;
2261 
2262 		if (data->user_regs.abi) {
2263 			u64 mask = evsel->attr.sample_regs_user;
2264 
2265 			sz = hweight_long(mask) * sizeof(u64);
2266 			OVERFLOW_CHECK(array, sz, max_size);
2267 			data->user_regs.mask = mask;
2268 			data->user_regs.regs = (u64 *)array;
2269 			array = (void *)array + sz;
2270 		}
2271 	}
2272 
2273 	if (type & PERF_SAMPLE_STACK_USER) {
2274 		OVERFLOW_CHECK_u64(array);
2275 		sz = *array++;
2276 
2277 		data->user_stack.offset = ((char *)(array - 1)
2278 					  - (char *) event);
2279 
2280 		if (!sz) {
2281 			data->user_stack.size = 0;
2282 		} else {
2283 			OVERFLOW_CHECK(array, sz, max_size);
2284 			data->user_stack.data = (char *)array;
2285 			array = (void *)array + sz;
2286 			OVERFLOW_CHECK_u64(array);
2287 			data->user_stack.size = *array++;
2288 			if (WARN_ONCE(data->user_stack.size > sz,
2289 				      "user stack dump failure\n"))
2290 				return -EFAULT;
2291 		}
2292 	}
2293 
2294 	if (type & PERF_SAMPLE_WEIGHT) {
2295 		OVERFLOW_CHECK_u64(array);
2296 		data->weight = *array;
2297 		array++;
2298 	}
2299 
2300 	if (type & PERF_SAMPLE_DATA_SRC) {
2301 		OVERFLOW_CHECK_u64(array);
2302 		data->data_src = *array;
2303 		array++;
2304 	}
2305 
2306 	if (type & PERF_SAMPLE_TRANSACTION) {
2307 		OVERFLOW_CHECK_u64(array);
2308 		data->transaction = *array;
2309 		array++;
2310 	}
2311 
2312 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2313 	if (type & PERF_SAMPLE_REGS_INTR) {
2314 		OVERFLOW_CHECK_u64(array);
2315 		data->intr_regs.abi = *array;
2316 		array++;
2317 
2318 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2319 			u64 mask = evsel->attr.sample_regs_intr;
2320 
2321 			sz = hweight_long(mask) * sizeof(u64);
2322 			OVERFLOW_CHECK(array, sz, max_size);
2323 			data->intr_regs.mask = mask;
2324 			data->intr_regs.regs = (u64 *)array;
2325 			array = (void *)array + sz;
2326 		}
2327 	}
2328 
2329 	data->phys_addr = 0;
2330 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2331 		data->phys_addr = *array;
2332 		array++;
2333 	}
2334 
2335 	return 0;
2336 }
2337 
2338 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2339 				       union perf_event *event,
2340 				       u64 *timestamp)
2341 {
2342 	u64 type = evsel->attr.sample_type;
2343 	const u64 *array;
2344 
2345 	if (!(type & PERF_SAMPLE_TIME))
2346 		return -1;
2347 
2348 	if (event->header.type != PERF_RECORD_SAMPLE) {
2349 		struct perf_sample data = {
2350 			.time = -1ULL,
2351 		};
2352 
2353 		if (!evsel->attr.sample_id_all)
2354 			return -1;
2355 		if (perf_evsel__parse_id_sample(evsel, event, &data))
2356 			return -1;
2357 
2358 		*timestamp = data.time;
2359 		return 0;
2360 	}
2361 
2362 	array = event->sample.array;
2363 
2364 	if (perf_event__check_size(event, evsel->sample_size))
2365 		return -EFAULT;
2366 
2367 	if (type & PERF_SAMPLE_IDENTIFIER)
2368 		array++;
2369 
2370 	if (type & PERF_SAMPLE_IP)
2371 		array++;
2372 
2373 	if (type & PERF_SAMPLE_TID)
2374 		array++;
2375 
2376 	if (type & PERF_SAMPLE_TIME)
2377 		*timestamp = *array;
2378 
2379 	return 0;
2380 }
2381 
2382 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2383 				     u64 read_format)
2384 {
2385 	size_t sz, result = sizeof(struct sample_event);
2386 
2387 	if (type & PERF_SAMPLE_IDENTIFIER)
2388 		result += sizeof(u64);
2389 
2390 	if (type & PERF_SAMPLE_IP)
2391 		result += sizeof(u64);
2392 
2393 	if (type & PERF_SAMPLE_TID)
2394 		result += sizeof(u64);
2395 
2396 	if (type & PERF_SAMPLE_TIME)
2397 		result += sizeof(u64);
2398 
2399 	if (type & PERF_SAMPLE_ADDR)
2400 		result += sizeof(u64);
2401 
2402 	if (type & PERF_SAMPLE_ID)
2403 		result += sizeof(u64);
2404 
2405 	if (type & PERF_SAMPLE_STREAM_ID)
2406 		result += sizeof(u64);
2407 
2408 	if (type & PERF_SAMPLE_CPU)
2409 		result += sizeof(u64);
2410 
2411 	if (type & PERF_SAMPLE_PERIOD)
2412 		result += sizeof(u64);
2413 
2414 	if (type & PERF_SAMPLE_READ) {
2415 		result += sizeof(u64);
2416 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2417 			result += sizeof(u64);
2418 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2419 			result += sizeof(u64);
2420 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2421 		if (read_format & PERF_FORMAT_GROUP) {
2422 			sz = sample->read.group.nr *
2423 			     sizeof(struct sample_read_value);
2424 			result += sz;
2425 		} else {
2426 			result += sizeof(u64);
2427 		}
2428 	}
2429 
2430 	if (type & PERF_SAMPLE_CALLCHAIN) {
2431 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2432 		result += sz;
2433 	}
2434 
2435 	if (type & PERF_SAMPLE_RAW) {
2436 		result += sizeof(u32);
2437 		result += sample->raw_size;
2438 	}
2439 
2440 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2441 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2442 		sz += sizeof(u64);
2443 		result += sz;
2444 	}
2445 
2446 	if (type & PERF_SAMPLE_REGS_USER) {
2447 		if (sample->user_regs.abi) {
2448 			result += sizeof(u64);
2449 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2450 			result += sz;
2451 		} else {
2452 			result += sizeof(u64);
2453 		}
2454 	}
2455 
2456 	if (type & PERF_SAMPLE_STACK_USER) {
2457 		sz = sample->user_stack.size;
2458 		result += sizeof(u64);
2459 		if (sz) {
2460 			result += sz;
2461 			result += sizeof(u64);
2462 		}
2463 	}
2464 
2465 	if (type & PERF_SAMPLE_WEIGHT)
2466 		result += sizeof(u64);
2467 
2468 	if (type & PERF_SAMPLE_DATA_SRC)
2469 		result += sizeof(u64);
2470 
2471 	if (type & PERF_SAMPLE_TRANSACTION)
2472 		result += sizeof(u64);
2473 
2474 	if (type & PERF_SAMPLE_REGS_INTR) {
2475 		if (sample->intr_regs.abi) {
2476 			result += sizeof(u64);
2477 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2478 			result += sz;
2479 		} else {
2480 			result += sizeof(u64);
2481 		}
2482 	}
2483 
2484 	if (type & PERF_SAMPLE_PHYS_ADDR)
2485 		result += sizeof(u64);
2486 
2487 	return result;
2488 }
2489 
2490 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2491 				  u64 read_format,
2492 				  const struct perf_sample *sample)
2493 {
2494 	u64 *array;
2495 	size_t sz;
2496 	/*
2497 	 * used for cross-endian analysis. See git commit 65014ab3
2498 	 * for why this goofiness is needed.
2499 	 */
2500 	union u64_swap u;
2501 
2502 	array = event->sample.array;
2503 
2504 	if (type & PERF_SAMPLE_IDENTIFIER) {
2505 		*array = sample->id;
2506 		array++;
2507 	}
2508 
2509 	if (type & PERF_SAMPLE_IP) {
2510 		*array = sample->ip;
2511 		array++;
2512 	}
2513 
2514 	if (type & PERF_SAMPLE_TID) {
2515 		u.val32[0] = sample->pid;
2516 		u.val32[1] = sample->tid;
2517 		*array = u.val64;
2518 		array++;
2519 	}
2520 
2521 	if (type & PERF_SAMPLE_TIME) {
2522 		*array = sample->time;
2523 		array++;
2524 	}
2525 
2526 	if (type & PERF_SAMPLE_ADDR) {
2527 		*array = sample->addr;
2528 		array++;
2529 	}
2530 
2531 	if (type & PERF_SAMPLE_ID) {
2532 		*array = sample->id;
2533 		array++;
2534 	}
2535 
2536 	if (type & PERF_SAMPLE_STREAM_ID) {
2537 		*array = sample->stream_id;
2538 		array++;
2539 	}
2540 
2541 	if (type & PERF_SAMPLE_CPU) {
2542 		u.val32[0] = sample->cpu;
2543 		u.val32[1] = 0;
2544 		*array = u.val64;
2545 		array++;
2546 	}
2547 
2548 	if (type & PERF_SAMPLE_PERIOD) {
2549 		*array = sample->period;
2550 		array++;
2551 	}
2552 
2553 	if (type & PERF_SAMPLE_READ) {
2554 		if (read_format & PERF_FORMAT_GROUP)
2555 			*array = sample->read.group.nr;
2556 		else
2557 			*array = sample->read.one.value;
2558 		array++;
2559 
2560 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2561 			*array = sample->read.time_enabled;
2562 			array++;
2563 		}
2564 
2565 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2566 			*array = sample->read.time_running;
2567 			array++;
2568 		}
2569 
2570 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2571 		if (read_format & PERF_FORMAT_GROUP) {
2572 			sz = sample->read.group.nr *
2573 			     sizeof(struct sample_read_value);
2574 			memcpy(array, sample->read.group.values, sz);
2575 			array = (void *)array + sz;
2576 		} else {
2577 			*array = sample->read.one.id;
2578 			array++;
2579 		}
2580 	}
2581 
2582 	if (type & PERF_SAMPLE_CALLCHAIN) {
2583 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2584 		memcpy(array, sample->callchain, sz);
2585 		array = (void *)array + sz;
2586 	}
2587 
2588 	if (type & PERF_SAMPLE_RAW) {
2589 		u.val32[0] = sample->raw_size;
2590 		*array = u.val64;
2591 		array = (void *)array + sizeof(u32);
2592 
2593 		memcpy(array, sample->raw_data, sample->raw_size);
2594 		array = (void *)array + sample->raw_size;
2595 	}
2596 
2597 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2598 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2599 		sz += sizeof(u64);
2600 		memcpy(array, sample->branch_stack, sz);
2601 		array = (void *)array + sz;
2602 	}
2603 
2604 	if (type & PERF_SAMPLE_REGS_USER) {
2605 		if (sample->user_regs.abi) {
2606 			*array++ = sample->user_regs.abi;
2607 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2608 			memcpy(array, sample->user_regs.regs, sz);
2609 			array = (void *)array + sz;
2610 		} else {
2611 			*array++ = 0;
2612 		}
2613 	}
2614 
2615 	if (type & PERF_SAMPLE_STACK_USER) {
2616 		sz = sample->user_stack.size;
2617 		*array++ = sz;
2618 		if (sz) {
2619 			memcpy(array, sample->user_stack.data, sz);
2620 			array = (void *)array + sz;
2621 			*array++ = sz;
2622 		}
2623 	}
2624 
2625 	if (type & PERF_SAMPLE_WEIGHT) {
2626 		*array = sample->weight;
2627 		array++;
2628 	}
2629 
2630 	if (type & PERF_SAMPLE_DATA_SRC) {
2631 		*array = sample->data_src;
2632 		array++;
2633 	}
2634 
2635 	if (type & PERF_SAMPLE_TRANSACTION) {
2636 		*array = sample->transaction;
2637 		array++;
2638 	}
2639 
2640 	if (type & PERF_SAMPLE_REGS_INTR) {
2641 		if (sample->intr_regs.abi) {
2642 			*array++ = sample->intr_regs.abi;
2643 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2644 			memcpy(array, sample->intr_regs.regs, sz);
2645 			array = (void *)array + sz;
2646 		} else {
2647 			*array++ = 0;
2648 		}
2649 	}
2650 
2651 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2652 		*array = sample->phys_addr;
2653 		array++;
2654 	}
2655 
2656 	return 0;
2657 }
2658 
2659 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2660 {
2661 	return pevent_find_field(evsel->tp_format, name);
2662 }
2663 
2664 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2665 			 const char *name)
2666 {
2667 	struct format_field *field = perf_evsel__field(evsel, name);
2668 	int offset;
2669 
2670 	if (!field)
2671 		return NULL;
2672 
2673 	offset = field->offset;
2674 
2675 	if (field->flags & FIELD_IS_DYNAMIC) {
2676 		offset = *(int *)(sample->raw_data + field->offset);
2677 		offset &= 0xffff;
2678 	}
2679 
2680 	return sample->raw_data + offset;
2681 }
2682 
2683 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2684 			 bool needs_swap)
2685 {
2686 	u64 value;
2687 	void *ptr = sample->raw_data + field->offset;
2688 
2689 	switch (field->size) {
2690 	case 1:
2691 		return *(u8 *)ptr;
2692 	case 2:
2693 		value = *(u16 *)ptr;
2694 		break;
2695 	case 4:
2696 		value = *(u32 *)ptr;
2697 		break;
2698 	case 8:
2699 		memcpy(&value, ptr, sizeof(u64));
2700 		break;
2701 	default:
2702 		return 0;
2703 	}
2704 
2705 	if (!needs_swap)
2706 		return value;
2707 
2708 	switch (field->size) {
2709 	case 2:
2710 		return bswap_16(value);
2711 	case 4:
2712 		return bswap_32(value);
2713 	case 8:
2714 		return bswap_64(value);
2715 	default:
2716 		return 0;
2717 	}
2718 
2719 	return 0;
2720 }
2721 
2722 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2723 		       const char *name)
2724 {
2725 	struct format_field *field = perf_evsel__field(evsel, name);
2726 
2727 	if (!field)
2728 		return 0;
2729 
2730 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2731 }
2732 
2733 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2734 			  char *msg, size_t msgsize)
2735 {
2736 	int paranoid;
2737 
2738 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2739 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2740 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2741 		/*
2742 		 * If it's cycles then fall back to hrtimer based
2743 		 * cpu-clock-tick sw counter, which is always available even if
2744 		 * no PMU support.
2745 		 *
2746 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2747 		 * b0a873e).
2748 		 */
2749 		scnprintf(msg, msgsize, "%s",
2750 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2751 
2752 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2753 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2754 
2755 		zfree(&evsel->name);
2756 		return true;
2757 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2758 		   (paranoid = perf_event_paranoid()) > 1) {
2759 		const char *name = perf_evsel__name(evsel);
2760 		char *new_name;
2761 		const char *sep = ":";
2762 
2763 		/* Is there already the separator in the name. */
2764 		if (strchr(name, '/') ||
2765 		    strchr(name, ':'))
2766 			sep = "";
2767 
2768 		if (asprintf(&new_name, "%s%su", name, sep) < 0)
2769 			return false;
2770 
2771 		if (evsel->name)
2772 			free(evsel->name);
2773 		evsel->name = new_name;
2774 		scnprintf(msg, msgsize,
2775 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2776 		evsel->attr.exclude_kernel = 1;
2777 
2778 		return true;
2779 	}
2780 
2781 	return false;
2782 }
2783 
2784 static bool find_process(const char *name)
2785 {
2786 	size_t len = strlen(name);
2787 	DIR *dir;
2788 	struct dirent *d;
2789 	int ret = -1;
2790 
2791 	dir = opendir(procfs__mountpoint());
2792 	if (!dir)
2793 		return false;
2794 
2795 	/* Walk through the directory. */
2796 	while (ret && (d = readdir(dir)) != NULL) {
2797 		char path[PATH_MAX];
2798 		char *data;
2799 		size_t size;
2800 
2801 		if ((d->d_type != DT_DIR) ||
2802 		     !strcmp(".", d->d_name) ||
2803 		     !strcmp("..", d->d_name))
2804 			continue;
2805 
2806 		scnprintf(path, sizeof(path), "%s/%s/comm",
2807 			  procfs__mountpoint(), d->d_name);
2808 
2809 		if (filename__read_str(path, &data, &size))
2810 			continue;
2811 
2812 		ret = strncmp(name, data, len);
2813 		free(data);
2814 	}
2815 
2816 	closedir(dir);
2817 	return ret ? false : true;
2818 }
2819 
2820 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2821 			      int err, char *msg, size_t size)
2822 {
2823 	char sbuf[STRERR_BUFSIZE];
2824 	int printed = 0;
2825 
2826 	switch (err) {
2827 	case EPERM:
2828 	case EACCES:
2829 		if (err == EPERM)
2830 			printed = scnprintf(msg, size,
2831 				"No permission to enable %s event.\n\n",
2832 				perf_evsel__name(evsel));
2833 
2834 		return scnprintf(msg + printed, size - printed,
2835 		 "You may not have permission to collect %sstats.\n\n"
2836 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2837 		 "which controls use of the performance events system by\n"
2838 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2839 		 "The current value is %d:\n\n"
2840 		 "  -1: Allow use of (almost) all events by all users\n"
2841 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2842 		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2843 		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2844 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2845 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2846 		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2847 		 "	kernel.perf_event_paranoid = -1\n" ,
2848 				 target->system_wide ? "system-wide " : "",
2849 				 perf_event_paranoid());
2850 	case ENOENT:
2851 		return scnprintf(msg, size, "The %s event is not supported.",
2852 				 perf_evsel__name(evsel));
2853 	case EMFILE:
2854 		return scnprintf(msg, size, "%s",
2855 			 "Too many events are opened.\n"
2856 			 "Probably the maximum number of open file descriptors has been reached.\n"
2857 			 "Hint: Try again after reducing the number of events.\n"
2858 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2859 	case ENOMEM:
2860 		if (evsel__has_callchain(evsel) &&
2861 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2862 			return scnprintf(msg, size,
2863 					 "Not enough memory to setup event with callchain.\n"
2864 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2865 					 "Hint: Current value: %d", sysctl__max_stack());
2866 		break;
2867 	case ENODEV:
2868 		if (target->cpu_list)
2869 			return scnprintf(msg, size, "%s",
2870 	 "No such device - did you specify an out-of-range profile CPU?");
2871 		break;
2872 	case EOPNOTSUPP:
2873 		if (evsel->attr.sample_period != 0)
2874 			return scnprintf(msg, size,
2875 	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2876 					 perf_evsel__name(evsel));
2877 		if (evsel->attr.precise_ip)
2878 			return scnprintf(msg, size, "%s",
2879 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2880 #if defined(__i386__) || defined(__x86_64__)
2881 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2882 			return scnprintf(msg, size, "%s",
2883 	"No hardware sampling interrupt available.\n");
2884 #endif
2885 		break;
2886 	case EBUSY:
2887 		if (find_process("oprofiled"))
2888 			return scnprintf(msg, size,
2889 	"The PMU counters are busy/taken by another profiler.\n"
2890 	"We found oprofile daemon running, please stop it and try again.");
2891 		break;
2892 	case EINVAL:
2893 		if (evsel->attr.write_backward && perf_missing_features.write_backward)
2894 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2895 		if (perf_missing_features.clockid)
2896 			return scnprintf(msg, size, "clockid feature not supported.");
2897 		if (perf_missing_features.clockid_wrong)
2898 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2899 		break;
2900 	default:
2901 		break;
2902 	}
2903 
2904 	return scnprintf(msg, size,
2905 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2906 	"/bin/dmesg | grep -i perf may provide additional information.\n",
2907 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2908 			 perf_evsel__name(evsel));
2909 }
2910 
2911 struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
2912 {
2913 	if (evsel && evsel->evlist)
2914 		return evsel->evlist->env;
2915 	return NULL;
2916 }
2917